National Library of Energy BETA

Sample records for active thermal concentrating

  1. Scattering Solar Thermal Concentrators

    Office of Environmental Management (EM)

    sunshot DOEGO-102012-3669 * September 2012 MOTIVATION All thermal concentrating solar power (CSP) systems use solar tracking, which involves moving large mirror surfaces...

  2. Scattering Solar Thermal Concentrators

    SciTech Connect (OSTI)

    Giebink, Noel C.

    2015-01-31

    This program set out to explore a scattering-based approach to concentrate sunlight with the aim of improving collector field reliability and of eliminating wind loading and gross mechanical movement through the use of a stationary collection optic. The approach is based on scattering sunlight from the focal point of a fixed collection optic into the confined modes of a sliding planar waveguide, where it is transported to stationary tubular heat transfer elements located at the edges. Optical design for the first stage of solar concentration, which entails focusing sunlight within a plane over a wide range of incidence angles (>120 degree full field of view) at fixed tilt, led to the development of a new, folded-path collection optic that dramatically out-performs the current state-of-the-art in scattering concentration. Rigorous optical simulation and experimental testing of this collection optic have validated its performance. In the course of this work, we also identified an opportunity for concentrating photovoltaics involving the use of high efficiency microcells made in collaboration with partners at the University of Illinois. This opportunity exploited the same collection optic design as used for the scattering solar thermal concentrator and was therefore pursued in parallel. This system was experimentally demonstrated to achieve >200x optical concentration with >70% optical efficiency over a full day by tracking with <1 cm of lateral movement at fixed latitude tilt. The entire scattering concentrator waveguide optical system has been simulated, tested, and assembled at small scale to verify ray tracing models. These models were subsequently used to predict the full system optical performance at larger, deployment scale ranging up to >1 meter aperture width. Simulations at an aperture widths less than approximately 0.5 m with geometric gains ~100x predict an overall optical efficiency in the range 60-70% for angles up to 50 degrees from normal. However, the concentrator optical efficiency was found to decrease significantly with increasing aperture width beyond 0.5 m due to parasitic waveguide out-coupling loss and low-level absorption that become dominant at larger scale. A heat transfer model was subsequently implemented to predict collector fluid heat gain and outlet temperature as a function of flow rate using the optical model as a flux input. It was found that the aperture width size limitation imposed by the optical efficiency characteristics of the waveguide limits the absolute optical power delivered to the heat transfer element per unit length. As compared to state-of-the-art parabolic trough CPV system aperture widths approaching 5 m, this limitation leads to an approximate factor of order of magnitude increase in heat transfer tube length to achieve the same heat transfer fluid outlet temperature. The conclusion of this work is that scattering solar thermal concentration cannot be implemented at the scale and efficiency required to compete with the performance of current parabolic trough CSP systems. Applied within the alternate context of CPV, however, the results of this work have likely opened up a transformative new path that enables quasi-static, high efficiency CPV to be implemented on rooftops in the form factor of traditional fixed-panel photovoltaics.

  3. Novel Molten Salts Thermal Energy Storage for Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation This presentation ...

  4. Thermal regeneration of an electrochemical concentration cell

    DOE Patents [OSTI]

    Krumpelt, Michael; Bates, John K.

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  5. Thermal regeneration of an electrochemical concentration cell

    DOE Patents [OSTI]

    Krumpelt, M.; Bates, J.K.

    1980-05-09

    A system and method are described for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  6. Simulating the Value of Concentrating Solar Power with Thermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a ... DE-AC36-08GO28308 Simulating the Value of Concentrating Solar Power with Thermal Energy ...

  7. Project Profile: Novel Thermal Storage Technologies for Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Storage Technologies for Concentrating Solar Power Generation Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation Lehigh logo Lehigh ...

  8. Concentrating Solar Program; Session: Thermal Storage - Overview (Presentation)

    SciTech Connect (OSTI)

    Glatzmaier, G.; Mehos, M.; Mancini, T.

    2008-04-01

    The project overview of this presentation is: (1) description--(a) laboratory R and D in advanced heat transfer fluids (HTF) and thermal storage systems; (b) FOA activities in solar collector and component development for use of molten salt as a heat transfer and storage fluid; (c) applications for all activities include line focus and point focus solar concentrating technologies; (2) Major FY08 Activities--(a) advanced HTF development with novel molten salt compositions with low freezing temperatures, nanofluids molecular modeling and experimental studies, and use with molten salt HTF in solar collector field; (b) thermal storage systems--cost analysis and updates for 2-tank and thermocline storage and model development and analysis to support near-term trought deployment; (c) thermal storage components--facility upgrade to support molten salt component testing for freeze-thaw receiver testing, long-shafted molten salt pump for parabolic trough and power tower thermal storage systems; (d) CSP FOA support--testing and evaluation support for molten salt component and field testing work, advanced fluids and storage solicitation preparation, and proposal evaluation for new advanced HTF and thermal storage FOA.

  9. Concentrating Solar Power Thermal Storage System Basics

    Broader source: Energy.gov [DOE]

    One challenge facing the widespread use of solar energy is reduced or curtailed energy production when the sun sets or is blocked by clouds. Thermal energy storage provides a workable solution to this challenge.

  10. Actively driven thermal radiation shield

    DOE Patents [OSTI]

    Madden, Norman W. (Livermore, CA); Cork, Christopher P. (Pleasant Hill, CA); Becker, John A. (Alameda, CA); Knapp, David A. (Livermore, CA)

    2002-01-01

    A thermal radiation shield for cooled portable gamma-ray spectrometers. The thermal radiation shield is located intermediate the vacuum enclosure and detector enclosure, is actively driven, and is useful in reducing the heat load to mechanical cooler and additionally extends the lifetime of the mechanical cooler. The thermal shield is electrically-powered and is particularly useful for portable solid-state gamma-ray detectors or spectrometers that dramatically reduces the cooling power requirements. For example, the operating shield at 260K (40K below room temperature) will decrease the thermal radiation load to the detector by 50%, which makes possible portable battery operation for a mechanically cooled Ge spectrometer.

  11. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    4 Average thermal performance rating of solar thermal collectors by type shipped in 2009 (Btu per square foot per day) Low- High Temperature Temperature Liquid/air Parabolic Year Metallic and Nonmetallic Air ICS/Thermosi phon Flat-Plate (Pumped) Evaculated Tube Concentrator Paraboloic Dish/Trough 2009 1,139 971 913 981 973 2,196 1,262 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." Medium-Temperature Type Liquid

  12. Thermally activated technologies: Technology Roadmap

    SciTech Connect (OSTI)

    None, None

    2003-05-01

    The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America’s wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover thermally activated technologies that use fossil fuels, biomass, and ultimately hydrogen, along with waste heat.

  13. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    9 Companies involved in solar thermal collector related activities by type, 2008 and 2009 Type of Activity 2008 2009 Collector or System Design 45 59 Prototype Collector Development 27 27 Prototype System Development 23 23 Wholesale Distribution 58 61 Retail Distribution 29 31 Installation 21 27 Noncollector System Component Manufacture 26 32 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  14. Project Profile: Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    Pennsylvania State University, under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is designing and testing a novel solar collector system that relies on stationary optics, avoiding the need for mirror movement. The system is capable of achieving optical performance equal to state-of-the-art parabolic trough systems, but at a lower cost.

  15. Review of Thermally Activated Technologies, July 2004

    Broader source: Energy.gov [DOE]

    Status of various thermally activated technologies (TATs); includes fuel-fired and waste-heat-fired applications of thermally driven cooling systems, heat pumps, and bottoming cycles.

  16. Natural Radionuclide Activity Concentrations In Spas Of Argentina

    SciTech Connect (OSTI)

    Gnoni, G.; Czerniczyniec, M.; Canoba, A.; Palacios, M.

    2008-08-07

    Geothermal waters have been used on a large scale for bathing, drinking and medical purposes. These waters can contain natural radionuclides that may increase the exposure to people. In this work the most important natural radionuclide activity concentrations in different thermal spas of Argentina were measured to characterize waters and to evaluate the exposure of workers and members of the public.

  17. Value of Concentrating Solar Power and Thermal Energy Storage

    SciTech Connect (OSTI)

    Sioshansi, R.; Denholm, P.

    2010-02-01

    This paper examines the value of concentrating solar power (CSP) and thermal energy storage (TES) in four regions in the southwestern United States. Our analysis shows that TES can increase the value of CSP by allowing more thermal energy from a CSP plant?s solar field to be used, by allowing a CSP plant to accommodate a larger solar field, and by allowing CSP generation to be shifted to hours with higher energy prices. We analyze the sensitivity of CSP value to a number of factors, including the optimization period, price and solar forecasting, ancillary service sales, capacity value and dry cooling of the CSP plant. We also discuss the value of CSP plants and TES net of capital costs.

  18. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    6 Number of companies expecting to introduce new solar new solar thermal collector products in 2010 Low-Temperature Collectors 4 Medium-Temperature Collectors 16 High-Temperature Collectors 11 Noncollector Components 12 Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey." New Product Type Number of Companies Source: U.S. Energy Information Administration,

  19. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    8 Employment in the solar thermal collector industry, 2000 - 2009 2000 284 2001 256 2002 356 2003 287 2004 317 2005 353 2006 1,069 2007 686 2008 1,083 2009 1,321 Year Person-Years Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal

  20. Site selection for concentrated solar thermal systems in Hawaii

    SciTech Connect (OSTI)

    Seki, A.

    1987-01-01

    This report identifies ares on the five major islands (Oahu, Maui, Molakai, Hawaii, and Kauai) that have the potential for concentrating solar thermal applications. The locations are based on existing solar insolation (mostly global and some direct normal) data, other meteorological information, land use, potential end-use, and existing facilities. These areas are: - Western coast of Oahu, especially near Kahe Point - Maui plains area - South-Central Molokai - Kona coast of the Big Island, especially Natural Energy Laboratory of Hawaii - Western and southern areas of Kauai. Monitoring stations are recommended at some of these sites to obtain direct normal insolation data for future evaluation.

  1. Solar Thermal Collector Manufacturing Activities

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    41 388 2009 10,511 809 2,307 32 980 - No data reported. ... disclosed. Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector ...

  2. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    U.S. Total 5,517,291 3,455,846 100.00 - No data reported. ... rounding. Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector ...

  3. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    7 Import shipments of solar thermal collectors by type, 2000 ... 687 - 5,517 2009 1,987 715 754 3,456 - No data reported. ... Source: U.S. Energy Information Administration, Form ...

  4. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    5 Shipments of complete solar thermal collector systems, 2008 and 2009 Shipment Information 2008 2009 Complete Collector Systems Shipped 63,961 75,066 Thousand Square Feet 4,058 5,995 Percent of Total Shipments 24 43 Number of Companies 46 62 Revenue of Systems (Thousand Dollars) 47,523 159,085 Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  5. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    1 Distribution of domestic solar thermal collector shipments (thousand square feet) 2008 2009 Wholesale Distributors 8,680 4,063 Retail Distributors 3,997 5,739 Exporters 368 346 Installers 948 939 End Users 723 1,134 U.S. Total 14,716 12,221 Customer Type Shipments Notes: Totals may not equal sum of components due to independent rounding. U.S. total includes territories. Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey

  6. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    0 Soloar-related sales as a percentage of total company sales revenue, 2008 and 2009 2008 2009 90-100 49 56 50-89 9 7 10-49 7 12 Less than 10 9 13 U.S. Total 74 88 Percent of Total Sales Revenue Number of Companies Source: U.S. Energy Information Administration, Form EIA-63A, "Annual Solar Thermal Collector Manufacturers Survey."

  7. Photovoltaic concentrator assembly with optically active cover

    DOE Patents [OSTI]

    Plesniak, Adam P

    2014-01-21

    A photovoltaic concentrator assembly that includes a housing that defines an internal volume and includes a rim, wherein the rim defines an opening into the internal volume, a photovoltaic cell positioned in the internal volume, and an optical element that includes an optically active body and a flange extending outward from the body, wherein the flange is sealingly engaged with the rim of the housing to enclose the internal volume.

  8. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    2 Solar thermal collector shipments by type, quantity, revenue, and average price, 2008 and 2009 Quantity (thousand square feet) Revenue (thousand dollars) Average Price (dollars per square foot) Quantity (thousand square feet) Revenue (thousand dollars) Average Price (dollars per square foot) Low-Temperature Liquid and Air 14,015 26,518 1.89 10,511 20,411 1.94 Medium-Temperature 2,560 50,109 19.57 2,307 51,483 22.32 Air 28 1,256 45.46 22 883 40.31 Liquid ICS/Thermosiphon 321 6,631 20.66 147

  9. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    Annual shipments of solar thermal collectors by disposition, 2000 - 2009 (thousand square feet) Exports Domestic Shipments Total 2000 26 496 7,857 8,354 2001 26 840 10,349 11,189 2002 27 659 11,004 11,663 2003 26 518 10,926 11,444 2004 24 813 13,301 14,114 2005 25 1,361 14,680 16,041 2006 44 1,211 19,532 20,744 2007 60 1,376 13,777 15,153 2008 74 2,247 14,716 16,963 2009 88 1,577 12,221 13,798 Total shipments as reported by respondents include all domestic and export shipments and may include

  10. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    Shipments of solar thermal collectors ranked by origin and destination, 2009 Origin Top Five States 10,031 73 California 4,402 32 New Jersey 4,019 29 Florida 1,299 9 Arizona 164 1 Virginia 148 1 Other Domestic 311 2 Imported 3,456 25 U.S. Total 13,798 100 Destination Top Five States 8,961 65 Florida 3,771 27 California 3,537 26 Arizona 745 5 Hawaii 520 4 Oregon 387 3 Other Domestic 3,260 24 Exported 1,577 11 U.S. Total 13,798 100 Source: U.S. Energy Information Administration, Form EIA-63A,

  11. Flexible thermal cycle test equipment for concentrator solar cells

    DOE Patents [OSTI]

    Hebert, Peter H.; Brandt, Randolph J.

    2012-06-19

    A system and method for performing thermal stress testing of photovoltaic solar cells is presented. The system and method allows rapid testing of photovoltaic solar cells under controllable thermal conditions. The system and method presents a means of rapidly applying thermal stresses to one or more photovoltaic solar cells in a consistent and repeatable manner.

  12. Material and Chemical Processing (Concentrated Solar) (4 Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Material and Chemical Processing (Concentrated Solar) (4 Activities) Material and Chemical Processing (Concentrated Solar) (4 Activities) Below is information about the student ...

  13. Biomedical Applications of Thermally Activated Shape Memory Polymers...

    Office of Scientific and Technical Information (OSTI)

    Biomedical Applications of Thermally Activated Shape Memory Polymers Citation Details In-Document Search Title: Biomedical Applications of Thermally Activated Shape Memory Polymers ...

  14. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    7 Percent of solar thermal collector shipments by the 10 largest companies, 2000 - 2009 2000 1-5 7,521 90 6-10 567 7 2001 1-5 10,732 96 6-10 325 3 2002 1-5 10,755 92 6-10 670 6 2003 1-5 10,485 92 6-10 700 6 2004 1-5 13,291 94 6-10 664 5 2005 1-5 14,801 92 6-10 934 6 2006 1-5 18,535 89 6-10 1,484 7 2007 1-5 13,015 86 6-10 1,202 8 2008 1-5 14,023 83 6-10 1,453 9 2009 1-5 10,868 79 6-10 1,538 11 Year Company Rank Shipments (Thousand Square Feet) Percent of Total Shipments Source: U.S. Energy

  15. NREL: Concentrating Solar Power Research - Parabolic Trough Thermal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of solar power Help reduce the cost of solar electricity. Parabolic trough technology currently has one thermal energy storage option-a two-tank, indirect, molten-salt system. ...

  16. Solar Thermal Collector Manufacturing Activities - Energy Information

    Gasoline and Diesel Fuel Update (EIA)

    Administration Solar Thermal Manufacturing Activities Release Date: December 2010 | Next Release Date: Discontinued | full report Previous Issues Year: (PDF) 2009 2008 2007 2006 2005 2004 2003 1993 Go Overview Total shipments26 of solar thermal collectors decreased dramatically, falling from 17.0 million square feet in 2008 to 13.8 million square feet in 2009, a decline of almost 19 percent. Total shipments in 2009 were down 33 percent from the 2006 record level of 20.7 million square feet

  17. Thermally Activated Martensite: Its Relationship to Non-Thermally Activated (Athermal) Martensite

    SciTech Connect (OSTI)

    Laughlin, D E; Jones, N J; Schwartz, A J; Massalski, T B

    2008-10-21

    The classification of martensitic displacive transformations into athermal, isothermal or anisothermal is discussed. Athermal does not mean 'no temperature dependence' as is often thought, but is best considered to be short for the notion of no thermal activation. Processes with no thermal activation do not depend on time, as there is no need to wait for sufficient statistical fluctuations in some specific order parameter to overcome an activation barrier to initiate the process. Clearly, this kind of process contrasts with those that are thermally activated. In the literature, thermally activated martensites are usually termed isothermal martensites, suggesting a constant temperature. Actually such martensites also typically occur with continuous cooling. The important distinctive feature of these martensites is that they are thermally activated and hence are distinguishable in principle from athermal martensites. A third type of process, anisothermal, has been introduced to account for those transformations which are thought to be thermally activated but which occur on continuous cooling. They may occur so rapidly that they do not appear to have an incubation time, and hence could be mistakenly called an athermal transformation. These designations will be reviewed and discussed in terms of activation energies and kinetic processes of the various martensitic transformations.

  18. Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Neti, Sudhakar; Oztekin, Alparslan; Chen, John; Tuzla, Kemal; Misiolek, Wojciech

    2013-06-20

    The technologies that are to be developed in this work will enable storage of thermal energy in 100 MWe solar energy plants for 6-24 hours at temperatures around 300oC and 850oC using encapsulated phase change materials (EPCM). Several encapsulated phase change materials have been identified, fabricated and proven with calorimetry. Two of these materials have been tested in an airflow experiment. A cost analysis for these thermal energy storage systems has also been conducted that met the targets established at the initiation of the project.

  19. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating...

    Office of Scientific and Technical Information (OSTI)

    ... in a concentrating solar power system is rather simple. ... power block to heat up or change the phase of a secondary ... are an entirely new class of nanofluids that use ...

  20. Research and Development for Novel Thermal Energy Storage Systems (TES) for Concentrating Solar Power (CSP)

    SciTech Connect (OSTI)

    Faghri, Amir; Bergman, Theodore L; Pitchumani, Ranga

    2013-09-26

    The overall objective was to develop innovative heat transfer devices and methodologies for novel thermal energy storage systems for concentrating solar power generation involving phase change materials (PCMs). Specific objectives included embedding thermosyphons and/or heat pipes (TS/HPs) within appropriate phase change materials to significantly reduce thermal resistances within the thermal energy storage system of a large-scale concentrating solar power plant and, in turn, improve performance of the plant. Experimental, system level and detailed comprehensive modeling approaches were taken to investigate the effect of adding TS/HPs on the performance of latent heat thermal energy storage (LHTES) systems.

  1. Material and Chemical Processing (Concentrated Solar) (4 Activities) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Material and Chemical Processing (Concentrated Solar) (4 Activities) Material and Chemical Processing (Concentrated Solar) (4 Activities) Below is information about the student activity/lesson plan from your search. Grades 5-8 Subject Solar Summary Concentrated sunlight is a versatile and high-quality form of energy with several potential applications besides producing heat and electricity. Today, scientists are developing systems that use concentrated sunlight to

  2. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    SciTech Connect (OSTI)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In this paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.

  3. General volume sizing strategy for thermal storage system using phase change material for concentrated solar thermal power plant

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Xu, Ben; Li, Peiwen; Chan, Cholik; Tumilowicz, Eric

    2014-12-18

    With an auxiliary large capacity thermal storage using phase change material (PCM), Concentrated Solar Power (CSP) is a promising technology for high efficiency solar energy utilization. In a thermal storage system, a dual-media thermal storage tank is typically adopted in industry for the purpose of reducing the use of the heat transfer fluid (HTF) which is usually expensive. While the sensible heat storage system (SHSS) has been well studied, a dual-media latent heat storage system (LHSS) still needs more attention and study. The volume sizing of the thermal storage tank, considering daily cyclic operations, is of particular significance. In thismore » paper, a general volume sizing strategy for LHSS is proposed, based on an enthalpy-based 1D transient model. One example was presented to demonstrate how to apply this strategy to obtain an actual storage tank volume. With this volume, a LHSS can supply heat to a thermal power plant with the HTF at temperatures above a cutoff point during a desired 6 hours of operation. This general volume sizing strategy is believed to be of particular interest for the solar thermal power industry.« less

  4. Thermally Activated Technologies Technology Roadmap, May 2003 | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Thermally Activated Technologies Technology Roadmap, May 2003 Thermally Activated Technologies Technology Roadmap, May 2003 The purpose of this Technology Roadmap is to outline a set of actions for government and industry to develop thermally activated technologies for converting America's wasted heat resources into a reservoir of pollution-free energy for electric power, heating, cooling, refrigeration, and humidity control. Fuel flexibility is important. The actions also cover

  5. Market Potential for Advanced Thermally Activated BCHP in Five...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report assesses the applicability of innovative thermally activated technologies in integrated system configurations in the five target national account segments: healthcare ...

  6. Compton effect thermally activated depolarization dosimeter

    DOE Patents [OSTI]

    Moran, Paul R.

    1978-01-01

    A dosimetry technique for high-energy gamma radiation or X-radiation employs the Compton effect in conjunction with radiation-induced thermally activated depolarization phenomena. A dielectric material is disposed between two electrodes which are electrically short circuited to produce a dosimeter which is then exposed to the gamma or X radiation. The gamma or X-radiation impinging on the dosimeter interacts with the dielectric material directly or with the metal composing the electrode to produce Compton electrons which are emitted preferentially in the direction in which the radiation was traveling. A portion of these electrons becomes trapped in the dielectric material, consequently inducing a stable electrical polarization in the dielectric material. Subsequent heating of the exposed dosimeter to the point of onset of ionic conductivity with the electrodes still shorted through an ammeter causes the dielectric material to depolarize, and the depolarization signal so emitted can be measured and is proportional to the dose of radiation received by the dosimeter.

  7. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report

    SciTech Connect (OSTI)

    Michael Schuller; Frank Little; Darren Malik; Matt Betts; Qian Shao; Jun Luo; Wan Zhong; Sandhya Shankar; Ashwin Padmanaban

    2012-03-30

    We demonstrated that adding nanoparticles to a molten salt would increase its utility as a thermal energy storage medium for a concentrating solar power system. Specifically, we demonstrated that we could increase the specific heat of nitrate and carbonate salts containing 1% or less of alumina nanoparticles. We fabricated the composite materials using both evaporative and air drying methods. We tested several thermophysical properties of the composite materials, including the specific heat, thermal conductivity, latent heat, and melting point. We also assessed the stability of the composite material with repeated thermal cycling and the effects of adding the nanoparticles on the corrosion of stainless steel by the composite salt. Our results indicate that stable, repeatable 25-50% improvements in specific heat are possible for these materials. We found that using these composite salts as the thermal energy storage material for a concentrating solar thermal power system can reduce the levelized cost of electricity by 10-20%. We conclude that these materials are worth further development and inclusion in future concentrating solar power systems.

  8. Thermal-mechanical stability of single crystal oxide refractive concentrators for high-temperature solar thermal propulsion

    SciTech Connect (OSTI)

    Zhu, D.; Jacobson, S.; Miller, R.A.

    1999-07-01

    Single crystal oxides such as yttria-stabilized zirconia (Y{sub 2}O{sub 3}-ZrO{sub 2}), yttrium aluminum garnet (Y{sub 3}Al{sub 5}O{sub 12}, or YAG), magnesium oxide (MgO) and sapphire (Al{sub 2}O{sub 3}) are candidate refractive secondary concentrator materials for high temperature solar propulsion applications. However, thermo-mechanical reliability of these components in severe thermal environments during the space mission sun/shade transition is of great concern. Simulated mission tests are important for evaluating these candidate oxide materials under a variety of transient and steady-state heat flux conditions, and thus provide vital information for the component design. In this paper, a controlled heat flux thermal shock test approach is established for the single crystal oxide materials using a 3.0 kW continuous wave CO{sub 2} laser, with a wavelength 10.6 micron. Thermal fracture behavior and failure mechanisms of these oxide materials are investigated and critical temperature gradients are determined under various temperature and heating conditions. The test results show that single crystal sapphire is able to sustain the highest temperature gradient and heating-cooling rate, and thus exhibit the best thermal shock resistance, as compared to the yttria-stabilized zirconia, yttrium aluminum garnet and magnesium oxide.

  9. Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop

    SciTech Connect (OSTI)

    McFarlane, Joanna; Bell, Jason R; Felde, David K; Joseph III, Robert Anthony; Qualls, A L; Weaver, Samuel P

    2014-01-01

    Polyaromatic hydrocarbon thermal fluids showing thermally stability to 600 C have been tested for solar thermal-power applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C indicated that the fluid isomerized and degraded at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components in trough solar electric generating systems, such as the waste heat rejection exchanger, may become coated or clogged affecting loop performance. Thus, pure 1-phenylnaphthalene, without addition of stabilizers, does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the temperatures greater than 500 C. The performance of a concentrating solar loop using high temperature fluids was modeled based on the National Renewable Laboratory Solar Advisory Model. It was determined that a solar-to-electricity efficiency of up to 30% and a capacity factor of near 60% could be achieved using a high efficiency collector and 12 h thermal energy storage.

  10. A miniature shock-activated thermal battery for munitions applications

    SciTech Connect (OSTI)

    Guidotti, R.A.; Kirby, D.L.; Reinhardt, F.W.

    1998-04-01

    The feasibility of a small, fast-rise thermal battery for non-spinning munitions applications was examined by studying the response of conventional thermal cells to impact (mechanical) energy to simulate a setback environment. This is an extension of earlier work that demonstrated that shock activation could be used to produce power from a conventional thermal-battery cell. The results of tests with both single and multiple cells are presented, along with data for a 5-cell miniature (5-mm diameter) thermal battery. The issues needing to be resolved before such a device can become a commercial reality are also discussed.

  11. Market Potential for Advanced Thermally Activated BCHP in Five National

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Account Sectors, May 2003 | Department of Energy Market Potential for Advanced Thermally Activated BCHP in Five National Account Sectors, May 2003 Market Potential for Advanced Thermally Activated BCHP in Five National Account Sectors, May 2003 Potential distributed generation (DG) and combined heat and power (CHP) applications in the United States cover a broad spectrum of market segments, from nursing homes requiring a few hundred kilowatts (kW) of power and an economical hot water source

  12. Biomedical Applications of Thermally Activated Shape Memory Polymers

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Biomedical Applications of Thermally Activated Shape Memory Polymers Citation Details In-Document Search Title: Biomedical Applications of Thermally Activated Shape Memory Polymers Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive

  13. Thermal initiation of explosive materials using photon-based active

    Office of Scientific and Technical Information (OSTI)

    interrogation methods (u) (Conference) | SciTech Connect Thermal initiation of explosive materials using photon-based active interrogation methods (u) Citation Details In-Document Search Title: Thermal initiation of explosive materials using photon-based active interrogation methods (u) Authors: Heger, Arlen S [1] ; Holbert, Keith E [1] ; Bowman, William J [2] ; Mc Cauhey, Madeline [2] + Show Author Affiliations Los Alamos National Laboratory [Los Alamos National Laboratory ASU [ASU

  14. Thermal initiation of explosive materials using photon-based active

    Office of Scientific and Technical Information (OSTI)

    interrogation methods (u) (Conference) | SciTech Connect Thermal initiation of explosive materials using photon-based active interrogation methods (u) Citation Details In-Document Search Title: Thermal initiation of explosive materials using photon-based active interrogation methods (u) × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public

  15. Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2012-11-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  16. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    SciTech Connect (OSTI)

    Reddy, Ramana G.

    2013-10-23

    The explicit UA program objective is to develop low melting point (LMP) molten salt thermal energy storage media with high thermal energy storage density for sensible heat storage systems. The novel Low Melting Point (LMP) molten salts are targeted to have the following characteristics: 1. Lower melting point (MP) compared to current salts (<222ºC) 2. Higher energy density compared to current salts (>300 MJ/m3) 3. Lower power generation cost compared to current salt In terms of lower power costs, the program target the DOE's Solar Energy Technologies Program year 2020 goal to create systems that have the potential to reduce the cost of Thermal Energy Storage (TES) to less than $15/kWh-th and achieve round trip efficiencies greater than 93%. The project has completed the experimental investigations to determine the thermo-physical, long term thermal stability properties of the LMP molten salts and also corrosion studies of stainless steel in the candidate LMP molten salts. Heat transfer and fluid dynamics modeling have been conducted to identify heat transfer geometry and relative costs for TES systems that would utilize the primary LMP molten salt candidates. The project also proposes heat transfer geometry with relevant modifications to suit the usage of our molten salts as thermal energy storage and heat transfer fluids. The essential properties of the down-selected novel LMP molten salts to be considered for thermal storage in solar energy applications were experimentally determined, including melting point, heat capacity, thermal stability, density, viscosity, thermal conductivity, vapor pressure, and corrosion resistance of SS 316. The thermodynamic modeling was conducted to determine potential high temperature stable molten salt mixtures that have thermal stability up to 1000 °C. The thermo-physical properties of select potential high temperature stable (HMP) molten salt mixtures were also experimentally determined. All the salt mixtures align with the go/no-go goals stipulated by the DOE for this project. Energy densities of all salt mixtures were higher than that of the current solar salt. The salt mixtures costs have been estimated and TES system costs for a 2 tank, direct approach have been estimated for each of these materials. All estimated costs are significantly below the baseline system that used solar salt. These lower melt point salts offer significantly higher energy density per volume than solar salt – and therefore attractively smaller inventory and equipment costs. Moreover, a new TES system geometry has been recommended A variety of approaches were evaluated to use the low melting point molten salt. Two novel changes are recommended that 1) use the salt as a HTF through the solar trough field, and 2) use the salt to not only create steam but also to preheat the condensed feedwater for Rankine cycle. The two changes enable the powerblock to operate at 500°C, rather than the current 400°C obtainable using oil as the HTF. Secondly, the use of salt to preheat the feedwater eliminates the need to extract steam from the low pressure turbine for that purpose. Together, these changes result in a dramatic 63% reduction required for 6 hour salt inventory, a 72% reduction in storage volume, and a 24% reduction in steam flow rate in the power block. Round trip efficiency for the Case 5 - 2 tank “direct” system is estimated at >97%, with only small losses from time under storage and heat exchange, and meeting RFP goals. This attractive efficiency is available because the major heat loss experienced in a 2 tank “indirect” system - losses by transferring the thermal energy from oil HTF to the salt storage material and back to oil to run the steam generator at night - is not present for the 2 tank direct system. The higher heat capacity values for both LMP and HMP systems enable larger storage capacities for concentrating solar power.

  17. THERMAL IMAGING OF ACTIVE MAGNETIC REGERNERATOR MCE MATERIALS DURING OPERATION

    SciTech Connect (OSTI)

    Shassere, Benjamin [ORNL] [ORNL; West, David L [ORNL] [ORNL; Abdelaziz, Omar [ORNL] [ORNL; Evans III, Boyd Mccutchen [ORNL] [ORNL

    2012-01-01

    An active magnetic regenerator (AMR) prototype was constructed that incorporates a Gd sheet into the regenerator wall to enable visualization of the system s thermal transients. In this experiment, the thermal conditions inside the AMR are observed under a variety of operating conditions. An infrared (IR) camera is employed to visualize the thermal transients within the AMR. The IR camera is used to visually and quantitatively evaluate the temperature difference and thus giving means to calculate the performance of the system under the various operating conditions. Thermal imaging results are presented for two differing experimental test runs. Real time imaging of the thermal state of the AMR has been conducted while operating the system over a range of conditions. A 1 Tesla twin-coil electromagnet (situated on a C frame base) is used for this experiment such that all components are stationary during testing. A modular, linear reciprocating system has been realized in which the effects of regenerator porosity and utilization factor can be investigated. To evaluate the performance variation in porosity and utilization factor the AMR housing was constructed such that the plate spacing of the Gd sheets may be varied. Each Gd sheet has dimensions of 38 mm wide and 66 mm long with a thickness of 1 mm and the regenerator can hold a maximum of 29 plates with a spacing of 0.25 mm. Quantitative and thermal imaging results are presented for several regenerator configurations.

  18. Silica and boron-containing ultraphosphate laser glass with low concentration quenching and improved thermal shock resistance

    DOE Patents [OSTI]

    Cook, Lee M.; Stokowski, Stanley E.

