Sample records for active solid-waste management

  1. Solid Waste Management Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Solid Waste Management Program Written Program Cornell University 8/28/2012 #12;Solid Waste.................................................................... 4 4.2.1 Compost Solid Waste Treatment Facility.................................................................... 4 4.2.2 Pathological Solid Waste Treatment Facility

  2. Solid Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Indiana Department of...

  3. Solid Waste Management (North Carolina)

    Broader source: Energy.gov [DOE]

    The Solid Waste Program regulates safe management of solid waste through guidance, technical assistance, regulations, permitting, environmental monitoring, compliance evaluation and enforcement....

  4. Solid Waste Management (Kansas)

    Broader source: Energy.gov [DOE]

    This act aims to establish and maintain a cooperative state and local program of planning and technical and financial assistance for comprehensive solid waste management. No person shall construct,...

  5. Solid Waste Management Program Plan

    SciTech Connect (OSTI)

    Duncan, D.R.

    1990-08-01T23:59:59.000Z

    The objective of the Solid Waste Management Program Plan (SWMPP) is to provide a summary level comprehensive approach for the storage, treatment, and disposal of current and future solid waste received at the Hanford Site (from onsite and offsite generators) in a manner compliant with current and evolving regulations and orders (federal, state, and Westinghouse Hanford Company (Westinghouse Hanford)). The Plan also presents activities required for disposal of selected wastes currently in retrievable storage. The SWMPP provides a central focus for the description and control of cost, scope, and schedule of Hanford Site solid waste activities, and provides a vehicle for ready communication of the scope of those activities to onsite and offsite organizations. This Plan represents the most complete description available of Hanford Site Solid Waste Management (SWM) activities and the interfaces between those activities. It will be updated annually to reflect changes in plans due to evolving regulatory requirements and/or the SWM mission. 8 refs., 9 figs., 4 tabs.

  6. Solid Waste Management Program (Missouri)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Program in the Department of Natural Resources regulates the management of solid waste in the state of Missouri. A permit is required prior to the construction or...

  7. Management of Solid Waste (Oklahoma)

    Broader source: Energy.gov [DOE]

    The Solid Waste Management Division of the Department of Environmental Quality regulates solid waste disposal or any person who generates, collects, transports, processes, and/or disposes of solid...

  8. Solid Waste Management (South Dakota)

    Broader source: Energy.gov [DOE]

    This statute contains provisions for solid waste management systems, groundwater monitoring, liability for pollution, permitting, inspections, and provisions for waste reduction and recycling...

  9. Solid Waste Management (Connecticut)

    Broader source: Energy.gov [DOE]

    Solid waste facilities operating in Connecticut must abide by these regulations, which describe requirements and procedures for issuing construction and operating permits; environmental...

  10. Solid Waste Management (Michigan)

    Broader source: Energy.gov [DOE]

    This Act encourages the Department of Environmental Quality and Health Department representatives to develop and encourage methods for disposing solid waste that are environmentally sound, that...

  11. Eugene Solid Waste Management Market Analysis

    E-Print Network [OSTI]

    Oregon, University of

    Eugene Solid Waste Management Market Analysis Prepared By: Mitchell Johnson Alex Sonnichsen #12;Eugene Solid Waste Management Market Analysis May 2012 Page 1 Summary This study examines the economic impact of the solid waste management system

  12. Solid Waste Management Act (West Virginia)

    Broader source: Energy.gov [DOE]

    In addition to establishing a comprehensive program of controlling all phases of solid waste management and assigning responsibilities for solid waste management to the Secretary of Department of...

  13. Solid Waste Management Program (South Dakota)

    Broader source: Energy.gov [DOE]

    South Dakota's Solid Waste Management Program offers loans and grants for solid waste disposal, recycling, and waste tire projects. Funds are available for private or public projects, and...

  14. Solid Waste Management Rules (Vermont)

    Broader source: Energy.gov [DOE]

    These rules establish procedures and standards to protect public health and the environment by ensuring the safe, proper, and sustainable management of solid waste in Vermont. The rules apply to...

  15. Gaines County Solid Waste Management Act (Texas)

    Broader source: Energy.gov [DOE]

    This Act establishes the Gaines County Solid Waste Management District, a governmental body to develop and carry out a regional water quality protection program through solid waste management and...

  16. Solid Waste Management Plan. Revision 4

    SciTech Connect (OSTI)

    NONE

    1995-04-26T23:59:59.000Z

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  17. Illinois Solid Waste Management Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the purpose of this Act to reduce reliance on land disposal of solid waste, to encourage and promote alternative means of managing solid waste, and to assist local governments with solid...

  18. Solid Waste Management Act (Oklahoma)

    Broader source: Energy.gov [DOE]

    This Act establishes rules for the permitting, posting of security, construction, operation, closure, maintenance and remediation of solid waste disposal sites; disposal of solid waste in ways that...

  19. Energy aspects of solid waste management: Proceedings

    SciTech Connect (OSTI)

    Not Available

    1990-12-31T23:59:59.000Z

    The Eighteenth Annual Illinois Energy Conference entitled ``Energy Aspects of Solid Waste Management`` was held in Chicago, Illinois on October 29--30, 1990. The conference program was developed by a planning committee that drew upon Illinois energy and environmental specialists from the major sectors including energy industries, environmental organizations, research universities, utility companies, federal, state and local government agencies, and public interest groups. Within this framework, the committee identified a number of key topic areas surrounding solid waste management in Illinois which were the focus of the conference. These issues included: review of the main components of the solid waste cycle in the Midwest and what the relative impact of waste reduction, recycling, incineration and land disposal might be on Illinois` and the Midwest`s solid waste management program. Investigation of special programs in the Midwest dealing with sewage sludge, combustion residuals and medical/infectious wastes. Review of the status of existing landfills in Illinois and the Midwest and an examination of the current plans for siting of new land disposal systems. Review of the status of incinerators and waste-to-energy systems in Illinois and the Midwest, as well as an update on activities to maximize methane production from landfills in the Midwest.

  20. Solid Waste Management Act (Pennsylvania)

    Broader source: Energy.gov [DOE]

    This Act provides for the planning and regulation of solid waste storage, collection, transportation, processing, treatment, and disposal. It requires that municipalities submit plans for municipal...

  1. Georgia Comprehensive Solid Waste Management Act of 1990 (Georgia)

    Broader source: Energy.gov [DOE]

    The Georgia Comprehensive Solid Waste Management Act (SWMA) of 1990 was implemented in order to improve solid waste management procedures, permitting processes and management throughout the state. ...

  2. A legislator`s guide to municipal solid waste management

    SciTech Connect (OSTI)

    Starkey, D.; Hill, K.

    1996-08-01T23:59:59.000Z

    The purpose of this guide is to allow individual state legislators to gain a better understanding of municipal solid waste (MSW) management issues in general, and examine the applicability of these concerns to their state. This guide incorporates a discussion of MSW management issues and a comprehensive overview of the components of an integrated solid waste management system. Major MSW topics discussed include current management issues affecting states, federal activities, and state laws and local activities. Solid waste characteristics and management approaches are also detailed.

  3. Managing America`s solid waste

    SciTech Connect (OSTI)

    Not Available

    1998-03-02T23:59:59.000Z

    This report presents an historical overview of the federal role in municipal solid waste management from 1965 to approximately 1995. Attention is focuses on the federal role in safeguarding public health, protecting the environment, and wisely using material and energy resources. It is hoped that this report will provide important background for future municipal solid waste research and development initiatives.

  4. Nonhazardous Solid Waste Management Regulations and Criteria (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Nonhazardous Solid Waste Management Regulations and Criteria is to establish a minimum State Criteria under the Mississippi Solid Waste Law for all solid waste management...

  5. Montana Solid Waste Management Act (Montana)

    Broader source: Energy.gov [DOE]

    It is the public policy of the state to control solid waste management systems to protect the public health and safety and to conserve natural resources whenever possible. The Department of...

  6. Municipal solid waste management in Rasht City, Iran

    SciTech Connect (OSTI)

    Alavi Moghadam, M.R. [Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)], E-mail: alavi@aut.ac.ir; Mokhtarani, N. [Jahesh Kimia Company, No. 26, Sadeghi St., Azadi Avenue, Tehran (Iran, Islamic Republic of)], E-mail: mokhtarani@jaheshkimia.com; Mokhtarani, B. [Chemistry and Chemical Engineering Research Center, P.O. Box 14335-186 Tehran (Iran, Islamic Republic of)], E-mail: mokhtaranib@ccerci.ac.ir

    2009-01-15T23:59:59.000Z

    Pollution and health risks generated by improper solid waste management are important issues concerning environmental management in developing countries. In most cities, the use of open dumps is common for the disposal of wastes, resulting in soil and water resource contamination by leachate in addition to odors and fires. Solid waste management infrastructure and services in developing countries are far from achieving basic standards in terms of hygiene and efficient collection and disposal. This paper presents an overview of current municipal solid waste management in Rasht city, Gilan Province, Iran, and provides recommendations for system improvement. The collected data of different MSW functional elements were based on data from questionnaires, visual observations of the authors, available reports and several interviews and meetings with responsible persons. Due to an increase in population and changes in lifestyle, the quantity and quality of MSW in Rasht city has changed. Lack of resources, infrastructure, suitable planning, leadership, and public awareness are the main challenges of MSW management of Rasht city. However, the present situation of solid waste management in this city, which generates more than 400 tons/d, has been improved since the establishment of an organization responsible only for solid waste management. Source separation of wastes and construction of a composting plant are the two main activities of the Rasht Municipality in recent years.

  7. Louisiana Solid Waste Management and Resource Recovery Law (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality manages solid waste for the state of Louisiana under the authority of the Solid Waste Management and Resource Recover Law. The Department makes...

  8. Sustainable Decentralized Model for Solid Waste Management in Urban India

    E-Print Network [OSTI]

    Columbia University

    Sustainable Decentralized Model for Solid Waste Management in Urban India Hita Unnikrishnan, Brunda the sustenance of a decentralized solid waste management system in urban India. Towards this end, two a national legislation ­ the Municipal Solid Waste (Management and Handling) rules, 2000 (Ministry

  9. South Carolina Solid Waste Policy and Management Act (South Carolina)

    Broader source: Energy.gov [DOE]

    The state of South Carolina supports a regional approach to solid waste management and encourages the development and implementation of alternative waste management practices and resource recovery....

  10. 1993 baseline solid waste management system description

    SciTech Connect (OSTI)

    Armacost, L.L.; Fowler, R.A.; Konynenbelt, H.S.

    1994-02-01T23:59:59.000Z

    Pacific Northwest Laboratory has prepared this report under the direction of Westinghouse Hanford Company. The report provides an integrated description of the system planned for managing Hanford`s solid low-level waste, low-level mixed waste, transuranic waste, and transuranic mixed waste. The primary purpose of this document is to illustrate a collective view of the key functions planned at the Hanford Site to handle existing waste inventories, as well as solid wastes that will be generated in the future. By viewing this system as a whole rather than as individual projects, key facility interactions and requirements are identified and a better understanding of the overall system may be gained. The system is described so as to form a basis for modeling the system at various levels of detail. Model results provide insight into issues such as facility capacity requirements, alternative system operating strategies, and impacts of system changes (ie., startup dates). This description of the planned Hanford solid waste processing system: defines a baseline system configuration; identifies the entering waste streams to be managed within the system; identifies basic system functions and waste flows; and highlights system constraints. This system description will evolve and be revised as issues are resolved, planning decisions are made, additional data are collected, and assumptions are tested and changed. Out of necessity, this document will also be revised and updated so that a documented system description, which reflects current system planning, is always available for use by engineers and managers. It does not provide any results generated from the many alternatives that will be modeled in the course of analyzing solid waste disposal options; such results will be provided in separate documents.

  11. Review and Status of Solid Waste Management Practices in Multan, Pakistan

    E-Print Network [OSTI]

    Shoaib, Muhammad; Mirza, Umar Karim; Sarwar, Muhammad Avais

    2006-01-01T23:59:59.000Z

    in management of liquid and solid waste, Multan City, JuneResource Center. (2004). Solid waste management study,The secondary data on solid waste and its management aspects

  12. Solid Waste Management Services Act (Connecticut)

    Broader source: Energy.gov [DOE]

    This Act affirms the commitment of the state government to the development of systems and facilities and technology necessary to initiate large-scale processing of solid wastes and resource...

  13. Technical Note: Evaluation of Effective Microorganisms (EM) In Solid Waste Management

    E-Print Network [OSTI]

    Sekeran, V.; Balaji, C.; Bhagavathipushpa, T.

    2005-01-01T23:59:59.000Z

    Microorganisms (EM) In Solid Waste Management V. Sekeran C.is the treatment, disposal and/or recycling of solid wastes.Generally solid waste from a municipality consists of

  14. Solid Waste Management and Land Protection (North Dakota)

    Broader source: Energy.gov [DOE]

    The policy of the State of North Dakota is to encourage and provide for environmentally acceptable and economical solid waste management practices, and the Department of Health may promulgate...

  15. State Solid Waste Management and Resource Recovery Plan (Montana)

    Broader source: Energy.gov [DOE]

    The State supports the "good management of solid waste and the conservation of natural resources through the promotion or development of systems to collect, separate, reclaim, recycle, and dispose...

  16. Quality Services: Solid Wastes, Part 360: Solid Waste Management Facilities (New York)

    Broader source: Energy.gov [DOE]

    These regulations apply to all solid wastes with the exception of hazardous or radioactive waste. Proposed solid waste processing facilities are required to obtain permits prior to construction,...

  17. Energy implications of integrated solid waste management systems. Final report

    SciTech Connect (OSTI)

    Little, R.E.; McClain, G.; Becker, M.; Ligon, P.; Shapiro, K.

    1994-07-01T23:59:59.000Z

    This study develops estimates of energy use and recovery from managing municipal solid waste (MSW) under various collection, processing, and disposal scenarios. We estimate use and recovery -- or energy balance -- resulting from MSW management activities such as waste collection, transport, processing, and disposal, as well as indirect use and recovery linked to secondary materials manufacturing using recycled materials. In our analysis, secondary materials manufacturing displaces virgin materials manufacturing for 13 representative products. Energy implications are expressed as coefficients that measure the net energy saving (or use) of displacing products made from virgin versus recycled materials. Using data developed for the 1992 New York City Master Plan as a starting point, we apply our method to an analysis of various collection systems and 30 types of facilities to illustrate bow energy balances shift as management systems are modified. In sum, all four scenarios show a positive energy balance indicating the energy and advantage of integrated systems versus reliance on one or few technology options. That is, energy produced or saved exceeds the energy used to operate the solid waste system. The largest energy use impacts are attributable to processing, including materials separation and composting. Collection and transportation energy are relatively minor contributors. The largest two contributors to net energy savings are waste combustion and energy saved by processing recycled versus virgin materials. An accompanying spatial analysis methodology allocates energy use and recovery to New York City, New York State outside the city, the U.S., and outside the U.S. Our analytical approach is embodied in a spreadsheet model that can be used by energy and solid waste analysts to estimate impacts of management scenarios at the state and substate level.

  18. Municipal solid waste characteristics and management in Allahabad, India

    E-Print Network [OSTI]

    Columbia University

    by political, legal, socio-cultural, environmental and economic factors, as well as available resources on a suitable management plan (Shimura et al., 2001). More than 90% of MSW in India is directly disposedMunicipal solid waste characteristics and management in Allahabad, India Mufeed Sharholy a , Kafeel

  19. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  20. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  1. Solid waste disposal options: an optimum disposal model for the management of municipal solid waste

    E-Print Network [OSTI]

    Haney, Brenda Ann

    1989-01-01T23:59:59.000Z

    the Solid Waste Disposal Act and shifted the emphasis from disposal practices to recycling, resource recovery, and energy conversion of wastes. ' The Resource Conservation and Recovery Act of 1976 (RCRA) provided for the disposal of solid waste in such a... was constructed in 1930 in New York City. " But waste- to-energy technology development was hindered by poor reliability, poor efficiency, and low cost effectiveness. " The Resource Recovery Act of 1970 and RCRA of 1976, shifted the em- phasis in solid waste...

  2. Solid Waste Management in Vietnam An Industrial Ecology Study by Thao Nguyen

    E-Print Network [OSTI]

    Columbia University

    Solid Waste Management in Vietnam An Industrial Ecology Study by Thao Nguyen School greatly magnified the problems with Vietnam's solid waste management system, pushing waste management, the issue of how to deal with its solid waste will only become more critical as Vietnam industrializes

  3. Solid Waste Management Policy and Programs (Minnesota)

    Broader source: Energy.gov [DOE]

    These statutes encourage the State and local governments to develop waste management strategies to achieve the maximum possible reduction in waste generation, eliminate or reduce adverse...

  4. Integrated Solid Waste Management Act (Nebraska)

    Broader source: Energy.gov [DOE]

    This act affirms the state's support for alternative waste management practices, including waste reduction and resource recovery. Each county and municipality is required to file an integrated...

  5. Comprehensive Municipal Solid Waste Management, Resource Recovery, and Conservation Act (Texas)

    Broader source: Energy.gov [DOE]

    This Act encourages the establishment of regional waste management facilities and the cooperation of local waste management entities in order to streamline the management of municipal solid waste...

  6. THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY Mathematical Models in Municipal Solid Waste Management

    E-Print Network [OSTI]

    Patriksson, Michael

    THESIS FOR THE DEGREE OF LICENTIATE OF PHILOSOPHY Mathematical Models in Municipal Solid Waste¨oteborg University G¨oteborg, Sweden February 15, 2007 #12;Mathematical Models in Municipal Solid Waste Michael K waste planners in decisions concerning the overall management of solid waste in a municipality

  7. Solid waste management: a public policy study

    E-Print Network [OSTI]

    Jayawant, Mandar Prabhatkumar

    1993-01-01T23:59:59.000Z

    . reported in Gottinger). Present policy measures that seek to remedy some of the perceived externalities from landfills remain restricted to traditional "command and control" instruments. Examples being environmental regulations that prescribe specified... requiring disposal in landfills, it creates problems of air pollution; and residual ash requires very careful management and disposal, necessitating considerations relating to the toxicity of incinerator ash, leachability of metals in incinerator ash...

  8. Sustainable solutions for solid waste management in Southeast Asian countries

    SciTech Connect (OSTI)

    Uyen Nguyen Ngoc [Institute for Process Engineering (IPE), Graz University of Technology, Inffeldgasse 21a, A8010 Graz (Austria)], E-mail: utemvnn2003@yahoo.com; Schnitzer, Hans [Institute for Process Engineering (IPE), Graz University of Technology, Inffeldgasse 21a, A8010 Graz (Austria)

    2009-06-15T23:59:59.000Z

    Human activities generate waste and the amounts tend to increase as the demand for quality of life increases. Today's rate in the Southeast Asian Nations (ASEANs) is alarming, posing a challenge to governments regarding environmental pollution in the recent years. The expectation is that eventually waste treatment and waste prevention approaches will develop towards sustainable waste management solutions. This expectation is for instance reflected in the term 'zero emission systems'. The concept of zero emissions can be applied successfully with today's technical possibilities in the agro-based processing industry. First, the state-of-the-art of waste management in Southeast Asian countries will be outlined in this paper, followed by waste generation rates, sources, and composition, as well as future trends of waste. Further on, solutions for solid waste management will be reviewed in the discussions of sustainable waste management. The paper emphasizes the concept of waste prevention through utilization of all wastes as process inputs, leading to the possibility of creating an ecosystem in a loop of materials. Also, a case study, focusing on the citrus processing industry, is displayed to illustrate the application of the aggregated material input-output model in a widespread processing industry in ASEAN. The model can be shown as a closed cluster, which permits an identification of opportunities for reducing environmental impacts at the process level in the food processing industry. Throughout the discussion in this paper, the utilization of renewable energy and economic aspects are considered to adapt to environmental and economic issues and the aim of eco-efficiency. Additionally, the opportunities and constraints of waste management will be discussed.

  9. Solid Waste (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Solid Waste Bureau manages solid waste in the state. The Bureau implements and enforces the rules established by the Environmental Improvement Board.

  10. Household solid waste characteristics and management in Chittagong, Bangladesh

    SciTech Connect (OSTI)

    Sujauddin, Mohammad [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh)], E-mail: mohammad.sujauddin@gmail.com; Huda, S.M.S. [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Hoque, A.T.M. Rafiqul [Institute of Forestry and Environmental Sciences, Chittagong University, Chittagong-4331 (Bangladesh); Laboratory of Ecology and Systematics (Plant Ecophysiology Section), Faculty of Science, Biology Division, University of the Ryukyus, Okinawa 903-0213 (Japan)

    2008-07-01T23:59:59.000Z

    Solid waste management (SWM) is a multidimensional challenge faced by urban authorities, especially in developing countries like Bangladesh. We investigated per capita waste generation by residents, its composition, and the households' attitudes towards waste management at Rahman Nagar Residential Area, Chittagong, Bangladesh. The study involved a structured questionnaire and encompassed 75 households from five different socioeconomic groups (SEGs): low (LSEG), lower middle (LMSEG), middle (MSEG), upper middle (UMSEG) and high (HSEG). Wastes, collected from all of the groups of households, were segregated and weighed. Waste generation was 1.3 kg/household/day and 0.25 kg/person/day. Household solid waste (HSW) was comprised of nine categories of wastes with vegetable/food waste being the largest component (62%). Vegetable/food waste generation increased from the HSEG (47%) to the LSEG (88%). By weight, 66% of the waste was compostable in nature. The generation of HSW was positively correlated with family size (r{sub xy} = 0.236, p < 0.05), education level (r{sub xy} = 0.244, p < 0.05) and monthly income (r{sub xy} = 0.671, p < 0.01) of the households. Municipal authorities are usually the responsible agencies for solid waste collection and disposal, but the magnitude of the problem is well beyond the ability of any municipal government to tackle. Hence dwellers were found to take the service from the local waste management initiative. Of the respondents, an impressive 44% were willing to pay US$0.3 to US$0.4 per month to waste collectors and it is recommended that service charge be based on the volume of waste generated by households. Almost a quarter (22.7%) of the respondents preferred 12-1 pm as the time period for their waste to be collected. This study adequately shows that household solid waste can be converted from burden to resource through segregation at the source, since people are aware of their role in this direction provided a mechanism to assist them in this pursuit exists and the burden is distributed according to the amount of waste generated.

  11. DOE/LX/07-0178&D1 Secondary Document DMSA OS-13 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8&D1 Secondary Document DMSA OS-13 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 224 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509...

  12. DOE/LX/07-0170&D1 Secondary Document DMSA OS-02 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0&D1 Secondary Document DMSA OS-02 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 213 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509...

  13. DOE/LX/07-0175&D1 Secondary Document DMSA OS-10 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5&D1 Secondary Document DMSA OS-10 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 221 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509...

  14. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    Arc Gasification. Sustainability of Solid Waste Management.and gasification technologies for energy efficient and environmentally sound MSW disposal." Wastewaste to energy (Provence 2008). Plasma Arc Gasification

  15. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, recycling'' refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  16. 13. Sustainability in Practice: Exploring Innovations in Domestic Solid Waste Management in India

    E-Print Network [OSTI]

    Columbia University

    environmental conditions, particularly through solid waste management. Solid waste is defined as the organic waste management to reduce waste, in terms of minimising waste, maximising re-use and recycling of garbage collection and transportation; and ii. Inviting private sector to install waste recycling plants

  17. Review of LCA studies of solid waste management systems Part I: Lessons learned and perspectives

    SciTech Connect (OSTI)

    Laurent, Alexis, E-mail: alau@dtu.dk [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Bakas, Ioannis [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Clavreul, Julie [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Bernstad, Anna [Water and Environmental Engineering, Department of Chemical Engineering, Lund University, 221 00 Lund (Sweden); Niero, Monia [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); ECO Ecosystems and Environmental Sustainability, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Gentil, Emmanuel [Copenhagen Resource Institute, 1215 Copenhagen K (Denmark); Hauschild, Michael Z. [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Christensen, Thomas H. [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2014-03-01T23:59:59.000Z

    Highlights: We perform a critical review of 222 LCA studies of solid waste management systems. Studies mainly concentrated in Europe with little application in developing countries. Assessments of relevant waste types apart from household waste have been overlooked. Local specificities of systems prevent a meaningful generalisation of the LCA results. LCA should support recommendations representative of the local conditions. - Abstract: The continuously increasing solid waste generation worldwide calls for management strategies that integrate concerns for environmental sustainability. By quantifying environmental impacts of systems, life cycle assessment (LCA) is a tool, which can contribute to answer that call. But how, where and to which extent has it been applied to solid waste management systems (SWMSs) until now, and which lessons can be learnt from the findings of these LCA applications? To address these questions, we performed a critical review of 222 published LCA studies of SWMS. We first analysed the geographic distribution and found that the published studies have primarily been concentrated in Europe with little application in developing countries. In terms of technological coverage, they have largely overlooked application of LCA to waste prevention activities and to relevant waste types apart from household waste, e.g. construction and demolition waste. Waste management practitioners are thus encouraged to abridge these gaps in future applications of LCA. In addition to this contextual analysis, we also evaluated the findings of selected studies of good quality and found that there is little agreement in the conclusions among them. The strong dependence of each SWMS on local conditions, such as waste composition or energy system, prevents a meaningful generalisation of the LCA results as we find it in the waste hierarchy. We therefore recommend stakeholders in solid waste management to regard LCA as a tool, which, by its ability of capturing the local specific conditions in the modelling of environmental impacts and benefits of a SWMS, allows identifying critical problems and proposing improvement options adapted to the local specificities.

  18. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2001-02-25T23:59:59.000Z

    This 2001 Facility Work Plan (FWP) has been prepared as required by Module VII, Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a), and incorporates comments from the New Mexico Environment Department (NMED) received on December 6, 2000 (NMED, 2000a). This February 2001 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. The permittees are evaluating data from previous investigations of the SWMUs and AOCs against the newest guidance proposed by the NMED. Based on these data, the permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit.

  19. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-02-14T23:59:59.000Z

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

  20. WIPP Facility Work Plan for Solid Waste Management Units

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2000-02-25T23:59:59.000Z

    This Facility Work Plan (FWP) has been prepared as required by Module VII,Section VII.M.1 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED, 1999a). This work plan describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMUs) and Areas of Concern (AOCs) specified in the Permit. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current New Mexico Environment Department (NMED) guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a Facility to exit the schedule of compliance contained in the Facilitys Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to NMEDs guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The scope of work for the RFI Work Plan or SAP is being developed by the Permittees. The final content of the RFI Work Plan or SAP will be coordinated with the NMED for submittal on May 24, 2000. Specific project-related planning information will be included in the RFI Work Plan or SAP. The SWMU program at WIPP began in 1994 under U.S. Environmental Protection Agency (EPA) regulatory authority. NMED subsequently received regulatory authority from EPA. A Phase I RFI was completed at WIPP as part of a Voluntary Release Assessment (VRA). The risk-based decision criteria recommended by EPA for the VRA were contained in a proposed Corrective Action rule for SWMUs (EPA, 1990). EPA Region VI has issued new risk-based screening criteria applicable to the WIPP SWMUs and AOCs.

  1. LCA comparison of container systems in municipal solid waste management

    SciTech Connect (OSTI)

    Rives, Jesus, E-mail: Jesus.Rives@uab.ca [SosteniPrA (UAB-IRTA), Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona - UAB, 08193 Bellaterra, Barcelona (Spain); Rieradevall, Joan; Gabarrell, Xavier [SosteniPrA (UAB-IRTA), Institute of Environmental Science and Technology (ICTA), Universitat Autonoma de Barcelona - UAB, 08193 Bellaterra, Barcelona (Spain); Department of Chemical Engineering, Universitat Autonoma de Barcelona - UAB, 08193 Bellaterra, Barcelona (Spain)

    2010-06-15T23:59:59.000Z

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80 l to containers of 2400 l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60 l or 80 l) had most impact while systems using big steel containers (2400 l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar.

  2. After the flood : crisis, voice and innovation in Maputo's solid waste management sector

    E-Print Network [OSTI]

    Kruks-Wisner, Gabrielle (Gabrielle K.)

    2006-01-01T23:59:59.000Z

    This thesis explores responses to the problem of solid waste management (SWM) in two neighborhoods of Maputo, Mozambique in the wake of catastrophic flooding in 2000. In these neighborhoods, small-scale service providers ...

  3. PPPO-02-427-07 Revised Solid Waste Management Unit Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6&D1 Secondary Document C-755-GSA-23 Located at C-755 Near the East Fence Line Solid Waste Management Unit Assessment Report UNIT NUMBER: 551 DATE OF ORIGINAL SAR: 12303 DATE OF...

  4. DOE/LX/07-0301&D1 Secondary Document DMSA OS-14 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1&D1 Secondary Document DMSA OS-14 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 225 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 0115...

  5. DOE/LX/07-0183&D1 Secondary Document DMSA OS-18 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3&D1 Secondary Document DMSA OS-18 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 229 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 52803, 031509...

  6. PPPO-02-340-07 Revised Solid Waste Management Unit Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7&D1 Secondary Document C-747 Contaminated Burial Yard and C-748-B Burial Area Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 4 DATE OF ORIGINAL SAR: 824...

  7. PPPO-02-427-07 Revised Solid Waste Management Unit Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    O7-0023&D1 Secondary Document G-746-S-01 GSA Next to the Sanitary Landfill Solid Waste Management Unit Assessment Report UNIT NUMBER: 415 DATE OF ORIGINAL SAR: 011901 DATE OF SAR...

  8. PPPO-02-296-08 Revised Solid Waste Management Unit Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6-P and C-746-P1 Scrap Yards Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 13 DATE OF ORIGINAL SAR: 8241987 DATE OF SAR REVISION: 123107 REGULATORY...

  9. H-340-01 Solid Waste Management Unit (SWMU) Assessment Report

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    340-01 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 566 DATE OF ORIGINAL SAR: 12110 DATE OF SAR REVISIONS: NA REGULATORY STATUS: SWMU LOCATION: C-340...

  10. DOE/LX/07-0299&D1 Secondary Document DMSA OS-06 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9&D1 Secondary Document DMSA OS-06 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 217 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 100703, 0115...

  11. PPPO-02-427-07 Revised Solid Waste Management Unit Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Area for Concrete Piers, Rubble, and Wood on the North Side of C-745-B Cylinder Yard Solid Waste Management Unit Assessment Report UNIT NUMBER: 548 DATE OF ORIGINAL SAR: 627...

  12. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    Composting of municipal solid waste (MSW) is experiencing a dramatic resurgence in the US. Several factors are driving this interest in composting including landfill closures, resistance to siting of new landfills and combustion facilities, public support for recycling, and, in general, the overall costs of waste disposal. Starting with only one demonstration project operating in 1980, the total number of projects in the US has increased to sixteen by July 1991. There are approximately 100 projects in some form of planning or development. One reason some communities are sekniing composting as a waste management option is that sewage sludge and MSW can be co-composted thereby recycling a major portion of the overall municipal waste stream. In 1991, five of the operating facilities have incorporated sludge, with a number of new plants also developing systems with this capability. Generic composting technologies are described followed by a comprehensive discussion of operating facilities. Information is presented on the type of processing system, capital and operating costs, and the status of compost markets. A discussion is also included on the operational problems and challenges faced by composting facility developers and operators. Also presented are facility energy usage and a discussion of the energy implications from the use of compost as a soil and fertilizer replacement. A discussion of cost sensitivity shows how facility costs are impacted by waste handling procedures, regulations, reject disposal, and finance charges. The status of, and potential for, integrating composting into the overall waste management strategy is also discussed, including composting's contribution to municipal recycling goals, and the status of public acceptance of the technology. Finally information and research needs are summarized.

  13. An economic analysis of costs of solid waste management in rural Texas communities

    E-Print Network [OSTI]

    Hall, John Patrick

    1973-01-01T23:59:59.000Z

    AN ECONOMIC ANALYSIS OF COSTS OF SOLID WASTE MANAGEMENT IN RURAL TEXAS COMMUNITIES A Thesis by John Patrick Hall Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER... OF SCIENCE December 1973 Major Subject: Agricultural Economics AN ECONOMIC ANALYSIS OF COSTS OF SOLID WASTE MANAGEMENT IN RURAL TEXAS COMMUNITIES A Thesis by John Patrick Hall Approved as to style and content by: hairman of mmi, ttee j ead...

  14. Solid Waste Rules (New Hampshire)

    Broader source: Energy.gov [DOE]

    The solid waste statute applies to construction and demolition debris, appliances, recyclables, and the facilities that collect, process, and dispose of solid waste. DES oversees the management of...

  15. Alternative approaches for better municipal solid waste management in Mumbai, India

    SciTech Connect (OSTI)

    Rathi, Sarika [International Research Institute for Climate Prediction, Earth Institute, Columbia University, 61 Rt. 9W, Monell, Palisades, NY 10964 (United States)]. E-mail: sarika@iri.columbia.edu

    2006-07-01T23:59:59.000Z

    Waste is an unavoidable by product of human activities. Economic development, urbanization and improving living standards in cities, have led to an increase in the quantity and complexity of generated waste. Rapid growth of population and industrialization degrades the urban environment and places serious stress on natural resources, which undermines equitable and sustainable development. Inefficient management and disposal of solid waste is an obvious cause of degradation of the environment in most cities of the developing world. Municipal corporations of the developing countries are not able to handle increasing quantities of waste, which results in uncollected waste on roads and in other public places. There is a need to work towards a sustainable waste management system, which requires environmental, institutional, financial, economic and social sustainability. This study explores alternative approaches to municipal solid waste (MSW) management and estimates the cost of waste management in Mumbai, India. Two alternatives considered in the paper are community participation and public private partnership in waste management. Data for the present study are from various non-governmental organizations (NGOs) and from the private sector involved in waste management in Mumbai. Mathematical models are used to estimate the cost per ton of waste management for both of the alternatives, which are compared with the cost of waste management by Municipal Corporation of Greater Mumbai (MCGM). It is found that the cost per ton of waste management is Rs. 1518 (US$35) with community participation; Rs. 1797 (US$41) with public private partnership (PPP); and Rs. 1908 (US$44) when only MCGM handles the waste. Hence, community participation in waste management is the least cost option and there is a strong case for comprehensively involving community participation in waste management.

  16. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    Office of Solid Waste and Emergency Response: 151. EPA (et al. (2004). "Solid Waste Disposal, Naval FacilitiesComposting Yard Trimmings and Municipal Solid Waste."

  17. Application of different levels of simulation to solid waste management systems

    SciTech Connect (OSTI)

    Holter, G.M.; Shaver, S.R.; Armacost, L.L.; Ross, T.L.

    1993-11-01T23:59:59.000Z

    Simulation techniques can be effectively applied to solid waste management systems, as an aid to understanding and analyzing existing systems or as part of the planning and design of new systems. Analysis of these systems using simulations can proceed at various levels of detail, depending on particular needs of the analysis (i.e., the questions for which answers are sought). This paper discusses the major system dimension variables for simulation of solid waste management systems, and how they can be related to each other to plan or understand a solid waste management system. Examples of the simulations at different levels of detail are included. In addition, the selection of appropriate simulation tools is addressed.

  18. Decision support models for solid waste management: Review and game-theoretic approaches

    SciTech Connect (OSTI)

    Karmperis, Athanasios C., E-mail: athkarmp@mail.ntua.gr [Sector of Industrial Management and Operational Research, School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens (Greece); Army Corps of Engineers, Hellenic Army General Staff, Ministry of Defence (Greece); Aravossis, Konstantinos; Tatsiopoulos, Ilias P.; Sotirchos, Anastasios [Sector of Industrial Management and Operational Research, School of Mechanical Engineering, National Technical University of Athens, Iroon Polytechniou 9, 15780 Athens (Greece)

    2013-05-15T23:59:59.000Z

    Highlights: ? The mainly used decision support frameworks for solid waste management are reviewed. ? The LCA, CBA and MCDM models are presented and their strengths, weaknesses, similarities and possible combinations are analyzed. ? The game-theoretic approach in a solid waste management context is presented. ? The waste management bargaining game is introduced as a specific decision support framework. ? Cooperative and non-cooperative game-theoretic approaches to decision support for solid waste management are discussed. - Abstract: This paper surveys decision support models that are commonly used in the solid waste management area. Most models are mainly developed within three decision support frameworks, which are the life-cycle assessment, the costbenefit analysis and the multi-criteria decision-making. These frameworks are reviewed and their strengths and weaknesses as well as their critical issues are analyzed, while their possible combinations and extensions are also discussed. Furthermore, the paper presents how cooperative and non-cooperative game-theoretic approaches can be used for the purpose of modeling and analyzing decision-making in situations with multiple stakeholders. Specifically, since a waste management model is sustainable when considering not only environmental and economic but also social aspects, the waste management bargaining game is introduced as a specific decision support framework in which future models can be developed.

  19. Waste in a land of plenty -Solid waste generation and management

    E-Print Network [OSTI]

    Columbia University

    of recycling and waste-to- energy, according to the latest in an annual series of national surveys on municipal waste numbers using tonnages only, with any percentages - for recycling, landfilling, waste-to-energyWaste in a land of plenty - Solid waste generation and management in the US The US generates

  20. Data summary of municipal solid waste management alternatives. Volume 12, Numerically indexed bibliography

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    This appendix contains the numerically indexed bibliography for the complete group of reports on municipal solid waste management alternatives. The list references information on the following topics: mass burn technologies, RDF technologies, fluidized bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting and anaerobic digestion of MSW.

