Powered by Deep Web Technologies
Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of  

Open Energy Info (EERE)

Of Electromagnetic Methods Applied In Active Volcanic Areas Of Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States Details Activities (7) Areas (2) Regions (0) Abstract: A better understanding of active volcanic areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations by governmental, industrial, and academic agencies include (but are not limited to) mapping of the Cascades. Long Valley/Mono area, the Jemez volcanic field, Yellowstone Park, and an area in Colorado. For one example - Mt. Konocti in the Mayacamas Mountains, California - gravity,

2

Mercury Vapor At Lassen Volcanic National Park Area (Varekamp...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lassen Volcanic National Park Area (Varekamp & Buseck, 1983) Exploration...

3

Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan,  

Open Energy Info (EERE)

Morgan, Morgan, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At San Francisco Volcanic Field Area (Morgan, Et Al., 2003) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown References Paul Morgan, Wendell Duffield, John Sass, Tracey Felger (2003) Searching For An Electrical-Grade Geothermal Resource In Northern Arizona To Help Geopower The West Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_San_Francisco_Volcanic_Field_Area_(Morgan,_Et_Al.,_2003)&oldid=510822" Category: Exploration Activities What links here

4

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area (Redirected from Lassen Volcanic National Park Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

5

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area (Redirected from San Juan Volcanic Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

6

Data Acquisition-Manipulation At San Francisco Volcanic Field Area  

Open Energy Info (EERE)

At San Francisco Volcanic Field Area At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References

7

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Geothermometry Activity Date Usefulness useful DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

8

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

9

Lassen Volcanic National Park Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lassen Volcanic National Park Geothermal Area Lassen Volcanic National Park Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lassen Volcanic National Park Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

10

San Francisco Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Francisco Volcanic Field Geothermal Area San Francisco Volcanic Field Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Francisco Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Arizona Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

11

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Teleseismic-Seismic Monitoring At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness useful DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Retrieved from "http://en.openei.org/w/index.php?title=Teleseismic-Seismic_Monitoring_At_Lassen_Volcanic_National_Park_Area_(Janik_%26_Mclaren,_2010)&oldid=425654"

12

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

13

Compound and Elemental Analysis At Lassen Volcanic National Park Area  

Open Energy Info (EERE)

Janik & Mclaren, 2010) Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding Unknown Notes Analyses of eight well samples taken consecutively during the flow test showed an inverse correlation between NH3 and Cl_ concentrations. The last sample taken had a pH of 8.35 and contained 2100 ppm Cl_ and 0.55 ppm NH3. Ratios of Na+/K+ and Na+/Cl_ remained nearly constant throughout the flow test. Cation geothermometers (with inherent uncertainties of at least

14

Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) |  

Open Energy Info (EERE)

Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) Isotopic Analysis At San Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At San Juan Volcanic Field Area (Larson & Jr, 1986) Exploration Activity Details Location San Juan Volcanic Field Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness not indicated DOE-funding Unknown Notes Oxygen isotopes. References Peter B. Larson, Hugh P. Taylor Jr (1986) An Oxygen Isotope Study Of Hydrothermal Alteration In The Lake City Caldera, San Juan Mountains, Colorado Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_San_Juan_Volcanic_Field_Area_(Larson_%26_Jr,_1986)&oldid=687474" Categories: Exploration Activities

15

A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego  

Open Energy Info (EERE)

Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego And Mount St Helens Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity- Fuego And Mount St Helens Details Activities (0) Areas (0) Regions (0) Abstract: The large amount of scientific data collected on the Mount St. Helens eruption has resulted in significant changes in thinking about the atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than previously thought. The Mount St. Helens eruption released much fine ash in the upper atmosphere. These silicates were removed very rapidly due to a process of particle aggregation (Sorem, 1982;

16

Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) |  

Open Energy Info (EERE)

Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding Unknown Notes Water samples were collected during nitrogen-stimulated flow tests in 1978, but no information was provided on sampling conditions. The well was flowed again for the last time in 1982, but the flow test lasted only 1 h (Thompson, 1985). References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

17

Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson &  

Open Energy Info (EERE)

Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Reiter, 1987) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At San Juan Volcanic Field Area (Clarkson & Reiter, 1987) Exploration Activity Details Location San Juan Volcanic Field Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness useful DOE-funding Unknown Notes In this study we combine thermal maturation models, based on the level of maturation of the Fruitland Formation coals, and time-dependet temperature models, based on heat-flow data in the San Juan region, to further investigate both the thermal history of the region and the nature of the influence of the San Juan volcanic field thermal source on the thermal

18

Rock Sampling At San Francisco Volcanic Field Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

San Francisco Volcanic Field Area (Warpinski, Et Al., San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J.

19

Surface Gas Sampling At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) (Redirected from Water-Gas Samples At Lassen Volcanic National Park Area (Janik & Mclaren, 2010)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Surface Gas Sampling Activity Date Usefulness not indicated DOE-funding Unknown References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid

20

Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Isotopic Analysis At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown Notes Both fluid and gas isotopic analysis. References Cathy J. Janik, Marcia K. McLaren (2010) Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Static Temperature Survey At Lassen Volcanic National Park Area (Janik &  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Static Temperature Survey At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Lassen Volcanic National Park Area (Janik & Mclaren, 2010) Exploration Activity Details Location Lassen Volcanic National Park Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes In 1978, the Walker "O" No. 1 well at Terminal Geyser was drilled to 1222 m, all in volcanic rocks (Beall, 1981). Temperature-log profiles made 10

22

Some Aspects Of Exploration In Non-Volcanic Areas | Open Energy Information  

Open Energy Info (EERE)

Some Aspects Of Exploration In Non-Volcanic Areas Some Aspects Of Exploration In Non-Volcanic Areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Some Aspects Of Exploration In Non-Volcanic Areas Details Activities (5) Areas (1) Regions (0) Abstract: Geothermal exploration in non-volcanic areas must above all rely on geophysical techniques to identify the reservoir, as it is unable to resort to volcanological methodologies. A brief description is therefore given of the contribution that can be obtained from certain types of geophysical prospectings. Author(s): Raffaello Nannini Published: Geothermics, 1986 Document Number: Unavailable DOI: Unavailable Source: View Original Journal Article Aerial Photography (Nannini, 1986) Aeromagnetic Survey (Nannini, 1986) Ground Gravity Survey (Nannini, 1986)

23

Ground Magnetics At San Francisco Volcanic Field Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

Warpinski, Et Al., Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Magnetics At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Ground Magnetics Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J.

24

Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986) | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Rock Sampling At San Juan Volcanic Field Area (Larson & Jr, 1986) Exploration Activity Details Location San Juan Volcanic Field Area Exploration Technique Rock Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes More than 300 samples were collected from within and adjacent to the Lake City caldera. All specimens consist of single hand samples, approximately 1 kg in size. Care was taken to avoid oxidized or weathered rocks. Twenty

25

Active System For Monitoring Volcanic Activity- A Case Study Of The  

Open Energy Info (EERE)

System For Monitoring Volcanic Activity- A Case Study Of The System For Monitoring Volcanic Activity- A Case Study Of The Izu-Oshima Volcano, Central Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Active System For Monitoring Volcanic Activity- A Case Study Of The Izu-Oshima Volcano, Central Japan Details Activities (0) Areas (0) Regions (0) Abstract: A system is proposed for the monitoring of changes in the underground structure of an active volcano over time by applying a transient electromagnetic method. The monitoring system is named ACTIVE, which stands for Array of Controlled Transient-electromagnetics for Imaging Volcano Edifice. The system consists of a transmitter dipole used to generate a controlled transient electromagnetic (EM) field and an array of receivers used to measure the vertical component of the transient magnetic

26

Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski, Et  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects

27

Field Mapping At San Francisco Volcanic Field Area (Warpinski, Et Al.,  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At San Francisco Volcanic Field Area (Warpinski, Et Al., 2004) Exploration Activity Details Location San Francisco Volcanic Field Area Exploration Technique Field Mapping Activity Date Usefulness not indicated DOE-funding Unknown Notes Northern Arizona University has re-assessed the existing exploration data, geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify potential drilling targets and sites. Further work may occur in 2004 or 2005. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects

28

Blind Geothermal System Exploration in Active Volcanic Environments;  

Open Energy Info (EERE)

System Exploration in Active Volcanic Environments; System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawaii and Maui Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt and Subtle Volcanic Systems, Hawai'i and Maui Project Type / Topic 1 Recovery Act: Geothermal Technologies Program Project Type / Topic 2 Validation of Innovative Exploration Technologies Project Description The project will perform a suite of stepped geophysical and geochemical surveys and syntheses at both a known, active volcanic system at Puna, Hawai'i and a blind geothermal system in Maui, Hawai'i. Established geophysical and geochemical techniques for geothermal exploration including gravity, major cations/anions and gas analysis will be combined with atypical implementations of additional geophysics (aeromagnetics) and geochemistry (CO2 flux, 14C measurements, helium isotopes and imaging spectroscopy). Importantly, the combination of detailed CO2 flux, 14C measurements and helium isotopes will provide the ability to directly map geothermal fluid upflow as expressed at the surface. Advantageously, the similar though active volcanic and hydrothermal systems on the east flanks of Kilauea have historically been the subject of both proposed geophysical surveys and some geochemistry; the Puna Geothermal Field (Puna) (operated by Puna Geothermal Venture [PGV], an Ormat subsidiary) will be used as a standard by which to compare both geophysical and geochemical results.

29

E-Print Network 3.0 - active volcanic features Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

enormous Jurassic--Cretaceous volcanic activity, CretaceousJurassicPermian andesite Permian metasediment... of Mesozoic volcanic rocks in the Songliao basin, NE China PU-JUN...

30

Geothermometry At Lassen Volcanic National Park Area (Thompson...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown References J. Michael Thompson (1985) Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park...

31

Geologic evolution of the Jemez Mountains and their potential for future volcanic activity  

SciTech Connect (OSTI)

Geophysical and geochemical data and the geologic history of the Rio Grande rift and the vicinity of the Jemez Mountains are summarized to determine the probability of future volcanic activity in the Los Alamos, New Mexico area. The apparent cyclic nature of volcanism in the Jemez Mountains may be related to intermittent thermal inputs into the volcanic system beneath the region. The Jemez lineament, an alignment of late Cenozoic volcanic centers that crosses the rift near Los Alamos, has played an important role in the volcanic evolution of the Jemez Mountains. Geophysical data suggest that there is no active shallow magma body beneath the Valles caldera, though magma probably exists at about 15 km beneath this portion of the rift. The rate of volcanism in the Jemez Mountains during the last 10 million years has been 5 x 10/sup -9//km/sup 2//y. Lava or ash flows overriding Laboratory radioactive waste disposal sites would have little potential to release radionuclides to the environment. The probability of a new volcano intruding close enough to a radioactive waste disposal site to effect radionuclide release is 2 x 10/sup -7//y.

Burton, B.W.

1982-01-01T23:59:59.000Z

32

Static Temperature Survey At Lassen Volcanic National Park Area...  

Open Energy Info (EERE)

in volcanic rocks (Beall, 1981). Temperature-log profiles made 10 months after drilling completion show an abrupt temperature rise at 183 m, a maximum temperature of 176 degrees...

33

An energy appraisal of volcanic and hydrothermal phenomena (on the example of Kamchatka)  

Science Journals Connector (OSTI)

Such areas of active volcanicity may be regarded as positive geothermic anomalies on a planetary scale. This conclusion ... magmatism (volcanism), metamorphism and other energy capacious processes in various ...

B. G. Polak

1967-01-01T23:59:59.000Z

34

Thyroid cancer incidence in relation to volcanic activity  

SciTech Connect (OSTI)

Environmental or genetic factors are sought to explain the high incidence of thyroid cancer in Iceland. At present, it is impossible to cite any environmental factor, particularly one related to the volcanic activity in the country, which could explain the high incidence of thyroid cancer in Iceland. However, the thyroid gland in Icelanders is very small due to the high intake of iodine from seafood. It is, therefore, easier for physicians to find thyroid tumors. Furthermore, genetic factors are very likely to be of great importance in the small, isolated island of Iceland.

Arnbjoernsson, E.A.; Arnbjoernsson, A.O.; Olafsson, A.

1986-01-01T23:59:59.000Z

35

Ground Gravity Survey At San Francisco Volcanic Field Area (Warpinski...  

Open Energy Info (EERE)

geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify...

36

Field Mapping At San Francisco Volcanic Field Area (Warpinski...  

Open Energy Info (EERE)

geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify...

37

Rock Sampling At San Francisco Volcanic Field Area (Warpinski...  

Open Energy Info (EERE)

geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify...

38

Ground Magnetics At San Francisco Volcanic Field Area (Warpinski...  

Open Energy Info (EERE)

geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify...

39

Geochemistry of volcanic rocks from the Geysers geothermal area, California Coast Ranges  

E-Print Network [OSTI]

source of geothermal energy, is ulti- 0024-4937/$ - see front matter D 2005 Published by Elsevier BGeochemistry of volcanic rocks from the Geysers geothermal area, California Coast Ranges Axel K Potsdam, Germany c Philippine Geothermal, Inc., Makati, Philippines Received 1 May 2004; accepted 25 May

40

Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area  

SciTech Connect (OSTI)

In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

Hackett, W.R.; Smith, R.P.

1992-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Quaternary volcanism, tectonics, and sedimentation in the Idaho National Engineering Laboratory area  

SciTech Connect (OSTI)

In this article, we discuss the regional context and describe localities for a two-day field excursion in the vicinity of the Idaho National Engineering Laboratory (INEL). We address several geologic themes: (1) Late Cenozoic, bimodal volcanism of the Eastern Snake River Plain (ESRP), (2) the regional tectonics and structural geology of the Basin and Range province to the northwest of the ESRP, (3) fluvial, lacustrine, and aeolian sedimentation in the INEL area, and (4) the influence of Quaternary volcanism and tectonics on sedimentation near the INEL.

Hackett, W.R.; Smith, R.P.

1992-01-01T23:59:59.000Z

42

Characterization of Io's volcanic activity by infrared polarimetry  

SciTech Connect (OSTI)

The thermal emission from Io's volcanic hot spots is linearly polarized.Infrared measurements at 4.76 micrometers show disk-integrated polarization as large as 1.6 percent. The degree and position angle of linear polarization vary with Io's rotation in a manner characteristic of emission from a small number of hot spots. A model incorporating three hot spots best fits the data. The largest of these hot spots lies to the northeast of Loki Patera, as mapped from Voyager, and the other spot on the trailing hemisphere is near Ra Patera. The hot spot on the leading hemisphere corresponds to no named feature on the Voyager maps. The value determined for the index of refraction of the emitting surface is a lower bound; it is similar to that of terrestrial basalts and is somewhat less than that of sulfur. 25 references.

Goguen, J.D.; Sinton, W.M.

1985-10-01T23:59:59.000Z

43

Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal  

Open Energy Info (EERE)

Volcanic National Park Geothermal Volcanic National Park Geothermal Area (1982) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Lassen Volcanic National Park Geothermal Area (1982) Exploration Activity Details Location Lassen Volcanic National Park Geothermal Area Exploration Technique Data Acquisition-Manipulation Activity Date 1982 Usefulness useful DOE-funding Unknown Exploration Basis Develop parameters to identify geothermal region Notes Statistical methods are outlined to separate spatially, temporally, and magnitude-dependent portions of both the random and non-random components of the seismicity. The methodology employed compares the seismicity distributions with a generalized Poisson distribution. Temporally related

44

Overview Of Electromagnetic Methods Applied In Active Volcanic...  

Open Energy Info (EERE)

areas in the United States through electromagnetic geophysical studies received foundation from the many surveys done for geothermal exploration in the 1970's. Investigations...

45

Ahuachapan Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Activities (0) 10 References Area Overview Geothermal Area Profile Location: El Salvador Exploration Region: Central American Volcanic Arc Chain GEA Development Phase: Phase...

46

Berln Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Activities (0) 10 References Area Overview Geothermal Area Profile Location: El Salvador Exploration Region: Central American Volcanic Arc Chain GEA Development Phase: Phase...

47

Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic  

Open Energy Info (EERE)

Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Tremor(Question) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Multiple Ruptures For Long Valley Microearthquakes- A Link To Volcanic Tremor(Question) Details Activities (1) Areas (1) Regions (0) Abstract: Despite several episodes of ground deformation and intense seismic activity starting in 1978, the Long Valley, California, volcanic area has not produced clearly recognized volcanic tremor. Instead, a variety of atypical microearthquakes have been recorded during these episodes, including events dominated by low-frequency (long-period) or mixed high and low-frequency (hybrid) signals. During a 1997 episode, a number of unusual microearthquakes occurred within a temporary 40-station

48

A Physical Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The  

Open Energy Info (EERE)

Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Case Of Neapolitan Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Physical Model For The Origin Of Volcanism Of The Tyrrhenian Margin- The Case Of Neapolitan Area Details Activities (0) Areas (0) Regions (0) Abstract: The onset of volcanism in the Neapolitan area and the tensile tectonics of the Tyrrhenian margin of the Apennine chain have been related to the opening of the Tyrrhenian Basin, which may have resulted in horizontal asthenosphere flows giving rise, in turn, to crustal distension, local mantle upwellings and ensuing volcanism. Geological and structural data were taken into consideration: the existence of a shallow crust-mantle discontinuity in the Neapolitan area, the onset of volcanism in a

49

Groundwater flow in a volcanicsedimentary coastal aquifer: Telde area, Gran Canaria, Canary Islands, Spain  

Science Journals Connector (OSTI)

Groundwater conditions in a 75- km2...coastal area around the town of Telde in eastern Gran Canaria island have been studied. Pliocene to Recent...2day?1; 5 and 0.5mday?1, respectively). These two formations a...

M. C. Cabrera; E. Custodio

2004-06-01T23:59:59.000Z

50

Property:VolcanicAge | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:VolcanicAge Jump to: navigation, search Property Name VolcanicAge Property Type String Description Describes the time of the most recent volcanism by epoch, era, or period per available data. Subproperties This property has the following 7 subproperties: E East Mesa Geothermal Area G Geysers Geothermal Area L Lightning Dock Geothermal Area R Raft River Geothermal Area Roosevelt Hot Springs Geothermal Area S Salton Sea Geothermal Area Soda Lake Geothermal Area Pages using the property "VolcanicAge" Showing 19 pages using this property. A Amedee Geothermal Area + No volcanism + B Beowawe Hot Springs Geothermal Area + no volcanism + Blue Mountain Geothermal Area + no volcanism + Brady Hot Springs Geothermal Area + No volcanism +

51

A Distinction Technique Between Volcanic And Tectonic Depression Structures  

Open Energy Info (EERE)

Distinction Technique Between Volcanic And Tectonic Depression Structures Distinction Technique Between Volcanic And Tectonic Depression Structures Based On The Restoration Modeling Of Gravity Anomaly- A Case Study Of The Hohi Volcanic Zone, Central Kyushu, Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Distinction Technique Between Volcanic And Tectonic Depression Structures Based On The Restoration Modeling Of Gravity Anomaly- A Case Study Of The Hohi Volcanic Zone, Central Kyushu, Japan Details Activities (0) Areas (0) Regions (0) Abstract: In this study, we propose a numerical modeling technique which restores the gravity anomaly of tectonic origin and identifies the gravity low of caldera origin. The identification is performed just by comparing the restored gravity anomalies with the observed gravity anomalies, thus we

52

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone  

Open Energy Info (EERE)

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone National Park Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone National Park Details Activities (1) Areas (1) Regions (0) Abstract: High-resolution aeromagnetic data acquired over Yellowstone National Park (YNP) show contrasting patterns reflecting differences in rock composition, types and degree of alteration, and crustal structures that mirror the variable geology of the Yellowstone Plateau. The older, Eocene, Absaroka Volcanic Supergroup, a series of mostly altered, andesitic volcanic and volcaniclastic rocks partially exposed in mountains on the eastern margin of YNP, produces high-amplitude, positive magnetic

53

Submeter bathymetric mapping of volcanic and hydrothermal features on the East Pacific Rise crest at 9500  

E-Print Network [OSTI]

of bathymetric changes associated with active volcanic, hydrothermal and tectonic processes. Components: 15Submeter bathymetric mapping of volcanic and hydrothermal features on the East Pacific Rise crest to produce submeter resolution bathymetric maps of five hydrothermal vent areas at the East Pacific Rise (EPR

Whitcomb, Louis L.

54

Melt zones beneath five volcanic complexes in California: an assessment of  

Open Energy Info (EERE)

Melt zones beneath five volcanic complexes in California: an assessment of Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Details Activities (5) Areas (5) Regions (0) Abstract: Recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. The areas studied were: (1) Salton Trough, (2) The Geysers-Clear Lake, (3) Long Valley caldera, (4) Coso volcanic field, and (5) Medicine Lake volcano, all located in California and all selected on the basis of recent volcanic activity and published indications of crustal melt zones. 23 figs.

55

Modeling volcanic ash dispersal  

ScienceCinema (OSTI)

Explosive volcanic eruptions inject into the atmosphere large amounts of volcanic material (ash, blocks and lapilli). Blocks and larger lapilli follow ballistic and non-ballistic trajectories and fall rapidly close to the volcano. In contrast, very fine ashes can remain entrapped in the atmosphere for months to years, and may affect the global climate in the case of large eruptions. Particles having sizes between these two end-members remain airborne from hours to days and can cover wide areas downwind. Such volcanic fallout entails a serious threat to aircraft safety and can create many undesirable effects to the communities located around the volcano. The assessment of volcanic fallout hazard is an important scientific, economic, and political issue, especially in densely populated areas. From a scientific point of view, considerable progress has been made during the last two decades through the use of increasingly powerful computational models and capabilities. Nowadays, models are used to quantify hazard scenarios and/or to give short-term forecasts during emergency situations. This talk will be focused on the main aspects related to modeling volcanic ash dispersal and fallout with application to the well known problem created by the Eyjafjll volcano in Iceland. Moreover, a short description of the main volcanic monitoring techniques is presented.

None

2011-10-06T23:59:59.000Z

56

A Pliocene Shoaling Basaltic Seamount- Ba Volcanic Group At Rakiraki, Fiji  

Open Energy Info (EERE)

Pliocene Shoaling Basaltic Seamount- Ba Volcanic Group At Rakiraki, Fiji Pliocene Shoaling Basaltic Seamount- Ba Volcanic Group At Rakiraki, Fiji Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Pliocene Shoaling Basaltic Seamount- Ba Volcanic Group At Rakiraki, Fiji Details Activities (0) Areas (0) Regions (0) Abstract: At Rakiraki in northeastern Viti Levu, the Pliocene Ba Volcanic Group comprises gently dipping, pyroxene-phyric basaltic lavas, including pillow lava, and texturally diverse volcanic breccia interbedded with conglomerate and sandstone. Three main facies associations have been identified: (1) The primary volcanic facies association includes massive basalt (flows and sills), pillow lava and related in-situ breccia (pillow-fragment breccia, autobreccia, in-situ hyaloclastite, peperite).

57

An Expert System For The Tectonic Characterization Of Ancient Volcanic  

Open Energy Info (EERE)

System For The Tectonic Characterization Of Ancient Volcanic System For The Tectonic Characterization Of Ancient Volcanic Rocks Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Expert System For The Tectonic Characterization Of Ancient Volcanic Rocks Details Activities (0) Areas (0) Regions (0) Abstract: The expert system approach enables geochemical evidence to be integrated with geological, petrological and mineralogical evidence in identifying the eruptive setting of ancient volcanic rocks. This paper explains the development of ESCORT, an Expert System for Characterization of Rock Types. ESCORT uses as its knowledge base a set of dispersion matrices derived from a geochemical data bank of some 8000 immobile element analyses, together with tables of magma-type membership probabilities based

58

Late Cenozoic volcanism, geochronology, and structure of the Coso Range,  

Open Energy Info (EERE)

Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Late Cenozoic volcanism, geochronology, and structure of the Coso Range, Inyo County, California Details Activities (1) Areas (1) Regions (0) Abstract: The Coso Range lies at the west edge of the Great Basin, adjacent to the southern part of the Sierra Nevada. A basement complex of pre-Cenozoic plutonic and metamorphic rocks is partly buried by approx.35 km^3 of late Cenozoic volcanic rocks that were erupted during two periods, as defined by K-Ar dating: (1) 4.0--2.5 m.y., approx.31 km^3 of basalt, rhyodacite, dacite, andesite, and rhyolite, in descending order of abundance, and (2) < or =1.1 m.y., nearly equal amounts of basalt and

59

A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation,  

Open Energy Info (EERE)

Island-Arc Volcanic Seamount- The Takashibiyama Formation, Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Details Activities (0) Areas (0) Regions (0) Abstract: The Miocene volcanic complex of the Takashibiyama Formation consists largely of subalkali, subaqueous basalt to andesite lavas and andesite to dacite subaqueous volcaniclastic flow deposits. Most of subaqueous lavas are moderately to intensely brecciated with rugged rough surfaces and ramp structures similar to subaerial block lava. Volcaniclastic flow deposits commonly include basalt to andesite lava fragments and/or pyroclastic materials, and are similar in internal

60

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic  

Open Energy Info (EERE)

Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Evidence For Gas And Magmatic Sources Beneath The Yellowstone Volcanic Field From Seismic Tomographic Imaging Details Activities (1) Areas (1) Regions (0) Abstract: The 3-D P-wave velocity and P- to S-wave velocity ratio structure of the Yellowstone volcanic field, Wyoming, has been determined from local earthquake tomography using new data from the permanent Yellowstone seismic network. We selected 3374 local earthquakes between 1995 and 2001 to invert for the 3-D P-wave velocity (Vp) and P-wave to S-wave velocity ratio (Vp/Vs) structure. Vp anomalies of small size (15_15 km) are reliably

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Applications of the VLF Induction Method For Studying Some Volcanic  

Open Energy Info (EERE)

the VLF Induction Method For Studying Some Volcanic the VLF Induction Method For Studying Some Volcanic Processes of Kilauea Volcano, Hawaii Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Applications Of The Vlf Induction Method For Studying Some Volcanic Processes Of Kilauea Volcano, Hawaii Details Activities (1) Areas (1) Regions (0) Abstract: The very low-frequency (VLF) induction method has found exceptional utility in studying various volcanic processes of Kilauea volcano, Hawaii because: (1) significant anomalies result exclusively from ionically conductive magma or still-hot intrusions (> 800°C) and the attendant electrolytically conductive hot groundwater; (2) basalt flows forming the bulk of Kilauea have very high resistivities at shallow depths that result in low geologic noise levels and relatively deep depths of

62

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland,  

Broader source: Energy.gov (indexed) [DOE]

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington SUMMARY This EA evaluates the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 EA-1934: Mitigation Action Plan Expansion of Active Borrow Areas, Hanford Site, Richland, Washington

63

EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland,  

Broader source: Energy.gov (indexed) [DOE]

4: Expansion of Active Borrow Areas, Hanford Site, Richland, 4: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington EA-1934: Expansion of Active Borrow Areas, Hanford Site, Richland, Washington SUMMARY This EA evaluates the potential environmental impacts of expansion or continued use of existing sand and gravel pits located on the Hanford Site (Pits F, H, N, 6, 9, 18, 21, 23, 24, 30, and 34) and establishing one new borrow area source in the 100 Area for ongoing construction activities and fill material following remediation activities. The scope of this EA does not include borrow sources for silt-loam material. PUBLIC COMMENT OPPORTUNITIES None available at this time. DOCUMENTS AVAILABLE FOR DOWNLOAD August 15, 2013 EA-1934: Mitigation Action Plan Expansion of Active Borrow Areas, Hanford Site, Richland, Washington

64

A Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico  

Open Energy Info (EERE)

Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico Island, Azores Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Morphometric Analysis Of The Submarine Volcanic Ridge South-East Of Pico Island, Azores Details Activities (0) Areas (0) Regions (0) Abstract: A region of crustal extension, the Azores Plateau contains excellent examples of submarine volcanic edifices constructed over a wide range of ocean depths along the Pico Ridge. Using bathymetric data and Towed Ocean Bottom Instrument (TOBI) side-scan sonar imagery, we measured the dimensions (diameter, height, slopes), shape, and texture of these volcanic edifices to further understanding of the geometric development of a submarine ridge. Our analysis and interpretation of the measurement and

65

Guide to good practices for control area activities  

SciTech Connect (OSTI)

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements.'' The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt methods that meet the intent of DOE Order 5480.19. Control Area Activities'' is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

Not Available

1993-06-01T23:59:59.000Z

66

Guide to good practices for control area activities  

SciTech Connect (OSTI)

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, ``Conduct of Operations Requirements.`` The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt methods that meet the intent of DOE Order 5480.19. ``Control Area Activities`` is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

Not Available

1993-06-01T23:59:59.000Z

67

Guide to good practices for control area activities  

SciTech Connect (OSTI)

This Guide to Good Practices is written to enhance understanding of, and provide direction for, Control Area Activities, Chapter III of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities. The practices in this guide should be considered for controlling the activities in control areas. Contractors are advised to adopt procedures that meet the intent of DOE Order 5480.19. Control Area Activities is an element of an effective Conduct of Operations program. The complexity and array of activities performed in DOE facilities dictate the necessity for maintaining a formal environment in operational control areas to promote safe and efficient operations.