    1987-04-28

    Neodymium-doped phosphate glasses having a refractive index, nd>1.520; an Abbe number, Vd, <60; a density <3.0 g/cm.sup.3, a thermal expansion coefficient, .alpha., .ltoreq.110.times.10.sup.-7 .degree.C..sup.-1 ; a Young's Modulus, E, <70.times.10.sup.3 N/mm.sup.2 ; a Poisson's Ratio, .nu., <0.28; a thermal conductivity, K, >0.5 W/m.multidot.K, a thermal FOM=(1-.nu.).multidot.K/.alpha.E>0.7, consisting essentially of, in mol. %: P.sub.2 O.sub.5 : 40-70% SiO.sub.2 : 0-20% B.sub.2 O.sub.3 : 5-20% Sum SiO.sub.2 +B.sub.2 O.sub.3 : 5-35% Sum Li.sub.2 O+Na.sub.2 O+K.sub.2 O: 5-20% Sum La.sub.2 O.sub.3 +Nd.sub.2 O.sub.3 : 3-10% Sum MgO+CaO+SrO+BaO+ZnO: 0-10% and preferably containing an amount of Nd.sub.2 O.sub.3 effective for laser activity having an emission cross-section, .sigma., >3.5.times.10.sup.-20 cm.sup.2 ; a fluorescence linewidth (.DELTA..lambda..sub.f1)<23.5 nm; a first e-folding time of the Nd.sup.3+ fluorescence at 0.5 wt. % Nd.sub.2 O.sub.3 >375 .mu.sec, and a first e-folding time of the Nd.sup.3+ fluorescence at 10 wt. % >175 .mu.sec at 10 wt. %, have very low self-concentration quenching rates.

  19. Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    The University of Connecticut, under the Thermal Storage FOA, is developing innovative heat transfer devices and methodologies for novel thermal energy storage (TES) systems for CSP involving phase change materials (PCMs).

  20. Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    The University of Alabama, under the Thermal Storage FOA, is developing thermal energy storage (TES) media consisting of low melting point (LMP) molten salt with high TES density for sensible heat storage systems.

  1. Methods for Analyzing the Economic Value of Concentrating Solar Power with Thermal Energy Storage

    SciTech Connect (OSTI)

    Denholm, Paul; Jorgenson, Jennie; Miller, Mackay; Zhou, Ella; Wang, Caixia

    2015-07-20

    Concentrating solar power with thermal energy storage (CSP-TES) provides multiple quantifiable benefits compared to CSP without storage or to solar photovoltaic (PV) technology, including higher energy value, ancillary services value, and capacity value. This report describes modeling approaches to quantifying these benefits that have emerged through state-level policymaking in the United States as well as the potential applicability of these methods in China. The technical potential for CSP-TES in China is significant, but deployment has not yet achieved the targets established by the Chinese government. According to the 12th Five Year Plan for Renewable Energy (2011-2015), CSP was expected to reach 1 GW by 2015 and 3 GW by 2020 in China, yet as of December 2014, deployment totaled only 13.8 MW. One barrier to more rapid deployment is the lack of an incentive specific to CSP, such as a feed-in tariff. The 13th Five Year Plan for Solar Generation (2016-2020), which is under development, presents an opportunity to establish a feed-in tariff specific to CSP. This report, produced under the auspices of the U.S.-China Renewable Energy Partnership, aims to support the development of Chinese incentives that advance CSP deployment goals.

  2. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hummon, M.; Denholm, P.; Jorgenson, J.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  3. Modelling Concentrating Solar Power with Thermal Energy Storage for Integration Studies (Presentation)

    SciTech Connect (OSTI)

    Hummon, M.; Jorgenson, J.; Denholm, P.; Mehos, M.

    2013-10-01

    Concentrating solar power with thermal energy storage (CSP-TES) can provide multiple benefits to the grid, including low marginal cost energy and the ability to levelize load, provide operating reserves, and provide firm capacity. It is challenging to properly value the integration of CSP because of the complicated nature of this technology. Unlike completely dispatchable fossil sources, CSP is a limited energy resource, depending on the hourly and daily supply of solar energy. To optimize the use of this limited energy, CSP-TES must be implemented in a production cost model with multiple decision variables for the operation of the CSP-TES plant. We develop and implement a CSP-TES plant in a production cost model that accurately characterizes the three main components of the plant: solar field, storage tank, and power block. We show the effect of various modelling simplifications on the value of CSP, including: scheduled versus optimized dispatch from the storage tank and energy-only operation versus co-optimization with ancillary services.

  4. Evaluation of annual efficiencies of high temperature central receiver concentrated solar power plants with thermal energy storage.

    SciTech Connect (OSTI)

    Ehrhart, Brian David; Gill, David Dennis

    2013-07-01

    The current study has examined four cases of a central receiver concentrated solar power plant with thermal energy storage using the DELSOL and SOLERGY computer codes. The current state-of-the-art base case was compared with a theoretical high temperature case which was based on the scaling of some input parameters and the estimation of other parameters based on performance targets from the Department of Energy SunShot Initiative. This comparison was done for both current and high temperature cases in two configurations: a surround field with an external cylindrical receiver and a north field with a single cavity receiver. There is a fairly dramatic difference between the design point and annual average performance, especially in the solar field and receiver subsystems, and also in energy losses due to the thermal energy storage being full to capacity. Additionally, there are relatively small differences (<2%) in annual average efficiencies between the Base and High Temperature cases, despite an increase in thermal to electric conversion efficiency of over 8%. This is due the increased thermal losses at higher temperature and operational losses due to subsystem start-up and shut-down. Thermal energy storage can mitigate some of these losses by utilizing larger thermal energy storage to ensure that the electric power production system does not need to stop and re-start as often, but solar energy is inherently transient. Economic and cost considerations were not considered here, but will have a significant impact on solar thermal electric power production strategy and sizing.

  5. The relation of seismic activity and radon concentration

    SciTech Connect (OSTI)

    Kulali, Feride E-mail: iskender@fef.sdu.edu.tr; Akkurt, ?skender E-mail: iskender@fef.sdu.edu.tr; Vogiannis, Efstratios

    2014-10-06

    Radon, which is the largest source of natural ionizing radiation, reaches to surface as gas or dissolved form in the ground water. Emanation of radon can has a profile is disposed to increasing or decreasing depending on the effects of meteorological events or crust movements. In this work, the radon concentration in soil gas, which is transported from soil to AlphaGUARD, is continuously measured in Mytilene (Greece). A graph of radon concentration is prepared for comparison with simultaneous earthquake data. As a consequence of comparison, we determined that the radon concentration indicates anomalies before the earthquakes.

  6. Project Profile: Novel Thermal Storage Technologies for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    Lehigh University, under the Thermal Storage FOA, is working to establish the technical feasibility of using phase change materials (PCM) at elevated temperatures and to acquire engineering results that will lead to the demonstration of large-scale thermal storage systems.

  7. Thermally conductive alumina/organic composites for photovoltaic concentrator cell isolation

    SciTech Connect (OSTI)

    Beavis, L.C.; Panitz, J.K.G.; Sharp, D.J.

    1988-01-01

    Electrophoretically deposited styrene-acrylate films were studied. These yield marginally useful thermal conductivities of 0.1--0.2 watts/meter-Kelvin, but have useful dielectric strengths over 2500 volts for 40 micrometer thick coatings. Thin, 25 micrometer, coatings of anodically grown Al/sub 2/O/sub 3/ films were also investigated. These films have thermal conductivities of approximately 6--8 watts/meter-Kelvin. Although these Al/sub 2/O/sub 3/ films have greater thermal conductivity than the polymer films, they exhibit porosity which typically limits their dielectric strength to less than 1000 volts. In the current study we have determined that styrene-acrylate can be electrophoretically deposited in porous anodic aluminum oxide films to form an alumina-organic composite with improved electrical breakdown strengths as well as higher thermal conductivity than styrene-acrylate films. 7 refs., 2 tabs.

  8. Performance and cost benefits associated with nonimaging secondary concentrators used in point-focus dish solar thermal applications

    SciTech Connect (OSTI)

    O'Gallagher, J.; Winston, R.

    1987-09-01

    Using nonimaging secondary concentrators in point-focus applications may permit the development of more cost-effective concentrator systems by either improving performance or reducing costs. Secondaries may also increase design flexibility. The major objective of this study was to develop as complete an understanding as possible of the quantitative performance and cost effects associated with deploying nonimaging secondary concentrators at the focal zone of point-focus solar thermal concentrators. A performance model was developed that uses a Monte Carlo ray-trace procedure to determine the focal plane distribution of a paraboloidal primary as a function of optical parameters. It then calculates the corresponding optimized concentration and thermal efficiency as a function of temperature with and without the secondary. To examine the potential cost benefits associated with secondaries, a preliminary model for the rational optimization of performance versus cost trade-offs was developed. This model suggests a possible 10% to 20% reduction in the cost of delivered energy when secondaries are used. This is a lower limit, and the benefits may even be greater if using a secondary permits the development of inexpensive primary technologies for which the performance would not otherwise be viable. 20 refs., 15 figs., 3 tabs.

  9. Summary Report for Concentrating Solar Power Thermal Storage Workshop: New Concepts and Materials for Thermal Energy Storage and Heat-Transfer Fluids, May 20, 2011

    SciTech Connect (OSTI)

    Glatzmaier, G.

    2011-08-01

    This document summarizes a workshop on thermal energy storage for concentrating solar power (CSP) that was held in Golden, Colorado, on May 20, 2011. The event was hosted by the U.S. Department of Energy (DOE), the National Renewable Energy Laboratory, and Sandia National Laboratories. The objective was to engage the university and laboratory research communities to identify and define research directions for developing new high-temperature materials and systems that advance thermal energy storage for CSP technologies. This workshop was motivated, in part, by the DOE SunShot Initiative, which sets a very aggressive cost goal for CSP technologies -- a levelized cost of energy of 6 cents per kilowatt-hour by 2020 with no incentives or credits.

  10. Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  11. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    SciTech Connect (OSTI)

    Wu, D.; Zhao, L. -D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J. -F.; Zhu, Y.; Kanatzidis, M. G.; He, J.

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe)1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM) observations and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Na’s diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.

  12. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    SciTech Connect (OSTI)

    Wu, D.; Zhao, L. -D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J. -F.; Zhu, Y.; Kanatzidis, M. G.; He, J.

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe)1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM) observations and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Nas diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.

  13. Superior thermoelectric performance in PbTe-PbS pseudo-binary. Extremely low thermal conductivity and modulated carrier concentration

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wu, D.; Zhao, L. -D.; Tong, X.; Li, W.; Wu, L.; Tan, Q.; Pei, Y.; Huang, L.; Li, J. -F.; Zhu, Y.; et al

    2015-05-19

    Lead chalcogenides have exhibited their irreplaceable role as thermoelectric materials at the medium temperature range, owing to highly degenerate electronic bands and intrinsically low thermal conductivities. PbTe-PbS pseudo-binary has been paid extensive attentions due to the even lower thermal conductivity which originates largely from the coexistence of both alloying and phase-separated precipitations. To investigate the competition between alloying and phase separation and its pronounced effect on the thermoelectric performance in PbTe-PbS, we systematically studied Spark Plasma Sintered (SPSed), 3 at% Na- doped (PbTe)1-x(PbS)x samples with x=10%, 15%, 20%, 25%, 30% and 35% by means of transmission electron microscopy (TEM) observationsmore » and theoretical calculations. Corresponding to the lowest lattice thermal conductivity as a result of the balance between point defect- and precipitates- scattering, the highest figure of merit ZT~2.3 was obtained at 923 K when PbS phase fraction x is at 20%. The consistently lower lattice thermal conductivities in SPSed samples compared with corresponding ingots, resulting from the powdering and follow-up consolidation processes, also contribute to the observed superior ZT. Notably, the onset of carrier concentration modulation ~600 K due to excessive Na’s diffusion and re-dissolution leads to the observed saturations of electrical transport properties, which is believed equally crucial to the outstanding thermoelectric performance of SPSed PbTe-PbS samples.« less

  14. Fuel injector utilizing non-thermal plasma activation

    DOE Patents [OSTI]

    Coates, Don M. (Santa Fe, NM); Rosocha, Louis A. (Los Alamos, NM)

    2009-12-01

    A non-thermal plasma assisted combustion fuel injector that uses an inner and outer electrode to create an electric field from a high voltage power supply. A dielectric material is operatively disposed between the two electrodes to prevent arcing and to promote the formation of a non-thermal plasma. A fuel injector, which converts a liquid fuel into a dispersed mist, vapor, or aerosolized fuel, injects into the non-thermal plasma generating energetic electrons and other highly reactive chemical species.

  15. CHARACTERIZATION OF AN ACTIVELY COOLED METAL FOIL THERMAL RADIATION SHIELD

    SciTech Connect (OSTI)

    Feller, J. R.; Salerno, L. J.; Kashani, A.; Helvensteijn, B. P. M.

    2010-04-09

    Zero boil-off (ZBO) or reduced boil-off (RBO) systems that involve active cooling of large cryogenic propellant tanks will most likely be required for future space exploration missions. For liquid oxygen or methane, such systems could be implemented using existing high technology readiness level (TRL) cryocoolers. However, for liquid hydrogen temperatures (approx20 K) no such coolers exist. In order to partially circumvent this technology gap, the concept of broad area cooling (BAC) has been developed, whereby a low mass thermal radiation shield could be maintained at temperatures around 100 K by steady circulation of cold pressurized gas through a network of narrow tubes. By this method it is possible to dramatically reduce the radiative heat leak to the 20 K tank. A series of experiments, designed to investigate the heat transfer capabilities of BAC systems, have been conducted at NASA Ames Research Center (ARC). Results of the final experiment in this series, investigating heat transfer from a metal foil film to a distributed cooling line, are presented here.

  16. Thermally activated low temperature creep and primary water stress corrosion cracking of NiCrFe alloys

    SciTech Connect (OSTI)

    Hall, M.M. Jr.

    1993-10-01

    A phenomenological SCC-CGR model is developed based on an apriori assumption that the SCC-CGR is controlled by low temperature creep (LTC). This mode of low temperature time dependent deformation occurs at stress levels above the athermal flow stress by a dislocation glide mechanism that is thermally activated and may be environmentally assisted. The SCC-CGR model equations developed contain thermal activation parameters descriptive of the dislocation creep mechanism. Thermal activation parameters are obtained by fitting the CGR model to SCC-CGR data obtained on Alloy 600 and Alloy X-750. These SCC-CGR activation parameters are compared to LTC activation parameters obtained from stress relaxation tests. When the high concentration of hydrogen at the tip of an SCC crack is considered, the SCC-CGR activation energies and rate sensitivities are shown to be quantitatively consistent with hydrogen reducing the activation energy and increasing the strain rate sensitivity in LTC stress relaxation tests. Stress dependence of SCC-CGR activation energy consistent with that found for the LTC activation energy. Comparisons between temperature dependence of the SCC-CGR stress sensitivity and LTC stress sensitivity provide a basis for speculation on effects of hydrogen and solute carbon on SCC crack growth rates.

  17. Summary of: Simulating the Value of Concentrating Solar Power with Thermal Energy Storage in a Production Cost Model (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Hummon, M.

    2013-02-01

    Concentrating solar power (CSP) deployed with thermal energy storage (TES) provides a dispatchable source of renewable energy. The value of CSP with TES, as with other potential generation resources, needs to be established using traditional utility planning tools. Production cost models, which simulate the operation of grid, are often used to estimate the operational value of different generation mixes. CSP with TES has historically had limited analysis in commercial production simulations. This document describes the implementation of CSP with TES in a commercial production cost model. It also describes the simulation of grid operations with CSP in a test system consisting of two balancing areas located primarily in Colorado.

  18. Demonstration Testing of a Thermal Desorption Unit to Receive and Treat Waste with Unlimited Concentration of PCBs - 13437

    SciTech Connect (OSTI)

    Orton, Timothy L.; Palmer, Carl R.

    2013-07-01

    For the last nine years, EnergySolutions and TD*X Associates LP have teamed up to provide the most comprehensive organic removal treatment process in the radioactive waste industry. The high performance thermal desorption unit (HP-TDU) located at the EnergySolutions Clive facility in Utah has successfully processed over 1,850 tons of organically contaminated radioactive mixed waste. Products from the HP-TDU system include a radioactively contaminated dry solid material that can be disposed in the on-site landfill and an organic condensate with high thermal energy content that is generally below background radiation and capable of free-release to a non-radioactive incinerator. Over the years, Permits and approvals have been obtained through the state of Utah, United States Environmental Protection Agency (USEPA) Region 8, and USEPA headquarters that enable the treatment of several waste categories including volatile and semi-volatile organic compounds, combustion-coded (CMBST) compounds, volatile metals, and polychlorinated biphenyls (PCBs). The unit has recently successfully completed Demonstration Testing for PCB concentrations up to 660,000 ppm (parts per million). Solid processed material from this Demonstration Testing was less than two ppm PCBs in three separate treatment runs; reprocessing or additional treatment was not needed to meet this limit. Through post-demonstration permitting, the system is unlimited in scope as approval has been given to receive and solidify up to pure PCBs down to this processing limit concentration to complete treatment of mixed waste. (authors)

  19. An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) (Presentation), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario (Report Summary) Paul Denholm, Yih-Huei Wan, Marissa Hummon, Mark Mehos March 2013 NREL/PR-6A20-58470 2 Motivation * Implement concentrating solar power (CSP) with thermal energy storage (TES) in a commercial production cost model o Develop approaches that can be used by utilities and system planners to incorporate CSP in standard planning tools * Evaluate the optimal dispatch of CSP with

  20. Active cooling-based surface confinement system for thermal soil treatment

    DOE Patents [OSTI]

    Aines, R.D.; Newmark, R.L.

    1997-10-28

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders. 1 fig.

  1. Active cooling-based surface confinement system for thermal soil treatment

    DOE Patents [OSTI]

    Aines, Roger D.; Newmark, Robin L.

    1997-01-01

    A thermal barrier is disclosed for surface confinement with active cooling to control subsurface pressures during thermal remediation of shallow (5-20 feet) underground contaminants. If steam injection is used for underground heating, the actively cooled thermal barrier allows the steam to be injected into soil at pressures much higher (20-60 psi) than the confining strength of the soil, while preventing steam breakthrough. The rising steam is condensed to liquid water at the thermal barrier-ground surface interface. The rapid temperature drop forced by the thermal barrier drops the subsurface pressure to below atmospheric pressure. The steam and contaminant vapors are contained by the thermal blanket, which can be made of a variety of materials such as steel plates, concrete slabs, membranes, fabric bags, or rubber bladders.

  2. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    SciTech Connect (OSTI)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the cost and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.

  3. Development of a concentrating solar power system using fluidized-bed technology for thermal energy conversion and solid particles for thermal energy storage

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ma, Z.; Mehos, M.; Glatzmaier, G.; Sakadjian, B. B.

    2015-05-01

    Concentrating solar power (CSP) is an effective way to convert solar energy into electricity with an economic energy-storage capability for grid-scale, dispatchable renewable power generation. However, CSP plants need to reduce costs to be competitive with other power generation methods. Two ways to reduce CSP cost are to increase solar-to-electric efficiency by supporting a high-efficiency power conversion system, and to use low-cost materials in the system. The current nitrate-based molten-salt systems have limited potential for cost reduction and improved power-conversion efficiency with high operating temperatures. Even with significant improvements in operating performance, these systems face challenges in satisfying the costmore » and performance targets. This paper introduces a novel CSP system with high-temperature capability that can be integrated into a high-efficiency CSP plant and that meets the low-cost, high-performance CSP targets. Unlike a conventional salt-based CSP plant, this design uses gas/solid, two-phase flow as the heat-transfer fluid (HTF); separated solid particles as storage media; and stable, inexpensive materials for the high-temperature receiver and energy storage containment. We highlight the economic and performance benefits of this innovative CSP system design, which has thermal energy storage capability for base-load power generation.« less

  4. Using Encapsulated Phase Change Material in Thermal Energy Storage for Baseload Concentrating Solar Power (EPCM-TES)

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-12-15

    Terrafore successfully demonstrated and optimized the manufacturing of capsules containing phase-changing inorganic salts. The phase change was used to store thermal energy collected from a concentrating solar-power plant as latent heat. This latent heat, in addition to sensible heat increased the energy density (energy stored per unit weight of salt) by over 50%, thus requiring 40% less salt and over 60% less capsule container. Therefore, the cost to store high-temperature thermal energy collected in a concentrating solar power plant will be reduced by almost 40% or more, as compared to conventional two-tank, sensible-only storage systems. The cost for thermal energy storage (TES) system is expected to achieve the Sun Shot goal of $15 per kWh(t). Costs associated with poor heat-transfer in phase change materials (PCM) were also eliminated. Although thermal energy storage that relies on the latent heat of fusion of PCM improves energy density by as much as 50%, upon energy discharge the salt freezes and builds on the heat transfer surfaces. Since these salts have low thermal conductivity, large heat-transfer areas, or larger conventional heat-exchangers are needed, which increases costs. By encapsulating PCM in small capsules we have increased the heat transfer area per unit volume of salt and brought the heat transfer fluid in direct contact with the capsules. These two improvements have increased the heat transfer coefficient and boosted heat transfer. The program was successful in overcoming the phenomenon of melt expansion in the capsules, which requires the creation of open volume in the capsules or shell to allow for expansion of the molten salt on melting and is heated above its melting point to 550°C. Under contract with the Department of Energy, Terrafore Inc. and Southwest Research Institute, developed innovative method(s) to economically create the open volume or void in the capsule. One method consists of using a sacrificial polymer coating as the middle layer between the salt prill and the shell material. The selected polymer decomposes at temperatures below the melting point of the salt and forms gases which escape through the pores in the capsule shell thus leaving a void in the capsule. We have demonstrated the process with a commonly used inorganic nitrate salt in a low-cost shell material that can withstand over 10,000 high-temperature thermal cycles, or a thirty-year or greater life in a solar plant. The shell used to encapsulate the salt was demonstrated to be compatible with molten salt heat transfer fluid typically used in CSP plants to temperatures up to 600 °C. The above findings have led to the concept of a cascaded arrangement. Salts with different melting points can be encapsulated using the same recipe and contained in a packed bed by cascading the salt melting at higher melting point at the top over the salt melting at lower melting point towards the bottom of the tank. This cascaded energy storage is required to effectively transfer the sensible heat collected in heat transfer fluids between the operating temperatures and utilize the latent heat of fusion in the salts inside the capsule. Mathematical models indicate that over 90% of the salts will undergo phase change by using three salts in equal proportion. The salts are selected such that the salt at the top of the tank melts at about 15°C below the high operating-temperature, and the salt at the bottom of the tank melts 15°C above the low operating-temperature. The salt in the middle of tank melts in-between the operating temperature of the heat transfer fluid. A cascaded arrangement leads to the capture of 90% of the latent-heat of fusion of salts and their sensible heats. Thus the energy density is increased by over 50% from a sensible-only, two-tank thermal energy storage. Furthermore, the Terrafore cascaded storage method requires only one tank as opposed to the two-tanks used in sensible heat storage. Since heat is transferred from the heat transfer fluid by direct contact with capsules, external heat-exchangers are not required for charging storage. Thus, the cost of the thermal storage system is reduced due to smaller containers and less salt. The optimum salt proportions, their melting temperature and the number of salts in the cascade are determined by raw materials costs and the mathematical model. We estimate the processing cost of the encapsulation to be low, where the major cost of the capsule will be the cost of the phase-change salt(s). Our economic analyses show that the cost of EPCM-TES is about $17.98 per kWh(t), which is about 40% lower than the $28.36 per kWh(t) for a two-tank sensible heat TES for a large scale CSP-TES design. Finally, additional improvements in the heat-transfer fluids, currently in development elsewhere will further improve the energy density to achieve the SunShot goal of $15 per kWh(t).

  5. Scattering Solar Thermal Concentrators

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Penn State project, funded by SunShot, for the second quarter of fiscal year 2013.

  6. The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

    SciTech Connect (OSTI)

    Menicucci, D.F.

    1994-03-01

    The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

  7. Thermal neutron steady-state spectra in light water reactor fuel assemblies poisoned with various non-1/v absorbers of different concentrations

    SciTech Connect (OSTI)

    Swaminathan, K.; Chandra, S.; Jha, R.C.; Tewari, S.P. )

    1991-07-01

    This paper reports on the thermal neutron scattering kernel that explicitly incorporates the presence of chemical binding energy and the collective oscillations in the dynamics of water, the steady-state thermal neutron spectra in light water reactor fuel assemblies poisoned with non-1/v absorbers, such as cadmium, samarium, erbium, and gadolinium, in various concentrations have been computed at 298 K. The calculated spectra are in reasonable agreement with the corresponding experimental spectra for realistic source terms.

  8. Effect of Fe doping concentration on photocatalytic activity of ZnO nanosheets under natural sunlight

    SciTech Connect (OSTI)

    Khokhra, Richa; Kumar, Rajesh

    2015-05-15

    A facile room temperature, aqueous solution-based chemical method has been adopted for large-scale synthesis of Fe doped ZnO nanosheets. The XRD and SEM results reveal the as-synthesized products well crystalline and accumulated by large amount of interweave nanosheets, respectively. Energy dispersive spectroscopy data confirmed Fe doping of the ZnO nanosheets with a varying Fe concentration. The photoluminescence spectrum reveals a continuous suppression of defect related emissions intensity by increasing the concentration of the Fe ion. A photocatalytic activity using these samples under sunlight irradiation in the mineralization of methylene blue dye was investigated. The photocatalytic activity of Fe doped ZnO nanosheets depends upon the presence of surface oxygen vacancies.

  9. Thermally activated dislocation creep model for primary water stress corrosion cracking of NiCrFe alloys

    SciTech Connect (OSTI)

    Hall, M.M., Jr

    1995-12-31

    There is a growing awareness that awareness that environmentally assisted creep plays an important role in integranular stress corrosion cracking (IGSCC) of NiCrFe alloys in the primary coolant water environment of a pressurized water reactor (PWR). The expected creep mechanism is the thermally activated glide of dislocations. This mode of deformation is favored by the relatively low temperature of PWR operation combined with the large residual stresses that are most often identified as responsible for the SCC failure of plant components. Stress corrosion crack growth rate (CGR) equations that properly reflect the influence of this mechanism of crack tip deformation are required for accurate component life predictions. A phenomenological IGSCC-CGR model, which is based on an apriori assumption that the IGSCC-CGR is controlled by a low temperature dislocation creep mechanism, is developed in this report. Obstacles to dislocation creep include solute atoms such as carbon, which increase the lattice friction force, and forest dislocations, which can be introduced by cold prestrain. Dislocation creep also may be environmentally assisted due to hydrogen absorption at the crack tip. The IGSCC-CGR model developed here is based on an assumption that crack growth occurs by repeated fracture events occurring within an advancing crack-tip creep-fracture zone. Thermal activation parameters for stress corrosion cracking are obtained by fitting the CGR model to IGSCC-CGR data obtained on NiCrFe alloys, Alloy X-750 and Alloy 600. These IGSCC-CGR activation parameters are compared to activation parameters obtained from creep and stress relaxation tests. Recently reported CGR data, which exhibit an activation energy that depends on yield stress and the applied stress intensity factor, are used to benchmark the model. Finally, the effects of matrix carbon concentration, grain boundary carbides and absorbed hydrogen concentration are discussed within context of the model.

  10. Single-molecule imaging at high fluorophore concentrations by local activation of dye

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Geertsema, Hylkje J.; Mangel, Walter F.; Schulte, Aartje C.; Spenkelink, Lisanne M.; McGrath, William J.; Morrone, Seamus R.; Sohn, Jungsan; Robinson, Andrew; van Oijen, Antoine M.

    2015-02-17

    Single-molecule fluorescence microscopy is a powerful approach to observe biomolecular interactions with high spatial and temporal resolution. Detecting fluorescent signals from individual, labeled proteins above high levels of background fluorescence remains challenging, however. For this reason, the concentrations of labeled proteins in in vitro assays are often kept low compared to their in vivo concentrations. Here, we present a new fluorescence imaging technique by which single fluorescent molecules can be observed in real time at high, physiologically relevant concentrations. The technique requires a protein and its macromolecular substrate to be labeled each with a different fluorophore. Then, making use ofmore » short-distance energy-transfer mechanisms, the fluorescence from only those proteins bound to their substrate are selectively activated. This approach is demonstrated by labeling a DNA substrate with an intercalating stain, exciting the stain, and using energy transfer from the stain to activate the fluorescence of only those labeled DNA-binding proteins bound to the DNA. Such an experimental design allowed us to observe the sequence-independent interaction of Cy5-labeled interferon-inducible protein 16 (IFI16) with DNA and the sliding via one-dimensional diffusion of Cy5-labeled adenovirus protease (pVIc-AVP) on DNA in the presence of a background of hundreds of nM Cy5 fluorophore.« less

  11. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA weremore » more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.« less

  12. Concentration Effects of Polymer Electrolyte Membrane Degradation Products on Oxygen Reduction Activity for Three Platinum Catalysts

    SciTech Connect (OSTI)

    Christ, J. M.; Neyerlin, K. C.; Richards, R.; Dinh, H. N.

    2014-10-04

    A rotating disk electrode (RDE) along with cyclic voltammetry (CV) and linear sweep voltammetry (LSV), were used to investigate the impact of two model compounds representing degradation products of Nafion and 3M perfluorinated sulfonic acid membranes on the electrochemical surface area (ECA) and oxygen reduction reaction (ORR) activity of polycrystalline Pt, nano-structured thin film (NSTF) Pt (3M), and Pt/Vulcan carbon (Pt/Vu) (TKK) electrodes. ORR kinetic currents (measured at 0.9 V and transport corrected) were found to decrease linearly with the log of concentration for both model compounds on all Pt surfaces studied. Ultimately, model compound adsorption effects on ECA were more abstruse due to competitive organic anion adsorption on Pt surfaces superimposing with the hydrogen underpotential deposition (HUPD) region.

  13. Time-resolved observation of thermally activated rupture of a capillary-condensed water nanobridge

    SciTech Connect (OSTI)

    Bak, Wan; Sung, Baekman; Kim, Jongwoo; Kwon, Soyoung; Kim, Bongsu; Jhe, Wonho

    2015-01-05

    The capillary-condensed liquid bridge is one of the most ubiquitous forms of liquid in nature and contributes significantly to adhesion and friction of biological molecules as well as microscopic objects. Despite its important role in nanoscience and technology, the rupture process of the bridge is not well understood and needs more experimental works. Here, we report real-time observation of rupture of a capillary-condensed water nanobridge in ambient condition. During slow and stepwise stretch of the nanobridge, we measured the activation time for rupture, or the latency time required for the bridge breakup. By statistical analysis of the time-resolved distribution of activation time, we show that rupture is a thermally activated stochastic process and follows the Poisson statistics. In particular, from the Arrhenius law that the rupture rate satisfies, we estimate the position-dependent activation energies for the capillary-bridge rupture.

  14. Predictive Optimal Control of Active and Passive Building Thermal Storage Inventory

    SciTech Connect (OSTI)

    Gregor P. Henze; Moncef Krarti

    2005-09-30

    Cooling of commercial buildings contributes significantly to the peak demand placed on an electrical utility grid. Time-of-use electricity rates encourage shifting of electrical loads to off-peak periods at night and weekends. Buildings can respond to these pricing signals by shifting cooling-related thermal loads either by precooling the building's massive structure or the use of active thermal energy storage systems such as ice storage. While these two thermal batteries have been engaged separately in the past, this project investigated the merits of harnessing both storage media concurrently in the context of predictive optimal control. To pursue the analysis, modeling, and simulation research of Phase 1, two separate simulation environments were developed. Based on the new dynamic building simulation program EnergyPlus, a utility rate module, two thermal energy storage models were added. Also, a sequential optimization approach to the cost minimization problem using direct search, gradient-based, and dynamic programming methods was incorporated. The objective function was the total utility bill including the cost of reheat and a time-of-use electricity rate either with or without demand charges. An alternative simulation environment based on TRNSYS and Matlab was developed to allow for comparison and cross-validation with EnergyPlus. The initial evaluation of the theoretical potential of the combined optimal control assumed perfect weather prediction and match between the building model and the actual building counterpart. The analysis showed that the combined utilization leads to cost savings that is significantly greater than either storage but less than the sum of the individual savings. The findings reveal that the cooling-related on-peak electrical demand of commercial buildings can be considerably reduced. A subsequent analysis of the impact of forecasting uncertainty in the required short-term weather forecasts determined that it takes only very simple short-term prediction models to realize almost all of the theoretical potential of this control strategy. Further work evaluated the impact of modeling accuracy on the model-based closed-loop predictive optimal controller to minimize utility cost. The following guidelines have been derived: For an internal heat gain dominated commercial building, reasonable geometry simplifications are acceptable without a loss of cost savings potential. In fact, zoning simplification may improve optimizer performance and save computation time. The mass of the internal structure did not show a strong effect on the optimization. Building construction characteristics were found to impact building passive thermal storage capacity. It is thus advisable to make sure the construction material is well modeled. Zone temperature setpoint profiles and TES performance are strongly affected by mismatches in internal heat gains, especially when they are underestimated. Since they are a key factor in determining the building cooling load, efforts should be made to keep the internal gain mismatch as small as possible. Efficiencies of the building energy systems affect both zone temperature setpoints and active TES operation because of the coupling of the base chiller for building precooling and the icemaking TES chiller. Relative efficiencies of the base and TES chillers will determine the balance of operation of the two chillers. The impact of mismatch in this category may be significant. Next, a parametric analysis was conducted to assess the effects of building mass, utility rate, building location and season, thermal comfort, central plant capacities, and an economizer on the cost saving performance of optimal control for active and passive building thermal storage inventory. The key findings are: (1) Heavy-mass buildings, strong-incentive time-of-use electrical utility rates, and large on-peak cooling loads will likely lead to attractive savings resulting from optimal combined thermal storage control. (2) By using economizer to take advantage of the cool fresh air during the night, the bu

  15. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect (OSTI)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  16. Reaction kinetics during the thermal activation of the silicon surface passivation with atomic layer deposited Al{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Richter, Armin Benick, Jan; Hermle, Martin; Glunz, Stefan W.