  1. Data summary of municipal solid waste management alternatives. Volume 4, Appendix B: RDF technologies

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    This appendix contains background information, technical descriptions, economic data, mass and energy balances, and information on environmental releases for the refuse derived fuels (RDF) option in municipal solid waste management alternatives. Demonstration programs at St. Louis, Missouri; Franklin, Ohio; and Delaware are discussed. Information on pellet production and cofiring with coal is also presented.

  2. Capacity-to-Act in India's Solid Waste Management and Waste-to-

    E-Print Network [OSTI]

    Columbia University

    it to energy is not a new phenomenon in India. Rural India has gained considerable experience in anaerobic1 Capacity-to-Act in India's Solid Waste Management and Waste-to- Energy Industries Perinaz Bhada concern is the inadequate supply of energy and increasing demand for electricity, amplified by a booming

  3. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  4. Solid Waste Act (New Mexico)

    Broader source: Energy.gov [DOE]

    The main purpose of the Solid Waste Act is to authorize and direct the establishment of a comprehensive solid waste management program. The act states details about specific waste management...

  5. Advanced thermal processing alternatives for solid waste management

    SciTech Connect (OSTI)

    Niessen, W.R. [Camp Dresser & McKee Inc., Cambridge, MA (United States)

    1997-12-01T23:59:59.000Z

    The 1990`s have seen a resurgence of interest in the development of new thermal processing alternatives for municipal solid waste (MSW). Sparked by increasingly stringent environmental regulations, much of this creative energy has been applied to technologies for the gasification of MSW: converting the solid, hard to handle material into a clean, medium to high-Btu fuel gas. Other developers have focussed on full combustion technology but with a {open_quotes}twist{close_quotes} that lowers emissions or reduces cost. A comprehensive study of these new technologies was recently completed under the sponsorship of the National Renewable Energy Laboratory of the U.S. Department of Energy. The study characterized the state-of-the-art among emerging MSW thermal processing technologies that have reached the point of `incipient commercialization.` More than 45 technologies now under development were screened to develop a short list of seven processes that have passed through the idea stage, laboratory and benchscale testing, and have been prototyped at an MSW feed rate of at least several tons per hour. In-depth review of these seven included inspections of operating pilot or prototype units and a detailed analysis of technical, environmental and economic feasibility issues. No attempt was made to select `the best` technology since best can only be defined in the context of the constraints, aspirations and circumstances of a specific, local situation. The basic flowsheet, heat and material balances and available environmental data were summarized to help the reader grasp the underlying technical concepts and their embodiment in hardware. Remaining development needs, as seen by the study team are presented. Economic analysis shows the general balance of capital and operating costs.

  6. ,2009,)3(1,Report and Opinionnet.sciencepub.www://http,com.gmail@sciencepub Studies on Municipal Solid Waste Management in Mysore City-A case study

    E-Print Network [OSTI]

    Columbia University

    associated with solid waste management in the city. MATERIALS AND METHODS 15 #12;,2009,)3(1,Report Solid Waste Management in Mysore City- A case study Yadav Ishwar Chandra and N.Linthoingambi Devi_ishwar@yahoo.com, Phone no: +919873453116 Abstract: Solid waste management is a worldwide phenomenon. It is a big

  7. Life cycle assessment of solid waste management options for Eskisehir, Turkey

    SciTech Connect (OSTI)

    Banar, Mufide [Anadolu University, Faculty of Engineering and Architecture, Department of Environmental Engineering, Iki Eylul Campus, 26555 Eskisehir (Turkey)], E-mail: mbanar@anadolu.edu.tr; Cokaygil, Zerrin; Ozkan, Aysun [Anadolu University, Faculty of Engineering and Architecture, Department of Environmental Engineering, Iki Eylul Campus, 26555 Eskisehir (Turkey)

    2009-01-15T23:59:59.000Z

    Life cycle assessment (LCA) methodology was used to determine the optimum municipal solid waste (MSW) management strategy for Eskisehir city. Eskisehir is one of the developing cities of Turkey where a total of approximately 750 tons/day of waste is generated. An effective MSW management system is needed in this city since the generated MSW is dumped in an unregulated dumping site that has no liner, no biogas capture, etc. Therefore, five different scenarios were developed as alternatives to the current waste management system. Collection and transportation of waste, a material recovery facility (MRF), recycling, composting, incineration and landfilling processes were considered in these scenarios. SimaPro7 libraries were used to obtain background data for the life cycle inventory. One ton of municipal solid waste of Eskisehir was selected as the functional unit. The alternative scenarios were compared through the CML 2000 method and these comparisons were carried out from the abiotic depletion, global warming, human toxicity, acidification, eutrophication and photochemical ozone depletion points of view. According to the comparisons and sensitivity analysis, composting scenario, S3, is the more environmentally preferable alternative. In this study waste management alternatives were investigated only on an environmental point of view. For that reason, it might be supported with other decision-making tools that consider the economic and social effects of solid waste management.

  8. Solid Waste Disposal Act (Texas)

    Broader source: Energy.gov [DOE]

    The Texas Commission on Environmental Quality is responsible for the regulation and management of municipal solid waste and hazardous waste. A fee is applied to all solid waste disposed in the...

  9. IDAPA 58.01.06 - Solid Waste Management Rules and Standards | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:GreerHiCalifornia: EnergytheInformation Solid Waste Management

  10. Progress and Status of the Ignalina Nuclear Power Plant's New Solid Waste Management and Storage Facilities

    SciTech Connect (OSTI)

    Rausch, J.; Henderson, R.W. [NUKEM Technologies GmbH, Alzenau (Germany); Penkov, V. [State Enterprise Ignalina Nuclear Power Plant, Visaginas (Lithuania)

    2008-07-01T23:59:59.000Z

    A considerable amount of dry radioactive waste from former NPP operation has accumulated up to date and is presently stored at the Ignalina NPP site, Lithuania. Current storage capacities are nearly exhausted and more waste is to come from future decommissioning of the two RMBKtype reactors. Additionally, the existing storage facilities does not comply to the state-of-the-art technology for handling and storage of radioactive waste. In 2005, INPP faced this situation of a need for waste processing and subsequent interim storage of these wastes by contracting NUKEM with the design, construction, installation and commissioning of new waste management and storage facilities. The subject of this paper is to describe the scope and the status of the new solid waste management and storage facilities at the Ignalina Nuclear Power Plant. In summary: The turnkey contract for the design, supply and commission of the SWMSF was awarded in December 2005. The realisation of the project was initially planned within 48 month. The basic design was finished in August 2007 and the Technical Design Documentation and Preliminary Safety Analyses Report was provided to Authorities in October 2007. The construction license is expected in July 2008. The procurement phase was started in August 2007, start of onsite activities is expected in November 2007. The start of operation of the SWMSF is scheduled for end of 2009. (authors)

  11. Data summary of municipal solid waste management alternatives

    SciTech Connect (OSTI)

    Not Available

    1992-10-01T23:59:59.000Z

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  12. Financial sustainability in municipal solid waste management Costs and revenues in Bahir Dar, Ethiopia

    SciTech Connect (OSTI)

    Lohri, Christian Riuji, E-mail: christian.lohri@eawag.ch; Camenzind, Ephraim Joseph, E-mail: ephraimcamenzind@hotmail.com; Zurbrgg, Christian, E-mail: christian.zurbruegg@eawag.ch

    2014-02-15T23:59:59.000Z

    Highlights: Cost-revenue analysis over 2 years revealed insufficient cost-recovery. Expenses for motorized secondary collection increased by 82% over two years. Low fee collection rate and reliance on only one revenue stream are problematic. Different options for cost reduction and enhanced revenue streams are recommended. Good publicprivate alliance is crucial to plan and implement improvement measures. - Abstract: Providing good solid waste management (SWM) services while also ensuring financial sustainability of the system continues to be a major challenge in cities of developing countries. Bahir Dar in northwestern Ethiopia outsourced municipal waste services to a private waste company in 2008. While this institutional change has led to substantial improvement in the cleanliness of the city, its financial sustainability remains unclear. Is the private company able to generate sufficient revenues from their activities to offset the costs and generate some profit? This paper presents a cost-revenue analysis, based on data from July 2009 to June 2011. The analysis reveals that overall costs in Bahir Dars SWM system increased significantly during this period, mainly due to rising costs related to waste transportation. On the other hand, there is only one major revenue stream in place: the waste collection fee from households, commercial enterprises and institutions. As the efficiency of fee collection from households is only around 50%, the total amount of revenues are not sufficient to cover the running costs. This results in a substantial yearly deficit. The results of the research therefore show that a more detailed cost structure and cost-revenue analysis of this waste management service is important with appropriate measures, either by the privates sector itself or with the support of the local authorities, in order to enhance cost efficiency and balance the cost-revenues towards cost recovery. Delays in mitigating the evident financial deficit could else endanger the public-private partnership (PPP) and lead to failure of this setup in the medium to long term, thus also endangering the now existing improved and currently reliable service. We present four options on how financial sustainability of the SWM system in Bahir Dar might be enhanced: (i) improved fee collection efficiency by linking the fees of solid waste collection to water supply; (ii) increasing the value chain by sales of organic waste recycling products; (iii) diversifying revenue streams and financing mechanisms (polluter-pays-, cross-subsidy- and business-principles); and (iv) cost reduction and improved cost-effectiveness. We argue that in a PPP setup such as in Bahir Dar, a strong alliance between the municipality and private enterprise is important so that appropriate solutions for improved financial sustainability of a SWM system can be sought and implemented.

  13. Determinants of sustainability in solid waste management - The Gianyar Waste Recovery Project in Indonesia

    SciTech Connect (OSTI)

    Zurbruegg, Christian, E-mail: zurbrugg@eawag.ch [Eawag: Swiss Federal Institute of Aquatic Science and Technology, Department of Water and Sanitation in Developing Countries (Sandec), Ueberlandstrasse 133, P.O. Box 611, 8600 Duebendorf (Switzerland); Gfrerer, Margareth, E-mail: margareth.gfrerer@gmx.net [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Ashadi, Henki, E-mail: henki@eng.ui.ac.id [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Brenner, Werner, E-mail: werner.brenner@gmx.at [Faculty of Engineering, University of Indonesia, Depok Campus, 16424 Jakarta (Indonesia); Kueper, David, E-mail: dkuper@indo.net.id [Yayasan Pemilahan Sampah Temesi, Temsi-Gianyar, Bali (Indonesia)

    2012-11-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Our assessment tool helps evaluate success factors in solid waste projects. Black-Right-Pointing-Pointer Success of the composting plant in Indonesia is linked to its community integration. Black-Right-Pointing-Pointer Appropriate technology is not a main determining success factor for sustainability. Black-Right-Pointing-Pointer Structured assessment of 'best practices' can enhance replication in other cities. - Abstract: According to most experts, integrated and sustainable solid waste management should not only be given top priority, but must go beyond technical aspects to include various key elements of sustainability to ensure success of any solid waste project. Aside from project sustainable impacts, the overall enabling environment is the key feature determining performance and success of an integrated and affordable solid waste system. This paper describes a project-specific approach to assess typical success or failure factors. A questionnaire-based assessment method covers issues of: (i) social mobilisation and acceptance (social element), (ii) stakeholder, legal and institutional arrangements comprising roles, responsibilities and management functions (institutional element); (iii) financial and operational requirements, as well as cost recovery mechanisms (economic element). The Gianyar Waste Recovery Project in Bali, Indonesia was analysed using this integrated assessment method. The results clearly identified chief characteristics, key factors to consider when planning country wide replication but also major barriers and obstacles which must be overcome to ensure project sustainability. The Gianyar project consists of a composting unit processing 60 tons of municipal waste per day from 500,000 inhabitants, including manual waste segregation and subsequent composting of the biodegradable organic fraction.

  14. Data summary of municipal solid waste management alternatives. Volume 3, Appendix A: Mass burn technologies

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    This appendix on Mass Burn Technologies is the first in a series designed to identify, describe and assess the suitability of several currently or potentially available generic technologies for the management of municipal solid waste (MSW). These appendices, which cover eight core thermoconversion, bioconversion and recycling technologies, reflect public domain information gathered from many sources. Representative sources include: professional journal articles, conference proceedings, selected municipality solid waste management plans and subscription technology data bases. The information presented is intended to serve as background information that will facilitate the preparation of the technoeconomic and life cycle mass, energy and environmental analyses that are being developed for each of the technologies. Mass burn has been and continues to be the predominant technology in Europe for the management of MSW. In the United States, the majority of the existing waste-to-energy projects utilize this technology and nearly 90 percent of all currently planned facilities have selected mass burn systems. Mass burning generally refers to the direct feeding and combustion of municipal solid waste in a furnace without any significant waste preprocessing. The only materials typically removed from the waste stream prior to combustion are large bulky objects and potentially hazardous or undesirable wastes. The technology has evolved over the last 100 or so years from simple incineration to the most highly developed and commercially proven process available for both reducing the volume of MSW and for recovering energy in the forms of steam and electricity. In general, mass burn plants are considered to operate reliably with high availability.

  15. An overview of the sustainability of solid waste management at military installations

    SciTech Connect (OSTI)

    Borglin, S.; Shore, J.; Worden, H.; Jain, R.

    2009-08-15T23:59:59.000Z

    Sustainable municipal solid waste management at military solutions necessitates a combined approach that includes waste reduction, alternative disposal techniques, and increased recycling. Military installations are unique because they often represent large employers in the region in which they are located, thereby making any practices they employ impact overall waste management strategies of the region. Solutions for waste sustainability will be dependent on operational directives and base location, availability of resources such as water and energy, and size of population. Presented in this paper are descriptions of available waste strategies that can be used to support sustainable waste management. Results presented indicate source reduction and recycling to be the most sustainable solutions. However, new waste-to-energy plants and composting have potential to improve on these well proven techniques and allow military installations to achieve sustainable waste management.

  16. Municipal solid waste management challenges in developing countries - Kenyan case study

    SciTech Connect (OSTI)

    Henry, Rotich K. [College of Environment and Resources, Jilin University, Changchun 130026 (China); Zhao Yongsheng [College of Environment and Resources, Jilin University, Changchun 130026 (China)]. E-mail: zhaoyongsheng@jlu.edu.cn; Dong Jun [College of Environment and Resources, Jilin University, Changchun 130026 (China)

    2006-07-01T23:59:59.000Z

    This paper provides an overview of the state of municipal solid waste management (MSWM) by local authorities in Kenya as a case study of a low-income developing country. Approaches of possible solutions that can be undertaken to improve municipal solid waste (MSW) services are discussed. Poor economic growth (1.1% in 1993) has resulted in an increase in the poverty level which presently stands at 56%. Migration from the rural areas to the urban areas has resulted in unplanned settlements in suburban areas accommodating about 60% of the urban population on only 5% urban land area. Political interference also hampers smooth running of local authorities. Vulnerability of pollution of surface and groundwater is high because local authorities rarely considered environmental impact in siting MSW disposal sites. Illegal dumping of MSW on the river banks or on the roadside poses environmental and economic threats on nearby properties. Poor servicing of MSW collection vehicles, poor state of infrastructure and the lack of adequate funding militate against optimization of MSW disposal service. The rural economy needs to be improved if rural-urban migration is to be managed. Involvement of stakeholders is important to achieve any meaningful and sustainable MSWM. The role of the informal sector through community-based organizations (CBOs), Non-Governmental Organizations (NGOs) and the private sector in offering solutions towards improvement of MSWM also is explored.

  17. A multi-echelon supply chain model for municipal solid waste management system

    SciTech Connect (OSTI)

    Zhang, Yimei, E-mail: yimei.zhang1@gmail.com [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China); Huang, Guo He [Environmental Systems Engineering Program, Faculty of Engineering and Applied Science, University of Regina, Regina, Saskatchewan S4S 0A2 (Canada); He, Li [Energy and Environmental Research Academy, North China Electric Power University, Beijing 102206 (China)

    2014-02-15T23:59:59.000Z

    In this paper, a multi-echelon multi-period solid waste management system (MSWM) was developed by inoculating with multi-echelon supply chain. Waste managers, suppliers, industries and distributors could be engaged in joint strategic planning and operational execution. The principal of MSWM system is interactive planning of transportation and inventory for each organization in waste collection, delivery and disposal. An efficient inventory management plan for MSWM would lead to optimized productivity levels under available capacities (e.g., transportation and operational capacities). The applicability of the proposed system was illustrated by a case with three cities, one distribution and two waste disposal facilities. Solutions of the decision variable values under different significant levels indicate a consistent trend. With an increased significant level, the total generated waste would be decreased, and the total transported waste through distribution center to waste to energy and landfill would be decreased as well.

  18. WIPP Sampling and Analysis Plan for Solid Waste Management Units and Areas of Concern.

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2000-05-23T23:59:59.000Z

    This Sampling and Analysis Plan (SAP) has been prepared to fulfill requirements of Module VII, Section VII.M.2 and Table VII.1, requirement 4 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Permit, NM4890139088-TSDF (the Permit); (NMED [New Mexico Environment Department], 1999a). This SAP describes the approach for investigation of the Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. This SAP addresses the current Permit requirements for a RCRA Facility Investigation(RFI) investigation of SWMUs and AOCs. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the RFI specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI work plan and report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can beentered either before or after a RFI work plan. According to NMED's guidance, a facility can prepare a RFI work plan or SAP for any SWMU or AOC (NMED, 1998).

  19. Municipal solid waste management: A bibliography of US Department of Energy contractor report through 1994

    SciTech Connect (OSTI)

    None

    1995-09-01T23:59:59.000Z

    U.S. Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 516,000 metric tons (567,000 tons) of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US DOE. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment.

  20. Review and Status of Solid Waste Management Practices in Multan, Pakistan

    E-Print Network [OSTI]

    Shoaib, Muhammad; Mirza, Umar Karim; Sarwar, Muhammad Avais

    2006-01-01T23:59:59.000Z

    Bones Metals Textile Wood Composting Community Developmentestablished a solid waste composting plant as a theme ofwaste sorting and composting plant, which was manufactured

  1. Interface control document between PUREX Plant Transition and Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Carlson, A.B.

    1995-09-01T23:59:59.000Z

    The interfacing responsibilities regarding solid waste management are described for the Solid Waste Disposal Division and the PUREX Transition Organization.

  2. Solid Waste Diversion Plan Fallen Star, 2012

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Solid Waste Diversion Plan DO HO DUH Fallen Star, 2012 Stuart Collection UC San Diego Updated July 2012 Prepared by: Facilities Management #12;UC San Diego Solid Waste Diversion Plan Table of Contents Overview Location and Areas Covered Recycling and Solid Waste Management Contact Campus/Medical Center

  3. A historical perspective of Global Warming Potential from Municipal Solid Waste Management

    SciTech Connect (OSTI)

    Habib, Komal, E-mail: koh@kbm.sdu.dk [Institute of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern Denmark, Niels Bohrs Alle 1, 5230 Odense M (Denmark); Schmidt, Jannick H.; Christensen, Per [Department of Development and Planning, Aalborg University, Fibigerstraede 13, DK-9220 Aalborg OE (Denmark)

    2013-09-15T23:59:59.000Z

    Highlights: Five scenarios are compared based on different waste management systems from 1970 to 2010. Technology development for incineration and vehicular exhaust system throughout the time period is considered. Compared scenarios show continuous improvement regarding environmental performance of waste management system. Energy and material recovery from waste account for significant savings of Global Warming Potential (GWP) today. Technology development for incineration has played key role in lowering the GWP during past five decades. - Abstract: The Municipal Solid Waste Management (MSWM) sector has developed considerably during the past century, paving the way for maximum resource (materials and energy) recovery and minimising environmental impacts such as global warming associated with it. The current study is assessing the historical development of MSWM in the municipality of Aalborg, Denmark throughout the period of 1970 to 2010, and its implications regarding Global Warming Potential (GWP{sub 100}), using the Life Cycle Assessment (LCA) approach. Historical data regarding MSW composition, and different treatment technologies such as incineration, recycling and composting has been used in order to perform the analysis. The LCA results show a continuous improvement in environmental performance of MSWM from 1970 to 2010 mainly due to the changes in treatment options, improved efficiency of various treatment technologies and increasing focus on recycling, resulting in a shift from net emission of 618 kg CO{sub 2}-eq. tonne{sup ?1} to net saving of 670 kg CO{sub 2}-eq. tonne{sup ?1} of MSWM.

  4. Sarkar, Papiya "Solid Waste Management In Delhi A Social Vulnerability Study" in Martin J. Bunch, V. Madha Suresh and T. Vasantha Kumaran, eds., Proceedings of the Third

    E-Print Network [OSTI]

    Columbia University

    1 Sarkar, Papiya "Solid Waste Management In Delhi ­ A Social Vulnerability Study" in Martin J IN DELHI ­ A SOCIAL VULNERABILITY STUDY Papiya Sarkar· Toxics Link, New Delhi, India. Abstract Management

  5. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    of Defense: 221. EPA (1994). "Composting Yard Trimmings andA novel model of organic waste composting in Taiwan miliarty822. Bost, J. (2004). "Composting solid waste in overseas

  6. Solid Waste Disposal, Hazardous Waste Management Act, Underground Storage Act (Tennessee)

    Broader source: Energy.gov [DOE]

    The Solid Waste Disposal Laws and Regulations are found in Tenn. Code 68-211. These rules are enforced and subject to change by the Public Waste Board (PWB), which is established by the Division...

  7. PPPO-02-225-07 Revised Solid Waste Management Unit Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Solid Waste: -100 ft 3 asbestos containing material * Universal Waste: - 1.5 ft 3 light bulbs * Hazardous Waste: 7 ft 3 paint chips and Personal Protective Equipment * Used...

  8. Municipal solid waste management: A bibliography of US Department of Energy contractor reports through 1993

    SciTech Connect (OSTI)

    Shepherd, P.

    1994-07-01T23:59:59.000Z

    US Department of Energy contractors continue to conduct research targeting the productive and responsible use of the more than 536,000 tons of municipal solid waste (MSW) that is generated each day in the United States. It is becoming more and more prudent to improve current methods of MSW management and to continue to search for additional cost-effective, energy-efficient means to manage our MSW resource. This bibliography is an updated version of Municipal Waste to Energy: An Annotated Bibliography of US Department of Energy Contractor Reports, by Caroline Brooks, published in 1987. Like its predecessor, this bibliography provides information about technical reports on energy from municipal waste that were prepared under grants or contracts from the US Department of Energy. The reports listed focus on energy from municipal waste technologies and energy conservation in wastewater treatment. The bibliography contains three indexes -- an author index, a subject index, and a title index. The reports are listed alphabetically in the subject areas and may appear under more than one subject. All of the reports cited in the original MSW bibliography are also included in this update. The number of copies of each report originally published varied according to anticipated public demand. However, all reports are available in either microfiche or hard copy form and may be ordered from the National Technical Information Service (NTIS), US Department of Commerce, Springfield, VA 22161. Explicit information on ordering reports is included in Appendix A.

  9. A comparison of municipal solid waste management in Berlin and Singapore

    SciTech Connect (OSTI)

    Zhang Dongqing, E-mail: dqzhang@ntu.edu.s [DHI-NTU Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Keat, Tan Soon [Maritime Research Centre, School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798 (Singapore); Gersberg, Richard M. [Graduate School of Public Health, San Diego State University, Hardy Tower 119, 5500 Campanile, San Diego CA 92182-4162 (United States)

    2010-05-15T23:59:59.000Z

    A comparative analysis of municipal solid waste management (MSWM) in Singapore and Berlin was carried out in order to identify its current status, and highlight the prevailing conditions of MSWM. An overview of the various aspects of MSWM in these two cities is provided, with emphasis on comparing the legal, technical, and managerial aspects of MSW. Collection systems and recycling practiced with respect to the involvement of the government and the private sector, are also presented. Over last two decades, the city of Berlin has made impressive progress with respect to its waste management. The amounts of waste have declined significantly, and at the same time the proportion that could be recovered and recycled has increased. In contrast, although Singapore's recycling rate has been increasing over the past few years, rapid economic and population growth as well as change in consumption patterns in this city-state has caused waste generation to continue to increase. Landfilling of MSW plays minor role in both cities, one due to geography (Singapore) and the other due to legislative prohibition (Berlin). Consequently, both in Singapore and Berlin, waste is increasingly being used as a valuable resource and great efforts have been made for the development of incineration technology and energy recovery, as well as climate protection.

  10. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-03-05T23:59:59.000Z

    This 2002 Facility Work Plan (FWP) has been prepared as required by Module VII, Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received on December 6, 2000 (NMED, 2000a). This February 2002 FWP describes the programmatic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the most recent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA) Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may be used for any SWMU or AOC (NMED, 1998). This accelerated approach is used to replace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA processcan be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

  11. WIPP Facility Work Plan for Solid Waste Management Units and Areas of Concern

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2002-03-05T23:59:59.000Z

    his 2002 Facility Work Plan (FWP) has been prepared as required by Module VII,Permit Condition VII.U.3 of the Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit, NM4890139088-TSDF (the Permit) (New Mexico Environment Department [NMED], 1999a), and incorporates comments from the NMED received onDecember 6, 2000 (NMED, 2000a). This February 2002 FWP describes the program-matic facility-wide approach to future investigations at Solid Waste Management Units (SWMU) and Areas of Concern (AOC) specified in the Permit. The Permittees are evaluating data from previous investigations of the SWMUs and AOCs against the mostrecent guidance proposed by the NMED. Based on these data, and completion of the August 2001 sampling requested by the NMED, the Permittees expect that no further sampling will be required and that a request for No Further Action (NFA) at the SWMUs and AOCs will be submitted to the NMED. This FWP addresses the current Permit requirements. It uses the results of previous investigations performed at WIPP and expands the investigations as required by the Permit. As an alternative to the Resource Conservation and Recovery Act (RCRA)Facility Investigation (RFI) specified in Module VII of the Permit, current NMED guidance identifies an Accelerated Corrective Action Approach (ACAA) that may beused for any SWMU or AOC (NMED, 1998). This accelerated approach is used toreplace the standard RFI Work Plan and Report sequence with a more flexible decision-making approach. The ACAA process allows a facility to exit the schedule of compliance contained in the facility's Hazardous and Solid Waste Amendments (HSWA) permit module and proceed on an accelerated time frame. Thus, the ACAA process can be entered either before or after an RFI Work Plan. According to the NMED's guidance, a facility can prepare an RFI Work Plan or Sampling and Analysis Plan (SAP) for any SWMU or AOC (NMED, 1998). Based on this guidance, a SAP constitutes an acceptable alternative to the RFI Work Plan specified in the Permit. The NMED accepted that the Permittees are using the ACAA in a letter dated April 20, 2000.

  12. Environmental Assessment for the construction and operation of the Three Rivers Solid Waste Authority regional waste management center at the Savannah River Site

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This Environmental Assessment (EA) has been prepared by the US Department of Energy (DOE) to assess the potential environmental impacts associated with the construction and operation of a landfill and technology center for regionally-generated municipal solid waste at the Savannah River Site (SRS) near Aiken, South Carolina. The facility would serve the municipal solid waste disposal needs for SRS and at least nine of the surrounding counties who currently comprise the Three Rivers Solid Waste Authority (TRSWA). Additional counties could become included in the proposed action at some future date. Current Federal and state requirements do not afford individual counties and municipalities within the region encompassing SRS the ability to efficiently or economically operate modern waste management facilities. In addition, consolidation of regional municipal solid waste at one location would have the benefit of reducing the duplicity of environmental consequences associated with the construction and operation of county-level facilities. The option to seek a combined disposal and technology development facility based on a regionally-cooperative effort was selected as a viable alternative to the existing individual SRS or county disposal activities. This document was prepared in compliance with the National Environmental Policy Act (NEPA) of 1969, as amended, the requirements of the Council on Environmental Quality Regulations for Implementing NEPA (40 CFR Part 1021). NEPA requires the assessment of environmental consequences of Federal actions that may affect the quality of the human environment. Based on the potential for impacts described for impacts described herein, DOE will either publish a Finding of No Significant Impact or prepare an environmental impact statement (EIS).

  13. Solid waste 30-year volume summary

    SciTech Connect (OSTI)

    Valero, O.J.; Armacost, L.L.; DeForest, T.J.; Templeton, K.J.; Williams, N.C.

    1994-06-01T23:59:59.000Z

    A 30-year forecast of the solid waste volumes to be generated or received at the US Department of Energy Hanford Site is described in this report. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste that will require treatment, storage, and disposal at Hanford`s Solid Waste Operations Complex (SWOC) during the 30-year period from FY 1994 through FY 2023. The data used to complete this document were collected from onsite and offsite waste generators who currently, or are planning to, ship solid wastes to the Hanford Site. An analysis of the data suggests that over 300,000 m{sup 3} of LLMW and TRU/TRUM waste will be managed at Hanford`s SWOC over the next 30 years. An extensive effort was made this year to collect this information. The 1993 solid waste forecast was used as a starting point, which identified approximately 100,000 m{sup 3} of LLMW and TRU/TRUM waste to be sent to the SWOC. After analyzing the forecast waste volume, it was determined that additional waste was expected from the tank waste remediation system (TWRS), onsite decontamination and decommissioning (D&D) activities, and onsite remedial action (RA) activities. Data presented in this report establish a starting point for solid waste management planning. It is recognized that forecast estimates will vary (typically increasing) as facility planning and missions continue to change and become better defined, but the information presented still provides useful insight into Hanford`s future solid waste management requirements.

  14. 2014 Course Description Solid Waste Engineering -CE 477

    E-Print Network [OSTI]

    Barlaz, Morton A.

    2014 Course Description Solid Waste Engineering - CE 477 Engineering Principles of Solid Waste on course web site http://people.engr.ncsu.edu/barlaz/ Solid Waste Technology & Management by Christensen et al (eBook available through NCSU libraries) Solid waste management must be addressed by virtually

  15. Solid Waste Facilities Regulations (Massachusetts)

    Broader source: Energy.gov [DOE]

    This chapter of the Massachusetts General Laws governs the operation of solid waste facilities. It seeks to encourage sustainable waste management practices and to mitigate adverse effects, such as...

  16. Toxicity mitigation and solidification of municipal solid waste incinerator fly ash using alkaline activated coal ash

    SciTech Connect (OSTI)

    Ivan Diaz-Loya, E. [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Allouche, Erez N., E-mail: allouche@latech.edu [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States); Eklund, Sven; Joshi, Anupam R. [Department of Chemistry, Louisiana Tech University, Ruston, LA 71272 (United States); Kupwade-Patil, Kunal [Alternative Cementitious Binders Laboratory (ACBL), Department of Civil Engineering, Louisiana Tech University, Ruston, LA 71272 (United States)

    2012-08-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Incinerator fly ash (IFA) is added to an alkali activated coal fly ash (CFA) matrix. Black-Right-Pointing-Pointer Means of stabilizing the incinerator ash for use in construction applications. Black-Right-Pointing-Pointer Concrete made from IFA, CFA and IFA-CFA mixes was chemically characterized. Black-Right-Pointing-Pointer Environmentally friendly solution to IFA disposal by reducing its toxicity levels. - Abstract: Municipal solid waste (MSW) incineration is a common and effective practice to reduce the volume of solid waste in urban areas. However, the byproduct of this process is a fly ash (IFA), which contains large quantities of toxic contaminants. The purpose of this research study was to analyze the chemical, physical and mechanical behaviors resulting from the gradual introduction of IFA to an alkaline activated coal fly ash (CFA) matrix, as a mean of stabilizing the incinerator ash for use in industrial construction applications, where human exposure potential is limited. IFA and CFA were analyzed via X-ray fluorescence (XRF), X-ray diffraction (XRD) and Inductive coupled plasma (ICP) to obtain a full chemical analysis of the samples, its crystallographic characteristics and a detailed count of the eight heavy metals contemplated in US Title 40 of the Code of Federal Regulations (40 CFR). The particle size distribution of IFA and CFA was also recorded. EPA's Toxicity Characteristic Leaching Procedure (TCLP) was followed to monitor the leachability of the contaminants before and after the activation. Also images obtained via Scanning Electron Microscopy (SEM), before and after the activation, are presented. Concrete made from IFA, CFA and IFA-CFA mixes was subjected to a full mechanical characterization; tests include compressive strength, flexural strength, elastic modulus, Poisson's ratio and setting time. The leachable heavy metal contents (except for Se) were below the maximum allowable limits and in many cases even below the reporting limit. The leachable Chromium was reduced from 0.153 down to 0.0045 mg/L, Arsenic from 0.256 down to 0.132 mg/L, Selenium from 1.05 down to 0.29 mg/L, Silver from 0.011 down to .001 mg/L, Barium from 2.06 down to 0.314 mg/L and Mercury from 0.007 down to 0.001 mg/L. Although the leachable Cd exhibited an increase from 0.49 up to 0.805 mg/L and Pd from 0.002 up to 0.029 mg/L, these were well below the maximum limits of 1.00 and 5.00 mg/L, respectively.

  17. Data summary of municipal solid waste management alternatives. Volume 6, Appendix D, Pyrolysis and gasification of MSW

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    This Appendix summarizes information available in the open literature describing the technology and operating experierice of pyrolysis technology as applied to the management of municipal solid waste (MSW). The literature search, which emphasized the time frame of greatest activity in MSW pyrolysis (i.e., the mid-1960s to the mid-1980s), focused on the scale of application, material feedstock, technical limitations and economic considerations. Smaller scale facilities, either laboratory/research scale (< I TPD) or process development/pilot scale plants (1-20 TPD) for municipal waste and related materials (agricultural, forest residues, industrial wastes, etc.), are mentioned in the literature (275, 495). However, such data are sparse, dated, and often have limited applicability to MSW in general, and for design scale-up in particular. Therefore, greatest emphasis was placed on identifying demonstration scale (20--150 TPD) will commercial seals (> 150 TPD) studies which could be expected to provide economic, environmental, and energy data that can be scaled with possibly less risk. While the promise of pyrolysis of MSW lies in its ability to transform municipal waste into gaseous and liquid chemicals and fuel products, the major limitation is the unproven technical and economic feasibility of a large scale facility.

  18. Role Of Informal Solid Waste Management Sector And Possibilities Of Integration; The

    E-Print Network [OSTI]

    Columbia University

    2047 GMT GPC Composition of Urban solid waste in India Organic 40% Recyclable 20% Inert debris 35% Misc. High generation of organics. Recycling Viable option. 75% waste is recyclable (in some form). #12/containers City Dumping site/ other unauthorised dumping sites #12;Waste Composition organic 54% inert debris 25

  19. International Best Practices for Pre-Processing and Co-Processing Municipal Solid Waste and Sewage Sludge in the Cement Industry

    E-Print Network [OSTI]

    Hasanbeigi, Ali

    2013-01-01T23:59:59.000Z

    Co-processing Municipal Solid Waste and Sewage Sludge in theno date. Integrated Solid Waste Management. Presentationincineration of Municipal Solid Waste in Cement Industry. :

  20. Data summary of municipal solid waste management alternatives. Volume 7, Appendix E -- Material recovery/material recycling technologies

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    The enthusiasm for and commitment to recycling of municipal solid wastes is based on several intuitive benefits: Conservation of landfill capacity; Conservation of non-renewable natural resources and energy sources; Minimization of the perceived potential environmental impacts of MSW combustion and landfilling; Minimization of disposal costs, both directly and through material resale credits. In this discussion, ``recycling`` refers to materials recovered from the waste stream. It excludes scrap materials that are recovered and reused during industrial manufacturing processes and prompt industrial scrap. Materials recycling is an integral part of several solid waste management options. For example, in the preparation of refuse-derived fuel (RDF), ferrous metals are typically removed from the waste stream both before and after shredding. Similarly, composting facilities, often include processes for recovering inert recyclable materials such as ferrous and nonferrous metals, glass, Plastics, and paper. While these two technologies have as their primary objectives the production of RDF and compost, respectively, the demonstrated recovery of recyclables emphasizes the inherent compatibility of recycling with these MSW management strategies. This appendix discusses several technology options with regard to separating recyclables at the source of generation, the methods available for collecting and transporting these materials to a MRF, the market requirements for post-consumer recycled materials, and the process unit operations. Mixed waste MRFs associated with mass bum plants are also presented.

  1. Review of LCA studies of solid waste management systems Part II: Methodological guidance for a better practice

    SciTech Connect (OSTI)

    Laurent, Alexis, E-mail: alau@dtu.dk [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Clavreul, Julie [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Bernstad, Anna [Water and Environmental Engineering, Department of Chemical Engineering, Lund University, 221 00 Lund (Sweden); Bakas, Ioannis [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Niero, Monia [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); ECO Ecosystems and Environmental Sustainability, Department of Chemical and Biochemical Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Gentil, Emmanuel [Copenhagen Resource Institute, 1215 Copenhagen K (Denmark); Christensen, Thomas H. [Residual Resources Engineering, Department of Environmental Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark); Hauschild, Michael Z. [Division for Quantitative Sustainability Assessment, Department of Management Engineering, Technical University of Denmark, 2800 Kgs. Lyngby (Denmark)

    2014-03-01T23:59:59.000Z

    Highlights: We perform a critical review of 222 LCA studies of solid waste management systems. We analyse the past LCA practice against the ISO standard and ILCD Handbook guidance. Malpractices exist in many methodological aspects with large variations among studies. Many of these aspects are important for the reliability of the results. We provide detailed recommendations to practitioners of waste management LCAs. - Abstract: Life cycle assessment (LCA) is increasingly used in waste management to identify strategies that prevent or minimise negative impacts on ecosystems, human health or natural resources. However, the quality of the provided support to decision- and policy-makers is strongly dependent on a proper conduct of the LCA. How has LCA been applied until now? Are there any inconsistencies in the past practice? To answer these questions, we draw on a critical review of 222 published LCA studies of solid waste management systems. We analyse the past practice against the ISO standard requirements and the ILCD Handbook guidelines for each major step within the goal definition, scope definition, inventory analysis, impact assessment, and interpretation phases of the methodology. Results show that malpractices exist in several aspects of the LCA with large differences across studies. Examples are a frequent neglect of the goal definition, a frequent lack of transparency and precision in the definition of the scope of the study, e.g. an unclear delimitation of the system boundaries, a truncated impact coverage, difficulties in capturing influential local specificities such as representative waste compositions into the inventory, and a frequent lack of essential sensitivity and uncertainty analyses. Many of these aspects are important for the reliability of the results. For each of them, we therefore provide detailed recommendations to practitioners of waste management LCAs.