NONE

1998-12-01T23:59:59.000Z

68

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park,  

Open Energy Info (EERE)

Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismicity And Fluid Geochemistry At Lassen Volcanic National Park, California- Evidence For Two Circulation Cells In The Hydrothermal System Details Activities (7) Areas (2) Regions (0) Abstract: Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270°C) that boils to feed steam to the high-temperature

69

E-Print Network 3.0 - altered volcanic ash Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: when hot ash flows enter the sea. Volcanic activity was practically absent on Gran Canaria between 9... expected the Slump scarp Subaerial volcanics Sealevel Distal...

70

Surveillance Guide - OPS 9.3 Control Area Activities  

Broader source: Energy.gov (indexed) [DOE]

CONTROL AREA ACTIVITIES CONTROL AREA ACTIVITIES 1.0 Objective The objective of this surveillance is to verify that standards for the professional conduct of operations personnel are established and followed so that operator performance meets the expectations of DOE and facility management. This surveillance provides a basis for evaluating watchstanding practices of operations personnel in the control area. 2.0 References 2.1 DOE 5480.19, Conduct of Operations Requirements for DOE Facilities 2.2 DOE-STD-1042-93, Guide to Good Practices for Control Area Activities 3.0 Requirements Implemented This surveillance is conducted to implement requirements of the Functions, Responsibilities and Authorities Manual, Section 20, Operations, FRAM #s 4253, 4258, and 4261. These requirements are

71

Alteration Patterns In Volcanic Rocks Within An East-West Traverse Through  

Open Energy Info (EERE)

Patterns In Volcanic Rocks Within An East-West Traverse Through Patterns In Volcanic Rocks Within An East-West Traverse Through Central Nicaragua Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Alteration Patterns In Volcanic Rocks Within An East-West Traverse Through Central Nicaragua Details Activities (0) Areas (0) Regions (0) Abstract: The volcanic rocks investigated in a cross-section between the Pacific and Atlantic coasts of Nicaragua - with the exception of Recent and some Pleistocene lavas - are incipiently to strongly altered. Alteration patterns on different scales can be discerned in the Tertiary sequences: (i) a regional burial diagenesis or very low-grade burial metamorphism at the low-temperature end of the zeolite facies (mordenite subfacies) with an inferred thermal gradient of < 50°C/km, grading into (ii) a geothermal

72

Geothermal Literature Review At Medicine Lake Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Geothermal Area (1984) Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Medicine Lake Geothermal Area (1984) Exploration Activity Details Location Medicine Lake Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

73

Geothermal Literature Review At Salton Trough Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Trough Geothermal Area (1984) Trough Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salton Trough Geothermal Area (1984) Exploration Activity Details Location Salton Trough Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences

74

Los Azufres Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

(0) 10 References Area Overview Geothermal Area Profile Location: Michoaciin, Mexico Exploration Region: Transmexican Volcanic Belt GEA Development Phase: Coordinates:...

75

Helium Isotopes In Geothermal And Volcanic Gases Of The Western United  

Open Energy Info (EERE)

Helium Isotopes In Geothermal And Volcanic Gases Of The Western United Helium Isotopes In Geothermal And Volcanic Gases Of The Western United States, I, Regional Variability And Magmatic Origin Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Helium Isotopes In Geothermal And Volcanic Gases Of The Western United States, I, Regional Variability And Magmatic Origin Details Activities (1) Areas (1) Regions (0) Abstract: Helium isotope ratios in gases of thirty hot springs and geothermal wells and of five natural gas wells in the western United States show no relationship to regional conductive heat flow, but do show a correlation with magma-based thermal activity and reservoir fluid temperature (or total convective heat discharge). Gases from high-T (> 200°C) reservoirs have 3He/4He > 2 _ the atmospheric value, with high He

76

Temporal Relations of Volcanism and Hydrothermal Systems in Two...  

Open Energy Info (EERE)

with current hot-spring activity and the youngest pulses of volcanism. > Oxygen-isotope data from illitesmectite clays in the Cochiti district are zonally distributed and...

77

Volcanic studies at Katmai  

SciTech Connect (OSTI)

The Continental Scientific Drilling Program (CSDP) is a national effort supported by the Department of Energy, the US Geological Survey, and the National Science Foundation. One of the projects proposed for the CSDP consists of drilling a series of holes in Katmai National Park in Alaska to give a third dimension to the model of the 1912 eruption of Novarupta, and to investigate the processes of explosive volcanism and hydrothermal transport of metals (Eichelberger et al., 1988). The proposal for research drilling at Katmai states that ``the size, youth, elevated temperature, and simplicity of the Novarupta vent make it a truly unique scientific target.`` The National Park Service (NPS), which has jurisdiction, is sympathetic to aims of the study. However, NPS wishes to know whether Katmai is indeed uniquely suited to the research, and has asked the Interagency Coordinating Group to support an independent assessment of this claim. NPS suggested the National Academy of Sciences as an appropriate organization to conduct the assessment. In response, the National Research Council -- the working arm of the Academy -- established, under the aegis of its US Geodynamics Committee, a panel whose specific charge states: ``The proposed investigation at Katmai has been extensively reviewed for scientific merit by the three sponsoring and participating agencies. Thus, the scientific merit of the proposed drilling at Katmai is not at issue. The panel will review the proposal for scientific drilling at Katmai and prepare a short report addressing the specific question of the degree to which it is essential that the drilling be conducted at Katmai as opposed to volcanic areas elsewhere in the world.``

Not Available

1989-12-31T23:59:59.000Z

78

Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico |  

Open Energy Info (EERE)

Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Details Activities (2) Areas (1) Regions (0) Abstract: Large, young calderas possess immense geothermal potential due to the size of shallow magma bodies that underlie them. Through the example of the Valles and Toledo calderas, New Mexico, and older, more deeply eroded and exposed calderas, it is possible to reconstruct a general view of geothermal environments associated with such magmatic systems. Although a zone of anomalous heat flow extends well beyond caldera margins, high- to moderate-temperature hydrothermal systems appear to be restricted to zones

79

Investigation of Neotectonic Activity within the Shallow, Unconsolidated Stratigraphy of the Pearl River Delta Area, Louisiana.  

E-Print Network [OSTI]

??During the last half century researchers have suggested that active deformation driven by neotectonic activity has locally influenced areas of southeastern Louisiana in the form (more)

Fischer, Dane

2010-01-01T23:59:59.000Z

80

The Cretaceous OkhotskChukotka Volcanic Belt (NE Russia): Geology, geochronology, magma output rates, and implications on the genesis of silicic \\{LIPs\\}  

Science Journals Connector (OSTI)

The Cretaceous OkhotskChukotka volcanic belt (OCVB) is a prominent subduction-related magmatic province, having the remarkably high proportion of silicic rocks (ca. 53% of the present-day crop area, and presumably over 70% of the total volcanic volume). Its estimated total extrusive volume ranges between 5.5נ105km3 (the most conservative estimate) and over 106km3. This article presents a brief outline of the geology of OCVB, yet poorly described in international scientific literature, and results of a geochronological study on the northern part of the volcanic belt. On the base of new and published UPb and 40Ar/39Ar age determinations, a new chronological model is proposed. Our study indicates that the activity of the volcanic belt was highly discontinuous and comprised at least five main episodes at 10698Ma, 9491Ma, 8987Ma, 85.584Ma, and 8279Ma. The new data allow a semi-quantitative estimate of the volcanic output rate for the observed part of the OCVB (area and volume approximately 105km2 and 2.5נ105km3, respectively). The average extrusion rate for the entire lifetime of the volcanic belt ranges between 1.6 and 3.6נ10?5km3yr?1km?1, depending on the assumed average thickness of the volcanic pile; the optimal value is 2.6נ10?5km3yr?1km?1. Despite imprecise, such estimates infer the time-averaged volcanic productivity of the OCVB is similar to that of silicic \\{LIPs\\} and most active recent subduction-related volcanic areas of the Earth. However, the most extensive volcanic flare-ups at 8987 and 85.5-84Ma had higher rates of over 9.0נ10?5km3yr?1km?1. The main volumetric, temporal and compositional parameters of the OCVB are similar to those of silicic LIPs. This gives ground for discussion about the geodynamic setting of the latters, because the widely accepted definition of a LIP implies a strictly intraplate environment. Considering the genesis of the OCVB and other large provinces of silicic volcanism, we propose that residual thermal energy preserved in the continental crust after a previous major magmatic event may have been one of major reasons for high proportion of felsic rocks in a volcanic pile. In this scenario, underplating of mantle-derived basalts causes fast and extensive melting of still hot continental crust and generation of voluminous silicic magmas.

P.L. Tikhomirov; E.A. Kalinina; T. Moriguti; A. Makishima; K. Kobayashi; I.Yu. Cherepanova; E. Nakamura

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Basaltic volcanic episodes of the Yucca Mountain region  

SciTech Connect (OSTI)

The purpose of this paper is to summarize briefly the distribution and geologic characteristics of basaltic volcanism in the Yucca Mountain region during the last 10--12 Ma. This interval largely postdates the major period of silicic volcanism and coincides with and postdates the timing of major extensional faulting in the region. Field and geochronologic data for the basaltic rocks define two distinct episodes. The patterns in the volume and spatial distribution of these basaltic volcanic episodes in the central and southern part of the SNVF are used as a basis for forecasting potential future volcanic activity in vicinity of Yucca Mountain. 33 refs., 2 figs.

Crowe, B.M.

1990-03-01T23:59:59.000Z

82

A Preparation Zone For Volcanic Explosions Beneath Naka-Dake Crater, Aso  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » A Preparation Zone For Volcanic Explosions Beneath Naka-Dake Crater, Aso Volcano, As Inferred From Magnetotelluric Surveys Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Preparation Zone For Volcanic Explosions Beneath Naka-Dake Crater, Aso Volcano, As Inferred From Magnetotelluric Surveys Details Activities (0) Areas (0) Regions (0) Abstract: The 1st crater of Naka-dake, Aso volcano, is one of the most active craters in Japan, and known to have a characteristic cycle of activity that consists of the formation of a crater lake, drying-up of the

83

SCIENCE AND TECHNOLOGY ACTIVITIES FOR CHROMIUM IN THE 100 AREAS  

SciTech Connect (OSTI)

{sm_bullet} Primary Objective: Protect the Columbia River - Focus is control and treatment of contamination at or near the shoreline, which is influenced by bank storage {sm_bullet} Secondary Objective: Reduce hexavalent chromium to <48 parts per billion (ppb) in aquifer (drinking water standard) - Large plumes with isolated areas of high chromium concentrations (> 40,000 ppb), - Unknown source location(s); probably originating in reactor operation areas

PETERSEN SW

2009-07-02T23:59:59.000Z

84

Guidelines for ACUC Oversight of Satellite Facilities, Study Areas, Laboratories and other Animal Activity Areas  

E-Print Network [OSTI]

Guidelines for ACUC Oversight of Satellite Facilities, Study Areas, Laboratories and other Animal? · Are pharmaceuticals in-date? Are chemical-grade materials in use for compounds for which pharmaceutical preparations familiar with procedures for receipt and disposition of animals and transport containers? If applicable

Bandettini, Peter A.

85

Jordan Creek Quadrangle Volcanics Ecoregion  

E-Print Network [OSTI]

Jordan Creek Quadrangle Volcanics Ecoregion 10m30m 0-3 3-6 6-20 20-40 40-65 65-110 >110 No Data Percent Slope Jordan Creek Quadrangle Volcanics Ecoregion Coastal Lowlands Ecoregion Volcanics Ecoregion VINEMAPLE GREENLEAF GLENBROOK KELLY BUTTE PITTSBURGH TOLEDO NORTH JORDAN CREEK SUNSET SPRING WARNICKE CREEK

86

Origin and formation of neck in a basin landform: Examples from the Camargo volcanic field, Chihuahua (Mxico)  

Science Journals Connector (OSTI)

The term neck in a basin (NIB) landform is proposed for volcanic structures characterized by nearly circular to elliptical open basins, located near the headwater of small streams or drainages, which contain small volcanic necks and/or erosion remnants of one (or more) cinder cones. NIB landforms are typically 400-1000m in diameter and 30-100m deep and are invariably surrounded by steep walls cut into one or more basaltic lava flows. NIB landforms lack evidence for a primary volcanogenic origin through either collapse or youthful eruptive activity. In the Pliocene portion (4 2Ma) of the Plio-Quaternary Camargo volcanic field of Chihuahua (Mxico), they are relatively numerous and are best developed at the margins of a gently sloping (3-5) basaltic lava plateau and near major fault scarps. Mature NIB landforms have ring-like circular drainage patterns and central elevations marked by small volcanic necks and associated radial dikes intruded into basaltic scoria-fall and /or agglutinate deposits. We interpret NIB landforms to be erosional in origin. They develop where a cinder cone is surrounded by one or more sheet-like lava flows from one or more separate subsequent vents. Once eruptive activity ceases at the younger volcano(es), fluvial erosion gradually produces a ring-like drainage pattern along the contact between the lava and the older cinder cone. As a response to a marked contrast in resistance to erosion between lava flows and unconsolidated or poorly lithified pyroclastic deposits, the older cinder cone is preferentially eroded. In this manner, a ring-shaped, steep sided erosional basin, preformed by the scoria cone, is produced; eventually fluvial erosion exposes the central neck and dikes. The volume, relief, and age of the volcanic field are key factors in the formation and preservation of a NIB landform. They form in volcanic fields where lava emissions are sufficiently vigorous to engulf earlier cinder cones. Relief and associated high rates of fluvial erosion play an important role in NIB development, as demonstrated by their locations in the Camargo volcanic field. Fully developed NIB landforms are not found in Quaternary volcanic fields, probably because erosion has not had sufficient time to generate their characteristics features. NIB landforms are also absent in Miocene fields, because erosion has proceeded too far, and thus has completely removed any NIB landform that may once have existed. The Camargo volcanic field is the only major area of Pliocene intraplate eruptive activity in northern Mxico, and the only place where NIB landforms are relatively abundant.

Jos Jorge Aranda-Gmez; Todd B. Housh; James F. Luhr; Cristina Noyola-Medrano; Marco Antonio Rojas-Beltrn

2010-01-01T23:59:59.000Z

87

Impact of active material surface area on thermal stability of LiCoO2 cathode  

Science Journals Connector (OSTI)

Abstract Thermal stability of charged LiCoO2 cathodes with various surface areas of active material is investigated in order to quantify the effect of LiCoO2 surface area on thermal stability of cathode. Thermogravimetric analyses and calorimetry have been conducted on charged cathodes with different active material surface areas. Besides reduced thermal stability, high surface area also changes the active material decomposition reaction and induces side reactions with additives. Thermal analyses of LiCoO2 delithiated chemically without any additives or with a single additive have been conducted to elaborate the effect of particle size on side reactions. Stability of cathodeelectrolyte system has been investigated by accelerating rate calorimetry (ARC). Arrhenius activation energy of cathode decomposition has been calculated as function of conversion at different surface area of active material.

Jan Geder; Harry E. Hoster; Andreas Jossen; Jrgen Garche; Denis Y.W. Yu

2014-01-01T23:59:59.000Z

88

Los Humeros Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

(0) 10 References Area Overview Geothermal Area Profile Location: Chignautla, Puebla, Mexico Exploration Region: Transmexican Volcanic Belt GEA Development Phase: Phase IV -...

89

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984)  

Open Energy Info (EERE)

Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Long Valley Caldera Geothermal Area (1984) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow

90

AREA  

Broader source: Energy.gov (indexed) [DOE]

AREA AREA FAQ # Question Response 316 vs DCAA FAQ 1 An inquiry from CH about an SBIR recipient asking if a DCAA audit is sufficient to comply with the regulation or if they need to add this to their audit they have performed yearly by a public accounting firm. 316 audits are essentially A-133 audits for for-profit entities. They DO NOT replace DCAA or other audits requested by DOE to look at indirect rates or incurred costs or closeouts. DCAA would never agree to perform A-133 or our 316 audits. They don't do A-133 audits for DOD awardees. The purpose of the audits are different, look at different things and in the few instances of overlap, from different perspectives. 316

91

Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Details Activities (2) Areas (1) Regions (0) Abstract: A reconnaissance survey of Hg° was designed to model the 1912 Novarupta vent structure and delineate zones of near-surface high heat

92

Geothermal Literature Review At Geysers Geothermal Area (1984) | Open  

Open Energy Info (EERE)

4) 4) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Geysers Geothermal Area (1984) Exploration Activity Details Location Geysers Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Notes The melt zones of volcanic clusters was analyzed with recent geological and geophysical data for five magma-hydrothermal systems were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Geysers_Geothermal_Area_(1984)&oldid=510811

93

Isotopic Analysis- Rock At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Analysis- Rock At Coso Geothermal Area (1984) Analysis- Rock At Coso Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Isotopic Analysis- Rock Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To analyze evidence for crustal interaction and compositional zonation in the source regions of Pleistocene basaltic and rhyolitic magmas of the Coso volcanic field Notes The isotopic compositions of Pb and Sr in Pleistocene basalt, high-silica rhyolite, and andesitic inclusions in rhyolite of the Coso volcanic field indicate that these rocks were derived from different levels of compositionally zoned magmatic systems. The two earliest rhyolites probably

94

Geothermal Literature Review At Coso Geothermal Area (1984) | Open Energy  

Open Energy Info (EERE)

Geothermal Literature Review At Coso Geothermal Area Geothermal Literature Review At Coso Geothermal Area (1984) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1984 Usefulness not indicated DOE-funding Unknown Exploration Basis To characterize the magma beneath melt zones Notes The melt zones of volcanic clusters were analyzed with recent geological and geophysical data for five magma-hydrothermal systems. These were studied for the purpose of developing estimates for the depth, volume and location of magma beneath each area. References Goldstein, N. E.; Flexser, S. (1 December 1984) Melt zones beneath five volcanic complexes in California: an assessment of shallow magma occurrences Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_Coso_Geothermal_Area_(1984)&oldid=510800"

95

Title: Training Effects on Emergency Management Activation Response Subject Area: Social  

E-Print Network [OSTI]

Title: Training Effects on Emergency Management Activation Response Subject Area: Social Keyword considered whether local and long-term emergency management training could produce different behavioral training on emergency management behavioral response. Individuals with higher levels of training engaged

Collett Jr., Jeffrey L.

96

Aeromagnetic Survey At Kilauea Summit Area (Zablocki, 1978) | Open Energy  

Open Energy Info (EERE)

Zablocki, 1978) Zablocki, 1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Kilauea Summit Area (Zablocki, 1978) Exploration Activity Details Location Kilauea Summit Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes These VLF induction methods should have wide application to studies of active volcanic regions in other parts of the world and could provide some insights into the workings of larger-scaled geothermal systems. Uses high-resolution aeromagnetics References Charles J. Zablocki (1978) Applications of the VLF Induction Method For Studying Some Volcanic Processes of Kilauea Volcano, Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Kilauea_Summit_Area_(Zablocki,_1978)&oldid=40223

97

Affective Analgesia Following Muscarinic Activation of the Ventral Tegmental Area in Rats  

E-Print Network [OSTI]

Affective Analgesia Following Muscarinic Activation of the Ventral Tegmental Area in Rats Robert G stimulation. Vocalization afterdischarges (VADs) are a validated model of the affective response of rats: Cholinergic activation of the brain reward circuit produced a preferential suppression of rats' affective

Borszcz, George S.

98

How will melting of ice affect volcanic hazards in the twenty-first century?  

Science Journals Connector (OSTI)

...in press), as well as the processes...subglacial eruptions or geothermal activity (e.g...include volcanic/geothermal, glacier-permafrost...as Citlaltepetl, Mexico (lahars; Hubbard...that volcanic and geothermal activity is hastening...at Popocatepetl, Mexico, from 1994 to 2001...

2010-01-01T23:59:59.000Z

99

Comparative analysis of core drilling and rotary drilling in volcanic terrane  

SciTech Connect (OSTI)

Initially, the goal of this report is to compare and contrast penetration rates of rotary-mud drilling and core drilling in young volcanic terranes. It is widely recognized that areas containing an abundance of recent volcanic rocks are excellent targets for geothermal resources. Exploration programs depend heavily upon reliable subsurface information, because surface geophysical methods may be ineffective, inconclusive, or both. Past exploration drilling programs have mainly relied upon rotary-mud rigs for virtually all drilling activity. Core-drilling became popular several years ago, because it could deal effectively with two major problems encountered in young volcanic terranes: very hard, abrasive rock and extreme difficulty in controlling loss of circulation. In addition to overcoming these difficulties, core-drilling produced subsurface samples (core) that defined lithostratigraphy, structure and fractures far better than drill-chips. It seemed that the only negative aspect of core drilling was cost. The cost-per-foot may be two to three times higher than an ''initial quote'' for rotary drilling. In addition, penetration rates for comparable rock-types are often much lower for coring operations. This report also seeks to identify the extent of wireline core drilling (core-drilling using wireline retrieval) as a geothermal exploration tool. 25 refs., 21 figs., 13 tabs.

Flynn, T.; Trexler, D.T.; Wallace, R.H. Jr. (ed.)

1987-04-01T23:59:59.000Z

100

Active Area Shape Influence on the Dark Current of CMOS Imagers.  

E-Print Network [OSTI]

the illumination energy within it and turns that energy into charge carriers. The second part is the control-in potential energy to the other side of the junction, and become the minority carrier di, quantum efficiency, pixel active area, and conversion gain. Due to past several years intensive work [1- 5

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Graphene Transistors Fabricated via Transfer-Printing In Device Active-Areas  

E-Print Network [OSTI]

Graphene Transistors Fabricated via Transfer-Printing In Device Active-Areas on Large Wafer Xiaogan graphene islands from a graphite and then uses transfer printing to place the islands from the stamp from the printed graphene. The transistors show a hole and electron mobility of 3735 and 795 cm2/V

102

Aeromagnetic Survey At Clear Lake Area (Skokan, 1993) | Open Energy  

Open Energy Info (EERE)

Clear Lake Area (Skokan, 1993) Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes USGS aeromagnetic data (Rapolla and Keller, 1984) were acquired at an elevation of 4500 feet and flown with one-mile spacings. These data were dominated by patterns of highs that coincide with serpentinite outcrops. Serpentinite is one component of the complex Franciscan melange. Fracturing within the Franciscan provides the porosity needed for collection of hot water characteristic of the Geysers Field. The Clear Lake Volcanics overlie the Franciscan formation. These in turn, are overlain by the Great Valley Sequence. The susceptibilities of both the Clear Lake Volcanics and Great

103

40Ar-39Ar Geochronology Of Magmatic Activity, Magma Flux And Hazards At  

Open Energy Info (EERE)

Ar-39Ar Geochronology Of Magmatic Activity, Magma Flux And Hazards At Ar-39Ar Geochronology Of Magmatic Activity, Magma Flux And Hazards At Ruapehu Volcano, Taupo Volcanic Zone, New Zealand Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: 40Ar-39Ar Geochronology Of Magmatic Activity, Magma Flux And Hazards At Ruapehu Volcano, Taupo Volcanic Zone, New Zealand Details Activities (0) Areas (0) Regions (0) Abstract: We have determined precise eruption ages for andesites from Ruapehu volcano in the Tongariro Volcanic Centre of the Taupo Volcanic Zone (TVZ) using 40Ar/39Ar furnace step-heating of separated groundmass concentrates. The plateau ages indicate several eruptive pulses near 200, 134, 45, 22 and <15 ka and, based on our and previous field mapping confirm the lavas of the Te Herenga Formation as the oldest exposed part of the

104

DOE-STD-1042-93 CN-1; Guide to Good Practices for Control Area Activities  

Broader source: Energy.gov (indexed) [DOE]

2-93 2-93 June 1993 CHANGE NOTICE NO. 1 December 1998 DOE STANDARD GUIDE TO GOOD PRACTICES FOR CONTROL AREA ACTIVITIES U.S. Department of Energy AREA MISC Washington, D.C. 20585 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. Change Notice No.1 DOE-STD-1042-93 December 1998 Guide to Good Practices for Operations Turnover Page/Section Change Concluding Material Preparing Activity was changed from

105

Recent drilling activities at the earth power resources Tuscarora geothermal power project's hot sulphur springs lease area.  

SciTech Connect (OSTI)

Earth Power Resources, Inc. recently completed a combined rotary/core hole to a depth of 3,813 feet at it's Hot Sulphur Springs Tuscarora Geothermal Power Project Lease Area located 70-miles north of Elko, Nevada. Previous geothermal exploration data were combined with geologic mapping and newly acquired seismic-reflection data to identify a northerly tending horst-graben structure approximately 2,000 feet wide by at least 6,000 feet long with up to 1,700 feet of vertical offset. The well (HSS-2) was successfully drilled through a shallow thick sequence of altered Tertiary Volcanic where previous exploration wells had severe hole-caving problems. The ''tight-hole'' drilling problems were reduced using drilling fluids consisting of Polymer-based mud mixed with 2% Potassium Chloride (KCl) to reduce Smectite-type clay swelling problems. Core from the 330 F fractured geothermal reservoir system at depths of 2,950 feet indicated 30% Smectite type clays existed in a fault-gouge zone where total loss of circulation occurred during coring. Smectite-type clays are not typically expected at temperatures above 300 F. The fracture zone at 2,950 feet exhibited a skin-damage during injection testing suggesting that the drilling fluids may have caused clay swelling and subsequent geothermal reservoir formation damage. The recent well drilling experiences indicate that drilling problems in the shallow clays at Hot Sulphur Springs can be reduced. In addition, average penetration rates through the caprock system can be on the order of 25 to 35 feet per hour. This information has greatly reduced the original estimated well costs that were based on previous exploration drilling efforts. Successful production formation drilling will depend on finding drilling fluids that will not cause formation damage in the Smectite-rich fractured geothermal reservoir system. Information obtained at Hot Sulphur Springs may apply to other geothermal systems developed in volcanic settings.

Goranson, Colin

2005-03-01T23:59:59.000Z

106

DETECTING VOLCANISM ON EXTRASOLAR PLANETS  

SciTech Connect (OSTI)

The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here, we investigate whether we could distinguish rocky planets with recent major volcanism by remote observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present-day Earth and derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloud cover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth-sized to super-Earth-sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars and ground-based telescopes, and report the frequency and magnitude of the expected signatures. The transit probability of a planet in the habitable zone decreases with distance from the host star, making small, nearby host stars the best targets.

Kaltenegger, L.; Sasselov, D. D. [Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Henning, W. G., E-mail: lkaltene@cfa.harvard.ed [Harvard University, EPS, 20 Oxford Street, Cambridge, MA 02138 (United States)

2010-11-15T23:59:59.000Z

107

Models for Volcanic Processes in Long Valley California: Testing by Continental Drilling  

Science Journals Connector (OSTI)

The occurrence of a local magnitude ML...= 5. 8 earthquake on the Wheeler Crest fault on 4 October 1978 (Fig. 1) signaled the onset of significant seismic activity in the Long Valley, California, volcanic region.

John B. Rundle

1985-01-01T23:59:59.000Z

108

A framework for activity detection in wide-area motion imagery  

SciTech Connect (OSTI)

Wide-area persistent imaging systems are becoming increasingly cost effective and now large areas of the earth can be imaged at relatively high frame rates (1-2 fps). The efficient exploitation of the large geo-spatial-temporal datasets produced by these systems poses significant technical challenges for image and video analysis and data mining. In recent years there has been significant progress made on stabilization, moving object detection and tracking and automated systems now generate hundreds to thousands of vehicle tracks from raw data, with little human intervention. However, the tracking performance at this scale, is unreliable and average track length is much smaller than the average vehicle route. This is a limiting factor for applications which depend heavily on track identity, i.e. tracking vehicles from their points of origin to their final destination. In this paper we propose and investigate a framework for wide-area motion imagery (W AMI) exploitation that minimizes the dependence on track identity. In its current form this framework takes noisy, incomplete moving object detection tracks as input, and produces a small set of activities (e.g. multi-vehicle meetings) as output. The framework can be used to focus and direct human users and additional computation, and suggests a path towards high-level content extraction by learning from the human-in-the-loop.