    2014-02-10

    The excellent surface passivation of crystalline silicon provided by Al{sub 2}O{sub 3} requires always an activation by a thermal post-deposition treatment. In this work, we present an indirect study of the reaction kinetics during such thermal activation treatments for Al{sub 2}O{sub 3} synthesized by atomic layer deposition. The study was performed for Al{sub 2}O{sub 3} deposited at varying temperatures, which results in different micro-structures of the films and, in particular, different hydrogen concentrations. The effective carrier lifetime was measured sequentially as a function of the annealing time and temperature. From these data, the reaction rate R{sub act} and the activation energy E{sub A} were extracted. The results revealed a rather constant E{sub A} in the range of 1.4 to 1.5?eV, independent of the deposition temperature. The reaction rate, however, was found to increase with decreasing deposition temperature, which correlates with an increasing amount of hydrogen being incorporated in the Al{sub 2}O{sub 3} films. This is a strong indication for an interface hydrogenation that takes place during the thermal activation, which is limited by the amount of hydrogen provided by the Al{sub 2}O{sub 3} layer.

  17. ALD Functionalized Nanoporous Gold: Thermal Stability, Mechanical Properties, and Catalytic Activity

    SciTech Connect (OSTI)

    Biener, M M; Biener, J; Wichmann, A; Wittstock, A; Baumann, T F; Baeumer, M; Hamza, A V

    2011-03-24

    Nanoporous metals have many technologically promising applications but their tendency to coarsen limits their long-term stability and excludes high temperature applications. Here, we demonstrate that atomic layer deposition (ALD) can be used to stabilize and functionalize nanoporous metals. Specifically, we studied the effect of nanometer-thick alumina and titania ALD films on thermal stability, mechanical properties, and catalytic activity of nanoporous gold (np-Au). Our results demonstrate that even only one-nm-thick oxide films can stabilize the nanoscale morphology of np-Au up to 1000 C, while simultaneously making the material stronger and stiffer. The catalytic activity of np-Au can be drastically increased by TiO{sub 2} ALD coatings. Our results open the door to high temperature sensor, actuator, and catalysis applications and functionalized electrodes for energy storage and harvesting applications.

  18. Resonant activation in a colored multiplicative thermal noise driven closed system

    SciTech Connect (OSTI)

    Ray, Somrita; Bag, Bidhan Chandra; Mondal, Debasish

    2014-05-28

    In this paper, we have demonstrated that resonant activation (RA) is possible even in a thermodynamically closed system where the particle experiences a random force and a spatio-temporal frictional coefficient from the thermal bath. For this stochastic process, we have observed a hallmark of RA phenomena in terms of a turnover behavior of the barrier-crossing rate as a function of noise correlation time at a fixed noise variance. Variance can be fixed either by changing temperature or damping strength as a function of noise correlation time. Our another observation is that the barrier crossing rate passes through a maximum with increase in coupling strength of the multiplicative noise. If the damping strength is appreciably large, then the maximum may disappear. Finally, we compare simulation results with the analytical calculation. It shows that there is a good agreement between analytical and numerical results.

  19. A study of the stack relaxation in thermal batteries on activation

    SciTech Connect (OSTI)

    GUIDOTTI,RONALD A.; REINHARDT,FREDERICK W.; THOMAS,EDWARD V.

    2000-04-17

    The stack-relaxation processes occurring in a thermal-battery upon activation and discharge were studied dynamically with a special test fixture that incorporated an internal load cell. The factors which were screened initially included stack diameter and height (number of cells), thickness and binder content of the separator, temperature, and closing pressure. A second series of more-detailed experiments included only those factors that were identified by the screening study as being important (as closing force, number of cells, and separator thickness). The resulting experimental data from this second series of experiments were used to generate a surface-response model based on these three factors. This model accounted for 94% of the variation in the response (final stack-relaxation pressure) over the range of conditions studied.

  20. Temperature dependence of photoluminescence properties in a thermally activated delayed fluorescence emitter

    SciTech Connect (OSTI)

    Niwa, Akitsugu; Kobayashi, Takashi Nagase, Takashi; Naito, Hiroyoshi; Goushi, Kenichi; Adachi, Chihaya

    2014-05-26

    Using steady-state and time-resolved photoluminescence (PL) spectroscopy, we have investigated the temperature dependence of PL properties of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyano-benzene (4CzIPN), which have a small energy gap between its singlet and triplet excited states and thus exhibits efficient thermally activated delayed fluorescence [H. Uoyama et al., Nature 492, 235 (2012)]. Below around 100?K, PL quantum efficiency of 4CzIPN thin films is largely suppressed and strong photoexcitation intensity dependence appears. These features can be explained by using rate equations for the densities of singlet and triplet excited states considering a triplet-triplet annihilation process.

  1. Thermally Activated Cooling: A Regional Approach for EstimatingBuilding Adoption

    SciTech Connect (OSTI)

    Edwards, Jennifer L.; Marnay, Chris

    2005-06-01

    This paper examines the economic potential for thermally-activated cooling (TAC) technologies as a component of distributed energy resource (DER) systems in California. A geographic information system (GIS) is used to assess the regional variation of TAC potential and to visualize the geographic pattern of potential adoption. The economic potential and feasibility of DER systems in general, and especially TAC, is highly dependent on regional factors such as retail electricity rates, building cooling loads, and building heating loads. Each of these factors varies with location, and their geographic overlap at different sites is an important determinant in a market assessment of DER and TAC. This analysis uses system payback period as the metric to show the regional variation of TAC potential in California office buildings. The DER system payback with and without TAC is calculated for different regions in California using localized values of retail electricity rates and the weather-dependent variation in building cooling and heating loads. This GIS-based method has numerous applications in building efficiency studies where geographically dependent variables, such as space cooling and heating energy use, play an important role.

  2. Concentrating Solar Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 Concentrating Solar Power Concentrating solar power (CSP) technologies use mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. A distinguishing feature of CSP is its ability to incorporate simple, efficient, and cost-effective thermal energy storage by virtue of converting sunlight to heat as an intermediate step to generating electricity. In addition to providing dispatchable

  3. Thermal Control & System Integration

    Broader source: Energy.gov [DOE]

    The thermal control and system integration activity focuses on issues such as the integration of motor and power control technologies and the development of advanced thermal control technologies....

  4. Improved Concentrating Solar Power Systems - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Solar Thermal Energy Storage Energy Storage Find More Like This Return to Search Improved Concentrating Solar Power Systems National Renewable Energy Laboratory Contact ...

  5. Concentrating Solar Power Projects by Project Name | Concentrating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In this section, you can select a concentrating solar power (CSP) project from the ... plant configuration data for the solar field, power block, and thermal energy storage. ...

  6. Concentrating Solar Power

    SciTech Connect (OSTI)

    Not Available

    2008-09-01

    Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  7. Sandia Energy - Concentrating Solar Power Technical Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Technical Management Position Home Renewable Energy Energy Facilities News Concentrating Solar Power Solar Job Listing National Solar Thermal Test...

  8. NREL: Concentrating Solar Power Research Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    industry to further the research and development (R&D) of concentrating solar power (CSP) plant and solar thermal technologies. NREL's projects in concentrating solar power focus...

  9. Concentrating Solar Power Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating solar power (CSP) technologies use mirrors to reflect and concentrate sunlight onto receivers that collect solar energy and convert it to heat. This thermal energy ...

  10. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M.

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  11. ENERGY EFFICIENT THERMAL MANAGEMENT FOR NATURAL GAS ENGINE AFTERTREATMENT VIA ACTIVE FLOW CONTROL

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen

    2004-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  12. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2006-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  13. Energy Efficient Thermal Management for Natural Gas Engine Aftertreatment via Active Flow Control

    SciTech Connect (OSTI)

    David K. Irick; Ke Nguyen; Vitacheslav Naoumov; Doug Ferguson

    2005-04-01

    The project is focused on the development of an energy efficient aftertreatment system capable of reducing NOx and methane by 90% from lean-burn natural gas engines by applying active exhaust flow control. Compared to conventional passive flow-through reactors, the proposed scheme cuts supplemental energy by 50%-70%. The system consists of a Lean NOx Trap (LNT) system and an oxidation catalyst. Through alternating flow control, a major amount of engine exhaust flows through a large portion of the LNT system in the absorption mode, while a small amount of exhaust goes through a small portion of the LNT system in the regeneration or desulfurization mode. By periodically reversing the exhaust gas flow through the oxidation catalyst, a higher temperature profile is maintained in the catalyst bed resulting in greater efficiency of the oxidation catalyst at lower exhaust temperatures. The project involves conceptual design, theoretical analysis, computer simulation, prototype fabrication, and empirical studies. This report details the progress during the first twelve months of the project. The primary activities have been to develop the bench flow reactor system, develop the computer simulation and modeling of the reverse-flow oxidation catalyst, install the engine into the test cell, and begin design of the LNT system.

  14. Sandia Energy - Thermal Pulses for Boeing Test Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Pulses for Boeing Test Article Home Renewable Energy Energy Partnership News EC Concentrating Solar Power Solar National Solar Thermal Test Facility Thermal Pulses for...

  15. Concentrated Thermoelectric Power

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D award program. The team, led by MIT, is working to demonstrate concentrating solar thermoelectric generators with >10% solar-to-electrical energy conversion efficiency while limiting optical concentration to less than a factor of 10 and potentially less than 4. When combined with thermal storage, CSTEGs have the potential to provide electricity day and night using no moving parts at both the utility and distributed scale.

  16. PVT -- A photovoltaic/thermal concentrator total energy system: Final phase 1 project report. Building opportunities in the U.S. for photovoltaics (PV:BONUS) Two

    SciTech Connect (OSTI)

    1998-12-31

    United Solar completed its Phase 1 report and its proposal for Phase 2 of the PVBONUS Two program at the end of March 1998. At the same time, it also completed and submitted a proposal to the California Energy Commission PIER program for additional funding to cost-share development and testing of a pre-production model of the PVT-14. It was unsuccessful in both of these proposed efforts. While waiting for the proposal decisions, work continued in April and May to analyze the system design and component decisions described below. This document is a final summation report on the Phase 1 effort of the PVBONUS Two program that describes the key technical issues that United Solar and its subcontractor, Industrial Solar Technology Corporation, worked on in preparation of a Phase 2 award. The decisions described were ones that will guide the design and fabrication of a pre-production prototype of a 1500:1 mirrored concentrator with gallium arsenide cells when United solar resumes its development work. The material below is organized by citing the key components that underwent a design review, what the company considered, what was decided, the name of the expected supplier, if not to be produced in-house, and some information about expected costs. The cost figures given are usually budgetary estimates, not the result of firm quotations or extensive analysis.

  17. Concentrating Solar Power

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  18. Solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2007-09-18

    A solar thermal powered aircraft powered by heat energy from the sun. A heat engine, such as a Stirling engine, is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller. The heat engine has a thermal battery in thermal contact with it so that heat is supplied from the thermal battery. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  19. SiC Schottky Diode Detectors for Measurement of Actinide Concentrations from Alpha Activities in Molten Salt Electrolyte

    SciTech Connect (OSTI)

    Windl, Wolfgang; Blue, Thomas

    2013-01-28

    In this project, we have designed a 4H-SiC Schottky diode detector device in order to monitor actinide concentrations in extreme environments, such as present in pyroprocessing of spent fuel. For the first time, we have demonstrated high temperature operation of such a device up to 500 {degrees}C, in successfully detecting alpha particles. We have used Am-241 as an alpha source for our laboratory experiments. Along with the experiments, we have developed a multi scale model to study the phenomena controlling the device behavior and to be able to predict the device performance. Our multi scale model consists of ab initio modeling to understand defect energetics and their effect on electronic structure and carrier mobility in the material. Further, we have developed the basis for a damage evolution model incorporating the outputs from ab initio model in order to predict respective defect concentrations in the device material. Finally, a fully equipped TCAD-based device model has been developed to study the phenomena controlling the device behavior. Using this model, we have proven our concept that the detector is capable of performing alpha detection in a salt bath with the mixtures of actinides present in a pyroprocessing environment.

  20. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 December 20, 2011 Thermal Energy Storage Included in California Power Purchase Agreements The value of thermal energy storage in concentrating solar power plants has become ...

  1. NREL: Concentrating Solar Power Research - Collector R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal energy storage (TES) research at NREL focuses on reducing the costs of thermal storage and electricity from concentrating solar power (CSP) plants. NREL's TES effort ...

  2. Scattering Solar Thermal Concentrators (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Pennsylvania State University is one of the 2012 SunShot CSP R&D awardee for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

  3. Scattering Solar Thermal Concentrators | Department of Energy

    Office of Environmental Management (EM)

    University of California's Costs Claimed and Related Internal Controls for Operation of Los Alamos National Laboratory DOE/IG-0596 April 2003 Los Alamos Costs and Controls Background ................................................................................ 1 Results of Audit .......................................................................... 1 Recommendations and Comments .......................................... 11 Appendices 1. Objective, Scope, and Methodology

  4. THERMAL AND RADIATIVE ACTIVE GALACTIC NUCLEUS FEEDBACK HAVE A LIMITED IMPACT ON STAR FORMATION IN HIGH-REDSHIFT GALAXIES

    SciTech Connect (OSTI)

    Roos, Orianne; Juneau, Stéphanie; Bournaud, Frédéric; Gabor, Jared M.

    2015-02-10

    The effects of active galactic nuclei (AGNs) on their host galaxies depend on the coupling between the injected energy and the interstellar medium (ISM). Here, we model and quantify the impact of long-range AGN ionizing radiation—in addition to the often considered small-scale energy deposition—on the physical state of the multi-phase ISM of the host galaxy and on its total star formation rate (SFR). We formulate an AGN spectral energy distribution matched with observations, which we use with the radiative transfer (RT) code Cloudy to compute AGN ionization in a simulated high-redshift disk galaxy. We use a high-resolution (∼6 pc) simulation including standard thermal AGN feedback and calculate RT in post-processing. Surprisingly, while these models produce significant AGN-driven outflows, we find that AGN ionizing radiation and heating reduce the SFR by a few percent at most for a quasar luminosity (L {sub bol} = 10{sup 46.5} erg s{sup –1}). Although the circumgalactic gaseous halo can be kept almost entirely ionized by the AGN, most star-forming clouds (n ≳ 10{sup 2} {sup –} {sup 3} cm{sup –3}) and even the reservoirs of cool atomic gas (n ∼ 0.3-10 cm{sup –3})—which are the sites of future star formation (SF; 100-200 Myr), are generally too dense to be significantly affected. Our analysis ignores any absorption from a putative torus, making our results upper limits on the effects of ionizing radiation. Therefore, while the AGN-driven outflows can remove substantial amounts of gas in the long term, the impact of AGN feedback on the SF efficiency in the interstellar gas in high-redshift galaxies is marginal, even when long-range radiative effects are accounted for.

  5. 2011 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. December 20, 2011 Thermal Energy Storage Included in California Power Purchase Agreements The value of thermal energy storage in concentrating solar power plants has become obvious?so much so that BrightSource Energy, Inc. and Southern California Edison have rewritten some power purchase agreements to include thermal energy storage in plans for three solar power tower plants. December 6, 2011 Thermal Energy

  6. Facilities | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facilities The National Renewable Energy Laboratory (NREL) provides industry, government, and university staff who are researching concentrating solar power (CSP) with access to state-of-the-art equipment that can be used to Develop materials in the Thin-Film Deposition Laboratory, as well as thermal storage and heat-transfer materials in the Advanced Thermal Storage Materials Laboratory. Analyze and characterize parabolic-trough receivers in the Receiver Test Laboratory, and test concentrators

  7. NREL: Concentrating Solar Power Research - Projects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in its CSP deployment efforts in the following areas: Collectors Receivers Power block Thermal energy storage Analysis. NREL received funding from DOE for concentrating solar...

  8. Concentrating Solar Power Services CSP Services | Open Energy...

    Open Energy Info (EERE)

    providing consulting, due diligence and component testing for Solar Thermal Electricity Generation (STEG). References: Concentrating Solar Power Services (CSP...

  9. Concentrated Solar Thermoelectric Power

    SciTech Connect (OSTI)

    Chen, Gang; Ren, Zhifeng

    2015-07-09

    The goal of this project is to demonstrate in the lab that solar thermoelectric generators (STEGs) can exceed 10% solar-to-electricity efficiency, and STEGs can be integrated with phase-change materials (PCM) for thermal storage, providing operation beyond daylight hours. This project achieved significant progress in many tasks necessary to achieving the overall project goals. An accurate Themoelectric Generator (TEG) model was developed, which included realistic treatment of contact materials, contact resistances and radiative losses. In terms of fabricating physical TEGs, high performance contact materials for skutterudite TE segments were developed, along with brazing and soldering methods to assemble segmented TEGs. Accurate measurement systems for determining device performance (in addition to just TE material performance) were built for this project and used to characterize our TEGs. From the optical components’ side, a spectrally selective cermet surface was developed with high solar absorptance and low thermal emittance, with thermal stability at high temperature. A measurement technique was also developed to determine absorptance and total hemispherical emittance at high temperature, and was used to characterize the fabricated spectrally selective surfaces. In addition, a novel reflective cavity was designed to reduce radiative absorber losses and achieve high receiver efficiency at low concentration ratios. A prototype cavity demonstrated that large reductions in radiative losses were possible through this technique. For the overall concentrating STEG system, a number of devices were fabricated and tested in a custom built test platform to characterize their efficiency performance. Additionally, testing was performed with integration of PCM thermal storage, and the storage time of the lab scale system was evaluated. Our latest testing results showed a STEG efficiency of 9.6%, indicating promising potential for high performance concentrated STEGs.

  10. Performance of a Thermally Stable Polyaromatic Hydrocarbon in...

    Office of Scientific and Technical Information (OSTI)

    Performance of a Thermally Stable Polyaromatic Hydrocarbon in a Simulated Concentrating Solar Power Loop Citation Details In-Document Search Title: Performance of a Thermally...

  11. Project Profile: Reducing the Cost of Thermal Energy Storage...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Project Profile: Reducing the Cost of Thermal Energy Storage for Parabolic Trough Solar Power Plants Project Profile: Reducing the Cost of Thermal ...

  12. Sandia Energy - National Solar Thermal Testing Facility Beam...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Testing Facility Beam Profiling Home Renewable Energy News Concentrating Solar Power Solar National Solar Thermal Testing Facility Beam Profiling Previous...

  13. 2012 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. November 30, 2012 NREL Analysis Calculates Value of Thermal Energy Storage for Concentrating Solar Power A new report by the National Renewable Energy Laboratory provides an analysis of concentrating solar power integrated with thermal energy storage, using simulations created by recognized, commercially available software. The analysis quantifies the incremental operational value of CSP with TES in multiple

  14. Proceedings: Fourth Parabolic Dish Solar Thermal Power Program Review

    SciTech Connect (OSTI)

    Not Available

    1983-02-01

    The results of activities within the parabolic dish technology and applications development program are presented. Stirling, organic Rankine and Brayton module technologies, associated hardware and test results to date, concentrator development and progress, economic analyses, and international dish development activities are covered. Two panel discussions, concerning industry issues affecting solar thermal dish development and dish technology from a utility/user perspective, are also included.

  15. Erosion-corrosion of cooled thermal sprayed coatings impacted by mixtures of quartz and chemically active compounds

    SciTech Connect (OSTI)

    Wang, B.; Luer, K.

    1996-08-01

    A series of erosion-corrosion tests was carried out on AISI 1018 steel and four thermal sprayed coatings using a nozzle type elevated temperature erosion tester. The erodent particles were mechanical mixtures of SiO{sub 2} (quartz) with 1--4% NaCl or 1--4% KCl. The specimens were water-cooled on the backside. Test conditions attempted to simulate erosion-corrosion (E-C) conditions at the tubes in the convection pass of FBC boilers. The effect of Cl-bearing salt/quartz mixtures on the E-C wastage mechanisms of these materials were investigated. It was found that the E-C wastage of 1018 steel and carbide coating specimens increased with increasing amounts of NaCl and KCl doped in the quartz. Among the four coatings tested, a WC-17CoCr coating demonstrated the lowest thickness loss of all of the quartz/salt mixtures while the Cr{sub 3}C{sub 2}-25NiCr coating exhibited the highest E-C wastage. Meanwhile, quartz doped with NaCl or KCl had no effect on the E-C wastage of an HVOF Ni20Cr15Mo metal coating. The accelerating effect of doping alkali chlorides increased with both specimen surface temperature and environmental temperature.

  16. Thermal Sciences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Sciences NETL's Thermal Sciences competency provides the scientific, engineering, and technology development community with innovative and efficient approaches to measure, harness, and convert thermal energy. Research includes sensors, advanced energy concepts, and thermodynamic optimization, specifically: Sensors and Diagnostics Advanced sensor and diagnostic technology to develop and evaluate advanced methods for non-intrusive measurement and measurement in extreme environments.

  17. Thermally activated delayed fluorescence from {sup 3}n?* to {sup 1}n?* up-conversion and its application to organic light-emitting diodes

    SciTech Connect (OSTI)

    Li, Jie; Zhang, Qisheng; Nomura, Hiroko [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Miyazaki, Hiroshi [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Functional Materials Laboratory, Nippon Steel and Sumikin Chemical Co., Ltd, 4680 Nakabaru, Sakinohama, Tobata, Kitakyushu, Fukuoka 8048503 (Japan); Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2014-07-07

    Intense n?* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the n?* transition and the higher energy of the {sup 3}??* state than the {sup 3}n?* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} ? S{sub 1} pathway in the electroluminescent process.

  18. Project Profile: Novel Thermal Energy Storage Systems for Concentratin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Storage Systems for Concentrating Solar Power Project Profile: Novel Thermal Energy Storage Systems for Concentrating Solar Power University of Connecticut logo The ...

  19. Geothermal Reconnaissance From Quantitative Analysis Of Thermal...

    Open Energy Info (EERE)

    Geothermal Exploration Activities Activities (1) Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Areas (1) Raft River Geothermal Area Regions (0)...

  20. NREL Quantifies Significant Value in Concentrating Solar Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The analysis is detailed in a recent publication, Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario, by Paul Denholm, ...

  1. National Laboratory Concentrating Solar Power Research and Development...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Concentrating Solar Power Research and Development National Laboratory ... fields, power plants, receivers, and thermal storage-are necessary to achieve the ...

  2. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 September 16, 2014 NREL Forges Foundation for Advanced Concentrating Solar Power Receivers NREL's Thermal Systems Group is performing research and development on components for ...

  3. NREL: Concentrating Solar Power Research - News Release Archives

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2 November 30, 2012 NREL Analysis Calculates Value of Thermal Energy Storage for Concentrating Solar Power A new report by the National Renewable Energy Laboratory provides an ...

  4. NREL: Concentrating Solar Power Research - 10-Megawatt Supercritical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advancing concentrating solar power (CSP) systems ... CSP plants are typically located in hot, dry climates where water is scarce. ... CSP goal of 50% net thermal-to-electric ...

  5. Concentrating Solar Power Projects by Country | Concentrating Solar Power |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Country In this section, you can select a country from the map or the following list of countries. You can then select a specific concentrating solar power (CSP) project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Javascript must be enabled to view Flash movie Algeria Australia Canada Chile China Egypt France Germany India Israel Italy Kuwait Mexico Morocco

  6. Concentrating Solar Power Projects by Status | Concentrating Solar Power |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NREL Status In this section, you can select concentrating solar power (CSP) projects under one of five categories: operational, under construction, under development, request for offer or currently non-operational. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Operational-projects with working power plants that are producing

  7. Concentrating Solar Power Projects by Technology | Concentrating Solar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Power | NREL Technology In this section, you can select a concentrating solar power (CSP) technology from the list below. You can then select a specific project and review a profile covering project basics, participating organizations, and power plant configuration data for the solar field, power block, and thermal energy storage. Parabolic Trough Systems-line-focus systems that use curved mirrors to focus sunlight on a receiver Linear Fresnel Reflector Systems-line-focus systems that use

  8. Concentrating Solar Power (CSP) Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power (CSP) Overview Mark S. Mehos CSP Program Manager National Renewable Energy Laboratory Golden, CO NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Outline * Technology Overview * U.S. and International Market Overview * DOE Research and Development National Renewable Energy Laboratory Innovation for Our Energy Future CSP, aka Solar Thermal Power Linear

  9. Research | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Research and development (R&D) capabilities in concentrating solar power (CSP) at the National Renewable Energy Laboratory (NREL) span the entire electricity system-from generation to transmission and distribution to the end user. NREL scientists and engineers pursue R&D and provide assistance in the following four areas. Materials Science Optical, thermal, and containment materials are critical to CSP systems, and their performance directly affects system-wide cost and

  10. Upper critical fields and thermally-activated transport of Nd(0.7Fe0.3) FeAs single crystal

    SciTech Connect (OSTI)

    Balakirev, Fedor F; Jaroszynski, J; Hunte, F; Balicas, L; Jo, Youn - Jung; Raicevic, I; Gurevich, A; Larbalestier, D C; Fang, L; Cheng, P; Jia, Y; Wen, H H

    2008-01-01

    We present measurements of the resistivity and the upper critical field H{sub c2} of Nd(O{sub 0.7}F{sub 0.3})FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H{sub c2} is comparable to {approx}100 T of high T{sub c} cuprates. H{sub c2}(T) parallel to the c-axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline samples. Thus this behavior is indeed an intrinsic feature of oxypnictides, rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H{sub c2} shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy decreases as T decreases, from 9.2 at 44K to 5 at 34K. Spin dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent that of diluted magnetic semiconductors. The Ohmic resistivity measured below T{sub c} but above the irreversibility field exhibits a clear Arrhenius thermally activated behavior over 4--5 decades. The activation energy has very different field dependencies for H{parallel}ab and H{perpendicular}ab. We discuss to what extent different pairing scenarios can manifest themselves in the observed behavior of H{sub c2}, using the two-band model of superconductivity. The results indicate the importance of paramagnetic effects on H{sub c2}(T), which may significantly reduce H{sub c2}(0) as compared to H{sub c2}(0) {approx}200--300 T based on extrapolations of H{sub c2}(T) near T{sub c} down to low temperatures.

  11. Solar Thermal Collector Manufacturing Activities

    Gasoline and Diesel Fuel Update (EIA)

    Solar Photovoltaic Cell/Module Shipments Report February 2016 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Improving the Quality and Scope of EIA Data i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or

  12. Concentrating Photovoltaics: Collaborative Opportunities within DOEs CSP and PV Programs; Preprint

    SciTech Connect (OSTI)

    Mehos, M.; Lewandowski, A.; Symko-Davies, M.; Kurtz, S.

    2001-10-01

    Presented at the 2001 NCPV Program Review Meeting: DOEs Concentrating Solar Power program is investigating the viability of concentrating PV converters as an alternative to thermal conversion devices.

  13. 2014 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 News Below are news stories related to Concentrating Solar Power. RSS Learn about RSS. September 16, 2014 NREL Forges Foundation for Advanced Concentrating Solar Power Receivers NREL's Thermal Systems Group is performing research and development on components for high-temperature concentrating solar power (CSP) receivers as part of DOE's SunShot effort. DOE supports R&D of CSP technologies in order to achieve SunShot Initiative cost targets with systems that can supply solar power on

  14. Concentrating Solar Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power ... Sciences Applications National Solar Thermal Test Facility Nuclear Energy ...

  15. Surface Tension Estimates for Droplet Formation in Slurries with Low Concentrations of Hydrophobic Particles, Polymer Flocculants or Surface-Active Contaminants

    SciTech Connect (OSTI)

    Gauglitz, Phillip A.; Mahoney, Lenna A.; Blanchard, Jeremy; Bamberger, Judith A.

    2011-06-10

    In support of the K-Basin project, Pacific Northwest National Laboratory (PNNL) was requested to evaluate the appropriate surface tension value to use in models predicting the formation of droplets from spray leaks of K-Basin slurries. The specific issue was whether it was more appropriate to use the surface tension of pure water in model predictions for all plausible spray leaks or to use a lower value. The surface tension of K-Basin slurries is potentially affected not only by particles but by low concentrations of nonionic polyacrylamide flocculant and perhaps by contaminants with surfactant properties, which could decrease the surface tension below that of water. A lower surface tension value typically results in smaller droplets being formed with a larger fraction of droplets in the respirable size range, so using the higher surface tension value of pure water is not conservative and thus needs a strong technical basis.

  16. Concentrating Solar Power Forum Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2008-05-06

    This presentation's summaries: a convenient truth, comparison of three concentrator technologies, value of high efficiency, and status of industry.

  17. Solar thermal power systems. Annual technical progress report, FY 1979

    SciTech Connect (OSTI)

    Braun, Gerald W.

    1980-06-01

    The Solar Thermal Power Systems Program is the key element in the national effort to establish solar thermal conversion technologies within the major sectors of the national energy market. It provides for the development of concentrating mirror/lens heat collection and conversion technologies for both central and dispersed receiver applications to produce electricity, provide heat at its point of use in industrial processes, provide heat and electricity in combination for industrial, commercial, and residential needs, and ultimately, drive processes for production of liquid and gaseous fuels. This report is the second Annual Technical Progress Report for the Solar Thermal Power Systems Program and is structured according to the organization of the Solar Thermal Power Systems Program on September 30, 1979. Emphasis is on the technical progress of the projects rather than on activities and individual contractor efforts. Each project description indicates its place in the Solar Thermal Power Systems Program, a brief history, the significant achievements and real progress during FY 1979, also future project activities as well as anticipated significant achievements are forecast. (WHK)

  18. Activation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Emergency Response Services Activated At the Waste Isolation Pilot Plant CARLSBAD, N.M., 252014, 11:43 a.m. (MDT) - Emergency response services have been activated at the Waste...

  19. Concentrating Solar Power Projects | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Projects SolarPACES Snapshot SolarPACES, an international program of the International Energy Agency, furthers collaborative development, testing, and marketing of concentrating solar power plants. Activities include testing large-scale systems and developing advanced technologies, components, instrumentation, and analysis techniques. Three ongoing Tasks are Concentrating Solar Electric Power Systems, Solar Chemistry Research, and Solar Technology and Applications. Founded in 1977, SolarPACES

  20. Thermal Gradient Holes | Open Energy Information

    Open Energy Info (EERE)

    Holes Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Gradient Holes Details Activities (67) Areas (48) Regions (4) NEPA(33) Exploration...

  1. Thermal Ion Dispersion | Open Energy Information

    Open Energy Info (EERE)

    Dispersion Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Thermal Ion Dispersion Details Activities (1) Areas (1) Regions (0) NEPA(0)...

  2. NREL: Concentrating Solar Power Research - Southwest Concentrating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of deployment, combined with research and development to reduce technology component costs, could help reduce concentrating solar power electricity costs to 0.07kilowatt-hour. ...

  3. NREL: Concentrating Solar Power Research - Concentrating Solar...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Resource Maps These direct-normal solar radiation maps-filtered by solar resource and land availability-identify the most economically suitable lands ...

  4. Thermal reactor safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning new trends in licensing; seismic considerations and system structural behavior; TMI-2 risk assessment and thermal hydraulics; statistical assessment of potential accidents and verification of computational methods; issues with respect to improved safety; human factors in nuclear power plant operation; diagnostics and activities in support of recovery; LOCA transient analysis; unresolved safety issues and other safety considerations; and fission product transport.

  5. Activities

    Broader source: Energy.gov [DOE]

    Activities and events provide Residential Network members the opportunity to discuss similar needs and challenges, and to collectively identify effective strategies and useful resources.

  6. Concentrating Photovoltaics (Presentation)

    SciTech Connect (OSTI)

    Kurtz, S.

    2009-01-20

    Solar is growing rapidly, and the concentrating photovoltaics industry-both high- and low-concentration cell approaches-may be ready to ramp production in 2009.

  7. ARM - Measurement - Ozone Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement : Ozone Concentration The atmospheric concentration or volume mixing ratio (mole fraction) of Ozone Categories Atmospheric State Instruments The above measurement is...

  8. Concentrating Solar Power (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  9. Solar Energy Technologies Program: Concentrating Solar Power

    SciTech Connect (OSTI)

    2009-10-26

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  10. Project Profile: Concentrated Solar Thermoelectric Power

    Broader source: Energy.gov [DOE]

    The Rohsenow-Kendall Heat Transfer Lab at Massachusetts Institute of Technology(MIT), under the 2012 SunShot Concentrating Solar Power (CSP) R&D FOA, is developing concentrated solar thermoelectric generators (CSTEGs) for CSP systems. This innovative distributed solution contains no moving parts and converts heat directly into electricity. Thermal storage can be integrated into the system, creating a reliable and flexible source of electricity.