  2. Data summary of municipal solid waste management alternatives. Volume 10, Appendix H: Anaerobic digestion of MSW

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    While municipal solid waste (MSW) thermoconversion and recycling technologies have been described in Appendices A through E, this appendix addresses the role of bioconversion technologies in handling the organic fraction in MSW and sewage sludge. Much of the organic matter in MSW, consisting mainly of paper, food waste, and yard waste, has potential for conversion, along with sewage sludge, through biochemical processes to methane and carbon dioxide providing a measurable, renewable energy resource potential. The gas produced may be treated for removal of carbon dioxide and water, leaving pipeline quality gas. The process also has the potential for producing a stabilized solid product that may be suitable as a fuel for combustion or used as a compost fertilizer. Anaerobic digestion can occur naturally in an uncontrolled environment such as a landfill, or it can occur in a controlled environment such as a confined vessel. Landfill gas production is discussed in Appendix F. This appendix provides information on the anaerobic digestion process as it has been applied to produce methane from the organic fraction of MSW in enclosed, controlled reactors.

  3. Data summary of municipal solid waste management alternatives. Volume 5, Appendix C, Fluidized-bed combustion

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    This appendix provides information on fluidized-bed combustion (FBC) technology as it has been applied to municipal waste combustion (MWC). A review of the literature was conducted to determine: (1) to what extent FBC technology has been applied to MWC, in terms of number and size of units was well as technology configuration; (2) the operating history of facilities employing FBC technology; and (3) the cost of these facilities as compared to conventional MSW installations. Where available in the literature, data on operating and performance characteristics are presented. Tabular comparisons of facility operating/cost data and emissions data have been complied and are presented. The literature review shows that FBC technology shows considerable promise in terms of providing improvements over conventional technology in areas such as NOx and acid gas control, and ash leachability. In addition, the most likely configuration to be applied to the first large scale FBC dedicated to municipal solid waste (MSW) will employ circulating bed (CFB) technology. Projected capital costs for the Robbins, Illinois 1600 ton per day CFB-based waste-to-energy facility are competitive with conventional systems, in the range of $125,000 per ton per day of MSW receiving capacity.

  4. Life cycle assessment of four municipal solid waste management scenarios in China

    SciTech Connect (OSTI)

    Hong Jinglan, E-mail: hongjing@sdu.edu.c [School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China); Li Xiangzhi [Department of Pathology, University of Michigan, 1301 Catherine, Ann Arbor, MI 48109 (United States); Zhaojie Cui [School of Environmental Science and Engineering, Shandong University, Jinan 250100 (China)

    2010-11-15T23:59:59.000Z

    A life cycle assessment was carried out to estimate the environmental impact of municipal solid waste. Four scenarios mostly used in China were compared to assess the influence of various technologies on environment: (1) landfill, (2) incineration, (3) composting plus landfill, and (4) composting plus incineration. In all scenarios, the technologies significantly contribute to global warming and increase the adverse impact of non-carcinogens on the environment. The technologies played only a small role in the impact of carcinogens, respiratory inorganics, terrestrial ecotoxicity, and non-renewable energy. Similarly, the influence of the technologies on the way other elements affect the environment was ignorable. Specifically, the direct emissions from the operation processes involved played an important role in most scenarios except for incineration, while potential impact generated from transport, infrastructure and energy consumption were quite small. In addition, in the global warming category, highest potential impact was observed in landfill because of the direct methane gas emissions. Electricity recovery from methane gas was the key factor for reducing the potential impact of global warming. Therefore, increasing the use of methane gas to recover electricity is highly recommended to reduce the adverse impact of landfills on the environment.

  5. Solid Waste Permits (Louisiana)

    Broader source: Energy.gov [DOE]

    The Louisiana Department of Environmental Quality administers the rules and regulations governing the storage, collection, processing, recovery, and reuse of solid waste protect the air,...

  6. BEE 476. Solid Waste Engineering Spring Semester 2008

    E-Print Network [OSTI]

    Walter, M.Todd

    1 BEE 476. Solid Waste Engineering Spring Semester 2008 Credit: 3 hours Catalogue description: Planning and design of processes and facilities for management of municipal solid wastes. Source: To develop 1. An understanding of the problems, issues and trade-offs involved in municipal solid waste (MSW

  7. BEE 4760. Solid Waste Engineering Spring Semester 2010

    E-Print Network [OSTI]

    Walter, M.Todd

    1 BEE 4760. Solid Waste Engineering Spring Semester 2010 Credit: 3 hours Catalogue description: Planning and design of processes and facilities for management of municipal solid wastes. Source: To develop 1. An understanding of the problems, issues and trade-offs involved in municipal solid waste (MSW

  8. Solid waste management of coal conversion residuals from a commercial-size facility: environmental engineering aspects. Final report

    SciTech Connect (OSTI)

    Bern, J.; Neufeld, R. D.; Shapiro, M. A.

    1980-11-30T23:59:59.000Z

    Major residuals generated by the conversion process and its auxiliary operations include: (a) coal preparation wastes; (b) gasifier ash; (c) liquefaction solids-char; (d) tail gas or flue gas desulfurization sludge; (e) boiler flyash and bottom ash; (f) raw water treatment sludge, and; (g) biosludges from process wastewater treatment. Recovered sulfur may also require disposal management. Potential environmental and health impacts from each of the residues are described on the basis of characterization of the waste in the perspective of water quality degradation. Coal gasification and liquefaction systems are described in great detail with respect to their associated residuals. Management options are listed with the conclusion that land disposal of the major residual streams is the only viable choice. On-site versus off-site disposal is analyzed with the selection of on-site operations to reduce political, social and institutional pressures, and to optimize the costs of the system. Mechanisms for prevention of leachate generation are described, and various disposal site designs are outlined. It is concluded that co-disposal feasibility of some waste streams must be established in order to make the most preferred solid waste management system feasible. Capacity requirements for the disposal operation were calculated for a 50,000 bbl/day coal liquefaction plant or 250 million SCF/day gasification operation.

  9. Eco-efficiency for greenhouse gas emissions mitigation of municipal solid waste management: A case study of Tianjin, China

    SciTech Connect (OSTI)

    Zhao Wei, E-mail: zhaowei.tju@gmail.com [College of Civil Engineering and Architecture, Liaoning University of Technology, 121000 Jinzhou (China); Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Huppes, Gjalt, E-mail: huppes@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands); Voet, Ester van der, E-mail: Voet@cml.leidenuniv.nl [Institute of Environmental Sciences (CML), Leiden University, P.O. Box 9518, 2300RA Leiden (Netherlands)

    2011-06-15T23:59:59.000Z

    The issue of municipal solid waste (MSW) management has been highlighted in China due to the continually increasing MSW volumes being generated and the limited capacity of waste treatment facilities. This article presents a quantitative eco-efficiency (E/E) analysis on MSW management in terms of greenhouse gas (GHG) mitigation. A methodology for E/E analysis has been proposed, with an emphasis on the consistent integration of life cycle assessment (LCA) and life cycle costing (LCC). The environmental and economic impacts derived from LCA and LCC have been normalized and defined as a quantitative E/E indicator. The proposed method was applied in a case study of Tianjin, China. The study assessed the current MSW management system, as well as a set of alternative scenarios, to investigate trade-offs between economy and GHG emissions mitigation. Additionally, contribution analysis was conducted on both LCA and LCC to identify key issues driving environmental and economic impacts. The results show that the current Tianjin's MSW management system emits the highest GHG and costs the least, whereas the situation reverses in the integrated scenario. The key issues identified by the contribution analysis show no linear relationship between the global warming impact and the cost impact in MSW management system. The landfill gas utilization scenario is indicated as a potential optimum scenario by the proposed E/E analysis, given the characteristics of MSW, technology levels, and chosen methodologies. The E/E analysis provides an attractive direction towards sustainable waste management, though some questions with respect to uncertainty need to be discussed further.

  10. Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987

    SciTech Connect (OSTI)

    Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. [Oak Ridge National Lab., TN (United States); Craig, P.M. [Environmental Consulting Engineers, Inc., Knoxville, TN (United States)

    1987-09-30T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY`s 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

  11. Summary of environmental characterization activities at the Oak Ridge National Laboratory Solid Waste Storage Area Six, FY 1986 through 1987

    SciTech Connect (OSTI)

    Davis, E.C.; Solomon, D.K.; Dreier, R.B.; Lee, S.Y.; Kelmers, A.D.; Lietzke, D.A. (Oak Ridge National Lab., TN (United States)); Craig, P.M. (Environmental Consulting Engineers, Inc., Knoxville, TN (United States))

    1987-09-30T23:59:59.000Z

    The Oak Ridge National Laboratory (ORNL) Remedial Action Program (RAP), has supported characterization activities in Solid Waste Storage Area (SWSA 6) to acquire information necessary for identification and planning of remedial actions that may be warranted, and to facilitate eventual closure of the site. In FY 1986 investigations began in the areas of site hydrology, geochemistry, soils, geology, and geohydrologic model application. This report summarizes work carried out in each of these areas during FY's 1986 and 1987 and serves as a status report pulling together the large volume of data that has resulted. Characterization efforts are by no means completed; however, a sufficient data base has been generated to begin data interpretation and analysis of site contaminants.

  12. Municipal solid waste disposal in Portugal

    SciTech Connect (OSTI)

    Magrinho, Alexandre [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Didelet, Filipe [Mechanical Engineering Department, Escola Superior de Tecnologia de Setubal, Campus IPS, Estefanilha, Setubal (Portugal); Semiao, Viriato [Mechanical Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)]. E-mail: ViriatoSemiao@ist.utl.pt

    2006-07-01T23:59:59.000Z

    In recent years municipal solid waste (MSW) disposal has been one of the most important environmental problems for all of the Portuguese regions. The basic principles of MSW management in Portugal are: (1) prevention or reduction, (2) reuse, (3) recovery (e.g., recycling, incineration with heat recovery), and (4) polluter-pay principle. A brief history of legislative trends in waste management is provided herein as background for current waste management and recycling activities. The paper also presents and discusses the municipal solid waste management in Portugal and is based primarily on a national inquiry carried out in 2003 and directed to the MSW management entities. Additionally, the MSW responsibility and management structure in Portugal is presented, together with the present situation of production, collection, recycling, treatment and elimination of MSW. Results showed that 96% of MSW was collected mixed (4% was separately collected) and that 68% was disposed of in landfill, 21% was incinerated at waste-to-energy plants, 8% was treated at organic waste recovery plants and 3% was delivered to sorting. The average generation rate of MSW was 1.32 kg/capita/day.

  13. Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York)

    Broader source: Energy.gov [DOE]

    These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators,...

  14. Data summary of municipal solid waste management alternatives. Volume 11, Alphabetically indexed bibliography

    SciTech Connect (OSTI)

    none,

    1992-10-01T23:59:59.000Z

    This appendix contains the alphabetically indexed bibliography for the complete group of reports on municipal waste management alternatives. The references are listed for each of the following topics: mass burn technologies, RDF technologies, fluidized-bed combustion, pyrolysis and gasification of MSW, materials recovery- recycling technologies, sanitary landfills, composting, and anaerobic digestion of MSW.

  15. PPPO-02-427-07 Revised Solid Waste Management Unit Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    GSAs and SAAs are established on the pad, as necessary, for the storage of waste and wastewater. PRESENT OPERATIONAL STATUS: Active DATES OPERATED: 1995 to present SITEPROCESS...

  16. Comparative evaluation of life cycle assessment models for solid waste management

    SciTech Connect (OSTI)

    Winkler, Joerg [Institute for Waste Management and Contaminated Sites Treatment, TU Dresden Faculty of Forestry, Geo and Hydro Sciences, Pratzschwitzer Str. 15, 01796 Pirna (Germany); Bilitewski, Bernd [Institute for Waste Management and Contaminated Sites Treatment, TU Dresden Faculty of Forestry, Geo and Hydro Sciences, Pratzschwitzer Str. 15, 01796 Pirna (Germany)], E-mail: abfall@rcs.urz.tu-dresden.de

    2007-07-01T23:59:59.000Z

    This publication compares a selection of six different models developed in Europe and America by research organisations, industry associations and governmental institutions. The comparison of the models reveals the variations in the results and the differences in the conclusions of an LCA study done with these models. The models are compared by modelling a specific case - the waste management system of Dresden, Germany - with each model and an in-detail comparison of the life cycle inventory results. Moreover, a life cycle impact assessment shows if the LCA results of each model allows for comparable and consecutive conclusions, which do not contradict the conclusions derived from the other models' results. Furthermore, the influence of different level of detail in the life cycle inventory of the life cycle assessment is demonstrated. The model comparison revealed that the variations in the LCA results calculated by the models for the case show high variations and are not negligible. In some cases the high variations in results lead to contradictory conclusions concerning the environmental performance of the waste management processes. The static, linear modelling approach chosen by all models analysed is inappropriate for reflecting actual conditions. Moreover, it was found that although the models' approach to LCA is comparable on a general level, the level of detail implemented in the software tools is very different.

  17. Sudhakar Yedla* and Sarika Kansal Economic insight into municipal solid waste

    E-Print Network [OSTI]

    Columbia University

    Sudhakar Yedla* and Sarika Kansal Economic insight into municipal solid waste management in Mumbai: a critical analysis 511 " Economic insight into solid waste management Conventional MSW management fails metropolitan city in India, presents the most critical solid waste management system in India. The present

  18. Networks of recyclable material waste-pickers cooperatives: An alternative for the solid waste management in the city of Rio de Janeiro

    SciTech Connect (OSTI)

    Tirado-Soto, Magda Martina, E-mail: magda@pep.ufrj.br [Program of Production Engineering, School and Research in Engineering, Federal University of Rio de Janeiro (Brazil); Zamberlan, Fabio Luiz, E-mail: fabio@pep.ufrj.br [Program of Production Engineering, School and Research in Engineering, Federal University of Rio de Janeiro (Brazil)

    2013-04-15T23:59:59.000Z

    Highlights: ? In the marketing of recyclable materials, the waste-pickers are the least wins. ? It is proposed creating a network of recycling cooperatives to achieve viability. ? The waste-pickers contribute to waste management to the city. - Abstract: The objective of this study is to discuss the role of networks formed of waste-picker cooperatives in ameliorating problems of final disposal of solid waste in the city of Rio de Janeiro, since the citys main landfill will soon have to close because of exhausted capacity. However, it is estimated that in the city of Rio de Janeiro there are around five thousand waste-pickers working in poor conditions, with lack of physical infrastructure and training, but contributing significantly by diverting solid waste from landfills. According to the Sustainable Development Indicators (IBGE, 2010a,b) in Brazil, recycling rates hover between 45% and 55%. In the municipality of Rio de Janeiro, only 1% of the waste produced is collected selectively by the government (COMLURB, 2010), demonstrating that recycling is mainly performed by waste-pickers. Furthermore, since the recycling market is an oligopsony that requires economies of scale to negotiate directly with industries, the idea of working in networks of cooperatives meets the demands for joint marketing of recyclable materials. Thus, this work presents a method for creating and structuring a network of recycling cooperatives, with prior training for working in networks, so that the expected synergies and joint efforts can lead to concrete results. We intend to demonstrate that it is first essential to strengthen the waste-pickers cooperatives in terms of infrastructure, governance and training so that solid waste management can be environmentally, socially and economically sustainable in the city of Rio de Janeiro.

  19. Delaware Solid Waste Authority (Delaware)

    Broader source: Energy.gov [DOE]

    The Delaware Solid Waste Authority (DSWA) runs three landfills, all of which recover methane and generate electricity with a total capacity of 24 MWs. The DSWA Solid Waste Plan includes goals,...

  20. Heat Recovery From Solid Waste

    E-Print Network [OSTI]

    Underwood, O. W.

    1981-01-01T23:59:59.000Z

    areas of evaluation, including the cost of fuel, cost of solid waste disposal, plant energy requirements, available technology, etc....

  1. Environmental Audit of Municipal Solid Waste T. V. Ramachandra Shruthi Bachamanda

    E-Print Network [OSTI]

    Columbia University

    1 Environmental Audit of Municipal Solid Waste Management T. V. Ramachandra Shruthi Bachamanda Abstract The management of municipal solid waste has become an acute problem due to enhanced economic to handle this problem in a safe and hygienic manner. In this regard, Municipal Solid Waste Management (MSWM

  2. Transforming trash: reuse as a waste management and climate change mitigation strategy

    E-Print Network [OSTI]

    Vergara, Sintana Eugenia

    2011-01-01T23:59:59.000Z

    Biological treatment of waste solids. Waste Management andOF POLLUTANTS FROM SOLID WASTE Solid waste affects the32 5. Solid waste and its impact on the

  3. Composition of Municipal Solid Waste-Need for Thermal Treatment in the present Indian context

    E-Print Network [OSTI]

    Columbia University

    Composition of Municipal Solid Waste- Need for Thermal Treatment in the present Indian context of an eternally inherent low heating value on the other. Current status of Solid Waste Management The MSW Rules front in India17 . None of the major metros have any projects of significant scale of Solid Waste

  4. Special Feature 2: Making a virtue of necessity: recycling solid waste by the poor, for

    E-Print Network [OSTI]

    Boyer, Edmond

    Special Feature 2: Making a virtue of necessity: recycling solid waste by the poor, for the poor, the management method for waste in Egypt was open dumps and unregulated accumulations of solid waste in public,000 informal solid waste removers. They were, and remain, the experts in collection, removal, re

  5. Thirty-year solid waste generation forecast for facilities at SRS

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis of future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.

  6. Medium term municipal solid waste generation prediction by autoregressive integrated moving average

    SciTech Connect (OSTI)

    Younes, Mohammad K.; Nopiah, Z. M.; Basri, Noor Ezlin A.; Basri, Hassan [Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2014-09-12T23:59:59.000Z

    Generally, solid waste handling and management are performed by municipality or local authority. In most of developing countries, local authorities suffer from serious solid waste management (SWM) problems and insufficient data and strategic planning. Thus it is important to develop robust solid waste generation forecasting model. It helps to proper manage the generated solid waste and to develop future plan based on relatively accurate figures. In Malaysia, solid waste generation rate increases rapidly due to the population growth and new consumption trends that characterize the modern life style. This paper aims to develop monthly solid waste forecasting model using Autoregressive Integrated Moving Average (ARIMA), such model is applicable even though there is lack of data and will help the municipality properly establish the annual service plan. The results show that ARIMA (6,1,0) model predicts monthly municipal solid waste generation with root mean square error equals to 0.0952 and the model forecast residuals are within accepted 95% confident interval.

  7. Chapter 47 Solid Waste Facilities (Kentucky)

    Broader source: Energy.gov [DOE]

    This chapter establishes the permitting standards for solid waste sites or facilities, the standards applicable to all solid waste sites or facilities, and the standards for certification of...

  8. 1995 solid waste 30-year container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; DeForest, T.J.; Patridge, M.D. [Pacific Northwest Lab., Richland, WA (United States)

    1995-07-01T23:59:59.000Z

    This report describes a 30-year forecast of the solid waste volumes by container category. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU-TRUM) waste. These volumes and their associated container categories will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1995 through FY 2024. The data presented in this report establish a baseline for solid waste management both in the present and future. With knowledge of the volumes by container type, decisions on the facility handling and storage requirements can be adequately made. It is recognized that the forecast estimates will vary as facility planning and missions continue to change and become better defined; however, the data presented in this report still provide useful insight into Hanford`s future solid waste management requirements.

  9. Solid Waste Disposal Facilities (Massachusetts)

    Broader source: Energy.gov [DOE]

    These sections articulate rules for the maintenance and operation of solid waste disposal facilities, as well as site assignment procedures. Applications for site assignment will be reviewed by the...

  10. Cogeneration/Cogeneration - Solid Waste

    E-Print Network [OSTI]

    Pyle, F. B.

    1980-01-01T23:59:59.000Z

    This paper reviews the rationale for cogeneration and basic turbine types available. Special considerations for cogeneration in conjunction with solid waste firing are outlined. Optimum throttle conditions for cogeneration are significantly...

  11. Municipal Solid Waste in The United States

    E-Print Network [OSTI]

    Barlaz, Morton A.

    2011 Facts and Figures Municipal Solid Waste in The United States #12;United States Environmental Protection Agency Office of Solid Waste (5306P) EPA530-R-13-001 May 2013 www.epa.gov #12;MUNICIPAL SOLID WASTE IN THE UNITED STATES: 2011 FACTS AND FIGURES Table of Contents Chapter Page MUNICIPAL SOLID WASTE

  12. RCRA/UST, superfund and EPCRA hotline training module. Introduction to: Solid waste programs, updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    Solid waste is primarily regulated by the states and municipalities and managed on the local level. The only exception is the 40 CFR Part 258 Federal Solid Waste Disposal Facility Criteria which provides EPA`s requirements for the design and operation of landfills. EPA`s role in implementing solid waste management programs includes setting national goals, providing leadership and technical assistance, and developing educational materials. The module focuses on EPA`s efforts in municipal and industrial solid waste.

  13. Application of multi-criteria decision-making on strategic municipal solid waste management in Dalmatia, Croatia

    SciTech Connect (OSTI)

    Vego, Goran [Civil Engineering Institute of Croatia, Environmental and Hydrotechnics Department, Matice Hrvatske 15, 21000 Split (Croatia)], E-mail: goran.vego@igh.hr; Kucar-Dragicevic, Savka [Croatian Environmental Agency, Director's Office, Trg Marsala Tita 8, 10000 Zagreb (Croatia)], E-mail: savka.kucar-dragicevic@azo.hr; Koprivanac, Natalija [Faculty of Chemical Engineering and Technology, Environmental Engineering Department, Marulicev Trg 19, 10000 Zagreb (Croatia)], E-mail: nkopri@fkit.hr

    2008-11-15T23:59:59.000Z

    The efficiency of providing a waste management system in the coastal part of Croatia consisting of four Dalmatian counties has been modelled. Two multi-criteria decision-making (MCDM) methods, PROMETHEE and GAIA, were applied to assist with the systematic analysis and evaluation of the alternatives. The analysis covered two levels; first, the potential number of waste management centres resulting from possible inter-county cooperation; and second, the relative merits of siting of waste management centres in the coastal or hinterland zone was evaluated. The problem was analysed according to several criteria; and ecological, economic, social and functional criteria sets were identified as relevant to the decision-making process. The PROMETHEE and GAIA methods were shown to be efficient tools for analysing the problem considered. Such an approach provided new insights to waste management planning at the strategic level, and gave a reason for rethinking some of the existing strategic waste management documents in Croatia.

  14. SECONDARY WASTE MANAGEMENT STRATEGY FOR EARLY LOW ACTIVITY WASTE TREATMENT

    SciTech Connect (OSTI)

    CRAWFORD TW

    2008-07-17T23:59:59.000Z

    This study evaluates parameters relevant to River Protection Project secondary waste streams generated during Early Low Activity Waste operations and recommends a strategy for secondary waste management that considers groundwater impact, cost, and programmatic risk. The recommended strategy for managing River Protection Project secondary waste is focused on improvements in the Effiuent Treatment Facility. Baseline plans to build a Solidification Treatment Unit adjacent to Effluent Treatment Facility should be enhanced to improve solid waste performance and mitigate corrosion of tanks and piping supporting the Effiuent Treatment Facility evaporator. This approach provides a life-cycle benefit to solid waste performance and reduction of groundwater contaminants.

  15. Solid Waste Policies (Iowa)

    Broader source: Energy.gov [DOE]

    This statute establishes the support of the state for alternative waste management practices that reduce the reliance upon land disposal and incorporate resource recovery. Cities and counties are...

  16. RCRA, superfund and EPCRA hotline training module. Introduction to: Solid waste programs updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module focuses on EPA`s efforts in two areas: municipal and industrial solid waste. The garbage that is managed by the local governments is known as municipal solid waste (MSW). Garbage excluded from hazardous waste regulation but not typically collected by local governments is commonly known as industrial solid waste. This category includes domestic sewage and other wastewater treatment sludge, demolition and construction wastes, agricultural and mining residues, combustion ash, and industrial process wastes.

  17. Solid waste education in children's museums

    E-Print Network [OSTI]

    King, Jennifer Campbell

    1997-01-01T23:59:59.000Z

    Solid waste education in museum environments is an increasingly popular educational tool; however, no documents exist detailing the specifics of such educational approaches. A study was therefore conducted to identify and describe solid waste...

  18. Solid Waste Assessment Fee Exemptions (West Virginia)

    Broader source: Energy.gov [DOE]

    A person who owns, operates, or leases an approved solid waste disposal facility is exempt from the payment of solid waste assessment fees, upon the receipt of a Certificate of Exemption from the...

  19. Solid Waste Resource Recovery Financing Act (Texas)

    Broader source: Energy.gov [DOE]

    The State of Texas encourages the processing of solid waste for the purpose of extracting, converting to energy, or otherwise separating and preparing solid waste for reuse. This Act provides for...

  20. Solid Waste Reduction, Recovery, and Recycling

    Broader source: Energy.gov [DOE]

    This statute expresses the strong support of the State of Wisconsin for the reduction of the amount of solid waste generated, the reuse, recycling and composting of solid waste, and resource...

  1. Solid Waste and Infectious Waste Regulations (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law that establishes the Ohio Environmental Protection Agency establishes the rules and regulations regarding solid waste.

  2. Advanced Characterisation of Municipal Solid Waste Ashes

    E-Print Network [OSTI]

    Advanced Characterisation of Municipal Solid Waste Ashes Preparatory thesis Randi Skytte Pedersen is to investigate Municipal Solid Waste (MSW) ashes with respect to particle sizes, structures and composition with characterisation of Municipal Solid Waste (MSW) ashes from the Danish power plant M°abjergværket, Holstebro. MSW

  3. MULTIPLE-SCALE DYNAMIC LEACHING OF A MUNICIPAL SOLID WASTE INCINERATION ASH

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 MULTIPLE-SCALE DYNAMIC LEACHING OF A MUNICIPAL SOLID WASTE INCINERATION ASH Waste Management (in source such as municipal solid waste (MSW) incineration ash, requires a knowledge of the so is proposed. Key words: Leaching, Waste, Incineration ash, Chromium, L/S ratio, Modelling. hal-00656672

  4. Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-10-03T23:59:59.000Z

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

  5. DOE/LX/07-0191&D1 Secondary Document DMSA C-331-14 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document DMSA C-331-14 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 248 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 072502, 031509...

  6. DOE/LX/07-0330&D1 Secondary Document DMSA C-337-40 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document DMSA C-337-40 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 343 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110 REGULATORY...

  7. DOE/LX/07-0252&D1 Secondary Document DMSA C-331-13 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Document DMSA C-331-13 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 247 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 061410 REGULATORY...

  8. Municipal Solid Waste Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of municipal solid waste energy resources and technologies supplemented by specific information to apply waste to energy within the Federal sector.

  9. Summary of radioactive solid waste received in the 200 Areas during calendar year 1992

    SciTech Connect (OSTI)

    Anderson, J.D.; Hagel, D.L.

    1992-05-01T23:59:59.000Z

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1991. This report does not include solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms, or backlog wastes. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria, (WHC 1988), liquid waste data are not included in this document.

  10. Summary of radioactive solid waste received in the 200 Areas during calendar year 1994

    SciTech Connect (OSTI)

    Anderson, J.D.; Hagel, D.L.

    1995-08-01T23:59:59.000Z

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Area radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Field Office, under contract DE-AC06-87RL10930. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive material that has been buried and stored in the 200 Area radioactive solid waste storage and disposal facilities from startup in 1944 through calendar year 1994. This report does not include backlog waste: solid radioactive wastes in storage or disposed of in other areas or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria (WHC 1988), liquid waste data are not included in this document.

  11. Summary of radioactive solid waste received in the 200 Areas during calendar year 1993

    SciTech Connect (OSTI)

    Anderson, J.D.; Hagel, D.L.

    1994-09-01T23:59:59.000Z

    Westinghouse Hanford Company manages and operates the Hanford Site 200 Areas radioactive solid waste storage and disposal facilities for the US Department of Energy, Richland Operations Office. These facilities include radioactive solid waste disposal sites and radioactive solid waste storage areas. This document summarizes the amount of radioactive materials that have been buried and stored in the 200 Areas radioactive solid waste storage and disposal facilities since startup in 1944 through calendar year 1993. This report does not include backlog waste, solid radioactive waste in storage or disposed of in other areas, or facilities such as the underground tank farms. Unless packaged within the scope of WHC-EP-0063, ``Hanford Site Solid Waste Acceptance Criteria,`` (WHC 1988), liquid waste data are not included in this document.

  12. DOE/LX/07-0062&D1 Secondary Document DMSA-331-24 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2&D1 Secondary Document DMSA-331-24 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 255 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509...

  13. DOE/LX/07-0113&D1 Secondary Document DMSA-331-17 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3&D1 Secondary Document DMSA-331-17 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 553 DATE OF ORIGINAL SAR: 121605 DATE OF SAR REVISION: 031509...

  14. DOE/LX/07-0114&D1 Secondary Document DMSA-331-21 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4&D1 Secondary Document DMSA-331-21 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 555 DATE OF ORIGINAL SAR: 121605 DATE OF SAR REVISION: 031509...

  15. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume...

    Office of Environmental Management (EM)

    1: Availability of Feedstock and Technology Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology Municipal solid waste (MSW) is...

  16. A new technique to monitor ground-water quality at municipal solid waste landfills

    E-Print Network [OSTI]

    Hart, Steven Charles

    1989-01-01T23:59:59.000Z

    government substantially increased its role in managing solid waste when Congress passed the Resource Conservation and Recovery Act (RCRA, 1976). Subtitle D of this act requires the Federal government to establish guidelines and provide technical... assistance to the States for the planning and developing of nonhazardous solid waste management programs. Under authority of Sections 1003(a)(3) and 40D4(a) of RCRA, the EPA issued the "Criteria for Classification of Solid Maste Disposal Facilities...

  17. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01T23:59:59.000Z

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  18. Geothermal Direct-Use Minimizing Solid Waste

    Broader source: Energy.gov [DOE]

    Aquaculture and horticulture businesses, and other industries that use geothermal direct-use systems typically don't generate any more solid waste than those that use other energy resources.

  19. Pennsylvania Solid Waste- Resource Recovery Development Act

    Broader source: Energy.gov [DOE]

    This act promotes the construction and the application of solid waste disposal/processing and resource recovery systems that preserve and enhance the quality of air, water, and land resources. The...

  20. County Solid Waste Control Act (Texas)

    Broader source: Energy.gov [DOE]

    The purpose of this chapter is to authorize a cooperative effort by counties, public agencies, and other persons for the safe and economical collection, transportation, and disposal of solid waste...

  1. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07T23:59:59.000Z

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  2. Experimental analysis of municipal solid waste samples

    E-Print Network [OSTI]

    Mendoza Sanchez, Itza

    2002-01-01T23:59:59.000Z

    EXPERIMENTAL ANALYSIS OF MUNICIPAL SOLID WASTE SAMPLES A Thesis by ITZA MENDOZA SANCHEZ Submitted to the Office of Graduate Studies of Texas ASM University tn partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 2002 Major Subject: Civil Engmeering EXPERIMENTAL ANALYSIS OF MUNICIPAL SOLID WASTE SAMPLES A Thesis by ITZA MENDOZA SANCHEZ Submitted to the Office of Graduate Studies of Texas A&M Umversity in partial fulfillment of the requirements...

  3. The Potential of Cellulosic Ethanol Production from Municipal Solid Waste: A Technical and Economic Evaluation

    E-Print Network [OSTI]

    Shi, Jian; Ebrik, Mirvat; Yang, Bin; Wyman, Charles E.

    2009-01-01T23:59:59.000Z

    1996 19950414. Municipal solid waste processing facility andconversion of municipal-solid-waste to ethanol. Biotechnol.Bioconversion of municipal solid waste to glucose for bio-

  4. An Economic Assessment of Market-Based Approaches to Regulating the Municipal Solid Waste Stream

    E-Print Network [OSTI]

    Menell, Peter S.

    2004-01-01T23:59:59.000Z

    Rates for Municipal Solid Waste: Implementation Experience,RCRA) and the Hazardous and Solid Waste Amendments of 1984,by the EPA, states, and solid waste organizations throughout

  5. Hanford Site Solid Waste Acceptance Criteria

    SciTech Connect (OSTI)

    Not Available

    1993-11-17T23:59:59.000Z

    This manual defines the Hanford Site radioactive, hazardous, and sanitary solid waste acceptance criteria. Criteria in the manual represent a guide for meeting state and federal regulations; DOE Orders; Hanford Site requirements; and other rules, regulations, guidelines, and standards as they apply to acceptance of radioactive and hazardous solid waste at the Hanford Site. It is not the intent of this manual to be all inclusive of the regulations; rather, it is intended that the manual provide the waste generator with only the requirements that waste must meet in order to be accepted at Hanford Site TSD facilities.

  6. Interface control document between PUREX/UO{sub 3} Plant Transition and Solid Waste Disposal Division

    SciTech Connect (OSTI)

    Duncan, D.R.

    1994-06-30T23:59:59.000Z

    This interface control document (ICD) between PUREX/UO{sub 3} Plant Transition (PPT) and Solid Waste Disposal Division (SWD) establishes at a top level the functional responsibilities of each division where interfaces exist between the two divisions. Since the PUREX Transition and Solid Waste Disposal divisions operate autonomously, it is important that each division has a clear understanding of the other division`s expectations regarding these interfaces. This ICD primarily deals with solid wastes generated by the PPT. In addition to delineating functional responsibilities, the ICD includes a baseline description of those wastes that will require management as part of the interface between the divisions. The baseline description of wastes includes waste volumes and timing for use in planning the proper waste management capabilities: the primary purpose of this ICD is to ensure defensibility of expected waste stream volumes and Characteristics for future waste management facilities. Waste descriptions must be as complete as-possible to ensure adequate treatment, storage, and disposal capability will exist. The ICD also facilitates integration of existing or planned waste management capabilities of the PUREX. Transition and Solid Waste Disposal divisions. The ICD does not impact or affect the existing processes or procedures for shipping, packaging, or approval for shipping wastes by generators to the Solid Waste Division.

  7. Solid Waste Paul Woodson, East Central University

    E-Print Network [OSTI]

    of groundwater contamination, air pollution, and odor. Solid wastes may be displeasing to the public either, industrial and medical wastes, food wastes, mineral waste, and nonhazardous wastes. In addition/reservoirs, special wastes, such as medical wastes, low level radioactive wastes, construction/demolition debris

  8. Solid Waste Program technical baseline description

    SciTech Connect (OSTI)

    Carlson, A.B.

    1994-07-01T23:59:59.000Z

    The system engineering approach has been taken to describe the technical baseline under which the Solid Waste Program is currently operating. The document contains a mission analysis, function analysis, system definition, documentation requirements, facility and project bases, and uncertainties facing the program.

  9. DOE/LX/07-0123&D1 Secondary Document DMSA C-400-06 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3&D1 Secondary Document DMSA C-400-06 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 352 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 31509...

  10. DOE/LX/07-0312&D1 Secondary Document DMSA C-333-06 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2&D1 Secondary Document DMSA C-333-06 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 261 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 03...

  11. DOE/LX/07-0238&D1 Secondary Document DMSA C-337-21 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8&D1 Secondary Document DMSA C-337-21 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 328 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110...

  12. DOE/LX/07-0168&D1 Secondary Document DMSA C-720-03 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8&D1 Secondary Document DMSA C-720-03 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 358 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509...

  13. DOE/LX/07-0310&D1 Secondary Document DMSA C-333-04 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10&D1 Secondary Document DMSA C-333-04 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 259 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 03...

  14. DOE/LX/07-0068&D1 Secondary Document DMSA C-335-01 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8&D1 Secondary Document DMSA C-335-01 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 297 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509...

  15. DOE/LX/07-0097&D1 Secondary Document DMSA C-400-04 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7&D1 Secondary Document DMSA C-400-04 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 350 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 12604; 03...

  16. DOE/LX/07-0208&D1 Secondary Document DMSA C-335-02 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8&D1 Secondary Document DMSA C-335-02 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 298 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509...

  17. DOE/LX/07-0148&D1 Secondary Document DMSA C-337-07 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8&D1 Secondary Document DMSA C-337-07 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 314 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509...

  18. DOE/LX/07-0209&D1 Secondary Document DMSA C-335-06 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9&D1 Secondary Document DMSA C-335-06 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 302 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509...

  19. DOE/LX/07-0152&D1 Secondary Document DMSA C-337-14 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2&D1 Secondary Document DMSA C-337-14 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 321 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909...

  20. DOE/LX/07-0284&D1 Secondary Document DMSA C-337-36 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4&D1 Secondary Document DMSA C-337-36 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 339 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 061410...

  1. DOE/LX/07-0328&D1 Secondary Document DMSA C-337-19 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8&D1 Secondary Document DMSA C-337-19 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 326 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110...

  2. DOE/LX/07-0164&D1 Secondary Document DMSA C-337-39 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4&D1 Secondary Document DMSA C-337-39 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 342 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 020205, 03...