Porter, Reid B [Los Alamos National Laboratory; Ruggiero, Christy E [Los Alamos National Laboratory; Morrison, Jack D [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

109

Micro-Earthquake At Raft River Geothermal Area (1979) | Open Energy  

Open Energy Info (EERE)

9) 9) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Raft River Geothermal Area (1979) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1979 Usefulness not indicated DOE-funding Unknown Exploration Basis Refraction Survey Notes Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests that zones of higher velocities may correspond to zones where sediments are

110

Aeromagnetic Survey At Lightning Dock Area (Cunniff & Bowers, 2005) | Open  

Open Energy Info (EERE)

Cunniff & Bowers, 2005) Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Lightning Dock Area (Cunniff & Bowers, 2005) Exploration Activity Details Location Lightning Dock Area Exploration Technique Aeromagnetic Survey Activity Date Usefulness useful DOE-funding Unknown Notes In October 2001, TerraCon, Inc. (2001) of Arlington, Texas conducted the highresolution aeromagnetic survey that was designed to explore the known, shallow geothermal resource and surrounding area. Shallow-subsurface Tertiary volcanic rocks were used as a magnetic basis for mapping structures References Roy A. Cunniff, Roger L. Bowers (2005) Final Technical Report, Geothermal Resource Evaluation And Definitioni (Gred) Program-Phases I, Ii,

111

Aeromagnetic Survey At Raft River Geothermal Area (1978) | Open Energy  

Open Energy Info (EERE)

Area (1978) Area (1978) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aeromagnetic Survey At Raft River Geothermal Area (1978) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1978 Usefulness not indicated DOE-funding Unknown Exploration Basis To infer the structure and the general lithology underlying the valley Notes The aeromagnetic data indicate the extent of the major Cenozoic volcanic units. References Mabey, D.R.; Hoover, D.B.; O'Donnell, J.E.; Wilson, C.W. (1 December 1978) Reconnaissance geophysical studies of the geothermal system in southern Raft River Valley, Idaho Retrieved from "http://en.openei.org/w/index.php?title=Aeromagnetic_Survey_At_Raft_River_Geothermal_Area_(1978)&oldid=473817"

112

Field Mapping At Mokapu Penninsula Area (Thomas, 1986) | Open Energy  

Open Energy Info (EERE)

Field Mapping At Mokapu Penninsula Area (Thomas, Field Mapping At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu Penninsula Area Exploration Technique Field Mapping Activity Date Usefulness useful DOE-funding Unknown Notes Geological mapping on Mokapu (Cox and Sinton, 1982) identified at least three separate volcanic vents within the study area and several other vents forming small islets around Mokapu. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Field_Mapping_At_Mokapu_Penninsula_Area_(Thomas,_1986)&oldid=510748" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load)

113

Water Sampling At Kauai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Kauai Area (Thomas, 1986) Kauai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kauai Area (Thomas, 1986) Exploration Activity Details Location Kauai Area Exploration Technique Water Sampling Activity Date Usefulness not indicated DOE-funding Unknown Notes Groundwater geochemical data compiled for Kauai during the preliminary assessment identified a few very weak water chemistry anomalies, and although these anomalies could be interpreted to be the result of residual heat associated with Kauai's late-stage volcanism, the great age of this activity as well as the absence of any other detectable thermal effects suggests that this is very unlikely. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In

114

Teleseismic-Seismic Monitoring At Clear Lake Area (Skokan, 1993) | Open  

Open Energy Info (EERE)

Clear Lake Area Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date Usefulness not indicated DOE-funding Unknown Notes Figure 4 illustrates seismicity from January of 1969 to June of 1977 (Rapolla and Keller, 1984). During this span, most of the seismicity occurred in the region of the Geysers geothermal field. Additional clustered activity was noted to the north and east of the Collayomi Fault in the Clear Lake region. Curiously, no unusual earthquake activity was noted along the major trend of the Collayomi Fault. Instead, the Collayomi Fault seems to separate two areas of active seismicity. References Catherine K. Skokan (1993) Overview Of Electromagnetic Methods Applied In Active Volcanic Areas Of Western United States

115

Campus Recreation & Unions Leisure Pass Guidelines (Activities & Recreation Center, Games Area at the Memorial Union, Hickey & Rec Pool)  

E-Print Network [OSTI]

Campus Recreation & Unions Leisure Pass Guidelines (Activities & Recreation Center, Games Area are for informal use only. Groups may not utilize recreation space for camp/conference specific programming is going on inside the bathroom. When at the Activities and Recreation Center (ARC) minors are not allowed

Yoo, S. J. Ben

116

Fault Mapping At Coso Geothermal Area (1980) | Open Energy Information  

Open Energy Info (EERE)

Fault Mapping At Coso Geothermal Area (1980) Fault Mapping At Coso Geothermal Area (1980) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Fault Mapping At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Fault Mapping Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis To determine the Late Cenozoic volcanism, geochronology, and structure of the Coso Range Notes This system apparently is heated by a reservoir of silicic magma at greater than or equal to 8-km depth, itself produced and sustained through partial melting of crustal rocks by thermal energy contained in mantle-derived basaltic magma that intrudes the crust in repsonse to lithospheric extension. References Duffield, W.A.; Bacon, C.R.; Dalrymple, G.B. (10 May 1980) Late

117

TECTONIC VERSUS VOLCANIC ORIGIN OF THE SUMMIT DEPRESSION AT MEDICINE LAKE VOLCANO, CALIFORNIA  

SciTech Connect (OSTI)

Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

Mark Leon Gwynn

2010-05-01T23:59:59.000Z

118

Tectonic versus volcanic origin of the summit depression at Medicine Lake Volcano, California  

SciTech Connect (OSTI)

Medicine Lake Volcano is a Quaternary shield volcano located in a tectonically complex and active zone at the transition between the Basin and Range Province and the Cascade Range of the Pacific Province. The volcano is topped by a 7x12 km elliptical depression surrounded by a discontinuous constructional ring of basaltic to rhyolitic lava flows. This thesis explores the possibility that the depression may have formed due to regional extension (rift basin) or dextral shear (pull-apart basin) rather than through caldera collapse and examines the relationship between regional tectonics and localized volcanism. Existing data consisting of temperature and magnetotelluric surveys, alteration mineral studies, and core logging were compiled and supplemented with additional core logging, field observations, and fault striae studies in paleomagnetically oriented core samples. These results were then synthesized with regional fault data from existing maps and databases. Faulting patterns near the caldera, extension directions derived from fault striae P and T axes, and three-dimensional temperature and alteration mineral models are consistent with slip across arcuate ring faults related to magma chamber deflation during flank eruptions and/or a pyroclastic eruption at about 180 ka. These results are not consistent with a rift or pull-apart basin. Limited subsidence can be attributed to the relatively small volume of ash-flow tuff released by the only known major pyroclastic eruption and is inconsistent with the observed topographic relief. The additional relief can be explained by constructional volcanism. Striae from unoriented and oriented core, augmented by striae measurements in outcrop suggest that Walker Lane dextral shear, which can be reasonably projected from the southeast, has probably propagated into the Medicine Lake area. Most volcanic vents across Medicine Lake Volcano strike north-south, suggesting they are controlled by crustal weakness related to Basin and Range extension. Interaction of dextral shear, Basin and Range extension, and the zone of crustal weakness expressed as the Mount Shasta-Medicine Lake volcanic highland controlled the location and initiation of Medicine Lake Volcano at about 500 ka.

Mark Leon Gwynn

2010-05-01T23:59:59.000Z

119

Geological and geophysical studies of a geothermal area in the southern  

Open Energy Info (EERE)

Geological and geophysical studies of a geothermal area in the southern Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Geological and geophysical studies of a geothermal area in the southern Raft river valley, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: areal geology; Cassia County Idaho; Cenozoic; clastic rocks; clasts; composition; conglomerate; economic geology; electrical methods; evolution; exploration; faults; folds; geophysical methods; geophysical surveys; geothermal energy; gravity methods; Idaho; igneous rocks; lithostratigraphy; magnetic methods; pyroclastics; Raft River Valley; resources; sedimentary rocks; seismic methods; stratigraphy; structural geology; structure; surveys; tectonics; United States; volcanic rocks

120

Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) | Open  

Open Energy Info (EERE)

Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) Isotopic Analysis At Separation Creek Area (Van Soest, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Fluid At Separation Creek Area (Van Soest, Et Al., 2002) Exploration Activity Details Location Separation Creek Area Exploration Technique Isotopic Analysis- Fluid Activity Date Usefulness useful DOE-funding Unknown References M. C. van Soest, B. M. Kennedy, W. C. Evans, R. H. Mariner (2002) Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Retrieved from "http://en.openei.org/w/index.php?title=Isotopic_Analysis_At_Separation_Creek_Area_(Van_Soest,_Et_Al.,_2002)&oldid=687475"

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Static Temperature Survey At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

the caldera in response to volcanic activity, large earthquakes, andor geothermal production. These U.S. Geological Survey temperature measurements, in addition to past...

122

Ground Gravity Survey At Coso Geothermal Area (1980) | Open Energy...  

Open Energy Info (EERE)

Range, California. Rather, linear gravity contours, which suggest a regional tectonic origin, enclose the location of most of the volcanic activity of the Coso Range. References...

123

Organic and TRU screening for 200 West Area SST interim stabilization activities  

SciTech Connect (OSTI)

This SD documents the preliminary work performed during the effort to better understand the magnitude and nature of transuranic (TRU) and/or complexed wastes contained in the 200 West Area single shell tank (SSTs). This preliminary work identified which of the SST interstitial liquids in question had adequate characterizations and performed a limited compatibility assessment based upon those characterizations. This allowed a determination of the TRU activity in the liquid and the waste type which describes the liquid. The waste type, complexed or non-complexed, was determined by a calculated total organic carbon (TOC) concentration when the waste containing the measured TOC value is evaporated to the composition of double-shell slurry feed (DSSF). DSSF was defined as the concentration at which aluminum bearing solids begin to precipitate (the sodium aluminate boundary), or when the OH concentration reached 8.0 as determined by the PREDICT evaporator simulation program. Two sets of results are presented. The first set identified only those tanks with adequate characterization data, and listed the remaining tanks as unknowns. These results have the higher level of confidence. The second result set used engineering judgement to estimate applicable characterization data where none existed. This allowed a tentative classification to be made for all but one of the tanks considered unknowns from the first result set. These results may have utility if decisions must be made in the absence additional, improved waste characterizations. This information was used in developing the follow-on laboratory testing to more precisely defined the magnitude and specifics of the compatibility problems.

Estey, S.D.

1996-01-01T23:59:59.000Z

124

Signals recorded by DEMETER satellite over active volcanoes during the period 2004 August2007 December  

Science Journals Connector (OSTI)

......field and the plasma characteristics...from dc to 3.5 MHz; 3 A Langmuir...500 and 3000 4 A plasma analyser () of...active volcanic areas, data are recorded...recorded up to 3 MHz. Anywhere else...ejecta in the atmosphere during eruptive...in the world. Large black dots: location......

Jacques Zlotnicki; Feng Li; Michel Parrot

2010-12-01T23:59:59.000Z

125

Direct-Current Resistivity At Kilauea Summit Area (Keller, Et Al., 1979) |  

Open Energy Info (EERE)

Summit Area (Keller, Et Al., 1979) Summit Area (Keller, Et Al., 1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At Kilauea Summit Area (Keller, Et Al., 1979) Exploration Activity Details Location Kilauea Summit Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes An electromagnetic sounding survey by Jackson and Keller (1972) defined a strong resistivity anomaly above the center of inflation associated with volcanic activity during the early 1960's. References George V. Keller, L. Trowbridge Grose, John C. Murray, Catherine K. Skokan (1979) Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano, Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_At_Kilauea_Summit_Area_(Keller,_Et_Al.,_1979)&oldid=594370"

126

Abstract--Efficient methods for detecting electricity fraud has been an active research area in recent years. This paper presents  

E-Print Network [OSTI]

1 Abstract--Efficient methods for detecting electricity fraud has been an active research area for electric utilities using Genetic Algorithm (GA) and Support Vector Machine (SVM). The main motivation, genetic algorithm, electricity theft, non-technical loss, load profile. I. INTRODUCTION LECTRIC utilities

Ducatelle, Frederick

127

The non-aqueous chemistry of uranium has been an active area of exploration in recent decades1,2  

E-Print Network [OSTI]

-purity depleted uranium produced as a by-product of nuclear isotope enrichment programmes. The early actinideThe non-aqueous chemistry of uranium has been an active area of exploration in recent decades1 for uranium will be created in part by the quest of researchers to understand the properties and potential

Cai, Long

128

Geothermometry At Lassen Volcanic National Park Area (Janik ...  

Open Energy Info (EERE)

but are within the 220-240 degrees C range calculated using cation, sulfate-water isotope, and mixing model geothermometers (Muffler et al., 1982). References (Unknown)...

129

San Francisco Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Date: Well Name: Location: Depth: Initial Flow Rate: "c" is not declared as a valid unit of measurement for this property. The given value was not understood. Flow Test...

130

E-Print Network 3.0 - active erosion areas Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Sheet Rangeland Soil Quality--Water Erosion Summary: into the soil. Deposition of the sediment removed by erosion is likely in any area where the velocity of running... Soil...

131

Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa | Open  

Open Energy Info (EERE)

In A Blind Geothermal Area Near Marysville, Montana, Usa In A Blind Geothermal Area Near Marysville, Montana, Usa Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Details Activities (7) Areas (1) Regions (0) Abstract: Extensive geological and geophysical studies were carried out during the summer of 1973 in a blind geothermal area near Marysville, Montana. Earlier studies of regional heat flow resulted in the discovery of the area (BLACKWELL 1969; BLACKWELL, BAAG 1973). The area is blind in the sense that there are no surface manifestations of high heat flow (recent volcanics, hot springs, etc.) within the area. The country rocks are Precambrian sedimentary rocks and Mesozoic and Tertiary intrusive rocks. The most recent Tertiary igneous event took place approximately 37 M.Y.

132

An Assessment Of The External Radiological Impact In Areas Of Greece With  

Open Energy Info (EERE)

Assessment Of The External Radiological Impact In Areas Of Greece With Assessment Of The External Radiological Impact In Areas Of Greece With Elevated Natural Radioactivity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: An Assessment Of The External Radiological Impact In Areas Of Greece With Elevated Natural Radioactivity Details Activities (0) Areas (0) Regions (0) Abstract: In the present study, the radiological impact assessment in three selected areas of elevated natural radioactivity in Greece is attempted, based on measurements, theoretical relations, and simple model application. These areas are Milos - an island of volcanic origin in Cyclades Archipelago, Ikaria - an island in the Eastern Aegean Sea and Loutraki - a coastal area in mainland Greece. These areas are characterized by their

133

Evaporation of Lava and its Condensation from the Vapour Phase in Terrestrial and Lunar Volcanism  

Science Journals Connector (OSTI)

... appearance to the clouds of white steam from erupting geysers and from heated pools in geothermal areas. The resemblance between the steam clouds and the volcanic clouds is so pronounced ... is little doubt that they are formed by a similar mechanism. It appears that the hot lava has a high enough vapour pressure for appreciable quantities of it to evaporate. ...

BERNARD VONNEGUT; ROBERT K. MCCONNELL; RONALD V. ALLEN

1966-01-29T23:59:59.000Z

134

Ground Gravity Survey At Clear Lake Area (Skokan, 1993) | Open Energy  

Open Energy Info (EERE)

Ground Gravity Survey At Clear Lake Area (Skokan, 1993) Ground Gravity Survey At Clear Lake Area (Skokan, 1993) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Clear Lake Area (Skokan, 1993) Exploration Activity Details Location Clear Lake Area Exploration Technique Ground Gravity Survey Activity Date Usefulness useful DOE-funding Unknown Notes A detailed gravity survey (Isherwood, 1975) was undertaken as a follow-up to a regional gravity survey of the area in order to detail a low in the Clear Lake volcanics. The low (Fig. 5 ) was thought to be caused by an intrusion of molten rock which would be mass deficient. Modeling and interpretation indicated a+K139 chamber-like feature with a radius of approximately 7 km within 7-8 km of the surface. References

135

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY`s 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. [Oak Ridge National Lab., TN (United States); Craig, P.M. [Environmental Consulting Engineers, Inc., Knoxville, TN (United States)

1987-09-30T23:59:59.000Z

136

Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. (Oak Ridge National Lab., TN (United States)); Craig, P.M. (Environmental Consulting Engineers, Inc., Knoxville, TN (United States))

1987-09-30T23:59:59.000Z

137

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht,  

Open Energy Info (EERE)

Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Rock At Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Isotopic Analysis- Rock Activity Date Usefulness useful DOE-funding Unknown Notes This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid circulation, set limits on the thermal regime, and link the source of the heat to prolonged volcanic activity. At shallow depths in the caldera References Brian M. Smith, Gene A. Suemnicht (1991) Oxygen Isotope Evidence For Past And Present Hydrothermal Regimes Of Long Valley Caldera, California

138

Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area  

Open Energy Info (EERE)

Wilt & Haar, 1986) Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with well data was done whenever possible, there is some uncertainty to the

139

NAME M/YEAR MASTERS THESES TITLES SCOPEL, ROBERT B Jun49 The Volcanic History of Jackson Hole, Wyoming  

E-Print Network [OSTI]

, Park County, Wyoming GOSSER, CHARLES F. Jun60 Petrography and Metamorphism of the Star Lake Area of the Keewatin Province, Ontario RUBEL, DANIEL N Apr59 Tertiary volcanic rocks of the Cooke city - pilot peak, Montana BRUEHL, DONALD H. Jun61 The Petrography and Structure of an area North of Cooke City, Montana #12

Baskaran, Mark

140

Active System For Monitoring Volcanic Activity- A Case Study...  

Open Energy Info (EERE)

andor the electronic circuits have also been solved during this field experiment. For data interpretation, a three-dimensional (3-D) forward modeling code was built to...

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Journal of Geodynamics Offshore Oligo-Miocene volcanic fields within the Corsica-Liguria Basin  

E-Print Network [OSTI]

1 Journal of Geodynamics Offshore Oligo-Miocene volcanic fields within the Corsica-Liguria Basin Mediterranean) have been affected by a geochemically diverse igneous activity, offshore and onshore, since to our initial project. Key-Words: Mediterranean, Ligurian margins and Basin, Offshore Corsica, Miocene

Paris-Sud XI, Université de

142

Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken &  

Open Energy Info (EERE)

Heiken & Heiken & Goff, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Fenton Hill Hdr Geothermal Area (Heiken & Goff, 1983) Exploration Activity Details Location Fenton Hill Hdr Geothermal Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness not indicated DOE-funding Unknown Notes Development of a geologically-based model of the thermal and hydrothermal potential of the Fenton Hill HDR area. References Grant Heiken, Fraser Goff (1983) Hot Dry Rock Geothermal Energy In The Jemez Volcanic Field, New Mexico Retrieved from "http://en.openei.org/w/index.php?title=Modeling-Computer_Simulations_At_Fenton_Hill_Hdr_Geothermal_Area_(Heiken_%26_Goff,_1983)&oldid=511328

143

Teleseismic-Seismic Monitoring At Coso Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

Teleseismic-Seismic Monitoring At Coso Geothermal Teleseismic-Seismic Monitoring At Coso Geothermal Area (1980) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Teleseismic-Seismic Monitoring Activity Date 1980 Usefulness useful DOE-funding Unknown Exploration Basis Determine extent of low velocity body Notes An area showing approximately 0.2-s excess travel time that migrates with changing source azimuth, suggesting that the area is the 'delay shadow' produced by a deep, low-velocity body. Inversion of the relative residual data for three-dimensional velocity structure determines the lateral variations in velocity to a depth of 22.5 km beneath the array. An intense low-velocity body, which coincides with the surface expressions of late Pleistocene rhyolitic volcanism, high heat flow, and hydrothermal activity,

144

Ground Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986)  

Open Energy Info (EERE)

Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with

145

Micro-Earthquake At Long Valley Caldera Area (Stroujkova & Malin, 2001) |  

Open Energy Info (EERE)

Long Valley Caldera Area (Stroujkova & Malin, 2001) Long Valley Caldera Area (Stroujkova & Malin, 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Long Valley Caldera Area (Stroujkova & Malin, 2001) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Micro-Earthquake Activity Date Usefulness not indicated DOE-funding Unknown Notes Our preferred model for the unusual events is that of multiple ordinary earthquakes being triggered or forced by a fluid injection into a thin volcanic conduit. An example of such a structure would be a dike connected to one or more shear or wing fractures. In this model, resonant increases in pressure in the conduit would cause the shear fractures to fail seismically at fixed time delays. For the time delays seen at Long Valley,

146

Heat flow in the Coso geothermal area, Inyo County, California | Open  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Heat flow in the Coso geothermal area, Inyo County, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Heat flow in the Coso geothermal area, Inyo County, California Details Activities (2) Areas (1) Regions (0) Abstract: Obvious surface manifestations of an anomalous concentration of geothermal resources at the Coso geothermal area, Inyo County, California, include fumarolic activity and associated hydrothermally altered rocks. Pleistocene volcanic rocks associated with the geothermal activity include 38 rhyolite domes occupying a north trending structural and topographic

147

Ground Gravity Survey At Valles Caldera - Sulphur Springs Area (Wilt &  

Open Energy Info (EERE)

Valles Caldera - Sulphur Springs Area (Wilt & Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Valles Caldera - Sulphur Springs Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique Ground Gravity Survey Activity Date Usefulness not indicated DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with

148

Modeling-Computer Simulations At Valles Caldera - Redondo Area (Wilt &  

Open Energy Info (EERE)

Redondo Area (Wilt & Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Modeling-Computer Simulations Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes A computer program capable of two-dimensional modeling of gravity data was used in interpreting gravity observations along profiles A--A' and B--B' (Talwani et al., 1959). Densities of 2.12, 2.40, and 2.65 g/cm a were used for modeling the near-surface caldera fill, the underlying volcanics, and the basement sections, respectively (Fig. 8). Although correlation with

149

Density Log at Valles Caldera - Redondo Area (Wilt & Haar, 1986) | Open  

Open Energy Info (EERE)

Valles Caldera - Redondo Area (Wilt & Haar, 1986) Valles Caldera - Redondo Area (Wilt & Haar, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density at Valles Caldera - Redondo Area (Wilt & Haar, 1986) Exploration Activity Details Location Valles Caldera - Redondo Area Exploration Technique Density Log Activity Date Usefulness not indicated DOE-funding Unknown Notes The density log indicates three major density units within the well section : a surface layer of caldera fill, lake deposits, and other recent alluvium (2.12 g/cm3); the Bandelier Tuff and underlying volcanic and sedimentary units (2.3--2.5 g/cm3); and the basement unit, consisting of the lower Paleozoic and the upper Precambrian (2.65 g/cm3). There are, of course, significant density variations within each unit, but for modeling

150

TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA  

E-Print Network [OSTI]

TESTING MODELS FOR BASALTIC VOLCANISM: IMPLICATIONS FOR YUCCA MOUNTAIN, NEVADA Eugene Smith 1 The determination of volcanic risk to the proposed high- level nuclear waste repository at Yucca Mountain requires, then volcanism in the future may not be a significant threat to Yucca Mountain. On the other hand, if melting

Conrad, Clint

151

Present concept on current water protection and remediation activities for the areas contaminated by the 1986 Chernobyl accident  

SciTech Connect (OSTI)

The results of radiation monitoring data and migration pathway analysis of water bodies within areas affected by the 1986 Chernobyl accident provide a unique opportunity for decision-makers working in other extensively contaminated regions to optimize their approaches to surface and groundwater protection. Most engineering measures within the Chernobyl 30-km exclusion zone were focused on preventing secondary contamination of surface and groundwater from entering the Pripyat River and the Kiev Reservoir. However, implementation of these measures required huge financial and human resources. Therefore, lessons about post-accidental water protection activities can be learned form the Chernobyl example. 9 refs., 9 figs.

Voitsekhovitch, O.; Prister, B.; Nasvit, O.; Los, I.; Berkovski, V.

1996-07-01T23:59:59.000Z

152

Direct-Current Resistivity Survey At Kilauea Summit Area (Keller, Et Al.,  

Open Energy Info (EERE)

1979) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity Survey At Kilauea Summit Area (Keller, Et Al., 1979) Exploration Activity Details Location Kilauea Summit Area Exploration Technique Direct-Current Resistivity Survey Activity Date Usefulness useful DOE-funding Unknown Notes An electromagnetic sounding survey by Jackson and Keller (1972) defined a strong resistivity anomaly above the center of inflation associated with volcanic activity during the early 1960's. References George V. Keller, L. Trowbridge Grose, John C. Murray, Catherine K. Skokan (1979) Results Of An Experimental Drill Hole At The Summit Of Kilauea Volcano, Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Direct-Current_Resistivity_Survey_At_Kilauea_Summit_Area_(Keller,_Et_Al.,_1979)&oldid=510532

153

The Utilisation of Volcanic Steam in Italy  

Science Journals Connector (OSTI)

... exploitation of natural resources; and the welkin is still ringing with cries of increase production,back to the land, and keep the home-fires burning. Examples ... definite and successful effort been made in this direction, namely, by utilising the natural steam which emerges from the earth in volcanic districts. The jets of ...

1924-01-12T23:59:59.000Z

154

The Third Catalog of Active Galactic Nuclei Detected by the Fermi Large Area Telescope  

E-Print Network [OSTI]

The third catalog of active galactic nuclei (AGNs) detected by the Fermi-LAT (3LAC) is presented. It is based on the third Fermi-LAT catalog (3FGL) of sources detected with a test statistic (TS) greater than 25, using the first 4 years of data. The 3LAC includes 1591 AGNs located at high Galactic latitudes (|b|>10{\\deg}), which is a 71% increase over the second catalog that was based on 2 years of data. There are 28 duplicate associations (two counterparts to the same gamma-ray source), thus 1563 of the 2192 high-latitude gamma-ray sources of the 3FGL catalog are AGNs. A very large majority of these AGNs (98%) are blazars. About half of the newly detected blazars are of unknown type, i.e., they lack spectroscopic information of sufficient quality to determine the strength of their emission lines. Based on their spectral properties, these sources are evenly split between FSRQs and BL~Lacs. The general properties of the 3LAC sample confirm previous findings from earlier catalogs, but some new subclasses (e.g., ...

Ackermann, M; Atwood, W; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Gonzalez, J; Bellazzini, R; Bissaldi, E; Blandford, R; Bloom, E; Bonino, R; Bottacini, E; Brandt, T; Bregeon, J; Britto, R; Bruel, P; Buehler, R; Buson, S; Caliandro, G; Cameron, R; Caragiulo, M; Caraveo, P; Casandjian, J; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C; Chiang, J; Chiaro, G; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cominsky, L; Conrad, J; Cutini, S; D'Abrusco, R; D'Ammando, F; Angelis, A; Desiante, R; Digel, S; Venere, L; Drell, P; Favuzzi, C; Fegan, S; Ferrara, E; Finke, J; Focke, W; Franckowiak, A; Fuhrmann, L; Furniss, A; Fusco, P; Gargano, F; Gasparrini, D; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grenier, I; Grove, J; Guiriec, S; Hewitt, J W; Hill, A; Horan, D; J'ohannesson, G; Johnson, A; Johnson, W; Kataoka, J; Kuss, M; Mura, G; Larsson, S; Latronico, L; Leto, C; Li, J; Li, L; Longo, F; Loparco, F; Lott, B; Lovellette, M; Lubrano, P; Madejski, G; Mayer, M; Mazziotta, M; McEnery, J; Michelson, P; Mizuno, T; Moiseev, A; Monzani, M; Morselli, A; Moskalenko, I; Murgia, S; Nuss, E; Ohno, M; Ohsugi, T; Ojha, R; Omodei, N; Orienti, M; Orlando, E; Paggi, A; Paneque, D; Perkins, J; Pesce-Rollins, M; Piron, F; Pivato, G; Porter, T; Rain`o, S; Rando, R; Razzano, M; Razzaque, S; Reimer, A; Reimer, O; Romani, R; Salvetti, D; Schaal, M; Schinzel, F; Schulz, A; Sgr`o, C; Siskind, E; Sokolovsky, K; Spada, F; Spandre, G; Spinelli, P; Stawarz, L; Suson, D; Takahashi, H; Takahashi, T; Tanaka, Y; Thayer, J; Thayer, J; Tibaldo, L; Torres, D; Torresi, E; Tosti, G; Troja, E; Uchiyama, Y; Vianello, G; Winer, B; Wood, K; Zimmer, S

2015-01-01T23:59:59.000Z

155

Electro-catalytically Active, High Surface Area Cathodes for Low Temperature SOFCs  

SciTech Connect (OSTI)

This research focused on developing low polarization (area specific resistance, ASR) cathodes for intermediate temperature solid oxide fuel cells (IT-SOFCs). In order to accomplish this we focused on two aspects of cathode development: (1) development of novel materials; and (2) developing the relationships between microstructure and electrochemical performance. The materials investigated ranged from Ag-bismuth oxide composites (which had the lowest reported ASR at the beginning of this contract) to a series of pyrochlore structured ruthenates (Bi{sub 2-x}M{sub x}Ru{sub 2}O{sub 7}, where M = Sr, Ca, Ag; Pb{sub 2}Ru{sub 2}O{sub 6.5}; and Y{sub 2-2x}Pr{sub 2x}Ru{sub 2}O{sub 7}), to composites of the pyrochlore ruthenates with bismuth oxide. To understand the role of microstructure on electrochemical performance, we optimized the Ag-bismuth oxide and the ruthenate-bismuth oxide composites in terms of both two-phase composition and particle size/microstructure. We further investigated the role of thickness and current collector on ASR. Finally, we investigated issues of stability and found the materials investigated did not form deleterious phases at the cathode/electrolyte interface. Further, we established the ability through particle size modification to limit microstructural decay, thus, enhancing stability. The resulting Ag-Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} and Bi{sub 2}Ru{sub 2}O{sub 7{sup -}}Bi{sub 0.8}Er{sub 0.2}O{sub 1.5} composite cathodes had ASRs of 1.0 {Omega} cm{sup 2} and 0.73 {Omega}cm{sup 2} at 500 C and 0.048 {Omega}cm{sup 2} and 0.053 {Omega}cm{sup 2} at 650 C, respectively. These ASRs are truly impressive and makes them among the lowest IT-SOFC ASRs reported to date.