  11. Concentrated Solar Thermoelectric Power | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. PDF icon csp_review_meeting_042313_chen.pdf More Documents & Publications High-Temperature Solar Thermoelectric Generators (STEG) Concentrated Thermoelectric Power Progress from DOE EF RC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC )

  12. Determination of Large-Scale Cloud Ice Water Concentration by Combining Surface Radar and Satellite Data in Support of ARM SCM Activities

    SciTech Connect (OSTI)

    Liu, Guosheng

    2013-03-15

    Single-column modeling (SCM) is one of the key elements of Atmospheric Radiation Measurement (ARM) research initiatives for the development and testing of various physical parameterizations to be used in general circulation models (GCMs). The data required for use with an SCM include observed vertical profiles of temperature, water vapor, and condensed water, as well as the large-scale vertical motion and tendencies of temperature, water vapor, and condensed water due to horizontal advection. Surface-based measurements operated at ARM sites and upper-air sounding networks supply most of the required variables for model inputs, but do not provide the horizontal advection term of condensed water. Since surface cloud radar and microwave radiometer observations at ARM sites are single-point measurements, they can provide the amount of condensed water at the location of observation sites, but not a horizontal distribution of condensed water contents. Consequently, observational data for the large-scale advection tendencies of condensed water have not been available to the ARM cloud modeling community based on surface observations alone. This lack of advection data of water condensate could cause large uncertainties in SCM simulations. Additionally, to evaluate GCMs’ cloud physical parameterization, we need to compare GCM results with observed cloud water amounts over a scale that is large enough to be comparable to what a GCM grid represents. To this end, the point-measurements at ARM surface sites are again not adequate. Therefore, cloud water observations over a large area are needed. The main goal of this project is to retrieve ice water contents over an area of 10 x 10 deg. surrounding the ARM sites by combining surface and satellite observations. Built on the progress made during previous ARM research, we have conducted the retrievals of 3-dimensional ice water content by combining surface radar/radiometer and satellite measurements, and have produced 3-D cloud ice water contents in support of cloud modeling activities. The approach of the study is to expand a (surface) point measurement to an (satellite) area measurement. That is, the study takes the advantage of the high quality cloud measurements (particularly cloud radar and microwave radiometer measurements) at the point of the ARM sites. We use the cloud ice water characteristics derived from the point measurement to guide/constrain a satellite retrieval algorithm, then use the satellite algorithm to derive the 3-D cloud ice water distributions within an 10° (latitude) x 10° (longitude) area. During the research period, we have developed, validated and improved our cloud ice water retrievals, and have produced and archived at ARM website as a PI-product of the 3-D cloud ice water contents using combined satellite high-frequency microwave and surface radar observations for SGP March 2000 IOP and TWP-ICE 2006 IOP over 10 deg. x 10 deg. area centered at ARM SGP central facility and Darwin sites. We have also worked on validation of the 3-D ice water product by CloudSat data, synergy with visible/infrared cloud ice water retrievals for better results at low ice water conditions, and created a long-term (several years) of ice water climatology in 10 x 10 deg. area of ARM SGP and TWP sites and then compared it with GCMs.

  13. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOE Patents [OSTI]

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  14. Concentrated Solar Power with Thermal Energy Storage Can Help...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy in, say, molten salt, can use its heat-energy to drive turbines at power plants over much longer ... This is important because electricity produced from natural gas ...

  15. Scattering Solar Thermal Concentrators- FY12 Q4

    Broader source: Energy.gov [DOE]

    This document summarizes the progress of this Penn State project, funded by SunShot, for the fourth quarter of fiscal year 2012.

  16. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating...

    Office of Scientific and Technical Information (OSTI)

    ... Close Cite: Bibtex Format Close 0 pages in this document matching the terms "" Search For Terms: Enter terms in the toolbar above to search the full text of this document for ...

  17. Lih thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, Mitchell; Morris, David G.

    1994-01-01

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures.

  18. Thermal And-Or Near Infrared At Yellowstone Region (Hellman ...

    Open Energy Info (EERE)

    Activity Details Location Yellowstone Caldera Geothermal Region Exploration Technique Thermal And-Or Near Infrared Activity Date Usefulness useful DOE-funding Unknown...

  19. Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mccoy Geothermal Area (DOE GTP) Exploration Activity Details...

  20. Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Springs Ranch Area (Szybinski, 2006) Exploration Activity...

  1. Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Lightning Dock Area (Warpinski, Et Al., 2004) Exploration Activity...

  2. Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Glass Mountain Area (Cumming And Mackie, 2007) Exploration Activity...

  3. Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP)...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Crump's Hot Springs Area (DOE GTP) Exploration Activity Details...

  4. Energy Department Announces $25 Million to Lower Cost of Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSP generates electric power by using mirrors to focus and concentrate the sun's rays on a receiver from which a heat transfer fluid carries the intense thermal energy to a power ...

  5. Advance plant severe accident/thermal hydraulic issues for ACRS

    SciTech Connect (OSTI)

    Kress, T.S.

    1994-09-01

    The ACRS has been reviewing various advance plant designs for certification. The most active reviews have been for the ABWR, AP600, and System 80+. We have completed the reviews for ABWR and System 80+ and are presently concentrating on AP600. The ACRS gave essentially unqualified certification approval for the two completed reviews, yet,,during the process of review a number of issues arose and the plant designs changed somewhat to accommodate some of the ACRS concerns. In this talk, I will describe some of the severe accident and thermal hydraulic related issues we discussed in our reviews.

  6. EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila

    Energy Savers [EERE]

    Bend, AZ | Department of Energy 83: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ EA-1683: Abengoa Solar's Solana Concentrating Solar Power Facility, Gila Bend, AZ May 3, 2010 EA-1683: Final Environmental Assessment Loan Guarantee to Abengoa Solar Inc. for the Solana Thermal Electric Power Project near Gila Bend, Arizona May 6, 2010 EA-1683: Finding of No Significant Impact Abengoa Solar Inc., the Solana Thermal Electric Power Project near Gila Bend, Arizona

  7. Fact Sheet: Concentrating Solar Power | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Fact Sheet: Concentrating Solar Power Concentrating solar power (CSP) is a dispatchable, renewable energy option that uses mirrors to focus and concentrate sunlight onto a receiver, from which a heat transfer fluid carries the intense thermal energy to a power block to generate electricity. CSP systems can store solar energy to be used when the sun is not shining. It will help meet the nation's goal of making solar energy fully cost-competitive with other energy sources

  8. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2006-04-04

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments and the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  9. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-09-29

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  10. Thermally cleavable surfactants

    DOE Patents [OSTI]

    McElhanon, James R.; Simmons, Blake A.; Zifer, Thomas; Jamison, Gregory M.; Loy, Douglas A.; Rahimian, Kamyar; Long, Timothy M.; Wheeler, David R.; Staiger, Chad L.

    2009-11-24

    Two new surfactant molecules are reported which contain thermally labile Diels-Alder adducts connecting the polar and non-polar sections of each molecule. The two surfactants possess identical non-polar dodecyl tail segments but exhibit different polar headgroups. The surfactants become soluble in water when anionic salts are formed through the deprotonation of the surfactant headgroups by the addition of potassium hydroxide. When either surfactant is exposed to temperature above about 60.degree. C., the retro Diels-Alder reaction occurs, yielding hydrophilic and hydrophobic fragments or the aqueous solutions of the surfactants subsequently exhibit loss of all surface-active behavior.

  11. Effects of thermal fluctuations on thermal inflation

    SciTech Connect (OSTI)

    Hiramatsu, Takashi; Miyamoto, Yuhei; Yokoyama, Jun’ichi

    2015-03-12

    The mechanism of thermal inflation, a relatively short period of accelerated expansion after primordial inflation, is a desirable ingredient for a certain class of particle physics models if they are not to be in contention with the cosmology of the early Universe. Though thermal inflation is most simply described in terms of a thermal effective potential, a thermal environment also gives rise to thermal fluctuations that must be taken into account. We numerically study the effects of these thermal fluctuations using lattice simulations. We conclude that though they do not ruin the thermal inflation scenario, the phase transition at the end of thermal inflation proceeds through phase mixing and is therefore not accompanied by the formations of bubbles nor appreciable amplitude of gravitational waves.

  12. High Temperature Thermal Array for Next Generation Solar Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Temperature Thermal Array for Next Generation Solar Thermal Power Production High Temperature Thermal Array for Next Generation Solar Thermal Power Production This ...

  13. DRUG TESING PANEL & CUTOFF CONCENTRATIONS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DRUG TESTING PANEL & CUTOFF CONCENTRATIONS Initial Test Analyte Initial Test Cutoff Concentration Confirmatory Test Analyte Confirmatory Test Cutoff Concentration Marijuana ...

  14. Solar thermal power system

    DOE Patents [OSTI]

    Bennett, Charles L.

    2010-06-15

    A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

  15. Low surfactant concentration enhanced waterflooding

    SciTech Connect (OSTI)

    Wellington, S.L.; Richardson, E.A.

    1995-12-31

    A new gradient scaled flooding test procedure indicated that oil is mobilized by the toe of the surfactant dispersion curve where the concentration is low, 1 to 10 ppm. Underoptimum, highly interfacially active blends of anionic and cationic surfactants were synthesized and formulated to take advantage of the displacement mechanism. Essentially all the initial or residual crude oil was removed from shaly sand packs using approximately 0.4 percent surfactant with less than 0.1 pore volume lag.

  16. The Timber Mountain magmato-thermal event: An intense widespread culmination of magmatic and hydrothermal activity at the southwestern Nevada volcanic field

    SciTech Connect (OSTI)

    Jackson, M.R. Jr.

    1988-05-01

    Eruption of the Rainier Mesa and Ammonia Tanks Members Timber Mountain Tuff at about 11.5 and 11.3 Ma, respectively, resulted in formation of the timber Mountain (TM) caldera; new K-Ar ages show that volcanism within and around the TM caldera continued for about 1 m.y. after collapse. Some TM age magmatic activity took place west and southeast of the TM caldera in the Beatty -- Bullfrog Hills and Shoshone Mountain areas, suggesting that volcanic activity at the TM caldera was an intense expression of an areally extensive magmatic system active from about 11.5 to 10Ma. Epithermal Au-Ag, Hg and fluorite mineralization and hydrothermal alteration are found in both within and surrounding the Timber Mountain -- Oasis Valley caldera complex. New K-Ar ages date this hydrothermal activity between about 13 and 10 Ma, largely between about 11.5 and 10 Ma, suggesting a genetic relation of hydrothermal activity to the TM magmatic system.

  17. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2013-09-17

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.

  18. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Roberts, K. A.; Edwards, T. B.

    2014-02-28

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leachability indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.

  19. Cast Stone Formulation At Higher Sodium Concentrations

    SciTech Connect (OSTI)

    Fox, K. M.; Edwards, T. A.; Roberts, K. B.

    2013-10-02

    A low temperature waste form known as Cast Stone is being considered to provide supplemental Low Activity Waste (LAW) immobilization capacity for the Hanford site. Formulation of Cast Stone at high sodium concentrations is of interest since a significant reduction in the necessary volume of Cast Stone and subsequent disposal costs could be achieved if an acceptable waste form can be produced with a high sodium molarity salt solution combined with a high water to premix (or dry blend) ratio. The objectives of this study were to evaluate the factors involved with increasing the sodium concentration in Cast Stone, including production and performance properties and the retention and release of specific components of interest. Three factors were identified for the experimental matrix: the concentration of sodium in the simulated salt solution, the water to premix ratio, and the blast furnace slag portion of the premix. The salt solution simulants used in this study were formulated to represent the overall average waste composition. The cement, blast furnace slag, and fly ash were sourced from a supplier in the Hanford area in order to be representative. The test mixes were prepared in the laboratory and fresh properties were measured. Fresh density increased with increasing sodium molarity and with decreasing water to premix ratio, as expected given the individual densities of these components. Rheology measurements showed that all of the test mixes produced very fluid slurries. The fresh density and rheology data are of potential value in designing a future Cast Stone production facility. Standing water and density gradient testing showed that settling is not of particular concern for the high sodium compositions studied. Heat of hydration measurements may provide some insight into the reactions that occur within the test mixes, which may in turn be related to the properties and performance of the waste form. These measurements showed that increased sodium concentration in the salt solution reduced the time to peak heat flow, and reducing the amount of slag in the premix increased the time to peak heat flow. These observations may help to describe some of the cured properties of the samples, in particular the differences in compressive strength observed after 28 and 90 days of curing. Samples were cured for at least 28 days at ambient temperature in the laboratory prior to cured properties analyses. The low activity waste form for disposal at the Hanford Site is required to have a compressive strength of at least 500 psi. After 28 days of curing, several of the test mixes had mean compressive strengths that were below the 500 psi requirement. Higher sodium concentrations and higher water to premix ratios led to reduced compressive strength. Higher fly ash concentrations decreased the compressive strength after 28 days of curing. This may be explained in that the cementitious phases matured more quickly in the mixes with higher concentrations of slag, as evidenced by the data for the time to peak heat generation. All of the test mixes exhibited higher mean compressive strengths after 90 days of curing, with only one composition having a mean compressive strength of less than 500 psi. Leach indices were determined for the test mixes for contaminants of interest. The leaching performance of the mixes evaluated in this study was not particularly sensitive to the factors used in the experimental design. This may be beneficial in demonstrating that the performance of the waste form is robust with respect to changes in the mix composition. The results of this study demonstrate the potential to achieve significantly higher waste loadings in Cast Stone and other low temperature, cementitious waste forms. Additional work is needed to elucidate the hydration mechanisms occurring in Cast Stone formulated with highly concentrated salt solutions since these reactions are responsible for determining the performance of the cured waste form. The thermal analyses completed in this study provide some preliminary insight, although the limited range of the factors in the test matrix hindered the identification of individual component effects. Future work should involve broader factor ranges to identify the roles played by each of the components in the mix via thermal analyses, analytical microscopy, and characterization of phase formation.

  20. Fifth parabolic dish solar thermal power program annual review: proceedings

    SciTech Connect (OSTI)

    1984-03-01

    The primary objective of the Review was to present the results of activities within the Parabolic Dish Technology and Module/Systems Development element of the Department of Energy's Solar Thermal Energy Systems Program. The Review consisted of nine technical sessions covering overall Project and Program aspects, Stirling and Brayton module development, concentrator and engine/receiver development, and associated hardware and test results to date; distributed systems operating experience; international dish development activities; and non-DOE-sponsored domestic dish activities. A panel discussion concerning business views of solar electric generation was held. These Proceedings contain the texts of presentations made at the Review, as submitted by their authors at the beginning of the Review; therefore, they may vary slightly from the actual presentations in the technical sessions.

  1. Materials Science | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Science National Renewable Energy Laboratory (NREL) researchers develop and support others in developing materials for use in concentrating solar power (CSP). These materials include higher-reflectivity mirrors, better thermal-absorbing receivers, and more corrosion-resistant materials. Researchers also test the durability of these materials. NREL researchers are working to under-stand the fundamental corrosion mechanisms of materials when exposed to high-temperature fluids. Learn more

  2. Thermal Decomposition of IMX-104: Ingredient Interactions Govern Thermal Insensitivity

    SciTech Connect (OSTI)

    Maharrey, Sean; Wiese-Smith, Deneille; Highley, Aaron M.; Steill, Jeffrey D.; Behrens, Richard; Kay, Jeffrey J.

    2015-04-01

    This report summarizes initial studies into the chemical basis of the thermal insensitivity of INMX-104. The work follows upon similar efforts investigating this behavior for another DNAN-based insensitive explosive, IMX-101. The experiments described demonstrate a clear similarity between the ingredient interactions that were shown to lead to the thermal insensitivity observed in IMX-101 and those that are active in IMX-104 at elevated temperatures. Specifically, the onset of decomposition of RDX is shifted to a lower temperature based on the interaction of the RDX with liquid DNAN. This early onset of decomposition dissipates some stored energy that is then unavailable for a delayed, more violent release.

  3. Concentrating photovoltaic solar panel

    DOE Patents [OSTI]

    Cashion, Steven A; Bowser, Michael R; Farrelly, Mark B; Hines, Braden E; Holmes, Howard C; Johnson, Jr., Richard L; Russell, Richard J; Turk, Michael F

    2014-04-15

    The present invention relates to photovoltaic power systems, photovoltaic concentrator modules, and related methods. In particular, the present invention features concentrator modules having interior points of attachment for an articulating mechanism and/or an articulating mechanism that has a unique arrangement of chassis members so as to isolate bending, etc. from being transferred among the chassis members. The present invention also features adjustable solar panel mounting features and/or mounting features with two or more degrees of freedom. The present invention also features a mechanical fastener for secondary optics in a concentrator module.

  4. NREL: Concentrating Solar Power Research - Partnerships

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Albuquerque, New Mexico, through SunLab-a partnership developed by the U.S. Department of Energy to administer its concentrating solar power R&D and analysis activities. ...

  5. Water Sample Concentrator

    ScienceCinema (OSTI)

    Idaho National Laboratory

    2010-01-08

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  6. ARM - Measurement - Methane concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Methane concentration The amount of methane, a greenhouse gas, per unit of volume. Categories...

  7. Joined concentric tubes

    DOE Patents [OSTI]

    DeJonghe, Lutgard; Jacobson, Craig; Tucker, Michael; Visco, Steven

    2013-01-01

    Tubular objects having two or more concentric layers that have different properties are joined to one another during their manufacture primarily by compressive and friction forces generated by shrinkage during sintering and possibly mechanical interlocking. It is not necessary for the concentric tubes to display adhesive-, chemical- or sinter-bonding to each other in order to achieve a strong bond. This facilitates joining of dissimilar materials, such as ceramics and metals.

  8. Concentrating Solar Resource of the Southwest United States

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Concentrating Solar Power The SunShot Initiative supports research and development of concentrating solar power (CSP) technologies that reduce the cost of solar energy. CSP helps to achieve the SunShot Initiative cost targets with systems that can supply solar power on demand, even when there is no sunlight, through the use of thermal storage. Since SunShot's inception, the levelized cost of electricity for CSP has decreased about 36 percent, from $0.21 cents per

  9. Nitrogen concentration and isotope dataset for environmental samples from

    Office of Scientific and Technical Information (OSTI)

    2012 and 2013, Barrow, Alaska (Dataset) | Data Explorer Data Explorer Search Results Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska Title: Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska Dataset includes nitrate concentrations for polygonal active layer samples, snowmelt; ammonium concentrations for active layer samples; nitrate isotopes for active layer samples, snowmelt,

  10. HEATS: Thermal Energy Storage

    SciTech Connect (OSTI)

    2012-01-01

    HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

  11. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Gupta, Vipin P.; Okandan, Murat; Watts, Michael R.

    2016-03-15

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  12. Photovoltaic solar concentrator

    DOE Patents [OSTI]

    Nielson, Gregory N.; Okandan, Murat; Resnick, Paul J.; Cruz-Campa, Jose Luis

    2012-12-11

    A photovoltaic solar concentrator is disclosed with one or more transverse-junction solar cells (also termed point contact solar cells) and a lens located above each solar cell to concentrate sunlight onto the solar cell to generate electricity. Piezoelectric actuators tilt or translate each lens to track the sun using a feedback-control circuit which senses the electricity generated by one or more of the solar cells. The piezoelectric actuators can be coupled through a displacement-multiplier linkage to provide an increased range of movement of each lens. Each lens in the solar concentrator can be supported on a frame (also termed a tilt plate) having three legs, with the movement of the legs being controlled by the piezoelectric actuators.

  13. Airborne agent concentration analysis

    DOE Patents [OSTI]

    Gelbard, Fred

    2004-02-03

    A method and system for inferring airborne contaminant concentrations in rooms without contaminant sensors, based on data collected by contaminant sensors in other rooms of a building, using known airflow interconnectivity data. The method solves a least squares problem that minimizes the difference between measured and predicted contaminant sensor concentrations with respect to an unknown contaminant release time. Solutions are constrained to providing non-negative initial contaminant concentrations in all rooms. The method can be used to identify a near-optimal distribution of sensors within the building, when then number of available sensors is less than the total number of rooms. This is achieved by having a system-sensor matrix that is non-singular, and by selecting that distribution which yields the lowest condition number of all the distributions considered. The method can predict one or more contaminant initial release points from the collected data.

  14. Thermal Ion Dispersion At Lightning Dock Area (Cunniff & Bowers...

    Open Energy Info (EERE)

    Dispersion At Lightning Dock Area (Cunniff & Bowers, 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Ion Dispersion At Lightning...

  15. Thermal Gradient Holes At Newberry Caldera Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Newberry Caldera Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Newberry Caldera Area (DOE GTP)...

  16. Thermal Gradient Holes At Flint Geothermal Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Flint Geothermal Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Flint Geothermal Area (DOE GTP)...

  17. Thermal Gradient Holes At Kilauea East Rift Geothermal Area ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration...

  18. Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mt Princeton Hot Springs Geothermal Area (Held & Henderson, 2012)...

  19. Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

    Open Energy Info (EERE)

    Pilgrim Hot Springs Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Pilgrim Hot Springs Area (DOE GTP)...

  20. Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds...

    Open Energy Info (EERE)

    Edmunds & W., 1977) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At North Brawley Geothermal Area (Edmunds & W., 1977)...

  1. Thermal Gradient Holes At San Emidio Desert Area (DOE GTP) |...

    Open Energy Info (EERE)

    San Emidio Desert Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At San Emidio Desert Area (DOE GTP)...

  2. Thermal Gradient Holes At Long Valley Caldera Geothermal Area...

    Open Energy Info (EERE)

    Long Valley Caldera Geothermal Area (Conservation, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Long Valley...

  3. Thermal Gradient Holes At Chocolate Mountains Area (Alm, Et Al...

    Open Energy Info (EERE)

    Thermal Gradient Holes Activity Date Usefulness useful DOE-funding Unknown Notes "Shallow temperature gradient drilling began at the CMAGR in January of 2010. 13 temperature...

  4. Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Mcgee Mountain Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Mcgee Mountain Area (DOE GTP) Exploration...

  5. Thermal Energy Storage

    SciTech Connect (OSTI)

    Rutberg, Michael; Hastbacka, Mildred; Cooperman, Alissa; Bouza, Antonio

    2013-06-05

    The article discusses thermal energy storage technologies. This article addresses benefits of TES at both the building site and the electricity generation source. The energy savings and market potential of thermal energy store are reviewed as well.

  6. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, Ival O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene-vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments.

  7. Microwavable thermal energy storage material

    DOE Patents [OSTI]

    Salyer, I.O.

    1998-09-08

    A microwavable thermal energy storage material is provided which includes a mixture of a phase change material and silica, and a carbon black additive in the form of a conformable dry powder of phase change material/silica/carbon black, or solid pellets, films, fibers, moldings or strands of phase change material/high density polyethylene/ethylene vinyl acetate/silica/carbon black which allows the phase change material to be rapidly heated in a microwave oven. The carbon black additive, which is preferably an electrically conductive carbon black, may be added in low concentrations of from 0.5 to 15% by weight, and may be used to tailor the heating times of the phase change material as desired. The microwavable thermal energy storage material can be used in food serving applications such as tableware items or pizza warmers, and in medical wraps and garments. 3 figs.

  8. thermal energy power conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    National Solar Thermal Test Facility Nuclear ... Climate & Earth Systems Climate Measurement & Modeling ... Tribal Energy Program Intellectual Property Current EC ...

  9. Thermal neutron detection system

    DOE Patents [OSTI]

    Peurrung, Anthony J. (Richland, WA); Stromswold, David C. (West Richland, WA)

    2000-01-01

    According to the present invention, a system for measuring a thermal neutron emission from a neutron source, has a reflector/moderator proximate the neutron source that reflects and moderates neutrons from the neutron source. The reflector/moderator further directs thermal neutrons toward an unmoderated thermal neutron detector.

  10. Thermal Performance Benchmarking (Presentation)

    SciTech Connect (OSTI)

    Moreno, G.

    2014-11-01

    This project will benchmark the thermal characteristics of automotive power electronics and electric motor thermal management systems. Recent vehicle systems will be benchmarked to establish baseline metrics, evaluate advantages and disadvantages of different thermal management systems, and identify areas of improvement to advance the state-of-the-art.

  11. Photovoltaic concentrator module improvements study

    SciTech Connect (OSTI)

    Levy, S.L.; Kerschen, K.A. ); Hutchison, G. ); Nowlan, M.J. )

    1991-08-01

    This report presents results of a project to design and fabricate an improved photovoltaic concentrator module. Using previous work as a baseline, this study conducted analyses and testing to select major module components and design features. The lens parquet and concentrator solar cell were selected from the highest performing, available components. A single 185X point-focus module was fabricated by the project team and tested at Sandia. Major module characteristics include a 6 by 4 compression-molded acrylic lens parquet (0.737 m{sup 2} area), twenty-four 0.2 ohms-cm, FZ, p-Si solar cells (1.56 cm{sup 2} area) soldered to ceramic substrates and copper heat spreaders, and an aluminized steel housing with corrugated bottom. This project marked the first attempt to use prismatic covers on solar cells in a high-concentration, point-focus application. Cells with 15 percent metallization were obtained, but problems with the fabrication and placement of prismatic covers on these cells lead to the decision not to use covers in the prototype module. Cell assembly fabrication, module fabrication, and module optical design activities are presented here. Test results are also presented for bare cells, cell assemblies, and module. At operating conditions of 981 watts/m{sup 2} DNI and an estimated cell temperature of 65{degrees}C, the module demonstrated an efficiency of 13.9 percent prior to stressed environmental exposure. 12 refs., 56 figs., 7 tabs.

  12. CONTENTS Concentrated Gas Hydrate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrated Gas Hydrate Deposits in the Kumano Forearc Basin, Nankai Trough, Japan .....1 Recent Advances in NETL's Laboratory Studies of Hydrate- Bearing Sediments .......................5 Initial Interpretation of Results from the Iġnik Sikumi Gas Hydrate Exchange Field Trial .. 10 A Fresh Look at the Mediterranean and Black Sea Basins: Potential for High-Quality Hydrate Reservoirs .....................15 Announcements .......................19 * United Nations Hydrate Report Published

  13. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2006-12-01

    The software program generates 3D volume distribution of thermal effusivity within a test material from one-sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneous materials to produce 3D images similar to those obtained from 3D X-ray CT (all previous thermal-imaging software can only produce 2D results). Because thermal effusivity is an intrisic material property that is related to material constituent, density, conductivity, etc.,more » quantitative imaging of effusivity allowed direct visualization of material's internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one-sided, non contact and sensitive to material's thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one-sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured (temporal) surface temperature data. The predicted effusivity is a direct function of depth, not an average or convolved parameter, so it is an accurate (and more sensitive) representation of local property along depth.« less

  14. Concentrating Solar Power Projects | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects Concentrating Solar Power Projects

  15. Rankline-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2012-03-13

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  16. Rankine-Brayton engine powered solar thermal aircraft

    DOE Patents [OSTI]

    Bennett, Charles L.

    2009-12-29

    A solar thermal powered aircraft powered by heat energy from the sun. A Rankine-Brayton hybrid cycle heat engine is carried by the aircraft body for producing power for a propulsion mechanism, such as a propeller or other mechanism for enabling sustained free flight. The Rankine-Brayton engine has a thermal battery, preferably containing a lithium-hydride and lithium mixture, operably connected to it so that heat is supplied from the thermal battery to a working fluid. A solar concentrator, such as reflective parabolic trough, is movably connected to an optically transparent section of the aircraft body for receiving and concentrating solar energy from within the aircraft. Concentrated solar energy is collected by a heat collection and transport conduit, and heat transported to the thermal battery. A solar tracker includes a heliostat for determining optimal alignment with the sun, and a drive motor actuating the solar concentrator into optimal alignment with the sun based on a determination by the heliostat.

  17. Chemistry Of Thermal And Nonthermal Springs In The Vicinity Of...

    Open Energy Info (EERE)

    depths. Thermal waters at Drakesbad and in Little Hot Springs Valley have neutral-pH, low-Cl concentrations and have estimated Na-K-Ca and Na-Li geothermometer temperatures...

  18. Thermal Effusivity Tomography from Pulsed Thermal Imaging

    Energy Science and Technology Software Center (OSTI)

    2008-11-05

    The software program generates 3D volume distribution of thermal effusivity within a test material from one—sided pulsed thermal imaging data. Thsi is the first software capable of accurate, fast and automated thermal tomographic imaging of inhomogeneoirs materials to produce 3D images similar to those obtained from 3D X—ray CT (all previous thepnal—imaging software can only produce 20 results) . Because thermal effusivity is an Intrisic material property that is related to material constituent, density, conductivity,more » etc., quantitative imaging of eftusivity allowed direct visualization of material’s internal constituent/structure and damage distributions, thereby potentially leading to quantitative prediction of other material properties such as strength. I can be therefre be used for 3D imaging of material structure in fundamental material studies, nondestructive characterization of defects/flaws in structural engineering components, health monitoring of material damage and degradation during service, and medical imaging and diagnostics. This technology is one—sided, non contact and sensitive to material’s thermal property and discontinuity. One major advantage of this tomographic technology over x-ray CT and ultrasounds is its natural efficiency for 3D imaging of the volume under a large surface area. This software is implemented with a method for thermal computed tomography of thermal effusivity from one—sided pulsed thermal imaging (or thermography) data. The method is based on several solutions of the governing heat transfer equation under pulsed thermography test condition. In particular, it consists of three components. 1) It utilized the thermal effusivity as the imaging parameter to construct the 3D image. 2) It established a relationship between the space (depth) and the time, because thermography data are in the time domain. 3) It incorporated a deconvolution algorithm to solve the depth porfile of the material thermal effusivity from the measured (temporal) surface temperature data. The predicted effusivity is a direct function of depth, not an average or convolved parameter, so it is an accurate (and more sensitive) representation of local property along depth.« less

  19. METHOD OF ISOTOPE CONCENTRATION

    DOE Patents [OSTI]

    Taylor, T.I.; Spindel, W.

    1960-02-01

    A method of concentrating N/sup 15/ in a liquid is described. Gaseous nitric oxide and at least one liquid selected from the group consisting of the aqueous oxyacids and oxides of nitrogen, wherein the atomic ratio of oxygen to nitrogen is greater than unity, are brought into intimate contact to cause an enrichment of the liquid and a depletion of the gas in N/sup 15/. The liquid is, thereafter, reacted with sulfur dioxide to produce a gas contuining nitric oxide. The gas contuining nitric oxide is then continuously passed in countercurrent contact with the liquid to cause further enrichment of the liquid.

  20. Vapor concentration monitor

    DOE Patents [OSTI]

    Bayly, John G.; Booth, Ronald J.

    1977-01-01

    An apparatus for monitoring the concentration of a vapor, such as heavy water, having at least one narrow bandwidth in its absorption spectrum, in a sample gas such as air. The air is drawn into a chamber in which the vapor content is measured by means of its radiation absorption spectrum. High sensitivity is obtained by modulating the wavelength at a relatively high frequency without changing its optical path, while high stability against zero drift is obtained by the low frequency interchange of the sample gas to be monitored and of a reference sample. The variable HDO background due to natural humidity is automatically corrected.

  1. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, P.

    1997-07-22

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen`s A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2,000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest. 4 figs.

  2. Optical oxygen concentration monitor

    DOE Patents [OSTI]

    Kebabian, Paul

    1997-01-01

    A system for measuring and monitoring the concentration of oxygen uses as a light source an argon discharge lamp, which inherently emits light with a spectral line that is close to one of oxygen's A-band absorption lines. In a preferred embodiment, the argon line is split into sets of components of shorter and longer wavelengths by a magnetic field of approximately 2000 Gauss that is parallel to the light propagation from the lamp. The longer wavelength components are centered on an absorption line of oxygen and thus readily absorbed, and the shorter wavelength components are moved away from that line and minimally absorbed. A polarization modulator alternately selects the set of the longer wavelength, or upshifted, components or the set of the shorter wavelength, or downshifted, components and passes the selected set to an environment of interest. After transmission over a path through that environment, the transmitted optical flux of the argon line varies as a result of the differential absorption. The system then determines the concentration of oxygen in the environment based on the changes in the transmitted optical flux between the two sets of components. In alternative embodiments modulation is achieved by selectively reversing the polarity of the magnetic field or by selectively supplying the magnetic field to either the emitting plasma of the lamp or the environment of interest.

  3. The DOE Solar Thermal Electric Program

    SciTech Connect (OSTI)

    Mancini, T.R.

    1994-06-01

    The Department of Energy`s Solar Thermal Electric Program is managed by the Solar thermal and biomass Power division which is part of the Office of utility Technologies. The focus of the Program is to commercialize solar electric technologies. In this regard, three major projects are currently being pursued in trough, central receiver, and dish/Stirling electric power generation. This paper describes these three projects and the activities at the National laboratories that support them.

  4. Concentrator Optics | Open Energy Information

    Open Energy Info (EERE)

    Concentrator Optics Jump to: navigation, search Name: Concentrator Optics Place: Marburg, Germany Zip: 35037 Product: A Germany-based company engaged in the design and production...

  5. Phase-change thermal energy storage: Final subcontract report

    SciTech Connect (OSTI)

    Not Available

    1989-11-01

    The research and development described in this document was conducted within the US Department of Energy's Solar Thermal Technology Program. The goal of this program is to advance the engineering and scientific understanding of solar thermal technology and to establish the technology base from which private industry can develop solar thermal power production options for introduction into the competitive energy market. Solar thermal technology concentrates the solar flux using tracking mirrors or lenses onto a receiver where the solar energy is absorbed as heat and converted into electricity or incorporated into products as process heat. The two primary solar thermal technologies, central receivers and distributed receivers, employ various point and line-focus optics to concentrate sunlight. Current central receiver systems use fields of heliostats (two-axes tracking mirrors) to focus the sun's radiant energy onto a single, tower-mounted receiver. Point focus concentrators up to 17 meters in diameter track the sun in two axes and use parabolic dish mirrors or Fresnel lenses to focus radiant energy onto a receiver. Troughs and bowls are line-focus tracking reflectors that concentrate sunlight onto receiver tubes along their focal lines. Concentrating collector modules can be used alone or in a multimodule system. The concentrated radiant energy absorbed by the solar thermal receiver is transported to the conversion process by a circulating working fluid. Receiver temperatures range from 100{degree}C in low-temperature troughs to over 1500{degree}C in dish and central receiver systems. 12 refs., 119 figs., 4 tabs.