  3. DOE/LX/07-0281&D1 Secondary Document DMSA C-333-28 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1&D1 Secondary Document DMSA C-333-28 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 284 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 061410...

  4. DOE/LX/07-0216&D1 Secondary Document DMSA C-337-16 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6&D1 Secondary Document DMSA C-337-16 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 323 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509...

  5. DOE/LX/07-0047&D1 Secondary Document DMSA C-335-11 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7&D1 Secondary Document DMSA C-335-11 Solid Waste Management Unit (SWMU) Assessment Report UNIT NUMBER: 306 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509 REGULATORY...

  6. DOE/LX/07-0308&D1 Secondary Document DMSA C-333-02 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8&D1 Secondary Document DMSA C-333-02 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 257 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 03...

  7. DOE/LX/07-0153&D1 Secondary Document DMSA C-337-15 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3&D1 Secondary Document DMSA C-337-15 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 322 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909...

  8. DOE/LX/07-0264&D1 Secondary Document DMSA C-337-03 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4&D1 Secondary Document DMSA C-337-03 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 310 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 061410...

  9. DOE/LX/07-0160&D1 Secondary Document DMSA C-337-34 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0&D1 Secondary Document DMSA C-337-34 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 337 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909...

  10. DOE/LX/07-0163&D1 Secondary Document DMSA C-337-38 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3&D1 Secondary Document DMSA C-337-38 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 341 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909...

  11. DOE/LX/07-0329&D1 Secondary Document DMSA C-337-29 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9&D1 Secondary Document DMSA C-337-29 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 332 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110...

  12. DOE/LX/07-0154&D1 Secondary Document DMSA C-337-17 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4&D1 Secondary Document DMSA C-337-17 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 324 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909...

  13. DOE/LX/07-0280&D1 Secondary Document DMSA C-333-25 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0&D1 Secondary Document DMSA C-333-25 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 281 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 061410...

  14. DOE/LX/07-0080&D1 Secondary Document DMSA C-331-04 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0&D1 Secondary Document DMSA C-331-04 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 238 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509...

  15. DOE/LX/07-0065&D1 Secondary Document DMSA C-333-37 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5&D1 Secondary Document DMSA C-333-37 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 290 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509...

  16. DOE/LX/07-0149&D1 Secondary Document DMSA C-337-08 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9&D1 Secondary Document DMSA C-337-08 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 315 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909...

  17. DOE/LX/07-0321&D1 Secondary Document DMSA C-333-29 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1&D1 Secondary Document DMSA C-333-29 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 285 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 030110...

  18. DOE/LX/07-0151&D1 Secondary Document DMSA C-337-10 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1&D1 Secondary Document DMSA C-337-10 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 317 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909...

  19. DOE/LX/07-0311&D1 Secondary Document DMSA C-333-05 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1&D1 Secondary Document DMSA C-333-05 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 260 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 3...

  20. DOE/LX/07-0320&D1 Secondary Document DMSA C-333-27 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0&D1 Secondary Document DMSA C-333-27 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 283 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509, 03...

  1. DOE/LX/07-0064&D1 Secondary Document DMSA C-331-22 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4&D1 Secondary Document DMSA C-331-22 Solid Waste Management Unit (SWMU) Assessment Report UNIT NUMBER: 253 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509 REGULATORY...

  2. DOE/LX/07-0167&D1 Secondary Document DMSA C-720-02 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7&D1 Secondary Document DMSA C-720-02 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 357 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031509...

  3. DOE/LX/07-0046&D1 Secondary Document DMSA C-333-10 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6&D1 Secondary Document DMSA C-333-10 Solid Waste Management Unit (SWMU) Assessment Report UNIT NUMBER: 265 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 030110 REGULATORY...

  4. DOE/LX/07-0155&D1 Secondary Document DMSA C-337-18 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5&D1 Secondary Document DMSA C-337-18 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 325 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909...

  5. DOE/LX/07-0150&D1 Secondary Document DMSA C-337-09 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    0&D1 Secondary Document DMSA C-337-09 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 316 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 031909...

  6. DOE/LX/07-0276&D1 Secondary Document DMSA C-333-09 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6&D1 Secondary Document DMSA C-333-09 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 264 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 061410...

  7. DOE/LX/07-0048&D1 Secondary Document DMSA C-331-03 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    48&D1 Secondary Document DMSA C-331-03 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 237 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISION: 031509...

  8. DOE/LX/07-0058&D1 Secondary Document DMSA C-331-19 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8&D1 Secondary Document DMSA C-331-19 Solid Waste Management Unit (SWMU) Assessment Report SWMUAOC NUMBER: 251 DATE OF ORIGINAL SAR: 120100 DATE OF SAR REVISIONS: 32103; 03...

  9. Department of Environmental Engineering Leaching from Municipal Solid Waste

    E-Print Network [OSTI]

    Department of Environmental Engineering Leaching from Municipal Solid Waste Incineration Residues Ji í Hyk s #12;#12;Leaching from Municipal Solid Waste Incineration Residues Ji í Hyks Ph.D. Thesis Municipal Solid Waste Incineration Residues Cover: Torben Dolin & Julie Camilla Middleton Printed by: Vester

  10. Improved Economic Performance Municipal Solid Waste Combustion Plants

    E-Print Network [OSTI]

    Van den Hof, Paul

    Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based Combustion Control #12;#12;Improved Economic Performance of Municipal Solid Waste Combustion Plants by Model Based-of-the-art and challenges in the operation of MSWC plants . . . 1 1.1.1 The aims of municipal solid waste combustion

  11. Nonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants

    E-Print Network [OSTI]

    Van den Hof, Paul

    Nonlinear Model Predictive Control of Municipal Solid Waste Combustion Plants M. Leskens , R.h.Bosgra@tudelft.nl, p.m.j.vandenhof@tudelft.nl Keywords : nonlinear model predictive control, municipal solid waste combus- tion Abstract : Combustion of municipal solid waste (MSW; = household waste) is used to reduce

  12. INDEPENDENT TECHNICAL REVIEW OF THE FOCUSED FEASIBILITY STUDY AND PROPOSED PLAN FOR DESIGNATED SOLID WASTE MANAGEMENT UNITS CONTRIBUTING TO THE SOUTHWEST GROUNDWATER PLUME AT THE PADUCAH GASEOUS DIFFUSION PLANT

    SciTech Connect (OSTI)

    Looney, B.; Eddy-Dilek, C.; Amidon, M.; Rossabi, J.; Stewart, L.

    2011-05-31T23:59:59.000Z

    The U. S. Department of Energy (DOE) is currently developing a Proposed Plan (PP) for remediation of designated sources of chlorinated solvents that contribute contamination to the Southwest (SW) Groundwater Plume at the Paducah Gaseous Diffusion Plant (PGDP), in Paducah, KY. The principal contaminants in the SW Plume are trichloroethene (TCE) and other volatile organic compounds (VOCs); these industrial solvents were used and disposed in various facilities and locations at PGDP. In the SW plume area, residual TCE sources are primarily in the fine-grained sediments of the Upper Continental Recharge System (UCRS), a partially saturated zone that delivers contaminants downward into the coarse-grained Regional Gravel Aquifer (RGA). The RGA serves as the significant lateral groundwater transport pathway for the plume. In the SW Plume area, the four main contributing TCE source units are: (1) Solid Waste Management Unit (SWMU) 1 / Oil Landfarm; (2) C-720 Building TCE Northeast Spill Site (SWMU 211A); (3) C-720 Building TCE Southeast Spill Site (SWMU 211B); and (4) C-747 Contaminated Burial Yard (SWMU 4). The PP presents the Preferred Alternatives for remediation of VOCs in the UCRS at the Oil Landfarm and the C-720 Building spill sites. The basis for the PP is documented in a Focused Feasibility Study (FFS) (DOE, 2011) and a Site Investigation Report (SI) (DOE, 2007). The SW plume is currently within the boundaries of PGDP (i.e., does not extend off-site). Nonetheless, reasonable mitigation of the multiple contaminant sources contributing to the SW plume is one of the necessary components identified in the PGDP End State Vision (DOE, 2005). Because of the importance of the proposed actions DOE assembled an Independent Technical Review (ITR) team to provide input and assistance in finalizing the PP.

  13. System for chemically digesting low level radioactive, solid waste material

    DOE Patents [OSTI]

    Cowan, Richard G. (Kennewick, WA); Blasewitz, Albert G. (Richland, WA)

    1982-01-01T23:59:59.000Z

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  14. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    SciTech Connect (OSTI)

    THIELGES, J.R.; CHASTAIN, S.A.

    2007-06-21T23:59:59.000Z

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized and attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.

  15. Solid Waste Projection Model: Database (Version 1.3). Technical reference manual

    SciTech Connect (OSTI)

    Blackburn, C.L.

    1991-11-01T23:59:59.000Z

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement.

  16. Solid waste projection model: Database version 1. 0 technical reference manual

    SciTech Connect (OSTI)

    Carr, F.; Bowman, A.

    1990-11-01T23:59:59.000Z

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.0 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User's Guide. 14 figs., 6 tabs.

  17. Construction and operation of an industrial solid waste landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    SciTech Connect (OSTI)

    NONE

    1995-10-01T23:59:59.000Z

    The US Department of Energy (DOE), Office of Waste Management, proposes to construct and operate a solid waste landfill within the boundary of the Portsmouth Gaseous Diffusion Plant (PORTS), Piketon, Ohio. The purpose of the proposed action is to provide PORTS with additional landfill capacity for non-hazardous and asbestos wastes. The proposed action is needed to support continued operation of PORTS, which generates non-hazardous wastes on a daily basis and asbestos wastes intermittently. Three alternatives are evaluated in this environmental assessment (EA): the proposed action (construction and operation of the X-737 landfill), no-action, and offsite shipment of industrial solid wastes for disposal.

  18. Solid Waste Management Rule (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule establishes requirements for the siting, financial assurance, installation, establishment, construction, design, groundwater monitoring, modification, operation, permitting, closure and...

  19. SYNERGIA Forum Integrated Municipal Solid Waste Management

    E-Print Network [OSTI]

    Columbia University

    ERT Germany "Biogas utilization: Comparison between sanitary landfills and anaerobic digestionERT Germany, WTE Plants in Germany" Michael Jakuttis, Dipl.Ing. Wt

  20. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2005-08-17T23:59:59.000Z

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

  1. Wilders Grove Solid Waste Services Center | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Grove Solid Waste Services Center Project objective: Provide demonstration of Geothermal Heat Pumps viability on energy usage for future Service Centers planned by the City of...

  2. Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi)

    Broader source: Energy.gov [DOE]

    The purpose of the Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations is to help maintain accountability and track data on the hazardous and nonhazardous waste sites in...

  3. Solid Waste Disposal Resource Recovery Facilities Act (South Carolina)

    Broader source: Energy.gov [DOE]

    This legislation authorizes local governing bodies to form joint agencies to advance the collection, transfer, processing of solid waste, recovery of resources, and sales of recovered resources in...

  4. Geothermal Power Plants Minimizing Solid Waste and Recovering Minerals

    Broader source: Energy.gov [DOE]

    Although many geothermal power plants generate no appreciable solid waste, the unique characteristics of some geothermal fluids require special attention to handle entrained solid byproducts.

  5. Anaerobic digestion of organic solid waste for energy production.

    E-Print Network [OSTI]

    Nayono, Satoto Endar

    2009-01-01T23:59:59.000Z

    ??This study was carried out in order to evaluate the performance of anaerobic reactors treating OFMSW (organic fraction of municipal solid waste), especially in terms (more)

  6. Solid Waste Projection Model: Database (Version 1.4). Technical reference manual

    SciTech Connect (OSTI)

    Blackburn, C.; Cillan, T.

    1993-09-01T23:59:59.000Z

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User`s Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193).

  7. Process modeling of hydrogen production from municipal solid waste

    SciTech Connect (OSTI)

    Thorsness, C.B.

    1995-01-01T23:59:59.000Z

    The ASPEN PLUS commercial simulation software has been used to develop a process model for a conceptual process to convert municipal solid waste (MSW) to hydrogen. The process consists of hydrothermal treatment of the MSW in water to create a slurry suitable as feedstock for an oxygen blown Texaco gasifier. A method of reducing the complicated MSW feed material to a manageable set of components is outlined along with a framework for modeling the stoichiometric changes associated with the hydrothermal treatment process. Model results indicate that 0.672 kmol/s of hydrogen can be produced from the processing of 30 kg/s (2600 tonne/day) of raw MSW. A number of variations on the basic processing parameters are explored and indicate that there is a clear incentive to reduce the inert fraction in the processed slurry feed and that cofeeding a low value heavy oil may be economically attractive.

  8. 1995 solid waste 30-year characteristics volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; DeForest, T.J.; Rice, G.I. [Pacific Northwest Lab., Richland, WA (United States); Valero, O.J. [Westinghouse Hanford Co., Richland, WA (United States)

    1995-10-01T23:59:59.000Z

    The Hanford Site has been designated by the US Department of Energy (DOE) to store, treat, and dispose of solid waste received from both onsite and offsite generators. This waste is currently or planned to be generated from ongoing operations, maintenance and deactivation activities, decontamination and decommissioning (D&D) of facilities, and environmental restoration (ER) activities. This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), describes the characteristics of the waste to be shipped to Hanford`s SWOC. The physical waste forms and hazardous constituents are described for the low-level mixed waste (LLMW) and the transuranic - transuranic mixed waste (TW{underscore}TRUM).

  9. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2000-08-31T23:59:59.000Z

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  10. Feasibility Study on Solid Waste to Energy Technological Aspects

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    Feasibility Study on Solid Waste to Energy Technological Aspects Yuzhong Tan College of Engineering://www.funginstitute.berkeley.edu/sites/default/ les/SolidWasteToEnergy.pdf April 15, 2013 130 Blum Hall #5580 Berkeley, CA 94720-5580 | (510) 664 seeks to compare and evaluate each technology by reviewing waste to energy reports and seeking

  11. Solid Waste at Williams College A Luce Foundation Report

    E-Print Network [OSTI]

    Aalberts, Daniel P.

    's environmental sustainability. As a step toward understanding Williams College's environmental impact, I spentSolid Waste at Williams College A Luce Foundation Report Katherine S. White September 2007 Inside a Williams trash can SUMMARY Solid waste at Williams College can be separated into three general categories

  12. Aluminum Reactions and Problems in Municipal Solid Waste Landfills

    E-Print Network [OSTI]

    Aluminum Reactions and Problems in Municipal Solid Waste Landfills G. Vincent Calder, Ph.D.1 ; and Timothy D. Stark, Ph.D., P.E., F.ASCE2 Abstract: Aluminum enters municipal solid waste MSW landfills from untreated raw curbside trash MSW , industrial waste, and aluminum production wastes variously called dross

  13. Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill

    E-Print Network [OSTI]

    Aluminum Waste Reaction Indicators in a Municipal Solid Waste Landfill Timothy D. Stark, F.ASCE1 landfills may contain aluminum from residential and commercial solid waste, industrial waste, and aluminum pro- duction wastes. Some aluminum-bearing waste materials, particularly aluminum production wastes

  14. Recycling Realities: ASU's Quest for Zero Solid Waste

    E-Print Network [OSTI]

    Zhang, Junshan

    Recycling Realities: ASU's Quest for Zero Solid Waste Dawn RatcliffePast Recycling Coordinator in the sustainability and animal-advocacy fields. She has organized several Earth Day events, recycling events and recycling. She has run recycling and solid waste programs for The University of Arizona, MIT in Cambridge

  15. Environmental Management Systems (Iowa)

    Broader source: Energy.gov [DOE]

    A solid waste planning area (e.g., the land encompassed by a municipality with a comprehensive solid waste management policy) may qualify to be an Environmental Management System if it provides...

  16. E-Print Network 3.0 - asme solid waste Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: -21, 2008, Philadelphia, Pennsylvania, USA NAWTEC16-1901 PLASMA ARC GASIFICATION FOR SOLID WASTE DISPOSAL... in municipal solid waste destruction since 1999 in...

  17. Modules for estimating solid waste from fossil-fuel technologies

    SciTech Connect (OSTI)

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01T23:59:59.000Z

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

  18. Generation, storage, collection and transportation of municipal solid waste - A case study in the city of Kathmandu, capital of Nepal

    SciTech Connect (OSTI)

    Alam, R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)], E-mail: rakib_env@yahoo.com; Chowdhury, M.A.I.; Hasan, G.M.J.; Karanjit, B.; Shrestha, L.R. [Shahjalal University of Science and Technology, Department of Civil and Environmental Engineering, Sylhet 3114 (Bangladesh)

    2008-07-01T23:59:59.000Z

    Solid waste management (SWM) services have consistently failed to keep up with the vast amount of solid waste produced in urban areas. There is not currently an efficient system in place for the management, storage, collection, and transportation of solid waste. Kathmandu City, an important urban center of South Asia, is no exception. In Kathmandu Metropolitan City, solid waste generation is predicted to be 1091 m{sup 3}/d (245 tons/day) and 1155 m{sup 3}/d (260 tons/day) for the years 2005 and 2006, respectively. The majority (89%) of households in Kathmandu Metropolitan City are willing to segregate the organic and non-organic portions of their waste. Overall collection efficiency was 94% in 2003. An increase in waste collection occurred due to private sector involvement, the shutdown of the second transfer station near the airport due to local protest, a lack of funding to maintain trucks/equipment, a huge increase in plastic waste, and the willingness of people to separate their waste into separate bins. Despite a substantial increase in total expenditure, no additional investments were made to the existing development plan to introduce a modern disposal system due to insufficient funding. Due to the lack of a proper lining, raw solid waste from the existing dumping site comes in contact with river water directly, causing severe river contamination and deteriorating the quality of the water.

  19. Municipal solid waste effective stress analysis

    SciTech Connect (OSTI)

    Shariatmadari, Nader, E-mail: shariatmadari@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of); Machado, Sandro Lemos, E-mail: smachado@ufba.b [Dept. of Materials Science and Technology, Federal University of Bahia, 02 Aristides Novis St., 40210-630 Salvador-BA (Brazil); Noorzad, Ali, E-mail: noorzad@pwut.ac.i [Faculty of Water Engineering, Power and Water University of Technology, Tehranpars, 1719-16765 Tehran (Iran, Islamic Republic of); Karimpour-Fard, Mehran, E-mail: karimpour_mehran@iust.ac.i [Dept. of Civil Engineering, Iran University of Science and Technology, Narmak, 16846-13114 Teharn (Iran, Islamic Republic of)

    2009-12-15T23:59:59.000Z

    The mechanical behavior of municipal solid waste (MSW) has attracted the attention of many researchers in the field of geo-environmental engineering in recent years and several aspects of waste mechanical response under loading have been elucidated. However, the mechanical response of MSW materials under undrained conditions has not been described in detail to date. The knowledge of this aspect of the MSW mechanical response is very important in cases involving MSW with high water contents, seismic ground motion and in regions where landfills are built with poor operation conditions. This paper presents the results obtained from 26 large triaxial tests performed both in drained and undrained conditions. The results were analyzed taking into account the waste particles compressibility and the deformation anisotropy of the waste samples. The waste particles compressibility was used to modify the Terzaghi effective stress equation, using the Skempton (1961) proposition. It is shown that the use of the modified effective stress equation led to much more compatible shear strength values when comparing Consolidated-Drained (CD) and Consolidated-Undrained (CU), results, explaining the high shear strength values obtained in CU triaxial tests, even when the pore pressure is almost equal to the confining stress.

  20. Proof of Proper Solid Waste Disposal (West Virginia)

    Broader source: Energy.gov [DOE]

    This rule provides guidance to persons occupying a residence or operating a business establishment in this state regarding the approved method of providing proof of proper solid waste disposal to...

  1. Delivery system for molten salt oxidation of solid waste

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

    2002-01-01T23:59:59.000Z

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  2. Mercury emissions from municipal solid waste combustors

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report examines emissions of mercury (Hg) from municipal solid waste (MSW) combustion in the United States (US). It is projected that total annual nationwide MSW combustor emissions of mercury could decrease from about 97 tonnes (1989 baseline uncontrolled emissions) to less than about 4 tonnes in the year 2000. This represents approximately a 95 percent reduction in the amount of mercury emitted from combusted MSW compared to the 1989 mercury emissions baseline. The likelihood that routinely achievable mercury emissions removal efficiencies of about 80 percent or more can be assured; it is estimated that MSW combustors in the US could prove to be a comparatively minor source of mercury emissions after about 1995. This forecast assumes that diligent measures to control mercury emissions, such as via use of supplemental control technologies (e.g., carbon adsorption), are generally employed at that time. However, no present consensus was found that such emissions control measures can be implemented industry-wide in the US within this time frame. Although the availability of technology is apparently not a limiting factor, practical implementation of necessary control technology may be limited by administrative constraints and other considerations (e.g., planning, budgeting, regulatory compliance requirements, etc.). These projections assume that: (a) about 80 percent mercury emissions reduction control efficiency is achieved with air pollution control equipment likely to be employed by that time; (b) most cylinder-shaped mercury-zinc (CSMZ) batteries used in hospital applications can be prevented from being disposed into the MSW stream or are replaced with alternative batteries that do not contain mercury; and (c) either the amount of mercury used in fluorescent lamps is decreased to an industry-wide average of about 27 milligrams of mercury per lamp or extensive diversion from the MSW stream of fluorescent lamps that contain mercury is accomplished.

  3. Conversion of municipal solid waste to hydrogen

    SciTech Connect (OSTI)

    Richardson, J.H.; Rogers, R.S.; Thorsness, C.B. [and others

    1995-04-01T23:59:59.000Z

    LLNL and Texaco are cooperatively developing a physical and chemical treatment method for the conversion of municipal solid waste (MSW) to hydrogen via the steps of hydrothermal pretreatment, gasification and purification. LLNL`s focus has been on hydrothermal pretreatment of MSW in order to prepare a slurry of suitable viscosity and heating value to allow efficient and economical gasification and hydrogen production. The project has evolved along 3 parallel paths: laboratory scale experiments, pilot scale processing, and process modeling. Initial laboratory-scale MSW treatment results (e.g., viscosity, slurry solids content) over a range of temperatures and times with newspaper and plastics will be presented. Viscosity measurements have been correlated with results obtained at MRL. A hydrothermal treatment pilot facility has been rented from Texaco and is being reconfigured at LLNL; the status of that facility and plans for initial runs will be described. Several different operational scenarios have been modeled. Steady state processes have been modeled with ASPEN PLUS; consideration of steam injection in a batch mode was handled using continuous process modules. A transient model derived from a general purpose packed bed model is being developed which can examine the aspects of steam heating inside the hydrothermal reactor vessel. These models have been applied to pilot and commercial scale scenarios as a function of MSW input parameters and have been used to outline initial overall economic trends. Part of the modeling, an overview of the MSW gasification process and the modeling of the MSW as a process material, was completed by a DOE SERS (Science and Engineering Research Semester) student. The ultimate programmatic goal is the technical demonstration of the gasification of MSW to hydrogen at the laboratory and pilot scale and the economic analysis of the commercial feasibility of such a process.

  4. Cleanup Verification Package for the 118-B-1, 105-B Solid Waste Burial Ground

    SciTech Connect (OSTI)

    J. M. Capron

    2008-01-21T23:59:59.000Z

    This cleanup verification package documents completion of remedial action, sampling activities, and compliance criteria for the 118-B-1, 105-B Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-B Reactor and P-10 Tritium Separation Project and also received waste from the 105-N Reactor. The burial ground received reactor hardware, process piping and tubing, fuel spacers, glassware, electrical components, tritium process wastes, soft wastes and other miscellaneous debris.

  5. Characterization of flue gas residues from municipal solid waste combustors

    SciTech Connect (OSTI)

    Forestier, L.L. [CRPG-CNRS, Vandoeuvre-les-Nancy (France)] [CRPG-CNRS, Vandoeuvre-les-Nancy (France); [ENSG, Vandoeuvre-les-Nancy (France); Libourel, G. [CRPG-CNRS, Vandoeuvre-les-Nancy (France)] [CRPG-CNRS, Vandoeuvre-les-Nancy (France); [Univ. H. Poincare, Vandoeuvre-les-Nancy (France)

    1998-08-01T23:59:59.000Z

    Solid residues recovered from treatment of flue gas resulting from the combustion of municipal solid waste (MSW) are of particular concern because of ever-increasing worldwide production rates and their concentrations of potentially hazardous transition elements and heavy metals. Three main residue types have been studied in this study: electrostatic precipitator ashes, wet filter cakes, and semidry scrubber residues. Using a large number of residues from two French MSW combustion (MSWC) facilities, the aim of this work is to determine their chemistry and mineralogy in order to shed light on their potential toxicity. The authors find that pollutant concentrations are dependent not only on the composition of MSW but also on the size of particles and flue gas treatment process. Using a procedure based on leaching, grain-size, density, and magnetic separations, the authors present a detailed description of the mineralogy of MSWC solid residues. These residues consist of a very heterogeneous assemblage of glasses, metals, and other crystals in which polluting elements are distributed. The results of this characterization will therefore help to contribute to the development of adequate waste management strategies.

  6. Environmental impacts of residual Municipal Solid Waste incineration: A comparison of 110 French incinerators using a life cycle approach

    SciTech Connect (OSTI)

    Beylot, Antoine, E-mail: a.beylot@brgm.fr; Villeneuve, Jacques

    2013-12-15T23:59:59.000Z

    Highlights: 110 French incinerators are compared with LCA based on plant-specific data. Environmental impacts vary as a function of plants energy recovery and NO{sub x} emissions. E.g. climate change impact ranges from ?58 to 408 kg CO{sub 2}-eq/tonne of residual MSW. Implications for LCA of waste management in a decision-making process are detailed. - Abstract: Incineration is the main option for residual Municipal Solid Waste treatment in France. This study compares the environmental performances of 110 French incinerators (i.e. 85% of the total number of plants currently in activity in France) in a Life Cycle Assessment perspective, considering 5 non-toxic impact categories: climate change, photochemical oxidant formation, particulate matter formation, terrestrial acidification and marine eutrophication. Mean, median and lower/upper impact potentials are determined considering the incineration of 1 tonne of French residual Municipal Solid Waste. The results highlight the relatively large variability of the impact potentials as a function of the plant technical performances. In particular, the climate change impact potential of the incineration of 1 tonne of waste ranges from a benefit of ?58 kg CO{sub 2}-eq to a relatively large burden of 408 kg CO{sub 2}-eq, with 294 kg CO{sub 2}-eq as the average impact. Two main plant-specific parameters drive the impact potentials regarding the 5 non-toxic impact categories under study: the energy recovery and delivery rate and the NO{sub x} process-specific emissions. The variability of the impact potentials as a function of incinerator characteristics therefore calls for the use of site-specific data when required by the LCA goal and scope definition phase, in particular when the study focuses on a specific incinerator or on a local waste management plan, and when these data are available.

  7. Solid waste bin detection and classification using Dynamic Time Warping and MLP classifier

    SciTech Connect (OSTI)

    Islam, Md. Shafiqul, E-mail: shafique@eng.ukm.my [Dept. of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangore (Malaysia); Hannan, M.A., E-mail: hannan@eng.ukm.my [Dept. of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangore (Malaysia); Basri, Hassan [Dept. of Civil and Structural Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangore (Malaysia); Hussain, Aini; Arebey, Maher [Dept. of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia, Bangi 43600, Selangore (Malaysia)

    2014-02-15T23:59:59.000Z

    Highlights: Solid waste bin level detection using Dynamic Time Warping (DTW). Gabor wavelet filter is used to extract the solid waste image features. Multi-Layer Perceptron classifier network is used for bin image classification. The classification performance evaluated by ROC curve analysis. - Abstract: The increasing requirement for Solid Waste Management (SWM) has become a significant challenge for municipal authorities. A number of integrated systems and methods have introduced to overcome this challenge. Many researchers have aimed to develop an ideal SWM system, including approaches involving software-based routing, Geographic Information Systems (GIS), Radio-frequency Identification (RFID), or sensor intelligent bins. Image processing solutions for the Solid Waste (SW) collection have also been developed; however, during capturing the bin image, it is challenging to position the camera for getting a bin area centralized image. As yet, there is no ideal system which can correctly estimate the amount of SW. This paper briefly discusses an efficient image processing solution to overcome these problems. Dynamic Time Warping (DTW) was used for detecting and cropping the bin area and Gabor wavelet (GW) was introduced for feature extraction of the waste bin image. Image features were used to train the classifier. A Multi-Layer Perceptron (MLP) classifier was used to classify the waste bin level and estimate the amount of waste inside the bin. The area under the Receiver Operating Characteristic (ROC) curves was used to statistically evaluate classifier performance. The results of this developed system are comparable to previous image processing based system. The system demonstration using DTW with GW for feature extraction and an MLP classifier led to promising results with respect to the accuracy of waste level estimation (98.50%). The application can be used to optimize the routing of waste collection based on the estimated bin level.

  8. Transport and transportation pathways of hazardous chemicals from solid waste disposal. Environ. Health Perspect

    E-Print Network [OSTI]

    Robert Van Hook

    1978-01-01T23:59:59.000Z

    To evaluate the impact of hazardous chemicals in solid wastes on man and other organisms, it is necessary to have information about amounts of chemical present, extent of exposure, and chemical toxicity. This paper addresses the question of organism exposure by considering the major physical and biological transport pathways and the physicochemical and biochemical transformations that may occur in sediments, soils, and water. Disposal of solid wastes in both terrestrial and oceank environments is considered. Atmospheric transport is considered for emissions from incineration of solid wastes and for wind resuspension of particulates from surface waste deposits. Solid wastes deposited in terrestrial environments are subject to leaching by surface and ground waters. Leachates may then be transported to other surface waters and drinking water aquifers through hydrologic transport. Leachates also interact with natural organic matter, clays, and microorganisms in soils and sediments. These interactions may render chemical constituents in leachates more or less mobile, possibly change chemical and physical forms, and alter their biological activity. Oceanic waste disposal practices result in migration through diffusion and ocean currents. Surface area-to-volume ratios play a major role in the initial distributions of chemicals in the aquatic environment. Sediments serve as major sources and sinks of chemical contaminants. Food chain transport in both aquatic and terrestrial environments results in the movement of hazardous chemicals from lower to higher positions in the food web. Bioconcentration is observed in both terrestrial and aquatic food chains with certain elements and synthetic organics. Bioconcentration factors tend to be higher for synthetic organics, and higher in aquatic than in terrestrial systems. Biodilution is not atypical in terrestrial environments. Synergistic and antagonistic actions are common occurrences among chemical contaminants and can be particularly important toxicity considerations in aquatic environments receiving runoff from several terrestrial sources.

  9. Field study of disposed solid wastes from advanced coal processes

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute's fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison's limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United's mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  10. Solid Waste Regulations (Nova Scotia, Canada)

    Broader source: Energy.gov [DOE]

    Nova Scotia Environment administers waste management for the province. Regulations include specific rules and standards for landfills, establish a Resource Recovery Fund, and guidelines for...

  11. Heavy metals in composted municipal solid wastes for

    E-Print Network [OSTI]

    Blouin-Demers, Gabriel

    Heavy metals in composted municipal solid wastes for amendment of agricultural soils/ Mtaux lourds dans le compost de dchets municipaux pour application agricole Valrie Duchesneau, #4634809 EVS4904 mtaux lourds des compostes de dchets municipaux? http://www.ecometiers.com/fiche/images/43.jpg La

  12. Fire hazards analysis for solid waste burial grounds

    SciTech Connect (OSTI)

    McDonald, K.M.

    1995-09-28T23:59:59.000Z

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

  13. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23T23:59:59.000Z

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

  14. Solid Waste Operations Complex W-113: Preliminary design drawings. Volume 2

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    Engineering drawings are presented for the solid waste retrieval facilities at the Hanford Site. Process flowsheets are also presented.

  15. Briquette comprising caking coal and municipal solid waste

    SciTech Connect (OSTI)

    Schulz, H.W.

    1980-09-30T23:59:59.000Z

    Briquettes of specified geometry and composition are produced to serve as feed material or ''burden'' in a moving-burden gasifier for the production of a synthesis or fuel gas from organic solid waste materials and coal, including especially, the so-called ''caking'' coals, as in the process of copending application number 675,918. The briquettes are formed from a well-blended mixture of shredded organic solid wastes, including especially, municipal solid waste (Msw) or biomass, and crushed caking coal, including coal fines. A binder material may or may not be required, depending on the coal/msw ratio and the compaction pressure employed. The briquettes may be extruded, stamped, or pressed, employing compaction pressures in excess of 1000 psi, and preferably in the range of 2000 to 10,000 psi. The briquettes may be circular, polygonal, or irregular in cross-section; they may be solid, or concentrically perforated to form a hollow cylinder or polygon; they may be formed into saddles, pillows or doughnuts. The ratio of caking coal to shredded municipal solid waste is controlled so that each part of the predominantly cellulosic organic solid waste will be blended with 0.5 to 3.0 parts of crushed coal. Suitable binder materials include dewatered sewage slude (Dss), ''black liquor'' rich in lignin derivatives, black strap molasses, waste oil, and starch. The binder concentration is preferably in the range of 2 to 6 percent. If coals high in sulfur content are to be processed, at least a stoichiometric equivalent of dolomite may be included in the briquette formulation to eliminate a major fraction of the sulfur with the slag.

  16. Solid Waste Planning and Recycling Act (Illinois)

    Broader source: Energy.gov [DOE]

    It is the purpose of this Act to provide incentives for decreased generation of municipal waste, to require certain counties to develop comprehensive waste management plans that place substantial...

  17. ORIGINAL ARTICLE Shear strength of municipal solid waste for stability analyses

    E-Print Network [OSTI]

    ORIGINAL ARTICLE Shear strength of municipal solid waste for stability analyses Timothy D. Stark ? solid waste (MSW) using the back analysis of failed waste slopes as well as field and laboratory test analyses. Keywords Municipal solid waste Á Shear strength Á Slope stability Á Landfill Introduction

  18. Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills

    E-Print Network [OSTI]

    Aydilek, Ahmet

    Sepiolite as an Alternative Liner Material in Municipal Solid Waste Landfills Yucel Guney1 ; Savas in municipal solid waste landfills. However, natural clays may not always provide good contaminant sorption in solid waste landfills. DOI: 10.1061/ ASCE 1090-0241 2008 134:8 1166 CE Database subject headings

  19. The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons in the

    E-Print Network [OSTI]

    The Municipal Solid Waste Landfill as a Source of Montreal Protocol-restricted Halocarbons of Geophysics #12;2 #12;The Municipal Solid Waste Landfill as a Source of Montreal Protocol municipal solid waste (MSW) landfills. With several hundred MSW landfills in both the US and UK, estimating

  20. RCRA/UST, superfund and EPCRA hotline training module. Introduction to: Definition of solid waste and hazardous waste recycling (40 CFR sections 261.2 and 261.9) updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module explains the statutory and regulatory definitions of solid waste, including the standards governing the recycling and management of specific types of wastes. It lists and cites three use/reuse scenarios where the materials are not solid wastes and states the requirements for documentation. It lists examples of sham recycling and describes the conditions under which hazardous waste-derived products may be excluded from regulation. It cites the provisions for precious metal recovery and discusses potential regulatory developments affecting the definition of solid waste and hazardous waste recycling.

  1. Wilders Grove Solid Waste Services Center

    Broader source: Energy.gov (indexed) [DOE]

    System. * Planned Activities 2010: - Analysis and design of systems to remove excess heat for beneficial use. - Design final well field monitoring system. - Drill conductivity...

  2. Hanford Site solid waste acceptance criteria

    SciTech Connect (OSTI)

    Ellefson, M.D.

    1998-07-01T23:59:59.000Z

    Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities.

  3. http://wmr.sagepub.com Waste Management & Research

    E-Print Network [OSTI]

    Columbia University

    . Barton and Efstratios Kalogirou Municipal solid waste management scenarios for Attica://www.sagepub.co.uk/journalsPermissions.nav Municipal solid waste management scenarios for Attica and their greenhouse gas emission impact Asterios SYNERGIA, Greece Disposal of municipal solid waste in sanitary landfills is still the main waste management

  4. Soil stabilization using oil-shale solid waste

    SciTech Connect (OSTI)

    Turner, J.P. (Univ. of Wyoming, Laramie, WY (United States). Dept. of Civil and Archeological Engineering)

    1994-04-01T23:59:59.000Z

    Oil-shale solid wastes are evaluated for use as soil stabilizers. A laboratory study consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in durability and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern oil shale appears to be feasible for soil stabilization only if limestone is added during combustion. Testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented and the mechanisms of spent-shale cementation are discussed.

  5. The impact of municipal solid waste treatment methods on greenhouse gas emissions in Lahore, Pakistan

    SciTech Connect (OSTI)

    Batool, Syeda Adila [Department of Space Science, Punjab University, Lahore 54600 (Pakistan)], E-mail: aadila_batool@yahoo.com; Chuadhry, Muhammad Nawaz [College of Earth and Environmental Sciences, University of the Punjab, Lahore (Pakistan)], E-mail: muhammadnawazchaudhry@yahoo.com

    2009-01-15T23:59:59.000Z

    The contribution of existing municipal solid waste management to emission of greenhouse gases and the alternative scenarios to reduce emissions were analyzed for Data Ganj Bukhsh Town (DGBT) in Lahore, Pakistan using the life cycle assessment methodology. DGBT has a population of 1,624,169 people living in 232,024 dwellings. Total waste generated is 500,000 tons per year with an average per capita rate of 0.84 kg per day. Alternative scenarios were developed and evaluated according to the environmental, economic, and social atmosphere of the study area. Solid waste management options considered include the collection and transportation of waste, collection of recyclables with single and mixed material bank container systems (SMBCS, MMBCS), material recovery facilities (MRF), composting, biogasification and landfilling. A life cycle inventory (LCI) of the six scenarios along with the baseline scenario was completed; this helped to quantify the CO{sub 2} equivalents, emitted and avoided, for energy consumption, production, fuel consumption, and methane (CH{sub 4}) emissions. LCI results showed that the contribution of the baseline scenario to the global warming potential as CO{sub 2} equivalents was a maximum of 838,116 tons. The sixth scenario had a maximum reduction of GHG emissions in terms of CO{sub 2} equivalents of -33,773 tons, but the most workable scenario for the current situation in the study area is scenario 5. It saves 25% in CO{sub 2} equivalents compared to the baseline scenario.