Eric D. Wachsman

2006-09-30T23:59:59.000Z

156

A gravity model for the Coso geothermal area, California | Open Energy  

Open Energy Info (EERE)

gravity model for the Coso geothermal area, California gravity model for the Coso geothermal area, California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: A gravity model for the Coso geothermal area, California Details Activities (1) Areas (1) Regions (0) Abstract: Two- and three-dimensional gravity modeling was done using gridded Bouguer gravity data covering a 45 x 45 km region over the Coso geothermal area in an effort to identify features related to the heat source and to seek possible evidence for an underlying magma chamber. Isostatic and terrain corrected Bouguer gravity data for about 1300 gravity stations were obtained from the US Geological Survey. After the data were checked, the gravity values were gridded at 1 km centers for the area of interest centered on the Coso volcanic field. Most of the gravity

157

Geothermal Literature Review At Coso Geothermal Area (1987) | Open Energy  

Open Energy Info (EERE)

7) 7) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Geothermal Literature Review Activity Date 1987 Usefulness not indicated DOE-funding Unknown Exploration Basis Compare multiple theories of the structural control of the geothermal system Notes The geothermal system appears to be associated with at least one dominant north-south-trending feature which extends several miles through the east-central portion of the Coso volcanic field. The identified producing fractures occur in zones which range from 10 - 100s of feet in extent, separated by regions of essentially unfractured rock of similar composition. Wells in the Devil's Kitchen area have encountered fluids in excess of 4500F and flow rates of 1 million lb/hr at depths less than 4000

158

Resistivity Log At Long Valley Caldera Area (Sorey, Et Al., 1991) | Open  

Open Energy Info (EERE)

Resistivity Log At Long Valley Caldera Area (Sorey, Resistivity Log At Long Valley Caldera Area (Sorey, Et Al., 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Resistivity Log Activity Date Usefulness could be useful with more improvements DOE-funding Unknown Notes Lithologic and resistivity logs from wells drilled into areas of less than 20 ohm-m resistivity show clay mineralization resulting from hydrothermal alteration within the volcanic fill (Nordquist, 1987). Low resistivity in the vicinity of well 44-16, identified in wellbore geophysical logs and two dimensional MT modeling is restricted to the thermal-fluid reservoirs in the early rhyolite and Bishop Tuff (Nordquist, 1987; Suemnicht, 1987). The MT data suggest that the resistivity structure near Mammoth Mountain is

159

Evidence for explosive silicic volcanism on the Moon from the extended distribution of thorium near the Compton-Belkovich Volcanic Complex  

E-Print Network [OSTI]

We reconstruct the abundance of thorium near the Compton-Belkovich Volcanic Complex on the Moon, using data from the Lunar Prospector Gamma Ray Spectrometer. We enhance the resolution via a pixon image reconstruction technique, and find that the thorium is distributed over a larger (40 km $\\times$ 75 km) area than the (25 km $\\times$ 35 km) high albedo region normally associated with Compton-Belkovich. Our reconstructions show that inside this region, the thorium concentration is 15 - 33 ppm. We also find additional thorium, spread up to 300 km eastward of the complex at $\\sim$2 ppm. The thorium must have been deposited during the formation of the volcanic complex, because subsequent lateral transport mechanisms, such as small impacts, are unable to move sufficient material. The morphology of the feature is consistent with pyroclastic dispersal and we conclude that the present distribution of thorium was likely created by the explosive eruption of silicic magma.

Wilson, J T; Massey, R J; Elphic, R C; Jolliff, B L; Lawrence, D J; Llewellin, E W; McElwaine, J N; Teodoro, L F A

2014-01-01T23:59:59.000Z

160

Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al.,  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Long Valley Caldera Area (Farrar, Et Al., 2003) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Static Temperature Survey Activity Date Usefulness useful DOE-funding Unknown Notes The temperature profile in LVEW consists of an upper part (within the volcanic fill) with generally conductive gradients averaging about 35degrees C/km. Within the underlying metamorphic basement, however,

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Volcanic ash impacts on critical infrastructure  

Science Journals Connector (OSTI)

Volcanic eruptions can produce a wide range of hazards. Although phenomena such as pyroclastic flows and surges, sector collapses, lahars and ballistic blocks are the most destructive and dangerous, volcanic ash is by far the most widely distributed eruption product. Although ash falls rarely endanger human life directly, threats to public health and disruption to critical infrastructure services, aviation and primary production can lead to significant societal impacts. Even relatively small eruptions can cause widespread disruption, damage and economic loss. Volcanic eruptions are, in general, infrequent and somewhat exotic occurrences, and consequently in many parts of the world, the management of critical infrastructure during volcanic crises can be improved with greater knowledge of the likely impacts. This article presents an overview of volcanic ash impacts on critical infrastructure, other than aviation and fuel supply, illustrated by findings from impact assessment reconnaissance trips carried out to a wide range of locations worldwide by our international research group and local collaborators. Critical infrastructure includes those assets, frequently taken for granted, which are essential for the functioning of a society and economy. Electricity networks are very vulnerable to disruption from volcanic ash falls. This is particularly the case when fine ash is erupted because it has a greater tendency to adhere to line and substation insulators, where it can cause flashover (unintended electrical discharge) which can in turn cause widespread and disruptive outages. Weather conditions are a major determinant of flashover risk. Dry ash is not conductive, and heavy rain will wash ash from insulators, but light rain/mist will mobilise readily-soluble salts on the surface of the ash grains and lower the ash layers resistivity. Wet ash is also heavier than dry ash, increasing the risk of line breakage or tower/pole collapse. Particular issues for water supply managers include: monitoring turbidity levels in raw water intakes, and if necessary increasing chlorination to compensate for higher turbidity; managing water demand; and communicating monitoring results with the public to allay fears of contamination. Ash can cause major damage to wastewater disposal systems. Ash deposited onto impervious surfaces such as roads and car parks is very easily washed into storm drains, where it can form intractable masses and lead to long-term flooding problems. It can also enter wastewater treatment plants (WWTPs), both through sewer lines and by direct fallout. Damage to modern \\{WWTPs\\} can run into millions of dollars. Ash falls reduce visibility creating hazards for ground transportation. Dry ash is also readily remobilised by vehicle traffic and wind, and dry and wet ash deposits will reduce traction on paved surfaces, including airport runways. Ash cleanup from road and airports is commonly necessary, but the large volumes make it logistically challenging. Vehicles are vulnerable to ash; it will clog filters and brake systems and abrade moving parts within engines. Lastly, modern telecommunications networks appear to be relatively resilient to volcanic ash fall. Signal attenuation and interference during ash falls has not been reported in eruptions over the past 20years, with the exception of interference from ash plume-generated lightning. However, some telecommunications equipment is vulnerable to airborne ash, in particular heating, ventilation and air-conditioning (HVAC) systems which may become blocked from ash ingestion leading to overheating. This summary of volcanic ash impacts on critical infrastructure provides insight into the relative vulnerability of infrastructure under a range of different ashfall scenarios. Identifying and quantifying these impacts is an essential step in building resilience within these critical systems. We have attempted to consider interdependencies between sectors in a holistic way using systems thinking. As modern society becomes increasingly complex and interdependent this

Thomas M. Wilson; Carol Stewart; Victoria Sword-Daniels; Graham S. Leonard; David M. Johnston; Jim W. Cole; Johnny Wardman; Grant Wilson; Scott T. Barnard

2012-01-01T23:59:59.000Z

162

Jasper Seamount: Seven million years of volcanism  

SciTech Connect (OSTI)

Jasper Seamount is a young, mid-sized (690 km{sup 3}) oceanic intraplate volcano located about 500 km west-southwest of San Diego, California. Reliable {sup 40}Ar/{sup 39}Ar age data were obtained for several milligram-sized samples of 4 to 10 Ma plagioclase by using a defocused laser beam to clean the samples before fusion. Gee and Staudigel suggested that Jasper Seamount consists of a transitional to tholeiitic shield volcano formed by flank transitional series lavas, overlain by flank alkalic series lavas and summit alkalic series lavas. Twenty-nine individual {sup 40}Ar/{sup 39}Ar laser fusion analyses on nine samples confirm the stratigraphy: 10.3-10.0 Ma for the flank transitonal series, 8.7-7.5 Ma for the flank alkalic series, and 4.8-4.1 Ma for the summit alkalic series. The alkalinity of the lavas clearly increases with time, and there appear to be 1 to 3 m.y. hiatuses between each series. The age data are consistent with the complex magnetic anomaly of Jasper; however the dominant reversed polarity inferred from the anomaly suggests that most of the seamount formed at ca. 11 Ma, prior to the onset of Chron C5N. The duration of volcanism of Jasper Seamount is slightly longer than the duration of volcanism at Hawaiian volcanoes, suggesting that individual age data from seamounts may constrain the age of a seamount only to within about 7 m.y. unless the stage of volcanism can be unambiguously determined. Extrapolating from the results of our study, similar precision in age determinations should be possible on 50 mg of 1 Ma plagioclase from mid-ocean ridge basalt, opening new possibilities in the geochronology of young, low-potassium volcanic rocks.

Pringle, M.S. (Geological Survey, Menlo Park, California (USA)); Staudigel, H.; Gee, J. (Scripps Institution of Oceanography, LaJolla, California (USA))

1991-04-01T23:59:59.000Z

163

Analysis of fractures in volcanic cores from Pahute Mesa, Nevada Test Site  

SciTech Connect (OSTI)

The Nevada Test Site (NTS), located in Nye County, southern Nevada, was the location of 828 announced underground nuclear tests, conducted between 1951 and 1992. Approximately one-third of these tests were detonated near or below the water table. An unavoidable consequence of these testing activities was introducing radionuclides into the subsurface environment, impacting groundwater. Groundwater flows beneath the NTS almost exclusively through interconnected natural fractures in carbonate and volcanic rocks. Information about these fractures is necessary to determine hydrologic parameters for future Corrective Action Unit (CAU)-specific flow and transport models which will be used to support risk assessment calculations for the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Underground Test Area (UGTA) remedial investigation. Fracture data are critical in reducing the uncertainty of the predictive capabilities of CAU-specific models because of their usefulness in generating hydraulic conductivity values and dispersion characteristics used in transport modeling. Specifically, fracture aperture and density (spacing) are needed to calculate the permeability anisotropy of the formations. Fracture mineralogy information is used qualitatively to evaluate diffusion and radionuclide retardation potential in transport modeling. All these data can best be collected through examination of core samples.

Drellack, S.L. Jr.; Prothro, L.B.; Roberson, K.E. [and others

1997-09-01T23:59:59.000Z

164

Seismic refraction study of the Raft River geothermal area, Idaho | Open  

Open Energy Info (EERE)

refraction study of the Raft River geothermal area, Idaho refraction study of the Raft River geothermal area, Idaho Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Seismic refraction study of the Raft River geothermal area, Idaho Details Activities (1) Areas (1) Regions (0) Abstract: The Raft River geothermal system in southeastern Idaho is a convective hot water system, presently being developed to demonstrate the production of electricity from low-temperature (approx. 150 0C) water. Interpretation of seismic refraction recordings in the area yielded compressional velocities from near the surface to the crystalline basement at a maximum depth of approximately 1600 m. The results show a complex sequence of sediments and volcanic flows overlying basement. Velocities in the sedimentary section vary laterally. Correlation with well data suggests

165

Environmental Controls on the Activity of Aquifer Microbial Communities in the 300 Area of the Hanford Site  

SciTech Connect (OSTI)

Aquifer microbes in the 300 Area of the Hanford Site in southeastern Washington State, USA are periodically exposed to U(VI) concentrations that can range up to 10 ?M in small sediment fractures. Assays of 35 H-leucine incorporation indicated that both sediment-associated and planktonic microbes were metabolically active, and that organic C was growth-limiting in the sediments. Although bacteria suspended in native groundwater retained high activity when exposed to 100 ?M U(VI), they were inhibited by U(VI) < 1 ?M in synthetic groundwater that lacked added bicarbonate. Chemical speciation modeling suggested that positively-charged species and particularly (UO2)3(OH)5+ rose in concentration as more U(VI) was added to synthetic groundwater, but that carbonate complexes dominated U(VI) speciation in natural groundwater. U toxicity was relieved when increasing amounts of bicarbonate were added to synthetic groundwater containing 4.5 ?M U(VI). Pertechnetate, an oxyanion that is another contaminant of concern at the Hanford Site, was not toxic to groundwater microbes at concentrations up to 125 ?M.

Konopka, Allan; Plymale, Andrew E.; Carvajal, Denny A.; Lin, Xueju; McKinley, James P.

2013-11-06T23:59:59.000Z

166

High-Resolution Aeromagnetic Mapping Of Volcanic Terrain, Yellowstone...  

Open Energy Info (EERE)

Caldera Geothermal Region Retrieved from "http:en.openei.orgwindex.php?titleHigh-ResolutionAeromagneticMappingOfVolcanicTerrain,YellowstoneNationalPark&oldid...

167

Compound and Elemental Analysis At Lassen Volcanic National Park...  

Open Energy Info (EERE)

Usefulness not indicated DOE-funding Unknown References J. Michael Thompson (1985) Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of Lassen Volcanic National Park...

168

A Miocene Island-Arc Volcanic Seamount- The Takashibiyama Formation...  

Open Energy Info (EERE)

Island-Arc Volcanic Seamount- The Takashibiyama Formation, Shimane Peninsula, Sw Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

169

Core Analysis At Long Valley Caldera Area (Smith & Suemnicht, 1991) | Open  

Open Energy Info (EERE)

Long Valley Caldera Area (Smith & Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Sample for the present investigation consist of drill core and cuttings from all lithologic units identified in LVEW, cuttings from volcanic rocks in LV 13-21, core samples of Early Rhyolite and Bishop Tuff from LV13-26 and core samples of Bishop Tuff from SF38-32, LV48-29 and LV66-28 (Figs. 1 and 2). Surface samples of Early Rhyolite, Bishop Tuff and Paleozoic metasediments (Fig. 1) were also selected for comparative analysis and processed by the same procedures as the well samples. This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid

170

Cuttings Analysis At Long Valley Caldera Area (Smith & Suemnicht, 1991) |  

Open Energy Info (EERE)

Long Valley Caldera Area (Smith Long Valley Caldera Area (Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Area Exploration Technique Cuttings Analysis Activity Date Usefulness useful DOE-funding Unknown Notes Sample for the present investigation consist of drill core and cuttings from all lithologic units identified in LVEW, cuttings from volcanic rocks in LV 13-21, core samples of Early Rhyolite and Bishop Tuff from LV13-26 and core samples of Bishop Tuff from SF38-32, LV48-29 and LV66-28 (Figs. 1 and 2). Surface samples of Early Rhyolite, Bishop Tuff and Paleozoic metasediments (Fig. 1) were also selected for comparative analysis and processed by the same procedures as the well samples. This oxygen isotope and fluid inclusion study has allowed us to determine the pathways of fluid

171

Core Holes At Lake City Hot Springs Area (Benoit Et Al., 2005) | Open  

Open Energy Info (EERE)

Holes At Lake City Hot Springs Area (Benoit Et Holes At Lake City Hot Springs Area (Benoit Et Al., 2005) Exploration Activity Details Location Lake City Hot Springs Area Exploration Technique Core Holes Activity Date Usefulness useful DOE-funding Unknown Notes Three core holes drilled between 2002 and 2005. Depths: 1,728; 3,435; 4,727 ft. Two deeper wells encountered temps of 327 and 329 oF and permable fractures in sedimentary and volcanic rocks; enabled injection and flow testing up to 70 gpm. Quartz fluid inclusions give temps of 264 and 316 oF. Core drillling allowed an understanding of geology and geothermal system that could never have been obtained from cuttings in this particular geologic setting. References Dick Benoit, Joe Moore, Colin Goranson, David Blackwell (2005) Core Hole Drilling And Testing At The Lake City, California Geothermal Field

172

Stepout-Deepening Wells At Lightning Dock Area (Warpinski, Et Al., 2004) |  

Open Energy Info (EERE)

Well Deepening At Lightning Dock Area (Warpinski, Et Well Deepening At Lightning Dock Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Lightning Dock Area Exploration Technique Well Deepening Activity Date Usefulness not indicated DOE-funding Unknown Notes The objective of this project is to access, test, and confirm the deeper resource by deepening an existing shallow well at the site to penetrate the deep reservoir. AmeriCulture deepened the existing well (EGS-1) in 2003 by coring from 277 m to 640 m, essentially through the entire Tertiary volcanic interval. The maximum recorded temperature after stabilization was about 115degrees C. Evaluation of the well productivity will occur in 2004. References N. R. Warpinski, A. R. Sattler, R. Fortuna, D. A. Sanchez, J. Nathwani (2004) Geothermal Resource Exploration And Definition Projects

173

Knoxville Area Transit: Propane Hybrid ElectricTrolleys; Advanced Technology Vehicles in Service, Advanced Vehicle Testing Activity (Fact Sheet)  

Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

website and in print publications. website and in print publications. TESTING ADVANCED VEHICLES KNOXVILLE AREA TRANSIT ◆ PROPANE HYBRID ELECTRIC TROLLEYS Knoxville Area Transit PROPANE HYBRID ELECTRIC TROLLEYS NREL/PIX 13795 KNOXVILLE AREA TRANSIT (KAT) is recognized nationally for its exceptional service to the City of Knoxville, Tennessee. KAT received the American Public Transportation Associa- tion's prestigious Outstanding Achievement Award in 2004.

174

Aeromagnetic Survey At Coso Geothermal Area (1980) | Open Energy  

Open Energy Info (EERE)

80) 80) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Aeromagnetic Survey Activity Date 1980 Usefulness not indicated DOE-funding Unknown Notes Dense, magnetic rocks associated with a complex mafic pluton 9 km in diameter form a relatively impermeable north border of the Pleistocene volcanic field. A heat flow high nearly coincides with the west half of a 6-km-diameter magnetic low. A 2-km-diameter outcrop of a pre-Cenozoic silicic pluton, which has low magnetization compared to the surrounding metamorphic rocks, presumably typifies the rocks that underlie the magnetic low and heat flow high. Hydrothermal fluids may have destroyed some magnetite in the more magnetic wall rock, further reducing the magnetic intensity. References

175

Conceptual Model At Raft River Geothermal Area (2011) | Open Energy  

Open Energy Info (EERE)

2011) 2011) Exploration Activity Details Location Raft River Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness not indicated DOE-funding Unknown Exploration Basis Explore for development of an EGS demonstration project Notes The reservoir is developed in fractured Proterozoic schist and quartzite, and Archean quartz monzonite cut by younger diabase intrusions. The basement complex was deformed during the mid Tertiary and covered by approximately 5000 ft of late Tertiary sedimentary and volcanic deposits. Listric normal faults of Cenozoic age disrupt the Tertiary deposits but do not offset the basement rocks. RRG-9, the target well, was drilled southwest of the main well field to a measured depth (MD) of 6089 ft. The well is deviated to the west and cased to a depth of 2316 ft MD. It

176

Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) | Open Energy  

Open Energy Info (EERE)

Clausen Et Al, 2006) Clausen Et Al, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Medicine Lake Area (Clausen Et Al, 2006) Exploration Activity Details Location Medicine Lake Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown Notes A major challenge to energy production in the region has been locating high-permeability fracture zones in the largely impermeable volcanic host rock. An understanding of the fracture networks will be a key to harnessing geothermal resources in the Cascades. Medicine Lake site was selected for this study because of the extensive collection of core samples, lithologic, structural, geophysical and temperature data that are available. The sample collection totals about 15.8 km of core from 18 wells. Core samples are

177

Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest,  

Open Energy Info (EERE)

Van Soest, Van Soest, 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Dixie Valley Geothermal Field Area (Kennedy & Van Soest, 2006) Exploration Activity Details Location Dixie Valley Geothermal Field Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Notes Fluids from springs, fumaroles, and wells throughout Dixie Valley, NV were analyzed for noble gas abundances and isotopic compositions. The helium isotopic compositions of fluids produced from the Dixie Valley geothermal field range from 0.70 to 0.76 Ra, are among the highest values in the valley, and indicate that _7.5% of the total helium is derived from the mantle. A lack of recent volcanics or other potential sources requires flow

178

Micro-Earthquake At Coso Geothermal Area (2000) | Open Energy Information  

Open Energy Info (EERE)

0) 0) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Micro-Earthquake At Coso Geothermal Area (2000) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Micro-Earthquake Activity Date 2000 Usefulness not indicated DOE-funding Unknown Exploration Basis Compare results of dense arrays with less densely spaced instruments Notes Results from a dense array of passive seismometers are presented. Data collected during the 18-month deployment of 16 dense mini-arrays in the region of the China Lake geothermal field near Ridgecrest, CA was used. The crustal structure within the geothermal field, its relationship to regional tectonic features, and search for an indication of mantle influence on volcanism was imaged. The mini-arrays consist of mostly short period

179

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism  

Open Energy Info (EERE)

Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Diachroneity of Basin and Range Extension and Yellowstone Hotspot Volcanism in Northwestern Nevada Abstract Some of the earliest volcanic rocks attributed to the Yellowstone hotspot erupted from the McDermitt caldera and related volcanic centers in northwestern Nevada at 17-15 Ma. At that time, extensional faulting was ongoing to the south in central Nevada, leading some to suggest that the nascent hotspot caused or facilitated middle Miocene Basin and Range extension. Regional geologic relationships indicate that the total magnitude of extension in northwestern Nevada is low compared to the amount

180

Type B: Andesitic Volcanic Resource | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Type B: Andesitic Volcanic Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type B: Andesitic Volcanic Resource Dictionary.png Type B: Andesitic Volcanic Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources.[1] Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Active Fault Segments As Potential Earthquake Sources- Inferences From  

Open Energy Info (EERE)

Active Fault Segments As Potential Earthquake Sources- Inferences From Active Fault Segments As Potential Earthquake Sources- Inferences From Integrated Geophysical Mapping Of The Magadi Fault System, Southern Kenya Rift Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Active Fault Segments As Potential Earthquake Sources- Inferences From Integrated Geophysical Mapping Of The Magadi Fault System, Southern Kenya Rift Details Activities (0) Areas (0) Regions (0) Abstract: Southern Kenya Rift has been known as a region of high geodynamic activity expressed by recent volcanism, geothermal activity and high rate of seismicity. The active faults that host these activities have not been investigated to determine their subsurface geometry, faulting intensity and constituents (fluids, sediments) for proper characterization of tectonic

182

Abstract--Recent brain imaging studies on primates revealed that a network of brain areas is activated both during  

E-Print Network [OSTI]

9 Abstract-- Recent brain imaging studies on primates revealed that a network of brain areas and constitutes an efficient behavior of mammals. Recent brain imaging studies investigate where and how observed to this direction [23]. Additional studies [10],[16] indicate the existence of a much wider network of brain areas

Trahanias, Panos

183

Detecting volcanic resurfacing of heavily cratered terrain: Flooding simulations on the Moon using Lunar Orbiter Laser Altimeter (LOLA) data  

Science Journals Connector (OSTI)

Abstract Early extrusive volcanism from mantle melting marks the transition from primary to secondary crust formation. Detection of secondary crust is often obscured by the high impact flux early in solar system history. To recognize the relationship between heavily cratered terrain and volcanic resurfacing, this study documents how volcanic resurfacing alters the impact cratering record and models the thickness, area, and volume of volcanic flood deposits. Lunar Orbiter Laser Altimeter (LOLA) data are used to analyze three different regions of the lunar highlands: the Hertzsprung basin; a farside heavily cratered region; and the central highlands. Lunar mare emplacement style is assumed to be similar to that of terrestrial flood basalts, involving large volumes of material extruded from dike-fed fissures over relatively short periods of time. Thus, each region was flooded at 0.5km elevation intervals to simulate such volcanic flooding and to assess areal patterns, thickness, volumes, and emplacement history. These simulations show three primary stages of volcanic flooding: (1) Initial flooding is largely confined to individual craters and deposits are thick and localized; (2) basalt flows breach crater rim crests and are emplaced laterally between larger craters as thin widespread deposits; and (3) lateral spreading decreases in response to regional topographic variations and the deposits thicken and bury intermediate-sized and larger craters. Application of these techniques to the South Pole-Aitken basin shows that emplacement of ?1?2km of cryptomaria can potentially explain the paucity of craters 2064km in diameter on the floor of the basin relative to the distribution in the surrounding highlands.

Jennifer L. Whitten; James W. Head III

2013-01-01T23:59:59.000Z

184

The Lathrop Wells volcanic center: Status of field and geochronology studies  

SciTech Connect (OSTI)

The purpose of this paper is to describe the status of field and geochronology studies of the Lathrop Wells volcanic center. Our perspective is that it is critical to assess all possible methods for obtaining cross-checking data to resolve chronology and field problems. It is equally important to consider application of the range of chronology methods available in Quaternary geologic research. Such an approach seeks to increase the confidence in data interpretations through obtaining convergence among separate isotopic, radiogenic, and age-correlated methods. Finally, the assumptions, strengths, and weaknesses of each dating method need to be carefully described to facilitate an impartial evaluation of results. The paper is divided into two parts. The first part describes the status of continuing field studies for the volcanic center for this area south of Yucca Mountain, Nevada. The second part presents an overview of the preliminary results of ongoing chronology studies and their constraints on the age and stratigraphy of the Lathrop Wells volcanic center. Along with the chronology data, the assumptions, strengths, and limitations of each methods are discussed.

Crowe, B.; Morley, R. [Los Alamos National Laboratory, Las Vegas, NV (United States); Wells, S. [California Univ., Riverside, CA (United States); Geissman, J.; McDonald, E.; McFadden, L.; Perry, F. [New Mexico Univ., Albuquerque, NM (United States); Murrell, M.; Poths, J. [Los Alamos National Lab., NM (United States); Forman, S. [Ohio State Univ., Columbus, OH (United States)

1992-03-01T23:59:59.000Z

185

Multiple aspects of neural activity during reaching preparation in the medial posterior parietal area v6a  

Science Journals Connector (OSTI)

The posterior parietal cortex is involved in the visuomotor transformations occurring during arm-reaching movements. The medial posterior parietal area V6A has been shown to be implicated in reaching execution, but its role in reaching preparation has ...