  6. Catalytic thermal barrier coatings

    DOE Patents [OSTI]

    Kulkarni, Anand A.; Campbell, Christian X.; Subramanian, Ramesh

    2009-06-02

    A catalyst element (30) for high temperature applications such as a gas turbine engine. The catalyst element includes a metal substrate such as a tube (32) having a layer of ceramic thermal barrier coating material (34) disposed on the substrate for thermally insulating the metal substrate from a high temperature fuel/air mixture. The ceramic thermal barrier coating material is formed of a crystal structure populated with base elements but with selected sites of the crystal structure being populated by substitute ions selected to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a higher rate than would the base compound without the ionic substitutions. Precious metal crystallites may be disposed within the crystal structure to allow the ceramic thermal barrier coating material to catalytically react the fuel-air mixture at a lower light-off temperature than would the ceramic thermal barrier coating material without the precious metal crystallites.

  7. Concentrating Solar Power: Solar Energy Technologies Program (SETP) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01

    Fact sheet summarizing the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

  8. Influence of Intrinsic Hole Concentration on Oxygen Sensing Properties...

    Office of Scientific and Technical Information (OSTI)

    concentration and reduction in activation energy as a result of Casup 2+ substitution.. ... Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; ...

  9. Non-tracking solar concentrator with a high concentration ratio

    DOE Patents [OSTI]

    Hinterberger, Henry

    1977-01-01

    A nontracking solar concentrator with a high concentration ratio is provided. The concentrator includes a plurality of energy absorbers which communicate with a main header by which absorbed heat is removed. Undesired heat flow of those absorbers not being heated by radiant energy at a particular instant is impeded, improving the efficiency of the concentrator.

  10. Freeze concentration of dairy products Phase 2. Final report

    SciTech Connect (OSTI)

    Best, D.E.; Vasavada, K.C.

    1993-09-01

    An efficient, electrically driven freeze concentration system offers potential for substantially increasing electricity demand while providing the mature dairy industry with new products for domestic and export markets together with enhanced production efficiencies. Consumer tests indicate that dairy products manufactured from freeze-concentrated ingredients are either preferred or considered equivalent in quality to fresh milk-based products. Economic analyses indicate that this technology should be competitive with thermal evaporation processes on a commercial basis.

  11. Sandia Thermal Program

    Energy Science and Technology Software Center (OSTI)

    2005-11-23

    Thermal analysis in 1-D planar, cylindrical and spherical geometries using control volume finite element spatial discretization with 1st and 2nd order implicit time integrators.

  12. Battery Thermal Characterization

    SciTech Connect (OSTI)

    Saxon, Aron; Powell, Mitchell; Shi, Ying

    2015-06-09

    This presentation provides an update of NREL's battery thermal characterization efforts for the 2015 U.S. Department of Energy Annual Merit Reviews.

  13. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology ... could result in a 4 - 6 percent gain in overall system efficiency. ...

  14. Thermal And-Or Near Infrared At Raft River Geothermal Area (1997...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1997) Exploration Activity Details Location Raft River...

  15. Thermal And-Or Near Infrared At Raft River Geothermal Area (1974...

    Open Energy Info (EERE)

    GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Raft River Geothermal Area (1974-1976) Exploration Activity Details Location Raft River...

  16. Thermal Gradient Holes At Hot Pot Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Pot Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Hot Pot Area (DOE GTP) Exploration Activity Details...

  17. Thermal Gradient Holes At Fort Bliss Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Bliss Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fort Bliss Area (DOE GTP) Exploration Activity...

  18. Thermal Gradient Holes At Alum Area (DOE GTP) | Open Energy Informatio...

    Open Energy Info (EERE)

    Alum Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Alum Area (DOE GTP) Exploration Activity Details...

  19. Thermal Gradient Holes At Silver Peak Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Silver Peak Area (DOE GTP) Exploration Activity Details Location...

  20. Thermal Gradient Holes At Kilauea East Rift Area (Quane, Et Al...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Kilauea East Rift Area (Quane, Et Al., 2000) Exploration Activity...

  1. Thermal And-Or Near Infrared At Silver Peak Area (DOE GTP) |...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Silver Peak Area (DOE GTP) Exploration Activity Details...

  2. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, Paul A. (Wheaton, IL); Malecha, Richard F. (Naperville, IL); Chilenskas, Albert A. (Chicago, IL)

    1994-01-01

    A device for controlled insulation of a thermal device. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communcation with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket.

  3. Variable pressure thermal insulating jacket

    DOE Patents [OSTI]

    Nelson, P.A.; Malecha, R.F.; Chilenskas, A.A.

    1994-09-20

    A device for controlled insulation of a thermal device is disclosed. The device includes a thermal jacket with a closed volume able to be evacuated to form an insulating jacket around the thermal source. A getter material is in communication with the closed volume of the thermal jacket. The getter material can absorb and desorb a control gas to control gas pressure in the volume of the thermal jacket to control thermal conductivity in the thermal jacket. 10 figs.

  4. Method and apparatus for concentrating vapors for analysis

    DOE Patents [OSTI]

    Grate, Jay W.; Baldwin, David L.; Anheier, Jr., Norman C.

    2012-06-05

    A pre-concentration device and a method are disclosed for concentrating gaseous vapors for analysis. Vapors sorbed and concentrated within the bed of the pre-concentration device are thermally desorbed, achieving at least partial separation of the vapor mixtures. The pre-concentration device is suitable, e.g., for pre-concentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable.

  5. Thermally actuated wedge block

    DOE Patents [OSTI]

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  6. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, G.A.; Elder, M.G.; Kemme, J.E.

    1984-03-20

    The disclosure is directed to an apparatus for thermally protecting sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components such as electronics to a heat sink such as ice.

  7. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Elder, Michael G.; Kemme, Joseph E.

    1985-01-01

    An apparatus which thermally protects sensitive components in tools used in a geothermal borehole. The apparatus comprises a Dewar within a housing. The Dewar contains heat pipes such as brass heat pipes for thermally conducting heat from heat sensitive components to a heat sink such as ice.

  8. Concentric tube support assembly

    DOE Patents [OSTI]

    Rubio, Mark F.; Glessner, John C.

    2012-09-04

    An assembly (45) includes a plurality of separate pie-shaped segments (72) forming a disk (70) around a central region (48) for retaining a plurality of tubes (46) in a concentrically spaced apart configuration. Each segment includes a support member (94) radially extending along an upstream face (96) of the segment and a plurality of annularly curved support arms (98) transversely attached to the support member and radially spaced apart from one another away from the central region for receiving respective upstream end portions of the tubes in arc-shaped spaces (100) between the arms. Each segment also includes a radial passageway (102) formed in the support member for receiving a fluid segment portion (106) and a plurality of annular passageways (104) formed in the support arms for receiving respective arm portions (108) of the fluid segment portion from the radial passageway and for conducting the respective arm portions into corresponding annular spaces (47) formed between the tubes retained by the disk.

  9. Tunable thermal link

    DOE Patents [OSTI]

    Chang, Chih-Wei; Majumdar, Arunava; Zettl, Alexander K.

    2014-07-15

    Disclosed is a device whereby the thermal conductance of a multiwalled nanostructure such as a multiwalled carbon nanotube (MWCNT) can be controllably and reversibly tuned by sliding one or more outer shells with respect to the inner core. As one example, the thermal conductance of an MWCNT dropped to 15% of the original value after extending the length of the MWCNT by 190 nm. The thermal conductivity returned when the tube was contracted. The device may comprise numbers of multiwalled nanotubes or other graphitic layers connected to a heat source and a heat drain and various means for tuning the overall thermal conductance for applications in structure heat management, heat flow in nanoscale or microscale devices and thermal logic devices.

  10. Thermal treatment wall

    DOE Patents [OSTI]

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  11. Wide range radioactive gas concentration detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  12. 233-S plutonium concentration facility hazards assessment

    SciTech Connect (OSTI)

    Broz, R.E.

    1994-12-19

    This document establishes the technical basis in support of Emergency Planning activities for the 233-S Plutonium Concentration Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated.

  13. Linear Concentrator System Basics for Concentrating Solar Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Linear Concentrator System Basics for Concentrating Solar Power Linear Concentrator System Basics for Concentrating Solar Power August 20, 2013 - 4:45pm Addthis Photo of numerous parallel rows of parabolic trough collectors tracking the sun. Cooling towers and other generator equipment are in the midst of the troughs, and two water tanks are in the background. The Solar Electric Generating Station IV power plant in California consists of many parallel rows of parabolic

  14. Thermally-related safety issues associated with thermal batteries.

    SciTech Connect (OSTI)

    Guidotti, Ronald Armand

    2006-06-01

    Thermal batteries can experience thermal runaway under certain usage conditions. This can lead to safety issues for personnel and cause damage to associated test equipment if the battery thermally self destructs. This report discusses a number of thermal and design related issues that can lead to catastrophic destruction of thermal batteries under certain conditions. Contributing factors are identified and mitigating actions are presented to minimize or prevent undesirable thermal runaway.

  15. Method for implantation of high dopant concentrations in wide band gap materials

    DOE Patents [OSTI]

    Usov, Igor; Arendt, Paul N.

    2009-09-15

    A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.

  16. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-08-01

    Fact sheet describing the overall capabilities of the NREL CSP Program: collector/receiver characterization, advanced reflector and absorber materials, thermal storage and advanced heat transfer fluids, and CSP modeling and analysis.

  17. Markets for concentrating solar power

    SciTech Connect (OSTI)

    Not Available

    1998-04-01

    The report describes the markets for concentrating solar power. As concentrating solar power technologies advance into the early stages of commercialization, their economic potential becomes more sharply defined and increasingly tangible.

  18. Luminescent Concentration of Diffuse Light

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Luminescent Concentration of Diffuse Light Achieving 30X Concentration Work w as p erformed a t L BL a nd U IUC Bronstein, N .D.; Y ao, Y .; X u, L .; O 'Brien, E .; P owers, A...

  19. Incinerator thermal release valve risk assessment

    SciTech Connect (OSTI)

    Stevens, J.B.

    1998-12-31

    Human health risk assessments were conducted on emissions from several types of incinerators--a hazardous waste combustor, a medical waste/tire combustor, and a refuse derived fuel combustor in three different states. As part of these studies, the short-term emissions from thermal release valves operating during upset conditions were additionally evaluated. The latter assessments addressed two specific risk-related questions: (1) what are the incremental long-term risks/hazards associated with these short-term emissions; (2) what are the acute health hazards associated with these emissions? For each study, emission estimates for both the incinerator stack and the thermal release valve were obtained from the facility. Stack testing was utilized to obtain stack gas concentrations of emissions at one facility; engineering estimates were used to ascertain emissions from the thermal release valve. The two facilities were proposed incinerators, so literature-derived emissions were used throughout.

  20. Multilayer thermal barrier coating systems

    DOE Patents [OSTI]

    Vance, Steven J.; Goedjen, John G.; Sabol, Stephen M.; Sloan, Kelly M.

    2000-01-01

    The present invention generally describes multilayer thermal barrier coating systems and methods of making the multilayer thermal barrier coating systems. The thermal barrier coating systems comprise a first ceramic layer, a second ceramic layer, a thermally grown oxide layer, a metallic bond coating layer and a substrate. The thermal barrier coating systems have improved high temperature thermal and chemical stability for use in gas turbine applications.

  1. Thermal Properties Measurement Report

    SciTech Connect (OSTI)

    Carmack, Jon; Braase, Lori; Papesch, Cynthia; Hurley, David; Tonks, Michael; Zhang, Yongfeng; Gofryk, Krzysztof; Harp, Jason; Fielding, Randy; Knight, Collin; Meyer, Mitch

    2015-08-01

    The Thermal Properties Measurement Report summarizes the research, development, installation, and initial use of significant experimental thermal property characterization capabilities at the INL in FY 2015. These new capabilities were used to characterize a U3Si2 (candidate Accident Tolerant) fuel sample fabricated at the INL. The ability to perform measurements at various length scales is important and provides additional data that is not currently in the literature. However, the real value of the data will be in accomplishing a phenomenological understanding of the thermal conductivity in fuels and the ties to predictive modeling. Thus, the MARMOT advanced modeling and simulation capability was utilized to illustrate how the microstructural data can be modeled and compared with bulk characterization data. A scientific method was established for thermal property measurement capability on irradiated nuclear fuel samples, which will be installed in the Irradiated Material Characterization Laboratory (IMCL).

  2. Thermal breeder fuel enrichment zoning

    DOE Patents [OSTI]

    Capossela, Harry J.; Dwyer, Joseph R.; Luce, Robert G.; McCoy, Daniel F.; Merriman, Floyd C.

    1992-01-01

    A method and apparatus for improving the performance of a thermal breeder reactor having regions of higher than average moderator concentration are disclosed. The fuel modules of the reactor core contain at least two different types of fuel elements, a high enrichment fuel element and a low enrichment fuel element. The two types of fuel elements are arranged in the fuel module with the low enrichment fuel elements located between the high moderator regions and the high enrichment fuel elements. Preferably, shim rods made of a fertile material are provided in selective regions for controlling the reactivity of the reactor by movement of the shim rods into and out of the reactor core. The moderation of neutrons adjacent the high enrichment fuel elements is preferably minimized as by reducing the spacing of the high enrichment fuel elements and/or using a moderator having a reduced moderating effect.

  3. Thermal insulations using vacuum panels

    DOE Patents [OSTI]

    Glicksman, Leon R.; Burke, Melissa S.

    1991-07-16

    Thermal insulation vacuum panels are formed of an inner core of compressed low thermal conductivity powders enclosed by a ceramic/glass envelope evaluated to a low pressure.

  4. Underhood Thermal Performance

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underhood Thermal Performance This email address is being protected from spambots. You need JavaScript enabled to view it. - Computational Fluid Dynamics Project Leader Background As vehicle technology advances, automakers need a better understanding of underhood heat loads, especially as they relate to emissions and fuel efficiency. Manufacturers of heavy-duty vehicles and off-road machines have similar concerns. Ineffective underhood thermal management can lead to higher emissions, reduced

  5. Turbine Thermal Management

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbine Thermal Management Fact Sheets Research Team Members Key Contacts Turbine Thermal Management The gas turbine is the workhorse of power generation, and technology advances to current land-based turbines are directly linked to our country's economic and energy security. Technical advancement for any type of gas turbine generally implies better performance, greater efficiency, and extended component life. From the standpoint of cycle efficiency and durability, this suggests that a continual

  6. Photovoltaic-thermal collectors

    DOE Patents [OSTI]

    Cox, III, Charles H. (Carlisle, MA)

    1984-04-24

    A photovoltaic-thermal solar cell including a semiconductor body having antireflective top and bottom surfaces and coated on each said surface with a patterned electrode covering less than 10% of the surface area. A thermal-absorbing surface is spaced apart from the bottom surface of the semiconductor and a heat-exchange fluid is passed between the bottom surface and the heat-absorbing surface.

  7. Biomass thermal conversion research at SERI

    SciTech Connect (OSTI)

    Milne, T. A.; Desrosiers, R. E.; Reed, T. B.

    1980-09-01

    SERI's involvement in the thermochemical conversion of biomass to fuels and chemicals is reviewed. The scope and activities of the Biomass Thermal Conversion and Exploratory Branch are reviewed. The current status and future plans for three tasks are presented: (1) Pyrolysis Mechanisms; (2) High Pressure O/sub 2/ Gasifier; and (3) Gasification Test Facility.

  8. A Path to High-Concentration Luminescent Solar Concentrators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Significance and Impact LSCs enable non-tracking concentration of both direct sunlight and diffuse light onto high- efficiency solar cells, and our work predicts unprecendented ...

  9. Influence of crystalline phase and defects in the ZrO{sub 2} nanoparticles synthesized by thermal plasma route on its photocatalytic properties

    SciTech Connect (OSTI)

    Nawale, Ashok B.; Kanhe, Nilesh S.; Bhoraskar, S.V.; Mathe, V.L.; Das, A.K.

    2012-11-15

    Graphical abstract: Thermal plasma synthesized nanophase zirconia showing the blue shift in the band gap of monoclinic phase as found from the photoabsorption spectroscopy was found to be the dominant parameter for the enhancement in its photocatalytic activity. The existence of different defect states and their concentration in as synthesized samples also inferred from the photoabsorption measurements were also found to be responsible for the enhanced photocatalytic activity of the samples. Highlights: ? Phase controlled structural formation of nanophase ZrO{sub 2} by thermal plasma route. ? Enhanced photocatalytic degradation rate of methylene blue dye. ? The blue shift in the band gap of monoclinic phase of nanocrystalline ZrO{sub 2}. ? Existence of different defect states in the as synthesized nano phase ZrO{sub 2}. ? Several competing processes which controls the photocatalytic degradation rate. -- Abstract: The photocatalytic activity of pure ZrO{sub 2} samples, prepared by a thermal plasma route, and characterized by X-ray diffraction technique was tested for the degradation of methylene blue, which is known to be a hazardous dye. Although, all these samples synthesized at different operating pressures of the thermal plasma reactor showed the photocatalytic activity; the sample synthesized at 1.33 bar of operating pressure showed the highest photocatalytic activity. The blue shift in the band gap of monoclinic phase, as observed from the photo-absorption spectroscopy, may be attributed to the enhanced photocatalytic activity. The existence of different defect states and their concentration as, inferred from the photo-absorption measurements were also found to be responsible for the enhanced photocatalytic activity of the as synthesized samples.

  10. Continuous flow dielectrophoretic particle concentrator

    DOE Patents [OSTI]

    Cummings, Eric B.

    2007-04-17

    A continuous-flow filter/concentrator for separating and/or concentrating particles in a fluid is disclosed. The filter is a three-port device an inlet port, an filter port and a concentrate port. The filter separates particles into two streams by the ratio of their dielectrophoretic mobility to their electrokinetic, advective, or diffusive mobility if the dominant transport mechanism is electrokinesis, advection, or diffusion, respectively.Also disclosed is a device for separating and/or concentrating particles by dielectrophoretic trapping of the particles.

  11. Utility-scale photovoltaic concentrators

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The photovoltaics concentrators section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  12. Highly directional thermal emitter

    DOE Patents [OSTI]

    Ribaudo, Troy; Shaner, Eric A; Davids, Paul; Peters, David W

    2015-03-24

    A highly directional thermal emitter device comprises a two-dimensional periodic array of heavily doped semiconductor structures on a surface of a substrate. The array provides a highly directional thermal emission at a peak wavelength between 3 and 15 microns when the array is heated. For example, highly doped silicon (HDSi) with a plasma frequency in the mid-wave infrared was used to fabricate nearly perfect absorbing two-dimensional gratings structures that function as highly directional thermal radiators. The absorption and emission characteristics of the HDSi devices possessed a high degree of angular dependence for infrared absorption in the 10-12 micron range, while maintaining high reflectivity of solar radiation (.about.64%) at large incidence angles.

  13. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, S.E.; Arasteh, D.K.; Hartmann, J.L.

    1988-04-05

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas. 2 figs.

  14. Thermal insulated glazing unit

    DOE Patents [OSTI]

    Selkowitz, Stephen E. (Piedmont, CA); Arasteh, Dariush K. (Oakland, CA); Hartmann, John L. (Seattle, WA)

    1991-01-01

    An improved insulated glazing unit is provided which can attain about R5 to about R10 thermal performance at the center of the glass while having dimensions about the same as those of a conventional double glazed insulated glazing unit. An outer glazing and inner glazing are sealed to a spacer to form a gas impermeable space. One or more rigid, non-structural glazings are attached to the inside of the spacer to divide the space between the inner and outer glazings to provide insulating gaps between glazings of from about 0.20 inches to about 0.40 inches. One or more glazing surfaces facing each thermal gap are coated with a low emissivity coating. Finally, the thermal gaps are filled with a low conductance gas such as krypton gas.

  15. Thermal trim for luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-11-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  16. Article for thermal energy storage

    DOE Patents [OSTI]

    Salyer, Ival O.

    2000-06-27

    A thermal energy storage composition is provided which is in the form of a gel. The composition includes a phase change material and silica particles, where the phase change material may comprise a linear alkyl hydrocarbon, water/urea, or water. The thermal energy storage composition has a high thermal conductivity, high thermal energy storage, and may be used in a variety of applications such as in thermal shipping containers and gel packs.

  17. Tracking heat flux sensors for concentrating solar applications

    DOE Patents [OSTI]

    Andraka, Charles E; Diver, Jr., Richard B

    2013-06-11

    Innovative tracking heat flux sensors located at or near the solar collector's focus for centering the concentrated image on a receiver assembly. With flux sensors mounted near a receiver's aperture, the flux gradient near the focus of a dish or trough collector can be used to precisely position the focused solar flux on the receiver. The heat flux sensors comprise two closely-coupled thermocouple junctions with opposing electrical polarity that are separated by a thermal resistor. This arrangement creates an electrical signal proportional to heat flux intensity, and largely independent of temperature. The sensors are thermally grounded to allow a temperature difference to develop across the thermal resistor, and are cooled by a heat sink to maintain an acceptable operating temperature.

  18. Voltage tunability of thermal conductivity in ferroelectric materials

    DOE Patents [OSTI]

    Ihlefeld, Jon; Hopkins, Patrick Edward

    2016-02-09

    A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.

  19. Thermal Storage R&D for CSP Systems

    Broader source: Energy.gov [DOE]

    A distinguishing feature of concentrating solar power (CSP) among other renewable technologies is its ability to include thermal energy storage at the point of power generation to handle the intermittencies of solar availability. The SunShot Initiative funds research and development (R&D) on sensible, latent, and thermochemical energy storage and related aspects within the industry, national laboratories and universities to achieve technical targets of thermal energy storage subsystems.

  20. LiH thermal energy storage device

    DOE Patents [OSTI]

    Olszewski, M.; Morris, D.G.

    1994-06-28

    A thermal energy storage device for use in a pulsed power supply to store waste heat produced in a high-power burst operation utilizes lithium hydride as the phase change thermal energy storage material. The device includes an outer container encapsulating the lithium hydride and an inner container supporting a hydrogen sorbing sponge material such as activated carbon. The inner container is in communication with the interior of the outer container to receive hydrogen dissociated from the lithium hydride at elevated temperatures. 5 figures.

  1. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, Roy; Kakwani, Ramesh M.; Valdmanis, Edgars; Woods, Melvins E.

    1988-01-01

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m.degree. C. and a specific heat greater than 480 J/kg.degree. C. with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber.

  2. Thermal ignition combustion system

    DOE Patents [OSTI]

    Kamo, R.; Kakwani, R.M.; Valdmanis, E.; Woods, M.E.

    1988-04-19

    The thermal ignition combustion system comprises means for providing walls defining an ignition chamber, the walls being made of a material having a thermal conductivity greater than 20 W/m C and a specific heat greater than 480 J/kg C with the ignition chamber being in constant communication with the main combustion chamber, means for maintaining the temperature of the walls above a threshold temperature capable of causing ignition of a fuel, and means for conducting fuel to the ignition chamber. 8 figs.

  3. Thermal Shock-resistant Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.; Gill, S.

    2012-02-01

    We studied the effectiveness of sodium silicate-activated Class F fly ash in improving the thermal shock resistance and in extending the onset of hydration of Secar #80 refractory cement. When the dry mix cement, consisting of Secar #80, Class F fly ash, and sodium silicate, came in contact with water, NaOH derived from the dissolution of sodium silicate preferentially reacted with Class F fly ash, rather than the #80, to dissociate silicate anions from Class F fly ash. Then, these dissociated silicate ions delayed significantly the hydration of #80 possessing a rapid setting behavior. We undertook a multiple heating -water cooling quenching-cycle test to evaluate the cement’s resistance to thermal shock. In one cycle, we heated the 200 and #61616;C-autoclaved cement at 500 and #61616;C for 24 hours, and then the heated cement was rapidly immersed in water at 25 and #61616;C. This cycle was repeated five times. The phase composition of the autoclaved #80/Class F fly ash blend cements comprised four crystalline hydration products, boehmite, katoite, hydrogrossular, and hydroxysodalite, responsible for strengthening cement. After a test of 5-cycle heat-water quenching, we observed three crystalline phase-transformations in this autoclaved cement: boehmite and #61614; and #61543;-Al2O3, katoite and #61614; calcite, and hydroxysodalite and #61614; carbonated sodalite. Among those, the hydroxysodalite and #61614; carbonated sodalite transformation not only played a pivotal role in densifying the cementitious structure and in sustaining the original compressive strength developed after autoclaving, but also offered an improved resistance of the #80 cement to thermal shock. In contrast, autoclaved Class G well cement with and without Class F fly ash and quartz flour failed this cycle test, generating multiple cracks in the cement. The major reason for such impairment was the hydration of lime derived from the dehydroxylation of portlandite formed in the autoclaved cement, causing its volume to expand.

  4. Monolithic microfluidic concentrators and mixers

    DOE Patents [OSTI]

    Frechet, Jean M.; Svec, Frantisek; Yu, Cong; Rohr, Thomas

    2005-05-03

    Microfluidic devices comprising porous monolithic polymer for concentration, extraction or mixing of fluids. A method for in situ preparation of monolithic polymers by in situ initiated polymerization of polymer precursors within microchannels of a microfluidic device and their use for solid phase extraction (SPE), preconcentration, concentration and mixing.

  5. Process for concentrated biomass saccharification

    DOE Patents [OSTI]

    Hennessey, Susan M.; Seapan, Mayis; Elander, Richard T.; Tucker, Melvin P.

    2010-10-05

    Processes for saccharification of pretreated biomass to obtain high concentrations of fermentable sugars are provided. Specifically, a process was developed that uses a fed batch approach with particle size reduction to provide a high dry weight of biomass content enzymatic saccharification reaction, which produces a high sugars concentration hydrolysate, using a low cost reactor system.

  6. Gang Chen | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Professional Activities: Director, DOE EFRC: Solid-State Solar-Thermal Energy Conversion Center (S3TEC Center), 2009 Co-Editor: Annual Review of Heat Transfer Editor, Journal of ...

  7. Absorption of Thermal Neutrons in Uranium

    DOE R&D Accomplishments [OSTI]

    Creutz, E. C.; Wilson, R. R.; Wigner, E. P.

    1941-09-26

    A knowledge of the absorption processes for neutrons in uranium is important for planning a chain reaction experiment. The absorption of thermal neutrons in uranium and uranium oxide has been studied. Neutrons from the cyclotron were slowed down by passage through a graphite block. A uranium or uranium oxide sphere was placed at various positions in the block. The neutron intensity at different points in the sphere and in the graphite was measured by observing the activity induced in detectors or uranium oxide or manganese. It was found that both the fission activity in the uranium oxide and the activity induced in manganese was affected by non-thermal neutrons. An experimental correction for such effects was made by making measurements with the detectors surrounded by cadmium. After such corrections the results from three methods of procedure with the uranium oxide detectors and from the manganese detectors were consistent to within a few per cent.

  8. Concentrating Solar Power Facilities | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Facilities Concentrating Solar Power Facilities Florida Hawaii Southwest U.S.

  9. Method and Apparatus for Concentrating Vapors for Analysis

    DOE Patents [OSTI]

    Grate, Jay W.; Baldwin, David L.; Anheier, Jr., Norman C.

    2008-10-07

    An apparatus and method are disclosed for pre-concentrating gaseous vapors for analysis. The invention finds application in conjunction with, e.g., analytical instruments where low detection limits for gaseous vapors are desirable. Vapors sorbed and concentrated within the bed of the apparatus can be thermally desorbed achieving at least partial separation of vapor mixtures. The apparatus is suitable, e.g., for preconcentration and sample injection, and provides greater resolution of peaks for vapors within vapor mixtures, yielding detection levels that are 10-10,000 times better than for direct sampling and analysis systems. Features are particularly useful for continuous unattended monitoring applications.

  10. Laser window with annular grooves for thermal isolation

    DOE Patents [OSTI]

    Warner, B.E.; Horton, J.A.; Alger, T.W.

    1983-07-13

    A laser window or other optical element which is thermally loaded, heats up and causes optical distortions because of temperature gradients between the center and the edge. A number of annular grooves, one to three or more, are formed in the element between a central portion and edge portion, producing a web portion which concentrates the thermal gradient and thermally isolates the central portion from the edge portion, producing a uniform temperature profile across the central portion and therefore reduce the optical distortions. The grooves are narrow and closely spaced with respect to the thickness of the element, and successive grooves are formed from alternate sides of the element.

  11. METHODS AND SYSTEMS FOR CONCENTRATED SOLAR POWER - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7056 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search METHODS AND SYSTEMS FOR CONCENTRATED SOLAR

  12. Ocean thermal energy conversion

    SciTech Connect (OSTI)

    Avery, W.H.

    1983-03-17

    A brief explanation of the Ocean Thermal Energy Conversion (OTEC) concept and an estimate of the amount of energy that can be produced from the ocean resource without introducing environmental concerns are presented. Use of the OTEC system to generate electric power and products which can replace fossil fuels is shown. The OTEC program status and its prospects for the future are discussed.

  13. Thermal Reactor Safety

    SciTech Connect (OSTI)

    Not Available

    1980-06-01

    Information is presented concerning fire risk and protection; transient thermal-hydraulic analysis and experiments; class 9 accidents and containment; diagnostics and in-service inspection; risk and cost comparison of alternative electric energy sources; fuel behavior and experiments on core cooling in LOCAs; reactor event reporting analysis; equipment qualification; post facts analysis of the TMI-2 accident; and computational methods.

  14. Thermal barrier coating

    DOE Patents [OSTI]

    Bowker, Jeffrey Charles; Sabol, Stephen M.; Goedjen, John G.

    2001-01-01

    A thermal barrier coating for hot gas path components of a combustion turbine based on a zirconia-scandia system. A layer of zirconium scandate having the hexagonal Zr.sub.3 Sc.sub.4 O.sub.12 structure is formed directly on a superalloy substrate or on a bond coat formed on the substrate.

  15. Highly defective oxides as sinter resistant thermal barrier coating

    DOE Patents [OSTI]

    Subramanian, Ramesh

    2005-08-16

    A thermal barrier coating material formed of a highly defective cubic matrix structure having a concentration of a stabilizer sufficiently high that the oxygen vacancies created by the stabilizer interact within the matrix to form multi-vacancies, thereby improving the sintering resistance of the material. The concentration of stabilizer within the cubic matrix structure is greater than that concentration of stabilizer necessary to give the matrix a peak ionic conductivity value. The concentration of stabilizer may be at least 30 wt. %. Embodiments include a cubic matrix of zirconia stabilized by at least 30-50 wt. % yttria, and a cubic matrix of hafnia stabilized by at least 30-50 wt. % gadolinia.

  16. Nd{sup 3+} doped LaF{sub 3} nanoparticles as self-monitored photo-thermal agents

    SciTech Connect (OSTI)

    Rocha, Uslen; Upendra Kumar, K.; Jacinto, Carlos; Ramiro, Julio; Caamao, Antonio J.; Garca Sol, Jos; Jaque, Daniel

    2014-02-03

    In this work, we demonstrate how LaF{sub 3} nanoparticles activated with large concentrations (up to 25%) of Nd{sup 3+} ions can simultaneously operate as biologically compatible efficient nanoheaters and fluorescent nanothermometers under single beam (808?nm) infrared laser excitation. Nd{sup 3+}:LaF{sub 3} nanoparticles emerge as unique multifunctional agents that could constitute the first step towards the future development of advanced platforms capable of simultaneous deep tissue fluorescence bio-imaging and controlled photo-thermal therapies.

  17. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    DOE Solar Energy Technologies Program

    2011-10-13

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade.

  18. ARM - Measurement - Organic Carbon Concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsOrganic Carbon Concentration ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send...

  19. ARM - Measurement - Trace gas concentration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govMeasurementsTrace gas concentration ARM Data Discovery Browse Data Comments? We would love to hear from you Send us a note below or call us at 1-888-ARM-DATA. Send Measurement...

  20. Energy 101: Concentrating Solar Power

    Broader source: Energy.gov [DOE]

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power...

  1. Damage evolution and residual stresses in plasma-sprayed zirconia thermal barrier coatings.

    SciTech Connect (OSTI)

    Singh, J. P.

    1999-02-03

    Air-plasma-sprayed zirconia thermal barrier coatings were subjected to thermal cycling and residual stress evolution in thermally grown oxide scale was studied by micro- and macro-ruby fluorescence spectroscopy. The macro approach reveals that compressive stress in the oxide scale increases with increasing number of thermal cycles (and thus increasing scale thickness), reaching a value of 1.8 GPa at a scale thickness of 3-4 {micro}m (80 cycles). Micro-ruby fluorescence spectroscopy indicates that protrusions of the zirconia top coat into the bond coat act as localized areas of high stress concentration, leading to damage initiation during thermal cycling.

  2. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area...

  3. Thermal And-Or Near Infrared At Akutan Fumaroles Area (Kienholz...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Akutan Fumaroles Area (Kienholz, Et Al., 2009) Exploration...

  4. Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP) | Open...