  6. Supplemental design requirements document solid waste operations complex

    SciTech Connect (OSTI)

    Ocampo, V.P.; Boothe, G.F.; Broz, D.R.; Eaton, H.E.; Greager, T.M.; Huckfeldt, R.A.; Kooiker, S.L.; Lamberd, D.L.; Lang, L.L.; Myers, J.B. [and others

    1994-11-01T23:59:59.000Z

    This document provides additional and supplemental information to the WHC-SD-W112-FDC-001, WHC-SD-W113-FDC-001, and WHC-SD-W100-FDC-001. It provides additional requirements for the design and summarizes Westinghouse Hanford Company key design guidance and establishes the technical baseline agreements to be used for definitive design common to the Solid Waste Operations Complex (SWOC) Facilities (Project W-112, Project W-113, and WRAP 2A).

  7. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input-output model: A case of Suzhou in China

    SciTech Connect (OSTI)

    Liang Sai, E-mail: liangsai09@gmail.com [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China); Zhang Tianzhu, E-mail: zhangtz@mail.tsinghua.edu.cn [School of Environment, State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084 (China)

    2012-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Impacts of solid waste recycling on Suzhou's urban metabolism in 2015 are analyzed. Black-Right-Pointing-Pointer Sludge recycling for biogas is regarded as an accepted method. Black-Right-Pointing-Pointer Technical levels of reusing scrap tires and food wastes should be improved. Black-Right-Pointing-Pointer Other fly ash utilization methods should be exploited. Black-Right-Pointing-Pointer Secondary wastes from reusing food wastes and sludge should be concerned. - Abstract: Investigating impacts of urban solid waste recycling on urban metabolism contributes to sustainable urban solid waste management and urban sustainability. Using a physical input-output model and scenario analysis, urban metabolism of Suzhou in 2015 is predicted and impacts of four categories of solid waste recycling on urban metabolism are illustrated: scrap tire recycling, food waste recycling, fly ash recycling and sludge recycling. Sludge recycling has positive effects on reducing all material flows. Thus, sludge recycling for biogas is regarded as an accepted method. Moreover, technical levels of scrap tire recycling and food waste recycling should be improved to produce positive effects on reducing more material flows. Fly ash recycling for cement production has negative effects on reducing all material flows except solid wastes. Thus, other fly ash utilization methods should be exploited. In addition, the utilization and treatment of secondary wastes from food waste recycling and sludge recycling should be concerned.

  8. Co-firing coal and municipal solid waste

    SciTech Connect (OSTI)

    Demirbas, A. [Sila Science, Trabzon (Turkey)

    2008-07-01T23:59:59.000Z

    The aim of this study was to experimentally investigate how different the organic fraction of municipal solid waste (OFMSW) or municipal solid waste (MSW) utilizing strategies affects the gas emission in simple fluidized bed combustion (FBC) of biomass. In this study, ground OFMSW and pulverized coal (PC) were used for co-firing tests. The tests were carried out in a bench-scale bubbling FBC. Coal and bio-waste fuels are quite different in composition. Ash composition of the bio-waste fuels is fundamentally different from ash composition of the coal. Chlorine (Cl) in the MSW may affect operation by corrosion. Ash deposits reduce heat transfer and also may result in severe corrosion at high temperatures. Nitrogen (N) and carbon ) assessments can play an important role in a strategy to control carbon dioxide (CO{sub 2}) and nitrogen oxide (NOx) emissions while raising revenue. Regulations such as subsidies for oil, liquid petroleum gas (LPG) for natural gas powered vehicles, and renewables, especially biomass lines, to reduce emissions may be more cost-effective than assessments. Research and development (RD) resources are driven by energy policy goals and can change the competitiveness of renewables, especially solid waste. The future supply of co-firing depends on energy prices and technical progress, both of which are driven by energy policy priorities.

  9. Solid waste retrieval. Phase 1, Operational basis

    SciTech Connect (OSTI)

    Johnson, D.M.

    1994-09-30T23:59:59.000Z

    This Document describes the operational requirements, procedures, and options for execution of the retrieval of the waste containers placed in buried storage in Burial Ground 218W-4C, Trench 04 as TRU waste or suspect TRU waste under the activity levels defining this waste in effect at the time of placement. Trench 04 in Burial Ground 218W-4C is totally dedicated to storage of retrievable TRU waste containers or retrievable suspect TRU waste containers and has not been used for any other purpose.

  10. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-09-14T23:59:59.000Z

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Waste Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325

  11. Energy Recovery from Municipal Solid WasteEnergy Recovery from Municipal Solid Waste WASTE TO ENERGY PLANT AT VIJAYAWADAWASTE TO ENERGY PLANT AT VIJAYAWADA

    E-Print Network [OSTI]

    Columbia University

    Energy Recovery from Municipal Solid WasteEnergy Recovery from Municipal Solid Waste WASTE TO ENERGY PLANT AT VIJAYAWADAWASTE TO ENERGY PLANT AT VIJAYAWADA #12;UNIQUE PROCESSUNIQUE PROCESS DEVELOPED PRIMARY SIZE REDUCTION Stones / Inert Soil Enricher COARSE FLUFF SORTING Large stone, Tyres etc. HOT AIR

  12. Waste Growth Challenges Local Democracy. The Politics of Waste between Europe and the Mediterranean: a Focus on Italy

    E-Print Network [OSTI]

    Mengozzi, Alessandro

    2010-01-01T23:59:59.000Z

    2008). ISWA. International Solid Waste Association. http://and Health Impact of Solid Waste Management Activities. InPerformance of Alternative Solid Waste Management Options: A

  13. Water-related environmental control requirements at municipal solid waste-to-energy conversion facilities

    SciTech Connect (OSTI)

    Young, J C; Johnson, L D

    1980-09-01T23:59:59.000Z

    Water use and waste water production, water pollution control technology requirements, and water-related limitations to their design and commercialization are identified at municipal solid waste-to-energy conversion systems. In Part I, a summary of conclusions and recommendations provides concise statements of findings relative to water management and waste water treatment of each of four municipal solid waste-to-energy conversion categories investigated. These include: mass burning, with direct production of steam for use as a supplemental energy source; mechanical processing to produce a refuse-derived fuel (RDF) for co-firing in gas, coal or oil-fired power plants; pyrolysis for production of a burnable oil or gas; and biological conversion of organic wastes to methane. Part II contains a brief description of each waste-to-energy facility visited during the subject survey showing points of water use and wastewater production. One or more facilities of each type were selected for sampling of waste waters and follow-up tests to determine requirements for water-related environmental controls. A comprehensive summary of the results are presented. (MCW)

  14. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23T23:59:59.000Z

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  15. Co-gasification of municipal solid waste and material recovery in a large-scale gasification and melting system

    SciTech Connect (OSTI)

    Tanigaki, Nobuhiro, E-mail: tanigaki.nobuhiro@nsc-eng.co.jp [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan); Manako, Kazutaka [Nippon Steel Engineering Co., Ltd., 46-59, Nakabaru, Tobata-ku, Kitakyushu, Fukuoka 804-8505 (Japan); Osada, Morihiro [Nippon Steel Engineering Co., Ltd. (Head Office), Osaki Center Building 1-5-1, Osaki, Shinagawa-ku, Tokyo 141-8604 (Japan)

    2012-04-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer This study evaluates the effects of co-gasification of MSW with MSW bottom ash. Black-Right-Pointing-Pointer No significant difference between MSW treatment with and without MSW bottom ash. Black-Right-Pointing-Pointer PCDD/DFs yields are significantly low because of the high carbon conversion ratio. Black-Right-Pointing-Pointer Slag quality is significantly stable and slag contains few hazardous heavy metals. Black-Right-Pointing-Pointer The final landfill amount is reduced and materials are recovered by DMS process. - Abstract: This study evaluates the effects of co-gasification of municipal solid waste with and without the municipal solid waste bottom ash using two large-scale commercial operation plants. From the viewpoint of operation data, there is no significant difference between municipal solid waste treatment with and without the bottom ash. The carbon conversion ratios are as high as 91.7% and 95.3%, respectively and this leads to significantly low PCDD/DFs yields via complete syngas combustion. The gross power generation efficiencies are 18.9% with the bottom ash and 23.0% without municipal solid waste bottom ash, respectively. The effects of the equivalence ratio are also evaluated. With the equivalence ratio increasing, carbon monoxide concentration is decreased, and carbon dioxide and the syngas temperature (top gas temperature) are increased. The carbon conversion ratio is also increased. These tendencies are seen in both modes. Co-gasification using the gasification and melting system (Direct Melting System) has a possibility to recover materials effectively. More than 90% of chlorine is distributed in fly ash. Low-boiling-point heavy metals, such as lead and zinc, are distributed in fly ash at rates of 95.2% and 92.0%, respectively. Most of high-boiling-point heavy metals, such as iron and copper, are distributed in metal. It is also clarified that slag is stable and contains few harmful heavy metals such as lead. Compared with the conventional waste management framework, 85% of the final landfill amount reduction is achieved by co-gasification of municipal solid waste with bottom ash and incombustible residues. These results indicate that the combined production of slag with co-gasification of municipal solid waste with the bottom ash constitutes an ideal approach to environmental conservation and resource recycling.

  16. Hazardous Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

  17. Solid Waste Energy Conversion Project, Reedy Creek Utilities Demonstration Plant: Environmental assessment

    SciTech Connect (OSTI)

    Not Available

    1980-06-01T23:59:59.000Z

    The Solid Waste Energy Conversion (SWEC) facility proposed would produce high-temperature hot water from urban refuse and would also provide a demonstration pilot-plant for the proposed Transuranic Waste Treatment Facility (TWTF) in Idaho. The SWEC project would involve the construction of an incinerator facility capable of incinerating an average of 91 metric tons per day of municipal solid waste and generating high-temperature hot water using the off-gas heat. The facility is based on the Andco-Torrax slagging pyrolysis incineration process. The proposed action is described, as well as the existing environment at the site and identified potential environmental impacts. Coordination with federal, state, regional, or local plans and programs was examined, and no conflicts were identified. Programmatic alternatives to the proposed project were identified and their advantages, disadvantages, and environmental impacts were examined. It is found that the proposed action poses no significant environmental impacts, other than the short term effects of construction activities. (LEW)

  18. Method of draining water through a solid waste site without leaching

    DOE Patents [OSTI]

    Treat, R.L.; Gee, G.W.; Whyatt, G.A.

    1993-02-02T23:59:59.000Z

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  19. Method of draining water through a solid waste site without leaching

    DOE Patents [OSTI]

    Treat, Russell L. (Richland, WA); Gee, Glendon W. (Richland, WA); Whyatt, Greg A. (Richland, WA)

    1993-01-01T23:59:59.000Z

    The present invention is a method of preventing water from leaching solid waste sites by preventing atmospheric precipitation from contacting waste as the water flows through a solid waste site. The method comprises placing at least one drain hole through the solid waste site. The drain hole is seated to prevent waste material from entering the drain hole, and the solid waste site cover material is layered and graded to direct water to flow toward the drain hole and to soil beneath the waste site.

  20. Solid waste program fiscal year 1997 multi-year work plan WBS 1.2.1

    SciTech Connect (OSTI)

    Riddelle, J.G.

    1996-09-30T23:59:59.000Z

    This document provides the technical baseline, work breakdown structure, schedule baseline, cost baseline, and execution year for the solid waste program.

  1. Index of selected OSW correspondence. EPA Office of Solid Waste, updated as of December 1995

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    This document is an index of selected Office of Solid Waste (OSW) correspondence that has been developed by the staff of EPA`s RCRA/UST, Superfund, and EPCR Hotline for use as a research tool about RCRA issues. This index organizes summaries of over 900 letters and memoranda issued by OSW. Addressed primarily to persons in the regulated community as well as state and Regional regulators, the correspondence represents past EPA interpretations of the RCRA regulations governing management of solid, hazardous, nd medical wastes. This document is designed for use by readers familiar with the federal RCRA program and the relevant regulations. The index`s organization parallels that of 40 CFR Parts 258 to 279. The document indexes each letter or memorandum under the apropriate CFR citation (or citations) which the letter or memorandum clarifies.

  2. Performance assessment for continuing and future operations at Solid Waste Storage Area 6

    SciTech Connect (OSTI)

    Not Available

    1994-02-01T23:59:59.000Z

    This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuing operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.

  3. Conducting operations at the Solid Waste Management Department at WRSC

    SciTech Connect (OSTI)

    Bloedau, R.K.; Scogin, J.T.

    1994-03-01T23:59:59.000Z

    Conduct of Operations, which is one of the entities within the Westinghouse Savannah River Company`s Performance Improvement Plan, is based on commercial nuclear power industry standards that were developed to improve operations in that industry. Implementation and compliance to the Conduct of Operations requirements are enhancing the Site`s Mission: To serve the national interest of the United States by safely producing nuclear materials while protecting the employee and public health, as well as the environment. It also contributes to our Site`s Vision: To be the recognized model of excellence for the United States Department of Energy Nuclear Weapons Complex, valuing and involving the individual to continually improve operations, safety, health environmental protection, quality, and customer satisfaction.

  4. Argonne National Laboratory-East evolution of solid waste management

    SciTech Connect (OSTI)

    Trychta, K.; McHenry, J.; Thuot, J.

    1996-07-01T23:59:59.000Z

    The purpose of this report is to provide the reader with a basic understanding of Argonne National Laboratory`s current general refuse disposal and material recycling programs, how they were developed, and where they are going. In order to better understand the current situation, a brief description of the facilities past practices is explained. ANL is a multi-program research and development center owned by DOE and operated by the University of Chicago. Argonne`s primary facilities are on a 1,700 acre site, 27 miles southwest of Chicago. Fifty-seven major buildings house approximately 4,500 employees at the site.

  5. Examining solid waste management issues in the City of Bryan

    E-Print Network [OSTI]

    Arekere, Dhananjaya Marigowda

    2006-04-12T23:59:59.000Z

    for Policy II with Mail-Unconsolidated Data ............. Logit Results for Policy II with Mail-Consolidated Data ............... Logit Results for Policy II with Pooled-Unconsolidated Data ........... Logit Results for Policy II with Pooled-Consolidated Data... for Policy III with Mail-Unconsolidated Data ............ Logit Results for Policy III with Mail-Consolidated Data ............. Logit Results for Policy III with Pooled-Unconsolidated Data .......... Logit Results for Policy III with Pooled...

  6. Hawaii Permit Application for Solid Waste Management Facility | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia: Energy Resources Jump to: navigation,Ohio:Greer CountyCorridor | OpenOpen EnergyOpenOceanic

  7. Title 18 Alaska Administrative Code Chapter 60 Solid Waste Management |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty LtdSteen,Ltd Jump JumpAl., 1978)TillmanMunicipal539 Exceptions

  8. On the effect of demographic characteristics on the formulation of solid waste charging policy

    E-Print Network [OSTI]

    Columbia University

    On the effect of demographic characteristics on the formulation of solid waste charging policy A. Trends in municipal solid waste charging policies Municipal waste services constitute a very important of municipal charges in Greece, as the fees paid by municipal waste producers to the municipal authorities

  9. Study of thermal conductivity in organic solid wastes before composting J. HUET, C. Druilhe, G. Debenest

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    Study of thermal conductivity in organic solid wastes before composting J. HUET, C. Druilhe, G. Debenest ORBIT2012 1 STUDY OF THERMAL CONDUCTIVITY IN ORGANIC SOLID WASTES BEFORE COMPOSTING J. Huet, as illustrated by current EU waste policy and its five main priorities: prevention, reuse, recycling, recovery

  10. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    SciTech Connect (OSTI)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J. [Los Alamos Technical Associates, Inc., NM (US); Duncan, D.R. [Westinghouse Hanford Co., Richland, WA (US)

    1993-04-01T23:59:59.000Z

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site`s defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site`s N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX`s physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail.

  11. Development of a purpose built landfill system for the control of methane emissions from municipal solid waste

    E-Print Network [OSTI]

    Columbia University

    solid waste Sudhakar Yedla*, Jyoti K. Parikh Indira Gandhi Institute of Development Research, Vaidya (PBLF) has been proposed for the control of methane emissions from municipal solid waste (MSW Generation of municipal solid waste (MSW) increases with socio-economic development. In developing coun

  12. active solid waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    yield, total energy yield, and apparent thermal efficiency (Ahmed and Gupta, 2010). Gasification was more... Maglinao, Amado Latayan 2013-04-11 104 Investigation of EPS...

  13. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    SciTech Connect (OSTI)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J. [and others

    1995-01-01T23:59:59.000Z

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.

  14. Solid Waste Program Fiscal Year 1996 Multi-Year Program Plan WBS 1.2.1, Revision 1

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This document contains the Fiscal Year 1996 Multi-Year Program Plan for the Solid Waste Program at the Hanford Reservation in Richland, Washington. The Solid Waste Program treats, stores, and disposes of a wide variety of solid wastes consisting of radioactive, nonradioactive and hazardous material types. Solid waste types are typically classified as transuranic waste, low-level radioactive waste, low-level mixed waste, and non-radioactive hazardous waste. This report describes the mission, goals and program strategies for the Solid Waste Program for fiscal year 1996 and beyond.

  15. Sustainable Waste Management; Case study of Nagpur INDIA Dr. Vivek S. Agrawal

    E-Print Network [OSTI]

    Columbia University

    Municipal Solid Waste (Management and Handling) Rules 2000, under the Environmental Protection Act, 1986 a significant increase in municipal solid waste (MSW) generation in India in the last few decades increase in solid waste generation will have significant impacts in terms of the land required for waste

  16. Thermal Treatment of Solid Wastes Using the Electric Arc Furnace

    SciTech Connect (OSTI)

    O'Connor, W.K.; Turner, P.C.

    1999-09-01T23:59:59.000Z

    A thermal waste treatment facility has been developed at the Albany Research Center (ARC) over the past seven years to process a wide range of heterogeneous mixed wastes, on a scale of 227 to 907 kg/h (500 to 2,000 lb/h). The current system includes a continuous feed system, a 3-phase AC, 0.8 MW graphite electrode arc furnace, and a dedicated air pollution control system (APCS) which includes a close-coupled thermal oxidizer, spray cooler, baghouse, and wet scrubber. The versatility of the complete system has been demonstrated during 5 continuous melting campaigns, ranging from 11 to 25 mt (12 to 28 st) of treated wastes per campaign, which were conducted on waste materials such as (a) municipal incinerator ash, (b) simulated low-level radioactive, high combustible-bearing mixed wastes, (c) simulated low-level radioactive liquid tank wastes, (d) heavy metal contaminated soils, and (e) organic-contaminated dredging spoils. In all cases, the glass or slag products readily passed the U.S. Environmental Protection Agency (EPA) Toxicity Characteristic Leachability Program (TCLP) test. Additional studies are currently under way on electric utility wastes, steel and aluminum industry wastes, as well as zinc smelter residues. Thermal treatment of these solid waste streams is intended to produce a metallic product along with nonhazardous glass or slag products.

  17. Risk mitigation methodology for solid waste landfills. Doctoral thesis

    SciTech Connect (OSTI)

    Nixon, W.B.

    1995-05-01T23:59:59.000Z

    Several recent models have attempted to simulate or assess the probability and consequences of the leakage of aqueous contaminant leakage from solid waste landfills. These models incorporate common factors, including climatological and geological characteristics. Each model, however, employs a unique approach to the problem, assigns different relative weights to factors, and relies upon extrapolated small-scale experimental data and/or subjective judgment in predicting the full-scale landfill failure mechanisms leading to contaminant migration. As a result, no two models are likely to equally assess a given landfill, and no one model has been validated as a predictor of long-term performance. The United States Air Force maintains a database for characterization of potential hazardous waste sites. Records include more than 500 landfills, providing such information as waste, soil, aquifer, monitoring location data, and the results of sample testing. Through analysis of this information, nearly 300 landfills were assessed to have sufficiently, partially, or inadequately contained hazardous constituents of the wastes placed within them.

  18. Hydrogen production by gasification of municipal solid waste

    SciTech Connect (OSTI)

    Rogers, R. III

    1994-05-20T23:59:59.000Z

    As fossil fuel reserves run lower and lower, and as their continued widespread use leads toward numerous environmental problems, the need for clean and sustainable energy alternatives becomes ever clearer. Hydrogen fuel holds promise as such as energy source, as it burns cleanly and can be extracted from a number of renewable materials such as municipal solid waste (MSW), which can be considered largely renewable because of its high content of paper and biomass-derived products. A computer model is being developed using ASPEN Plus flow sheeting software to simulate a process which produces hydrogen gas from MSW; the model will later be used in studying the economics of this process and is based on an actual Texaco coal gasification plant design. This paper gives an overview of the complete MSW gasification process, and describes in detail the way in which MSW is modeled by the computer as a process material. In addition, details of the gasifier unit model are described; in this unit modified MSW reacts under pressure with oxygen and steam to form a mixture of gases which include hydrogen.

  19. Composite analysis for solid waste storage area 6

    SciTech Connect (OSTI)

    Lee, D.W.

    1997-09-01T23:59:59.000Z

    The composite analysis (CA) provides an estimate of the potential cumulative impacts to a hypothetical future member of the public from the Solid Waste Storage Area 6 (SWSA 6) disposal operations and all of the other sources of radioactive material in the ground on the ORR that may interact with contamination originating in SWSA 6.The projected annual dose to hypothetical future member of the public from all contributing sources is compared to the primary dose limit of 100 mrem per year and a dose constraint of 30 mrem per year. Consistent with the CA guidance, dose estimates for the first 1000 years after disposal are emphasized for comparison with the primary dose limit and dose constraint.The current land use plan for the ORR is being revised, and may include a reduction in the land currently controlled by DOE on the ORR. The possibility of changes in the land use boundary is considered in the CA as part of the sensitivity and uncertainty analysis of the results, the interpretation of results, and the conclusions.

  20. DOE/LX/07-0125&D1 Secondary Document DMSA-337-24 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shipping the drums to Envirocare in Utah for disposal. As source material within the meaning of the Atomic Energy Act, UF 4 is not a solid waste; however, during the processing...

  1. DOE/LX/07-0127&D1 Secondary Document DMSA-337-28 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shipping the drums to Envirocare in Utah for disposal. As source material within the meaning of the Atomic Energy Act, UF 4 is not a solid waste; however, during the processing...

  2. DOE/LX/07-0126&D1 Secondary Document DMSA-337-26 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shipping the drums to Envirocare in Utah for disposal. As source material within the meaning of the Atomic Energy Act, UF 4 is not a solid waste; however, during the processing...

  3. DOE/LX/07-0124&D1 Secondary Document DMSA-337-22 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    shipping the drums to Envirocare in Utah for disposal. As source material within the meaning of the Atomic Energy Act, UF 4 is not a solid waste; however, during the processing...

  4. EA-1707: Closure of Nonradioactive Dangerous Waste Landfill and Solid Waste Landfill, Hanford Site, Richland, Washington

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of closing the Nonradioactive Dangerous Waste Landfill and the Solid Waste Landfill. The Washington State Department of Ecology is a cooperating agency in preparing this EA.

  5. Solute transport under steady and transient conditions in biodegraded municipal solid waste

    E-Print Network [OSTI]

    Bendz, David; Singh, Vijay P.

    , Sweden Vijay P. Singh Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge Abstract. The transport of a conservative tracer (lithium) in a large (3.5 m 3) undisturbed municipal solid waste sample has been...

  6. EA-1097: Solid waste Disposal- Nevada Test Site, Nye County, Nevada

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposal to continue the on-site disposal of solid waste at the Area 9 and Area 23 landfills at the U.S. Department of Energy Nevada Test Site...

  7. Ground-water monitoring compliance plan for the Hanford Site Solid Waste Landfill

    SciTech Connect (OSTI)

    Fruland, R.M.

    1986-10-01T23:59:59.000Z

    Washington state regulations required that solid waste landfill facilities have ground-water monitoring programs in place by May 27, 1987. This document describes the well locations, installation, characterization studies and sampling and analysis plan to be followed in implementing the ground-water monitoring program at the Hanford Site Solid Waste Landfill (SWL). It is based on Washington Administrative Code WAC 173-304-490. 11 refs., 19 figs., 4 tabs.

  8. Fire protection guide for solid waste metal drum storage

    SciTech Connect (OSTI)

    Bucci, H.M.

    1996-09-16T23:59:59.000Z

    This guide provides a method to assess potential fire development in drum storage facilities. The mechanism of fire propagation/spread through stored drum arrays is a complex process. It involves flame heat transfer, transient conduction,convection, and radiation between drums (stored in an array configuration). There are several phenomena which may occur when drums are exposed to fire. The most dramatic is violent lid failure which results in total lid removal. When a drum loses its lid due to fire exposure, some or all of the contents may be ejected from the drum, and both the ejected combustible material and the combustible contents remaining within the container will burn. The scope of this guide is limited to storage arrays of steel drums containing combustible (primarily Class A) and noncombustible contents. Class B combustibles may be included in small amounts as free liquid within the solid waste contents.Storage arrays, which are anticipated in this guide, include single or multi-tier palletized (steel or wood pallets) drums,high rack storage of drums, and stacked arrays of drums where plywood sheets are used between tiers. The purpose of this guide is to describe a simple methodology that estimates the consequences of a fire in drum storage arrays. The extent of fire development and the resulting heat release rates can be estimated. Release fractions applicable to this type of storage are not addressed, and the transport of contaminants away from the source is not addressed. However, such assessments require the amount of combustible material consumed and the surface area of this burning material. The methods included in this guide do provide this information.

  9. Energy recovery from solid waste fuels using advanced gasification technology

    SciTech Connect (OSTI)

    Morris, M.; Waldheim, L. [TPS Termiska Processer AB, Nykoeping (Sweden)] [TPS Termiska Processer AB, Nykoeping (Sweden)

    1998-12-31T23:59:59.000Z

    Since the mid-1980s, TPS Termiska Processer AB has been working on the development of an atmospheric-pressure gasification process. A major aim at the start of this work was the generation of fuel gas from indigenous fuels to Sweden (i.e. biomass). As the economic climate changed and awareness of the damage to the environment caused by the use of fossil fuels in power generation equipment increased, the aim of the development work at TPS was changed to applying the process to heat and power generation from feedstocks such as biomass and solid wastes. Compared with modern waste incineration with heat recovery, the gasification process will permit an increase in electricity output of up to 50%. The gasification process being developed is based on an atmospheric-pressure circulating fluidized bed gasifier coupled to a tar-cracking vessel. The gas produced from this process is then cooled and cleaned in conventional equipment. The energy-rich gas produced is clean enough to be fired in a gas boiler without requiring extensive flue gas cleaning, as is normally required in conventional waste incineration plants. Producing clean fuel gas in this manner, which facilitates the use of efficient gas-fired boilers, means that overall plant electrical efficiencies of close to 30% can be achieved. TPS has performed a considerable amount of pilot plant testing on waste fuels in their gasification/gas cleaning pilot plant in Sweden. Two gasifiers of TPS design have been in operation in Greve-in-Chianti, italy since 1992. This plant processes 200 tonnes of RDF (refuse-derived fuel) per day.

  10. Analysis of potential for reducing emissions of greenhouse gases in municipal solid waste in Brazil, in the state and city of Rio de Janeiro

    SciTech Connect (OSTI)

    Loureiro, S.M., E-mail: saulo@lima.coppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Rovere, E.L.L., E-mail: emilio@ppe.ufrj.br [Department of Energy Planning, Federal University of Rio de Janeiro, C.P. 68565, CEP 21949-972 Rio de Janeiro, RJ (Brazil); Mahler, C.F., E-mail: mahler0503@yahoo.com [Department of Civil Engineering, Federal University of Rio de Janeiro, C.P. 68506, CEP 21945-970, Rio de Janeiro, RJ (Brazil)

    2013-05-15T23:59:59.000Z

    Highlights: ? We constructed future scenarios of emissions of greenhouse gases in waste. ? Was used the IPCC methodology for calculating emission inventories. ? We calculated the costs of abatement for emissions reduction in landfill waste. ? The results were compared to Brazil, state and city of Rio de Janeiro. ? The higher the environmental passive, the greater the possibility of use of biogas. - Abstract: This paper examines potential changes in solid waste policies for the reduction in GHG for the country of Brazil and one of its major states and cities, Rio de Janeiro, from 2005 to 2030. To examine these policy options, trends in solid waste quantities and associated GHG emissions are derived. Three alternative policy scenarios are evaluated in terms of effectiveness, technology, and economics and conclusions posited regarding optimal strategies for Brazil to implement. These scenarios are been building on the guidelines for national inventories of GHG emissions (IPCC, 2006) and adapted to Brazilian states and municipalities boundaries. Based on the results, it is possible to say that the potential revenue from products of solid waste management is more than sufficient to transform the current scenario in this country into one of financial and environmental gains, where the negative impacts of climate change have created a huge opportunity to expand infrastructure for waste management.

  11. Combined Municipal Solid Waste and biomass system optimization for district energy applications

    SciTech Connect (OSTI)

    Rentizelas, Athanasios A., E-mail: arent@central.ntua.gr; Tolis, Athanasios I., E-mail: atol@central.ntua.gr; Tatsiopoulos, Ilias P., E-mail: itat@central.ntua.gr

    2014-01-15T23:59:59.000Z

    Highlights: Combined energy conversion of MSW and agricultural residue biomass is examined. The model optimizes the financial yield of the investment. Several system specifications are optimally defined by the optimization model. The application to a case study in Greece shows positive financial yield. The investment is mostly sensitive on the interest rate, the investment cost and the heating oil price. - Abstract: Municipal Solid Waste (MSW) disposal has been a controversial issue in many countries over the past years, due to disagreement among the various stakeholders on the waste management policies and technologies to be adopted. One of the ways of treating/disposing MSW is energy recovery, as waste is considered to contain a considerable amount of bio-waste and therefore can lead to renewable energy production. The overall efficiency can be very high in the cases of co-generation or tri-generation. In this paper a model is presented, aiming to support decision makers in issues relating to Municipal Solid Waste energy recovery. The idea of using more fuel sources, including MSW and agricultural residue biomass that may exist in a rural area, is explored. The model aims at optimizing the system specifications, such as the capacity of the base-load Waste-to-Energy facility, the capacity of the peak-load biomass boiler and the location of the facility. Furthermore, it defines the quantity of each potential fuel source that should be used annually, in order to maximize the financial yield of the investment. The results of an energy tri-generation case study application at a rural area of Greece, using mixed MSW and biomass, indicate positive financial yield of investment. In addition, a sensitivity analysis is performed on the effect of the most important parameters of the model on the optimum solution, pinpointing the parameters of interest rate, investment cost and heating oil price, as those requiring the attention of the decision makers. Finally, the sensitivity analysis is enhanced by a stochastic analysis to determine the effect of the volatility of parameters on the robustness of the model and the solution obtained.

  12. RD & D priorities for energy production and resource conservation from municipal solid waste

    SciTech Connect (OSTI)

    Not Available

    1992-08-01T23:59:59.000Z

    This report identifies research, development, and demonstration (RD&D) needs and priorities associated with municipal solid waste (MSW) management technologies that conserve or produce energy or resources. The changing character of MSW waste management and the public`s heightened awareness of its real and perceived benefits and costs creates opportunities for RD&D in MSW technologies. Increased recycling, for example, creates new opportunities for energy, chemicals, and materials recovery. New technologies to control and monitor emissions from MSW combustion facilities are available for further improvement or application. Furthermore, emerging waste-to-energy technologies may offer environmental, economic, and other advantages. Given these developments, DOE identified a need to assess the RD&D needs and pdodties and carefully target RD&D efforts to help solve the carbon`s waste management problem and further the National Energy Strategy. This report presents such an assessment. It identifies and Documents RD&D needs and priorities in the broad area of MSW resource . recovery, focusing on efforts to make MSW management technologies commercially viable or to improve their commercial deployment over a 5 to l0 year period. Panels of technical experts identifies 279 RD&D needs in 12 technology areas, ranking about one-fifth of these needs as priorities. A ``Peer Review Group`` identified mass-burn combustion, ``systems studies,`` landfill gas, and ash utilization and disposal as high priority areas for RD&D based on cost and the impacts of further RD&D. The results of this assessment are intended to provide guidance to DOE concerning possible future RD&D projects.

  13. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 4: Project cost estimate

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. This volume represents the total estimated costs for the W113 facility. Operating Contractor Management costs have been incorporated as received from WHC. The W113 Facility TEC is $19.7 million. This includes an overall project contingency of 14.4% and escalation of 17.4%. A January 2001 construction contract procurement start date is assumed.

  14. Environmental management activities

    SciTech Connect (OSTI)

    NONE

    1997-07-01T23:59:59.000Z

    The Office of Environmental Management (EM) has been delegated the responsibility for the Department of Energy`s (DOE`s) cleanup of the nuclear weapons complex. The nature and magnitude of the waste management and environmental remediation problem requires the identification of technologies and scientific expertise from domestic and foreign sources. Within the United States, operational DOE facilities, as well as the decontamination and decommissioning of inactive facilities, have produced significant amounts of radioactive, hazardous, and mixed wastes. In order to ensure worker safety and the protection of the public, DOE must: (1) assess, remediate, and monitor sites and facilities; (2) store, treat, and dispose of wastes from past and current operations; and (3) develop and implement innovative technologies for environmental restoration and waste management. The EM directive necessitates looking beyond domestic capabilities to technological solutions found outside US borders. Following the collapse of the Soviet regime, formerly restricted elite Soviet scientific expertise became available to the West. EM has established a cooperative technology development program with Russian scientific institutes that meets domestic cleanup objectives by: (1) identifying and accessing Russian EM-related technologies, thereby leveraging investments and providing cost-savings; (2) improving access to technical information, scientific expertise, and technologies applicable to EM needs; and (3) increasing US private sector opportunities in Russian in EM-related areas.

  15. DOE/LX/07-0236&D1 Secondary Document DMSA C-337-12 Solid Waste...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rocksoil, solid waste, sweeping compound, PCB contaminated rags and polyvinyl chloride (PVC) pipe, Zorball, floor sweep, rags, gloves, shoes, trash, pallets, saw blades, plastic...

  16. Reducing the solid waste stream: reuse and recycling at Lawrence Livermore National Laboratory

    SciTech Connect (OSTI)

    Wilson, K. L.

    1997-08-01T23:59:59.000Z

    In Fiscal Year (FY) 1996 Lawrence Livermore National Laboratory (LLNL) increased its solid waste diversion by 365 percent over FY 1992 in five solid waste categories - paper, cardboard, wood, metals, and miscellaneous. (LLNL`s fiscal year is from October 1 to September 30.) LLNL reused/ recycled 6,387 tons of waste, including 340 tons of paper, 455 tons of scrap wood, 1,509 tons of metals, and 3,830 tons of asphalt and concrete (Table1). An additional 63 tons was diverted from landfills by donating excess food, selling toner cartridges for reconditioning, using rechargeable batteries, redirecting surplus equipment to other government agencies and schools, and comporting plant clippings. LLNL also successfully expanded its demonstration program to recycle and reuse construction and demolition debris as part of its facility-wide, comprehensive solid waste reduction programs.

  17. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    SciTech Connect (OSTI)

    J. D. Ludowise

    2006-12-12T23:59:59.000Z

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  18. Hazardous Waste Management Implementation Inspection Criteria...

    Broader source: Energy.gov (indexed) [DOE]

    focus area. Attention will be given to on-site activities governed by 40 Subchapter I (Solid Waste) and state regulations where delegated authority exists, excluding landfill...

  19. Tri-County solid waste-to-fuel production project feasibility study

    SciTech Connect (OSTI)

    Not Available

    1983-09-01T23:59:59.000Z

    The analysis and preliminary findings of refuse-derived fuel and recovered components markets are presented. Other topics covered are: municipal solid waste composition, quantity and constraints; technical assessment and capital cost assessment; economic feasibility of burning process residue to generate steam; review of commercially available equipment for the densification of refuse-derived fuel; final pre-feasibility analysis for the Tri-County Municipal Solid Waste to Fuel Production Project; preliminary economic and sensitivity analysis for the Tri-County Project; risks assessment for the Tri-County Project; and environmental, health, safety, and socioeconomic assessment for the Tri-County Project. (MHR)

  20. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into Solid Waste Accounting Methods for the new SUB

    E-Print Network [OSTI]

    into Solid Waste Accounting Methods for the new SUB Daniel Liaw, Danny Hsieh, Lucie Xiang, Veronica Jiang Investigation into Solid Waste Accounting Methods for the new SUB Daniel Liaw Danny Hsieh Lucie Xiang Veronica As part of UBC's strives towards becoming a waste-free campus under the Climate Action Plan, the Alma

  1. Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!