Rossella Breveglieri; Claudio Galletti; Giulia Dal B; Kostas Hadjidimitrakis; Patrizia Fattori

2014-04-01T23:59:59.000Z

186

Investigation of the thermal regime and geologic history of the Cascade volcanic arc: First phase of a program for scientific drilling in the Cascade Range  

SciTech Connect (OSTI)

A phased, multihole drilling program with associated science is proposed as a means of furthering our understanding of the thermal regime and geologic history of the Cascade Range of Washington, Oregon, and northern California. The information obtained from drilling and ancillary geological and geophysical investigations will contribute to our knowledge in the following general areas: (1) the magnitude of the regional background heat flow of parts of the Quaternary volcanic belt dominated by the most abundant volcanic rock types, basalt and basaltic andesite; (2) the nature of the heat source responsible for the regional heat-flow anomaly; (3) the characteristics of the regional hydrothermal and cold-water circulation; the rates of volcanism for comparison with models for the rate and direction of plate convergence of the Cascades; (5) the history of deformation and volcanism in the volcanic arc that can be related to subduction; (6) the present-day stress regime of the volcanic arc and the relation of these stresses to plate interactions and possible large earthquakes; and the current geometry of the subducted oceanic plate below the Cascade Range and the relationship of the plate to the distribution of heat flow, Quaternary volcanism, and Quaternary deformation. Phase I research will be directed toward a detailed investigation of the Santiam Pass segment. In concert with the Santiam Pass research, a detailed study of the nearby Breitenbush Hot Springs area is also recommended as a component of Phase I. The object of the Breitenbush research is to study one of the hottest known Cascade hydrothermal systems, which coincidentally also has a good geological and geophysical data base. A coordinated program of drilling, sampling, subsurface measurements, and surface surveys will be associated with the drilling of several holes.

Priest, G.R.

1987-01-01T23:59:59.000Z

187

Effects of Lake Fertilization by Volcanic Activity on Abundance of ...  

Science Journals Connector (OSTI)

Fish and Wildlife Service. Woods IIole ... in other regions. The fine material is carried by the wind for ... in 1883 and depending on the wind direction probably...

1999-12-13T23:59:59.000Z

188

A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...  

Open Energy Info (EERE)

evidence to suggest that particle aggregation is particularly successful in removing glass shards with high surface areasmass ratios. The primary atmospheric hazard of...

189

Volcanism in the western San Juan Mountains, Colorado  

Science Journals Connector (OSTI)

Three major cycles of volcanism during the Miocene and Pliocene formed a layered succession of calc-alkaline eruptive materials in the western San Juan Mountains nearly 1.5 miles thick and having a volume grea...

R. G. Luedke; W. S. Burbank

1966-01-01T23:59:59.000Z

190

The Palaeomagnetism of the Antrim Plateau Volcanics of Northern Australia  

Science Journals Connector (OSTI)

......just south of the Australian Bight from the Upper Carboniferous...1969. North Australian Plateau Volcanics...the Bonaparte Gulf Basin, Bur. Miner. Resour...palaeomagnetism of the Great Dyke of Southern...part of the Wiso Basin, Northern Territory......

M. W. McElbinny; G. R. Luck

1970-08-01T23:59:59.000Z

191

Surface Mercury Geochemistry As A Guide To Volcanic Vent Structure...  

Open Energy Info (EERE)

Geochemistry As A Guide To Volcanic Vent Structure And Zones Of High Heat Flow In The Valley Of Ten Thousand Smokes, Katmai National Park, Alaska Jump to: navigation, search OpenEI...

192

A Distinction Technique Between Volcanic And Tectonic Depression...  

Open Energy Info (EERE)

Modeling Of Gravity Anomaly- A Case Study Of The Hohi Volcanic Zone, Central Kyushu, Japan Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: A...

193

Method Development to Evaluate the Oxygen Reduction Activity of High-Surface-Area Catalysts for Li-Air Batteries  

E-Print Network [OSTI]

This study presents a new method to quantitatively determine the electrocatalytic activity of Vulcan carbon and Vulcan-supported Au nanoparticles, dispersed as catalyst thin films on glass carbon, for oxygen reduction in ...

Lu, Yi-Chun

194

Fluvial dissection, isostatic uplift, and geomorphological evolution of volcanic islands (Gran Canaria, Canary Islands, Spain)  

Science Journals Connector (OSTI)

Digital analysis of torrential gullies (barrancos) deeply incised into the volcanic Island of Gran Canaria (Canary Islands) allows us to extract the longitudinal profiles and pre-incision surfaces for individual basins, from which morphometric parameters (length, elevation, area, slope) have been calculated. Other derived parameters, such as ridgeline profiles, maximum incision values, volume removed by fluvial erosion, geophysical relief and isostatic uplift, have also been computed. Based on K/Ar ages for the island, well-constrained incision-uplift rates have been calculated by means of the combination of different methodological approaches commonly used in orogens and large mountain ranges. The geomorphological and morphometric analyses reveal that the island is clearly divided into four environmental quadrants determined by the combination of a couple of key-factors: the age of the volcanic surfaces and the climatic conditions. These factors determine a young sector covered with Plio-Quaternary platform-forming lavas (finished at 1.91.5Ma) evolving under contrasting wet (NE) to dry (SE) climates, and an older sector, conserving the residual surfaces of the Miocene shield building (14.58.7Ma) at the ridgelines, also subjected to wet (NW) and dry (SW) climates. Incision is related to the age zonation of the island. Maximum incisions (Gran Canaria. Additional sources of uplift, such as gravitational unloading, lithospheric flexure induced by adjacent islands, and/or volcanic underplating, are required. The theoretical onset of lithospheric bulging beneath Gran Canaria, as exerted by Tenerife, promoted a broad westwards tilting of the former from 3.83.5Ma ago. This overall tilting accelerated fluvial incision, erosional unloading, and, therefore, the sustained differential uplift on the Eastern slope of the island over its last erosional stage. Considering mean uplift rates for the East and West sectors, Eastern values (0.024mm/yr) are double than those in the West (0.011mm/yr), supporting the role of lithospheric flexure of adjacent islands as an additional source of uplift. Complex feedback between fluvial unloading, differential uplift, orographic effect, lithospheric flexure, and volcanic underplating, seems to control the geomorphological development of hot-spot volcanic islands, after the gravitational collapse of stratovolcanos during their rejuvenation stage.

Inmaculada Menndez; Pablo G. Silva; Moises Martn-Betancor; Francisco Jos Prez-Torrado; Herv Guillou; S. Scaillet

2008-01-01T23:59:59.000Z

195

Clustering of metal atoms in organic media. 9. High-activity Ni/MgO catalysts prepared by metal vapor methods. Surface area and particle size effects  

SciTech Connect (OSTI)

A metal vapor method was employed to prepare highly dispersed Ni metal catalysts (solvated metal atom dispersed = SMAD catalyst) supported on MgO. Compared with conventional Ni/MgO compositions, the SMAD catalysts showed much greater activities for all reactions studied (hydrogenolysis of methylcyclopentane, MCP; hydrogenation/hydrogenolysis of toluene, TOL; methanation of carbon monoxide, CO; dehydration of isopropyl alcohol, IPA). These high activities for the SMAD catalysts are attributed to the high surface area of Ni on MgO and the high percentage of this Ni in a zero-valent state (reduction degree). Conventional methods for preparing Ni/MgO catalysts did not yield nearly such favorable surface areas or reduction degrees. Nickel particle size effects were observed during hydrogenolysis studies of MCP and hydrogenation studies of TOL. These phenomena are explained by assuming the size of an active Ni particle to be largest for hydrogenolysis of MCP > hydrogenation of TOL > methanation of CO approx. = dehydrogenation of IPA. 8 figures, 2 tables.

Matsuo, K.; Klabunde, K.J.

1982-02-01T23:59:59.000Z

196

Uranium mineralization in fluorine-enriched volcanic rocks  

SciTech Connect (OSTI)

Several uranium and other lithophile element deposits are located within or adjacent to small middle to late Cenozoic, fluorine-rich rhyolitic dome complexes. Examples studied include Spor Mountain, Utah (Be-U-F), the Honeycomb Hills, Utah (Be-U), the Wah Wah Mountains, Utah (U-F), and the Black Range-Sierra Cuchillo, New Mexico (Sn-Be-W-F). The formation of these and similar deposits begins with the emplacement of a rhyolitic magma, enriched in lithophile metals and complexing fluorine, that rises to a shallow crustal level, where its roof zone may become further enriched in volatiles and the ore elements. During initial explosive volcanic activity, aprons of lithicrich tuffs are erupted around the vents. These early pyroclastic deposits commonly host the mineralization, due to their initial enrichment in the lithophile elements, their permeability, and the reactivity of their foreign lithic inclusions (particularly carbonate rocks). The pyroclastics are capped and preserved by thick topaz rhyolite domes and flows that can serve as a source of heat and of additional quantities of ore elements. Devitrification, vapor-phase crystallization, or fumarolic alteration may free the ore elements from the glassy matrix and place them in a form readily leached by percolating meteoric waters. Heat from the rhyolitic sheets drives such waters through the system, generally into and up the vents and out through the early tuffs. Secondary alteration zones (K-feldspar, sericite, silica, clays, fluorite, carbonate, and zeolites) and economic mineral concentrations may form in response to this low temperature (less than 200 C) circulation. After cooling, meteoric water continues to migrate through the system, modifying the distribution and concentration of the ore elements (especially uranium).

Burt, D.M.; Sheridan, M.F.; Bikun, J.; Christiansen, E.; Correa, B.; Murphy, B.; Self, S.

1980-09-01T23:59:59.000Z

197

Precursor systems analyses of automated highway systems. Activity area C. Automated check-out. Final report, September 1993-November 1994  

SciTech Connect (OSTI)

The activity evaluates potential automatic-to-manual transition scenarios in terms of relative feasibility, safety, cost, and social implications. The check-out alternatives range from minimal testing of the operator and the vehicle to extensive testing of the operator and vehicle. The vehicle functions analysis presents a summary of functions that are critical to safe manual operation and proposes several options for validation. Two possible check-out processes are discussed, one intended for AHS lanes dedicated to automated traffic, and one intended for mixed mode lanes in which AHS and non-AHS vehicles are traveling. The transition to manual control will involve preparing the driver to resume manual operation prior to release of vehicle functions. Proposed tasks which could be used to determine that the driver is ready to receive control of the automated vehicle are examined.

Mangarelli, F.; Cochran, A.; Craig, D.; Michael, B.; Halseth, M.

1995-05-01T23:59:59.000Z

198

Palaeomagnetism and Potassium-Argon Ages of Volcanic Rocks of Ngorongoro Caldera, Tanzania  

Science Journals Connector (OSTI)

......Volcanic Rocks of Ngorongoro Caldera, Tanzania* * Publication authorized by the Director...south-west wall of Ngorongoro caldera, Tanzania. The lowest three lavas are normally...Volcanic Rocks of Ngorongoro Caldera, Tanzania* C. S. Gromme, T. A. Reilly, A......

C. S. Gromm; T. A. Reilly; A. E. Mussett; R. L. Hay

1971-01-01T23:59:59.000Z

199

Geochronology of Gran Canaria, Canary Islands: Age of shield building volcanism and other magmatic phases  

Science Journals Connector (OSTI)

Forty-six new K-Ar age determinations are presented on whole rock samples and mineral separates from volcanic and subvolcanic rocks of Gran Canaria. The main subaerial shield building basaltic volcanism...3 was c...

I. McDougall; H. -U. Schmincke

1976-01-01T23:59:59.000Z

200

The radio/gamma-ray connection in Active Galactic Nuclei in the era of the Fermi Large Area Telescope  

E-Print Network [OSTI]

We present a detailed statistical analysis of the correlation between radio and gamma-ray emission of the Active Galactic Nuclei (AGN) detected by Fermi during its first year of operation, with the largest datasets ever used for this purpose. We use both archival interferometric 8.4 GHz data (from the VLA and ATCA, for the full sample of 599 sources) and concurrent single-dish 15 GHz measurements from the Owens Valley Radio Observatory (OVRO, for a sub sample of 199 objects). Our unprecedentedly large sample permits us to assess with high accuracy the statistical significance of the correlation, using a surrogate-data method designed to simultaneously account for common-distance bias and the effect of a limited dynamical range in the observed quantities. We find that the statistical significance of a positive correlation between the cm radio and the broad band (E>100 MeV) gamma-ray energy flux is very high for the whole AGN sample, with a probability <1e-7 for the correlation appearing by chance. Using the...

Ackermann, M; Allafort, A; Angelakis, E; Axelsson, M; Baldini, L; Ballet, J; Barbiellini, G; Bastieri, D; Bellazzini, R; Berenji, B; Blandford, R D; Bloom, E D; Bonamente, E; Borgland, A W; Bouvier, A; Bregeon, J; Brez, A; Brigida, M; Bruel, P; Buehler, R; Buson, S; Caliandro, G A; Cameron, R A; Cannon, A; Caraveo, P A; Casandjian, J M; Cavazzuti, E; Cecchi, C; Charles, E; Chekhtman, A; Cheung, C C; Ciprini, S; Claus, R; Cohen-Tanugi, J; Cutini, S; de Palma, F; Dermer, C D; Silva, E do Couto e; Drell, P S; Dubois, R; Dumora, D; Escande, L; Favuzzi, C; Fegan, S J; Focke, W B; Fortin, P; Frailis, M; Fuhrmann, L; Fukazawa, Y; Fusco, P; Gargano, F; Gasparrini, D; Gehrels, N; Giglietto, N; Giommi, P; Giordano, F; Giroletti, M; Glanzman, T; Godfrey, G; Grandi, P; Grenier, I A; Guiriec, S; Hadasch, D; Hayashida, M; Hays, E; Healey, S E; J, G; Johnson, A S; Kamae, T; Katagiri, H; Kataoka, J; Kn, J; Kuss, M; Lande, J; Lee, S -H; Longo, F; Loparco, F; Lott, B; Lovellette, M N; Lubrano, P; Makeev, A; Max-Moerbeck, W; Mazziotta, M N; McEnery, J E; Mehault, J; Michelson, P F; Mizuno, T; Monte, C; Monzani, M E; Morselli, A; Moskalenko, I V; Murgia, S; Naumann-Godo, M; Nishino, S; Nolan, P L; Norris, J P; Nuss, E; Ohsugi, T; Okumura, A; Omodei, N; Orlando, E; Ormes, J F; Ozaki, M; Paneque, D; Pavlidou, V; Pelassa, V; Pepe, M; Pesce-Rollins, M; Pierbattista, M; Piron, F; Porter, T A; Rain, S; Razzano, M; Readhead, A; Reimer, A; Reimer, O; Richards, J L; Romani, R W; Sadrozinski, H F -W; Scargle, J D; Sgr, C; Siskind, E J; Smith, P D; Spandre, G; Spinelli, P; Strickman, M S; Suson, D J; Takahashi, H; Tanaka, T; Taylor, G B; Thayer, J G; Thayer, J B; Thompson, D J; Torres, D F; Tosti, G; Tramacere, A; Troja, E; Vandenbroucke, J; Vianello, G; Vitale, V; Waite, A P; Wang, P; Winer, B L; Wood, K S; Yang, Z; Ziegler, M

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

The Palaeomagnetism of Late Cenozoic Volcanic Rocks from Kenya and Tanzania  

Science Journals Connector (OSTI)

......Cenozoic Volcanic Rocks from Kenya and Tanzania T. A. Reilly P. K. S. Raja A. E...from the volcanic province of northern Tanzania, Nature Phys. Sci., 229, 19-20...Cenozoic Volcanic Rocks from Kenya and Tanzania T .A. Reilly Geological Survey of Ireland......

T. A. Reilly; P. K. S. Raja; A. E. Mussett; A. Brock

1976-06-01T23:59:59.000Z

202

The Palaeomagnetism of Late Cenozoic Volcanic Rocks from Kenya and Tanzania  

Science Journals Connector (OSTI)

......Cenozoic Volcanic Rocks from Kenya and Tanzania T. A. Reilly P. K. S. Raja A. E...from the volcanic province of northern Tanzania, Nature Phys. Sci., 229, 19-20...Cenozoic Volcanic Rocks from Kenya and Tanzania T. A. Reilly Geological Survey of Ireland......

T. A. Reilly; P. K. S. Raja; A. E. Mussett; A. Brock

1958-12-01T23:59:59.000Z

203

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Grant, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area...

204

Magnetotellurics At Glass Mountain Area (Cumming And Mackie,...  

Open Energy Info (EERE)

Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass Mountain Geothermal Area Exploration Technique Magnetotellurics Activity Date Usefulness useful...

205

Volcanism of the Kenya Rift Valley [and Discussion  

Science Journals Connector (OSTI)

...research-article Volcanism of the Kenya Rift Valley [and Discussion] B. C. King G. R...Robson R. B. McConnell The Kenya rift valley is a sector of the rift system of eastern...distances of 200 km or more both to the west and east and is broadly centred on the...

1972-01-01T23:59:59.000Z

206

Hydroacoustic detection of volcanic ocean-island earthquakes  

Science Journals Connector (OSTI)

......The finite difference grid is 7 110 km with a mesh...significant seismic monitoring infrastructure to new onsets of volcanism...regional monitoring infrastructure. Acknowledgments...Acoustic Modelling on a Grid of Vertically Varying...Talandier J.,1998. Hybrid numerical modelling......

George Helffrich; Sandra I. N. Heleno; Bruno Faria; Joo F. B. D. Fonseca

2006-12-01T23:59:59.000Z

207

Account of a New Volcanic Island in the Pacific Ocean  

Science Journals Connector (OSTI)

1 January 1886 research-article Account of a New Volcanic Island in the Pacific Ocean Wilfred Rowell The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to Proceedings of the Royal Society of London. www.jstor.org

1886-01-01T23:59:59.000Z

208

Visualizing the Aftermath of Volcanic Eruptions Tobias Gunther  

E-Print Network [OSTI]

of Magdeburg ABSTRACT Volcanic eruptions are not only hazardous in the vicinity of a vol- cano, but also affect to reconstruct and assess the movement of ash clouds. In particular, we shed light on the Gr´imsv¨otn, Puyehue or temperature. Combining individual satellite data into one visual- ization also allows to locate and judge

209

Corrective Action Plan for CAU No. 95: Area 15 EPA Farm Laboratory Building, Decontamination and Demolition Closure Activities - Nevada Test Site. Rev. 0  

SciTech Connect (OSTI)

This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Environmental Protection Agency (EPA) Farm Laboratory Building 15-06 located in Area 15 of the Nevada Test Site (NTS), Nye County, Nevada. The facility is part of the Environmental Restoration Project managed by the U.S. Department of Energy/Nevada Operations Office (DOE/NV) under the Decontamination and Decommissioning (D&D) Subproject which serves to manage and dispose of surplus facilities at the NTS in a manner that will protect personnel, the public, and the environment. It is identified as Corrective Action Unit (CAU) 95 in Appendix III of the Federal Facilities Agreement and Consent Order (FFACO). In July 1997, the DOE/NV verbally requested approval from the Nevada Division of Environmental Protection (NDEP) for the closure schedule to be accelerated. Currently, field activities are anticipated to be completed by September 30, 1997. In order to meet this new schedule NDEP has agreed to review this document as expeditiously as possible. Comments will be addressed in the Closure Report after field activities have been completed, unless significant issues require resolution during closure activities.

Olson, A.L.; Nacht, S.J.

1997-11-01T23:59:59.000Z

210

ORNL/RASA-85/1 RESULTS OF THE II4OBILE GAMMA SCANNING ACTIVITIES IN NIAGARA FALLS, NEvl YORK AREA  

Office of Legacy Management (LM)

Nf7 n-q Nf7 n-q gz75 tLtY r 1 irl,r:'a :.a l: i , l : i l ',:lr.:'. itl:t i .,,::l ' i , t . . ORNL/RASA-85/1 RESULTS OF THE II4OBILE GAMMA SCANNING ACTIVITIES IN NIAGARA FALLS, NEvl YORK AREA Access to the information in this report is limited to thoss indicated on the distribution list and io Department ol Energy ancl Depsrtment of Energy Contractors This report was prepared as an account ol work sponsored by an agency of the United States Government. Neither the U nited StatesGovernment nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any informalion, apparatus, product, or process disclosed, or represents thal its use would not inf ringe

211

Type D: Sedimentary-hosted, Volcanic-related Resource | Open Energy  

Open Energy Info (EERE)

D: Sedimentary-hosted, Volcanic-related Resource D: Sedimentary-hosted, Volcanic-related Resource Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Type D: Sedimentary-hosted, Volcanic-related Resource Dictionary.png Type D: Sedimentary-hosted, Volcanic-related Resource: No definition has been provided for this term. Add a Definition Brophy Occurrence Models This classification scheme was developed by Brophy, as reported in Updating the Classification of Geothermal Resources. Type A: Magma-heated, Dry Steam Resource Type B: Andesitic Volcanic Resource Type C: Caldera Resource Type D: Sedimentary-hosted, Volcanic-related Resource Type E: Extensional Tectonic, Fault-Controlled Resource Type F: Oceanic-ridge, Basaltic Resource Sedimentary-hosted volcanic-related resources are special in that the

212

Honey Lake Geothermal Area  

Broader source: Energy.gov [DOE]

The Honey Lake geothermal area is located in Lassen County, California and Washoe County, Nevada. There are three geothermal projects actively producing electrical power. They are located at Wendel...

213

A New Multidisciplinary Marine Monitoring System for the Surveillance of Volcanic and Seismic Areas  

Science Journals Connector (OSTI)

...relate to the need for the huge investment of funds, high management...elements-including ships, submersible vehicles, and specialized...sphere with an auto-leveling platform; a low-frequency hydrophone...Buoy The surface buoy is a semi-rigid structure with a metal...

Giovanni Iannaccone; Sergio Guardato; Maurizio Vassallo; Luca Elia; Laura Beranzoli

214

A New Multidisciplinary Marine Monitoring System for the Surveillance of Volcanic and Seismic Areas  

Science Journals Connector (OSTI)

...logistical elements-including ships, submersible vehicles, and specialized teams of operators-are...glass sphere with an auto-leveling platform; a low-frequency hydrophone (0...The Surface Buoy The surface buoy is a semi-rigid structure with a metal pole 20...

Giovanni Iannaccone; Sergio Guardato; Maurizio Vassallo; Luca Elia; Laura Beranzoli

215

ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA  

SciTech Connect (OSTI)

The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to the TSPA, which uses the ASHPLUME software described and used in this model report. Thus, ASHPLUME software inputs are inputs to this model report for ASHPLUME runs in this model report. However, ASHPLUME software inputs are outputs of this model report for ASHPLUME runs by TSPA.

C. Harrington

2004-10-25T23:59:59.000Z

216

Activities  

Broader source: Energy.gov [DOE]

Activities and events provide Residential Network members the opportunity to discuss similar needs and challenges, and to collectively identify effective strategies and useful resources.

217

Volcanic, erosional, tectonic, and biogenic peaks on Guyot Summit Plains in the Louisville Seamount Chain  

E-Print Network [OSTI]

Vol. 23, p. 125-138. Sinton, J.M. 2009. Volcanic Islands. inAustral-Cook Islands [Sinton, 2009]. While these features

Ebuna, Daniel R.

2011-01-01T23:59:59.000Z

218

Political and scientific uncertainties in volcanic risk management: The yellow alert in Quito in October 1998  

Science Journals Connector (OSTI)

Volcanic risk management involves volcanologists, civil authorities and the ... 1998. It describes the scientific context, the political announcement and the decision-making process that...

Pascale Metzger; Robert D'Ercole; Alexis Sierra

219

Predicting and validating the tracking of a Volcanic Ash Cloud during the 2006 Eruption of Mt. Augustine Volcano  

SciTech Connect (OSTI)

On 11 January 2006, Mount Augustine volcano in southern Alaska began erupting after 20-year repose. The Anchorage Forecast Office of the National Weather Service (NWS) issued an advisory on 28 January for Kodiak City. On 31 January, Alaska Airlines cancelled all flights to and from Anchorage after multiple advisories from the NWS for Anchorage and the surrounding region. The Alaska Volcano Observatory (AVO) had reported the onset of the continuous eruption. AVO monitors the approximately 100 active volcanoes in the Northern Pacific. Ash clouds from these volcanoes can cause serious damage to an aircraft and pose a serious threat to the local communities, and to transcontinental air traffic throughout the Arctic and sub-Arctic region. Within AVO, a dispersion model has been developed to track the dispersion of volcanic ash clouds. The model, Puff, was used operational by AVO during the Augustine eruptive period. Here, we examine the dispersion of a volcanic ash cloud from Mount Augustine across Alaska from 29 January through the 2 February 2006. We present the synoptic meteorology, the Puff predictions, and measurements from aerosol samplers, laser radar (or lidar) systems, and satellites. UAF aerosol samplers revealed the presence of volcanic aerosols at the surface at sites where Puff predicted the ash clouds movement. Remote sensing satellite data showed the development of the ash cloud in close proximity to the volcano and a sulfur-dioxide cloud further from the volcano consistent with the Puff predictions. Lidars showed the presence of volcanic aerosol with consistent characteristics aloft over Alaska and were capable of detecting the aerosol, even in the presence of scattered clouds and where the cloud is too thin/disperse to be detected by remote sensing satellite data. The lidar measurements revealed the different trajectories of ash consistent with the Puff predictions. Dispersion models provide a forecast of volcanic ash cloud movement that might be undetectable by any other means but are still a significant hazard. Validation is the key to assessing the accuracy of any future predictions. The study highlights the use of multiple and complementary observations used in detecting the trajectory ash cloud, both at the surface and aloft within the atmosphere.

Webley, Peter W.; Atkinson, D.; Collins, Richard L.; Dean, K.; Fochesatto, J.; Sassen, Kenneth; Cahill, Catherine F.; Prata, A.; Flynn, Connor J.; Mizutani, K.

2008-11-01T23:59:59.000Z

220

GIS methods applied to the degradation of monogenetic volcanic fields: A case study of the Holocene volcanism of Gran Canaria (Canary Islands, Spain)  

Science Journals Connector (OSTI)

Modeling of volcanic morphometry provides reliable measurements of parameters that assist in the determination of volcanic landform degradation. Variations of the original morphology enable the understanding of patterns affecting erosion and their development, facilitating the assessment of associated hazards. A total of 24 volcanic Holocene eruptions were identified in the island of Gran Canaria (Canary Islands, Spain). 87% of these eruptions occurred in a wet environment while the rest happened in a dry environment. 45% of Holocene eruptions are located along short barrancos (S-type, less than 10km in length), 20% along large barrancos (L-type, 1017km in length) and 35% along extra-large barrancos (XL-type, more than 17km in length). The erosional history of Holocene volcanic edifices is in the first stage of degradation, with a geomorphic signature characterized by a fresh, young cone with a sharp profile and a pristine lava flow. After intensive field work, a careful palaeo-geomorphological reconstruction of the 24 Holocene eruptions of Gran Canaria was conducted in order to obtain the Digital Terrain Models (DTMs) of the pre- and post-eruption terrains. From the difference between these DTMs, the degradation volume and the incision rate were obtained. The denudation of volcanic cones and lava flows is relatively independent both their geographical location and the climatic environment. However, local factors, such as pre-eruption topography and ravine type, have the greatest influence on the erosion of Holocene volcanic materials in Gran Canaria. Although age is a key factor to help understand the morphological evolution of monogenetic volcanic fields, the Gran Canaria Holocene volcanism presented in this paper demonstrates that local and regional factors may determine the lack of correlation between morphometric parameters and age. Consequently, the degree of transformation of the volcanic edifices evolves, in many cases, independently of their age.

A. Rodriguez-Gonzalez; J.L. Fernandez-Turiel; F.J. Perez-Torrado; M. Aulinas; J.C. Carracedo; D. Gimeno; H. Guillou; R. Paris

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Field Trip Guide to Serpentinite, Silica-Carbonate Alteration, and Related Hydrothermal Activity in the Clear Lake Region, California  

SciTech Connect (OSTI)

This guide is designed to familiarize scientists with the geology, structure, alteration, and fluids typical of California serpentinites for purposes of carbon dioxide sequestration (Lackner et al., 1995). Goff et al. (1997) and Goff and Lackner (1998) describe the geology and geochemistry of some of the serpentinites from this area. Mechanisms of silica-carbonate alteration were outlined by Barnes et al. (1973). Donnelly-Nolan et al. (1993) most recently reviewed relations between regional hydrothermal alteration and Quarternary volcanic activity. Stanley et al. (1998) summarized geophysical characteristics of the region.