    Open Energy Info (EERE)

    Fish Lake Valley Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Fish Lake Valley Area (DOE GTP)...

  5. Thermal And-Or Near Infrared At Fish Lake Valley Area (Deymonaz...

    Open Energy Info (EERE)

    Fish Lake Valley Area (Deymonaz, Et Al., 2008) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal And-Or Near Infrared At Fish Lake Valley...

  6. Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al...

    Open Energy Info (EERE)

    Sabin, Et Al., 2010) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Twenty-Nine Palms Area (Sabin, Et Al., 2010)...

  7. Low thermal distortion Extreme-UV lithography reticle and method

    DOE Patents [OSTI]

    Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.

    2002-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  8. Low thermal distortion extreme-UV lithography reticle

    DOE Patents [OSTI]

    Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.

    2001-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  9. Low thermal distortion extreme-UV lithography reticle

    DOE Patents [OSTI]

    Gianoulakis, Steven E.; Ray-Chaudhuri, Avijit K.

    2002-01-01

    Thermal distortion of reticles or masks can be significantly reduced by emissivity engineering, i.e., the selective placement or omission of coatings on the reticle. Reflective reticles so fabricated exhibit enhanced heat transfer thereby reducing the level of thermal distortion and ultimately improving the quality of the transcription of the reticle pattern onto the wafer. Reflective reticles include a substrate having an active region that defines the mask pattern and non-active region(s) that are characterized by a surface that has a higher emissivity than that of the active region. The non-active regions are not coated with the radiation reflective material.

  10. Underground Coal Thermal Treatment

    SciTech Connect (OSTI)

    Smith, P.; Deo, M.; Eddings, E.; Sarofim, A.; Gueishen, K.; Hradisky, M.; Kelly, K.; Mandalaparty, P.; Zhang, H.

    2012-01-11

    The long-term objective of this work is to develop a transformational energy production technology by insitu thermal treatment of a coal seam for the production of substitute natural gas (SNG) while leaving much of the coal's carbon in the ground. This process converts coal to a high-efficiency, low-GHG emitting gas fuel. It holds the potential of providing environmentally acceptable access to previously unusable coal resources. This topical report discusses the development of experimental capabilities, the collection of available data, and the development of simulation tools to obtain process thermo-chemical and geo-thermal parameters in preparation for the eventual demonstration in a coal seam. It also includes experimental and modeling studies of CO2 sequestration.

  11. Thermal synthesis apparatus

    DOE Patents [OSTI]

    Fincke, James R. [Idaho Falls, ID; Detering, Brent A. [Idaho Falls, ID

    2009-08-18

    An apparatus for thermal conversion of one or more reactants to desired end products includes an insulated reactor chamber having a high temperature heater such as a plasma torch at its inlet end and, optionally, a restrictive convergent-divergent nozzle at its outlet end. In a thermal conversion method, reactants are injected upstream from the reactor chamber and thoroughly mixed with the plasma stream before entering the reactor chamber. The reactor chamber has a reaction zone that is maintained at a substantially uniform temperature. The resulting heated gaseous stream is then rapidly cooled by passage through the nozzle, which "freezes" the desired end product(s) in the heated equilibrium reaction stage, or is discharged through an outlet pipe without the convergent-divergent nozzle. The desired end products are then separated from the gaseous stream.

  12. Thermally stable diamond brazing

    DOE Patents [OSTI]

    Radtke, Robert P. (Kingwood, TX)

    2009-02-10

    A cutting element and a method for forming a cutting element is described and shown. The cutting element includes a substrate, a TSP diamond layer, a metal interlayer between the substrate and the diamond layer, and a braze joint securing the diamond layer to the substrate. The thickness of the metal interlayer is determined according to a formula. The formula takes into account the thickness and modulus of elasticity of the metal interlayer and the thickness of the TSP diamond. This prevents the use of a too thin or too thick metal interlayer. A metal interlayer that is too thin is not capable of absorbing enough energy to prevent the TSP diamond from fracturing. A metal interlayer that is too thick may allow the TSP diamond to fracture by reason of bending stress. A coating may be provided between the TSP diamond layer and the metal interlayer. This coating serves as a thermal barrier and to control residual thermal stress.

  13. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  14. Thermally actuated thermionic switch

    DOE Patents [OSTI]

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  15. Liquid metal thermal electric converter

    DOE Patents [OSTI]

    Abbin, Joseph P.; Andraka, Charles E.; Lukens, Laurance L.; Moreno, James B.

    1989-01-01

    A liquid metal thermal electric converter which converts heat energy to electrical energy. The design of the liquid metal thermal electric converter incorporates a unique configuration which directs the metal fluid pressure to the outside of the tube which results in the structural loads in the tube to be compressive. A liquid metal thermal electric converter refluxing boiler with series connection of tubes and a multiple cell liquid metal thermal electric converter are also provided.

  16. Integrated solar thermal energy collector system

    SciTech Connect (OSTI)

    Garrison, J.D.

    1987-08-18

    A solar thermal collector system is described one of a class of devices which converts solar radiation into heat and transmits this heat to storage from whence it is utilized, comprising: an evacuated glass solar collector, the evacuated glass solar collector having a glass vacuum envelope, the upper portion of the glass vacuum envelope also serving as window to pass solar radiation, the evacuated glass solar collector having a multiplicity of substantially parallel linear adjacent concentrating troughs, each trough shaped and mirror surfaced so as concentrate solar radiation in the vacuum, the mirror surface inside the vacuum and the concentration approximately ideal, the multiplicity of substantially parallel linear adjacent troughs extending substantially over the entire length and width of the evacuated glass solar collector; a heat storage system, the heat storage system adjacent to the evacuated glass solar collector, the heat storage system having a heat storage tank which is thermally insulated, the heat storage tank containing a heat storage medium, and the heat storage system including means of removal of heat from the heat storage tank for utilization.

  17. Nitrogen concentration and isotope dataset for environmental samples from 2012 and 2013, Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jeff Heikoop; Heather Throckmorton

    2015-05-15

    Dataset includes nitrate concentrations for polygonal active layer samples, snowmelt; ammonium concentrations for active layer samples; nitrate isotopes for active layer samples, snowmelt, permafrost; ammonium isotopes for active layer samples; and nitrogen isotopes for soils and dissolved organic nitrogen extracted from soil pore waters.

  18. Development of MEMS based pyroelectric thermal energy harvesters...

    Office of Scientific and Technical Information (OSTI)

    energy converter that can be used to actively cool electronic devices, concentrated photovoltaic solar cells, computers and large waste heat producing systems, while generating ...

  19. Characterization and modeling of thermal diffusion and aggregation in nanofluids.

    SciTech Connect (OSTI)

    Gharagozloo, Patricia E.; Goodson, Kenneth E.

    2010-05-01

    Fluids with higher thermal conductivities are sought for fluidic cooling systems in applications including microprocessors and high-power lasers. By adding high thermal conductivity nanoscale metal and metal oxide particles to a fluid the thermal conductivity of the fluid is enhanced. While particle aggregates play a central role in recent models for the thermal conductivity of nanofluids, the effect of particle diffusion in a temperature field on the aggregation and transport has yet to be studied in depth. The present work separates the effects of particle aggregation and diffusion using parallel plate experiments, infrared microscopy, light scattering, Monte Carlo simulations, and rate equations for particle and heat transport in a well dispersed nanofluid. Experimental data show non-uniform temporal increases in thermal conductivity above effective medium theory and can be well described through simulation of the combination of particle aggregation and diffusion. The simulation shows large concentration distributions due to thermal diffusion causing variations in aggregation, thermal conductivity and viscosity. Static light scattering shows aggregates form more quickly at higher concentrations and temperatures, which explains the increased enhancement with temperature reported by other research groups. The permanent aggregates in the nanofluid are found to have a fractal dimension of 2.4 and the aggregate formations that grow over time are found to have a fractal dimension of 1.8, which is consistent with diffusion limited aggregation. Calculations show as aggregates grow the viscosity increases at a faster rate than thermal conductivity making the highly aggregated nanofluids unfavorable, especially at the low fractal dimension of 1.8. An optimum nanoparticle diameter for these particular fluid properties is calculated to be 130 nm to optimize the fluid stability by reducing settling, thermal diffusion and aggregation.

  20. Concentrator Photovoltaic System Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrator Photovoltaic System Basics Concentrator Photovoltaic System Basics August 20, 2013 - 4:12pm Addthis Concentrator photovoltaic (PV) systems use less solar cell material ...

  1. Arontis Solar Concentrator AB | Open Energy Information

    Open Energy Info (EERE)

    Arontis Solar Concentrator AB Jump to: navigation, search Name: Arontis Solar Concentrator AB Place: Harnosand, Sweden Zip: SE-871 31 Product: Developer of a medium-concentrating,...

  2. Solar Thermal Electric | Open Energy Information

    Open Energy Info (EERE)

    Thermal Electric Jump to: navigation, search TODO: Add description List of Solar Thermal Electric Incentives Retrieved from "http:en.openei.orgwindex.php?titleSolarThermalEl...

  3. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Motor Thermal Control Thermal Stress and Reliability for Advanced Power Electronics and Electric Machines Integrated Vehicle Thermal Management

  4. Ocean Thermal Extractable Energy Visualization: Final Technical...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ocean Thermal Extractable Energy Visualization: Final Technical Report Ocean Thermal Extractable Energy Visualization: Final Technical Report Report about the Ocean Thermal ...

  5. Methods of forming thermal management systems and thermal management methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2012-06-05

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  6. Electric Motor Thermal Management R&D (Presentation)

    SciTech Connect (OSTI)

    Bennion, K.

    2014-11-01

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, the effective thermal properties and inter-lamination thermal contact resistances were measured for different stator lamination materials. The active cooling performance of automatic transmission fluid (ATF) jets was also measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings. Ford's Mercon LV was the ATF evaluated in this study. The presentation provides an overview of prior work with a focus on describing future plans for research to be performed during FY15.

  7. Electric Motor Thermal Management R&D; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Bennion, Kevin

    2015-06-09

    Thermal constraints place significant limitations on how electric motors ultimately perform. Without the ability to remove heat, the motor cannot operate without sacrificing performance, efficiency, and reliability. Finite element analysis and computational fluid dynamics modeling approaches are being increasingly utilized in the design and analysis of electric motors. As the models become more sophisticated, it is important to have detailed and accurate knowledge of both the passive thermal performance and the active cooling performance. In this work, we provide an overview of research characterizing both passive and active thermal elements related to electric motor thermal management. To better characterize the passive thermal performance, work is being performed to measure motor material thermal properties and thermal contact resistances. The active cooling performance of automatic transmission fluid (ATF) jets is also being measured to better understand the heat transfer coefficients of ATF impinging on motor copper windings.

  8. Thermal control structure and garment

    DOE Patents [OSTI]

    Klett, James W.; Cameron, Christopher Stan

    2012-03-13

    A flexible thermally conductive structure. The structure generally includes a plurality of thermally conductive yarns, at least some of which are at least partially disposed adjacent to an elastomeric material. Typically, at least a portion of the plurality of thermally conductive yarns is configured as a sheet. The yarns may be constructed from graphite, metal, or similar materials. The elastomeric material may be formed from urethane or silicone foam that is at least partially collapsed, or from a similar material. A thermal management garment is provided, the garment incorporating a flexible thermally conductive structure.

  9. Energy 101: Concentrating Solar Power

    ScienceCinema (OSTI)

    None

    2013-05-29

    From towers to dishes to linear mirrors to troughs, concentrating solar power (CSP) technologies reflect and collect solar heat to generate electricity. A single CSP plant can generate enough power for about 90,000 homes. This video explains what CSP is, how it works, and how systems like parabolic troughs produce renewable power. For more information on the Office of Energy Efficiency and Renewable Energy's CSP research, see the Solar Energy Technology Program's Concentrating Solar Power Web page at http://www1.eere.energy.gov/solar/csp_program.html.

  10. Current Status of Concentrator Photovoltaic (CPV) Technology

    SciTech Connect (OSTI)

    Philipps, S. P.; Bett, A. W.; Horowitz, K.; Kurtz, S.

    2015-01-01

    This report describes the current status of the market and technology for concentrator photovoltaic (CPV) cells and modules. Significant progress in CPV has been achieved, including record efficiencies for modules (36.7%) and cells (46%), as well as growth of large field installations in recent years. CPV technology may also have the potential to be cost-competitive on a levelized cost of energy (LCOE) basis in regions of high direct normal irradiance (DNI). The study includes an overview of all installations larger than 1 MW, information on companies currently active in the CPV field, efficiency data, and estimates of the LCOE in different scenarios.

  11. Thermal management systems and methods

    DOE Patents [OSTI]

    Gering, Kevin L.; Haefner, Daryl R.

    2006-12-12

    A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.

  12. Funding Opportunity Announcement: Concentrating Solar Power:...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power: Advanced Projects Offering Low LCOE Opportunities Funding Opportunity Announcement: Concentrating Solar Power: Advanced Projects Offering Low LCOE ...

  13. Quantitative evaluation of ocean thermal energy conversion (OTEC): executive briefing

    SciTech Connect (OSTI)

    Gritton, E.C.; Pei, R.Y.; Hess, R.W.

    1980-08-01

    Documentation is provided of a briefing summarizing the results of an independent quantitative evaluation of Ocean Thermal Energy Conversion (OTEC) for central station applications. The study concentrated on a central station power plant located in the Gulf of Mexico and delivering power to the mainland United States. The evaluation of OTEC is based on three important issues: resource availability, technical feasibility, and cost.

  14. Thermal indicator for wells

    DOE Patents [OSTI]

    Gaven, Jr., Joseph V.; Bak, Chan S.

    1983-01-01

    Minute durable plate-like thermal indicators are employed for precision measuring static and dynamic temperatures of well drilling fluids. The indicators are small enough and sufficiently durable to be circulated in the well with drilling fluids during the drilling operation. The indicators include a heat resistant indicating layer, a coacting meltable solid component and a retainer body which serves to unitize each indicator and which may carry permanent indicator identifying indicia. The indicators are recovered from the drilling fluid at ground level by known techniques.

  15. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-01-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  16. Thermal network reduction

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1983-06-01

    A method is presented for reducing the number of elements required in a thermal network representation of a building. The method is based on matching the actual building response at two frequencies, the diurnal response and 3-day response. The procedure provides a straightforward methodology for combining all the various materials inside a discrete building zone into a few nodes while retaining a high degree of accuracy in the dynamic response. An example is given showing a comparison between a large network and the reduced network.

  17. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, J.L.; Vresk, J.

    1989-07-18

    A thermal transient anemometer is disclosed having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe. 12 figs.

  18. Response microcantilever thermal detector

    DOE Patents [OSTI]

    Cunningham, Joseph P.; Rajic, Slobodan; Datskos, Panagiotis G.; Evans III, Boyd M.

    2004-10-19

    A "folded leg" thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.

  19. Thermal transient anemometer

    DOE Patents [OSTI]

    Bailey, James L.; Vresk, Josip

    1989-01-01

    A thermal transient anemometer having a thermocouple probe which is utilized to measure the change in temperature over a period of time to provide a measure of fluid flow velocity. The thermocouple probe is located in the fluid flow path and pulsed to heat or cool the probe. The cooling of the heated probe or the heating of the cooled probe from the fluid flow over a period of time is measured to determine the fluid flow velocity. The probe is desired to be locally heated near the tip to increase the efficiency of devices incorporating the probe.

  20. Thermally switchable dielectrics

    DOE Patents [OSTI]

    Dirk, Shawn M.; Johnson, Ross S.

    2013-04-30

    Precursor polymers to conjugated polymers, such as poly(phenylene vinylene), poly(poly(thiophene vinylene), poly(aniline vinylene), and poly(pyrrole vinylene), can be used as thermally switchable capacitor dielectrics that fail at a specific temperature due to the non-conjugated precursor polymer irreversibly switching from an insulator to the conjugated polymer, which serves as a bleed resistor. The precursor polymer is a good dielectric until it reaches a specific temperature determined by the stability of the leaving groups. Conjugation of the polymer backbone at high temperature effectively disables the capacitor, providing a `built-in` safety mechanism for electronic devices.

  1. Thermal transport in tantalum oxide films for memristive applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Landon, Colin Donald; Wilke, Rudeger H. T.; Brumbach, Michael T.; Brennecka, Geoffrey L.; Blea-Kirby, Mia Angelica; Ihlefeld, Jon; Marinella, Matthew; Thomas Edwin Beechem

    2015-07-15

    The thermal conductivity of amorphous TaOx memristive films having variable oxygen content is measured using time domain thermoreflectance. Furthermore, the thermal transport is described by a two-partmodel where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. Additionally, the vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaOx switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced chargemore » state migration.« less

  2. Thermal transport in tantalum oxide films for memristive applications

    SciTech Connect (OSTI)

    Landon, Colin Donald; Wilke, Rudeger H. T.; Brumbach, Michael T.; Brennecka, Geoffrey L.; Blea-Kirby, Mia Angelica; Ihlefeld, Jon; Marinella, Matthew; Thomas Edwin Beechem

    2015-07-15

    The thermal conductivity of amorphous TaOx memristive films having variable oxygen content is measured using time domain thermoreflectance. Furthermore, the thermal transport is described by a two-partmodel where the electrical contribution is quantified via the Wiedemann-Franz relation and the vibrational contribution by the minimum thermal conductivity limit for amorphous solids. Additionally, the vibrational contribution remains constant near 0.9 W/mK regardless of oxygen concentration, while the electrical contribution varies from 0 to 3.3 W/mK. Thus, the dominant thermal carrier in TaOx switches between vibrations and charge carriers and is controllable either by oxygen content during deposition, or dynamically by field-induced charge state migration.

  3. Capacity Value of Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Madaeni, S. H.; Sioshansi, R.; Denholm, P.

    2011-06-01

    This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

  4. Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for CSP Generation

    Broader source: Energy.gov [DOE]

    In 2008, DOE issued the Advanced Heat Transfer Fluids and Novel Thermal Storage Concepts for Concentrating Solar Power (CSP) Generation funding opportunity announcement (FOA) managed by the SunShot Initiative. The following projects were selected under this competitive solicitation.

  5. Influence of grain boundary phosphorus concentration on liquid metal and hydrogen embrittlement of Monel 400

    SciTech Connect (OSTI)

    Funkenbusch, A.W.; Heldt, L.A.; Stein, D.F.

    1982-04-01

    Susceptibility to embrittlement by mercury and hydrogen was measured as affected by thermal treatment. Specimens were annealed at 900/degree/C and either quenched or furnace cooled. Fractures in air were ductile, and not affected by thermal treatment. Fractures of mercury-coated and hydrogen-charged samples were brittle and intergranular; elongation to fracture increased with increasing concentration of grain boundary phosphorus. 45 refs.

  6. Ultratough, Thermally Stable Polycrystalline Diamond/Silicon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide Nanocomposites for Drill Bits Ultratough, Thermally Stable Polycrystalline DiamondSilicon Carbide ...

  7. Thermomechanical measurements on thermal microactuators. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Thermal and mechanical measurements for the bent-beam polycrystalline silicon thermal ... SANDIA NATIONAL LABORATORIES; SILICON; VALIDATION Microactuators.; Ceramic ...

  8. Integrated Vehicle Thermal Management Systems (VTMS) Analysis...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Integrated Vehicle Thermal Management Power Electronic Thermal System Performance and Integration Characterization and Development of Advanced...

  9. Thermal Systems Process and Components Laboratory (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Thermal Systems Process and Components Laboratory at the Energy Systems Integration Facility. The focus of the Thermal Systems Process and Components Laboratory at NREL's Energy Systems Integration Facility (ESIF) is to research, develop, test, and evaluate new techniques for thermal energy storage systems that are relevant to utility-scale concentrating solar power plants. The laboratory holds test systems that can provide heat transfer fluids for the evaluation of heat exchangers and thermal energy storage devices. The existing system provides molten salt at temperatures up to 800 C. This unit is charged with nitrate salt rated to 600 C, but is capable of handling other heat transfer fluid compositions. Three additional test bays are available for future deployment of alternative heat transfer fluids such as hot air, carbon dioxide, or steam systems. The Thermal Systems Process and Components Laboratory performs pilot-scale thermal energy storage system testing through multiple charge and discharge cycles to evaluate heat exchanger performance and storage efficiency. The laboratory equipment can also be utilized to test instrument and sensor compatibility with hot heat transfer fluids. Future applications in the laboratory may include the evaluation of thermal energy storage systems designed to operate with supercritical heat transfer fluids such as steam or carbon dioxide. These tests will require the installation of test systems capable of providing supercritical fluids at temperatures up to 700 C.

  10. Electric Vehicle Battery Thermal Issues and Thermal Management Techniques (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.; Pesaran, A.; Smith, K.

    2013-07-01

    This presentation examines the issues concerning thermal management in electric drive vehicles and management techniques for improving the life of a Li-ion battery in an EDV.

  11. Cylindrical acoustic levitator/concentrator

    DOE Patents [OSTI]

    Kaduchak, Gregory; Sinha, Dipen N.

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  12. Electrokinetic concentration of charged molecules

    DOE Patents [OSTI]

    Singh, Anup K.; Neyer, David W.; Schoeniger, Joseph S.; Garguilo, Michael G.

    2002-01-01

    A method for separating and concentrating charged species from uncharged or neutral species regardless of size differential. The method uses reversible electric field induced retention of charged species, that can include molecules and molecular aggregates such as dimers, polymers, multimers, colloids, micelles, and liposomes, in volumes and on surfaces of porous materials. The retained charged species are subsequently quantitatively removed from the porous material by a pressure driven flow that passes through the retention volume and is independent of direction thus, a multi-directional flow field is not required. Uncharged species pass through the system unimpeded thus effecting a complete separation of charged and uncharged species and making possible concentration factors greater than 1000-fold.

  13. Assessment of methods for hydrogen production using concentrated solar energy

    SciTech Connect (OSTI)

    Glatzmaier, G.; Blake, D.; Showalter, S.

    1998-01-01

    The purpose of this work was to assess methods for hydrogen production using concentrated solar energy. The results of this work can be used to guide future work in the application of concentrated solar energy to hydrogen production. Specifically, the objectives were to: (1) determine the cost of hydrogen produced from methods that use concentrated solar thermal energy, (2) compare these costs to those of hydrogen produced by electrolysis using photovoltaics and wind energy as the electricity source. This project had the following scope of work: (1) perform cost analysis on ambient temperature electrolysis using the 10 MWe dish-Stirling and 200 MWe power tower technologies; for each technology, sue two cases for projected costs, years 2010 and 2020 the dish-Stirling system, years 2010 and 2020 for the power tower, (2) perform cost analysis on high temperature electrolysis using the 200 MWe power tower technology and projected costs for the year 2020, and (3) identify and describe the key technical issues for high temperature thermal dissociation and the thermochemical cycles.

  14. Thermal Management of Power Electronics and Electric Motors for Electric-Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2014-09-01

    This presentation is an overview of the power electronics and electric motor thermal management and reliability activities at NREL. The focus is on activities funded by the Department of Energy Vehicle Technologies Office Advanced Power Electronics and Electric Motors Program.

  15. ACTION CONCENTRATION FOR MIXTURES OF VOLATILE ORGANIC COMPOUNDS (VOC) & METHANE & HYDROGEN

    SciTech Connect (OSTI)

    MARUSICH, R.M.

    2006-07-10

    Waste containers may contain volatile organic compounds (VOCs), methane, hydrogen and possibly propane. These constituents may occur individually or in mixtures. Determining if a waste container contains a flammable concentration of flammable gases and vapors (from VOCs) is important to the safety of the handling, repackaging and shipping activities. This report provides the basis for determining the flammability of mixtures of flammable gases and vapors. The concentration of a mixture that is at the lowest flammability limit for that mixture is called the action concentration. The action concentration can be determined using total VOC concentrations or actual concentration of each individual VOC. The concentrations of hydrogen and methane are included with the total VOC or individual VOC concentration to determine the action concentration. Concentrations below this point are not flammable. Waste containers with gas/vapor concentrations at or above the action concentration are considered flammable.

  16. Thermal protection apparatus

    DOE Patents [OSTI]

    Bennett, Gloria A.; Moore, Troy K.

    1988-01-01

    An apparatus for thermally protecting heat sensitive components of tools. The apparatus comprises a Dewar for holding the heat sensitive components. The Dewar has spaced-apart inside and outside walls, an open top end and a bottom end. An insulating plug is located in the top end. The inside wall has portions defining an inside wall aperture located at the bottom of the Dewar and the outside wall has portions defining an outside wall aperture located at the bottom of the Dewar. A bottom connector has inside and outside components. The inside component sealably engages the inside wall aperture and the outside component sealably engages the outside wall aperture. The inside component is operatively connected to the heat sensitive components and to the outside component. The connections can be made with optical fibers or with electrically conducting wires.

  17. THERMALLY OPERATED VAPOR VALVE

    DOE Patents [OSTI]

    Dorward, J.G. Jr.

    1959-02-10

    A valve is presented for use in a calutron to supply and control the vapor to be ionized. The invention provides a means readily operable from the exterior of the vacuum tank of the apparatuss without mechanical transmission of forces for the quick and accurate control of the ionizing arc by a corresponding control of gas flow theretos thereby producing an effective way of carefully regulating the operation of the calutron. The invention consists essentially of a tube member extending into the charge bottle of a calutron devices having a poppet type valve closing the lower end of the tube. An electrical heating means is provided in the valve stem to thermally vary the length of the stem to regulate the valve opening to control the flow of material from the charge bottle.

  18. SUPERFAST THERMALIZATION OF PLASMA

    DOE Patents [OSTI]

    Chang, C.C.

    1962-06-12

    A method is given for the superfast thermalization of plasma by shock conversion of the kinetic energy stored in rotating plasma rings or plasmoids colliding at near supersonic speeds in a containment field to heat energy in the resultant confined plasma mass. The method includes means for generating rotating plasmoids at the opposite ends of a Pyrotron or Astron containment field. The plasmoids are magnetically accelerated towards each other into the opposite ends of time containment field. During acceleration of the plasmoids toward the center of the containment field, the intensity of the field is sequentially increased to adiabatically compress the plasmoids and increase the plasma energy. The plasmoids hence collide with a violent shock at the eenter of the containment field, causing the substantial kinetic energy stored in the plasmoids to be converted to heat in the resultant plasma mass. (AEC)

  19. Thermally stabilized heliostat

    DOE Patents [OSTI]

    Anderson, Alfred J.

    1983-01-01

    An improvement in a heliostat having a main support structure and pivoting and tilting motors and gears and a mirror module for reflecting solar energy onto a collector, the improvement being characterized by an internal support structure within each mirror module and front and back sheets attached to the internal support structure, the front and back sheets having the same coefficient of thermal expansion such that no curvature is induced by temperature change, and a layer of adhesive adhering the mirror to the front sheet. The adhesive is water repellent and has adequate set strength to support the mirror but has sufficient shear tolerance to permit the differential expansion of the mirror and the front sheet without inducing stresses or currature effect. The adhesive also serves to dampen fluttering of the mirror and to protect the mirror backside against the adverse effects of weather. Also disclosed are specific details of the preferred embodiment.

  20. Thermal barrier coatings

    DOE Patents [OSTI]

    Alvin, Mary Anne

    2010-06-22

    This disclosure addresses the issue of providing a metallic-ceramic overlay coating that potentially serves as an interface or bond coat layer to provide enhanced oxidation resistance to the underlying superalloy substrate via the formation of a diffusion barrier regime within the supporting base material. Furthermore, the metallic-ceramic coating is expected to limit the growth of a continuous thermally grown oxide (TGO) layer that has been primarily considered to be the principal cause for failure of existing TBC systems. Compositional compatibility of the metallic-ceramic with traditional yttria-stabilized zirconia (YSZ) top coats is provided to further limit debond or spallation of the coating during operational use. A metallic-ceramic architecture is disclosed wherein enhanced oxidation resistance is imparted to the surface of nickel-based superalloy or single crystal metal substrate, with simultaneous integration of the yttria stabilized zirconia (YSZ) within the metallic-ceramic overlayer.

  1. Overview of solar thermal technologies

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar-thermal overview section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  2. ZPPR FUEL ELEMENT THERMAL STRESS-STRAIN ANALYSIS

    SciTech Connect (OSTI)

    Charles W. Solbrig; Jason Andrus; Chad Pope

    2014-04-01

    The design temperature of high plutonium concentration ZPPR fuel assemblies is 600 degrees C. Cladding integrity of the 304L stainless steel cladding is a significant concern with this fuel since even small holes can lead to substantial fuel degradation. Since the fuel has a higher coefficient of thermal expansion than the cladding, an investigation of the stress induced in the cladding due to the differential thermal expansion of fuel and cladding up to the design temperature was conducted. Small holes in the cladding envelope would be expected to lead to the fuel hydriding and oxidizing into a powder over a long period of time. This is the same type of chemical reaction chain that exists in the degradion of the high uranium concentration ZPPR fuel. Unfortunately, the uranium fuel was designed with vents which allowed this degradation to occur. The Pu cladding is sealed so only fuel with damaged cladding would be subject to this damage. The thermal stresses that can be developed in the fuel cladding have been calculated in in this paper and compared to the ultimate tensile stress of the cladding. The conclusion is drawn that thermal stresses cannot induce holes in the cladding even for the highest storage temperatures predicted in calculations (292C). In fact, thermal stress can not cause cladding failure as long as the fuel temperatures are below the design limit of 600 degrees C (1,112 degrees F).

  3. Plates for vacuum thermal fusion

    DOE Patents [OSTI]

    Davidson, James C. (Livermore, CA); Balch, Joseph W. (Livermore, CA)

    2002-01-01

    A process for effectively bonding arbitrary size or shape substrates. The process incorporates vacuum pull down techniques to ensure uniform surface contact during the bonding process. The essence of the process for bonding substrates, such as glass, plastic, or alloys, etc., which have a moderate melting point with a gradual softening point curve, involves the application of an active vacuum source to evacuate interstices between the substrates while at the same time providing a positive force to hold the parts to be bonded in contact. This enables increasing the temperature of the bonding process to ensure that the softening point has been reached and small void areas are filled and come in contact with the opposing substrate. The process is most effective where at least one of the two plates or substrates contain channels or grooves that can be used to apply vacuum between the plates or substrates during the thermal bonding cycle. Also, it is beneficial to provide a vacuum groove or channel near the perimeter of the plates or substrates to ensure bonding of the perimeter of the plates or substrates and reduce the unbonded regions inside the interior region of the plates or substrates.

  4. Heat Transfer and Latent Heat Storage in Inorganic Molten Salts for Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Mathur, Anoop

    2013-08-14

    A key technological issue facing the success of future Concentrating Solar Thermal Power (CSP) plants is creating an economical Thermal Energy Storage (TES) system. Current TES systems use either sensible heat in fluids such as oil, or molten salts, or use thermal stratification in a dual-media consisting of a solid and a heat-transfer fluid. However, utilizing the heat of fusion in inorganic molten salt mixtures in addition to sensible heat , as in a Phase change material (PCM)-based TES, can significantly increase the energy density of storage requiring less salt and smaller containers. A major issue that is preventing the commercial use of PCM-based TES is that it is difficult to discharge the latent heat stored in the PCM melt. This is because when heat is extracted, the melt solidifies onto the heat exchanger surface decreasing the heat transfer. Even a few millimeters of thickness of solid material on heat transfer surface results in a large drop in heat transfer due to the low thermal conductivity of solid PCM. Thus, to maintain the desired heat rate, the heat exchange area must be large which increases cost. This project demonstrated that the heat transfer coefficient can be increase ten-fold by using forced convection by pumping a hyper-eutectic salt mixture over specially coated heat exchanger tubes. However,only 15% of the latent heat is used against a goal of 40% resulting in a projected cost savings of only 17% against a goal of 30%. Based on the failure mode effect analysis and experience with pumping salt at near freezing point significant care must be used during operation which can increase the operating costs. Therefore, we conclude the savings are marginal to justify using this concept for PCM-TES over a two-tank TES. The report documents the specialty coatings, the composition and morphology of hypereutectic salt mixtures and the results from the experiment conducted with the active heat exchanger along with the lessons learnt during experimentation.

  5. Concentrating Solar Power Competitive Awards | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    new concepts in the collector, receiver, thermal storage, heat transfer fluids and power cycle subsystems, including technologies that will lower operations and management costs. ...

  6. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    experimenting with molten nitrate salt because of its superior heat-transfer and energy-storage capabilities. The energy-storage capability, or thermal storage, allows the system...

  7. Thermally robust semiconductor optical amplifiers and laser diodes

    DOE Patents [OSTI]

    Dijaili, Sol P.; Patterson, Frank G.; Walker, Jeffrey D.; Deri, Robert J.; Petersen, Holly; Goward, William

    2002-01-01

    A highly heat conductive layer is combined with or placed in the vicinity of the optical waveguide region of active semiconductor components. The thermally conductive layer enhances the conduction of heat away from the active region, which is where the heat is generated in active semiconductor components. This layer is placed so close to the optical region that it must also function as a waveguide and causes the active region to be nearly the same temperature as the ambient or heat sink. However, the semiconductor material itself should be as temperature insensitive as possible and therefore the invention combines a highly thermally conductive dielectric layer with improved semiconductor materials to achieve an overall package that offers improved thermal performance. The highly thermally conductive layer serves two basic functions. First, it provides a lower index material than the semiconductor device so that certain kinds of optical waveguides may be formed, e.g., a ridge waveguide. The second and most important function, as it relates to this invention, is that it provides a significantly higher thermal conductivity than the semiconductor material, which is the principal material in the fabrication of various optoelectronic devices.