    E-Print Network [OSTI]

    Columbia University

    ! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW on Municipal Solid Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein was not carried out in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation

  2. 2014 ENERGY AND ECONOMIC VALUE OF MUNICIPAL SOLID WASTE (MSW), INCLUDING NON-RECYCLED PLASTICS (NRP),

    E-Print Network [OSTI]

    Columbia University

    -to-energy (WTE) plants, 0.27 million tons (0.7%) were used as alternative fuel in cement production, and 32 Earth Engineering Center (EEC) Report to the American Chemistry Council (ACC) which was based on U.S. 2008 data and quantified the energy and economic value of municipal solid wastes (MSW) and non

  3. Solid waste operations complex W-113: Specifications. Preliminary design report. Volume III

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This document is Volume III of the Preliminary Design report for the Solid Waste Retrieval Facility at Hanford. The report was prepared by Raytheon and BNFL Inc. and submitted to Westinghouse Hanford Company in January 1995. This volume is a complete listing of the specifications for construction and the required material and equipment.

  4. Asit Nema\\Foundation Green-Ensys 1 RISK FACTORS ASSOCIATED WITH SOLID WASTE TREATMENT

    E-Print Network [OSTI]

    Columbia University

    Asit Nema\\Foundation Green-Ensys 1 RISK FACTORS ASSOCIATED WITH SOLID WASTE TREATMENT TECHNOLOGY OPTIONS IN THE INDIAN CONTEXT Asit Nema Foundation for Greentech Environmental Systems G-178, Sarita Vihar of the two RDF plants, only one plant at Vijayawada could be visited whereas the operator at #12;Asit Nema\\Foundation

  5. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Final report

    SciTech Connect (OSTI)

    NONE

    1996-06-30T23:59:59.000Z

    The problem addressed by our invention is that of municipal solid waste utilization. The dimensions of the problem can be visualized by the common comparison that the average individual in America creates in five years time an amount of solid waste equivalent in weight to the Statue of Liberty. The combustible portion of the more than 11 billion tons of solid waste (including municipal solid waste) produced in the United States each year, if converted into useful energy, could provide 32 quads per year of badly needed domestic energy, or more than one-third of our annual energy consumption. Conversion efficiency and many other factors make such a production level unrealistic, but it is clear that we are dealing with a very significant potential resource. This report describes research pertaining to the co-combustion of oil shale with solid municipal wastes in a circulating fluidized bed. The oil shale adds significant fuel content and also constituents that can possible produce a useful cementitious ash.

  6. IJEP 8 ( 1 ) : 51-54 Municipal Solid Waste Recycle -An Economic Proposition for a

    E-Print Network [OSTI]

    Columbia University

    IJEP 8 ( 1 ) : 51-54 Municipal Solid Waste Recycle - An Economic Proposition for a Developing the disposal problem in an environmentally acceptable manner is, DO doubt, an economic proposition features of the pyrolysis process in particular. Suitability of the waste recycle techniques in the context

  7. Municipal Solid Waste as an Energy Source by Roller-Grate Incineration

    E-Print Network [OSTI]

    Karnoski, P. J.

    1979-01-01T23:59:59.000Z

    The Grumman/VKW (Duesseldorf) Roller-Grate System was developed specifically to mass-burn municipal solid wastes achieving efficient combustion by a rolling and mixing action of the fuel bed, and independent control of primary air and roller speed...

  8. Microbiological Air Quality Assessment of Seafood Plants as Impacted by Solid Waste

    E-Print Network [OSTI]

    Microbiological Air Quality Assessment of Seafood Plants as Impacted by Solid Waste DONN R. WARD and a crab waste bin were periodically monitored to determine the relationship these populations had. No significant relationships were observed for the crab waste bins, this ap- parently due to frequent dumping

  9. INTRODUCTION Yard wastes currently represent about 15% of the total municipal solid waste collected in

    E-Print Network [OSTI]

    Ma, Lena

    INTRODUCTION Yard wastes currently represent about 15% of the total municipal solid waste collected: Collect representative and typical yard trash samples throughout Florida; Characterize the wastes these wastes. WORK ACCOMPLISHED Visited two compost and mulch processing facilities in Gainesville on 10

  10. Geologic Descriptions for the Solid-Waste Low Level Burial Grounds

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Lanigan, David C.

    2007-09-23T23:59:59.000Z

    This document provides the stratigraphic framework and six hydrogeologic cross sections and interpretations for the solid-waste Low Level Burial Grounds on the Hanford Site. Four of the new cross sections are located in the 200 West Area while the other two are located within the 200 East Area. The cross sections display sediments of the vadose zone and uppermost unconfined aquifer.

  11. DRAFT TECHNICAL GUIDANCE DOCUMENT ON STATIC AND SEISMIC SLOPE STABILITY FOR SOLID WASTE

    E-Print Network [OSTI]

    STRENGTH OF GEOSYNTHETIC CLAY LINERS Page 51 I GCL SLOPE DESIGN Page 52 II. SHEAR STRENGTH TESTING OF GCLs IN GEOSYNTHETIC MATERIALS Page 33 5.0 ENGINEERING PROPERTIES OF MUNICIPAL SOLID WASTE Page 36 I. STATIC PROPERTIES OF WASTE Page 36 II. DYNAMIC PROPERTIES OF WASTE Page 36 6.0 SHEAR STRENGTH OF GEOSYNTHETIC INTERFACES Page

  12. Cleanup Verification Package for the 118-C-1, 105-C Solid Waste Burial Ground

    SciTech Connect (OSTI)

    M. J. Appel and J. M. Capron

    2007-07-25T23:59:59.000Z

    This cleanup verification package documents completion of remedial action for the 118-C-1, 105-C Solid Waste Burial Ground. This waste site was the primary burial ground for general wastes from the operation of the 105-C Reactor and received process tubes, aluminum fuel spacers, control rods, reactor hardware, spent nuclear fuel and soft wastes.

  13. Radionuclides in shallow groundwater at Solid Waste Storage Area 5 North, Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Ashwood, T.L.; Marsh, J.D. Jr.

    1994-04-01T23:59:59.000Z

    This report presents a compilation of groundwater monitoring data from Solid Waste Storage Area (SWSA) 5 North at Oak Ridge National Laboratory (ORNL) between November 1989 and September 1993. Monitoring data were collected as part of the Active Sites Environmental Monitoring Program that was implemented in 1989 in response to DOE Order 5820.2A. SWSA 5 North was established for the retrievable storage of transuranic (TRU) wastes in 1970. Four types of storage have been used within SWSA 5 North: bunkers, vaults, wells, and trenches. The fenced portion of SWSA 5 North covers about 3.7 ha (9 acres) in the White Oak Creek watershed south of ORNL. The area is bounded by White Oak Creek and two ephemeral tributaries of White Oak Creek. Since 1989, groundwater has been monitored in wells around SWSA 5 North. During that time, elevated gross alpha contamination (reaching as high as 210 Bq/L) has consistently been detected in well 516. This well is adjacent to burial trenches in the southwest corner of the area. Water level measurements in wells 516 and 518 suggest that water periodically inundates the bottom of some of those trenches. Virtually all of the gross alpha contamination is generated by Curium 244 and Americium 241. A special geochemical investigation of well 516 suggests that nearly all of the Curium 44 and Americium 241 is dissolved or associated with dissolved organic matter. These are being transported at the rate of about 2 m/year from the burial trenches, through well 516, to White Oak Creek, where Curium 244 has been detected in a few bank seeps. Concentrations at these seeps are near detection levels (<1 Bq/L).

  14. Studien-und Prfungsordnung der Universitt Stuttgart fr den auslandsorientierten Studiengang Air Quality Control, Solid Waste and Waste Water Process Engineering

    E-Print Network [OSTI]

    Reyle, Uwe

    Air Quality Control, Solid Waste and Waste Water Process Engineering (WASTE) mit Abschluss Master Quality Control, Solid Waste and Waste Water Process Engineering" (WASTE) beschlossen. Der Rektor hat Control, Solid Waste and Waste Water Process Engineering" (WASTE) überblickt werden, die Fähigkeit

  15. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation Into Solid Waste Accounting In the New Student Union Building At the

    E-Print Network [OSTI]

    Into Solid Waste Accounting In the New Student Union Building At the University of British Columbia Lucy Bai of a project/report". #12;An Investigation Into Solid Waste Accounting In the New Student Union Building Strategy, a waste accounting method is needed to measure the amount of solid waste generated in the New

  16. UBC Social Ecological Economic Development Studies (SEEDS) Student Report An Investigation into the implementation of a solid waste accounting system in the new

    E-Print Network [OSTI]

    into the implementation of a solid waste accounting system in the new Student Union Building Nattália Muttoni, Karl Jensen of a project/report". #12;1 An Investigation into the implementation of a solid waste accounting system In this paper, we outline our process and investigation into the implementation of a solid waste accounting

  17. Country report Municipal solid waste composition determination supporting

    E-Print Network [OSTI]

    Columbia University

    for classifying the collected wastes into the following cate- gories: plastics, paper, metals, aluminium, leather categories were determined: organic wastes, paper and plastics, which combined represent 76% of the total management demands. 2005 Elsevier Ltd. All rights reserved. 1. Introduction The cornerstone of successful

  18. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    SciTech Connect (OSTI)

    Jacobsen, P.H.

    1997-09-23T23:59:59.000Z

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible.

  19. activity-long living wastes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the appeal of some scientific disciplines. Sparavigna, A C 2012-01-01 7 Municipal solid waste characteristics and management in Allahabad, India Renewable Energy Websites...

  20. activity-long life waste: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The heat of an eternally inherent low heating value on the other. Current status of Solid Waste Management The MSW Rules Columbia University 25 Recommendations for developing...

  1. Municipal solid waste energy conversion study on Guam and American Samoa

    SciTech Connect (OSTI)

    Not Available

    1984-03-31T23:59:59.000Z

    In the Pacific Islands of Guam and Tutuila in American Samoa, conversion of municipal solid waste to useable energy forms - principally electricity but possibly steam - may hold promise for reducing economic dependence on imported petroleum. A secondary benefit may be derived from reduction of solid waste landfill requirements. At the preliminary planning stage, waste-to-energy facilities producing electricity appear technically and environmentally feasible. Economically, the projects appear marginal but could be viable under specific conditions related to capital costs, revenue from garbage collection and revenue from the sale of the energy generated. Grant funding for the projects would considerably enhance the economic viability of the proposed facilities. The projects appear sufficiently viable to proceed to the detailed planning stage. Such projects are not viable for the islands now emerging from the US Trust Territory of the Pacific Islands.

  2. Soil stabilization using oil shale solid wastes: Laboratory evaluation of engineering properties

    SciTech Connect (OSTI)

    Turner, J.P.

    1991-01-01T23:59:59.000Z

    Oil shale solid wastes were evaluated for possible use as soil stabilizers. A laboratory study was conducted and consisted of the following tests on compacted samples of soil treated with water and spent oil shale: unconfined compressive strength, moisture-density relationships, wet-dry and freeze-thaw durability, and resilient modulus. Significant increases in strength, durability, and resilient modulus were obtained by treating a silty sand with combusted western oil shale. Moderate increases in strength, durability, and resilient modulus were obtained by treating a highly plastic clay with combusted western oil shale. Solid waste from eastern shale can be used for soil stabilization if limestone is added during combustion. Without limestone, eastern oil shale waste exhibits little or no cementation. The testing methods, results, and recommendations for mix design of spent shale-stabilized pavement subgrades are presented. 11 refs., 3 figs., 10 tabs.

  3. Potential effects of clean coal technologies on acid precipitation, greenhouse gases, and solid waste disposal

    SciTech Connect (OSTI)

    Blasing, T.J.; Miller, R.L.; McCold, L.N.

    1993-11-01T23:59:59.000Z

    The US Department of Energy`s (DOE`s) Clean Coal Technology Demonstration Program (CCTDP) was initially funded by Congress to demonstrate more efficient, economically feasible, and environmentally acceptable coal technologies. Although the environmental focus at first was on sulfur dioxide (SO{sub 2}) and nitrogen oxides (NO{sub x}) because their relationship to acid precipitation, the CCTDP may also lead to reductions in carbon dioxide (CO{sub 2}) emissions and in the volume of solid waste produced, compared with conventional technologies. The environmental effects of clean coal technologies (CCTs) depend upon which (if any) specific technologies eventually achieve high acceptance in the marketplace. In general, the repowering technologies and a small group of retrofit technologies show the most promise for reducing C0{sub 2} emissions and solid waste. These technologies also compare favorably with other CCTs in terms of SO{sub 2} and NO{sub x} reductions. The upper bound for CO{sup 2} reductions in the year 2010 is only enough to reduce global ``greenhouse`` warming potential by about 1%. However, CO{sub 2} emissions come from such variety of sources around the globe that no single technological innovation or national policy change could realistically be expected to reduce these emissions by more than a few percent. Particular CCTs can lead to either increases or decreases in the amount of solid waste produced. However, even if decreases are not achieved, much of the solid waste from clean coal technologies would be dry and therefore easier to dispose of than scrubber sludge.

  4. Solid Waste Operations Complex W-113: Project cost estimate. Preliminary design report. Volume IV

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This document contains Volume IV of the Preliminary Design Report for the Solid Waste Operations Complex W-113 which is the Project Cost Estimate and construction schedule. The estimate was developed based upon Title 1 material take-offs, budgetary equipment quotes and Raytheon historical in-house data. The W-113 project cost estimate and project construction schedule were integrated together to provide a resource loaded project network.

  5. Solid waste operations complex W-113: Preliminary design report. Volume I

    SciTech Connect (OSTI)

    NONE

    1995-01-01T23:59:59.000Z

    This document is Volume I of a Preliminary Design Report (Title I) for the Solid Waste Retrieval Facilities-Phase I (Project W-113) at Hanford. It was prepared by Raytheon and BNFL Inc. and submitted to Westinghouse Hanford Company in January 1995. This volume provides a project overview and a discussion of the waste handling systems, the data acquisition and control systems, the building systems, and the site/building structure.

  6. Solid Waste Processing Center Primary Opening Cells Systems, Equipment and Tools

    SciTech Connect (OSTI)

    Bailey, Sharon A.; Baker, Carl P.; Mullen, O Dennis; Valdez, Patrick LJ

    2006-04-17T23:59:59.000Z

    This document addresses the remote systems and design integration aspects of the development of the Solid Waste Processing Center (SWPC), a facility to remotely open, sort, size reduce, and repackage mixed low-level waste (MLLW) and transuranic (TRU)/TRU mixed waste that is either contact-handled (CH) waste in large containers or remote-handled (RH) waste in various-sized packages.

  7. Municipal Solid Waste (MSW) to Liquid Fuels Synthesis, Volume 1: Availability of Feedstock and Technology

    SciTech Connect (OSTI)

    Valkenburt, Corinne; Walton, Christie W.; Thompson, Becky L.; Gerber, Mark A.; Jones, Susanne B.; Stevens, Don J.

    2008-12-01T23:59:59.000Z

    This report investigated the potential of using municipal solid waste (MSW) to make synthesis gas (syngas) suitable for production of liquid fuels. Issues examined include: MSW physical and chemical properties affecting its suitability as a gasifier feedstock and for liquid fuels synthesis expected process scale required for favorable economics the availability of MSW in quantities sufficient to meet process scale requirements the state-of-the-art of MSW gasification technology.

  8. Performance assessment for continuing and future operations at solid waste storage area 6

    SciTech Connect (OSTI)

    NONE

    1997-09-01T23:59:59.000Z

    This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.

  9. Processing and utilizing high heat value, low ash alternative fuels from urban solid waste

    SciTech Connect (OSTI)

    Smith, M.L. [M.L. Smith Environmental and Associates, Tinley Park, IL (United States)

    1995-10-01T23:59:59.000Z

    The history of technologies in the US that recover energy from urban solid waste is relatively short. Most of the technology as we know it evolved over the past 25 years. This evolution led to the development of about 100 modern mass burn and RDF type waste-to-energy plants and numerous small modular combustion systems, which collectively are handling about 20%, or about 40 million tons per year, of the nations municipal solid waste. Technologies also evolved during this period to co-fire urban waste materials with other fuels or selectively burn specific waste streams as primary fuels. A growing number of second or third generation urban waste fuels projects are being developed. This presentation discusses new direction in the power generating industry aimed at recovery and utilization of clean, high heat value, low ash alternative fuels from municipal and industrial solid waste. It reviews a spectrum of alternative fuels for feasible recovery and reuse, with new opportunities emerging for urban fuels processors providing fuels in the 6,000--15,000 BTU/LB range for off premises use.

  10. EA-0767: Construction and Experiment of an Industrial Solid Waste Landfill at Portsmouth Gaseous Diffusion Plant, Piketon, Ohio

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct and operate a solid waste landfill within the boundary at the U.S. Department of Energy's Portsmouth Gaseous Diffusion plant...

  11. Heavy metal characterization of municipal solid waste compost

    E-Print Network [OSTI]

    Worsham, Michael Craig

    1992-01-01T23:59:59.000Z

    Committee: Dr. Bill Batchelor Dr. Kirk W. Brown Waste incineration and composting create solid residues which are later applied to or buried under soils. Although incinerator ash has been studied extensively for heavy metal content, much less is known... Digestion of Sediments, Sludges, and Soils does not fully recover all heavy metals in MSW compost. Neutron activation analysis (NAA) of undigested solid residues remaining after Method 3050 digestion of MSW compost showed that residues contained...

  12. Assessment of municipal solid waste for energy production in the western United States

    SciTech Connect (OSTI)

    Goodman, B.J.; Texeira, R.H.

    1990-08-01T23:59:59.000Z

    Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

  13. Active Technical Standards Managers List

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    TECHNICAL STANDARDS PROGRAM ASSIGNMENT TELEPHONEFAXEMAIL NAME DOE FACILITYADDRESS LOC CODE AU-30 Jeff D. Feit DOE Technical Standards Program, Manager U.S. Department of Energy...

  14. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Programs

    2010-10-04T23:59:59.000Z

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.

  15. Fluid bed gasification Plasma converter process generating energy from solid waste: Experimental assessment of sulphur species

    SciTech Connect (OSTI)

    Morrin, Shane, E-mail: shane.morrin@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Lettieri, Paola, E-mail: p.lettieri@ucl.ac.uk [Department of Chemical Engineering, University College London, London WC1E 7JE (United Kingdom); Chapman, Chris, E-mail: chris.chapman@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom); Taylor, Richard, E-mail: richard.taylor@app-uk.com [Advanced Plasma Power, Swindon, Wiltshire SN3 4DE (United Kingdom)

    2014-01-15T23:59:59.000Z

    Highlights: We investigate gaseous sulphur species whilst gasifying sulphur-enriched wood pellets. Experiments performed using a two stage fluid bed gasifier plasma converter process. Notable SO{sub 2} and relatively low COS levels were identified. Oxygen-rich regions of the bed are believed to facilitate SO{sub 2}, with a delayed release. Gas phase reducing regions above the bed would facilitate more prompt COS generation. - Abstract: Often perceived as a Cinderella material, there is growing appreciation for solid waste as a renewable content thermal process feed. Nonetheless, research on solid waste gasification and sulphur mechanisms in particular is lacking. This paper presents results from two related experiments on a novel two stage gasification process, at demonstration scale, using a sulphur-enriched wood pellet feed. Notable SO{sub 2} and relatively low COS levels (before gas cleaning) were interesting features of the trials, and not normally expected under reducing gasification conditions. Analysis suggests that localised oxygen rich regions within the fluid bed played a role in SO{sub 2}s generation. The response of COS to sulphur in the feed was quite prompt, whereas SO{sub 2} was more delayed. It is proposed that the bed material sequestered sulphur from the feed, later aiding SO{sub 2} generation. The more reducing gas phase regions above the bed would have facilitated COS hence its faster response. These results provide a useful insight, with further analysis on a suite of performed experiments underway, along with thermodynamic modelling.

  16. Operating limit study for the proposed solid waste landfill at Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Lee, D.W.; Wang, J.C.; Kocher, D.C.

    1995-06-01T23:59:59.000Z

    A proposed solid waste landfill at Paducah Gaseous Diffusion Plant (PGDP) would accept wastes generated during normal operations that are identified as non-radioactive. These wastes may include small amounts of radioactive material from incidental contamination during plant operations. A site-specific analysis of the new solid waste landfill is presented to determine a proposed operating limit that will allow for waste disposal operations to occur such that protection of public health and the environment from the presence of incidentally contaminated waste materials can be assured. Performance objectives for disposal were defined from existing regulatory guidance to establish reasonable dose limits for protection of public health and the environment. Waste concentration limits were determined consistent with these performance objectives for the protection of off-site individuals and inadvertent intruders who might be directly exposed to disposed wastes. Exposures of off-site individuals were estimated using a conservative, site-specific model of the groundwater transport of contamination from the wastes. Direct intrusion was analyzed using an agricultural homesteader scenario. The most limiting concentrations from direct intrusion or groundwater transport were used to establish the concentration limits for radionuclides likely to be present in PGDP wastes.

  17. Development of thermoelectric power generation system utilizing heat of combustible solid waste

    SciTech Connect (OSTI)

    Kajikawa, T.; Ito, M.; Katsube, I. [Shonan Institute of Technology, Fujisawa, Kanagawa, 251 (Japan); Shibuya, E. [NKK Corporation, Yokohama, Kanagawa, 230 (Japan)

    1994-08-10T23:59:59.000Z

    The paper presents the development of thermoelectric power generation system utilizing heat of municipal solid waste. The systematic classification and design guideline are proposed in consideration of the characteristics of solid waste processing system. The conceptual design of thermoelectric power generation system is carried out for a typical middle scale incinerator system (200 ton/day) by the local model. Totally the recovered electricity is 926.5 kWe by 445 units (569,600 couples). In order to achieve detailed design, one dimensional steady state model taking account of temperature dependency of the heat transfer performance and thermoelectric properties is developed. Moreover, small scale on-site experiment on 60 W class module installed in the real incinerator is carried out to extract various levels of technological problems. In parallel with the system development, high temperature thermoelectric elements such as Mn-Si and so on are developed aiming the optimization of ternary compound and high performance due to controlled fine-grain boundary effect. The manganese silicide made by shrinking-rate controlled sintering method performs 5 ({mu}W/cm K{cflx 2}) in power factor at 800 K. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  18. Chapter 30 Waste Management: General Administrative Procedures (Kentucky)

    Broader source: Energy.gov [DOE]

    The waste management administrative regulations apply to the disposal of solid waste and the management of all liquid, semisolid, solid, or gaseous waste defined or identified as hazardous in KRS...

  19. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 2: Solid waste retrieval facilities -- Phase 1, detail design drawings

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 2 provides the complete set of the Detail Design drawings along with a listing of the drawings. Once approved by WHC, these drawings will be issued and baselined for the Title 3 construction effort.

  20. Thermodynamic estimation of minor element distribution between immiscible liquids in Fe-Cu-based metal phase generated in melting treatment of municipal solid wastes

    SciTech Connect (OSTI)

    Lu, X. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nakajima, K.; Sakanakura, H. [Research Center for Material Cycles and Waste Management, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506 (Japan); Matsubae, K. [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan); Bai, H. [School of Metallurgical and Ecological Engineering, The University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083 (China); Nagasaka, T., E-mail: t-nagasaka@m.tohoku.ac.jp [Graduate School of Engineering, Tohoku University, 6-6-11 Aza-Aoba, Aramaki, Sendai 980-8579 (Japan)

    2012-06-15T23:59:59.000Z

    Graphical abstract: Display Omitted Highlights: Black-Right-Pointing-Pointer Two liquids separation of metal occurs in the melting of municipal solid waste. Black-Right-Pointing-Pointer The distribution of PGMs etc. between two liquid metal phases is studied. Black-Right-Pointing-Pointer Quite simple thermodynamic model is applied to predict the distribution ratio. Black-Right-Pointing-Pointer Au and Ag originated from WEEE are found to be concentrated into Cu-rich phase. - Abstract: Waste electrical and electronic equipment (WEEE) has become an important target in managing material cycles from the viewpoint of not only waste management and control of environmental pollution but also resource conservation. This study investigated the distribution tendency of trace elements in municipal solid waste (MSW) or incinerator ash, including valuable non-ferrous metals (Ni, Co, Cr, Mn, Mo, Ti, V, W, Zr), precious group metals (PGMs) originated from WEEE (Ag, Au, Pd, Pt), and others (Al, B, Pb, Si), between Fe-rich and Cu-rich metal phases by means of simple thermodynamic calculations. Most of the typical alloying elements for steel (Co, Cr, Mo, Nb, Ni, Si, Ti, V, and W) and Rh were preferentially distributed into the Fe-rich phase. PGMs, such as Au, Ag, and Pd, were enriched in the Cu-rich phase, whereas Pt was almost equally distributed into both phases. Since the primary metallurgical processing of Cu is followed by an electrolysis for refining, and since PGMs in crude copper have been industrially recovered from the resulting anode slime, our results indicated that Ag, Au, and Pd could be effectively recovered from MSW if the Cu-rich phase could be selectively collected.

  1. 1. Emergency Management Plan ACTIVE SHOOTER RESPONSE

    E-Print Network [OSTI]

    1. Emergency Management Plan ACTIVE SHOOTER RESPONSE #12;The world has changed!The world has ­ But can transition to one of these #12;Why is this Necessary? Within the last five years, there have been

  2. Field study of disposed solid wastes from advanced coal processes. Annual technical progress report, October 1991--September 1992

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    Radian Corporation and the North Dakota Energy and Environmental Research Center (EERC) are funded to develop information to be used by private industry and government agencies for managing solid wastes produced by advanced coal combustion processes. This information will be developed by conducting several field studies on disposed wastes from these processes. Data will be collected to characterize these wastes and their interactions with the environments in which they are disposed. Three sites were selected for the field studies: Colorado Ute`s fluidized bed combustion (FBC) unit in Nucla, Colorado; Ohio Edison`s limestone injection multistage burner (LIMB) retrofit in Lorain, Ohio; and Freeman United`s mine site in central Illinois with wastes supplied by the nearby Midwest Grain FBC unit. During the past year, field monitoring and sampling of the four landfill test cases constructed in 1989 and 1991 has continued. Option 1 of the contract was approved last year to add financing for the fifth test case at the Freeman United site. The construction of the Test Case 5 cells is scheduled to begin in November, 1992. Work during this past year has focused on obtaining data on the physical and chemical properties of the landfilled wastes, and on developing a conceptual framework for interpreting this information. Results to date indicate that hydration reactions within the landfilled wastes have had a major impact on the physical and chemical properties of the materials but these reactions largely ceased after the first year, and physical properties have changed little since then. Conditions in Colorado remained dry and no porewater samples were collected. In Ohio, hydration reactions and increases in the moisture content of the waste tied up much of the water initially infiltrating the test cells.

  3. Waste Management Program. Technical progress report, Aporil-June 1983

    SciTech Connect (OSTI)

    None

    1984-02-01T23:59:59.000Z

    This quarterly report provides current information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant. The studies on environmental and safety assessments, process and equipment development, TRU waste, and low-level waste are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations Program: surveillance and maintenance, waste concentration, low-level effluent waste, tank replacement/waste transfer, and solid waste storage and related activities.

  4. Management of Support Services Activities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1991-05-17T23:59:59.000Z

    To provide the policy, procedures, and responsibilities for the management of support services contracts with the Department of Energy (DOE). Cancels DOE O 4200.3B dated 10-3-85. Chg 1 dated 3-26-92. Canceled by DOE O 4200.3D dated 8-31-92.

  5. Characterization of past and present solid waste streams from the plutonium finishing plant

    SciTech Connect (OSTI)

    Duncan, D R; Mayancsik, B A [Westinghouse Hanford Co., Richland, WA (United States)] [Westinghouse Hanford Co., Richland, WA (United States); Pottmeyer, J A; Vejvoda, E J; Reddick, J A; Sheldon, K M; Weyns, M I [Los Alamos Technical Associates, Kennewick, WA (United States)] [Los Alamos Technical Associates, Kennewick, WA (United States)

    1993-02-01T23:59:59.000Z

    During the next two decades the transuranic (TRU) wastes now stored in the burial trenches and storage facilities at the Hanford Site are to be retrieved, processed at the Waste Receiving and Processing (WRAP) Facility, and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico for final disposal. Over 50% of the TRU waste to be retrieved for shipment to the WIPP has been generated at the Plutonium Finishing Plant (PFP), also known as the Plutonium Processing and Storage Facility and Z Plant. The purpose of this report is to characterize the radioactive solid wastes generated by the PFP since its construction in 1947 using process knowledge, existing records, and history-obtained from interviews. The PFP is currently operated by Westinghouse Hanford Company (WHC) for the US Department of Energy (DOE).

  6. Maximization of revenues for power sales from a solid waste resources recovery facility

    SciTech Connect (OSTI)

    Not Available

    1991-12-01T23:59:59.000Z

    The report discusses the actual implementation of the best alternative in selling electrical power generated by an existing waste-to-energy facility, the Metro-Dade County Resources Recovery Plant. After the plant processes and extracts various products out of the municipal solid waste, it burns it to produce electrical power. The price for buying power to satisfy the internal needs of our Resources Recovery Facility (RRF) is substantially higher than the power price for selling electricity to any other entity. Therefore, without any further analysis, it was decided to first satisfy those internal needs and then export the excess power. Various alternatives were thoroughly explored as to what to do with the excess power. Selling power to the power utilities or utilizing the power in other facilities were the primary options.

  7. Solid Waste Information and Tracking System (SWITS) data change request log

    SciTech Connect (OSTI)

    McKay, R.B.

    1994-08-18T23:59:59.000Z

    The Data Change Request (DCR) log is designed to promote data integrity within the Solid Waste Information and Tracking System (SWITS). It achieves this function by providing a record of all data changes performed on the database. This document contains records of those data changes from March 91 through June 94. The DCR log is also a supplement to an electronic database -- the DCR Tracking System, which provides an electronic record of all data changes preformed on the SWITS database. The records found in this document are Data Change Request forms. These forms are required for SWITS users who wish to request data changes in the database. The procedure formalizing this policy did not go into effect until September 1, 1994; therefore, some records created before that date may be incomplete.

  8. Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste

    SciTech Connect (OSTI)

    Niessen, W.R.; Marks, C.H.; Sommerlad, R.E. [Camp Dresser and McKee, Inc., Cambridge, MA (United States)] [Camp Dresser and McKee, Inc., Cambridge, MA (United States)

    1996-08-01T23:59:59.000Z

    This report identifies seven developers whose gasification technologies can be used to treat the organic constituents of municipal solid waste: Energy Products of Idaho; TPS Termiska Processor AB; Proler International Corporation; Thermoselect Inc.; Battelle; Pedco Incorporated; and ThermoChem, Incorporated. Their processes recover heat directly, produce a fuel product, or produce a feedstock for chemical processes. The technologies are on the brink of commercial availability. This report evaluates, for each technology, several kinds of issues. Technical considerations were material balance, energy balance, plant thermal efficiency, and effect of feedstock contaminants. Environmental considerations were the regulatory context, and such things as composition, mass rate, and treatability of pollutants. Business issues were related to likelihood of commercialization. Finally, cost and economic issues such as capital and operating costs, and the refuse-derived fuel preparation and energy conversion costs, were considered. The final section of the report reviews and summarizes the information gathered during the study.

  9. Bio-processing of solid wastes and secondary resources for metal extraction - A review

    SciTech Connect (OSTI)

    Lee, Jae-chun [Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); Pandey, Banshi Dhar, E-mail: bd_pandey@yahoo.co.uk [Mineral Resources Research Division, Korea Institute of Geoscience and Mineral Resources (KIGAM), Gwahang-no, Yuseong-gu, Daejeon 305-350 (Korea, Republic of); CSIR - National Metallurgical Laboratory, Jamshedpur 831007 (India)

    2012-01-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Review focuses on bio-extraction of metals from solid wastes of industries and consumer goods. Black-Right-Pointing-Pointer Bio-processing of certain effluents/wastewaters with metals is also included in brief. Black-Right-Pointing-Pointer Quantity/composition of wastes are assessed, and microbes used and leaching conditions included. Black-Right-Pointing-Pointer Bio-recovery using bacteria, fungi and archaea is highlighted for resource recycling. Black-Right-Pointing-Pointer Process methodology/mechanism, R and D direction and scope of large scale use are briefly included. - Abstract: Metal containing wastes/byproducts of various industries, used consumer goods, and municipal waste are potential pollutants, if not treated properly. They may also be important secondary resources if processed in eco-friendly manner for secured supply of contained metals/materials. Bio-extraction of metals from such resources with microbes such as bacteria, fungi and archaea is being increasingly explored to meet the twin objectives of resource recycling and pollution mitigation. This review focuses on the bio-processing of solid wastes/byproducts of metallurgical and manufacturing industries, chemical/petrochemical plants, electroplating and tanning units, besides sewage sludge and fly ash of municipal incinerators, electronic wastes (e-wastes/PCBs), used batteries, etc. An assessment has been made to quantify the wastes generated and its compositions, microbes used, metal leaching efficiency etc. Processing of certain effluents and wastewaters comprising of metals is also included in brief. Future directions of research are highlighted.

  10. Analysis of Integrated Safety Management at the Activity Level...

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Safety Management at the Activity Level: Work Planning and Control, Final Report Analysis of Integrated Safety Management at the Activity Level: Work Planning and...

  11. Lesson Learned by Environmental Management Complex-wide Activity...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Management Complex-wide Activity-level Work Planning and Control Lesson Learned by Environmental Management Complex-wide Activity-level Work Planning and Control...

  12. Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock. As each facility has different guidelines and

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Municipal Solid Waste Landfills The following Oklahoma landfills currently accept dead livestock-581-3468 Garfield City of Enid Landfill 580-249-4917 Garvin Foster Waste Disposal Landfill 405-238-2012 Jackson City-436-1403 Call ahead, may limit qty. Pottawatomie Absolute Waste Solutions 405-598-3893 Call ahead Seminole

  13. Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW)!in!the!United!States!A!National!Survey!

    E-Print Network [OSTI]

    ! 1! ! Generation!and!Disposition!of!Municipal!Solid!Waste! (MSW Waste (MSW) Generation and Disposition in the U.S., in collaboration with Ms. Nora Goldstein of Bio in 2012 and in 2013 EEC and BioCycle agreed that the 2013 Survey of Waste Generation and Disposition

  14. DOE/LX/07-0177&D1 Secondary Document DMSA OS-12 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    debris, and porous debris. Two G-17 valve subassemblies were characterizedclassified as Nuclear Criticality Safety (NCS) spacing-controlled fissile items. Following completion of...

  15. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    of organic and heavy metal pollutions could have an effectcause air pollution (dioxins, heavy metals) issues and

  16. DOE/LX/07-0096 Secondary Document DMSA C-337-45 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aerosol can, a tube of gasket adhesive, container of roof cement, drum of gloves and boots, batteries, and waste oil. The Toxic Substances Control Act waste formerly stored...

  17. Management of solid wastes from the Limestone Injection Dry Scrubbing (LIDS) clean coal technology. Final report

    SciTech Connect (OSTI)

    Musiol, W.F. Jr.; Czuczwa, J.M.

    1993-03-01T23:59:59.000Z

    The objectives of this project were to characterize by-products from a pilot Limestone Injection Dry Scrubbing (LIDS) process and to develop processes directed toward the safe and economic use or disposal of these wastes. Because LIDS is a developing Clean Coal technology, a database of chemical and physical characteristics of the by-product was first developed. During the course of this project, it was found that the waste alone did not form high-strength products sufficient for use in construction and engineering applications. Therefore, the project was redirected to evaluate the by-product as a soil-cement and Portland cement raw material, agricultural liming agent, backfill/landfill material component, and mine reclamation/neutralizing agent. Based on these evaluations, the most viable uses for the LIDS byproduct include use in mine reclamation or as a neutralization agent. If soluble sulfites can be minimized by avoiding a dolomitic LIDS reagent, use as an agricultural liming agent has promise. Interest from an Ohio utility in the LIDS process suggests possible application of results at the demonstration or commercial stages.

  18. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    of chemical use), waste reduction, and energy savings by theA Changing Climate for Energy from Waste? Final Report forHowever, new waste-to-energy plants and composting have

  19. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    include universal waste, batteries, computers, and hazardousaerosol cans, lead-acid batteries, and electronic media,metal, aluminum cans, and batteries to a recycling center or

  20. Waste management health risk assessment: A case study of a solid waste landfill in South Italy

    SciTech Connect (OSTI)

    Davoli, E., E-mail: enrico.davoli@marionegri.i [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Fattore, E.; Paiano, V.; Colombo, A.; Palmiotto, M. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy); Rossi, A.N.; Il Grande, M. [Progress S.r.l., Via Nicola A. Porpora 147, 20131 Milano (Italy); Fanelli, R. [Istituto di Ricerche Farmacologiche 'Mario Negri', Environmental Health Sciences Department, Via Giuseppe La Masa 19, 20156 Milano (Italy)

    2010-08-15T23:59:59.000Z

    An integrated risk assessment study has been performed in an area within 5 km from a landfill that accepts non hazardous waste. The risk assessment was based on measured emissions and maximum chronic population exposure, for both children and adults, to contaminated air, some foods and soil. The toxic effects assessed were limited to the main known carcinogenic compounds emitted from landfills coming both from landfill gas torch combustion (e.g., dioxins, furans and polycyclic aromatic hydrocarbons, PAHs) and from diffusive emissions (vinyl chloride monomer, VCM). Risk assessment has been performed both for carcinogenic and non-carcinogenic effects. Results indicate that cancer and non-cancer effects risk (hazard index, HI) are largely below the values accepted from the main international agencies (e.g., WHO, US EPA) and national legislation ( and ).