Fraser Goff; George Guthrie

1999-06-01T23:59:59.000Z

222

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Areas Areas Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

223

The PlioQuaternary volcanic evolution of Gran Canaria based on new KAr ages and magnetostratigraphy  

Science Journals Connector (OSTI)

The combined use of radiometric dating (51 new unspiked KAr ages), magnetostratigraphy and field geology establishes a new time framework for the last two stages of the volcanic evolution of Gran Canaria. Most of the dated samples have ages coherent with their stratigraphic positions and magnetic polarities. Our new set of data extends the end of the Roque Nublo (RN) group, one of the main posterosive stages of Gran Canaria which started about 4.9 Ma ago, to ages as young as 2.87 Ma. This is about 0.7 Ma younger than previously thought. Moreover, the dating of samples collected in well-defined stratigraphic sequences supports the contemporaneity of the early stages of the post-Roque Nublo group and the vanishing activity of the Roque Nublo stratovolcano between 3.7 and 2.9 Ma. The multiple lateral collapses of the Roque Nublo stratovolcano occurred during this period between 3.5 and 3.1 Ma which corresponds to a main period of volcanic quiescence. After 2.9 Ma, the effusive activity propagated along a well-defined NWSE rift until about 1.5 Ma, shifting progressively from a rifting propagation to platform-forming lavas. Thereafter, the activity is very disperse and belongs to the Brunhes period, with most of it before 500 ka.

Herv Guillou; Francisco Jos Perez Torrado; Alex R Hansen Machin; Juan Carlos Carracedo; Domingo Gimeno

2004-01-01T23:59:59.000Z

224

Aquifer Protection Area Land Use Regulations (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe allowable activities within aquifer protection areas, the procedure by which such areas are delineated, and relevant permit requirements. The regulations also describe...

225

Fukushima Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fukushima, Japan Exploration Region: Northeast Honshu Arc GEA Development Phase: Coordinates:...

226

Research Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Research Areas Print Research Areas Print Scientists from a wide variety of fields come to the ALS to perform experiements. Listed below are some of the most common research areas covered by ALS beamlines. Below each heading are a few examples of the specific types of topics included in that category. Click on a heading to learn more about that research area at the ALS. Energy Science Photovoltaics, photosynthesis, biofuels, energy storage, combustion, catalysis, carbon capture/sequestration. Bioscience General biology, structural biology. Materials/Condensed Matter Correlated materials, nanomaterials, magnetism, polymers, semiconductors, water, advanced materials. Physics Atomic, molecular, and optical (AMO) physics; accelerator physics. Chemistry Surfaces/interfaces, catalysts, chemical dynamics (gas-phase chemistry), crystallography, physical chemistry.

227

coherence area  

Science Journals Connector (OSTI)

1....In an electromagnetic wave, such as a lightwave or a radio wave, the area of a surface (a) every point on which the surface is perpendicular to the direction of propagation, (b) over which the e...

2001-01-01T23:59:59.000Z

228

Analysis and correlation of volcanic ash in marine sediments from the Peru Margin, Ocean Drilling Program Leg 201: explosive volcanic cycles of the north-central Andes  

E-Print Network [OSTI]

A detailed investigation of cores from three Peru Margin sites drilled during Ocean Drilling Program (ODP) Leg 201 has been conducted to determine the occurrence of volcanic ash layers and ash accumulations within marine sediments along the Peru...

Hart, Shirley Dawn

2007-04-25T23:59:59.000Z

229

There May Be More Than One Way To Make a Volcanic Lake a Killer  

Science Journals Connector (OSTI)

...lacustrine environment Lake Nyos limnology Tanzania toxic materials volcanism West Africa...small lake nestled in a volcanic crater in Tanzania. Drawn to the spot from 8 kilometers...of the monsoon season that re-duces solar heating. "It seems like quite a coincidence...

RICHARD A. KERR

1986-09-19T23:59:59.000Z

230

Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period  

E-Print Network [OSTI]

Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period R (2006), Globally synchronous ice core volcanic tracers and abrupt cooling during the last glacial period histories from ice coring of Greenland and Antarctica over the period 2 to 45 ka, using SO4 anomalies

Price, P. Buford

231

Ensemble Forecasting of Volcanic Sulfur Emissions in Hawai'i Andre Pattantyus and Steven Businger  

E-Print Network [OSTI]

of Hawai'i. The probabilistic forecast products show uncertainty in pollutant concentrations of pollution known as "vog" after volcanic smog. Prevailing northeast trade winds in Hawaii advectEnsemble Forecasting of Volcanic Sulfur Emissions in Hawai'i Andre Pattantyus and Steven Businger

Businger, Steven

232

Explosive volcanic eruptions IV. The control of magma properties and conduit geometry on eruption column behaviour  

Science Journals Connector (OSTI)

......vents in the Sabaloka Couldron, Sudan, Geol. Mag., 108, 159-176...Volcanic eruption clouds and the thermal power output of explosive eruptions...vents in the Sabaloka Couldron, Sudan, Ceol. Mag., 108,159-176...Volcanic eruption clouds and the thermal power output of explosive eruptions......

Lionel Wilson; R. Stephen J. Sparks; George P. L. Walker

1980-10-01T23:59:59.000Z

233

Interim Activities at Corrective Action Unit 114: Area 25 EMAD Facility, Nevada National Security Site, Nevada, for Fiscal Years 2012 and 2013  

SciTech Connect (OSTI)

This letter report documents interim activities that have been completed at CAU 114 in fiscal years 2012 and 2013.

Silvas, A J

2013-10-24T23:59:59.000Z

234

Occurrence, fate and ecotoxicological assessment of pharmaceutically active compounds in wastewater and sludge from wastewater treatment plants in Chongqing, the Three Gorges Reservoir Area  

Science Journals Connector (OSTI)

Abstract The occurrence, removal and ecotoxicological assessment of 21 pharmaceutically active compounds (PhACs) including antibiotics, analgesics, antiepileptics, antilipidemics and antihypersensitives, were studied at four municipal wastewater treatment plants (WWTP) in Chongqing, the Three Gorges Reservoir Area. Individual treatment unit effluents, as well as primary and secondary sludge, were sampled and analyzed for the selected PhACs to evaluate their biodegradation, persistence and partitioning behaviors. PhACs were identified and quantified using high performance liquid chromatography/tandem mass spectrometry after solid-phase extraction. All the 21 analyzed PhACs were detected in wastewater and the target PhACs except acetaminophen, ibuprofen and gemfibrozil, were also found in sludge. The concentrations of the antibiotics and SVT were comparable to or even higher than those reported in developed countries, while the case of other target PhACs was opposite. The elimination of PhACs except acetaminophen was incomplete and a wide range of elimination efficiencies during the treatment were observed, i.e. from negative removal to 99.5%. The removal of PhACs was insignificant in primary and disinfection processes, and was mainly achieved during the biological treatment. Based on the mass balance analysis, biodegradation is believed to be the primary removal mechanism, whereas only about 1.5% of the total mass load of the target PhACs was removed by sorption. Experimentally estimated distribution coefficients (<500L/kg, with a few exceptions) also indicate that biodegradation/transformation was responsible for the removal of the target PhACs. Ecotoxicological assessment indicated that the environment concentrations of single compounds (including sulfadiazine, sulfamethoxazole, ofloxacin, azithromycin and erythromycin-H2O) in effluent and sludge, as well as the mixture of the 21 detected PhACs in effluent, sludge and receiving water had a significant ecotoxicological risk to algae. Therefore, further control of PhACs in effluent and sludge is required before their discharge and application to prevent their introduction into the environment.

Qing Yan; Xu Gao; You-Peng Chen; Xu-Ya Peng; Yi-Xin Zhang; Xiu-Mei Gan; Cheng-Fang Zi; Jin-Song Guo

2014-01-01T23:59:59.000Z

235

Ground Gravity Survey At Dixie Valley Geothermal Area (Schaefer...  

Open Energy Info (EERE)

Area (Schaefer, 1983) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Ground Gravity Survey Activity Date 1983 - 1983 Usefulness...

236

Flow Test At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Wister Area (DOE GTP) Exploration Activity...

237

Flow Test At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Colrado Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Colrado Area (DOE GTP) Exploration Activity...

238

Flow Test At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Alum Area (DOE GTP) Exploration Activity Details...

239

Multispectral Imaging At Columbus Salt Marsh Area (Shevenell...  

Open Energy Info (EERE)

Area (Shevenell, Et Al., 2008) Exploration Activity Details Location Columbus Salt Marsh Area Exploration Technique Multispectral Imaging Activity Date Usefulness useful...

240

Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et...  

Open Energy Info (EERE)

Home Exploration Activity: Stepout-Deepening Wells At Medicine Lake Area (Warpinski, Et Al., 2004) Exploration Activity Details Location Medicine Lake Area Exploration Technique...

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Compound and Elemental Analysis At Rye Patch Area (DOE GTP) ...  

Open Energy Info (EERE)

Compound and Elemental Analysis At Rye Patch Area (DOE GTP) Exploration Activity Details Location Rye Patch Area Exploration Technique Compound and Elemental Analysis Activity Date...

242

Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011)...  

Open Energy Info (EERE)

Vertical Seismic Profiling At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Vertical Seismic Profiling Activity Date...

243

Exploratory Well At Long Valley Caldera Geothermal Area (Smith...  

Open Energy Info (EERE)

Home Exploration Activity: Exploratory Well At Long Valley Caldera Geothermal Area (Smith & Rex, 1977) Exploration Activity Details Location Long Valley Caldera Geothermal Area...

244

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al....  

Open Energy Info (EERE)

Field Mapping At Dixie Valley Geothermal Area (Smith, Et Al., 2001) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique Field Mapping Activity...

245

Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...  

Open Energy Info (EERE)

Area (Cumming And Mackie, 2007) Exploration Activity Details Location Glass Mountain Geothermal Area Exploration Technique Thermal Gradient Holes Activity Date Usefulness not...

246

Compound and Elemental Analysis At Glass Buttes Area (DOE GTP...  

Open Energy Info (EERE)

Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area Exploration Technique Compound and Elemental Analysis Activity Date Usefulness not indicated DOE-funding...

247

Geothermometry At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fort Bliss Area (DOE GTP) Exploration Activity...

248

Compound and Elemental Analysis At Fort Bliss Area (DOE GTP)...  

Open Energy Info (EERE)

Compound and Elemental Analysis At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Compound and Elemental Analysis Activity...

249

Multispectral Imaging At Fort Bliss Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Multispectral Imaging At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area Exploration Technique Multispectral Imaging Activity Date Usefulness not...

250

Geographic Information System At International Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area, Indonesia (Nash, Et Al., 2002) Exploration...

251

Program Areas  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy's Fuel Cell Technologies Office is the lead federal agency for directing and integrating activities in hydrogen...

252

COLLOQUIUM: Volcanism, Impacts and Mass Extinctions: Causes and Effects |  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

February 13, 2013, 4:15pm to 5:30pm February 13, 2013, 4:15pm to 5:30pm Colloquia MBG Auditorium COLLOQUIUM: Volcanism, Impacts and Mass Extinctions: Causes and Effects Professor Gerta Keller Princeton University Presentation: WC13FEB2014_GKeller.pptx The nature and causes of mass extinctions in the geological past have remained topics of intense scientific debate for the past three decades. Central to this debate is the question of whether one, or several large bolide impacts, the eruption of large igneous provinces (LIP) or a combination of the two were the primary mechanisms driving the environmental changes that are universally regarded as the proximate causes for four of the five major Phanerozoic extinction events. Recent years have seen a revolution in our understanding of interplanetary

253

Radiological Areas  

Broader source: Energy.gov (indexed) [DOE]

Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Revision to Clearance Policy Associated with Recycle of Scrap Metals Originating from Radiological Areas On July 13, 2000, the Secretary of Energy imposed an agency-wide suspension on the unrestricted release of scrap metal originating from radiological areas at Department of Energy (DOE) facilities for the purpose of recycling. The suspension was imposed in response to concerns from the general public and industry groups about the potential effects of radioactivity in or on material released in accordance with requirements established in DOE Order 5400.5, Radiation Protection of the Public and Environment. The suspension was to remain in force until DOE developed and implemented improvements in, and better informed the public about, its release process. In addition, in 2001 the DOE announced its intention to prepare a

254

activities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Detecting Things We Cannot See: Learning the Concepts of Control and Detecting Things We Cannot See: Learning the Concepts of Control and Variable in an Experiment Submitted by Anita Brook-Dupree, 1996 TRAC teacher at Fermilab, Teacher, Alternative Middle Years School, Philadelphia, PA. Particle physicists at Fermilab in Batavia, Illinois are faced with the problem of detecting the presence of sub-atomic particles they cannot see. During my summer as a TRAC teacher at Fermilab, I tried to think of ways to teach middle school students about things we cannot see. I want to thank my nine-year-old daughter Gia for the idea for the following activity. I was lamenting that I could not come up with ideas of how to relate the work of Fermilab scientists to anything that my students would understand. Then I was reminded by my daughter, that when I brought her to school on the

255

Decontamination & decommissioning focus area  

SciTech Connect (OSTI)

In January 1994, the US Department of Energy Office of Environmental Management (DOE EM) formally introduced its new approach to managing DOE`s environmental research and technology development activities. The goal of the new approach is to conduct research and development in critical areas of interest to DOE, utilizing the best talent in the Department and in the national science community. To facilitate this solutions-oriented approach, the Office of Science and Technology (EM-50, formerly the Office of Technology Development) formed five Focus AReas to stimulate the required basic research, development, and demonstration efforts to seek new, innovative cleanup methods. In February 1995, EM-50 selected the DOE Morgantown Energy Technology Center (METC) to lead implementation of one of these Focus Areas: the Decontamination and Decommissioning (D & D) Focus Area.

NONE

1996-08-01T23:59:59.000Z

256

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Lightning Dock Geothermal Area (Schochet, Et Al., 2001) Exploration Activity...

257

Geographic Information System At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Lightning Dock Geothermal Area (Getman, 2014) Exploration Activity...

258

Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Dixie Valley Geothermal Area (Kennedy & Soest, 2006) Exploration Activity Details...

259

Observation Wells At Lightning Dock Geothermal Area (Reeder,...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Observation Wells At Lightning Dock Geothermal Area (Reeder, 1957) Exploration Activity Details Location...

260

The geology of the Anderson area, Grimes County, Texas  

E-Print Network [OSTI]

that oonsiderable volcanic activity was in progresss probably to ths southwest. The many hills curtail extensive faming but grasing and dairy- ing ars widely practiced. Rang fresh water sands are available and con- stitute a plentiful ground water supply... regarding this thesfsi Mr. A. R. Vance of the Texas State Highway Department for furnishing valuable elevation data in the areal Nr. Rob Faikenbury of the Palkenbury Drilling Company of Havasota, Texas for making available drlllers loysJ Nr, J. T. Janlca...

Rolf, Emil Gerald

1958-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Formation of Mud-Volcanic Fluids in Taman (Russia) and Kakhetia (Georgia): Evidence from Boron Isotopes  

Science Journals Connector (OSTI)

Temperatures of the formation of mud-volcanic waters are determined based on concentrations of some temperature-dependent components (NaLi, MgLi). Estimates obtained for the Taman and Kakhetia regions are si...

V. Yu. Lavrushin; A. Kopf; A. Deyhle; M. I. Stepanets

2003-03-01T23:59:59.000Z

262

Deccan volcanism, the KT mass extinction and dinosaurs 709 J. Biosci. 34(5), November 2009  

E-Print Network [OSTI]

, 1988; Courtillot 1999). Over the past decade continental flood basalts (CFB) have been correlated be the general cause of mass extinctions. But acceptance of CFB volcanism as the likely catastrophe that led

Keller, Gerta

263

Mantle dynamics beneath the Pacific Northwest and the generation of voluminous back-arc volcanism  

E-Print Network [OSTI]

The Pacific Northwest (PNW) has a complex tectonic history and over the past ~17 Ma has played host to several major episodes of intraplate volcanism. These events include the Steens/Columbia River flood basalts (CRB) and ...

Long, Maureen D.

264

Center for Volcanic and Tectonic Studies: 1992--1993 annual report  

SciTech Connect (OSTI)

The annual report of the Center for Volcanic Studies (CVTS) contains a series of papers, reprints and a Master of Science thesis that review the progress made by the CVTS between October 1, 1992 and February 1, 1994. During this period CVTS staff focused on several topics that have direct relevance to volcanic hazards related to the proposed high-level nuclear waste repository at Yucca Mountain, Nevada. These topics include: (1) polygenetic/polycyclic volcanism in Crater Flat, Nevada; (2) the role of the mantle during crustal extension; (3) the detailed geology of Crater Flat, Nevada; (4) Pliocene volcanoes in the Reveille Range, south-central Nevada; (5) estimating the probability of disruption of the proposed repository by volcanic eruptions. This topic is being studied by Dr. C.H. Ho at UNLV. The report contains copies of these individual papers as they were presented in various conference proceedings.

NONE

1994-12-31T23:59:59.000Z

265

Quaternary Science Reviews 26 (2007) 15291546 Glacial and volcanic history of Icelandic table mountains from  

E-Print Network [OSTI]

2007 Elsevier Ltd. All rights reserved. 1. Introduction Table mountains, also widely known as tuyas of these distinctive landforms in the Tuya Butte volcanic field in northwestern British Columbia were described

Licciardi, Joseph M.

266

Red Mountain is one of several hundred cinder cones within a swath of volcanic  

E-Print Network [OSTI]

time to expose their internal features. Although human quarrying creates frequently changing glimpses into a few of the cones in the volcanic field, quarries generally are unsafe for tourists and public access

Torgersen, Christian

267

Petrology of clinopyroxene-amphibole inclusions from the roque nublo volcanics, gran canaria, canary islands  

Science Journals Connector (OSTI)

Inclusions consisting of clinopyroxene, amphibole, Fe-Ti oxides and apatitc are abundant in the Roque Nublo volcanics, a unit of Late Tertiary age that is widespread on Gran Canaria Island. The unit includes alka...

T. Frisch; H. U. Schmincke

1969-01-01T23:59:59.000Z

268

Geomorphic assessment of late Quaternary volcanism in the Yucca  

Science Journals Connector (OSTI)

...volcanology waste disposal Yucca Mountain GeoRef, Copyright...investigations within the Yucca Mountain area, adjacent...the area for disposal of high-level...ACKNOWLEDGMENTS Funding for the Nevada...and by the Yucca Mountain Project Office...

269

Factors Affecting Radiation Dose from a Hypothetical Extrusive Volcanic Event at Yucca Mountain, Nevada  

SciTech Connect (OSTI)

This paper describes the factors that could affect doses to the reasonably maximally exposed individual (RMEI) as a result of a hypothetical extrusive igneous event at Yucca Mountain. Based on available information, there is no evidence that most of the spent fuel in waste packages intersected by a volcanic conduit would be reduced to fine-grained material and subsequently erupted as volcanic ash. (authors)

Weiner, R. [U. S. NRC Advisory Committee on Nuclear Waste and Materials, Rockville, MD (United States); Coleman, N. [U.S. Nuclear Regulatory Commission, Rockville, MD (United States)

2008-07-01T23:59:59.000Z

270

Naturally occurring heavy radioactive elements in the geothermal microcosm of the Los Azufres (Mexico) volcanic complex  

Science Journals Connector (OSTI)

Abstract The Los Azufres geothermal complex of central Mexico is characterized by fumaroles and boiling hot-springs. The fumaroles form habitats for extremophilic mosses and ferns. Physico-chemical measurements of two relatively pristine fumarolic microcosms point to their resemblance with the paleo-environment of earth during the Ordovician and Devonian periods. These geothermal habitats were analysed for the distribution of elemental mass fractions in the rhizospheric soil (RS), the native volcanic substrate (VS) and the sediments (S), using the new high-sensitivity technique of polarized x-ray energy dispersive fluorescence spectrometry (PEDXRF) as well as instrumental neutron activation analysis (INAA) for selected elements. This work presents the results for the naturally occurring heavy radioactive elements (NOHRE) Bi, Th and U but principally the latter two. For the RS, the density was found to be the least and the total organic matter content the most. Bi was found to be negligibly present in all substrate types. The average Th and U mass fractions in the RS were higher than in the VS and about equal to their average mass fractions in the S. The VS mass fraction of Th was higher, and of U lower, than the mass fractions in the earth's crust. In fact for the fumaroles of one site, the average RS mass fractions of these elements were higher than the averaged values for S (without considering the statistical dispersion). The immobilization of the NOHRE in the RS is brought about by the bio-geochemical processes specific to these extremophiles. Its effectiveness is such that despite the small masses of these plants, it compares with, or may sometimes exceed, the immobilization of the NOHRE in the S by the abiotic and aggressive chemical action of the hot-springs. These results indicate that the fumarolic plants are able to transform the volcanic substrate to soil and to affect the NOHRE mass fractions even though these elements are not plant nutrients. Mirrored back to the paleo times when such plant types were ubiquitous, it would mean that the first plants contributed significantly to pedogenesis and the biogeochemical recycling of even the heaviest and radioactive elements. Such plants may potentially be useful for the phytostabilisation of soil moderately contaminated by the NOHRE. Furthermore where applicable, geochronology may require taking into account the influence of the early plants on the NOHRE distributions.

W.A. Abuhani; N. Dasgupta-Schubert; L.M. Villaseor; D. Garca Avila; L. Surez; C. Johnston; S.E. Borjas; S.A. Alexander; S. Landsberger; M.C. Surez

2015-01-01T23:59:59.000Z

271

Growth, destruction and facies architecture of effusive and explosive volcanics in the Miocene Shama basin, southwest of Saudi Arabia: Subaqueoussubaerial volcanism in a lacustrine setting  

Science Journals Connector (OSTI)

Abstract The Harrat Shama Volcanic Basin (HSVB) is a part of a small, well-exposed intra-continental extensional basin that formed during the opening of the Red Sea, containing 5km of Miocene bimodal volcanics and volcaniclastic rocks. The Shama basin accumulated a thick fluvio-lacustrine fill in which two distinct volcanic sequences and their deposits can overlap with each other. In addition, complete facies architectures of the Shama volcanics have been recognized providing a complex mixed siliciclastic and volcaniclastic basin infill in the respective basin where volcanism took place. The lower sequence is composed of hyaloclastites, zeolite-bearing bedded tuffs, and bedded accretionary-lapilli-tuffs and an upper sequence, is made up of pumiceous lapilli-tuffs and peperitic breccias capped by basaltic lava flows. The former is interpreted to have been dominated by discrete, phreatomagmatic fall deposits, which are attributed to an overall high eruption rate in a lacustrine setting, followed by a dominantly subaerial pumiceous lapilli tuff deposits and volcaniclastic sediments sited in the upper part of the basin with paleosols and/or fluvial deposits in between the two sequences. These deposits could be related to polygenetic volcanoes and tectonic structures, such as faults and rift-zones. These two sequences display a complex succession of effusive and explosive volcanisms and their reworked deposits, with abundant evidences of magmawater interaction such as peperites for non-explosive magmawater interaction with the lacustrine water-saturated sediment and standing water body in a lake environment. The difference eruption dynamics and fragmentation mechanisms between the two sequences reflect progressive environmental changes from subaqueous or watery to subaerial or dry. Fluvial erosion and deposition completed the evolution of the emergent marginal part of the Shama basin. The Shama basin then experienced volcano growth and degradation that formed the two sequences; NW-SE-trending basement faulting triggered multiple flank collapses and volcanic debris avalanches, and voluminous pumiceous lapilli-tuff eruptions produced a caldera (upper sequence). Lacustrine conditions persisted during the destruction and post-destruction stages of the volcano's evolution, as evidenced by magmawater interactions. Shama basin is a small-volume volcano, similar to tuff rings; however, its magma compositions, complex eruption styles, and inter-eruptive breaks suggest, that it closely resembles a volcanic architecture commonly associated with large, composite volcanoes. The main cause of such complex eruptive behavior resides in the stratigraphic, structural, and hydrogeological characteristics of the substrate above which the volcanoes were emplaced, rather than on the compositional characteristics of the erupting magma, which do not show significant variation among the different deposits.

A. Abdel Motelib; E.A. Khalaf; H. Al-Marzouki

2014-01-01T23:59:59.000Z

272

FY 2000 Deactivation and Decommissioning Focus Area Annual Report  

SciTech Connect (OSTI)

This document describes activities of the Deactivation and Decommissioning Focus Area for the past year.

None

2001-03-01T23:59:59.000Z

273

Revised age for Midway volcano, Hawaiian volcanic chain  

Science Journals Connector (OSTI)

New conventional K-Ar,40Ar/39Ar, and petrochemical data on alkalic basalt pebbles from the basalt conglomerate overlying tholeiitic flows in the Midway drill hole show that Midway evolved past the tholeiitic shield-building stage and erupted lavas of the alkalic suite27.0 0.6m.y. ago. The data also show that previously published conventional K-Ar ages on altered samples of tholeiite are too young by about 9 m.y. These results remove a significant anomaly in the age-distance relationships of the Hawaiian chain and obviate the need for large changes in either the rate of rotation of the Pacific plate about the Hawaiian pole or the motion of the plate relative to the Hawaiian hot spot since the time of formation of the Hawaiian-Emperor bend. All of the age data along the Hawaiian chain are now reasonably consistent with an average rate of volcanic propagation of 8.0 cm/yr and with 0.83/m.y. of angular rotation about the Hawaiian pole.

G. Brent Dalrymple; David A. Clague; Marvin A. Lanphere

1977-01-01T23:59:59.000Z

274

Operational Area Monitoring Plan  

Office of Legacy Management (LM)

' ' SECTION 11.7B Operational Area Monitoring Plan for the Long -Term H yd rol og ical M o n i to ri ng - Program Off The Nevada Test Site S . C. Black Reynolds Electrical & Engineering, Co. and W. G. Phillips, G. G. Martin, D. J. Chaloud, C. A. Fontana, and 0. G. Easterly Environmental Monitoring Systems Laboratory U. S. Environmental Protection Agency October 23, 1991 FOREWORD This is one of a series of Operational Area Monitoring Plans that comprise the overall Environmental Monitoring Plan for the DOE Field Office, Nevada (DOEINV) nuclear and non- nuclear testing activities associated with the Nevada Test Site (NTS). These Operational Area Monitoring Plans are prepared by various DOE support contractors, NTS user organizations, and federal or state agencies supporting DOE NTS operations. These plans and the parent

275

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area (Redirected from Blackfoot Reservoir Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

276

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area (Redirected from Wister Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

277

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area (Redirected from Teels Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

278

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area (Redirected from Truckhaven Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

279

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area (Redirected from Mokapu Penninsula Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

280

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area (Redirected from Kilauea Summit Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area (Redirected from Flint Geothermal Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

282

Effects of Volcanism on Climate Paul Withers The effects of subaerial volcanism extend far from their source. Long-distance effects  

E-Print Network [OSTI]

at ground level. Mafic volcanic gases can be roughly described as 80% H2O, 10% CO2, 5% SO2, and traces, 1980), El Chichon (Mexico, 1982), Mt. Hudson (Chile, 1991), and Mt. Pinatubo (Philippines, 1991 of the eruption column, having been transported less than 1000 km for any eruptions in the Holocene, or past 8000

Withers, Paul

283

Southeast Idaho Area Links  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Area Attractions and Events Area Geography Area History Area Links Driving Directions Idaho Falls Attractions and Events INL History INL Today Research Park Sagebrush Steppe...

284

Data Acquisition-Manipulation At San Francisco Volcanic Field...  

Open Energy Info (EERE)

geologically mapped the target area, obtained rock samples for age dating and mineral chemistry, performed gravity and magnetic surveys, and integrated these results to identify...

285

Jurassic arc volcanism on Crimea (Ukraine): Implications for the paleo-subduction zone configuration of the Black Sea region  

E-Print Network [OSTI]

Jurassic arc volcanism on Crimea (Ukraine): Implications for the paleo-subduction zone margin. Crimea (Ukraine), a peninsula in the northern Black Sea, represents the northernmost region

Utrecht, Universiteit

286

Geology, geochemistry, and geochronology of volcanic rocks between Cuauhtemoc and La Junta, central Chihuahua, Mexico  

SciTech Connect (OSTI)

The 1200 km/sup 2/ area of this study straddles the boundary between the Sierra Madre Occidental and Basin and Range physiographic provinces and contains three north-northwest trending, block-faulted mountain ranges. The stratigraphy includes a 200 m thick sequence of ash-flow tuffs with subordinate mafic flows that either overlie or are interlayered with the ash-flow tuffs. This sequence overlies an approximately equal thickness of rhyolitic to dacitic flows and tuffs. At the base of the section occurs a distinctly different and thinner (about 50 m thick) sequence of flows, tuffs, and volcaniclastic sediments that is more nearly intermediate in average composition. The volcanic rocks of this study are primarily mafic and felsic with a bimodal distribution of Rb, Sr, and SiO/sub 2/ concentrations and other chemical parameters. The two modes have similar and overlapping ranges of initial /sup 87/Sr//sup 86/Sr ratios. Trace-element and major-element data generally support magmatic fractional crystallization as an important mechanism within each mode. Chemical trends within mafic rocks can be generated by 20 to 40% fractional crystallization of plagioclase and clinopyroxene (70:30 mixture). However, the formation of rhyolite or dacite from mafic rock requires implausible amounts of fractional crystallization of any proposed phenocryst assemblage, and thus the felsic rocks do not appear to be related to the mafic rocks by this mechanism. Most rhyolites of this study can form from dacitic liquid by 10 to 40% fractional crystallization of plagioclase and alkali feldspar (60:40 mixture).