  8. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, J.J.; Owens, W.J.

    1985-04-30

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprises high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure. 2 figs.

  9. Peg supported thermal insulation panel

    DOE Patents [OSTI]

    Nowobilski, Jeffert J.; Owens, William J.

    1985-01-01

    A thermal insulation panel which is lightweight, load bearing, accommodates thermal stress, and has excellent high temperature insulation capability comprising high performance insulation between thin metal walls supported by high density, high strength glass pegs made in compliance with specified conditions of time, temperature and pressure.

  10. Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario

    SciTech Connect (OSTI)

    Denholm, P.; Wan, Y. H.; Hummon, M.; Mehos, M.

    2013-03-01

    This analysis evaluates CSP with TES in a scenario where California derives 33% of its electricity from renewable energy sources. It uses a commercial grid simulation tool to examine the avoided operational and capacity costs associated with CSP and compares this value to PV and a baseload generation with constant output. Overall, the analysis demonstrates several properties of dispatchable CSP, including the flexibility to generate during periods of high value and avoid generation during periods of lower value. Of note in this analysis is the fact that significant amount of operational value is derived from the provision of reserves in the case where CSP is allowed to provide these services. This analysis also indicates that the 'optimal' configuration of CSP could vary as a function of renewable penetration, and each configuration will need to be evaluated in terms of its ability to provide dispatchable energy, reserves, and firm capacity. The model can be used to investigate additional scenarios involving alternative technology options and generation mixes, applying these scenarios within California or in other regions of interest.

  11. Analysis of Concentrating Solar Power with Thermal Energy Storage in a California 33% Renewable Scenario

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analysis of Coconut-Derived Biodiesel and Conventional Diesel Fuel Samples from the Philippines Task 2 Final Report T.L. Alleman and R.L. McCormick Milestone Report NREL/MP-540-38643 January 2006 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 Analysis of Coconut-

  12. Funding Opportunity Announcement: CSP: Concentrating Optics for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS) Funding Opportunity Announcement: CSP: Concentrating Optics for Lower Levelized Energy Costs (COLLECTS) ...

  13. Superhydrophobic analyte concentration utilizing colloid-pillar...

    Office of Scientific and Technical Information (OSTI)

    Superhydrophobic analyte concentration utilizing colloid-pillar array SERS substrates Citation Details In-Document Search Title: Superhydrophobic analyte concentration utilizing ...

  14. Research Staff | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn more about the expertise and technical skills of concentrating solar power (CSP) ... Systems R&D group at NREL, which includes the Concentrating Solar Power (CSP) Program. ...

  15. Concentrating Technologies LLC | Open Energy Information

    Open Energy Info (EERE)

    LLC Place: Owens Crossroads, Alabama Zip: 35763 Product: Developer of concentrating photovoltaic technology (CPV). References: Concentrating Technologies LLC1 This article is a...

  16. NREL: Concentrating Solar Power Research - Staff Biographies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn more about the expertise and technical skills of NREL's concentrating solar power ... Victor primarily works with the Concentrated Solar Power group but also works with several ...

  17. NREL: Concentrating Solar Power Research - Laboratory Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To research, develop, and test a variety of concentrating solar power technologies, NREL features the following laboratory capabilities: Concentrated Solar Radiation Facility Large ...

  18. Concentrating Solar Power Commercial Application Study: Reducing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation Report to Congress U.S. Department of Energy ...

  19. Exploratory study of complexant concentrate waste processing

    SciTech Connect (OSTI)

    Lumetta, G.J.; Bray, L.A.; Kurath, D.E.; Morrey, J.R.; Swanson, J.L.; Wester, D.W.

    1993-02-01

    The purpose of this exploratory study, conducted by Pacific Northwest Laboratory for Westinghouse Hanford Company, was to determine the effect of applying advanced chemical separations technologies to the processing and disposal of high-level wastes (HLW) stored in underground tanks. The major goals of this study were to determine (1) if the wastes can be partitioned into a small volume of HLW plus a large volume of low-level waste (LLW), and (2) if the activity in the LLW can be lowered enough to meet NRC Class LLW criteria. This report presents the results obtained in a brief scouting study of various processes for separating radionuclides from Hanford complexant concentrate (CC) waste.

  20. Thermal energy storage apparatus

    SciTech Connect (OSTI)

    Thoma, P.E.

    1980-04-22

    A thermal energy storage apparatus and method employs a container formed of soda lime glass and having a smooth, defectfree inner wall. The container is filled substantially with a material that can be supercooled to a temperature greater than 5* F., such as ethylene carbonate, benzophenone, phenyl sulfoxide, di-2-pyridyl ketone, phenyl ether, diphenylmethane, ethylene trithiocarbonate, diphenyl carbonate, diphenylamine, 2benzoylpyridine, 3-benzoylpyridine, 4-benzoylpyridine, 4methylbenzophenone, 4-bromobenzophenone, phenyl salicylate, diphenylcyclopropenone, benzyl sulfoxide, 4-methoxy-4prmethylbenzophenone, n-benzoylpiperidine, 3,3pr,4,4pr,5 pentamethoxybenzophenone, 4,4'-bis-(Dimethylamino)-benzophenone, diphenylboron bromide, benzalphthalide, benzophenone oxime, azobenzene. A nucleating means such as a seed crystal, a cold finger or pointed member is movable into the supercoolable material. A heating element heats the supercoolable material above the melting temperature to store heat. The material is then allowed to cool to a supercooled temperature below the melting temperature, but above the natural, spontaneous nucleating temperature. The liquid in each container is selectively initiated into nucleation to release the heat of fusion. The heat may be transferred directly or through a heat exchange unit within the material.

  1. Microelectromechanical (MEM) thermal actuator

    DOE Patents [OSTI]

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  2. Solar Thermal Demonstration Project

    SciTech Connect (OSTI)

    Biesinger, K.; Cuppett, D.; Dyer, D.

    2012-01-30

    HVAC Retrofit and Energy Efficiency Upgrades at Clark High School, Las Vegas, Nevada The overall objectives of this project are to increase usage of alternative/renewable fuels, create a better and more reliable learning environment for the students, and reduce energy costs. Utilizing the grant resources and local bond revenues, the District proposes to reduce electricity consumption by installing within the existing limited space, one principal energy efficient 100 ton adsorption chiller working in concert with two 500 ton electric chillers. The main heating source will be primarily from low nitrogen oxide (NOX), high efficiency natural gas fired boilers. With the use of this type of chiller, the electric power and cost requirements will be greatly reduced. To provide cooling to the information technology centers and equipment rooms of the school during off-peak hours, the District will install water source heat pumps. In another measure to reduce the cooling requirements at Clark High School, the District will replace single pane glass and metal panels with ‘Kalwall’ building panels. An added feature of the “Kalwall” system is that it will allow for natural day lighting in the student center. This system will significantly reduce thermal heat/cooling loss and control solar heat gain, thus delivering significant savings in heating ventilation and air conditioning (HVAC) costs.

  3. Project Profile: High-Temperature Thermal Array for Next-Generation Solar Thermal Power Production

    Broader source: Energy.gov [DOE]

    The Los Alamos National Laboratory (ORNL), under the National Laboratory R&D competitive funding opportunity, is developing a megawatt-scale heat pipe–based technology designed to bridge the heliostat reflector field and the power cycle by replacing both the solar receiver and the heat transfer fluid (HTF) system used in concentrating solar power (CSP) systems. The technology, called the high-temperature thermal array, aims to achieve the SunShot Initiative's goals by addressing technical challenges, reducing capital and operating expenses, and increasing net photon-to-electricity conversion efficiency.

  4. The Rheology of Concentrated Suspensions

    SciTech Connect (OSTI)

    Andreas Acrivos

    2004-09-07

    Research program on the rheological properties of flowing suspensions. The primary purpose of the research supported by this grant was to study the flow characteristics of concentrated suspensions of non-colloidal solid particles and thereby construct a comprehensive and robust theoretical framework for modeling such systems quantitatively. At first glance, this seemed like a modest goal, not difficult to achieve, given that such suspensions were viewed simply as Newtonian fluids with an effective viscosity equal to the product of the viscosity of the suspending fluid times a function of the particle volume fraction. But thanks to the research findings of the Principal Investigator and of his Associates, made possible by the steady and continuous support which the PI received from the DOE Office of Basic Energy Sciences, the subject is now seen to be more complicated and therefore much more interesting in that concentrated suspensions have been shown to exhibit fascinating and unique rheological properties of their own that have no counterpart in flowing Newtonian or even non-Newtonian (polymeric) fluids. In fact, it is generally acknowledged that, as the result of these investigations for which the PI received the 2001 National Medal of Science, our understanding of how suspensions behave under flow is far more detailed and comprehensive than was the case even as recently as a decade ago. Thus, given that the flow of suspensions plays a crucial role in many diverse physical processes, our work has had a major and lasting impact in a subject having both fundamental as well as practical importance.

  5. DISSOLVED CONCENTRATION LIMITS OF RADIOACTIVE ELEMENTS

    SciTech Connect (OSTI)

    P. Bernot

    2005-07-13

    The purpose of this study is to evaluate dissolved concentration limits (also referred to as solubility limits) of elements with radioactive isotopes under probable repository conditions, based on geochemical modeling calculations using geochemical modeling tools, thermodynamic databases, field measurements, and laboratory experiments. The scope of this activity is to predict dissolved concentrations or solubility limits for elements with radioactive isotopes (actinium, americium, carbon, cesium, iodine, lead, neptunium, plutonium, protactinium, radium, strontium, technetium, thorium, and uranium) relevant to calculated dose. Model outputs for uranium, plutonium, neptunium, thorium, americium, and protactinium are provided in the form of tabulated functions with pH and log fCO{sub 2} as independent variables, plus one or more uncertainty terms. The solubility limits for the remaining elements are either in the form of distributions or single values. Even though selection of an appropriate set of radionuclides documented in Radionuclide Screening (BSC 2002 [DIRS 160059]) includes actinium, transport of Ac is not modeled in the total system performance assessment for the license application (TSPA-LA) model because of its extremely short half-life. Actinium dose is calculated in the TSPA-LA by assuming secular equilibrium with {sup 231}Pa (Section 6.10); therefore, Ac is not analyzed in this report. The output data from this report are fundamental inputs for TSPA-LA used to determine the estimated release of these elements from waste packages and the engineered barrier system. Consistent modeling approaches and environmental conditions were used to develop solubility models for the actinides discussed in this report. These models cover broad ranges of environmental conditions so they are applicable to both waste packages and the invert. Uncertainties from thermodynamic data, water chemistry, temperature variation, and activity coefficients have been quantified or otherwise addressed.

  6. Thermal to electricity conversion using thermal magnetic properties

    DOE Patents [OSTI]

    West, Phillip B [Idaho Falls, ID; Svoboda, John [Idaho Falls, ID

    2010-04-27

    A system for the generation of Electricity from Thermal Energy using the thermal magnetic properties of a Ferromagnetic, Electrically Conductive Material (FECM) in one or more Magnetic Fields. A FECM is exposed to one or more Magnetic Fields. Thermal Energy is applied to a portion of the FECM heating the FECM above its Curie Point. The FECM, now partially paramagnetic, moves under the force of the one or more Magnetic Fields. The movement of the FECM induces an electrical current through the FECM, generating Electricity.

  7. Concentrating Solar Deployment System (CSDS) -- A New Model for Estimating U.S. Concentrating Solar Power (CSP) Market Potential: Preprint

    SciTech Connect (OSTI)

    Blair, N.; Mehos, M.; Short, W.; Heimiller, D.

    2006-04-01

    This paper presents the Concentrating Solar Deployment System Model (CSDS). CSDS is a multiregional, multitime-period, Geographic Information System (GIS), and linear programming model of capacity expansion in the electric sector of the United States. CSDS is designed to address the principal market and policy issues related to the penetration of concentrating solar power (CSP) electric-sector technologies. This paper discusses the current structure, capabilities, and assumptions of the model. Additionally, results are presented for the impact of continued research and development (R&D) spending, an extension to the investment tax credit (ITC), and use of a production tax credit (PTC). CSDS is an extension of the Wind Deployment System (WinDS) model created at the National Renewable Energy Laboratory (NREL). While WinDS examines issues related to wind, CSDS is an extension to analyze similar issues for CSP applications. Specifically, a detailed representation of parabolic trough systems with thermal storage has been developed within the existing structure.

  8. Study of the shape of an optical window in a super-resolution state by electromagnetic-thermal coupled simulation: Effects of melting of an active layer in an optical disc

    SciTech Connect (OSTI)

    Sano, Haruyuki; Shima, Takayuki; Kuwahara, Masashi; Fujita, Yoshiya; Uchiyama, Munehisa; Aono, Yoshiyuki

    2014-04-21

    We performed a multi-physics simulation for the propagation of electromagnetic waves and heat conduction in a super-resolution optical disc that includes an active layer of InSb. Because the change in the optical constant of InSb due to the phase transition is taken into account, the melting of the active layer can be realistically simulated in our calculation. It was found that in the case of an incident light power (P) of 2 mW, a profile of the electric field intensity transmitted through the InSb layer has an asymmetric shape with a narrow peak. This beam-narrowing was suggested to be an essential mechanism of the super-resolution, because a narrower light beam allows the detection of a smaller pit structure than the optical diffraction limit. This beam-narrowing was found to be originating from a small molten region produced in the InSb layer, which works as a mask for light exposure.

  9. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1985-06-18

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls, Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  10. Semi-transparent solar energy thermal storage device

    DOE Patents [OSTI]

    McClelland, John F.

    1986-04-08

    A visually transmitting solar energy absorbing thermal storage module includes a thermal storage liquid containment chamber defined by an interior solar absorber panel, an exterior transparent panel having a heat mirror surface substantially covering the exterior surface thereof and associated top, bottom and side walls. Evaporation of the thermal storage liquid is controlled by a low vapor pressure liquid layer that floats on and seals the top surface of the liquid. Porous filter plugs are placed in filler holes of the module. An algicide and a chelating compound are added to the liquid to control biological and chemical activity while retaining visual clarity. A plurality of modules may be supported in stacked relation by a support frame to form a thermal storage wall structure.

  11. Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Engineering New Thermochemical Storage | Department of Energy Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for Engineering New Thermochemical Storage The Concentrating Solar Power: Efficiently Leveraging Equilibrium Mechanisms for

  12. Advanced Wellbore Thermal Simulator

    Energy Science and Technology Software Center (OSTI)

    1992-03-04

    GEOTEMP2, which is based on the earlier GEOTEMP program, is a wellbore thermal simulator designed for geothermal well drilling and production applications. The code treats natural and forced convection and conduction within the wellbore and heat conduction within the surrounding rock matrix. A variety of well operations can be modeled including injection, production, forward and reverse circulation with gas or liquid, gas or liquid drilling, and two-phase steam injection and production. Well completion with severalmore » different casing sizes and cement intervals can be modeled. The code allows variables, such as flow rate, to change with time enabling a realistic treatment of well operations. Provision is made in the flow equations to allow the flow areas of the tubing to vary with depth in the wellbore. Multiple liquids can exist in GEOTEMP2 simulations. Liquid interfaces are tracked through the tubing and annulus as one liquid displaces another. GEOTEMP2, however, does not attempt to simulate displacement of liquids with a gas or two-phase steam or vice versa. This means that it is not possible to simulate an operation where the type of drilling fluid changes, e.g. mud going to air. GEOTEMP2 was designed primarily for use in predicting the behavior of geothermal wells, but it is flexible enough to handle many typical drilling, production, and injection problems in the oil industry as well. However, GEOTEMP2 does not allow the modeling of gas-filled annuli in production or injection problems. In gas or mist drilling, no radiation losses are included in the energy balance. No attempt is made to model flow in the formation. Average execution time is 50 CP seconds on a CDC CYBER170. This edition of GEOTEMP2 is designated as Version 2.0 by the contributors.« less

  13. REACTOR GROUT THERMAL PROPERTIES

    SciTech Connect (OSTI)

    Steimke, J.; Qureshi, Z.; Restivo, M.; Guerrero, H.

    2011-01-28

    Savannah River Site has five dormant nuclear production reactors. Long term disposition will require filling some reactor buildings with grout up to ground level. Portland cement based grout will be used to fill the buildings with the exception of some reactor tanks. Some reactor tanks contain significant quantities of aluminum which could react with Portland cement based grout to form hydrogen. Hydrogen production is a safety concern and gas generation could also compromise the structural integrity of the grout pour. Therefore, it was necessary to develop a non-Portland cement grout to fill reactors that contain significant quantities of aluminum. Grouts generate heat when they set, so the potential exists for large temperature increases in a large pour, which could compromise the integrity of the pour. The primary purpose of the testing reported here was to measure heat of hydration, specific heat, thermal conductivity and density of various reactor grouts under consideration so that these properties could be used to model transient heat transfer for different pouring strategies. A secondary purpose was to make qualitative judgments of grout pourability and hardened strength. Some reactor grout formulations were unacceptable because they generated too much heat, or started setting too fast, or required too long to harden or were too weak. The formulation called 102H had the best combination of characteristics. It is a Calcium Alumino-Sulfate grout that contains Ciment Fondu (calcium aluminate cement), Plaster of Paris (calcium sulfate hemihydrate), sand, Class F fly ash, boric acid and small quantities of additives. This composition afforded about ten hours of working time. Heat release began at 12 hours and was complete by 24 hours. The adiabatic temperature rise was 54 C which was within specification. The final product was hard and displayed no visible segregation. The density and maximum particle size were within specification.

  14. Ceramic thermal barrier coating for rapid thermal cycling applications

    DOE Patents [OSTI]

    Scharman, Alan J.; Yonushonis, Thomas M.

    1994-01-01

    A thermal barrier coating for metal articles subjected to rapid thermal cycling includes a metallic bond coat deposited on the metal article, at least one MCrAlY/ceramic layer deposited on the bond coat, and a ceramic top layer deposited on the MCrAlY/ceramic layer. The M in the MCrAlY material is Fe, Ni, Co, or a mixture of Ni and Co. The ceramic in the MCrAlY/ceramic layer is mullite or Al.sub.2 O.sub.3. The ceramic top layer includes a ceramic with a coefficient of thermal expansion less than about 5.4.times.10.sup.-6 .degree.C.sup.-1 and a thermal conductivity between about 1 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1 and about 1.7 J sec.sup.-1 m.sup.-1 .degree.C.sup.-1.

  15. Wind loading on solar concentrators: some general considerations

    SciTech Connect (OSTI)

    Roschke, E. J.

    1984-05-01

    A survey has been completed to examine the problems and complications arising from wind loading on solar concentrators. Wind loading is site specific and has an important bearing on the design, cost, performance, operation and maintenance, safety, survival, and replacement of solar collecting systems. Emphasis herein is on paraboloidal, two-axis tracking systems. Thermal receiver problems also are discussed. Wind characteristics are discussed from a general point of view; current methods for determining design wind speed are reviewed. Aerodynamic coefficients are defined and illustrative examples are presented. Wind tunnel testing is discussed, and environmental wind tunnels are reviewed; recent results on heliostat arrays are reviewed as well. Aeroelasticity in relation to structural design is discussed briefly. Wind loads, i.e., forces and moments, are proportional to the square of the mean wind velocity. Forces are proportional to the square of concentrator diameter, and moments are proportional to the cube of diameter. Thus, wind loads have an important bearing on size selection from both cost and performance standpoints. It is concluded that sufficient information exists so that reasonably accurate predictions of wind loading are possible for a given paraboloidal concentrator configuration, provided that reliable and relevant wind conditions are specified. Such predictions will be useful to the design engineer and to the systems engineer as well. Information is lacking, however, on wind effects in field arrays of paraboloidal concentrators. Wind tunnel tests have been performed on model heliostat arrays, but there are important aerodynamic differences between heliostats and paraboloidal dishes.

  16. Solar energy concentrator design and operation. (Latest citations from the NTIS Bibliographic database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1994-04-01

    The bibliography contains citations concerning the design and operation of solar energy concentrators. Topics include system descriptions, performance evaluations, technology reviews and development studies, cost considerations, and materials aspects. Optical properties of various systems, performance simulations, fabrication techniques, and control systems are discussed. Photovoltaic and thermal systems are also considered. (Contains 250 citations and includes a subject term index and title list.)

  17. Solar energy concentrator design and operation. (Latest citations from the NTIS data base). Published Search

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    The bibliography contains citations concerning the design and operation of solar energy concentrators. Topics include system descriptions, performance evaluations, technology reviews and development studies, cost considerations, and materials aspects. Optical properties of various systems, performance simulations, fabrication techniques, and control systems are discussed. Photovoltaic and thermal systems are also considered. (Contains 250 citations and includes a subject term index and title list.)

  18. Rapid thermal processing by stamping

    DOE Patents [OSTI]

    Stradins, Pauls; Wang, Qi

    2013-03-05

    A rapid thermal processing device and methods are provided for thermal processing of samples such as semiconductor wafers. The device has components including a stamp (35) having a stamping surface and a heater or cooler (40) to bring it to a selected processing temperature, a sample holder (20) for holding a sample (10) in position for intimate contact with the stamping surface; and positioning components (25) for moving the stamping surface and the stamp (35) in and away from intimate, substantially non-pressured contact. Methods for using and making such devices are also provided. These devices and methods allow inexpensive, efficient, easily controllable thermal processing.

  19. Ocean Thermal Extractable Energy Visualization

    SciTech Connect (OSTI)

    Ascari, Matthew

    2012-10-28

    The Ocean Thermal Extractable Energy Visualization (OTEEV) project focuses on assessing the Maximum Practicably Extractable Energy (MPEE) from the world’s ocean thermal resources. MPEE is defined as being sustainable and technically feasible, given today’s state-of-the-art ocean energy technology. Under this project the OTEEV team developed a comprehensive Geospatial Information System (GIS) dataset and software tool, and used the tool to provide a meaningful assessment of MPEE from the global and domestic U.S. ocean thermal resources.

  20. Thermal properties of soils and soils testing

    SciTech Connect (OSTI)

    Not Available

    1981-02-17

    The thermal properties of soils are reviewed with reference to the use of soils as heat sources, heat sinks, or thermal storage. Specific heat and thermal conductivity are discussed. (ACR)

  1. Electric Motor Thermal Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    ape030_bennion_2012_o.pdf More Documents & Publications Electric Motor Thermal Management Electric Motor Thermal Management Vehicle Technologies Office Merit Review 2015: Electric Motor Thermal Management R&D

  2. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, D.O.; Montoya, P.C.; Wayland, J.R. Jr.

    1984-03-30

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the controlled source audio frequency magnetotelluric (CSAMT) technique is disclosed. This method includes the steps of: (1) preparing a CSAMT-determined topological resistivity map of the production field; (2) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the conate water of the production field; (3) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (4) mathematically comparing the maps from step (1) and step (3) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  3. Methods for enhancing mapping of thermal fronts in oil recovery

    DOE Patents [OSTI]

    Lee, David O.; Montoya, Paul C.; Wayland, Jr., James R.

    1987-01-01

    A method for enhancing the resistivity contrasts of a thermal front in an oil recovery production field as measured by the CSAMT technique is disclosed. This method includes the steps of: (a) preparing a CSAMT-determined topological resistivity map of the production field; (b) introducing a solution of a dopant material into the production field at a concentration effective to alter the resistivity associated with the thermal front; said dopant material having a high cation exchange capacity which might be selected from the group consisting of montmorillonite, illite, and chlorite clays; said material being soluble in the connate water of the production field; (c) preparing a CSAMT-determined topological resistivity map of the production field while said dopant material is moving therethrough; and (d) mathematically comparing the maps from step (a) and step (c) to determine the location of the thermal front. This method is effective with the steam flood, fire flood and water flood techniques.

  4. Concentrating Solar Power (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Concentrating Solar Power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet the nation's goal of making solar energy cost competitive with other energy sources by the end of the decade. The DOE SunShot Initiative is a collaborative national initiative to make solar energy technologies cost-competitive with other forms of energy by reducing the cost of solar energy systems by about 75% by the end of the decade. Reducing the total installed cost for utility-scale solar electricity to roughly 6 cents per kilowatt hour without subsidies will result in rapid, large-scale adoption of solar electricity across the United States. Reaching this goal will re-establish American technological leadership, improve the nation's energy security, and strengthen U.S. economic competitiveness in the global clean energy race. SunShot will work to bring down the full cost of solar - including the costs of solar cells and installation by focusing on four main pillars: (1) Technologies for solar cells and arrays that convert sunlight to energy; (2) Electronics that optimize the performance of the installation; (3) Improvements in the efficiency of solar manufacturing processes; and (4) Installation, design, and permitting for solar energy systems.

  5. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, Clement J.

    1992-01-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor.

  6. Planar photovoltaic solar concentrator module

    DOE Patents [OSTI]

    Chiang, C.J.

    1992-12-01

    A planar photovoltaic concentrator module for producing an electrical signal from incident solar radiation includes an electrically insulating housing having a front wall, an opposing back wall and a hollow interior. A solar cell having electrical terminals is positioned within the interior of the housing. A planar conductor is connected with a terminal of the solar cell of the same polarity. A lens forming the front wall of the housing is operable to direct solar radiation incident to the lens into the interior of the housing. A refractive optical element in contact with the solar cell and facing the lens receives the solar radiation directed into the interior of the housing by the lens and directs the solar radiation to the solar cell to cause the solar cell to generate an electrical signal. An electrically conductive planar member is positioned in the housing to rest on the housing back wall in supporting relation with the solar cell terminal of opposite polarity. The planar member is operable to dissipate heat radiated by the solar cell as the solar cell generates an electrical signal and further forms a solar cell conductor connected with the solar cell terminal to permit the electrical signal generated by the solar cell to be measured between the planar member and the conductor. 5 figs.

  7. Radiography used to image thermal explosions

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October » Radiography used to image thermal explosions Radiography used to image thermal explosions Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the explosion. October 9, 2012 Tabletop X-ray radiography of a thermal explosion. Tabletop X-ray radiography of a thermal explosion. Researchers have gained an understanding of the mechanism of thermal explosions and have created a model capturing the stages of the

  8. Thermal Analysis of Surrogate Simulated Molten Salts with Metal Chloride Impurities for Electrorefining Used Nuclear Fuel

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson; Vivek Utgikar

    2012-04-01

    This project is a fundamental study to measure thermal properties (liquidus, solidus, phase transformation, and enthalpy) of molten salt systems of interest to electrorefining operations, which are used in both the fuel cycle research & development mission and the spent fuel treatment mission of the Department of Energy. During electrorefining operations the electrolyte accumulates elements more active than uranium (transuranics, fission products and bond sodium). The accumulation needs to be closely monitored because the thermal properties of the electrolyte will change as the concentration of the impurities increases. During electrorefining (processing techniques used at the Idaho National Laboratory to separate uranium from spent nuclear fuel) it is important for the electrolyte to remain in a homogeneous liquid phase for operational safeguard and criticality reasons. The phase stability of molten salts in an electrorefiner may be adversely affected by the buildup of fission products in the electrolyte. Potential situations that need to be avoided are: (i) build up of fissile elements in the salt approaching the criticality limits specified for the vessel (ii) freezing of the salts due to change in the liquidus temperature and (iii) phase separation (non-homogenous solution) of elements. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This work describes the experimental results of typical salts compositions, consisting of chlorides of strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium (as a surrogate for both uranium and plutonium), used in the processing of used nuclear fuels. Differential scanning calorimetry was used to analyze numerous salt samples providing results on the thermal properties. The property of most interest to pyroprocessing is the liquidus temperature. It was previously known the liquidus temperature of the molten salt would change as spent fuel is processed through the Mk-IV electrorefiner. However, the extent of the increase in liquidus temperature was not known. This work is first of its kind in determining thermodynamic properties of a molten salt electrolyte containing transuranics, fission products and bond sodium. Experimental data concluded that the melting temperature of the electrolyte will become greater than the operating temperature of the Mk-IV ER during current fuel processing campaigns. Collected data also helps predict when the molten salt electrolyte will no longer be able to support electrorefining operations.

  9. Review of computational thermal-hydraulic modeling

    SciTech Connect (OSTI)

    Keefer, R.H.; Keeton, L.W.

    1995-12-31

    Corrosion of heat transfer tubing in nuclear steam generators has been a persistent problem in the power generation industry, assuming many different forms over the years depending on chemistry and operating conditions. Whatever the corrosion mechanism, a fundamental understanding of the process is essential to establish effective management strategies. To gain this fundamental understanding requires an integrated investigative approach that merges technology from many diverse scientific disciplines. An important aspect of an integrated approach is characterization of the corrosive environment at high temperature. This begins with a thorough understanding of local thermal-hydraulic conditions, since they affect deposit formation, chemical concentration, and ultimately corrosion. Computational Fluid Dynamics (CFD) can and should play an important role in characterizing the thermal-hydraulic environment and in predicting the consequences of that environment,. The evolution of CFD technology now allows accurate calculation of steam generator thermal-hydraulic conditions and the resulting sludge deposit profiles. Similar calculations are also possible for model boilers, so that tests can be designed to be prototypic of the heat exchanger environment they are supposed to simulate. This paper illustrates the utility of CFD technology by way of examples in each of these two areas. This technology can be further extended to produce more detailed local calculations of the chemical environment in support plate crevices, beneath thick deposits on tubes, and deep in tubesheet sludge piles. Knowledge of this local chemical environment will provide the foundation for development of mechanistic corrosion models, which can be used to optimize inspection and cleaning schedules and focus the search for a viable fix.

  10. Wide-range radioactive-gas-concentration detector

    DOE Patents [OSTI]

    Anderson, D.F.

    1981-11-16

    A wide-range radioactive-gas-concentration detector and monitor capable of measuring radioactive-gas concentrations over a range of eight orders of magnitude is described. The device is designed to have an ionization chamber sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel-plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel-plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization-chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  11. EMBEDDED OPTICAL SENSORS FOR THERMAL BARRIER COATINGS

    SciTech Connect (OSTI)

    David R. Clarke

    2004-12-16

    In this first year of the program we have focused on the selection of rare-earth dopants for luminescent sensing in thermal barrier coating materials, the effect of dopant concentration on several of the luminescence characteristics and initial fabrication of one type of embedded sensor, the ''red-line'' sensor. We have initially focused on erbium as the lanthanide dopant for luminescence doping of yttria-stabilized zirconia and europium as the lanthanide for luminescence doping of gadolinium zirconate. The latter exhibits a temperature-dependent luminescence lifetime up to at least 1100 C. A buried layer, ''red-line'' sensor in an electron-beam deposited yttria-stabilized zirconia coating with erbium has been demonstrated and exhibits a temperature-dependent luminescence lifetime up to at least 400 C.

  12. Thermal-Mechanical Technologies | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of thermal-mechanical research includes: Single and two phase heat transfer Nanomaterial synthesis Heat transfer fluids Engine and power electronics cooling Thermal energy...

  13. Plasma-Thermal Synthesis - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thermal Synthesis Idaho National Laboratory Contact INL About This Technology Technology Marketing Summary INL's Plasma-Thermal Synthesis process improves the conversion process...

  14. Plutonium Hexafluoride Thermal Decomposition Rates (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Plutonium Hexafluoride Thermal Decomposition Rates Citation Details In-Document Search Title: Plutonium Hexafluoride Thermal Decomposition Rates Uranium and plutonium may be ...

  15. Amulaire Thermal Technology | Open Energy Information

    Open Energy Info (EERE)

    Amulaire Thermal Technology Jump to: navigation, search Name: Amulaire Thermal Technology Address: 11555 Sorrento Valley Road Place: San Diego, California Zip: 92121 Region:...

  16. A nanostructure thermal property measurement platform. (Conference...

    Office of Scientific and Technical Information (OSTI)

    side of the central heater), and this feature permits identification of possible changes in thermal conductance along the wire and measurement of the thermal contact resistance. ...

  17. Develop & Evaluate Materials & Additives that Enhance Thermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse Develop & Evaluate Materials & Additives that Enhance Thermal & Overcharge Abuse 2011 DOE Hydrogen and Fuel ...

  18. Stewart Thermal Ltd | Open Energy Information

    Open Energy Info (EERE)

    Thermal Ltd Jump to: navigation, search Name: Stewart Thermal Ltd Place: United Kingdom Sector: Biomass Product: Provides specialist advice in the field of biomass energy....

  19. Alumni | Solid State Solar Thermal Energy Conversion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Visit Website Bo Qiu ThermalMechanical Engineer, Intel Corporation Visit Website Veronika Rinnerbauer Innovation Management, Bosch Visit Website Nitin Shukla Thermal Testing ...

  20. Nextreme Thermal Solutions Inc | Open Energy Information

    Open Energy Info (EERE)

    Nextreme Thermal Solutions Inc Jump to: navigation, search Name: Nextreme Thermal Solutions Inc Place: North Carolina Zip: 27709-3981 Product: String representation "Manufactures...

  1. Power Electronic Thermal System Performance and Integration ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronic Thermal System Performance and Integration Power Electronic Thermal System Performance and Integration 2009 DOE Hydrogen Program and Vehicle Technologies Program Annual ...

  2. Thermal Design and Characterization of Heterogeneously Integrated...

    Office of Scientific and Technical Information (OSTI)

    with integrated thermal management on wide-bandgap AlN substrates followed by GaAs substrate removal are demonstrated. Without thermal management, substrate removal after ...

  3. Thermal stability, acidity, catalytic properties, and deactivation behaviour of SAPO-5 catalysts: Effect of silicon content, acid treatment, and Na exchange

    SciTech Connect (OSTI)

    Akolekar, D.B.

    1994-09-01

    Crystalline microporous SAPO-5 molecular sieves with different silicon content, acid-treated SAPO-5 and Na-exchanged SAPO-5 were investigated for their thermal stability, and acidic and catalytic properties. SAPO-5 materials with increasing SI framework content exhibited lower thermal stability. The effects of the thermal treatment and Na exchange on the N{sub 2}-sorption capacity (at 78 K) of these materials were studied. In situ IR spectroscopic investigations of pyridine chemisorbed on the aluminophosphate catalysts revealed that the concentration of Broensted and Lewis acid sites are strongly affected by the Si content in the AlPO{sub 4} framework, acid treatment, and Na exchange. The results of temperature programmed desorption (TPD) and stepwise thermal desorption of pyridine suggest that there exists a broad site energy distribution over the aluminophosphate catalysts increases with the increasing Si content in the AlPO{sub 4} framework. The acid treatment and Na exchange showed a decrease in the number of strong acid sites on SAPO-5. The TPD of pyridine over SAPO-5, acid-treated SAPO-5, and Na-exchanged SAPO-5 indicated the presence of two types of acid sites. Correlation between the number of strong acid sites (measured in terms of the chemisorption of pyridine at 673 K) and framework charge on the aluminophosphate catalysts has also been obtained. The catalytic activities of SAPO-5 catalysts in the ethanol, n-hexane, isooctane, toluene, and o-xylene conversion reactions were studied. 22 refs., 11 figs., 5 tabs.

  4. Power Electronics Thermal Control (Presentation)

    SciTech Connect (OSTI)

    Narumanchi, S.

    2010-05-05

    Thermal management plays an important part in the cost of electric drives in terms of power electronics packaging. Very promising results have been obtained by using microporous coatings and skived surfaces in conjunction with single-phase and two-phase flows. Sintered materials and thermoplastics with embedded fibers show significant promise as thermal interface materials, or TIMs. Appropriate cooling technologies depend on the power electronics package application and reliability.

  5. Advanced Thermally Stable Jet Fuels

    SciTech Connect (OSTI)

    A. Boehman; C. Song; H. H. Schobert; M. M. Coleman; P. G. Hatcher; S. Eser

    1998-01-01

    The Penn State program in advanced thermally stable jet fuels has five components: 1) development of mechanisms of degradation and solids formation; 2) quantitative measurement of growth of sub-micrometer and micrometer-sized particles during thermal stressing; 3) characterization of carbonaceous deposits by various instrumental and microscopic methods; 4) elucidation of the role of additives in retarding the formation of carbonaceous solids; and 5) assessment of the potential of producing high yields of cycloalkanes and hydroaromatics from coal.

  6. Production of fullerenes using concentrated solar flux

    DOE Patents [OSTI]

    Fields, Clark L.; Pitts, John Roland; King, David E.; Hale, Mary Jane; Bingham, Carl E.; Lewandowski, Allan A.

    2000-01-01

    A method of producing soot containing high amounts of fullerenes comprising: providing a primary concentrator capable of impingement of a concentrated beam of sunlight onto a carbon source to cause vaporization of carbon and subsequent formation of fullerenes, or providing a solar furnace having a primary concentrator with a focal point that concentrates a solar beam of sunlight; providing a reflective secondary concentrator having an entrance aperture and an exit aperture at the focal point of the solar furnace; providing a carbon source at the exit aperture of the secondary concentrator; supplying an inert gas over the carbon source to keep the secondary concentrator free from vaporized carbon; and impinging a concentrated beam of sunlight from the secondary concentrator on the carbon source to vaporize the carbon source into a soot containing high amounts of fullerenes.

  7. Thermal Batteries for Electric Vehicles

    SciTech Connect (OSTI)

    2011-11-21

    HEATS Project: UT Austin will demonstrate a high-energy density and low-cost thermal storage system that will provide efficient cabin heating and cooling for EVs. Compared to existing HVAC systems powered by electric batteries in EVs, the innovative hot-and-cold thermal batteries-based technology is expected to decrease the manufacturing cost and increase the driving range of next-generation EVs. These thermal batteries can be charged with off-peak electric power together with the electric batteries. Based on innovations in composite materials offering twice the energy density of ice and 10 times the thermal conductivity of water, these thermal batteries are expected to achieve a comparable energy density at 25% of the cost of electric batteries. Moreover, because UT Austins thermal energy storage systems are modular, they may be incorporated into the heating and cooling systems in buildings, providing further energy efficiencies and positively impacting the emissions of current building heating/cooling systems.

  8. Ocean thermal energy conversion: report to congress - fiscal year 1982

    SciTech Connect (OSTI)

    Not Available

    1983-03-31

    National Oceanic and Atmospheric Administration (NOAA) activities related to ocean thermal energy conversion (OTEC) during fiscal year 1982 are described. The agency focus has been in the areas of providing ocean engineering and technical assistance to the Department of Energy (DOE), in streamlining the administration of the Federal OTEC licensing system, and in environmental assistance.

  9. Applied research in the solar thermal-energy-systems program

    SciTech Connect (OSTI)

    Brown, C. T.; Lefferdo, J. M.

    1981-03-01

    Within the Solar Thermal Research and Advanced Development (RAD) program a coordinated effort in materials research, fuels and chemical research and applied research is being carried out to meet the systems' needs. Each of these three program elements are described with particular attention given to the applied research activity.

  10. Thermal battery degradation mechanisms

    SciTech Connect (OSTI)

    Missert, Nancy A.; Brunke, Lyle Brent

    2015-09-01

    Diffuse reflectance IR spectroscopy (DRIFTS) was used to investigate the effect of accelerated aging on LiSi based anodes in simulated MC3816 batteries. DRIFTS spectra showed that the oxygen, carbonate, hydroxide and sulfur content of the anodes changes with aging times and temperatures, but not in a monotonic fashion that could be correlated to phase evolution. Bands associated with sulfur species were only observed in anodes taken from batteries aged in wet environments, providing further evidence for a reaction pathway facilitated by H2S transport from the cathode, through the separator, to the anode. Loss of battery capacity with accelerated aging in wet environments was correlated to loss of FeS2 in the catholyte pellets, suggesting that the major contribution to battery performance degradation results from loss of active cathode material.

  11. POTENTIAL DIMETHYLMERCURY CONCENTRATION IN WATER & ORGANIC CONDENSATE

    SciTech Connect (OSTI)

    MEACHAM, J.E.

    2004-12-28

    This document bounds potential dimethylmercury concentration in water or organic condensate that might form in ventilation systems or cooler tank regions. Dimethylmercury concentrations were extremely low and would be below drinking water standards in the water condensate.

  12. PROJECT PROFILE: Enabling High Concentration Photovoltaics with...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The efficiency and concentration of III-V multi-junction solar cells are essential to reduce the cost of high concentration photovoltaic systems (HCPV). This project will push the ...

  13. THERMOCHEMICAL HEAT STORAGE FOR CONCENTRATED SOLAR POWER

    SciTech Connect (OSTI)

    PROJECT STAFF

    2011-10-31

    Thermal energy storage (TES) is an integral part of a concentrated solar power (CSP) system. It enables plant operators to generate electricity beyond on sun hours and supply power to the grid to meet peak demand. Current CSP sensible heat storage systems employ molten salts as both the heat transfer fluid and the heat storage media. These systems have an upper operating temperature limit of around 400 C. Future TES systems are expected to operate at temperatures between 600 C to 1000 C for higher thermal efficiencies which should result in lower electricity cost. To meet future operating temperature and electricity cost requirements, a TES concept utilizing thermochemical cycles (TCs) based on multivalent solid oxides was proposed. The system employs a pair of reduction and oxidation (REDOX) reactions to store and release heat. In the storage step, hot air from the solar receiver is used to reduce the oxidation state of an oxide cation, e.g. Fe3+ to Fe2+. Heat energy is thus stored as chemical bonds and the oxide is charged. To discharge the stored energy, the reduced oxide is re-oxidized in air and heat is released. Air is used as both the heat transfer fluid and reactant and no storage of fluid is needed. This project investigated the engineering and economic feasibility of this proposed TES concept. The DOE storage cost and LCOE targets are $15/kWh and $0.09/kWh respectively. Sixteen pure oxide cycles were identified through thermodynamic calculations and literature information. Data showed the kinetics of re-oxidation of the various oxides to be a key barrier to implementing the proposed concept. A down selection was carried out based on operating temperature, materials costs and preliminary laboratory measurements. Cobalt oxide, manganese oxide and barium oxide were selected for developmental studies to improve their REDOX reaction kinetics. A novel approach utilizing mixed oxides to improve the REDOX kinetics of the selected oxides was proposed. It partially replaces some of the primary oxide cations with selected secondary cations. This causes a lattice charge imbalance and increases the anion vacancy density. Such vacancies enhance the ionic mass transport and lead to faster re-oxidation. Reoxidation fractions of Mn3O4 to Mn2O3 and CoO to Co3O4 were improved by up to 16 fold through the addition of a secondary oxide. However, no improvement was obtained in barium based mixed oxides. In addition to enhancing the short term re-oxidation kinetics, it was found that the use of mixed oxides also help to stabilize or even improve the TES properties after long term thermal cycling. Part of this improvement could be attributed to a reduced grain size in the mixed oxides. Based on the measurement results, manganese-iron, cobalt-aluminum and cobalt iron mixed oxides have been proposed for future engineering scale demonstration. Using the cobalt and manganese mixed oxides, we were able to demonstrate charge and discharge of the TES media in both a bench top fixed bed and a rotary kiln-moving bed reactor. Operations of the fixed bed configuration are straight forward but require a large mass flow rate and higher fluid temperature for charging. The rotary kiln makes direct solar irradiation possible and provides significantly better heat transfer, but designs to transport the TES oxide in and out of the reactor will need to be defined. The final reactor and system design will have to be based on the economics of the CSP plant. A materials compatibility study was also conducted and it identified Inconel 625 as a suitable high temperature engineering material to construct a reactor holding either cobalt or manganese mixed oxides. To assess the economics of such a CSP plant, a packed bed reactor model was established as a baseline. Measured cobalt-aluminum oxide reaction kinetics were applied to the model and the influences of bed properties and process parameters on the overall system design were investigated. The optimal TES system design was found to be a network of eight fixed bed reactors at 18.75 MWth each with charge and discharge temperatures between 1200 C and 600 C, which provides a constant output temperature of 900 C. The charge and discharge time are 8 hours each respectively. This design was integrated into a process flowsheet of a CSP plant and the system's economics were determined using AspenPlus and NREL's Solar Advisory Model. Storage cost is very sensitive to materials cost and was calculated to be based around $40/kWh for cobalt based mixed oxide. It can potentially decrease to $10/kWh based on reduced materials cost on a bulk scale. The corresponding calculated LCOE was between $0.22 and 0.30/kW-h. The high LCOE is a result of the high charging temperature required in this first design and the cost of cobalt oxide. It is expected that a moving bed reactor using manganese oxide will significantly improve the economics of the proposed concept.

  14. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the polycrystalline silicon test structures, as well as uncontrolled nonuniform changes in this quantity over time and during operation.

  15. Non-thermal plasma based technologies for the aftertreatment of diesel

    Broader source: Energy.gov (indexed) [DOE]

    exhaust particulates and NOx | Department of Energy Accentus PDF icon 2003_deer_mcadams.pdf More Documents & Publications MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 3 MPS213 - A Non-Thermal Plasma Application for the Royal Navy - Part 4 Plasma-Activated Lean NOx Catalysis for Heavy-Duty Diesel Emissions Control

  16. Battery Thermal Management System Design Modeling (Presentation)

    SciTech Connect (OSTI)

    Kim, G-H.; Pesaran, A.

    2006-10-01

    Presents the objectives and motivations for a battery thermal management vehicle system design study.

  17. Thermal storage module for solar dynamic receivers

    DOE Patents [OSTI]

    Beatty, Ronald L. (Farragut, TN); Lauf, Robert J. (Oak Ridge, TN)

    1991-01-01

    A thermal energy storage system comprising a germanium phase change material and a graphite container.

  18. Neutron activation analysis system

    DOE Patents [OSTI]

    Taylor, M.C.; Rhodes, J.R.

    1973-12-25

    A neutron activation analysis system for monitoring a generally fluid media, such as slurries, solutions, and fluidized powders, including two separate conduit loops for circulating fluid samples within the range of radiation sources and detectors is described. Associated with the first loop is a neutron source that emits s high flux of slow and thermal neutrons. The second loop employs a fast neutron source, the flux from which is substantially free of thermal neutrons. Adjacent to both loops are gamma counters for spectrographic determination of the fluid constituents. Other gsmma sources and detectors are arranged across a portion of each loop for deterMining the fluid density. (Official Gazette)

  19. Thermal Characterization of Molten Salt Systems

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  20. Device for thermal transfer and power generation

    DOE Patents [OSTI]

    Weaver, Stanton Earl; Arik, Mehmet

    2011-04-19

    A system is provided. The system includes a device that includes top and bottom thermally conductive substrates positioned opposite to one another, wherein a top surface of the bottom thermally conductive substrate is substantially atomically flat and a thermal blocking layer disposed between the top and bottom thermally conductive substrates. The device also includes top and bottom electrodes separated from one another between the top and bottom thermally conductive substrates to define a tunneling path, wherein the top electrode is disposed on the thermal blocking layer and the bottom electrode is disposed on the bottom thermally conductive substrate.

  1. 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Concentrating Solar Power 2014 SunShot Initiative Portfolio Book: Concentrating Solar Power The 2014 SunShot Initiative Portfolio Book outlines the progress towards the goals outlined in the SunShot Vision Study. Contents include overviews of each of SunShot's five subprogram areas, as well as a description of every active project in the SunShot's project portfolio as of May 2014. This section includes a letter from Program Manager Dr. Ranga Pitchumani providing an

  2. Thermal conductivity of semitransparent materials

    SciTech Connect (OSTI)

    Fine, H.A.; Jury, S.H.; McElroy, D.L.; Yarbrough, D.W.

    1981-01-01

    The three-region approximate solution for coupled conductive and radiative heat transfer and an exact solution for uncoupled conductive and radiative heat transfer in a grey semitransparent medium bounded by infinite parallel isothermal plates are employed to establish the dependence of the apparent thermal conductivity of semitransparent materials on other material properties and boundary conditions. An application of the analyses which uses apparent thermal conductivity versus density data to predict the dependence of apparent thermal conductivity on temperature is demonstrated. The predictions for seven sets of R-11 fiberglass and rock wool insulations agree with published measured values to within the limits of experimental error (+- 3%). Agreement for three sets of R-19 fiberglass insulations was, however, not good.

  3. Thermal trim for a luminaire

    DOE Patents [OSTI]

    Bazydola, Sarah; Ghiu, Camil-Daniel; Harrison, Robert; Jeswani, Anil

    2013-02-19

    A luminaire with a thermal pathway to reduce the junction temperature of the luminaire's light source, and methods for so doing, are disclosed. The luminaire includes a can, a light engine, and a trim, that define a substantially continuous thermal pathway from the light engine to a surrounding environment. The can defines a can cavity and includes a can end region. The light engine is within the can cavity and includes a light source and a heat sink, including a heat sink end region, coupled thereto. The trim is at least partially disposed within the can cavity and includes a first trim end region coupled to the heat sink end region and a second trim end region coupled to the can end region. Thermal interface material may be located between: the heat sink and the trim, the trim and the can, and/or the heat sink and the light source.

  4. Domestic Material Content in Molten-Salt Concentrating Solar Power Plants

    SciTech Connect (OSTI)

    Turchi, Craig; Kurup, Parthiv; Akar, Sertac; Flores, Francisco

    2015-08-26

    This study lists material composition data for two concentrating solar power (CSP) plant designs: a molten-salt power tower and a hypothetical parabolic trough plant, both of which employ a molten salt for the heat transfer fluid (HTF) and thermal storage media. The two designs have equivalent generating and thermal energy storage capacities. The material content of the saltHTF trough plant was approximately 25% lower than a comparably sized conventional oil-HTF parabolic trough plant. The significant reduction in oil, salt, metal, and insulation mass by switching to a salt-HTF design is expected to reduce the capital cost and LCOE for the parabolic trough system.

  5. Interface Science of Thermal Barrier Coatings

    SciTech Connect (OSTI)

    Besmann, Theodore M

    2009-01-01

    The drive for greater efficiency in propulsion and industrial/power production machinery has pushed metallurgy to develop ever better alloys and taken existing metallic components to their reliability threshold. Nowhere is that better illustrated than in turbine engine materials. The nickel-based superalloys currently in use for the most demanding areas of the engines melt at 1230-1315 aC and yet see combustion environments >1600 aC. The result is that these components require thermal protection to avoid failure from phenomena such as melting, creep, oxidation, thermal fatigue, and so on [1]. The stakes are high as the equipment must remain reliable for thousands of take-offs and landings for aircraft turbine engines, and up to 40,000 hours of operation in power generating land-based gas turbines [2, 3]. One of the most critical items that see both the greatest temperatures and experience the highest stresses is the hot-section turbine blades. Two strategies have been adopted to help the superalloy turbine blades survive the demanding environment: Active air cooling and ceramic thermal protection coatings, which together can reduce metal surface temperatures by >300 aC.[2]. The combination of turbine blade external film cooling and internal air cooling requires an exceptionally complex structure with flow passages and sets of small holes in the blades where air bled from a matching stage of the compressor is directed over the surface. Stecura [4] was among the first to describe a successful coating system, and today s the ceramic insulating layer alone is credited with reducing metal temperatures as much as 165 aC [1, 5].

  6. National Solar Thermal Test Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stationary PowerEnergy Conversion EfficiencySolar EnergyConcentrating Solar Power (CSP)... The NSTTF's primary goal is to provide experimental engineering data for the design, ...

  7. Active Fault Controls At High-Temperature Geothermal Sites- Prospectin...

    Open Energy Info (EERE)

    model in which recently active (Holocene) faults are preferred conduits for migration of thermal water from deep crustal depths, and we infer that the detection of sites...

  8. Multiscale modeling of thermal conductivity of high burnup structures in UO2 fuels

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; Hales, Jason D.

    2015-12-22

    The high burnup structure forming at the rim region in UO2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order to correctlymore » predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10-5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less

  9. Enhanced regeneration of degraded polymer solar cells by thermal annealing

    SciTech Connect (OSTI)

    Kumar, Pankaj; Bilen, Chhinder; Zhou, Xiaojing; Belcher, Warwick J.; Dastoor, Paul C.; Feron, Krishna

    2014-05-12

    The degradation and thermal regeneration of poly(3-hexylethiophene) (P3HT):[6,6]-phenyl-C{sub 61}-butyric acid methyl ester (PCBM) and P3HT:indene-C{sub 60} bisadduct (ICBA) polymer solar cells, with Ca/Al and Ca/Ag cathodes and indium tin oxide/poly(ethylene-dioxythiophene):polystyrene sulfonate anode have been investigated. Degradation occurs via a combination of three primary pathways: (1) cathodic oxidation, (2) active layer phase segregation, and (3) anodic diffusion. Fully degraded devices were subjected to thermal annealing under inert atmosphere. Degraded solar cells possessing Ca/Ag electrodes were observed to regenerate their performance, whereas solar cells having Ca/Al electrodes exhibited no significant regeneration of device characteristics after thermal annealing. Moreover, the solar cells with a P3HT:ICBA active layer exhibited enhanced regeneration compared to P3HT:PCBM active layer devices as a result of reduced changes to the active layer morphology. Devices combining a Ca/Ag cathode and P3HT:ICBA active layer demonstrated ∼50% performance restoration over several degradation/regeneration cycles.

  10. Biomedical Applications of Thermally Activated Shape Memory Polymers...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Lawrence Livermore National Laboratory (LLNL), Livermore, CA Sponsoring Org: ... SCIENCE; 59 BASIC BIOLOGICAL SCIENCES; POLYMERS; SHAPE; MATERIALS; CHEMISTRY; BIOLOGY

  11. Study on the thermal resistance in secondary particles chain of silica aerogel by molecular dynamics simulation

    SciTech Connect (OSTI)

    Liu, M. [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing100190 (China); Department of Physics, University of Chinese Academy of Sciences, Beijing 100049 (China); Qiu, L., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com; Zheng, X. H., E-mail: qiulin111@sina.com, E-mail: jzzhengxinghua@163.com; Zhu, J.; Tang, D. W. [Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing100190 (China)

    2014-09-07

    In this article, molecular dynamics simulation was performed to study the heat transport in secondary particles chain of silica aerogel. The two adjacent particles as the basic heat transport unit were modelled to characterize the heat transfer through the calculation of thermal resistance and vibrational density of states (VDOS). The total thermal resistance of two contact particles was predicted by non-equilibrium molecular dynamics simulations (NEMD). The defects were formed by deleting atoms in the system randomly first and performing heating and quenching process afterwards to achieve the DLCA (diffusive limited cluster-cluster aggregation) process. This kind of treatment showed a very reasonable prediction of thermal conductivity for the silica aerogels compared with the experimental values. The heat transport was great suppressed as the contact length increased or defect concentration increased. The constrain effect of heat transport was much significant when contact length fraction was in the small range (<0.5) or the defect concentration is in the high range (>0.5). Also, as the contact length increased, the role of joint thermal resistance played in the constraint of heat transport was increasing. However, the defect concentration did not affect the share of joint thermal resistance as the contact length did. VDOS of the system was calculated by numerical method to characterize the heat transport from atomic vibration view. The smaller contact length and greater defect concentration primarily affected the longitudinal acoustic modes, which ultimately influenced the heat transport between the adjacent particles.

  12. Ocean thermal energy conversion (OTEC)

    SciTech Connect (OSTI)

    Lockerby, R.W.

    1981-01-01

    Ocean thermal energy conversion (OTEC) is reviewed briefly. The two types of OTEC system (open and closed) are described and limitations are pointed out. A bibliography of 148 references on OTEC is given for the time period 1975 to 1980. Entries are arranged alphabetically according to the author's name. (MJJ)

  13. HYDROGEOLOGY OF THE THERMAL LANDSLIDE

    SciTech Connect (OSTI)

    Vantine, J.

    1985-01-22

    The large Thermal Landslide overlies the initial area of geothermal development at The Geysers. The landslide is waterbearing while the underlying Franciscan formation bedrock units are essentially non-waterbearing except where affected by hydrothermal alteration. Perched ground water moving through the landslide is heated prior to discharge as spring flow.

  14. What can recycling in thermal reactors accomplish?

    SciTech Connect (OSTI)

    Piet, Steven J.; Matthern, Gretchen E.; Jacobson, Jacob J.

    2007-07-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives. (authors)

  15. High efficiency and high concentration in photovoltaics

    SciTech Connect (OSTI)

    Yamaguchi, Masafumi; Luque, A.

    1999-10-01

    In this paper, the authors present the state-of-the-art of multijunction solar cells and the future prospects of this technology. Their use in terrestrial applications will likely be for concentrators operating at very high concentrations. Some trends are also discussed and the authors present a cost calculation showing that highly efficient cells under very high concentration would be able to produce electricity at costs competitive with electricity generation costs for some utilities.

  16. Advanced thermally stable jet fuels

    SciTech Connect (OSTI)

    Schobert, H.H.

    1999-01-31

    The Pennsylvania State University program in advanced thermally stable coal-based jet fuels has five broad objectives: (1) Development of mechanisms of degradation and solids formation; (2) Quantitative measurement of growth of sub-micrometer and micrometer-sized particles suspended in fuels during thermal stressing; (3) Characterization of carbonaceous deposits by various instrumental and microscopic methods; (4) Elucidation of the role of additives in retarding the formation of carbonaceous solids; (5) Assessment of the potential of production of high yields of cycloalkanes by direct liquefaction of coal. Future high-Mach aircraft will place severe thermal demands on jet fuels, requiring the development of novel, hybrid fuel mixtures capable of withstanding temperatures in the range of 400--500 C. In the new aircraft, jet fuel will serve as both an energy source and a heat sink for cooling the airframe, engine, and system components. The ultimate development of such advanced fuels requires a thorough understanding of the thermal decomposition behavior of jet fuels under supercritical conditions. Considering that jet fuels consist of hundreds of compounds, this task must begin with a study of the thermal degradation behavior of select model compounds under supercritical conditions. The research performed by The Pennsylvania State University was focused on five major tasks that reflect the objectives stated above: Task 1: Investigation of the Quantitative Degradation of Fuels; Task 2: Investigation of Incipient Deposition; Task 3: Characterization of Solid Gums, Sediments, and Carbonaceous Deposits; Task 4: Coal-Based Fuel Stabilization Studies; and Task 5: Exploratory Studies on the Direct Conversion of Coal to High Quality Jet Fuels. The major findings of each of these tasks are presented in this executive summary. A description of the sub-tasks performed under each of these tasks and the findings of those studies are provided in the remainder of this volume (Sections 1 through 5).

  17. Synthesis report on thermally driven coupled processes

    SciTech Connect (OSTI)

    Hardin, E.L.

    1997-10-15

    The main purpose of this report is to document observations and data on thermally coupled processes for conditions that are expected to occur within and around a repository at Yucca Mountain. Some attempt is made to summarize values of properties (e.g., thermal properties, hydrologic properties) that can be measured in the laboratory on intact samples of the rock matrix. Variation of these properties with temperature, or with conditions likely to be encountered at elevated temperature in the host rock, is of particular interest. However, the main emphasis of this report is on direct observation of thermally coupled processes at various scales. Direct phenomenological observations are vitally important in developing and testing conceptual models. If the mathematical implementation of a conceptual model predicts a consequence that is not observed, either (1) the parameters or the boundary conditions used in the calculation are incorrect or (2) the conceptual basis of the model does not fit the experiment; in either case, the model must be revised. For example, the effective continuum model that has been used in thermohydrology studies combines matrix and fracture flow in a way that is equivalent to an assumption that water is imbibed instantaneously from fractures into adjacent, partially saturated matrix. Based on this approximation, the continuum-flow response that is analogous to fracture flow will not occur until the effective continuum is almost completely saturated. This approximation is not entirely consistent with some of the experimental data presented in this report. This report documents laboratory work and field studies undertaken in FY96 and FY97 to investigate thermally coupled processes such as heat pipes and fracture-matrix coupling. In addition, relevant activities from past years, and work undertaken outside the Yucca Mountain project are summarized and discussed. Natural and artificial analogs are also discussed to provide a convenient source of material documenting the conceptual and mathematical basis for modeling coupled phenomena. The actual models and codes, and their specific empirical and theoretical bases, will be documented in a separate report to be delivered in FY99.

  18. Energy Secretary Moniz Dedicates World's Largest Concentrating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Secretary Ernest Moniz will participate today in the opening of the Ivanpah Solar Energy Generating System, the world's largest concentrating solar power (CSP) plant. As ...

  19. NREL: Learning - Concentrating Solar Power Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a generator to produce electricity. However, a new generation of power plants with concentrating solar ... Other advanced designs are experimenting with molten nitrate salt ...

  20. National solar technology roadmap: Concentrator PV

    SciTech Connect (OSTI)

    Friedman, Dan

    2007-06-01

    This roadmap addresses high-concentration (>10x) photovoltaic (PV) systems, incorporating high-efficiency III-V or silicon cells, trackers, and reflective or refractive optics.

  1. 2006 News | Concentrating Solar Power | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    December 6, 2006 CSP's Promise in Colorado Colorado's San Luis Valley picked as potential spot for concentrating solar power project. July 21, 2006 NREL Solar Researcher Honored ...

  2. NREL: Concentrating Solar Power Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Authors: Denholm, P.; Hummon, M. Publication Date: February 2013 The Potential Role of Concentrating Solar Power in Enabling High Renewables Scenarios in the United States NREL ...

  3. NREL: Concentrating Solar Power Research - Research Expertise

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Exploration of advanced components and technologies also provide a means for expanding ... Printable Version Concentrating Solar Power Research Home Projects Research Staff Working ...

  4. Concentrating solar power | Open Energy Information

    Open Energy Info (EERE)

    Concentrating solar power (CSP) offers a utility-scale, firm, dispatchable renewable energy option that can help meet our nation's demand for electricity. CSP plants produce...

  5. Cyclic Concentration Measurements for Characterizing Pulsating Flow

    SciTech Connect (OSTI)

    Bamberger, Judith A.

    2013-07-07

    Slurry mixed in vessels via pulse jet mixers has a periodic, rather than steady, concentration profile. Measurements of local concentration taken at the center of the tank at a range of elevations within the mixed region were analyzed to obtain a greater understanding of how the periodic pulse jet mixing cycle affects the local concentration. Data were obtained at the critical suspension velocity, when all solids are suspended at the end of the pulse. The data at a range of solids loadings are analyzed to observe the effect of solids concentration during the suspension and settling portions of the mixing cycle.

  6. OpenEI Community - Concentrated Solar Power

    Open Energy Info (EERE)

    groupbig-clean-data" target"blank">read more

    Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  7. Concentrated Solar Power | OpenEI Community

    Open Energy Info (EERE)

    and Energy Efficiency. Links: Big Clean Data group on linkedin Big Data Concentrated Solar Power DataAnalysis energy efficiency energy storage expert systems machine learning...

  8. Cost Competitive Electricity from Photovoltaic Concentrators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cost Competitive Electricity from Photovoltaic Concentrators Called 'Imminent' July 13, ... solar cells will reduce the cost of electricity from sunlight to competitive levels ...

  9. NREL: Concentrating Solar Power Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your email address: Your message: Send Message Printable Version Concentrating Solar Power Research Home Projects Research Staff Working with Us Data & Resources Publications...

  10. NREL: Concentrating Solar Power Research - Technology Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology Basics Concentrating solar power (CSP) technologies can be a major contributor to our nation's future need for new, clean sources of energy, particularly in the Western...

  11. NREL: Photovoltaics Research - Concentrator Photovoltaic (CPV...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrator Photovoltaic (CPV) Report - Fraunhofer ISE and NREL Analyze Status of Market and Technology February 4, 2015 The German Fraunhofer Institute for Solar Energy Systems...

  12. Institute of Concentration Photovoltaic Systems ISFOC | Open...

    Open Energy Info (EERE)

    Photovoltaic Systems ISFOC Jump to: navigation, search Name: Institute of Concentration Photovoltaic Systems (ISFOC) Place: Puertallano, Spain Zip: 13500 Product: Part of the R&D...

  13. Concentration Solar la Mancha | Open Energy Information

    Open Energy Info (EERE)

    Solar la Mancha Jump to: navigation, search Name: Concentration Solar la Mancha Place: Manzanares (Cuidad Real), Spain Zip: 13200 Product: Maker of CPV systems and systems...

  14. Nitrogen concentration and isotope dataset for environmental...

    Office of Scientific and Technical Information (OSTI)

    (BER) Country of Publication: United States Availability: ORNL Language: English Subject: 54 Environmental Sciences ngee; ngee-arctic; nitrate concentrations; nitrate isotopes; ...

  15. Alignment method for parabolic trough solar concentrators

    DOE Patents [OSTI]

    Diver, Richard B.

    2010-02-23

    A Theoretical Overlay Photographic (TOP) alignment method uses the overlay of a theoretical projected image of a perfectly aligned concentrator on a photographic image of the concentrator to align the mirror facets of a parabolic trough solar concentrator. The alignment method is practical and straightforward, and inherently aligns the mirror facets to the receiver. When integrated with clinometer measurements for which gravity and mechanical drag effects have been accounted for and which are made in a manner and location consistent with the alignment method, all of the mirrors on a common drive can be aligned and optimized for any concentrator orientation.

  16. Microtracking and Self-Adaptive Solar Concentration

    Broader source: Energy.gov [DOE]

    This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23–25, 2013 near Phoenix, Arizona.

  17. Concentrating Solar Power (Fact Sheet), Electricity, Resources...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    optical concentrators. * NREL's High-Flux Solar Furnace consists of a tracking heliostat ... to determine if the materials meet the optical requirements of CSP solar field components. ...

  18. Superhydrophobic analyte concentration utilizing colloid-pillar...

    Office of Scientific and Technical Information (OSTI)

    Surface enhanced Raman spectroscopy (SERS) is a technique that can be utilized to detect molecules at very low absolute numbers. However, detection at trace concentration levels in ...

  19. Economic, Energy, and Environmental Benefits of Concentrating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Economic, Energy, and Environmental Benefits of Concentrating Solar Power in California L. ... NRELSR-550-39291 April 2006 Economic, Energy, and Environmental Benefits of ...

  20. Solar energy thermalization and storage device

    DOE Patents [OSTI]

    McClelland, J.F.

    A passive solar thermalization and thermal energy storage assembly which is visually transparent is described. The assembly consists of two substantial parallel, transparent wall members mounted in a rectangular support frame to form a liquid-tight chamber. A semitransparent thermalization plate is located in the chamber, substantially paralled to and about equidistant from the transparent wall members to thermalize solar radiation which is stored in a transparent thermal energy storage liquid which fills the chamber. A number of the devices, as modules, can be stacked together to construct a visually transparent, thermal storage wall for passive solar-heated buildings.