  1. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    L. (2008). Plasma Arc Gasification. Sustainability of Solidand innovative pyrolysis and gasification technologies for2008). Plasma Arc Gasification Plasma arc gasification is

  2. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    material Type of Container Plastic Bags Cost $0.12/bagsoda bottles Plastic milk containers Clear glass Fort Meadein the case of plastic and metal containers) recyclable

  3. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    P. , Lawrence,D. (2000). "Incineration of MSW using BiomassHealth Effects of Waste Incineration, Board on Environmentalet al. (2000). "Waste Incineration and Public Health." 189-

  4. C-340 ST-90 Boxes Solid Waste Management Unit (SWMU) Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WASTE DESCRIPTION: Along with non-RCRA regulated wastes, one ST-90 contained two incandescent light bulbs. The low-level waste (LLW) previously stored included paper, plastic,...

  5. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    cause air pollution (dioxins, heavy metals) issues andincluding the carcinogens dioxin and furan, and heavy metalset al. 2000; EPA 2005). 'Dioxins' and 'furans' are generic

  6. DOE/LX/07-0302&D1 Secondary Document DMSA OS-15 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    quantity removed 22,585 ft 3 . DOELX07-0302&D1 Secondary Document SUMMARY OF ENVIRONMENTAL SAMPLING DATA: Radiological surveys of the surface soil in 1995 indicated soil...

  7. DOE/LX/07-0298&D1 Secondary Document DMSA OS-04 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    sampling event was performed to provide information on additional analytes for environmental site characterization. Comments, questions, and conditional approval to the FICR...

  8. PPPO-02-427-07 Revised Solid Waste Management Unit Assessment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WASTE DESCRIPTION: Waste includes, but is not limited to, soil cuttings, PPE, PVC pipe, concrete, silt fencing, and scrap metal. WASTE QUANTITY: The waste quantity...

  9. Hanford site solid waste management environmental impact statement technical information document [SEC 1 THRU 4

    SciTech Connect (OSTI)

    FRITZ, L.L.

    2003-04-01T23:59:59.000Z

    This Technical Information Document (TID) provides engineering data to support DOE/EIS-0286, ''Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement,'' including assumptions and waste volumes calculation data.

  10. An overview of the sustainability of solid waste management at military installations

    E-Print Network [OSTI]

    Borglin, S.

    2010-01-01T23:59:59.000Z

    gas collection for energy production. Some landfills areflared or used for energy production Page | 13 Landfills areand is not longer usable for energy production. Substantial

  11. DOE/LX/07-0095 Secondary Document DMSA C-337-44 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    building. WASTE DESCRIPTION: The SWMU currently is empty. Newly discovered RCRA hazardous waste formerly stored included welding rods, light starters, lead seals, metal...

  12. DOE/LX/07-0300&D1 Secondary Document DMSA OS-09 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a battery post connector, vehicle bulbs, collection drums of antifreeze, and various light bulbs. Newly generated RCRA hazardousmixed waste formerly stored included two wheel...

  13. DOE/LX/07-0181&D1 Secondary Document DMSA OS-16 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and miscellaneous DOELX07-0181&D1 Secondary Document items. Newly discovered RCRA hazardous waste formerly stored included light bulbs. Newly generated RCRA hazardous mixed...

  14. DOE/LX/07-0182&D1 Secondary Document DMSA OS-17 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as forklifts, tow vehicles, and outdated fire trucks. Newly generated RCRA-regulated, hazardousmixed waste included light bulbs, DOELX07-0182&D1 Secondary Document fuses,...

  15. DOE/LX/07-0176&D1 Secondary Document DMSA OS-11 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of antifreeze from heavy equipment in DMSA-OS-17 was characterized and classified as hazardous waste. This prompted the decision to reevaluate the antifreeze from this DMSA in...

  16. DOE/LX/07-0079&D1 Secondary Document DMSA OS-07 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ni-Cad batteries, carburizing material, and circuit boards. Newly generated RCRA hazardous waste removed included light bulbs, hydraulic fluid, oil, fuses, vacuum tubes,...

  17. DOE/LX/07-0172&D1 Secondary Document DMSA OS-05 Solid Waste Management...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WASTE DESCRIPTION: The SWMU currently is empty. Newly discovered RCRA regulated hazardous waste formerly stored included lead waste fuses, small light bulbs, and...

  18. Hybrid sensor for metal grade measurement of a falling stream of solid waste particles

    SciTech Connect (OSTI)

    Abdur Rahman, Md., E-mail: rahman@tudelft.nl; Bakker, M.C.M., E-mail: m.c.m.bakker@tudelft.nl

    2012-07-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer A new sensor system is developed for metal grade measurement of falling bottom ash particles. Black-Right-Pointing-Pointer The system is hybrid, consisting of an optical and an electromagnetic sensor. Black-Right-Pointing-Pointer Grade of ECS concentrated bottom ash in 1-6 mm sieve size accurately measured up to 143 p/s feed rate. Black-Right-Pointing-Pointer Accuracy reached was 2.4% with respect to manual analysis. Black-Right-Pointing-Pointer Measures for elimination of both stationary and stochastic errors are discussed. - Abstract: A hybrid sensor system for accurate detection of the metal grade of a stream of falling solid waste particles is investigated and experimentally verified. The system holds an infrared and an electromagnetic unit around a central tube and counts all the particles and only the metal particles, respectively. The count ratio together with the measured average particle mass ratio (k) of non-metal and metal particles is sufficient for calculation of grade. The performance of the system is accurately verified using synthetic mixtures of sand and metal particles. Towards an application a case study is performed using municipal solid waste incineration bottom ash in size fractions 1-6 mm, which presents a major challenge for nonferrous metal recovery. The particle count ratio was inherently accurate for particle feed rates up to 13 per second. The average value and spread of k for bottom ash was determined as 0.49 {+-} 0.07 and used to calculate grade within 2.4% from the manually analysed grade. At higher feed rates the sensors start missing particles which fall simultaneously through the central tube, but the hybrid system still counted highly repeatable. This allowed for implementation of a count correction ratio to eliminate the stationary error. In combination with averaging in measurement intervals for suppression of stochastic variations the hybrid system regained its accuracy for particle feed rates up to 143 per second. This performance and its special design, intended to render it insensitive to external interference and noise when applied in an eddy current separator, make the hybrid sensor suitable for applications such as quality control and sensor controlled separation.

  19. Recycling and recovery routes of plastic solid waste (PSW): A review

    SciTech Connect (OSTI)

    Al-Salem, S.M. [Centre for CO-2 Technology, Department of Chemical Engineering, School of Process Engineering, University College London (UCL), Torrington Place, London WC1E 7JE (United Kingdom)], E-mail: s.al-salem@ucl.ac.uk; Lettieri, P.; Baeyens, J. [Centre for CO-2 Technology, Department of Chemical Engineering, School of Process Engineering, University College London (UCL), Torrington Place, London WC1E 7JE (United Kingdom)

    2009-10-15T23:59:59.000Z

    Plastic solid waste (PSW) presents challenges and opportunities to societies regardless of their sustainability awareness and technological advances. In this paper, recent progress in the recycling and recovery of PSW is reviewed. A special emphasis is paid on waste generated from polyolefinic sources, which makes up a great percentage of our daily single-life cycle plastic products. The four routes of PSW treatment are detailed and discussed covering primary (re-extrusion), secondary (mechanical), tertiary (chemical) and quaternary (energy recovery) schemes and technologies. Primary recycling, which involves the re-introduction of clean scrap of single polymer to the extrusion cycle in order to produce products of the similar material, is commonly applied in the processing line itself but rarely applied among recyclers, as recycling materials rarely possess the required quality. The various waste products, consisting of either end-of-life or production (scrap) waste, are the feedstock of secondary techniques, thereby generally reduced in size to a more desirable shape and form, such as pellets, flakes or powders, depending on the source, shape and usability. Tertiary treatment schemes have contributed greatly to the recycling status of PSW in recent years. Advanced thermo-chemical treatment methods cover a wide range of technologies and produce either fuels or petrochemical feedstock. Nowadays, non-catalytic thermal cracking (thermolysis) is receiving renewed attention, due to the fact of added value on a crude oil barrel and its very valuable yielded products. But a fact remains that advanced thermo-chemical recycling of PSW (namely polyolefins) still lacks the proper design and kinetic background to target certain desired products and/or chemicals. Energy recovery was found to be an attainable solution to PSW in general and municipal solid waste (MSW) in particular. The amount of energy produced in kilns and reactors applied in this route is sufficiently investigated up to the point of operation, but not in terms of integration with either petrochemical or converting plants. Although primary and secondary recycling schemes are well established and widely applied, it is concluded that many of the PSW tertiary and quaternary treatment schemes appear to be robust and worthy of additional investigation.

  20. Integrated municipal solid waste treatment using a grate furnace incinerator: The Indaver case

    SciTech Connect (OSTI)

    Vandecasteele, C. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)], E-mail: carlo.vandecasteele@cit.kuleuven.be; Wauters, G. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Arickx, S. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium); Jaspers, M. [Indaver, Dijle 17a, 2800 Mechelen (Belgium); Van Gerven, T. [Department of Chemical Engineering, Katholieke Universiteit Leuven, De Croylaan 46, 3001 Leuven (Belgium)

    2007-07-01T23:59:59.000Z

    An integrated installation for treatment of municipal solid waste and comparable waste from industrial origin is described. It consists of three grate furnace lines with flue gas treatment by half-wet scrubbing followed by wet scrubbing, and an installation for wet treatment of bottom ash. It is demonstrated that this integrated installation combines high recovery of energy (40.8% net) with high materials recovery. The following fractions were obtained after wet treatment of the bottom ash: ferrous metals, non-ferrous metals, three granulate fractions with different particle sizes, and sludge. The ferrous and non-ferrous metal fractions can both be recycled as high quality raw materials; the two larger particle size particle fractions can be applied as secondary raw materials in building applications; the sand fraction can be used for applications on a landfill; and the sludge is landfilled. For all components of interest, emissions to air are below the limit values. The integrated grate furnace installation is characterised by zero wastewater discharge and high occupational safety. Moreover, with the considered installation, major pollutants, such as PCDD/PCDF, Hg and iodine-136 are to a large extent removed from the environment and concentrated in a small residual waste stream (flue gas cleaning residue), which can be landfilled after stabilisation.

  1. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 3: Specifications

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 3 is a compilation of the construction specifications that will constitute the Title II materials and performance specifications. This volume contains CSI specifications for non-equipment related construction material type items, performance type items, and facility mechanical equipment items. Data sheets are provided, as necessary, which specify the equipment overall design parameters.

  2. COMPARISON BETWEEN FRESH AND AGED MUNICIPAL SOLID WASTES AND THEIR RECYCLING METHODS IN CHINA

    E-Print Network [OSTI]

    G. Zhou; D. Chen; W. Cui

    2007-01-01T23:59:59.000Z

    SUMMARY: Fresh municipal solid wastes (MSW) and aged MSW including MSW from landfills and dumpsite have been characterized and compared by their components, moisture content and lower heat value (LHV) in order to recycle and dispose them properly. Firstly the characterizing experiments were performed and the results showed that generally the fresh MSW are of high moisture contents and their LHV is below 6500kJ/kg; and when 40 % of plastics were separated, their LHV is less than 5000kJ/kg. Combustibles in aged MSW were easily to be separated and their LHV is higher than 11000kJ/kg as just separated. Analysis of aged MSW of different years old showed that as MSW became older the moisture and paper contents decreased. No leachate produced from aged MSW during the analysis and separation process. For both fresh MSW and aged MSW the main contributor to LHV is plastics. Secondly a simple separating system consisting of a roller screen and a winnower is used to separate plastics from fresh MSW and aged MSW, and the quality of plastics were compared by their physical parameters after made into pellets; the results showed that plastics from fresh MSW can be recycled as raw material for secondary product; while plastics separated from aged MSW are of lower quality and only suitable to be recycled as fuel material. Finally different recycling methods were suggested for fresh and aged MSWs based on their characteristics. 1.

  3. A direct steam heat option for hydrothermal treatment of municipal solid waste

    SciTech Connect (OSTI)

    Thorsness, C.B.

    1995-04-12T23:59:59.000Z

    A conceptual process for producing a gasifiable slurry from raw municipal solid waste (MSW) using direct steam heating is outlined. The process is based on the hydrothermal decomposition of the organic matter in the MSW, which requires the MSW to be heated to 300-350{degrees}C in the presence of water. A process model is developed and it is shown, based on preliminary estimates of the hydrothermal reaction stoichiometry, that a process using multiple pressure vessels, which allows recovery of waste heat, results in a process capable of producing a product slurry having a 40 wt % solids content with no waste water emissions. Results for a variety of process options and process parameters are presented. It is shown that the addition of auxiliary feedstock to the gasifier, along with the MSW derived slurry, results in more efficient gasification. It is estimated that 2.6 kmol/s of hydrogen can be produced from 30 kg/s (2600 tonne/day) of MSW and 16 kg/s of heavy oil. Without the additional feedstock, heavy oil in this case, only 0.49 kmol/s of hydrogen would be produced.

  4. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 2 [SEC 1 & 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2003-12-01T23:59:59.000Z

    This report includes data requested on September 10, 2002 and includes radioactive solid waste forecasting updates through December 31, 2002. The FY2003.0 request is the primary forecast for fiscal year FY 2003.

  5. Prompt gamma ray neutron activation analysis of cadmium in municipal solid waste

    E-Print Network [OSTI]

    Dendahl, Katherine Hoge

    1991-01-01T23:59:59.000Z

    was reduced from 20% to 13%. Gamma-ray spectroscopy using a Ge(Li) detector was used to measure the 559 keV photopeak emitted from Cd via the Cd(n, y) Cd reaction. The optimal sample size was determined to be 15 x 15 x 6 cm. The neutron flux throughout... setup. requirements for shielding of the germanium detectors. Some of the following matrix effects can be anticipated: additional neutron moderation due to moisture content of the sample (H moderates the neutrons); gamma-ray attenuation due...

  6. Fate and transport of phenol in a packed bed reactor containing simulated solid waste

    SciTech Connect (OSTI)

    Saquing, Jovita M., E-mail: jmsaquing@gmail.com [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Knappe, Detlef R.U., E-mail: knappe@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States); Barlaz, Morton A., E-mail: barlaz@ncsu.edu [Department of Civil, Construction, and Environmental Engineering, Campus Box 7908, North Carolina State University, Raleigh, NC 27695-7908 (United States)

    2012-02-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Anaerobic column experiments were conducted at 37 Degree-Sign C using a simulated waste mixture. Black-Right-Pointing-Pointer Sorption and biodegradation model parameters were determined from batch tests. Black-Right-Pointing-Pointer HYDRUS simulated well the fate and transport of phenol in a fully saturated waste column. Black-Right-Pointing-Pointer The batch biodegradation rate and the rate obtained by inverse modeling differed by a factor of {approx}2. Black-Right-Pointing-Pointer Tracer tests showed the importance of hydrodynamic parameters to improve model estimates. - Abstract: An assessment of the risk to human health and the environment associated with the presence of organic contaminants (OCs) in landfills necessitates reliable predictive models. The overall objectives of this study were to (1) conduct column experiments to measure the fate and transport of an OC in a simulated solid waste mixture, (2) compare the results of column experiments to model predictions using HYDRUS-1D (version 4.13), a contaminant fate and transport model that can be parameterized to simulate the laboratory experimental system, and (3) determine model input parameters from independently conducted batch experiments. Experiments were conducted in which sorption only and sorption plus biodegradation influenced OC transport. HYDRUS-1D can reasonably simulate the fate and transport of phenol in an anaerobic and fully saturated waste column in which biodegradation and sorption are the prevailing fate processes. The agreement between model predictions and column data was imperfect (i.e., within a factor of two) for the sorption plus biodegradation test and the error almost certainly lies in the difficulty of measuring a biodegradation rate that is applicable to the column conditions. Nevertheless, a biodegradation rate estimate that is within a factor of two or even five may be adequate in the context of a landfill, given the extended retention time and the fact that leachate release will be controlled by the infiltration rate which can be minimized by engineering controls.

  7. Modeling and comparative assessment of municipal solid waste gasification for energy production

    SciTech Connect (OSTI)

    Arafat, Hassan A., E-mail: harafat@masdar.ac.ae; Jijakli, Kenan

    2013-08-15T23:59:59.000Z

    Highlights: Study developed a methodology for the evaluation of gasification for MSW treatment. Study was conducted comparatively for USA, UAE, and Thailand. Study applies a thermodynamic model (Gibbs free energy minimization) using the Gasify software. The energy efficiency of the process and the compatibility with different waste streams was studied. - Abstract: Gasification is the thermochemical conversion of organic feedstocks mainly into combustible syngas (CO and H{sub 2}) along with other constituents. It has been widely used to convert coal into gaseous energy carriers but only has been recently looked at as a process for producing energy from biomass. This study explores the potential of gasification for energy production and treatment of municipal solid waste (MSW). It relies on adapting the theory governing the chemistry and kinetics of the gasification process to the use of MSW as a feedstock to the process. It also relies on an equilibrium kinetics and thermodynamics solver tool (Gasify) in the process of modeling gasification of MSW. The effect of process temperature variation on gasifying MSW was explored and the results were compared to incineration as an alternative to gasification of MSW. Also, the assessment was performed comparatively for gasification of MSW in the United Arab Emirates, USA, and Thailand, presenting a spectrum of socioeconomic settings with varying MSW compositions in order to explore the effect of MSW composition variance on the products of gasification. All in all, this study provides an insight into the potential of gasification for the treatment of MSW and as a waste to energy alternative to incineration.

  8. Field demonstration of in situ grouting of radioactive solid waste burial trenches with polyacrylamide. [Polyacrylamide

    SciTech Connect (OSTI)

    Spalding, B.P.; Fontaine, T.A.

    1990-01-01T23:59:59.000Z

    Demonstrations of in situ grouting with polyacrylamide were carried out on two undisturbed burial trenches and one dynamically compacted burial trench in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL). The injection of polyacrylamide was achieved quite facilely for the two undisturbed burial trenches which were filled with grout, at typical pumping rates of 95 L/min, in several batches injected over several days. The compacted burial trench, however, failed to accept grout at more than 1.9 L/min even when pressure was applied. Thus, it appears that burial trenches, stabilized by dynamic compaction, have a permeability too low to be considered groutable. The water table beneath the burial trenches did not respond to grout injections indicating a lack of hydrologic connection between fluid grout and the water table which would have been observed if the grout failed to set. Because grout set times were adjusted to less than 60 min, the lack of hydrologic connection was not surprising. Postgrouting penetration testing revealed that the stability of the burial trenches was increased from 26% to 79% that measured in the undisturbed soil surrounding the trenches. In situ permeation tests on the grouted trenches indicated a significant reduction in hydraulic conductivity of the trench contents from a mean of 2.1 {times} 10{sup {minus}3} to 1.85 {times} 10{sup {minus}5} cm/s. Preliminary observations indicated that grouting with polyacrylamide is an excellent method for both improved stability and hydrologic isolation of radioactive waste and its incidental hazardous constituents.

  9. Pre-title I safety evaluation for the retrieval operations of transuranic waste drums in the Solid Waste Disposal Facility. Revision 2

    SciTech Connect (OSTI)

    Rabin, M.S.

    1992-08-01T23:59:59.000Z

    Phase I of the Transuranic (TRU) Waste Facility Line Item Project includes the retrieval and safe storage of the pad drums that are stored on TRU pads 2-6 in the Solid Waste Disposal Facility (SWDF). Drums containing TRU waste were placed on these pads as early as 1974. The pads, once filled, were mounded with soil. The retrieval activities will include the excavation of the soil, retrieval of the pad drums, placing the drums in overpacks (if necessary) and venting and purging the retrieved drums. Once the drums have been vented and purged, they will be transported to other pads within the SWDF or in a designated area until they are eventually treated as necessary for ultimate shipment to the Waste Isolation Pilot Plant in Carlsbad, New Mexico. This safety evaluation provides a bounding assessment of the radiological risk involved with the drum retrieval activities to the maximally exposed offsite individual and the co-located worker. The results of the analysis indicate that the risk to the maximally exposed offsite individual and the co-located worker using maximum frequencies and maximum consequences are within the acceptance criteria defined in WSRC Procedural Manual 9Q. The purpose of this evaluation is to demonstrate the incremental risk from the SWDF due to the retrieval activities for use as design input only. As design information becomes available, this evaluation can be revised to satisfy the safety analysis requirements of DOE Orders 4700 and 5480.23.

  10. IBM Systems Director Active Energy Manager Installation and User's Guide

    E-Print Network [OSTI]

    IBM Systems Director Active Energy Manager Installation and User's Guide Version 4.3 #12;#12;IBM Systems Director Active Energy Manager Installation and User's Guide Version 4.3 #12;ii IBM Systems Director Active Energy Manager: Installation and User's Guide #12;About this book This book provides

  11. Application for Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    SciTech Connect (OSTI)

    NSTec Environmental Management

    2007-11-01T23:59:59.000Z

    The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter.

  12. Hanford Site waste management and environmental restoration integration plan

    SciTech Connect (OSTI)

    Merrick, D.L.

    1990-04-30T23:59:59.000Z

    The Hanford Site Waste Management and Environmental Restoration Integration Plan'' describes major actions leading to waste disposal and site remediation. The primary purpose of this document is to provide a management tool for use by executives who need to quickly comprehend the waste management and environmental restoration programs. The Waste Management and Environmental Restoration Programs have been divided into missions. Waste Management consists of five missions: double-shell tank (DST) wastes; single-shell tank (SST) wastes (surveillance and interim storage, stabilization, and isolation); encapsulated cesium and strontium; solid wastes; and liquid effluents. Environmental Restoration consists of two missions: past practice units (PPU) (including characterization and assessment of SST wastes) and surplus facilities. For convenience, both aspects of SST wastes are discussed in one place. A general category of supporting activities is also included. 20 refs., 14 figs., 7 tabs.

  13. Recovery of solid fuel from municipal solid waste by hydrothermal treatment using subcritical water

    SciTech Connect (OSTI)

    Hwang, In-Hee, E-mail: hwang@eng.hokudai.ac.jp [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan); Aoyama, Hiroya; Matsuto, Toshihiko; Nakagishi, Tatsuhiro; Matsuo, Takayuki [Laboratory of Solid Waste Disposal Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo 060 8628 (Japan)

    2012-03-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer Hydrothermal treatment using subcritical water was studied to recover solid fuel from MSW. Black-Right-Pointing-Pointer More than 75% of carbon in MSW was recovered as char. Black-Right-Pointing-Pointer Heating value of char was comparable to that of brown coal and lignite. Black-Right-Pointing-Pointer Polyvinyl chloride was decomposed at 295 Degree-Sign C and 8 MPa and was removed by washing. - Abstract: Hydrothermal treatments using subcritical water (HTSW) such as that at 234 Degree-Sign C and 3 MPa (LT condition) and 295 Degree-Sign C and 8 MPa (HT condition) were investigated to recover solid fuel from municipal solid waste (MSW). Printing paper, dog food (DF), wooden chopsticks, and mixed plastic film and sheets of polyethylene, polypropylene, and polystyrene were prepared as model MSW components, in which polyvinylchloride (PVC) powder and sodium chloride were used to simulate Cl sources. While more than 75% of carbon in paper, DF, and wood was recovered as char under both LT and HT conditions, plastics did not degrade under either LT or HT conditions. The heating value (HV) of obtained char was 13,886-27,544 kJ/kg and was comparable to that of brown coal and lignite. Higher formation of fixed carbon and greater oxygen dissociation during HTSW were thought to improve the HV of char. Cl atoms added as PVC powder and sodium chloride to raw material remained in char after HTSW. However, most Cl originating from PVC was found to converse into soluble Cl compounds during HTSW under the HT condition and could be removed by washing. From these results, the merit of HTSW as a method of recovering solid fuel from MSW is considered to produce char with minimal carbon loss without a drying process prior to HTSW. In addition, Cl originating from PVC decomposes into soluble Cl compound under the HT condition. The combination of HTSW under the HT condition and char washing might improve the quality of char as alternative fuel.

  14. An approach for sampling solid heterogeneous waste at the Hanford Site waste receiving and processing and solid waste projects

    SciTech Connect (OSTI)

    Sexton, R.A.

    1993-03-01T23:59:59.000Z

    This paper addresses the problem of obtaining meaningful data from samples of solid heterogeneous waste while maintaining sample rates as low as practical. The Waste Receiving and Processing Facility, Module 1, at the Hanford Site in south-central Washington State will process mostly heterogeneous solid wastes. The presence of hazardous materials is documented for some packages and unknown for others. Waste characterization is needed to segregate the waste, meet waste acceptance and shipping requirements, and meet facility permitting requirements. Sampling and analysis are expensive, and no amount of sampling will produce absolute certainty of waste contents. A sampling strategy is proposed that provides acceptable confidence with achievable sampling rates.

  15. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending December 31, 1995

    SciTech Connect (OSTI)

    NONE

    1996-01-01T23:59:59.000Z

    The objective of this project is to demonstrate that cocombustion of municipal solid waste and oil shale can reduce emissions of gaseous pollutants (SO{sub 2} and HCl) to acceptable levels. Tests in 6- and 15-inch units showed that the oil shale absorbs acid gas pollutants and produces an ash which could be, at the least, disposed of in a normal landfill. Further analysis of the results are underway to estimate scale-up to commercial size. Additional work will be done to evaluate the cementitious properties of oil shale ash.

  16. Western oil-shale development: a technology assessment. Volume 4. Solid waste from mining and surface retorts

    SciTech Connect (OSTI)

    Not Available

    1982-01-01T23:59:59.000Z

    The overall objectives of this study were to: review and evaluate published information on the disposal, composition, and leachability of solid wastes produced by aboveground shale oil extraction processes; examine the relationship of development to surface and groundwater quality in the Piceance Creek basin of northwestern Colorado; and identify key areas of research necessary to quantitative assessment of impact. Information is presented under the following section headings: proposed surface retorting developments; surface retorting processes; environmental concerns; chemical/mineralogical composition of raw and retorted oil shale; disposal procedures; water quality; and research needs.

  17. UNREVIEWED DISPOSAL QUESTION EVALUATION: IMPACT OF NEW INFORMATION SINCE 2008 PA ON CURRENT LOW-LEVEL SOLID WASTE OPERATIONS

    SciTech Connect (OSTI)

    Flach, G.; Smith, F.; Hamm, L.; Butcher, T.

    2014-10-06T23:59:59.000Z

    Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and data identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013: ? New K{sub d} values for iodine, radium and uranium ? Elimination of cellulose degradation product (CDP) factors ? Updated radionuclide data ? Changes in transport behavior of mobile radionuclides ? Potential delay in interim closure beyond 2025 ? Component-in-grout (CIG) plume interaction correction Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0 of this UDQE has rendered the projected final SOF for SLIT9 less than the WITS Admin Limit. With respect to future disposal unit operations in the East Slit Trench Group, consideration of new information for Slit Trench#14 (SLIT14) reduced the current SOF for the limiting All-Pathways 200-1000 year period (AP2) by an order of magnitude and by one quarter for the Beta-Gamma 12-100 year period (BG2) pathway. On the balance, updates to K{sub d} values and dose factors and elimination of CDP factors (generally favorable) more than compensated for the detrimental impact of a more rigorous treatment of plume dispersion. These observations suggest that future operations in the East Slit Trench Group can be conducted with higher confidence using current inventory limits, and that limits could be increased if desired for future low-level waste disposal units. The same general conclusion applies to future STs in the West Slit Trench Group based on the Impacted Final SOFs for existing STs in that area.

  18. Waste management project fiscal year 1998 multi-year work plan WBS 1.2

    SciTech Connect (OSTI)

    Slaybaugh, R.R.

    1997-08-29T23:59:59.000Z

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposition of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project (SW), Liquid Effluents Project (LEP), and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible. The paper tabulates the major facilities that interface with this Project, identifying the major facilities that generate waste, materials, or infrastructure for this Project and the major facilities that will receive waste and materials from this Project.

  19. Mixed waste storage facility CDR review, Paducah Gaseous Diffusion Plant; Solid waste landfill CDR review, Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    NONE

    1998-08-01T23:59:59.000Z

    This report consists of two papers reviewing the waste storage facility and the landfill projects proposed for the Paducah Gaseous Diffusion Plant complex. The first paper is a review of DOE`s conceptual design report for a mixed waste storage facility. This evaluation is to review the necessity of constructing a separate mixed waste storage facility. The structure is to be capable of receiving, weighing, sampling and the interim storage of wastes for a five year period beginning in 1996. The estimated cost is assessed at approximately $18 million. The review is to help comprehend and decide whether a new storage building is a feasible approach to the PGDP mixed waste storage problem or should some alternate approach be considered. The second paper reviews DOE`s conceptual design report for a solid waste landfill. This solid waste landfill evaluation is to compare costs and the necessity to provide a new landfill that would meet State of Kentucky regulations. The assessment considered funding for a ten year storage facility, but includes a review of other facility needs such as a radiation detection building, compactor/baler machinery, material handling equipment, along with other personnel and equipment storage buildings at a cost of approximately $4.1 million. The review is to help discern whether a landfill only or the addition of compaction equipment is prudent.

  20. Evolution and Evaluation of the Active Management Area Management Plans

    E-Print Network [OSTI]

    Fay, Noah

    on Management Plan Information 29 Municipal 29 Agricultural 30 Industrial 31 Water Budgets 32 Other Summary 46 Appendix C: Tucson AMA 2006 Water Budget 48 Appendix D: Groundwater Management Plan Legislative of the Arizona Groundwater Management Act (GMA), the Arizona Department of Water Resources (ADWR

  1. STATUS OF MUNICIPAL SOLID WASTE GENERATION IN KERALA AND THEIR CHARACTERISTICS

    E-Print Network [OSTI]

    Columbia University

    and management capacity of the existing waste management systems. Therefore, there is an urgent necessity of improved planning and implementation of comprehensive MSW management systems for upgrading, transportation, processing and disposal system. It requires reliable data on quantity and quality of MSW

  2. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work accomplished by the DOE Oak Ridge Office of Environmental Management (EM and the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The 1992 Federal Facility

  3. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Setting Much of Environmental Management (EM) work done on the ORR is performed as a result, soil, groundwater, surface water, or other environmental media. Most of the remaining part of EM work

  4. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work done under the DOE Oak Ridge Operations Office of Environmental Management (EM water, or other environmental media. 3.1 INTRODUCTION For over half a century, one of the primary

  5. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work accomplished by the DOE Oak Ridge Office of Environmental Management (DOE- EM that remain in structures, buildings, facilities, soil, groundwater, surface water, or other environmental

  6. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work done under the DOE Oak Ridge Operations Office of Environmental Management (EM, soil, groundwater, surface water, or other environmental media. 3.1 INTRODUCTION For over half

  7. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation, soil, groundwater, surface water, or other environmental media. Update This section will discuss the EM Reservation 3-2 Environmental Management and Reservation Activities The following sections highlight some

  8. Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation

    E-Print Network [OSTI]

    Pennycook, Steve

    Environmental Management and Reservation Activities 3-1 3. Environmental Management and Reservation Activities Much of the work accomplished by the DOE Oak Ridge Operations Office of Environmental Management, buildings, facilities, soil, groundwater, surface water, or other environmental media. 3.1 INTRODUCTION

  9. Report of Scholarly Activities Department of Management and Entrepreneurship

    E-Print Network [OSTI]

    Young, Paul Thomas

    Report of Scholarly Activities Department of Management and Entrepreneurship Academic Year 2008 .......................................................................................Discipline-Based Peer Reviewed Journal Articles 7 ...................................................................................Pedagogy-Related Peer Reviewed Journal Articles 10

  10. DOE's New Checklist Helps Plants Assess Energy Management Activities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    simple checklist can help a facility assess whether Superior Energy Performance (SEP) or ISO 50001 are practical next steps, or if foundational energy management activities...

  11. The Effects of Woody Plant Management on Habitat Conditions, Plant Demography, and Transplantation Success of the Endangered Orchid Spiranthes parksii Correll

    E-Print Network [OSTI]

    Bruton, Richard Kyle

    2014-05-09T23:59:59.000Z

    Spiranthes parksii Correll is a federally endangered species endemic to 13 counties of the Post Oak Savanna in Central Texas. Approximately 700 S. parksii are located on the Brazos Valley Solid Waste Management Agencys (BVSWMA) Twin Oaks landfill...

  12. A criticism of applications with multi-criteria decision analysis that are used for the site selection for the disposal of municipal solid wastes

    SciTech Connect (OSTI)

    Kemal Korucu, M., E-mail: kemal.korucu@kocaeli.edu.tr [University of Kocaeli, Department of Environmental Engineering, 41380 Kocaeli (Turkey); Erdagi, Bora [University of Kocaeli, Department of Philosophy, 41380 Kocaeli (Turkey)

    2012-12-15T23:59:59.000Z

    Highlights: Black-Right-Pointing-Pointer The existing structure of the multi-criteria decision analysis for site selection is criticized. Black-Right-Pointing-Pointer Fundamental problematic points based on the critics are defined. Black-Right-Pointing-Pointer Some modifications are suggested in order to provide solutions to these problematical points. Black-Right-Pointing-Pointer A new structure for the decision making mechanism is proposed. Black-Right-Pointing-Pointer The feasibility of the new method is subjected to an evaluation process. - Abstract: The main aim of this study is to criticize the process of selecting the most appropriate site for the disposal of municipal solid wastes which is one of the problematic issues of waste management operations. These kinds of problems are pathological symptoms of existing problematical human-nature relationship which is related to the syndrome called ecological crisis. In this regard, solving the site selection problem, which is just a small part of a larger entity, for the good of ecological rationality and social justice is only possible by founding a new and extensive type of human-nature relationship. In this study, as a problematic point regarding the discussions on ecological problems, the existing structure of the applications using multi-criteria decision analysis in the process of site selection with three main criteria is criticized. Based on this critique, fundamental problematic points (to which applications are insufficient to find solutions) will be defined. Later, some modifications will be suggested in order to provide solutions to these problematical points. Finally, the criticism addressed to the structure of the method with three main criteria and the feasibility of the new method with four main criteria is subjected to an evaluation process. As a result, it is emphasized that the new structure with four main criteria may be effective in solution of the fundamental problematic points.

  13. RCRA, superfund and EPCRA hotline training module. Introduction to: Municipal solid waste disposal facility criteria updated July 1996

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    The module provides a summary of the regulatory criteria for municipal solid waste landfills (MSWLFs) and provides the statutory authority under RCRA and the Clean Water Act (CWA) directing EPA to develop the MSWLF criteria in 40 CFR Part 258. It gives the part 258 effective date and the compliance dates for providing demonstrations to satisfy individual regulatory requirements. It identifies the types of facilities that qualify for the small landfill exemption. It explains the requirements of each subpart of part 258 as they apply to states with EPA-approved MSWLF permit programs and states without approved permit programs. It compares the MSWLF environmental performance standards described in part 258 to the corresponding requirements for hazardous waste TSDFs in part 264, which are generally more stringent.

  14. Interim site characterization report and ground-water monitoring program for the Hanford site solid waste landfill

    SciTech Connect (OSTI)

    Fruland, R.M.; Hagan, R.A.; Cline, C.S.; Bates, D.J.; Evans, J.C.; Aaberg, R.L.

    1989-07-01T23:59:59.000Z

    Federal and state regulations governing the operation of landfills require utilization of ground-water monitoring systems to determine whether or not landfill operations impact ground water at the point of compliance (ground water beneath the perimeter of the facility). A detection-level ground-water monitoring system was designed, installed, and initiated at the Hanford Site Solid Waste Landfill (SWL). Chlorinated hydrocarbons were detected at the beginning of the ground-water monitoring program and continue to be detected more than 1 year later. The most probable source of the chlorinated hydrocarbons is washwater discharged to the SWL between 1985 and 1987. This is an interim report and includes data from the characterization work that was performed during well installation in 1987, such as field observations, sediment studies, and geophysical logging results, and data from analyses of ground-water samples collected in 1987 and 1988, such as field parameter measurements and chemical analyses. 38 refs., 27 figs., 8 tabs.

  15. Combustion of municipal solid wastes with oil shale in a circulating fluidized bed. Quarterly report, quarter ending 31 December 1994

    SciTech Connect (OSTI)

    Not Available

    1995-01-01T23:59:59.000Z

    The test plan is designed to demonstrate that oil shale co-combusted with municipal solid waste (MSW) can reduce gaseous pollutants (SO{sub 2}, CO) to acceptable levels (90%+ reduction) and produce a cementitious ash which will, at a minimum, be acceptable in normal land fills. The small-scale combustion testing will be accomplished in a 6-in. circulating fluid bed combustor (CFBC) at Hazen Research Laboratories. This work will be patterned after the study the authors conducted in 1988 when coal and oil shale were co-combusted in a program sponsored by the Electric Power Research Institute. The specific purpose of the test program will be to: determine the required ratio of oil shale to MSW by determining the ratio of absorbent to pollutant (A/P); determine the effect of temperature and resident time in the reactor; and determine if kinetic model developed for coal/oil shale mixture is applicable.

  16. Emissions of PCDD/Fs from municipal solid waste incinerators in China Yuwen Ni, Haijun Zhang, Su Fan, Xueping Zhang, Qing Zhang, Jiping Chen *

    E-Print Network [OSTI]

    Columbia University

    Emissions of PCDD/Fs from municipal solid waste incinerators in China Yuwen Ni, Haijun Zhang, Su February 2009 Available online 21 March 2009 Keywords: MSWIs PCDD/Fs Congener patterns Emission factor a b s t r a c t Gas emission of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD

  17. Best Practices for Siting Solar Photovoltaics on Municipal Solid Waste Landfills. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Kiatreungwattana, K.; Mosey, G.; Jones-Johnson, S.; Dufficy, C.; Bourg, J.; Conroy, A.; Keenan, M.; Michaud, W.; Brown, K.