Duex, T.W.

1983-01-01T23:59:59.000Z

287

In-Situ Radiological Surveys to Address Nuclear Criticality Safety Requirements During Remediation Activities at the Shallow Land Disposal Area, Armstrong County, Pennsylvania - 12268  

SciTech Connect (OSTI)

Cabrera Services Inc. (CABRERA) is the remedial contractor for the Shallow Land Disposal Area (SLDA) Site in Armstrong County Pennsylvania, a United States (US) Army Corps of Engineers - Buffalo District (USACE) contract. The remediation is being completed under the USACE's Formerly Utilized Sites Remedial Action Program (FUSRAP) which was established to identify, investigate, and clean up or control sites previously used by the Atomic Energy Commission (AEC) and its predecessor, the Manhattan Engineer District (MED). As part of the management of the FUSRAP, the USACE is overseeing investigation and remediation of radiological contamination at the SLDA Site in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), 42 US Code (USC), Section 9601 et. seq, as amended and, the National Oil and Hazardous Substance Pollution Contingency Plan (NCP), Title 40 of the Code of Federal Regulations (CFR) Section 300.430(f) (2). The objective of this project is to clean up radioactive waste at SLDA. The radioactive waste contains special nuclear material (SNM), primarily U-235, in 10 burial trenches, Cabrera duties include processing, packaging and transporting the waste to an offsite disposal facility in accordance with the selected remedial alternative as defined in the Final Record of Decision (USACE, 2007). Of particular importance during the remediation is the need to address nuclear criticality safety (NCS) controls for the safe exhumation and management of waste containing fissile materials. The partnership between Cabrera Services, Inc. and Measutronics Corporation led to the development of a valuable survey tool and operating procedure that are essential components of the SLDA Criticality Safety and Material Control and Accountability programs. Using proven existing technologies in the design and manufacture of the Mobile Survey Cart, the continued deployment of the Cart will allow for an efficient and reliable methodology to allow for the safe exhumation of the Special Nuclear Material in existing SLDA trenches. (authors)

Norris, Phillip; Mihalo, Mark; Eberlin, John; Lambert, Mike [Cabrera Services (United States); Matthews, Brian [Nuclear Safety Associates (United States)

2012-07-01T23:59:59.000Z

288

White Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

White Mountains Geothermal Area White Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: White Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Hampshire Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

289

Truckhaven Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Truckhaven Geothermal Area Truckhaven Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Truckhaven Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

290

Honokowai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Honokowai Geothermal Area Honokowai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Honokowai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

291

Blackfoot Reservoir Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Blackfoot Reservoir Geothermal Area Blackfoot Reservoir Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Blackfoot Reservoir Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Idaho Exploration Region: Northern Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

292

Wister Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Wister Geothermal Area Wister Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Wister Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

293

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Lualualei Valley Geothermal Area (Redirected from Lualualei Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content

294

borrow_area.cdr  

Office of Legacy Management (LM)

information information at Weldon Spring, Missouri. This site is managed by the U.S. Department of Energy Office of Legacy Management. developed by the former WSSRAP Community Relations Department to provide comprehensive descriptions of key activities that took place throughout the cleanup process The Missouri Department of Conservation (MDC) approved a plan on June 9, 1995, allowing the U.S. Department of Energy (DOE) at the Weldon Spring Site Remedial Action Project (WSSRAP) to excavate nearly 2 million cubic yards of clay material from land in the Weldon Spring Conservation Area. Clay soil from a borrow area was used to construct the permanent disposal facility at the Weldon Spring site. Clay soil was chosen to construct the disposal facility because it has low permeability when

295

High-Resolution Aeromagnetic Survey Map of Part of the Southwest Nevada Volcanic Field  

SciTech Connect (OSTI)

A high-resolution aeromagnetic survey was recently flown to collect data for geologic investigations in the Southwest Nevada Volcanic Field. This survey represents a marked improvement over previous (1999) surveys. The survey includes over 860 km{sup 2} covered by nearly 16,000 km of flightline with 60-m spacing and an instrument altitude of 30 m above the ground surface. Features of interest visible in the dataset include magnetic banding in the volcanic tuffs that form the faulted terrain and sharp delineation of Quaternary basalt cinder cones and lava flows. This 1:100,000-scale map includes a shaded-relief map base and a semi-transparent overlay of the aeromagnetic data, with inset maps illustrating (1) comparisons of detail between the 1999 and 2004 datasets, (2) polarity reversal banding in the volcanic tuff ridges, (3) details of the morphology of Quaternary basalt centers enhanced by aeromagnetic data, and (4) use of GIS in planning the survey.

G. Keating; R. Prueitt; A. Cogbill

2004-06-21T23:59:59.000Z

296

Hyperspectral Imaging At Fish Lake Valley Area (Littlefield ...  

Open Energy Info (EERE)

Fish Lake Valley Area (Littlefield & Calvin, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Hyperspectral Imaging At Fish Lake Valley Area...

297

Pressure Temperature Log At Fish Lake Valley Area (DOE GTP) ...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fish Lake Valley Area (DOE GTP)...

298

Geothermometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Fish Lake Valley Area (DOE GTP) Exploration...

299

Thermochronometry At Fish Lake Valley Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermochronometry At Fish Lake Valley Area (DOE GTP) Exploration...

300

Geographic Information System At Dixie Valley Geothermal Area...  

Open Energy Info (EERE)

Geographic Information System At Dixie Valley Geothermal Area (Iovenitti, Et Al., 2012) Exploration Activity Details Location Dixie Valley Geothermal Area Exploration Technique...

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Core Holes At Steamboat Springs Area (Warpinski, Et Al., 2004...  

Open Energy Info (EERE)

Steamboat Springs Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Holes At Steamboat Springs Area (Warpinski,...

302

Modeling-Computer Simulations At Chocolate Mountains Area (Alm...  

Open Energy Info (EERE)

Area (Alm, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Chocolate Mountains Area (Alm, Et Al.,...

303

Geothermometry At Gabbs Alkali Flat Area (Kratt, Et Al., 2008...  

Open Energy Info (EERE)

Alkali Flat Area (Kratt, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Gabbs Alkali Flat Area (Kratt, Et Al.,...

304

Multispectral Imaging At Salton Sea Area (Reath, Et Al., 2010...  

Open Energy Info (EERE)

Salton Sea Area (Reath, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Multispectral Imaging At Salton Sea Area (Reath, Et Al.,...

305

Ground Gravity Survey At Under Steamboat Springs Area (Warpinski...  

Open Energy Info (EERE)

Area (Warpinski, Et Al., 2004) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Under Steamboat Springs Area (Warpinski,...

306

Audio-Magnetotellurics At Chena Geothermal Area (Holdmann, Et...  

Open Energy Info (EERE)

Chena Geothermal Area (Holdmann, Et Al., 2006) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Audio-Magnetotellurics At Chena Geothermal Area...

307

Slim Holes At Blue Mountain Area (Warpinski, Et Al., 2002) |...  

Open Energy Info (EERE)

Blue Mountain Area (Warpinski, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Blue Mountain Area (Warpinski, Et Al.,...

308

Thermal Gradient Holes At Obsidian Cliff Area (Hulen, Et Al....  

Open Energy Info (EERE)

Obsidian Cliff Area (Hulen, Et Al., 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Obsidian Cliff Area (Hulen,...

309

Analytical Modeling At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

Analytical Modeling At Valles Caldera - Redondo Geothermal Area (White, 1986) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique...

310

Geothermal Literature Review At White Mountains Area (Goff &...  

Open Energy Info (EERE)

White Mountains Area (Goff & Decker, 1983) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At White Mountains Area...

311

Gas Sampling At Wister Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Wister Area (DOE GTP) (Redirected from Water-Gas Samples At Wister Area (DOE GTP)) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling...

312

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area...  

Open Energy Info (EERE)

Surface Gas Sampling At Valles Caldera - Sulphur Springs Area (Goff & Janik, 2002) Exploration Activity Details Location Valles Caldera - Sulphur Springs Area Exploration Technique...

313

Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox,...  

Open Energy Info (EERE)

Soil Gas Sampling At Kilauea East Rift Geothermal Area (Cox, 1980) Exploration Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Soil Gas Sampling...

314

Geothermal Literature Review At Lightning Dock Geothermal Area...  

Open Energy Info (EERE)

Geothermal Literature Review At Lightning Dock Geothermal Area (Smith, 1978) Exploration Activity Details Location Lightning Dock Geothermal Area Exploration Technique Geothermal...

315

Development Wells At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Development Wells At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Development Wells At Glass Buttes Area (DOE GTP)...

316

Cuttings Analysis At Glass Buttes Area (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Cuttings Analysis At Glass Buttes Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Glass Buttes Area (DOE GTP)...

317

Pressure Temperature Log At Fort Bliss Area (DOE GTP) | Open...  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Pressure Temperature Log At Fort Bliss Area (DOE GTP) Exploration...

318

Explosive basaltic volcanism of the Chikurachki Volcano (Kurile arc, Russia): Insights on pre-eruptive magmatic conditions  

E-Print Network [OSTI]

Explosive basaltic volcanism of the Chikurachki Volcano (Kurile arc, Russia): Insights on pre-Sakhalinsk, Russia d Institute of Volcanic Geology and Geochemistry, 683006 Petropavlovsk-Kamchatsky, Russia e Vernadsky Institute of Geochemistry and Analytical Chemistry, 117975 Moscow, Russia Received 13 December

Belousov, Alexander

319

Exploring links between physical and probabilistic models of volcanic eruptions: The Soufrie`re Hills Volcano, Montserrat  

E-Print Network [OSTI]

] Probabilistic methods play an increasingly important role in volcanic hazards forecasts. Here we show stiffening and gas exsolution, and depressurization due to development of permeability and gas escape. Our experience with the Soufrie`re Hills Volcano eruption sequence suggests that volcanic eruption forecasts

Connor, Charles

320

Late Cenozoic volcanism, geochronology, and structure of the...  

Open Energy Info (EERE)

by various geophysical anomalies that are evidently related to an active hot-water geothermal system. This system apparently is heated by a reservoir of silicic magma...

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Heterogeneous Structure Around the Jemez Volcanic Field, New...  

Open Energy Info (EERE)

Data Abstract We analyse active-experiment seismic data obtained by the 1993 Jemez Tomography Experiment (JTEX) programme to elucidate the heterogeneous structure of the Jemez...

322

Site Monitoring Area Maps  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to the Site Monitoring Area (SMA) The Site Monitoring Area sampler Control measures (best management practices) installed at the Site Monitoring Area Structures such as...

323

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Obsidian Cliff Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

324

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area (Redirected from Salt Wells Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

325

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li, Center for Gravity, Electrical, and Magnetic Studies, Colorado School of Mines  

E-Print Network [OSTI]

Application of magnetic amplitude inversion in exploration for natural gas in volcanics Yaoguo Li basins and have strong remanent magnetization. The appli- cation arises in exploration of natural gas identify the volcanic units at large depths. INTRODUCTION Exploration for natural gas hosted in volcanics

326

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area (Redirected from Chena Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

327

A detailed study of the site effects in the volcanic area of Campi Flegrei using empirical approaches  

Science Journals Connector (OSTI)

......To obtain a detailed site-effect estimation of the Campi Flegrei...data set used for this site-effect evaluation in the Campi Flegrei...2005). For two weeks, the ship Le Nadir produced source shots...behaviour suggests a topographical effect. These observations agree with......

Anna Tramelli; Danilo Galluzzo; Edoardo Del Pezzo; Mauro A. Di Vito

2010-08-01T23:59:59.000Z

328

Ar geochronology of magmatic activity, magma ux and hazards at Ruapehu volcano, Taupo Volcanic Zone,  

E-Print Network [OSTI]

, Auckland, New Zealand e New Mexico Geochronological Research Laboratory, New Mexico Institute of Mining and Technology, Socorro, NM, USA f New Mexico Bureau of Mines and Mineral Exploration, Socorro, NM, USA Received ka includes an entire s 300-m section of lavas in Whangaehu gorge as well as some lavas in Ohinepango

Dunbar, Nelia W.

329

CV-2a: Plutonic - Recent or Active Volcanism | Open Energy Information  

Open Energy Info (EERE)

Making. In: Proceedings. Thirty-Ninth Workshop on Geothermal Reservoir Engineering; 20140224; Stanford, California. Stanford, California: Stanford University; p. 8 Inga...

330

RADIOGRAPHIC IMAGING BELOW A VOLCANIC CRATER FLOOR WITH COSMIC-RAY MUONS  

E-Print Network [OSTI]

horizontally-arriving cosmic ray muon with energy of 1 TeV can penetrate 2.6 km of water. Thus, cosmic-ray muon that uncertainty on the shape and amplitude of the energy spectrum of the muon source is within a few percentRADIOGRAPHIC IMAGING BELOW A VOLCANIC CRATER FLOOR WITH COSMIC-RAY MUONS HIROYUKI K.M. TANAKA

Aoki, Yosuke

331

Did the Toba volcanic eruption of $74 ka B.P. produce widespread glaciation?  

E-Print Network [OSTI]

that the Toba volcanic eruption, approximately 74 ka B.P., was responsible for the extended cooling period and ice sheet advance immediately following it, but previous climate model simulations, using 100 times a maximum global cooling of 10 K and ModelE runs produced 8­17 K of cooling within the first years

Robock, Alan

332

Resuspension of Relic Volcanic Ash and Dust from Katmai: Still an Aviation Hazard  

Science Journals Connector (OSTI)

Northwest winds were strong enough to continuously resuspend relic volcanic ash from the Katmai volcano cluster and the Valley of Ten Thousand Smokes on 2021 September 2003. The ash cloud reached over 1600 m and extended over 230 km into the ...

David Hadley; Gary L. Hufford; James J. Simpson

2004-10-01T23:59:59.000Z

333

Steam Explosions, Earthquakes, and Volcanic Eruptions--What's in Yellowstone's Future?  

E-Print Network [OSTI]

Steam Explosions, Earthquakes, and Volcanic Eruptions-- What's in Yellowstone's Future? U. In the background, steam vigorously rises from the hot Each year, millions of visitors come to admire the hot, such as geysers. Steam and hot water carry huge quantities of thermal en- ergy to the surface from the magma cham

Torgersen, Christian

334

RESEARCH ARTICLE Apparent downwind depletion of volcanic SO2 flux--lessons  

E-Print Network [OSTI]

. Volcano monitoring . FLYSPEC Introduction Volcanic gas emissions play an important role indicate that dry deposition of sulfur from the plume and conversion of SO2 to sulfate aerosols within 5km downwind, and is responsible for the apparent loss of SO2. Due to the importance of SO2 emission

Williams-Jones, Glyn

335

Modeling the Formation of Advanced Argillic Lithocaps: Volcanic Vapor Condensation Above Porphyry Intrusions  

Science Journals Connector (OSTI)

...predominance boundaries for aqueous S species were converted to RH, using equation 15.6 of Giggenbach (1997): RH = 2.65-12776/T - 1/2 log f O2 , for T in Kelvin. All redox data for volcanic (dark blue) and plutonic (light blue) rocks are based...

Jeffrey W. Hedenquist; Yuri A. Taran

336

Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions  

Science Journals Connector (OSTI)

Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean ...

Timothy M. Merlis; Isaac M. Held; Georgiy L. Stenchikov; Fanrong Zeng; Larry W. Horowitz

2014-10-01T23:59:59.000Z

337

New ice core evidence for a volcanic cause of the A.D. 536 dust veil  

E-Print Network [OSTI]

New ice core evidence for a volcanic cause of the A.D. 536 dust veil L. B. Larsen,1 B. M. Vinther,1. [1] New and well-dated evidence of sulphate deposits in Greenland and Antarctic ice cores indicate a substantial and extensive atmospheric acidic dust veil at A.D. 533­534 ± 2 years. This was likely produced

Nicolussi, Kurt

338

Using hydraulic equivalences to discriminate transport processes1 of volcanic flows1  

E-Print Network [OSTI]

Mexico, to distinguish the various modes of transport at play in their genesis. Using the concept11, 1987). Despite the ubiquity of25 such deposits, we only have a crude understanding of their genesis Toluca Volcano, Mexico (Fig. 1).34 HYDRAULIC EQUIVALENCES35 Models of volcanic flows invoke several

Boyer, Edmond

339

Automated volcanic eruption detection using MODIS Robert Wright *, Luke Flynn, Harold Garbeil, Andrew Harris, Eric Pilger  

E-Print Network [OSTI]

Automated volcanic eruption detection using MODIS Robert Wright *, Luke Flynn, Harold Garbeil, Harris, & Wright, 2001). Initial research was concerned with the use of high-spatial-, low.g. Flynn Mouginis-Mark, & Horton, 1994; Wright, Flynn, & Harris, 2001), lava domes (e.g. Oppenheimer

Wright, Robert

340

Micro-Earthquake At Roosevelt Hot Springs Geothermal Area (Zandt...  

Open Energy Info (EERE)

Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Micro-Earthquake Activity Date 1982 Usefulness not indicated DOE-funding Unknown...

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Vale Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity Details...

342

Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Breitenbush Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

343

Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mickey Hot Springs Area (Varekamp & Buseck, 1983) Exploration Activity...

344

Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Desert Peak Area (Varekamp & Buseck, 1983) Exploration Activity Details...

345

Mercury Vapor At Socorro Mountain Area (Kooten, 1987) | Open...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Socorro Mountain Area (Kooten, 1987) Exploration Activity Details Location...

346

Refraction Survey At North Brawley Geothermal Area (Fruis & Kohler...  

Open Energy Info (EERE)

(Fruis & Kohler, 1984) Exploration Activity Details Location North Brawley Geothermal Area Exploration Technique Refraction Survey Activity Date 1979 - 1979 Usefulness useful...

347

Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz...  

Open Energy Info (EERE)

ENERGYGeothermal Home Exploration Activity: Compound and Elemental Analysis At Fish Lake Valley Area (Deymonaz, Et Al., 2008) Exploration Activity Details Location Fish...

348

Core Analysis At Jemez Mountain Area (Eichelberger & Koch, 1979...  

Open Energy Info (EERE)

1979) Exploration Activity Details Location Jemez Mountain Area Exploration Technique Core Analysis Activity Date Usefulness useful DOE-funding Unknown References John C....

349

Core Analysis At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Colrado Area (DOE GTP) Exploration Activity Details Location Colado...

350

Core Holes At Blue Mountain Geothermal Area (Fairbank & Niggemann...  

Open Energy Info (EERE)

Exploration Activity Details Location Blue Mountain Geothermal Area Exploration Technique Core Holes Activity Date 2002 - 2004 Usefulness useful DOE-funding Unknown Exploration...

351

Core Analysis At Fenton Hill HDR Geothermal Area (Laughlin, Et...  

Open Energy Info (EERE)

Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Core Analysis Activity Date - 1983 Usefulness useful DOE-funding Unknown Notes A few cores...

352

Core Analysis At Long Valley Caldera Geothermal Area (Pribnow...  

Open Energy Info (EERE)

Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date - 2003 Usefulness useful DOE-funding Unknown Notes "Here we...

353

Core Analysis At Alum Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Alum Area (DOE GTP) Exploration Activity Details Location Alum Geothermal...

354

Core Analysis At Fenton Hill HDR Geothermal Area (Brookins &...  

Open Energy Info (EERE)

Activity Details Location Fenton Hill HDR Geothermal Area Exploration Technique Core Analysis Activity Date - 1983 Usefulness useful DOE-funding Unknown Notes See linked...

355

Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010)...  

Open Energy Info (EERE)

EERE, 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Chena Geothermal Area (EERE, 2010) Exploration Activity...

356

Geographic Information System At Chena Geothermal Area (Holdmann...  

Open Energy Info (EERE)

Activity Details Location Chena Geothermal Area Exploration Technique Geographic Information System Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration...

357

Geographic Information System At Cove Fort Area - Vapor (Nash...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Cove Fort Area - Vapor (Nash, Et Al., 2002) Exploration Activity Details...

358

Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) |...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1994) Exploration Activity Details Location...

359

Flow Test At Fenton Hill HDR Geothermal Area (Callahan, 1996...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Callahan, 1996) Exploration Activity Details...

360

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1991) Exploration Activity Details...

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Tracer Testing At East Mesa Geothermal Area (1984) | Open Energy...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At East Mesa Geothermal Area (1984) Exploration Activity Details Location East Mesa...

362

Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan,...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Tracer Testing At Fenton Hill HDR Geothermal Area (Callahan, 1996) Exploration Activity Details...

363

Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Dixie Valley Geothermal Area (Benoit, Et Al., 2000) Exploration Activity Details...

364

Flow Test At Chena Geothermal Area (Holdmann, Et Al., 2006) ...  

Open Energy Info (EERE)

Exploration Activity Details Location Chena Geothermal Area Exploration Technique Flow Test Activity Date 2005 - 2007 Usefulness useful DOE-funding Unknown Exploration Basis...

365

Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) |...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fenton Hill HDR Geothermal Area (Brown, 1995) Exploration Activity Details Location...

366

Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) ...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Dixie Valley Geothermal Area (Desormier, 1987) Exploration Activity Details Location...

367

Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

368

Injectivity Test At Long Valley Caldera Geothermal Area (Farrar...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Injectivity Test At Long Valley Caldera Geothermal Area (Farrar, Et Al., 2003) Exploration Activity...

369

Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder,...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Roosevelt Hot Springs Geothermal Area (Faulder, 1994) Exploration Activity Details...

370

Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Blue Mountain Geothermal Area (Fairbank Engineering Ltd, 2003) Exploration Activity...

371

Aerial Photography At Nevada Test And Training Range Area (Sabin...  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Aerial Photography At Nevada Test And Training Range Area (Sabin, Et Al., 2004) Exploration Activity Details Location...

372

Ground Magnetics At Cove Fort Area - Vapor (Warpinski, Et Al...  

Open Energy Info (EERE)

Vapor (Warpinski, Et Al., 2004) Exploration Activity Details Location Cove Fort Geothermal Area Exploration Technique Ground Magnetics Activity Date Usefulness useful DOE-funding...

373

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

White, Et Al., 1992) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date - 1992 Usefulness...

374

Modeling-Computer Simulations At White Mountains Area (Goff ...  

Open Energy Info (EERE)

GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At White Mountains Area (Goff & Decker, 1983) Exploration Activity Details Location White...

375

Isotopic Analysis At Valles Caldera - Redondo Geothermal Area...  

Open Energy Info (EERE)

White, 1986) Exploration Activity Details Location Valles Caldera - Redondo Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date - 1986 Usefulness not...

376

Surface Gas Sampling At Valles Caldera - Redondo Area (Goff ...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Valles Caldera - Redondo Area (Goff & Janik, 2002) Exploration Activity...

377

Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) | Open...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Gas Sampling At Chena Geothermal Area (Kolker, 2008) Exploration Activity Details Location...

378

Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Isotopic Analysis- Gas At Long Valley Caldera Geothermal Area (Welhan, Et Al., 1988) Exploration Activity...

379

Gas Sampling At Colrado Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Sampling At Colrado Area (DOE GTP) Exploration Activity Details Location Colado...

380

Gas Flux Sampling At Desert Peak Area (Lechler And Coolbaugh...  

Open Energy Info (EERE)

2007) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Desert Peak Area (Lechler And Coolbaugh, 2007) Exploration Activity...

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Surface Gas Sampling At Fenton Hill HDR Geothermal Area (Goff & Janik, 2002) Exploration Activity...

382

Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas...  

Open Energy Info (EERE)

1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

383

Core Analysis At Long Valley Caldera Geothermal Area (Smith ...  

Open Energy Info (EERE)

Smith & Suemnicht, 1991) Exploration Activity Details Location Long Valley Caldera Geothermal Area Exploration Technique Core Analysis Activity Date 1985 - 1988 Usefulness useful...

384

Well Log Data At North Brawley Geothermal Area (Matlick & Jayne...  

Open Energy Info (EERE)

to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Data At North Brawley Geothermal Area (Matlick & Jayne, 2008) Exploration Activity Details...

385

Water Sampling At Lightning Dock Geothermal Area (Swanberg, 1976...  

Open Energy Info (EERE)

Activity Details Location Lightning Dock Geothermal Area Exploration Technique Water Sampling Activity Date Usefulness useful DOE-funding Unknown Exploration Basis...

386

Production Wells At Lightning Dock Geothermal Area (McCants,...  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Production Wells At Lightning Dock Geothermal Area (McCants, 1974) Exploration Activity Details...

387

Pumpernickel Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Pumpernickel Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Pumpernickel Valley Geothermal Area Pumpernickel Valley Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

388

Whiskey Flats Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Whiskey Flats Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Map: Whiskey Flats Geothermal Area Whiskey Flats Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

389

Chena Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Chena Geothermal Area Chena Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Chena Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Technical Problems and Solutions 8 Geology of the Area 9 Heat Source 10 Geofluid Geochemistry 11 NEPA-Related Analyses (1) 12 Exploration Activities (9) 13 References Map: Chena Geothermal Area Chena Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Fairbanks, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

390

Flow Test At Hot Pot Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Hot Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Hot Pot Area (DOE GTP) Exploration Activity...

391

Flow Test At The Needles Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At The Needles Area (DOE GTP) Exploration Activity Details Location The Needles Area...

392

Flow Test At New River Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At New River Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At New River Area (DOE GTP) Exploration Activity...

393

Flow Test At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Flow Test At Fort Bliss Area (DOE GTP) Exploration Activity Details Location Fort Bliss Area...

394

Stepout-Deepening Wells At Rye Patch Area (DOE GTP, 2011) | Open...  

Open Energy Info (EERE)

Stepout-Deepening Wells At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Step-out Well Activity Date Usefulness not...

395

Gas Sampling At Rye Patch Area (DOE GTP, 2011) | Open Energy...  

Open Energy Info (EERE)

Gas Sampling At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Gas Sampling Activity Date Usefulness not indicated...

396

Reflection Survey At Rye Patch Area (DOE GTP, 2011) | Open Energy...  

Open Energy Info (EERE)

Reflection Survey At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Reflection Survey Activity Date Usefulness not...

397

Flow Test At Rye Patch Area (DOE GTP, 2011) | Open Energy Information  

Open Energy Info (EERE)

Flow Test At Rye Patch Area (DOE GTP, 2011) Exploration Activity Details Location Rye Patch Area Exploration Technique Flow Test Activity Date Usefulness not indicated DOE-funding...

398

Gas Flux Sampling At Maui Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Maui Area (DOE GTP) Exploration Activity Details Location Maui Area...

399

Slim Holes At Glass Buttes Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Glass Buttes Area (DOE GTP) Exploration Activity Details Location Glass Buttes Area...

400

Core Analysis At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Fort Bliss Area (DOE GTP) Exploration Activity Details...

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

2-M Probe At Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: 2-M Probe At Fort Bliss Area (DOE GTP) Exploration Activity Details...

402

Density Log at Fort Bliss Area (DOE GTP) | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Density Log at Fort Bliss Area (DOE GTP) Exploration Activity Details...

403

Salt Wells Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Salt Wells Geothermal Area Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 9.1 Regional Setting 9.2 Stratigraphy 9.3 Structure 10 Hydrothermal System 11 Heat Source 12 Geofluid Geochemistry 13 NEPA-Related Analyses (9) 14 Exploration Activities (28) 15 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

404

Data Acquisition-Manipulation At Truckhaven Area (Layman Energy...  

Open Energy Info (EERE)

Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Truckhaven Area (Layman Energy Associates, 2007)...

405

Thermal-induced conformational changes in the product release area drive the enzymatic activity of xylanases 10B: Crystal structure, conformational stability and functional characterization of the xylanase 10B from Thermotoga petrophila RKU-1  

SciTech Connect (OSTI)

Research highlights: {yields} The hyperthermostable xylanase 10B from Thermotoga petrophila RKU-1 produces exclusively xylobiose at the optimum temperature. {yields} Circular dichroism spectroscopy suggests a coupling effect of temperature-induced structural changes with its enzymatic behavior. {yields} Crystallographic and molecular dynamics studies indicate that conformational changes in the product release area modulate the enzyme action mode. -- Abstract: Endo-xylanases play a key role in the depolymerization of xylan and recently, they have attracted much attention owing to their potential applications on biofuels and paper industries. In this work, we have investigated the molecular basis for the action mode of xylanases 10B at high temperatures using biochemical, biophysical and crystallographic methods. The crystal structure of xylanase 10B from hyperthermophilic bacterium Thermotoga petrophila RKU-1 (TpXyl10B) has been solved in the native state and in complex with xylobiose. The complex crystal structure showed a classical binding mode shared among other xylanases, which encompasses the -1 and -2 subsites. Interestingly, TpXyl10B displayed a temperature-dependent action mode producing xylobiose and xylotriose at 20 {sup o}C, and exclusively xylobiose at 90 {sup o}C as assessed by capillary zone electrophoresis. Moreover, circular dichroism spectroscopy suggested a coupling effect of temperature-induced structural changes with this particular enzymatic behavior. Molecular dynamics simulations supported the CD analysis suggesting that an open conformational state adopted by the catalytic loop (Trp297-Lys326) provokes significant modifications in the product release area (+1,+2 and +3 subsites), which drives the enzymatic activity to the specific release of xylobiose at high temperatures.

Santos, Camila Ramos; Meza, Andreia Navarro [Laboratorio Nacional de Biociencias (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil)] [Laboratorio Nacional de Biociencias (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Hoffmam, Zaira Bruna; Silva, Junio Cota; Alvarez, Thabata Maria; Ruller, Roberto [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil)] [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Giesel, Guilherme Menegon; Verli, Hugo [Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)] [Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Squina, Fabio Marcio [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil)] [Laboratorio Nacional de Ciencia e Tecnologia do Bioetanol (CTBE), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil); Prade, Rolf Alexander [Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK (United States)] [Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK (United States); Murakami, Mario Tyago, E-mail: mario.murakami@lnbio.org.br [Laboratorio Nacional de Biociencias (LNBio), Centro Nacional de Pesquisa em Energia e Materiais, Campinas, SP (Brazil)

2010-12-10T23:59:59.000Z

406

Blind Geothermal System Exploration in Active Volcanic Environments; Multi-phase Geophysical and Geochemical Surveys in Overt & Subtle Volcanic Systems, Hawaii & Maui  

Broader source: Energy.gov [DOE]

DOE Geothermal Technologies Peer Review 2010 - Presentation. Project Objective: To use a combination of traditional geophysical and geochemical tools with exploration suites not typically used in geothermal exploration.

407

Magnetostratigraphy of the lower Triassic volcanics from deep drill SG6 in western Siberia: evidence for long-lasting PermoTriassic volcanic activity  

Science Journals Connector (OSTI)

......for gas and oil production previous polarity...alternating fields. The samples...We traced the cumulative curves of the...with new field and geochemical...four the peak production of dust, toxic...Results of new field and from central......

Michel Westphal; Evgueni L. Gurevitch; Boris V. Samsonov; Hugues Feinberg; Jean Pierre Pozzi

1998-07-01T23:59:59.000Z

408

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Gabbs Valley Geothermal Area Gabbs Valley Geothermal Area (Redirected from Gabbs Valley Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

409

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area (Redirected from Marysville Mt Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

410

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area (Redirected from Fort Bliss Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

411

Amedee Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Amedee Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Amedee Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Map: Amedee Geothermal Area Amedee Geothermal Area Location Map Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

412

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area (Redirected from New River Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

413

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area (Redirected from Kawaihae Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

414

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area (Redirected from Maui Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

415

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area (Redirected from Glass Buttes Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

416

Obsidian Cliff Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Obsidian Cliff Geothermal Area Obsidian Cliff Geothermal Area (Redirected from Obsidian Cliff Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Obsidian Cliff Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

417

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area (Redirected from Jemez Pueblo Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

418

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area (Redirected from Socorro Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

419

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area (Redirected from Kauai Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

420

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area (Redirected from Dixie Meadows Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area (Redirected from Jemez Mountain Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed.

422

Instability of Oceanic Volcanic Edifices: Examples of Sector Collapse, Debris Avalanches, and Debris Flows from Gran Canaria (Canary Islands)  

Science Journals Connector (OSTI)

We review different types of mass transfer (landslides, debris avalanches, debris flows, turbidites) generated throughout the evolution of a long-lived volcanic island (Gran Canaria) from its emergence at ca. 16 ...

Hans-Ulrich Schmincke; Mari Sumita

2014-01-01T23:59:59.000Z

423

Geotechnical Features of the Volcanic Rocks Related to the Arteara Rock Avalanche in Gran Canaria (Canary Islands, Spain)  

Science Journals Connector (OSTI)

The Arteara rock avalanche is developed in the Fataga Group which is related to the first volcanic stage in the Gran Canaria Island (8.613.3 Ma)....

Martn Jess Rodrguez-Peces; Jorge Yepes Temio

2013-01-01T23:59:59.000Z

424

Mapping of volcanic apron and the upper crust between Gran Canaria and Tenerife (Canary Islands) with seismic reflection profiling  

Science Journals Connector (OSTI)

During the Volcanic Island Clastic Apron Project (VICAP), south of the Canary Islands, a total of 700 line-km multichannel seismic profiles were acquired. Two prominent reflectors (A and C) were observed alter...

A. Geisslinger; H. B. Hirschleber; M. Schnaubelt; J. J. Daobeitia

1996-01-01T23:59:59.000Z

425

The channel between Gran Canaria and Tenerife: constructive processes and destructive events during the evolution of volcanic islands  

Science Journals Connector (OSTI)

Seismic, sidescan sonar, bathymetric multibeam and ODP (Ocean Drilling Program) data obtained in the submarine channel between the volcanic islands of Gran Canaria and Tenerife allow to identify constructive feat...

Sebastian Krastel; Hans-Ulrich Schmincke

2002-08-01T23:59:59.000Z

426

Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) | Open  

Open Energy Info (EERE)

Marysville Mt Area (Blackwell) Marysville Mt Area (Blackwell) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Data Acquisition-Manipulation At Marysville Mt Area (Blackwell) Exploration Activity Details Location Marysville Mt Area Exploration Technique Data Acquisition-Manipulation Activity Date Usefulness useful DOE-funding Unknown Notes Heat flow analysis. References D. D. Blackwell (Unknown) Exploration In A Blind Geothermal Area Near Marysville, Montana, Usa Retrieved from "http://en.openei.org/w/index.php?title=Data_Acquisition-Manipulation_At_Marysville_Mt_Area_(Blackwell)&oldid=388982" Category: Exploration Activities What links here Related changes Special pages Printable version Permanent link Browse properties About us Disclaimers Energy blogs

427

Electrical Resistivity At Coso Geothermal Area (1972) | Open Energy  

Open Energy Info (EERE)

Electrical Resistivity At Coso Geothermal Area (1972) Electrical Resistivity At Coso Geothermal Area (1972) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electrical Resistivity At Coso Geothermal Area (1972) Exploration Activity Details Location Coso Geothermal Area Exploration Technique Direct-Current Resistivity Survey Activity Date 1972 Usefulness useful DOE-funding Unknown Exploration Basis Identify drilling sites for exploration Notes Electrical resistivity studies outline areas of anomalously conductive ground that may be associated with geothermal activity and assist in locating drilling sites to test the geothermal potential. References Ferguson, R. B. (1 June 1973) Progress report on electrical resistivity studies, COSO Geothermal Area, Inyo County, California

428

Geothermal Literature Review At International Geothermal Area, Iceland  

Open Energy Info (EERE)

Geothermal Literature Review At International Geothermal Area, Iceland Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Iceland (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Iceland Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Hvalfjordur Fjord area, re: Heat flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Iceland_(Ranalli_%26_Rybach,_2005)&oldid=510812

429

Geothermal Literature Review At International Geothermal Area, Italy  

Open Energy Info (EERE)

International Geothermal Area, Italy International Geothermal Area, Italy (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area, Italy (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area Italy Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Latera area, Tuscany, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_Italy_(Ranalli_%26_Rybach,_2005)&oldid=510813

430

Weathering and genesis of volcanic ash-influenced vertisols and vertic-like soils of El Salvador  

E-Print Network [OSTI]

weathered Vertisol. Many studies have been done on the clay mineralogy of volcanic ash-derived soils. These soils have considerable amounts of amorphous materials in the clay fraction resulting in properties different from other mineral soils. Literature... on the mineralogy of Vertisols derived from or influenced by pyroclastic deposits, however, remain sparse. The mineralogical composition of volcanic ash depends on the conditions existing at the time of eruptions, the stage of soil 13 formation, the thickness...

Yerima, Bernard Palmer Kfuban

1983-01-01T23:59:59.000Z

431

Time-lapse gravity inversion with an active time constraint  

Science Journals Connector (OSTI)

......volcanic activity and geothermal fields (e.g...potential (potential energy per unit mass...the computational cost of the inversion...funding from DOE (Geothermal Technology Advancement...the CO2 plume. Energy Proc. (2011...ground water flow in geothermal fields. J. geophys......

M. Karaoulis; A. Revil; B. Minsley; M. Todesco; J. Zhang; D.D. Werkema

2014-01-01T23:59:59.000Z

432

Kilauea Summit Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kilauea Summit Geothermal Area Kilauea Summit Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kilauea Summit Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (12) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

433

Florida Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Florida Mountains Geothermal Area Florida Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Florida Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

434

Molokai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Molokai Geothermal Area Molokai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Molokai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

435

Maui Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maui Geothermal Area Maui Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maui Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

436

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Rhodes Marsh Geothermal Area (Redirected from Rhodes Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase:

437

Jersey Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jersey Valley Geothermal Area Jersey Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jersey Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: near Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

438

Glass Buttes Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Glass Buttes Geothermal Area Glass Buttes Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Glass Buttes Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (14) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

439

Separation Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Separation Creek Geothermal Area Separation Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Separation Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Oregon Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

440

Kauai Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kauai Geothermal Area Kauai Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kauai Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Rhodes Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Rhodes Marsh Geothermal Area Rhodes Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Rhodes Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

442

Kawaihae Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Kawaihae Geothermal Area Kawaihae Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Kawaihae Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

443

Mokapu Penninsula Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mokapu Penninsula Geothermal Area Mokapu Penninsula Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mokapu Penninsula Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

444

Socorro Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Socorro Mountain Geothermal Area Socorro Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Socorro Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (10) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

445

Jemez Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Mountain Geothermal Area Jemez Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

446

Augusta Mountains Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Augusta Mountains Geothermal Area Augusta Mountains Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Augusta Mountains Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (3) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Fallon, NV Exploration Region: Central Nevada Seismic Zone Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

447

Marysville Mt Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Marysville Mt Geothermal Area Marysville Mt Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Marysville Mt Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Montana Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

448

Flint Geothermal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Flint Geothermal Geothermal Area Flint Geothermal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Flint Geothermal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

449

Lualualei Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lualualei Valley Geothermal Area Lualualei Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lualualei Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

450

New River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

New River Geothermal Area New River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: New River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (13) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Gulf of California Rift Zone GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

451

Bristol Bay Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Bristol Bay Geothermal Area Bristol Bay Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Bristol Bay Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Area Overview Geothermal Area Profile Location: Bristol Bay Borough, Alaska Exploration Region: Alaska Geothermal Region GEA Development Phase: none"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

452

Teels Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Teels Marsh Geothermal Area Teels Marsh Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Teels Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (8) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

453

Haleakala Volcano Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Haleakala Volcano Geothermal Area Haleakala Volcano Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Haleakala Volcano Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (7) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

454

Fort Bliss Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fort Bliss Geothermal Area Fort Bliss Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fort Bliss Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (22) 10 References Area Overview Geothermal Area Profile Location: Texas Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

455

Jemez Pueblo Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Jemez Pueblo Geothermal Area Jemez Pueblo Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Jemez Pueblo Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: New Mexico Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

456

Desert Queen Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Desert Queen Geothermal Area Desert Queen Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Desert Queen Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Northwest Basin and Range Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

457

Dixie Meadows Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Dixie Meadows Geothermal Area Dixie Meadows Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Dixie Meadows Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (6) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

458

Lester Meadow Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lester Meadow Geothermal Area Lester Meadow Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lester Meadow Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

459

Mt Ranier Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mt Ranier Geothermal Area Mt Ranier Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Ranier Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (2) 10 References Area Overview Geothermal Area Profile Location: Washington Exploration Region: Cascades GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant Developing Power Projects: 0

460

Carlsbad Area Office Executive Summary  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

June 1998 June 1998 Carlsbad Area Office Executive Summary The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other activities associated with the National TRU Program (NTP). The CAO develops and directs implementation of the TRU waste program, and assesses compliance with the program guidance, as well as the commonality of activities and assumptions among all TRU waste sites. A cornerstone of the Department of Energy's (DOE) national cleanup strategy, WIPP is

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Water levels in the Yucca Mountain area, Nevada, 1995  

SciTech Connect (OSTI)

Water levels were monitored in 28 wells in the Yucca Mountain area, Nevada, during 1995. Seventeen wells representing 18 depth intervals were monitored periodically, generally on a monthly basis, 2 wells representing 3 depth intervals were monitored hourly, and 9 wells representing 15 depth intervals were monitored both periodically and hourly. All wells monitor water levels in Tertiary volcanic rocks except one that monitors water levels in Paleozoic carbonate rocks. Water levels were measured using calibrated steel tapes, a multiconductor cable unit, and/or pressure transducers. Mean water-level altitudes in the Tertiary volcanic rocks ranged from about 728 to about 1,034 meters above sea level during 1995. The mean water-level altitude in the well monitoring the Paleozoic carbonate rocks was about 753 meters above sea level during 1995. Mean water level altitudes were only an average of about 0.01 meters higher than 1994 mean water level altitudes. A single-well aquifer test was conducted on well UE-25 WT{number_sign}12 during August and September 1995. Well USW 0-2 was also pumped during October and November 1995, in preparation for single-well aquifer test at that well. All data were acquired in accordance with a quality-assurance program to support the reliability of the data.

Graves, R.P.; Goemaat, R.L.

1998-09-01T23:59:59.000Z

462

Knoxville Area Transit: Propane Hybrid Electric Trolleys  

SciTech Connect (OSTI)

A 2-page fact sheet summarizing the evaluation done by the U.S. Department of Energy's Advanced Vehicle Testing Activity on the Knoxville Area Transit's use of propane hybrid electric trolleys.

Not Available

2005-04-01T23:59:59.000Z

463

Du volcan au sdiment: la dynamique du talus volcanoclastique sous-marin de Gran Canaria, canaries (Atlantique oriental, Leg ODP 157)  

Science Journals Connector (OSTI)

Four sites have been drilled in the submarine volcaniclastic apron of the volcanic island of Gran Canaria during the ODP Leg 157. The volcaniclastic submarine apron reflects the volcanological evolution of the island. The main volcanic phases are recorded in the sedimentation by an important contemporaneous clastic influx on the apron. However, periods of volcanic quiescence are characterized by very weak sedimentation rates. Consequently, it is possible to establish a volcanostratigraphy from the sedimentary record of the apron.

Jean-Luc Schneider; Martine Grard; Hans-Ulrich Schmincke; Philip P.E. Weaver; John Firth; Jesus Baraza; James F. Bristow; Charlotte Brunner; Steven N. Carey; Bernard Coakley; Michael Fuller; Thomas Funck; Patrick Goldstrand; Bernhart Herr; Julie Hood; Richard Howe; Ian Jarvis; Susana Lebreiro; Sten Lindblom; Holger Lykke-Andersen; Rosanna Maniscalco; Guy Rothwell; Joanne Sblendorio-Levy; Mari Sumita; Hidetsugu Taniguchi; Penny Tu; Paul Wallace

1997-01-01T23:59:59.000Z

464

Geothermal Literature Review At International Geothermal Area, New Zealand  

Open Energy Info (EERE)

Area, New Zealand Area, New Zealand (Ranalli & Rybach, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At International Geothermal Area New Zealand (Ranalli & Rybach, 2005) Exploration Activity Details Location International Geothermal Area New Zealand Exploration Technique Geothermal Literature Review Activity Date Usefulness not indicated DOE-funding Unknown Notes Lake Taupo, North Island, re: Heat Flow References G. Ranalli, L. Rybach (2005) Heat Flow, Heat Transfer And Lithosphere Rheology In Geothermal Areas- Features And Examples Retrieved from "http://en.openei.org/w/index.php?title=Geothermal_Literature_Review_At_International_Geothermal_Area,_New_Zealand_(Ranalli_%26_Rybach,_2005)&oldid=510814

465

Hualalai Northwest Rift Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Hualalai Northwest Rift Geothermal Area Hualalai Northwest Rift Geothermal Area (Redirected from Hualalai Northwest Rift Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Hualalai Northwest Rift Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (9) 10 References Area Overview Geothermal Area Profile Location: Hawaii Exploration Region: Hawaii Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

466

Under Steamboat Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Under Steamboat Springs Geothermal Area Under Steamboat Springs Geothermal Area (Redirected from Under Steamboat Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Under Steamboat Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

467

Columbus Salt Marsh Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Columbus Salt Marsh Geothermal Area Columbus Salt Marsh Geothermal Area (Redirected from Columbus Salt Marsh Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Columbus Salt Marsh Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: California Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure

468

Static Temperature Survey At Wister Area (DOE GTP) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Static Temperature Survey At Wister Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Static Temperature Survey At Wister Area (DOE GTP) Exploration Activity Details Location Wister Area Exploration Technique Static Temperature Survey Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Static_Temperature_Survey_At_Wister_Area_(DOE_GTP)&oldid=511165" Categories: Exploration Activities DOE Funded Activities

469

Redfield Campus Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Redfield Campus Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Redfield Campus Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (1) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Walker-Lane Transition Zone Geothermal Region GEA Development Phase: 2008 USGS Resource Estimate

470

Gabbs Valley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Gabbs Valley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Gabbs Valley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (4) 9 Exploration Activities (11) 10 References Area Overview Geothermal Area Profile Location: Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: None"None" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

471

200 North Aggregate Area source AAMS report  

SciTech Connect (OSTI)

This report presents the results of an aggregate area management study (AAMS) for the 200 North Aggregate Area in the 200 Areas of the US Department of Energy (DOE) Hanford Site in Washington State. This scoping level study provides the basis for initiating Remedial Investigation/Feasibility Study (RI/FS) activities under the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA) or Resource Conservation and Recovery Act (RCRA) Facility Investigations (RFI) and Corrective Measures Studies (CMS) under RCRA. This report also integrates select RCRA treatment, storage, or disposal (TSD) closure activities with CERCLA and RCRA past practice investigations.

Not Available

1993-06-01T23:59:59.000Z

472

Volcanic ash in feed coal and its influence on coal combustion products  

SciTech Connect (OSTI)

The US Geological Survey and the University of Kentucky Center for Applied Energy Research are collaborating with an Indiana Utility to determine the physical and chemical properties of feed coal and coal combustion products (CCPs) from a coal-fired power plant. The plant utilizes a low-sulfur (.23--.47 weight percent S) coal from the Powder River Basin, Wyoming. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) analysis of feed coal samples identified two mineral suites. A primary suite (not authigenic) consisting of quartz (detrital and volcanic beta-form grains), biotite, and minor zircon and a secondary authigenic mineral suite containing calcite, alumino-phosphates (crandallite and gorceixite), kaolinite, quartz, anatase, barite, and pyrite. The authigenic minerals are attributed to air-fall and reworked volcanic ash that was deposited in peat-forming mires. The Powder River Basin feed coals contain higher amounts of Ba, Ca, Mg, Na, Sr, and P compared to other analyzed eastern coals. These elements are associated with alumino-phosphate, biotite, calcite, and clay minerals. The element associations are indicative of coal that incorporated volcanic ash during deposition. XRD analysis of CCPs revealed a predominance of glass, perovskite, lime, gehlenite, quartz, and phosphates with minor amounts of periclase, anhydrite, hematite, and spinel group minerals in the fly ash; and quartz, plagioclase (albite and anorthite), pyroxene (augite and fassaite), rhodonite, and akermanite in the bottom ash. Microprobe and SEM analysis of fly ash samples revealed quartz, zircon, monazite, euhedral laths of corundum with merrillite, hematite, dendritic spinels/ferrites, and rounded grains of wollastonite with periclase. The abundant Ca and Mg mineral phases in the fly ashes are related to the presence of carbonate, clay, and phosphate minerals in the feed coal. The Ca- and Mg-rich mineral phases in the CCPs can be attributed to volcanic minerals deposited in the peat-forming mire. Dissolution and alteration of these minerals occurred either in the peat-forming sate or during coalification/diagenesis contributing to the authigenic mineral suite. Additionally, detrital mineral input and epigenetic ground-water flow may have affected the geochemistry of the feed coal.

Brownfield, M.E.; Affolter, R.H.; Cathcart, J.D.; Brownfield, I.K.; Hower, J.C.; Stricker, G.D.; O'Connor, J.T.

2000-07-01T23:59:59.000Z

473

Beowawe Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area (Redirected from Beowawe Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Beowawe Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Geofluid Geochemistry 11 NEPA-Related Analyses (0) 12 Exploration Activities (8) 13 References Map: Beowawe Hot Springs Geothermal Area Beowawe Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Beowawe, Nevada Exploration Region: Central Nevada Seismic Zone GEA Development Phase: Operational"Operational" is not in the list of possible values (Phase I - Resource Procurement and Identification, Phase II - Resource Exploration and Confirmation, Phase III - Permitting and Initial Development, Phase IV - Resource Production and Power Plant Construction) for this property.

474

Roosevelt Hot Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area (Redirected from Roosevelt Hot Springs Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Roosevelt Hot Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Future Plans 5 Exploration History 6 Well Field Description 7 Research and Development Activities 8 Technical Problems and Solutions 9 Geology of the Area 10 Heat Source 11 Geofluid Geochemistry 12 NEPA-Related Analyses (0) 13 Exploration Activities (9) 14 References Map: Roosevelt Hot Springs Geothermal Area Roosevelt Hot Springs Geothermal Area Location Map Area Overview Geothermal Area Profile Location: Milford, Utah Exploration Region: Northern Basin and Range Geothermal Region

475

Material Disposal Areas  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Material Disposal Areas Material Disposal Areas Material Disposal Areas Material Disposal Areas, also known as MDAs, are sites where material was disposed of below the ground surface in excavated pits, trenches, or shafts. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Material Disposal Areas at LANL The following are descriptions and status updates of each MDA at LANL. To view a current fact sheet on the MDAs, click on LA-UR-13-25837 (pdf). MDA A MDA A is a Hazard Category 2 nuclear facility comprised of a 1.25-acre, fenced, and radiologically controlled area situated on the eastern end of Delta Prime Mesa. Delta Prime Mesa is bounded by Delta Prime Canyon to the north and Los Alamos Canyon to the south.

476

Core Analysis At Dunes Geothermal Area (1976) | Open Energy Information  

Open Energy Info (EERE)

Dunes Geothermal Area (1976) Dunes Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Core Analysis At Dunes Geothermal Area (1976) Exploration Activity Details Location Dunes Geothermal Area Exploration Technique Core Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Fracture analysis to determine if sealing or open fractures exist Notes Core samples show diagenesis superimposed on episodic fracturing and fracture sealing. The minerals that fill fractures show significant temporal variations. Fracture sealing and low fracture porosity imply that only the most recently formed fractures are open to fluids. References Michael L. Batzle; Gene Simmons (1 January 1976) Microfractures in rocks from two geothermal areas

477

Geothermometry At Honokowai Area (Thomas, 1986) | Open Energy Information  

Open Energy Info (EERE)

Geothermometry At Honokowai Area (Thomas, 1986) Geothermometry At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermometry At Honokowai Area (Thomas, 1986) Exploration Activity Details Location Honokowai Area Exploration Technique Geothermometry Activity Date Usefulness not indicated DOE-funding Unknown Notes Temperature and groundwater chemistry analyses were performed on three wells along the alluvial fan above Honokowai. Water temperatures were approximately 20degrees C and normal basal aquifer water chemistry was observed (Table 4). References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Retrieved from "http://en.openei.org/w/index.php?title=Geothermometry_At_Honokowai_Area_(Thomas,_1986)&oldid=387033"

478

Cuttings Analysis At Imperial Valley Geothermal Area (1976) | Open Energy  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Imperial Valley Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Imperial Valley Geothermal Area (1976) Exploration Activity Details Location Imperial Valley Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters

479

Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) | Open  

Open Energy Info (EERE)

Mountain Geothermal Area (1984) Mountain Geothermal Area (1984) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Earth Tidal Analysis At Marysville Mountain Geothermal Area (1984) Exploration Activity Details Location Marysville Mountain Geothermal Area Exploration Technique Earth Tidal Analysis Activity Date 1984 Usefulness useful DOE-funding Unknown Exploration Basis Determine porosity of the reservoir Notes The response of a confined, areally infinite aquifer to external loads imposed by earth tides is examined. Because the gravitational influence of celestial objects occurs over large areas of the earth, the confined aquifer is assumed to respond in an undrained fashion. Since undrained response is controlled by water compressibility, earth tide response can be

480

Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) | Open  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Roosevelt Hot Springs Geothermal Area (1976) Exploration Activity Details Location Roosevelt Hot Springs Geothermal Area Exploration Technique Cuttings Analysis Activity Date 1976 Usefulness not indicated DOE-funding Unknown Exploration Basis Determine the geologic environment of the geothermal area Notes The geologic environment of the particular areas of interest are described, including rock types, geologic structure, and other important parameters that help describe the reservoir and overlying cap rock. References Pratt, H. R.; Simonson, E. R. (1 January 1976) Geotechnical

Note: This page contains sample records for the topic "active volcanic areas" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Geographic Information System At International Geothermal Area, Indonesia  

Open Energy Info (EERE)

International Geothermal Area, Indonesia International Geothermal Area, Indonesia (Nash, Et Al., 2002) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At International Geothermal Area Indonesia (Nash, Et Al., 2002) Exploration Activity Details Location International Geothermal Area Indonesia Exploration Technique Geographic Information System Activity Date Usefulness not indicated DOE-funding Unknown Notes GIs also facilitates grid data (raster) analysis and visualization. For example, a raster GIs layer, derived from an enhanced Landsat 7 Thematic Mapper (TM) image of the Karaha-Telaga Bodas area, Indonesia, is shown in Figure 2. References Gregory D. Nash, Christopher Kesler, Michael C. Adam (2002) Geographic Information Systems- Tools For Geotherm Exploration, Tracers

482

Crane Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Crane Creek Geothermal Area Crane Creek Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Crane Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.3064,"lon":-116.7447,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

483

Mother Goose Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Mother Goose Geothermal Area Mother Goose Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mother Goose Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":57.18,"lon":-157.0183,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

484

Fireball Ridge Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fireball Ridge Geothermal Area Fireball Ridge Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fireball Ridge Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.92,"lon":-119.07,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

485

Newcastle Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Newcastle Geothermal Area Newcastle Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Newcastle Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.66166667,"lon":-113.5616667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

486

Klamath Falls Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Klamath Falls Geothermal Area Klamath Falls Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Klamath Falls Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.23333333,"lon":-121.7666667,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

487

Clear Creek Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Geothermal Area Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Clear Creek Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":64.85,"lon":-162.3,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

488

Heber Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Heber Geothermal Area Heber Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Heber Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Heat Source 8 Geofluid Geochemistry 9 NEPA-Related Analyses (0) 10 Exploration Activities (2) 11 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.71666667,"lon":-115.5283333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

489

South Brawley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

South Brawley Geothermal Area South Brawley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: South Brawley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.90607,"lon":-115.54,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

490

Medicine Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Medicine Lake Geothermal Area Medicine Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Medicine Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (1) 9 Exploration Activities (9) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.57,"lon":-121.57,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

491

Fernley Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Fernley Geothermal Area Fernley Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Fernley Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.598803,"lon":-119.110415,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

492

Lakeview Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lakeview Geothermal Area Lakeview Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Lakeview Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.2,"lon":-120.36,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

493

Drum Mountain Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Drum Mountain Geothermal Area Drum Mountain Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Drum Mountain Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (2) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.544722222222,"lon":-112.91611111111,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

494

The Needles Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

The Needles Geothermal Area The Needles Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: The Needles Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (15) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.15,"lon":-119.68,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

495

Mt Signal Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Signal Geothermal Area Signal Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Mt Signal Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.65,"lon":-115.71,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

496

Carson River Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

River Geothermal Area River Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Carson River Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.77,"lon":-119.715,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

497

Harney Lake Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Lake Geothermal Area Lake Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Harney Lake Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.18166667,"lon":-119.0533333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

498

Maazama Well Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Maazama Well Geothermal Area Maazama Well Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Maazama Well Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.8965,"lon":-121.9865,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

499

False Pass Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

False Pass Geothermal Area False Pass Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: False Pass Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":54.93,"lon":-163.24,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

500

Okpilak Springs Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

Okpilak Springs Geothermal Area Okpilak Springs Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: Okpilak Springs Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (0) 10 References Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"300px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":69.3,"lon":-144.0333333,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}