    2013-04-01T23:59:59.000Z

    The Environmental Protection Agency and the National Renewable Energy Laboratory developed this best practices document to address common technical challenges for siting solar photovoltaics (PV) on municipal solid waste (MSW) landfills. The purpose of this document is to promote the use of MSW landfills for solar energy systems. Closed landfills and portions of active landfills with closed cells represent thousands of acres of property that may be suitable for siting solar photovoltaics (PV). These closed landfills may be suitable for near-term construction, making these sites strong candidate to take advantage of the 30% Federal Business Energy Investment Tax Credit. It was prepared in response to the increasing interest in siting renewable energy on landfills from solar developers; landfill owners; and federal, state, and local governments. It contains examples of solar PV projects on landfills and technical considerations and best practices that were gathered from examining the implementation of several of these projects.

  18. Hazard Evaluation for Storage of Spent Nuclear Fuel at the Solid Waste Treatment Facility

    SciTech Connect (OSTI)

    ERPENBECK, E.G.

    2002-11-12T23:59:59.000Z

    This report is prepared as the initial step in the safety assurance process described in 10 CFR 830 Subpart B, Nuclear Safety Management, and HNF-PRO-700, Safety Basis Development.

  19. The effects of the mechanicalchemical stabilization process for municipal solid waste incinerator fly ash on the chemical reactions in cement paste

    SciTech Connect (OSTI)

    Chen, Cheng-Gang [Department of Water Resources and Environmental Engineering, Tamkang University, 151, Ying-chung Road, Tamsui Dist., New Taipei City 251, Taiwan, ROC (China); Sun, Chang-Jung, E-mail: sun.3409@hotmail.com [Department of Environmental Technology and Management, Taoyuan Innovation Institute of Technology, 414, Sec. 3, Jhongshan E. Rd., Zhongli City, Taoyuan County 320, Taiwan, ROC (China); Gau, Sue-Huai; Wu, Ching-Wei; Chen, Yu-Lun [Department of Water Resources and Environmental Engineering, Tamkang University, 151, Ying-chung Road, Tamsui Dist., New Taipei City 251, Taiwan, ROC (China)

    2013-04-15T23:59:59.000Z

    Highlights: ? Milling extracted MSWI fly ash. ? Increasing specific surface area, destruction of the crystalline texture, and increasing the amount of amorphous materials. ? Increasing heavy metal stability. ? Inducing pozzolanic reactions and increasing the early and later strength of the cement paste. - Abstract: A water extraction process can remove the soluble salts present in municipal solid waste incinerator (MSWI) fly ash, which will help to increase the stability of the synthetic materials produced from the MSWI fly ash. A milling process can be used to stabilize the heavy metals found in the extracted MSWI fly ash (EA) leading to the formation of a non-hazardous material. This milled extracted MSWI fly ash (MEA) was added to an ordinary Portland cement (OPC) paste to induce pozzolanic reactions. The experimental parameters included the milling time (96 h), water to binder ratios (0.38, 0.45, and 0.55), and curing time (1, 3, 7 and 28 days). The analysis procedures included inductively coupled plasma atomic emission spectroscopy (ICP/AES), BET, mercury intrusion porosimetry (MIP), X-ray diffraction (XRD), and nuclear magnetic resonance (NMR) imaging. The results of the analyses indicate that the milling process helped to stabilize the heavy metals in the MEA, with an increase in the specific surface area of about 50 times over that of OPC. The addition of the MEA to the OPC paste decreased the amount of Ca(OH){sub 2} and led to the generation of calciumsilicatehydrates (CSH) which in turned increased the amount of gel pores and middle sized pores in the cement. Furthermore, a comparison shows an increase in the early and later strength over that of OPC paste without the addition of the milled extracted ash. In other words, the milling process could stabilize the heavy metals in the MEA and had an activating effect on the MEA, allowing it to partly substitute OPC in OPC paste.

  20. Managing preventative maintenance activities at Intel Corporation

    E-Print Network [OSTI]

    Fearing, Rebecca Cassler

    2006-01-01T23:59:59.000Z

    The work for this thesis was completed at Intel Corporation in Colorado Springs, Colorado at Fab 23, a semiconductor fabrication facility making flash memory. The project focused on evaluating and managing preventative ...

  1. Solid waste reclamation and recycling: Tires. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    The bibliography contains citations concerning the development, management, economic analysis, and environmental impacts of reclamation and recycling of scrap tires. The design and evaluation of recycling processes are examined. Recycled products for use in construction materials, embankment fills, fuel supplements, and material substitutions are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  2. Solid waste reclamation and recycling: Tires. (Latest citations from the NTIS bibliographic database). Published Search

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The bibliography contains citations concerning the development, management, economic analysis, and environmental impacts of reclamation and recycling of scrap tires. The design and evaluation of recycling processes are examined. Recycled products for use in construction materials, embankment fills, fuel supplements, and material substitutions are covered. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  3. Characterization of 618-11 solid waste burial ground, disposed waste, and description of the waste generating facilities

    SciTech Connect (OSTI)

    Hladek, K.L.

    1997-10-07T23:59:59.000Z

    The 618-11 (Wye or 318-11) burial ground received transuranic (TRTJ) and mixed fission solid waste from March 9, 1962, through October 2, 1962. It was then closed for 11 months so additional burial facilities could be added. The burial ground was reopened on September 16, 1963, and continued operating until it was closed permanently on December 31, 1967. The burial ground received wastes from all of the 300 Area radioactive material handling facilities. The purpose of this document is to characterize the 618-11 solid waste burial ground by describing the site, burial practices, the disposed wastes, and the waste generating facilities. This document provides information showing that kilogram quantities of plutonium were disposed to the drum storage units and caissons, making them transuranic (TRU). Also, kilogram quantities of plutonium and other TRU wastes were disposed to the three trenches, which were previously thought to contain non-TRU wastes. The site burial facilities (trenches, caissons, and drum storage units) should be classified as TRU and the site plutonium inventory maintained at five kilograms. Other fissile wastes were also disposed to the site. Additionally, thousands of curies of mixed fission products were also disposed to the trenches, caissons, and drum storage units. Most of the fission products have decayed over several half-lives, and are at more tolerable levels. Of greater concern, because of their release potential, are TRU radionuclides, Pu-238, Pu-240, and Np-237. TRU radionuclides also included slightly enriched 0.95 and 1.25% U-231 from N-Reactor fuel, which add to the fissile content. The 618-11 burial ground is located approximately 100 meters due west of Washington Nuclear Plant No. 2. The burial ground consists of three trenches, approximately 900 feet long, 25 feet deep, and 50 feet wide, running east-west. The trenches constitute 75% of the site area. There are 50 drum storage units (five 55-gallon steel drums welded together) buried in three rows in the northeast comer. In addition, five eight-foot diameter caissons are located at the west end of the center row of the drum storage units. Initially, wastes disposed to the caissons and drum storage units were from the 325 and 327 building hot cells. Later, a small amount of remote-handled (RH) waste from the 309 building Plutonium Recycle Test Reactor (PRTR) cells, and the newly built 324 building hot cells, was disposed at the site.

  4. E-Print Network 3.0 - active water management Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    water management Search Powered by Explorit Topic List Advanced Search Sample search results for: active water management Page: << < 1 2 3 4 5 > >> 1 Regional Water Management:...

  5. WASTE MANAGEMENT AT SRS - MAKING IT HAPPEN

    SciTech Connect (OSTI)

    Heenan, T. F.; Kelly, S.

    2002-02-25T23:59:59.000Z

    The past five years have witnessed a remarkable transition in the pace and scope of waste management activities at SRS. At the start of the new M&O contract in 1996, little was being done with the waste generated at the site apart from storing it in readiness for future treatment and disposal. Large volumes of legacy waste, particularly TRU and Low Level Waste, had accumulated over many years of operation of the site's nuclear facilities, and the backlog was increasing. WSRC proposed the use of the talents of the ''best in class'' partners for the new contract which, together with a more commercial approach, was expected to deliver more results without a concomitant increase in cost. This paper charts the successes in the Solid Waste arena and analyzes the basis for success.

  6. Management of Support Services Contract Activity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1992-08-31T23:59:59.000Z

    To provide the policy, procedures, and responsibilities for the management of support services contracts within the Department of Energy (DOE). Cancels DOE O 4200.3C dated 5-17-91. Canceled by DOE N 1321.140 dated 5-20-94.

  7. Management of Support Services Contract Activity

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1985-10-03T23:59:59.000Z

    To provide the policy, procedures, and responsibilities for the management of support service contracts within the Department of Energy (DOE). Cancels 4200.3A dated 4-5-83. Change 1 Errata Sheet dated 6-27-89. Canceled by DOE O 4200.3C dated 5-17-91.

  8. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 5: Design validation assessments and lists

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. The following Code Evaluation analyzes the applicable sections of the National Fire Protection Association (NFPA) 101, Life Safety Code, 1994 Edition and the 1994 Edition of the Uniform Building Code (UBC) to the W113 Trench Enclosure. A Building Code Analysis generally establishes four primary design criteria: occupancy classification; separation requirements; egress requirements; and construction type. The UBC establishes requirements for all criteria. This analysis is limited to the Trench Enclosure Building. The General Office Building and the Retrieval Staff Change Building is not within the scope of this analysis.

  9. Solid Waste Operations Complex W-113, Detail Design Report (Title II). Volume 1: Title II design report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The Solid Waste Retrieval Facility--Phase 1 (Project W113) will provide the infrastructure and the facility required to retrieve from Trench 04, Burial ground 4C, contact handled (CH) drums and boxes at a rate that supports all retrieved TRU waste batching, treatment, storage, and disposal plans. This includes (1) operations related equipment and facilities, viz., a weather enclosure for the trench, retrieval equipment, weighing, venting, obtaining gas samples, overpacking, NDE, NDA, shipment of waste and (2) operations support related facilities, viz., a general office building, a retrieval staff change facility, and infrastructure upgrades such as supply and routing of water, sewer, electrical power, fire protection, roads, and telecommunication. Title I design for the operations related equipment and facilities was performed by Raytheon/BNFL, and that for the operations support related facilities including infrastructure upgrade was performed by KEH. These two scopes were combined into an integrated W113 Title II scope that was performed by Raytheon/BNFL. Volume 1 provides a comprehensive narrative description of the proposed facility and systems, the basis for each of the systems design, and the engineering assessments that were performed to support the technical basis of the Title II design. The intent of the system description presented is to provide WHC an understanding of the facilities and equipment provided and the A/E`s perspective on how these systems will operate.

  10. Hydro-mechanical behavior of Municipal Solid Waste subject to leachate recirculation in a large-scale compression reactor cell

    SciTech Connect (OSTI)

    Olivier, Franck [Environment, Energy and Waste Research Center (CREED), 291, avenue Dreyfous Ducas, 78520 Limay (France) and Laboratoire LIRIGM - Maison des Geosciences, 1381, rue de la piscine 38400 Saint-Martin d'Heres (France)]. E-mail: franck.olivier@ujf-grenoble.fr; Gourc, Jean-Pierre [Laboratoire LIRIGM - Maison des Geosciences, 1381, rue de la piscine 38400 Saint-Martin d'Heres (France)]. E-mail: gourc@ujf-grenoble.fr

    2007-07-01T23:59:59.000Z

    The paper presents the results of a laboratory experiment on Municipal Solid Waste (MSW) subjected to one-dimensional compression in a 1 m{sup 3} instrumented cell. The focus was on the hydro-mechanical behavior of the material under conditions of confinement and leachate percolation that replicate those found in real-scale landfills. The operation of the apparatus is detailed together with the testing methodology and the monitoring program. Two samples of waste were tested: the first extended over a period of 10 months ('Control Test') and the second for 22 months ('Enhanced Test' with leachate recirculation). Consolidation data is reported with regard to both short-term (stress-dependent) and long-term (time-dependent) settlements. A discussion follows based on the derived values of primary and secondary compression ratios. Correlations between compression parameters and the biodegradation process are presented. In particular, results clearly highlight the effect of leachate recirculation on waste settlement: 24% secondary deformation reached after slightly less than 2 years (equivalent to a 5-fold increase in compressibility) and 17.9% loss of dry matter. Comparisons are proposed considering the results derived from the few monitoring programs conducted on experimental bioreactors worldwide. Finally, the hydraulic characterization of waste is discussed with regard to the evaluation of effective porosity and permeability.

  11. Permitting and solid waste management issues for the Bailly Station wet limestone Advanced Flue Gas Desulfurization (AFGD) system

    SciTech Connect (OSTI)

    Bolinsky, F.T. (Pure Air, Allentown, PA (United States)); Ross, J. (Northern Indiana Public Service Co., Hammond, IN (United States)); Dennis, D.S. (United Engineers and Constructors, Inc., Denver, CO (United States). Stearns-Roger Div.); Huston, J.S. (Environmental Alternatives, Inc., Warren NJ (USA))

    1991-01-01T23:59:59.000Z

    Pure Air (a general partnership between Air Products and Chemicals, Inc., and Mitsubishi Heavy Industries America, Inc.). is constructing a wet limestone co-current advanced flue gas desulfurization (AFGD) system that has technological and commercial advantages over conventional FGD systems in the United States. The AFGD system is being installed at the Northern Indiana Public Service Company's Bailly Generating Station near Gary, Indiana. The AFGD system is scheduled to be operational by the Summer, 1992. The AFGD system will remove at least 90 percent of the sulfur dioxide (SO{sub 2}) in the flue gas from Boilers 7 and 8 at the Station while burning 3.2 percent sulfur coal. Also as part of testing the AFGD system, 95 percent removal of SO{sub 2} will be demonstrated on coals containing up to 4.5 percent sulfur. At the same time that SO{sub 2} is removed from the flue gas, a gypsum by-product will be produced which will be used for wallboard manufacturing. Since the AFGD system is a pollution control device, one would expect its installation to be received favorably by the public and regulatory agencies. Although the project was well received by regulatory agencies, on public group (Save the Dunes Council) was initially concerned since the project is located adjacent to the Indiana Dunes National Lakeshore. The purpose of this paper is to describe the project team's experiences in obtaining permits/approvals from regulatory agencies and in dealing with the public. 1 ref., 1 fig., 2 tabs.

  12. Recommendations for Modernization of Solid Waste Management Practices in Class -I Cities -Suggestions on Choice of Technology in Indian Context

    E-Print Network [OSTI]

    Columbia University

    , formed on 16.01.98 in response to a PIL (Public Interest Litigation WP(C) 888/96 ­ Almitra Patel, root growth and soil moisture retention. Beware of Expensive & Unproven Technology ­ Local bodies). This is very important for protecting proposed and even existing sites from demands for shift

  13. Report of the Review of the Hanford Solid Waste Environmental Impact Statement regarding Data Quality Control and Management Issues

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 |RebeccaRegionalReliabilityRenewableDepartment

  14. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste

    SciTech Connect (OSTI)

    Garg, A.; Smith, R. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Hill, D. [DPH Environment and Energy Ltd., c/o Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Longhurst, P.J.; Pollard, S.J.T. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom); Simms, N.J. [Sustainable Systems Department, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, MK43 0AL (United Kingdom)], E-mail: n.j.simms@cranfield.ac.uk

    2009-08-15T23:59:59.000Z

    This paper reports an integrated appraisal of options for utilising solid recovered fuels (SRF) (derived from municipal solid waste, MSW) in energy intensive industries within the United Kingdom (UK). Four potential co-combustion scenarios have been identified following discussions with industry stakeholders. These scenarios have been evaluated using (a) an existing energy and mass flow framework model, (b) a semi-quantitative risk analysis, (c) an environmental assessment and (d) a financial assessment. A summary of results from these evaluations for the four different scenarios is presented. For the given ranges of assumptions; SRF co-combustion with coal in cement kilns was found to be the optimal scenario followed by co-combustion of SRF in coal-fired power plants. The biogenic fraction in SRF (ca. 70%) reduces greenhouse gas (GHG) emissions significantly ({approx}2500 g CO{sub 2} eqvt./kg DS SRF in co-fired cement kilns and {approx}1500 g CO{sub 2} eqvt./kg DS SRF in co-fired power plants). Potential reductions in electricity or heat production occurred through using a lower calorific value (CV) fuel. This could be compensated for by savings in fuel costs (from SRF having a gate fee) and grants aimed at reducing GHG emission to encourage the use of fuels with high biomass fractions. Total revenues generated from coal-fired power plants appear to be the highest ( Pounds 95/t SRF) from the four scenarios. However overall, cement kilns appear to be the best option due to the low technological risks, environmental emissions and fuel cost. Additionally, cement kiln operators have good experience of handling waste derived fuels. The scenarios involving co-combustion of SRF with MSW and biomass were less favourable due to higher environmental risks and technical issues.

  15. Soil Management Plan for the Oak Ridge Y-12 National Security Complex Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    None

    2005-03-02T23:59:59.000Z

    This Soil Management Plan applies to all activities conducted under the auspices of the National Nuclear Security Administration (NNSA) Oak Ridge Y-12 National Security Complex (Y-12) that involve soil disturbance and potential management of waste soil. The plan was prepared under the direction of the Y-12 Environmental Compliance Department of the Environment, Safety, and Health Division. Soil disturbances related to maintenance activities, utility and building construction projects, or demolition projects fall within the purview of the plan. This Soil Management Plan represents an integrated, visually oriented, planning and information resource tool for decision making involving excavation or disturbance of soil at Y-12. This Soil Management Plan addresses three primary elements. (1) Regulatory and programmatic requirements for management of soil based on the location of a soil disturbance project and/or the regulatory classification of any contaminants that may be present (Chap. 2). Five general regulatory or programmatic classifications of soil are recognized to be potentially present at Y-12; soil may fall under one or more these classifications: (a) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) pursuant to the Oak Ridge Reservation (ORR) Federal Facilities Agreement; (b) Resource Conservation and Recovery Act (RCRA); (c) RCRA 3004(u) solid waste managements units pursuant to the RCRA Hazardous and Solid Waste Amendments Act of 1984 permit for the ORR; (d) Toxic Substances and Control Act-regulated soil containing polychlorinated biphenyls; and (e) Radiologically contaminated soil regulated under the Atomic Energy Act review process. (2) Information for project planners on current and future planned remedial actions (RAs), as prescribed by CERCLA decision documents (including the scope of the actions and remedial goals), land use controls implemented to support or maintain RAs, RCRA post-closure regulatory requirements for former waste management units, legacy contamination source areas and distribution of contamination in soils, and environmental infrastructure (e.g., caps, monitoring systems, etc.) that is in place or planned in association with RAs. (3) Regulatory considerations and processes for management and disposition of waste soil upon generation, including regulatory drivers, best management practices (BMPs), waste determination protocols, waste acceptance criteria, and existing waste management procedures and BMPs for Y-12. This Soil Management Plan provides information to project planners to better coordinate their activities with other organizations and programs with a vested interest in soil disturbance activities at Y-12. The information allows project managers and maintenance personnel to evaluate and anticipate potential contaminant levels that may be present at a proposed soil disturbance site prior to commencement of activities and allows a more accurate assessment of potential waste management requirements.

  16. Solid Waste Program (Alabama)

    Broader source: Energy.gov [DOE]

    This article states the authority of the department, regulations for the control of unauthorized dumping, disposal fees, violations and penalties.

  17. Municipal Solid Waste:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recovery challengeMultiscale Subsurface Biogeochemical Modeling Multiscale

  18. Cultural Resources Review for Closure of the nonradioactive Dangerous Waste Landfill and Solid Waste Landfill in the 600 Area, Hanford Site, Benton County, Washington, HCRC# 2010-600-018R

    SciTech Connect (OSTI)

    Gutzeit, Jennifer L.; Kennedy, Ellen P.; Bjornstad, Bruce N.; Sackschewsky, Michael R.; Sharpe, James J.; DeMaris, Ranae; Venno, M.; Christensen, James R.

    2011-02-02T23:59:59.000Z

    The U.S. Department of Energy Richland Operations Office is proposing to close the Nonradioactive Dangerous Waste Landfill (NRDWL) and Solid Waste Landfill (SWL) located in the 600 Area of the Hanford Site. The closure of the NRDWL/SWL entails the construction of an evapotranspiration cover over the landfill. This cover would consist of a 3-foot (1-meter) engineered layer of fine-grained soil, modified with 15 percent by weight pea gravel to form an erosion-resistant topsoil that will sustain native vegetation. The area targeted for silt-loam borrow soil sits in Area C, located in the northern central portion of the Fitzner/Eberhardt Arid Lands Ecology (ALE) Reserve Unit. The pea gravel used for the mixture will be obtained from both off-site commercial sources and an active gravel pit (Pit #6) located just west of the 300 Area of the Hanford Site. Materials for the cover will be transported along Army Loop Road, which runs from Beloit Avenue (near the Rattlesnake Barricade) east-northeast to the NRDWL/SWL, ending at State Route 4. Upgrades to Army Loop Road are necessary to facilitate safe bidirectional hauling traffic. This report documents a cultural resources review of the proposed activity, conducted according to Section 106 of the National Historic Preservation Act of 1966.

  19. Remaining Sites Verification Package for the 100-B-1 Surface Chemical and Solid Waste Dumping Area, Waste Site Reclassification Form 2006-003

    SciTech Connect (OSTI)

    R. A. Carlson

    2006-04-24T23:59:59.000Z

    The 100-B-1 waste site was a dumping site that was divided into two areas. One area was used as a laydown area for construction materials, and the other area was used as a chemical dumping area. The 100-B-1 Surface Chemical and Solid Waste Dumping Area site meets the remedial action objectives specified in the Remaining Sites ROD. The results demonstrate that residual contaminant concentrations support future unrestricted land uses that can be represented by a rural-residential scenario. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  20. Title: Training Effects on Emergency Management Activation Response Subject Area: Social

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Title: Training Effects on Emergency Management Activation Response Subject Area: Social Keyword considered whether local and long-term emergency management training could produce different behavioral training on emergency management behavioral response. Individuals with higher levels of training engaged

  1. Energy and materials savings from gases and solid waste recovery in the iron and steel industry in Brazil: An industrial ecology approach

    SciTech Connect (OSTI)

    Costa, M.M.; Schaeffer, R.

    1997-07-01T23:59:59.000Z

    This paper attempts to investigate, from an entropic point of view, the role of selected technologies in the production, transformation, consumption and release of energy and materials in the Iron and Steel Industry in Brazil. In a quantitative analysis, the potential for energy and materials savings with recovery of heat, gases and tar are evaluated for the Iron and Steel Industry in Brazil. The technologies for heat recovery of gases include Coke Dry Quenching (CDQ), applied only in one of the five Brazilian coke integrated steel plants, Top Gas Pressure Recovery Turbines (TPRT), recovery of Coke Oven Gas (COG), recovery of Blast Furnace Gas (BFG), recovery of BOF gas, recovery of tar, and thermal plant. Results indicate that, in a technical scenario, some 5.1 TWh of electricity can be generated if these technologies are applied to recover these remaining secondary fuels in the Iron and Steel Industry in Brazil, which is equivalent to some 45% of current total electricity consumption in the integrated plants in the country. Finally, solid waste control technologies, including options available for collection and treatment, are discussed. Estimates using the best practice methodology show that solid waste generation in the Iron and Steel Industry in Brazil reached approximately 18 million metric tons in 1994, of which 28% can be recirculated if the best practice available in the country is applied thoroughly.

  2. Briefing book on environmental and waste management activities

    SciTech Connect (OSTI)

    Quayle, T.A.

    1993-04-01T23:59:59.000Z

    The purpose of the Briefing Book is to provide current information on Environmental Restoration and Waste Management Activities at the Hanford Site. Each edition updates the information in the previous edition by deleting those sections determined not to be of current interest and adding new topics to keep up to date with the changing requirements and issues. This edition covers the period from October 15, 1992 through April 15, 1993.

  3. United States-Russia: Environmental management activities, Summer 1998

    SciTech Connect (OSTI)

    NONE

    1998-09-01T23:59:59.000Z

    A Joint Coordinating Committee for Environmental Restoration and Waste Management (JCCEM) was formed between the US and Russia. This report describes the areas of research being studied under JCCEM, namely: Efficient separations; Contaminant transport and site characterization; Mixed wastes; High level waste tank remediation; Transuranic stabilization; Decontamination and decommissioning; and Emergency response. Other sections describe: Administrative framework for cooperation; Scientist exchange; Future actions; Non-JCCEM DOE-Russian activities; and JCCEM publications.

  4. An evaluation of hydrologic, geotechnical, and chemical behavior of processed oil shale solid waste 2; The use of time domain reflectometry (TDR) for monitoring in-situ volumetric water content in processed oil shale

    SciTech Connect (OSTI)

    Reeves, T.L.; Elgezawi, S.M. (Wyoming Univ., Laramie, WY (USA). Dept. of Civil Engineering); Kaser, T.G. (GIGO Computer and Electronic, Laramie, WY (US))

    1989-01-01T23:59:59.000Z

    This paper describes the use of time domain reflectometry (TDR) for monitoring volumetric water contents in processed oil shale solid waste. TDR measures soil water content via a correlation between the dielectric constant (K) of the 3 phase (soil-water-air) system and the volumetric water content ({theta}{sub v}). An extensive bench top research program has been conducted to evaluate and verify the use of this technique in processed oil shale solid waste. This study utilizes columns of processed oil shale packed to known densities and varying water contents and compares the columetric water content measured via TDR and the volumetric water content measured through gravimetric determination.

  5. Assessment of alternatives for management of ORNL retrievable transuranic waste. Nuclear Waste Program: transuranic waste (Activity No. AR 05 15 15 0; ONL-WT04)

    SciTech Connect (OSTI)

    Not Available

    1980-10-01T23:59:59.000Z

    Since 1970, solid waste with TRU or U-233 contamination in excess of 10 ..mu..Ci per kilogram of waste has been stored in a retrievable fashion at ORNL, such as in ss drums, concrete casks, and ss-lined wells. This report describes the results of a study performed to identify and evaluate alternatives for management of this waste and of the additional waste projected to be stored through 1995. The study was limited to consideration of the following basic strategies: Strategy 1: Leave waste in place as is; Strategy 2: Improve waste confinement; and Strategy 3: Retrieve waste and process for shipment to a Federal repository. Seven alternatives were identified and evaluated, one each for Strategies 1 and 2 and five for Strategy 3. Each alternative was evaluated from the standpoint of technical feasibility, cost, radiological risk and impact, regulatory factors and nonradiological environmental impact.

  6. Cautious Risk-Takers: Investor Preferences and Demand for Active Management

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Cautious Risk-Takers: Investor Preferences and Demand for Active Management Valery Polkovnichenko and Demand for Active Management Abstract Actively managed mutual funds have distinct return distributions from the equally important side of investor demand. We take funds returns as given and use them

  7. Waste management activities and carbon emissions in Africa

    SciTech Connect (OSTI)

    Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

    2011-01-15T23:59:59.000Z

    This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

  8. MANAGING ENGINEERING ACTIVITIES FOR THE PLATEAU REMEDIATION CONTRACT - HANFORD

    SciTech Connect (OSTI)

    KRONVALL CM

    2011-01-14T23:59:59.000Z

    In 2008, the primary Hanford clean-up contract transitioned to the CH2MHill Plateau Remediation Company (CHPRC). Prior to transition, Engineering resources assigned to remediation/Decontamination and Decommissioning (D&D) activities were a part of a centralized engineering organization and matrixed to the performing projects. Following transition, these resources were reassigned directly to the performing project, with a loose matrix through a smaller Central Engineering (CE) organization. The smaller (10 FTE) central organization has retained responsibility for the overall technical quality of engineering for the CHPRC, but no longer performs staffing and personnel functions. As the organization has matured, there are lessons learned that can be shared with other organizations going through or contemplating performing a similar change. Benefits that have been seen from the CHPRC CE organization structure include the following: (1) Staff are closely aligned with the 'Project/facility' that they are assigned to support; (2) Engineering priorities are managed to be consistent with the 'Project/facility' priorities; (3) Individual Engineering managers are accountable for identifying staffing needs and the filling of staffing positions; (4) Budget priorities are managed within the local organization structure; (5) Rather than being considered a 'functional' organization, engineering is considered a part of a line, direct funded organization; (6) The central engineering organization is able to provide 'overview' activities and maintain independence from the engineering organizations in the field; and (7) The central engineering organization is able to maintain a stable of specialized experts that are able to provide independent reviews of field projects and day-to-day activities.

  9. IGCC and PFBC By-Products: Generation, Characteristics, and Management Practices

    SciTech Connect (OSTI)

    Pflughoeft-Hassett, D.F.

    1997-09-01T23:59:59.000Z

    The following report is a compilation of data on by-products/wastes from clean coal technologies, specifically integrated gasification combined cycle (IGCC) and pressurized fluidized-bed combustion (PFBC). DOE had two objectives in providing this information to EPA: (1) to familiarize EPA with the DOE CCT program, CCT by-products, and the associated efforts by DOE contractors in the area of CCT by-product management and (2) to provide information that will facilitate EPA's effort by complementing similar reports from industry groups, including CIBO (Council of Industrial Boiler Owners) and EEI USWAG (Edison Electric Institute Utility Solid Waste Activities Group). The EERC cooperated and coordinated with DOE CCT contractors and industry groups to provide the most accurate and complete data on IGCC and PFBC by-products, although these technologies are only now being demonstrated on the commercial scale through the DOE CCT program.

  10. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Municipal solid waste disposal facility criteria, updated as of July 1995

    SciTech Connect (OSTI)

    NONE

    1995-11-01T23:59:59.000Z

    The module provides a summary of the regulatory criteria for municipal solid waste landfills (MSWLFs). It provides the statutory authority under RCRA and the Clean Water Act (CWA) directing EPA to develop the MSWLF criteria in 40 CFR Part 258. It also provides the Part 258 effective date and the compliance dates for providing demonstrations to satisfy individual regulatory requirements. It identifies the types of facilities that qualify for the small landfill exemption. It explains the requirements of each subpart of Part 258 as they apply to states with EPA-approved MSWLF permit programs and states without approved permit programs. It compares the MSWLF environmental performance standards described in Part 258 to the corresponding requirements for hazardous waste TSDFs in Part 264, which are generally more stringent.

  11. Converting Simulated Sodium-bearing Waste into a Single Solid Waste Form by Evaporation: Laboratory- and Pilot-Scale Test Results on Recycling Evaporator Overheads

    SciTech Connect (OSTI)

    Griffith, D.; D. L. Griffith; R. J. Kirkham; L. G. Olson; S. J. Losinski

    2004-01-01T23:59:59.000Z

    Conversion of Idaho National Engineering and Environmental Laboratory radioactive sodium-bearing waste into a single solid waste form by evaporation was demonstrated in both flask-scale and pilot-scale agitated thin film evaporator tests. A sodium-bearing waste simulant was adjusted to represent an evaporator feed in which the acid from the distillate is concentrated, neutralized, and recycled back through the evaporator. The advantage to this flowsheet is that a single remote-handled transuranic waste form is produced in the evaporator bottoms without the generation of any low-level mixed secondary waste. However, use of a recycle flowsheet in sodium-bearing waste evaporation results in a 50% increase in remote-handled transuranic volume in comparison to a non-recycle flowsheet.

  12. Berea College currently recycles 21% of the solid wastes. Recently, a SENS class did a garbage audit--sorting the contents of bags of trash to see how much could have been recycled. 62.5% of

    E-Print Network [OSTI]

    Baltisberger, Jay H.

    · Berea College currently recycles 21% of the solid wastes. Recently, a SENS class did a garbage away 9 times as much waste as does a person in Africa or Central America, but we also generate two to three times the amount of waste as people living in industrial countries with a comparable or better

  13. Los Alamos National Laboratory Waste Management Program

    SciTech Connect (OSTI)

    Lopez-Escobedo, G.M.; Hargis, K.M.; Douglass, C.R. [Los Alamos National Laboratory, NM (United States)

    2007-07-01T23:59:59.000Z

    Los Alamos National Laboratory's (LANL) waste management program is responsible for disposition of waste generated by many of the LANL programs and operations. LANL generates liquid and solid waste that can include radioactive, hazardous, and other constituents. Where practical, LANL hazardous and mixed wastes are disposed through commercial vendors; low-level radioactive waste (LLW) and radioactive asbestos-contaminated waste are disposed on site at LANL's Area G disposal cells, transuranic (TRU) waste is disposed at the Waste Isolation Pilot Plant (WIPP), and high-activity mixed wastes are disposed at the Nevada Test Site (NTS) after treatment by commercial vendors. An on-site radioactive liquid waste treatment facility (RLWTF) removes the radioactive constituents from liquid wastes and treated water is released through an NPDES permitted outfall. LANL has a very successful waste minimization program. Routine hazardous waste generation has been reduced over 90% since 1993. LANL has a DOE Order 450.1-compliant environmental management system (EMS) that is ISO 14001 certified; waste minimization is integral to setting annual EMS improvement objectives. Looking forward, under the new LANL management and operating contractor, Los Alamos National Security (LANS) LLC, a Zero Liquid Discharge initiative is being planned that should eliminate flow to the RLWTF NPDES-permitted outfall. The new contractor is also taking action to reduce the number of permitted waste storage areas, to charge generating programs directly for the cost to disposition waste, and to simplify/streamline the waste system. (authors)

  14. Management of corrective action wastes pursuant to proposed Subpart S

    SciTech Connect (OSTI)

    Not Available

    1995-02-01T23:59:59.000Z

    Under Section 3004(u) of the Resource Conservation and Recovery Act (RCRA), owners/operators of permitted or interim status treatment, storage, and disposal facilities (TSDFs) are required to perform corrective action to address releases of hazardous waste or hazardous constituents from solid waste management units (SWMUs). On July 27, 1990, the Environmental Protection Agency (EPA) proposed specific corrective action requirements under Part 264, Subpart S of Title 40 of the code of Federal Regulations (CFR). One portion of this proposed rule, addressing requirements applicable to corrective action management units (CAMUs) and temporary units (TUs), was finalized on February 16, 1993 (58 FR 8658 et seq.). (CAMUs and TUs are RCRA waste management units that are specifically designated for the management of corrective action wastes). Portions of the proposed Subpart S rule that address processes for the investigation and cleanup of releases to environmental media have not yet been finalized. EPA and authorized State agencies, however, are currently using the investigation and cleanup procedures of the proposed rule as a framework for implementation of RCRA`s corrective action requirements. The performance of corrective action cleanup activities generates wastes that have to be characterized and managed in accordance with applicable RCRA requirements. This Information Brief describes these requirements. It is one of a series of information Briefs on RCRA Corrective Action.

  15. DISTRIBUTED SYSTEMS MANAGEMENT AS A GROUP ACTIVITY Graham Dean, Tom Rodden, Ian Sommerville and David Hutchison

    E-Print Network [OSTI]

    Sommerville, Ian

    DISTRIBUTED SYSTEMS MANAGEMENT AS A GROUP ACTIVITY Graham Dean, Tom Rodden, Ian Sommerville@comp.lancs.ac.uk It is important to consider systems management as part of a whole organisational management strategy and, as such within the terms of reference associated with systems management. INTRODUCTION Traditionally, network

  16. RICE UNIVERSITY Micro Power Management of Active 802.11 Network Interfaces

    E-Print Network [OSTI]

    Zhong, Lin

    RICE UNIVERSITY Micro Power Management of Active 802.11 Network Interfaces by Jiayang Liu A THESIS.11 Network Interfaces by Jiayang Liu Micro power management (µPM), a standard-complaint MAC level solution AND COMPUTER ENGINEERING HOUSTON, TEXAS NOVEMBER 2008 #12;II ABSTRACT Micro Power Management of Active 802

  17. Quality-Assurance and Data Management Plan for Groundwater Activities by the U.S. Geological

    E-Print Network [OSTI]

    .....................................................................................................................................................1 Transition to Electronic Data ManagementQuality-Assurance and Data Management Plan for Groundwater Activities by the U.S. Geological Survey;#12;Quality-Assurance and Data Management Plan for Groundwater Activities by the U.S. Geological Survey

  18. QUANTITATIVE MICROBIAL RISK ASSESSMENT OF ORGANIC WASTE MANAGEMENT PRACTICES IN A PERI-URBAN COMMUNITY

    E-Print Network [OSTI]

    Richner, Heinz

    i QUANTITATIVE MICROBIAL RISK ASSESSMENT OF ORGANIC WASTE MANAGEMENT PRACTICES IN A PERI transfer station and the households who helped me in getting food waste samples. It should thing in my life with this little effort. #12;iii Abstract The growth of municipal solid waste

  19. Biomonitoring of the genotoxic potential of aqueous extracts of soils and bottom ash resulting from municipal solid waste

    E-Print Network [OSTI]

    Mailhes, Corinne

    wastes and contaminated sites is an important economic and environmental problem. The regula- tions, France Abstract The management of contaminated soils and wastes is a matter of considerable human concern (Xenopus laevis). Soil A was contaminated by residues of solvents and metals and Soil B by polycyclic

  20. Price regulation for waste hauling franchises in California: an examination of how regulators regulate pricing and the effects of competition on regulated markets

    E-Print Network [OSTI]

    Seltzer, Steven A.

    2011-01-01T23:59:59.000Z

    and Residential Municipal Solid Waste. Journal of PolicyA Cost Analysis of Municipal Solid Waste Services. Landand Dean Schreiner. Solid Waste Management for Rural Areas: