Sample records for active sensors lidar

  1. Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site

    E-Print Network [OSTI]

    to test the strengths and limitations of cloud boundary retrievals from radiosonde profiles, 4 yearsComparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains radiosonde-based methods applied to 200 m resolution profiles obtained at the same site. The lidar

  2. URBAN MODELING FROM LIDAR DATA IN AN INTEGRATED GIS ENVIRONMENT

    E-Print Network [OSTI]

    Shan, Jie

    . In fact, the first satellites carrying lidar sensors, Alissa, Balkan-1, and Balkan-2 are scheduled

  3. Microwave Sensors Active and David G. Long

    E-Print Network [OSTI]

    Long, David G.

    waves up through high energy gamma waves. Microwaves extend over an important part of the elec be classified as either passive (radiometers) or active (radars). Each sensor class provides unique insight instruments can be divided into two broad classes: pas- sive, known as radiometers, and active, known

  4. Active Control Strategies for Chemical Sensors and Sensor Arrays

    E-Print Network [OSTI]

    Gosangi, Rakesh

    2013-07-17T23:59:59.000Z

    Chemical sensors are generally used as one-dimensional devices, where one measures the sensor’s response at a fixed setting, e.g., infrared absorption at a specific wavelength, or conductivity of a solid-state sensor at a specific operating...

  5. Active Control Strategies for Chemical Sensors and Sensor Arrays 

    E-Print Network [OSTI]

    Gosangi, Rakesh

    2013-07-17T23:59:59.000Z

    the problem of estimating concentrations of the constituents in a gas mixture using a tunable sensor. We formulate this multicomponent-analysis problem as that of probabilistic state estimation, where each state represents a different concentration profile. We...

  6. Active carbon filter health condition detection with piezoelectric wafer active sensors

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Active carbon filter health condition detection with piezoelectric wafer active sensors Jingjing Chemical Biological Center, 5183 Blackhawk Road, APG, MD USA 21010 ABSTRACT The impregnated active carbon in active carbon filters by combining the electromechanical impedance spectroscopy (EMIS

  7. PREDICTIVE SIMULATION OF PIEZOELECTRIC WAFER ACTIVE SENSORS FOR STRUCTURAL HEALTH MONITORING

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 PREDICTIVE SIMULATION OF PIEZOELECTRIC WAFER ACTIVE SENSORS FOR STRUCTURAL HEALTH MONITORING: structural health monitoring (SHM), piezoelectric wafer active sensors (PWAS), nondestructive evaluation (NDE sensors (PWAS) are lightweight and inexpensive enablers for structural health monitoring (SHM). After

  8. The Sandia MEMS passive shock sensor : FY07 maturation activities.

    SciTech Connect (OSTI)

    Houston, Jack E.; Blecke, Jill; Mitchell, John Anthony; Wittwer, Jonathan W.; Crowson, Douglas A.; Clemens, Rebecca C.; Walraven, Jeremy Allen; Epp, David S.; Baker, Michael Sean

    2008-08-01T23:59:59.000Z

    This report describes activities conducted in FY07 to mature the MEMS passive shock sensor. The first chapter of the report provides motivation and background on activities that are described in detail in later chapters. The second chapter discusses concepts that are important for integrating the MEMS passive shock sensor into a system. Following these two introductory chapters, the report details modeling and design efforts, packaging, failure analysis and testing and validation. At the end of FY07, the MEMS passive shock sensor was at TRL 4.

  9. Embedded NDE with Piezoelectric Wafer Active Sensors in Aerospace Applications

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    The capability of embedded piezoelectric wafer active sensors (PWAS) to perform in-situ nondestructive evaluation structural radar (EUSR). For quality assurance, PWAS are self-tested with the electromechanical impedance S s T d E D d T E = + = + (1) where E ijkls is the mechanical compliance of the material measured at zero

  10. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B. (Anthony B.); Rohde, C. A. (Charles A.); Tellier, L. L. (Larry L.); Ho, Cheng,

    2002-01-01T23:59:59.000Z

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  11. Flexible Sensor Array Wraps Beating Hearts to Map Cardiac Activity in Real Time

    E-Print Network [OSTI]

    Rogers, John A.

    Flexible Sensor Array Wraps Beating Hearts to Map Cardiac Activity in Real Time By Jeremy Hsu Flexible Silicon Sensors Put this sensor on your heart and tell me it's all over University of Illinois Getting a cardiac map of the electrical activity coursing through a live, beating heart has proven

  12. Activity recognition with end-user sensor installation in the home

    E-Print Network [OSTI]

    Rockinson, Randy Joseph

    2008-01-01T23:59:59.000Z

    In this work, a system for recognizing activities in the home setting that uses a set of small and simple state-change sensors, machine learning algorithms, and electronic experience sampling is introduced. The sensors are ...

  13. Space Application of Piezoelectric Wafer Active Sensors for Structural Health Monitoring**

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Space Application of Piezoelectric Wafer Active Sensors for Structural Health Monitoring** V class of structural health monitoring (SHM) applications. This paper presents and discusses with conclusions and suggestions for further work. Key Words: structural health monitoring, piezoelectric, sensors

  14. A CMOS Active Pixel Sensor for Charged Particle Detection

    SciTech Connect (OSTI)

    Matis, Howard S.; Bieser, Fred; Kleinfelder, Stuart; Rai, Gulshan; Retiere, Fabrice; Ritter, Hans George; Singh, Kunal; Wurzel, Samuel E.; Wieman, Howard; Yamamoto, Eugene

    2002-12-02T23:59:59.000Z

    Active Pixel Sensor (APS) technology has shown promise for next-generation vertex detectors. This paper discusses the design and testing of two generations of APS chips. Both are arrays of 128 by 128 pixels, each 20 by 20 {micro}m. Each array is divided into sub-arrays in which different sensor structures (4 in the first version and 16 in the second) and/or readout circuits are employed. Measurements of several of these structures under Fe{sup 55} exposure are reported. The sensors have also been irradiated by 55 MeV protons to test for radiation damage. The radiation increased the noise and reduced the signal. The noise can be explained by shot noise from the increased leakage current and the reduction in signal is due to charge being trapped in the epi layer. Nevertheless, the radiation effect is small for the expected exposures at RHIC and RHIC II. Finally, we describe our concept for mechanically supporting a thin silicon wafer in an actual detector.

  15. Doppler Lidar (DL) Handbook

    SciTech Connect (OSTI)

    Newsom, RK

    2012-02-13T23:59:59.000Z

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  16. IEEE SENSORS JOURNAL, VOL. 10, NO. 6, JUNE 2010 1075 Active Temperature Programming for

    E-Print Network [OSTI]

    Gutierrez-Osuna, Ricardo

    temperature of metal-oxide (MOX) chemical sensors gives rise to gas-specific signatures that provide a wealth. Index Terms--Active sensing, hidden Markov models, metal- oxide (MOX) sensors, partially observable Markov decision pro- cesses (POMDP). I. INTRODUCTION METAL-OXIDE (MOX) gas sensors are robust, inexpen

  17. SHM of wind turbine blades using piezoelectric active-sensors

    SciTech Connect (OSTI)

    Park, Gyuhae [Los Alamos National Laboratory; Taylor, Stuart G [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    This paper presents a variety of structural health monitoring (SHM) techniques, based on the use of piezoelectric active-sensors, used to determine the structural integrity of wind turbine blades. Specifically, Lamb wave propagations, frequency response functions, and time series based methods are utilized to estimate the condition of wind turbine blades. For experiments, a 1m section of a 9m CX100 blade is used. Overall, these three methods yielded a sufficient damage detection capability to warrant further investigation into field deployment. A full-scale fatigue test of a CX-100 wind turbine blade is also conducted. This paper summarizes considerations needed to design such SHM systems, experimental procedures and results, and practical implementation issues that can be used as guidelines for future investigations.

  18. Optimization of amplifiers for monolithic active pixel sensors

    E-Print Network [OSTI]

    Dorokhov, A

    2007-01-01T23:59:59.000Z

    High precision particle tracking and imaging applications require position sensitive detectors with high granularity, good radiation tolerance, low material budget, fast read-out and low power dissipation. Monolithic Active Pixel Sensors (MAPS) [1] fabricated in a standard microelectronic technology provide an attractive solution for these demanding applications. The signal-to-noise ratio of MAPS can be increased by using in-pixel ampli ers. The compromise between speed, noise, gain and power consumption has to be achieved in the design of the ampli er. The charge collection ef ciency and total capacitance at the ampli er input is in uenced by the size of charge collecting diode. Therefore, in order to achieve better MAPS performances, both the geometry of the charge collecting diode and the ampli er design have to be considered in the optimization process. In this work different ampli er designs and geometries of the charge collecting diode are proposed. The characterization measurements of the ampli ers fab...

  19. Structural health monitoring with piezoelectric wafer active sensors predictive modeling and simulation

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Structural health monitoring with piezoelectric wafer active sensors ­ predictive modeling of the state of the art in structural health monitoring with piezoelectric wafer active sensors and follows with conclusions and suggestions for further work Key Words: structural health monitoring, SHM, nondestructive

  20. Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 Active Sensor Wave Propagation Health Monitoring of Beam and Plate Structures Victor Giurgiutiu, Jingjing Bao, Wei Zhao University of South Carolina ABSTRACT Active sensor wave propagation technique is a relatively new method for in-situ nondestructive evaluation (NDE). Elastic waves propagating in material

  1. Propagation of guided Lamb waves in bonded specimens using piezoelectric wafer active sensors

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Propagation of guided Lamb waves in bonded specimens using piezoelectric wafer active sensors and principles used for generation and propagation of ultrasonic guided waves (Lamb waves) using piezoelectric wafer active sensors (PWAS). Keywords: Ultrasonic, Lamb waves, Damage detection, NDE, Wave propagation

  2. Efficient Electromechanical (E/M) Impedance Measuring Method for Active Sensor Structural Health Monitoring

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 Efficient Electromechanical (E/M) Impedance Measuring Method for Active Sensor Structural Health an impedance analyzer that reads the in-situ E/M impedance of the piezoelectric wafer active sensors (PWAS an improved algorithm for efficient measurement of the E/M impedance using PWAS transducers. Instead of using

  3. Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies

    E-Print Network [OSTI]

    Laurent, Gilles

    Evaluating a genetically encoded optical sensor of neural activity using electrophysiology of America Rafael Yuste, Columbia University, New York City, USA Genetically encoded optical indicators hold. However, the interpretation of images of brain activity produced using such sensors is not straightforward

  4. Modeling of Power and Energy Transduction of Embedded Piezoelectric Wafer Active Sensors for Structural Health Monitoring

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    chart show the trends in the power and energy flow behavior with remarkable peaks and valleys that can1 Modeling of Power and Energy Transduction of Embedded Piezoelectric Wafer Active Sensors a systematic investigation of power and energy transduction in piezoelectric wafer active sensors (PWAS

  5. Thin n-in-p planar pixel sensors and active edge sensors for the ATLAS upgrade at HL-LHC

    E-Print Network [OSTI]

    S. Terzo; A. Macchiolo; R. Nisius; B. Paschen

    2014-11-20T23:59:59.000Z

    Silicon pixel modules employing n-in-p planar sensors with an active thickness of 200 $\\mu$m, produced at CiS, and 100-200 $\\mu$m thin active/slim edge sensor devices, produced at VTT in Finland have been interconnected to ATLAS FE-I3 and FE-I4 read-out chips. The thin sensors are designed for high energy physics collider experiments to ensure radiation hardness at high fluences. Moreover, the active edge technology of the VTT production maximizes the sensitive region of the assembly, allowing for a reduced overlap of the modules in the pixel layer close to the beam pipe. The CiS production includes also four chip sensors according to the module geometry planned for the outer layers of the upgraded ATLAS pixel detector to be operated at the HL-LHC. The modules have been characterized using radioactive sources in the laboratory and with high precision measurements at beam tests to investigate the hit efficiency and charge collection properties at different bias voltages and particle incidence angles. The performance of the different sensor thicknesses and edge designs are compared before and after irradiation up to a fluence of $1.4\\times10^{16}n_{eq}/cm^{2}$.

  6. activity monitoring sensor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processing. Individual sensors monitor specific physiological signals (such as EEG, ECG, GSR, etc.) and communicate with each other and the personal server. Personal server...

  7. Title: Corrosion Damage Detection with Piezoelectric Wafer Active Sensors Authors: Dustin T. Thomas

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    0 Title: Corrosion Damage Detection with Piezoelectric Wafer Active Sensors Authors: Dustin T structural problems is corrosion. In fact the KC-135 now costs $1.2 billion a year to repair corrosion) in a pitch-catch configuration. The sensors were placed on a grid pattern. Material loss through corrosion

  8. Meas. Sci. Technol. 10 (1999) 11781184. Printed in the UK PII: S0957-0233(99)06575-3 Submarine lidar for seafloor

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universität

    for the detection of dissolved and sunken pollutants. One of these instruments is the submarine lidar, combining: fluorescence lidar, range-gating video, seafloor monitoring 1. Submarine sensor network for pollution of Oldenburg, Laser Remote Sensing Group), · an acoustic sensor for measuring the acoustic impedance

  9. Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring with Coupled-Filed

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Finite Element Simulation of Piezoelectric Wafer Active Sensors for Structural Health Monitoring) is emerging as an effective and powerful technique in structural health monitoring (SHM). Modeling to analytical calculation and experimental data. Key words: Structural Health Monitoring, PWAS, finite element

  10. Structural Health Monitoring with Piezoelectric Wafer Active Sensors for Space Applications

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Structural Health Monitoring with Piezoelectric Wafer Active Sensors for Space Applications Adrian detection and structural health monitoring. Where appropriate, comparison between different methods-coupling coefficient I. Introduction STRUCTURAL health monitoring (SHM) is an emerging research area with multiple

  11. NRA-00-OES-08 A one-year pilot study for the inclusion of active optical sensors into PALACE

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    NRA-00-OES-08 1 A one-year pilot study for the inclusion of active optical sensors into PALACE, newly-developed solid-state, active optical sensors that measure chlorophyll a fluorescence in the ocean. The incorporation of this new generation of optical sensors on a even a subset of the ARGO floats

  12. Micropulse Lidar (MPL) Handbook

    SciTech Connect (OSTI)

    Mendoza, A; Flynn, C

    2006-05-01T23:59:59.000Z

    The micropulse lidar (MPL) is a ground-based optical remote sensing system designed primarily to determine the altitude of clouds overhead. The physical principle is the same as for radar. Pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is infered. Besides real-time detection of clouds, post-processing of the lidar return can also characterize the extent and properties of aerosol or other particle-laden regions.

  13. Scheduling Sensor Activity for Point Information Coverage in Wireless Sensor Networks

    E-Print Network [OSTI]

    Srinivasan, Vikram

    , to monitor some targets of interests at all times. Sensors are often equipped with non-rechargeable batteries such that all targets can be monitored all the time and the network can operate as long as possible. A solution network is the coverage problem [2], which addresses how well a target area is monitored. In some

  14. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect (OSTI)

    Hostetler, Chris; Ferrare, Richard

    2013-02-14T23:59:59.000Z

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent analysis and archival of the data, and the presentation of results in conferences, workshops, and publications. DOE ASR field campaigns supported under this project included - MAX-Mex /MILAGRO (2006) - TexAQS 2006/GoMACCS (2006) - CHAPS (2007) - RACORO (2009) - CARE/CalNex (2010) In addition, data acquired on HSRL airborne field campaigns sponsored by other agencies were used extensively to fulfill the science objectives of this project and the data acquired have been made available to other DOE ASR investigators upon request.

  15. Radiation interchange modeling for active infrared proximity sensor design

    E-Print Network [OSTI]

    Piper, James Clarice

    1999-01-01T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE Approved as to tyle and content by: Sohi Rastegar (Co-Chair of Committee) Rai er J. Fink (Co-Chair of Committee) Hsin-i Wu (Member) ay Kuo (Head of Department) May 1999 Major Subject: Biomedical... necessitating the use of multiple source elements, sensor elements, or both. DEDICATION I dedicate this thesis to my parents and my sisters, who have always supported me in all my endeavors, however foreign to their hearts. VI ACKNOWLEDGMENTS I would like...

  16. active sensor configuration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recurrence satisfied by the Stirling numbers of the second kind. Abrams, Aaron; Hower, Valerie 2010-01-01 346 Measurements and simulations of MAPS (Monolithic Active Pixel...

  17. Tuned Lamb Wave Excitation and Detection with Piezoelectric Wafer Active Sensors for Structural Health Monitoring

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    and detect tuned Lamb waves for structural health monitoring is explored. First, a brief review of Lamb waves mode Lamb waves is demonstrated as an effective structural health monitoring method. Key Words: structural health monitoring, Lamb waves, piezoelectric wafer active sensors, aging aircraft, cracks, damage

  18. Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    41 Piezoelectric Wafer Embedded Active Sensors for Aging Aircraft Structural Health Monitoring ends with a conceptual design of a structural health monitoring system and suggestions for aging damage detection Á structural health monitoring Á failure prevention Á ultrasonics Á pulse-echo Á emitter

  19. Context-aware energy-efficient wireless sensor architecture for body activity recognition

    E-Print Network [OSTI]

    Boyer, Edmond

    conditions [13], [15], [16], and the usage of devices with higher computing, storage and energy capabilitiesContext-aware energy-efficient wireless sensor architecture for body activity recognition Tifenn 60205 Compičgne, France Abstract--In this paper, we present EEWAA, a new Energy- Efficient Wireless

  20. On the Modeling of Piezoelectric Wafer Active Sensor Impedance Analysis for Structural Health Monitoring

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    damage assessment, and are considered as a new non-destructive evaluation method. The in-situ impedance of experimental results obtained from previous work. The real part of the measured PWAS impedance presents twoOn the Modeling of Piezoelectric Wafer Active Sensor Impedance Analysis for Structural Health

  1. Damage Identification in Aging Aircraft Structures with Piezoelectric Wafer Active Sensors

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Damage Identification in Aging Aircraft Structures with Piezoelectric Wafer Active Sensors VICTOR of structural damage such as fatigue cracks and corrosion. Two main detection strategies are considered: (a) the wave propagation method for far-field damage detection; and (b) the electro-mechanical (E/M) impedance

  2. Damage Identification in Aging Aircraft Structures with Piezoelectric Wafer Active Sensors

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Damage Identification in Aging Aircraft Structures with Piezoelectric Wafer Active Sensors VICTOR the onset and progress of structural damage such as fatigue cracks and corrosion. Two main detection strategies are considered: (a) the wave propagation method for far-field damage detection; and (b

  3. Corrosion Damage Detection with Piezoelectric Wafer Active Sensors Dustin Thomas, John Welter

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 Corrosion Damage Detection with Piezoelectric Wafer Active Sensors Dustin Thomas, John Welter Air a priority issue for today's Air Force. One of the most critical structural problems is corrosion. In fact the KC-135 now costs $1.2 billion a year to repair corrosion. In this paper, we plan to show the use

  4. BodyScope: A Wearable Acoustic Sensor for Activity Recognition

    E-Print Network [OSTI]

    Toronto, University of

    , speaking, laughing, and coughing. The F-measure of the Support Vector Machine classification of 12 of activities (e.g., eating, drinking, speaking, laughing and coughing) with BodyScope reveals that the system

  5. Raman Lidar Receives Improvements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Radiation ProtectionRaising funds for a cure Raising2 Raman Lidar

  6. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOE Patents [OSTI]

    Dinh, Tuan V. (Knoxville, TN)

    1996-01-01T23:59:59.000Z

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate therethrough to the photo-activator and thereby form the complex.

  7. Photo-activated luminescence sensor and method of detecting trichloroethylene and related volatile organochloride compounds

    DOE Patents [OSTI]

    Dinh, T.V.

    1996-06-11T23:59:59.000Z

    A sensor for detecting trichloroethylene and related volatile organochloride compounds uses a photo-activator that produces a photo-product complex with the contaminant. Characteristics of the light emitted from the complex will indicate the presence of the contaminant. A probe containing the photo-activator has an excitation light interface and a contaminant interface. One particular embodiment uses a porous membrane as the contaminant interface, so that the contaminant can migrate there through to the photo-activator and thereby form the complex. 23 figs.

  8. Review of In-situ Fabrication Methods of Piezoelectric Wafer Active Sensor for Sensing and Actuation Applications

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    1 Review of In-situ Fabrication Methods of Piezoelectric Wafer Active Sensor for Sensing-echo, and electromechanical impedance methods. Traditionally, structural integrity tests required attachment of sensors and magnitude of the surfaces measured (such as aircraft, bridges, structural supports, etc.). In addition

  9. Self-activated ultrahigh chemosensitivity of oxide thin film nanostructures for transparent sensors

    E-Print Network [OSTI]

    Moon, Hi Gyu

    One of the top design priorities for semiconductor chemical sensors is developing simple, low-cost, sensitive and reliable sensors to be built in handheld devices. However, the need to implement heating elements in sensor ...

  10. The Energy Sensor AMP-activated Protein Kinase Directly Regulates the Mammalian FOXO3 Transcription Factor*S

    E-Print Network [OSTI]

    Brunet, Anne

    The Energy Sensor AMP-activated Protein Kinase Directly Regulates the Mammalian FOXO3 Transcription of homeostasis throughout an organism's life span requires constant adaptation to changes in energy lev- els. The AMP-activated protein kinase (AMPK) plays a critical role in the cellular responses to low energy

  11. DMAPS: a fully depleted monolithic active pixel sensor - analog performance characterization

    E-Print Network [OSTI]

    Miroslav Havránek; Tomasz Hemperek; Hans Krüger; Yunan Fu; Leonard Germic; Tetsuichi Kishishita; Theresa Obermann; Norbert Wermes

    2014-07-02T23:59:59.000Z

    Monolithic Active Pixel Sensors (MAPS) have been developed since the late 1990s based on silicon substrates with a thin epitaxial layer (thickness of 10-15 $\\mu$m) in which charge is collected on an electrode, albeit by disordered and slow diffusion rather than by drift in a directed electric field. As a consequence, the signal is small ($\\approx$ 1000 e$^-$) and the radiation tolerance is much below the LHC requirements by factors of 100 to 1000. In this paper we present the development of a fully Depleted Monolithic Active Pixel Sensors (DMAPS) based on a high resistivity substrate allowing the creation of a fully depleted detection volume. This concept overcomes the inherent limitations of charge collection by diffusion in the standard MAPS designs. We present results from a test chip EPCB01 designed in a commercial 150 nm CMOS technology. The technology provides a thin (50 $\\mu$m) high resistivity n-type silicon substrate as well as an additional deep p-well which allows to integrate full CMOS circuitry inside the pixel. Different matrix types with several variants of collection electrodes have been implemented. Measurements of the analog performance of this first implementation of DMAPS pixels will be presented.

  12. airborne oceanographic lidar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Channels Landslides Spatial Cognition The emergence of airborne lidar data cognition and perception, we also explore the notion that the ongoing use of lidar enables...

  13. airborne aura lidar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Channels Landslides Spatial Cognition The emergence of airborne lidar data cognition and perception, we also explore the notion that the ongoing use of lidar enables...

  14. IEEE JOURNAL OF OCEANIC ENGINEERING, VOL.XXX, NO.XXX, XXX 1 Active Detection With A Barrier Sensor Network

    E-Print Network [OSTI]

    Zhou, Shengli

    IEEE JOURNAL OF OCEANIC ENGINEERING, VOL.XXX, NO.XXX, XXX 1 Active Detection With A Barrier Sensor of publication XXX; date of current version XXX. This work was supported by the U.S. Office of Naval Research in this paper are available online at http://ieeexplore.ieee.org. Digital Object Identifier XXX source target

  15. Application of piezoelectric active-sensors for SHM of wind turbine blades

    SciTech Connect (OSTI)

    Park, Gyuhae [Los Alamos National Laboratory; Taylor, Stuart G. [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-10-04T23:59:59.000Z

    The goal of this study is to characterize the dynamic response of a CX-100 wind blade and the design parameters of SHM techniques as they apply to wind turbine blades, and to investigate the performance of high-frequency active-sensing SHM techniques, including lamb wave and frequency response functions, as a way to monitor the health of a wind turbine blade. The results of the dynamic characterization will be used to validate a numerical model and understand the effect of structural damage on the performance of the blades. The focus of SHM study is to assess and compare the performance of each method in identifying incipient damage, with a special consideration given to field deployability. For experiments, a 9-m CX-100 blade was used. Overall, the methods yielded sufficient damage detection to warrant further investigation into field deployment. This paper also summarizes the SHM results of a full-scale fatigue test of 9-m CX-100 blade using piezoelectric active-sensors.

  16. iCalm: Wearable Sensor and Network Architecture for Wirelessly Communicating and Logging Autonomic Activity

    E-Print Network [OSTI]

    Dobson, Kelly

    Widespread use of affective sensing in healthcare applications has been limited due to several practical factors, such as lack of comfortable wearable sensors, lack of wireless standards, and lack of low-power affordable ...

  17. Activity recognition in the home setting using simple and ubiquitous sensors

    E-Print Network [OSTI]

    Munguia Tapia, Emmanuel, 1978-

    2003-01-01T23:59:59.000Z

    During the past several years, researchers have demonstrated that when new wireless sensors are placed in the home environment, data collected from them can be used by software to automatically infer context, such as the ...

  18. Improved Design of Active Pixel CMOS Sensors for Charged Particle Detection

    SciTech Connect (OSTI)

    Deptuch, Grzegorz

    2007-11-12T23:59:59.000Z

    The Department of Energy (DOE) nuclear physics program requires developments in detector instrumentation electronics with improved energy, position and timing resolution, sensitivity, rate capability, stability, dynamic range, and background suppression. The current Phase-I project was focused on analysis of standard-CMOS photogate Active Pixel Sensors (APS) as an efficient solution to this challenge. The advantages of the CMOS APS over traditional hybrid approaches (i.e., separate detection regions bump-bonded to readout circuits) include greatly reduced cost, low power and the potential for vastly larger pixel counts and densities. However, challenges remain in terms of the signal-to-noise ratio (SNR) and readout speed (currently on the order of milliseconds), which is the major problem for this technology. Recent work has shown that the long readout time for photogate APS is due to the presence of (interface) traps at the semiconductor-oxide interface. This Phase-I work yielded useful results in two areas: (a) Advanced three-dimensional (3D) physics-based simulation models and simulation-based analysis of the impact of interface trap density on the transient charge collection characteristics of existing APS structures; and (b) Preliminary analysis of the feasibility of an improved photogate pixel structure (i.e., new APS design) with an induced electric field under the charge collecting electrode to enhance charge collection. Significant effort was dedicated in Phase-I to the critical task of implementing accurate interface trap models in CFDRC's NanoTCAD 3D semiconductor device-physics simulator. This resulted in validation of the new NanoTCAD models and simulation results against experimental (published) data, within the margin of uncertainty associated with obtaining device geometry, material properties, and experimentation details. Analyses of the new, proposed photogate APS design demonstrated several promising trends.

  19. Recent CESAR (Center for Engineering Systems Advanced Research) research activities in sensor based reasoning for autonomous machines

    SciTech Connect (OSTI)

    Pin, F.G.; de Saussure, G.; Spelt, P.F.; Killough, S.M.; Weisbin, C.R.

    1988-01-01T23:59:59.000Z

    This paper describes recent research activities at the Center for Engineering Systems Advanced Research (CESAR) in the area of sensor based reasoning, with emphasis being given to their application and implementation on our HERMIES-IIB autonomous mobile vehicle. These activities, including navigation and exploration in a-priori unknown and dynamic environments, goal recognition, vision-guided manipulation and sensor-driven machine learning, are discussed within the framework of a scenario in which an autonomous robot is asked to navigate through an unknown dynamic environment, explore, find and dock at the panel, read and understand the status of the panel's meters and dials, learn the functioning of a process control panel, and successfully manipulate the control devices of the panel to solve a maintenance emergency problems. A demonstration of the successful implementation of the algorithms on our HERMIES-IIB autonomous robot for resolution of this scenario is presented. Conclusions are drawn concerning the applicability of the methodologies to more general classes of problems and implications for future work on sensor-driven reasoning for autonomous robots are discussed. 8 refs., 3 figs.

  20. Scientific investigations planned for the lidar in-space technology experiment (LITE)

    SciTech Connect (OSTI)

    McCormick, M.P.; Winker, D.M.; Browell, E.V. (NASA/Langley Research Center, Hampton, VA (United States)); Coakley, J.A. (Oregon State Univ., Corvallis (United States)); Gardner, C.S. (Univ. of Illinois, Urbana (United States)); Hoff, R.M. (Center for Atmospheric Research Experiments, Egbert, Ontario (Canada)); Kent, G.S. (Science and Technology Corp., Hampton, VA (United States)); Melfi, S.H. (NASA/Goddard Space Flight Center, Greenbelt, MD (United States)); Menzies, R.T. (Jet Propulsion Lab., Pasadena, CA (United States)); Platt, C.M.R. (CSIRO, Aspendale, Victoria (Australia)); Randall, D.A. (Colorado State Univ., Fort Collins (United States)); Reagan, J.A. (Univ. of Arizona, Tucson (United States))

    1993-02-01T23:59:59.000Z

    The Lidar In-Space Technology Experiment (LITE) is being developed by NASA/Langley Research Center for a series off lights on the space shuttle beginning in 1994. Employing a three-wave-length ND:YAG laser and a 1-m-diameter telescope, the system is a test-bed for the development of technology required for future operational spaceborne lidars. The system has been designed to observe clouds, tropospheric and stratospheric aerosols, characteristics of the planetary boundary layer, and stratospheric density and temperature perturbations with much greater resolution than is available from current orbiting sensors. In addition to providing unique datasets on these phenomena, the data obtained will be useful in improving retrieval algorithms currently in use. Observations of clouds and the planetary boundary layer will aid in the development of global climate model (GCM) parameterizations. This article briefly describes the LITE program and discusses the types of scientific investigations planned for the first flight.

  1. Power and energy transduction analysis of piezoelectric wafer-active sensors for

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    the operational safety and reliability, would conceivably reduce the number of unscheduled repairs, and would and the associated safety issues are a growing national concern. Over 27% of our nation's bridges are structurally bring down maintenance cost. The type and efficiency of the SHM sensors play a crucial role in the SHM

  2. Advanced Detector Research - Fabrication and Testing of 3D Active-Edge Silicon Sensors: High Speed, High Yield

    SciTech Connect (OSTI)

    Parker, Sherwood I

    2008-09-01T23:59:59.000Z

    Development of 3D silicon radiation sensors employing electrodes fabricated perpendicular to the sensor surfaces to improve fabrication yields and increasing pulse speeds.

  3. NO2 lidar profile measurements for satellite interpretation and validation

    E-Print Network [OSTI]

    Dirksen, Ruud

    NO2 lidar profile measurements for satellite interpretation and validation H. Volten,1 E. J matter. We describe a novel instrument, the RIVM NO2 mobile lidar, to measure tropospheric NO2 profiles collection of lidar NO2 profiles, coinciding with OMI and SCIAMACHY overpasses. On clear days and early

  4. Analysis and Calibration of CRF Raman Lidar Cloud Liquid Water Measurements

    SciTech Connect (OSTI)

    Turner, D.D.

    2007-10-31T23:59:59.000Z

    The Atmospheric Radiation Measurement (ARM) Raman lidar (RL), located at the Southern Great Plains (SGP) Climate Research Facility (CRF), is a unique state-of-the-art active remote sensor that is able to measure profiles of water vapor, aerosol, and cloud properties at high temporal and vertical resolution throughout the diurnal cycle. In October 2005, the capability of the RL was extended by the addition of a new detection channel that is sensitive to the Raman scattering of liquid water. This new channel permits the system, in theory, to measure profiles of liquid water content (LWC) by the RL. To our knowledge, the ARM RL is the only operation lidar with this capability. The liquid water Raman backscattering cross-section is a relatively weak and spectrally broad feature, relative to the water vapor Raman backscatter signal. The wide bandpass required to achieve reasonable signal-to-noise in the liquid water channel essentially eliminates the ability to measure LWC profiles during the daytime in the presence of large solar background, and thus all LWC observations are nighttime only. Additionally, the wide bandpass increases the probability that other undesirable signals, such as fluorescence from aerosols, may contaminate the observation. The liquid water Raman cross-section has a small amount of overlap with the water vapor Raman cross-section, and thus there will be a small amount of ‘cross-talk’ between the two signals, with water vapor contributing a small amount of signal to the LWC observation. And finally, there is significant uncertainty in the actual strength of the liquid water Raman cross-section in the literature. The calibrated LWC profiles, together with the coincident cloud backscatter observations also made by the RL, can be used to derive profiles of cloud droplet effective radius. By combining these profiles of effective radius in the lower portion of the cloud with the aerosol extinction measurements made below the cloud by the RL, the first aerosol indirect effect can be investigated using a single instrument, thereby reducing the uncertainty associated with aligning the different sampling periods and fields of view of multiple instruments. We have applied a “first principles” calibration to the LWC profiles. This approach requires that the relative differences in optical efficiency between the water vapor and liquid water channels be known; this relative difference is easily computed using the efficiency values of the beam splitters and interference filters in the lidar that were provided by the vendors of these components. The first principles approach then transfers the calibration from the water vapor mixing ratio to the LWC using the difference in the optical efficiency and an interpolated value of the liquid water Raman cross section from the literature, and the better established water vapor Raman cross section. After accounting for all known error sources, the vertical integral of LWC was compared against a similar value retrieved from a co-located ground-based infrared radiometer. The RL and infrared radiometer have significantly different fields of view; thus to compare the two sensors the data were averaged to 5 min intervals where only cloudy samples were included in the average of each. While there is fair scatter in the data (r=0.47), there is also a clear indication of a positive correlation between the infrared and the RL values. The value of the slope of the regression is 0.49, which indicates a tendency of the RL measurements to underestimate the total liquid amount with respect to the infrared retrieval. Research continues to investigate the source of the bias, but the most likely candidate is the large uncertainty in the liquid water Raman cross-section as there have been no direct measurements made of this parameter at the lidar’s laser wavelength of 355 nm. The calibrated LWC profile was then used together with the cloud backscatter coefficient profile from the RL to derive profiles of cloud droplet effective radius and cloud droplet number density. These profiles o

  5. Raman lidar/AERI PBL Height Product

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Ferrare, Richard

    Planetary Boundary Layer (PBL) heights have been computed using potential temperature profiles derived from Raman lidar and AERI measurements. Raman lidar measurements of the rotational Raman scattering from nitrogen and oxygen are used to derive vertical profiles of potential temperature. AERI measurements of downwelling radiance are used in a physical retrieval approach (Smith et al. 1999, Feltz et al. 1998) to derive profiles of temperature and water vapor. The Raman lidar and AERI potential temperature profiles are merged to create a single potential temperature profile for computing PBL heights. PBL heights were derived from these merged potential temperature profiles using a modified Heffter (1980) technique that was tailored to the SGP site (Della Monache et al., 2004). PBL heights were computed on an hourly basis for the period January 1, 2009 through December 31, 2011. These heights are provided as meters above ground level.

  6. LIDAR, Point Clouds, and their Archaeological Applications

    SciTech Connect (OSTI)

    White, Devin A [ORNL

    2013-01-01T23:59:59.000Z

    It is common in contemporary archaeological literature, in papers at archaeological conferences, and in grant proposals to see heritage professionals use the term LIDAR to refer to high spatial resolution digital elevation models and the technology used to produce them. The goal of this chapter is to break that association and introduce archaeologists to the world of point clouds, in which LIDAR is only one member of a larger family of techniques to obtain, visualize, and analyze three-dimensional measurements of archaeological features. After describing how point clouds are constructed, there is a brief discussion on the currently available software and analytical techniques designed to make sense of them.

  7. Sensor readout detector circuit

    DOE Patents [OSTI]

    Chu, D.D.; Thelen, D.C. Jr.

    1998-08-11T23:59:59.000Z

    A sensor readout detector circuit is disclosed that is capable of detecting sensor signals down to a few nanoamperes or less in a high (microampere) background noise level. The circuit operates at a very low standby power level and is triggerable by a sensor event signal that is above a predetermined threshold level. A plurality of sensor readout detector circuits can be formed on a substrate as an integrated circuit (IC). These circuits can operate to process data from an array of sensors in parallel, with only data from active sensors being processed for digitization and analysis. This allows the IC to operate at a low power level with a high data throughput for the active sensors. The circuit may be used with many different types of sensors, including photodetectors, capacitance sensors, chemically-sensitive sensors or combinations thereof to provide a capability for recording transient events or for recording data for a predetermined period of time following an event trigger. The sensor readout detector circuit has applications for portable or satellite-based sensor systems. 6 figs.

  8. MULTIFUNCTIONAL VEHICLE STRUCTURAL HEALTH MONITORING OPPORTUNITIES WITH PIEZOELECTRIC WAFER ACTIVE SENSORS

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    MULTIFUNCTIONAL VEHICLE STRUCTURAL HEALTH MONITORING OPPORTUNITIES WITH PIEZOELECTRIC WAFER ACTIVE and the research needs are also discussed. INTRODUCTION Structural Health Monitoring is a major component of the remaining structural life. For the health monitoring of an actual structure, networks of embedded active

  9. Modeling of Power and Energy Transduction of Embedded Piezoelectric Wafer Active Sensors for

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Transmitter INPUT Transmitter PWAS A'A Electrical response (7-mm transmitter) ­ Active power ­ Reactive power ­ Reactive power is dominant · capacitive behavior 0 200 400 600 0 1000 2000 3000 4000 Electrical Reactive Power frequency (kHz) Power(mW) 21 ^ 2 active RP Y V 21 ^ 2 reactive IP Y V Piezoelectric transduction

  10. Pipeline Structural Health Monitoring Using Macro-fiber Composite Active Sensors

    SciTech Connect (OSTI)

    A.B. Thien

    2006-03-01T23:59:59.000Z

    The United States economy is heavily dependent upon a vast network of pipeline systems to transport and distribute the nation's energy resources. As this network of pipelines continues to age, monitoring and maintaining its structural integrity remains essential to the nation's energy interests. Numerous pipeline accidents over the past several years have resulted in hundreds of fatalities and billions of dollars in property damages. These accidents show that the current monitoring methods are not sufficient and leave a considerable margin for improvement. To avoid such catastrophes, more thorough methods are needed. As a solution, the research of this thesis proposes a structural health monitoring (SHM) system for pipeline networks. By implementing a SHM system with pipelines, their structural integrity can be continuously monitored, reducing the overall risks and costs associated with current methods. The proposed SHM system relies upon the deployment of macro-fiber composite (MFC) patches for the sensor array. Because MFC patches are flexible and resilient, they can be permanently mounted to the curved surface of a pipeline's main body. From this location, the MFC patches are used to monitor the structural integrity of the entire pipeline. Two damage detection techniques, guided wave and impedance methods, were implemented as part of the proposed SHM system. However, both techniques utilize the same MFC patches. This dual use of the MFC patches enables the proposed SHM system to require only a single sensor array. The presented Lamb wave methods demonstrated the ability to correctly identify and locate the presence of damage in the main body of the pipeline system, including simulated cracks and actual corrosion damage. The presented impedance methods demonstrated the ability to correctly identify and locate the presence of damage in the flanged joints of the pipeline system, including the loosening of bolts on the flanges. In addition to damage to the actual pipeline itself, the proposed methods were used to demonstrate the capability of detecting deposits inside of pipelines. Monitoring these deposits can prevent clogging and other hazardous situations. Finally, suggestions are made regarding future research issues which are needed to advance this research. Because the research of this thesis has only demonstrated the feasibility of the techniques for such a SHM system, these issues require attention before any commercial applications can be realized.

  11. Mitigating container security risk using real-time monitoring with active Radio Frequency Identification and sensors

    E-Print Network [OSTI]

    Schlesinger, Adam Ian

    2005-01-01T23:59:59.000Z

    The global village in which we live enables increased trade and commerce across regions but also brings a complicated new set of challenges such as terrorist activity, human and drug smuggling and theft in foreign or ...

  12. Comparison of median frequency between traditional and functional sensor placements during activity monitoring

    E-Print Network [OSTI]

    Graham, Selina

    Long-term monitoring is of great clinical relevance. Accelerometers are often used to provide information about activities of daily living. The median frequency (f[subscript m]) of acceleration has recently been suggested ...

  13. Systematic Sampling of Scanning Lidar Swaths

    E-Print Network [OSTI]

    Marcell, Wesley Tyler

    2011-02-22T23:59:59.000Z

    of the requirements for the degree of MASTER OF SCIENCE Approved by: Co-Chairs of Committee, Marian Eriksson Sorin Pospescu Committee Members, Cristine Morgan Ross Nelson Head of Department, Steven Whisenant December 2009 Major Subject: Forestry... iii ABSTRACT Systematic Sampling of Scanning Lidar Swaths. (December 2009) Wesley Tyler Marcell, B.S., Texas A&M University Co-Chairs of Advisory Committee: Dr. Marian Eriksson Dr. Sorin...

  14. Lidar techniques for search and rescue

    SciTech Connect (OSTI)

    Cabral, W.L.

    1985-01-01T23:59:59.000Z

    Four techniques for using LIDAR in Search and Rescue Operations will be discussed. The topic will include laser retroreflection, laser-induced fluorescence in the visible, laser-induced fluorescence during daylight hours, and laser-induced fluorescence in the uv. These techniques use high-repetition rate lasers at a variety of frequencies to induce either fluorescence in dye markers or retroreflection from plastic corner cubes on life preservers and other emergency markers.

  15. A Reconfigurable Active Retrodirective/Direct Conversion Receiver Array for Wireless Sensor Systems

    E-Print Network [OSTI]

    Itoh, Tatsuo

    of California, Los Angeles 405 Hilgard Ave., Los Angeles, CA 90095 Abstract -- A reconfigurable active time. In a retrodirective system, the communication link between the transponder and base station can (a), the array system works as a direct conversion receiver and stores data received from remote

  16. Ris {R{1127(EN) Lidar data used in the COFIN

    E-Print Network [OSTI]

    3.1 Generation of arti cial smoke 7 4 Data processing 8 4.1 The lidar equation 8 4.2 Backscatter, see below. In FLADIS the smoke were added to an initial heavy gas plume. 2 Experimental design Figures response. However, the Lidar does have a averaging volume due to the leng

  17. Airborne lidar detection and characterization of internal waves in a

    E-Print Network [OSTI]

    Shaw, Joseph A.

    , Graduate School of Oceanography, Narragansett, Rhode Island 02874 Abstract. A dual-polarization lidar though the contrast is low (2%). Combined with the lidar profile, the total energy of the internal wave heating at the surface and/or fresh water input from terrestrial runoff or melting ice create a layer

  18. On the Potential of Sensor-Enhanced Active RFIDs Ju-Peng Chen, Tsung-Han Lin, Polly Huang

    E-Print Network [OSTI]

    Huang, Polly

    research and development opportunities in optimizing the energy efficiency in the sys- tem design and we the benefit of this sensor-enhanced approach towards energy efficient system design. The application idea derived from additional sensors can help. Our premise is to show in a practical everyday applica- tion

  19. Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jaffe, Todd

    Validation of Innovative Exploration Technologies for Newberry Volcano: LIDAR of Newberry Volcano 2012

  20. ARM: 10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-second Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  1. ARM: 2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    2-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  2. ARM: 10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    10-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  3. ARM: 1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    1-minute Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  4. ARM: 1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    1-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  5. ARM: 10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    10-minute Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  6. Energy-Efficient Target Coverage in Wireless Sensor Networks

    E-Print Network [OSTI]

    Cardei, Mihaela

    successively. Only the sensors from the current active set are responsible for monitoring all targets

  7. Atmospheric Data, Images, and Animations from Lidar Instruments used by the University of Wisconsin Lidar Group

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Space Science and Engineering Center is a research and development center affiliated with the University of Wisconsin-Madison’s Graduate School. Its primary focus is on geophysical research and technology to enhance understanding of the atmosphere of Earth, the other planets in the Solar System, and the cosmos. SSEC develops new observing tools for spacecraft, aircraft, and ground-based platforms, and models atmospheric phenomena. The Center receives, manages and distributes huge amounts of geophysical data and develops software to visualize and manipulate these data for use by researchers and operational meteorologists all over the world.[Taken from About SSEC at http://www.ssec.wisc.edu/overview/] A huge collection of data products, images, and animations comes to the SSEC from the University of Wisconsin Lidar Group. Contents of this collection include: • An archive of thousands of Lidar images acquired before 2004 • Arctic HSRL, MMCR, PAERI, MWR, Radiosonde, and CRAS forecast data Data after May 1, 2004 • MPEG animations and Lidar Multiple Scattering Models

  8. airborne lidar mapping: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A minimum height of 1 m was applied to define woody understorey. Critical to this process were a Digital Terrain Model (extracted from the leaf-off last return LiDAR data)...

  9. BPA's LiDAR program maps corridor to success

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    analyzed by BPA's LiDAR program. The animation was produced by Ryan Beck and Drew Thompson in BPA's Geospatial Services group. Sometimes the pace of change is imperceptible,...

  10. absorption lidar dial: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topic Index 1 Development of an eye-safe diode-laser-based micro-pulse differential absorption lidar (MP-dial) for atmospheric water-vapor and aerosol studies. Open Access Theses...

  11. A motor drive control system for the Lidar Polarimeter

    E-Print Network [OSTI]

    Leung, Waiming

    1977-01-01T23:59:59.000Z

    A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Submitted to the Graduate College of Texas A/M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCF, May 1977 Major... Subject: Electrical Engineering A MOTOR DRIVE CONTROL SYSTEM FOR THE LIDAR POLARIMETER A Thesis by Waiming Leung Approved as to style and content by: Chairman o Comm' ee ea o epartment Member Mem er May 1977 ABSTRACT A Motor Drive Control...

  12. Simulated performance of an airborne lidar wind shear detection system

    E-Print Network [OSTI]

    Griffith, Kenneth Scott

    1987-01-01T23:59:59.000Z

    SIMULATED PERFORMANCE OF AN AIRBORNE LIDAR WIND SHEAR DETECTION SYSTEM A Thesis by KENNETH SCOTT GRIFFITH Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE... December 1987 Major Subject: Physics SIMULATED PERFORMANCE OF AN AIRBORNE LIDAR WIND SHEAR DETECTION SYSTEM A Thesis by KENNETH SCOTT GRIFFITH Approved as to style and content by: e . atta ar (Chair an of Committee) T omas . air, III (Member) ic...

  13. Carbon Nanotube-Based Electrochemical Sensor for Assay of Salivary...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensor for Assay of Salivary Cholinesterase Enzyme Activity: An Exposure Biomarker of Carbon Nanotube-Based Electrochemical Sensor for Assay of Salivary Cholinesterase Enzyme...

  14. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01T23:59:59.000Z

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  15. Vibration detection in turbomachinery using non-contacting sensors

    E-Print Network [OSTI]

    Cohen, Eric D., M. Eng. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Recent developments have seen the introduction of multiple Eddy Current Sensors (ECS) into turbomachinery. These sensors employ an active magnetic field to monitor each blade as it passes the sensor. They generate an ...

  16. PROBING NEAR-SURFACE ATMOSPHERIC TURBULENCE WITH LIDAR MEASUREMENTS AND HIGH-RESOLUTION HYDRODYNAMIC MODELS

    SciTech Connect (OSTI)

    J. KAO; D. COOPER; ET AL

    2000-11-01T23:59:59.000Z

    As lidar technology is able to provide fast data collection at a resolution of meters in an atmospheric volume, it is imperative to promote a modeling counterpart of the lidar capability. This paper describes an integrated capability based on data from a scanning water vapor lidar and a high-resolution hydrodynamic model (HIGRAD) equipped with a visualization routine (VIEWER) that simulates the lidar scanning. The purpose is to better understand the spatial and temporal representativeness of the lidar measurements and, in turn, to extend their utility in studying turbulence fields in the atmospheric boundary layer. Raman lidar water vapor data collected over the Pacific warm pool and the simulations with the HIGRAD code are used for identifying the underlying physics and potential aliasing effects of spatially resolved lidar measurements. This capability also helps improve the trade-off between spatial-temporal resolution and coverage of the lidar measurements.

  17. Electrocatalytic cermet sensor

    DOE Patents [OSTI]

    Shoemaker, Erika L. (Westmont, IL); Vogt, Michael C. (Westmont, IL)

    1998-01-01T23:59:59.000Z

    A sensor for O.sub.2 and CO.sub.2 gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer.

  18. Electrocatalytic cermet sensor

    DOE Patents [OSTI]

    Shoemaker, E.L.; Vogt, M.C.

    1998-06-30T23:59:59.000Z

    A sensor is described for O{sub 2} and CO{sub 2} gases. The gas sensor includes a plurality of layers driven by a cyclic voltage to generate a unique plot characteristic of the gas in contact with the sensor. The plurality of layers includes an alumina substrate, a reference electrode source of anions, a lower electrical reference electrode of Pt coupled to the reference source of anions, a solid electrolyte containing tungsten and coupled to the lower reference electrode, a buffer layer for preventing flow of Pt ions into the solid electrolyte and an upper catalytically active Pt electrode coupled to the buffer layer. 16 figs.

  19. RADIOACTIVE MATERIALS SENSORS

    SciTech Connect (OSTI)

    Mayo, Robert M.; Stephens, Daniel L.

    2009-09-15T23:59:59.000Z

    Providing technical means to detect, prevent, and reverse the threat of potential illicit use of radiological or nuclear materials is among the greatest challenges facing contemporary science and technology. In this short article, we provide brief description and overview of the state-of-the-art in sensor development for the detection of radioactive materials, as well as an identification of the technical needs and challenges faced by the detection community. We begin with a discussion of gamma-ray and neutron detectors and spectrometers, followed by a description of imaging sensors, active interrogation, and materials development, before closing with a brief discussion of the unique challenges posed in fielding sensor systems.

  20. Geospatial analysis of vulnerable beach-foredune systems from decadal time series of lidar data

    E-Print Network [OSTI]

    Mitasova, Helena

    Geospatial analysis of vulnerable beach-foredune systems from decadal time series of lidar data, Geospatial analysis of vulnerable beach- foredune systems from decadal time series of lidar data, Journal densities; therefore, geospatial analysis, when applied to decadal lidar time series, needs to address

  1. Alternate spatial sampling approaches for ecosystem structure inventory using spaceborne lidar

    E-Print Network [OSTI]

    Lefsky, Michael

    used in aircraft lidar remote sensing where power, heat, and reliability are less of a concern since January 2011 Accepted 29 January 2011 Available online 23 March 2011 Keywords: Lidar Remote sensing Laser collected in transects and should be considered for future lidar remote sensing missions. © 2011 Elsevier

  2. The effect of specular reflection on spaceborne lidar measurements of ice

    E-Print Network [OSTI]

    Hogan, Robin

    Chapter 2 The effect of specular reflection on spaceborne lidar measurements of ice clouds Summary increase in extinction, it can make interpretation of the lidar echo in terms of cloud radiative properties stage which have among their primary aims the global measurement of ice clouds. The NASA Calipso lidar

  3. Comparison of Two Independent LIDAR-Based Pitch Control Designs

    SciTech Connect (OSTI)

    Dunne, F.; Schlipf, D.; Pao, L. Y.

    2012-08-01T23:59:59.000Z

    Two different lidar-based feedforward controllers have previously been designed for the NREL 5 MW wind turbine model under separate studies. Feedforward controller A uses a finite-impulse-response design, with 5 seconds of preview, and three rotating lidar measurements. Feedforward controller B uses a static-gain design, with the preview time defined by the pitch actuator dynamics, a simulation of a real nacelle-based scanning lidar system, and a lowpass filter defined by the lidar configuration. These controllers are now directly compared under the same lidar configuration, in terms of fatigue load reduction, rotor speed regulation, and power capture. The various differences in design choices are discussed and compared. We also compare frequency plots of individual pitch feedforward and collective pitch feedforward load reductions, and we see that individual pitch feedforward is effective mainly at the once-per-revolution and twice-per-revolution frequencies. We also explain how to determine the required preview time by breaking it down into separate parts, and we then compare it to the expected preview time available.

  4. ARM: ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Coulter, Richard; Widener, Kevin; Bharadwaj, Nitin; Johnson, Karen; Martin, Timothy

    ARSCL: cloud boundaries from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  5. ARM: ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Coulter, Richard; Widener, Kevin; Bharadwaj, Nitin; Johnson, Karen; Martin, Timothy

    ARSCL: multiple outputs from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  6. ARM: 10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol extinction profiles and aerosol optical thickness, from first Ferrare algorithm

  7. ARM: 10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Sivaraman, Chitra; Flynn, Connor

    10-minute TEMPORARY Raman Lidar: aerosol scattering ratio and backscattering coefficient profiles, from first Ferrare algorithm

  8. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control: Preprint

    SciTech Connect (OSTI)

    Davoust, S.; Jehu, A.; Bouillet, M.; Bardon, M.; Vercherin, B.; Scholbrock, A.; Fleming, P.; Wright, A.

    2014-05-01T23:59:59.000Z

    Turbine-mounted lidars provide preview measurements of the incoming wind field. By reducing loads on critical components and increasing the potential power extracted from the wind, the performance of wind turbine controllers can be improved [2]. As a result, integrating a light detection and ranging (lidar) system has the potential to lower the cost of wind energy. This paper presents an evaluation of turbine-mounted lidar availability. Availability is a metric which measures the proportion of time the lidar is producing controller-usable data, and is essential when a wind turbine controller relies on a lidar. To accomplish this, researchers from Avent Lidar Technology and the National Renewable Energy Laboratory first assessed and modeled the effect of extreme atmospheric events. This shows how a multirange lidar delivers measurements for a wide variety of conditions. Second, by using a theoretical approach and conducting an analysis of field feedback, we investigated the effects of the lidar setup on the wind turbine. This helps determine the optimal lidar mounting position at the back of the nacelle, and establishes a relationship between availability, turbine rpm, and lidar sampling time. Lastly, we considered the role of the wind field reconstruction strategies and the turbine controller on the definition and performance of a lidar's measurement availability.

  9. Ris-R-Report LIDAR Wind Speed Measurements from a

    E-Print Network [OSTI]

    the approaching wind fields from this vantage point. Time series of wind speed measurements from the lidar with 50: Time series of the yaw misalignment 67 #12;4 Risř-R-1741(EN) Preface Mikael Rasmussen and Per Hansen is acknowledged for safety supervision of the operation of the NM80 research turbine. The Spin

  10. FIRST PRINCIPLES MODELING FOR LIDAR SENSING OF COMPLEX ICE SURFACES

    E-Print Network [OSTI]

    Kerekes, John

    FIRST PRINCIPLES MODELING FOR LIDAR SENSING OF COMPLEX ICE SURFACES J. Kerekes, A. Goodenough, S of monitoring the dynamics and mass balance of glaciers, ice caps, and ice sheets. However, it is also known that ice surfaces can have complex 3-dimensional structure, which can challenge their accurate retrieval

  11. Lidar fluorosensing of mineral oil spills on the sea surface

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universität

    be discriminated from heavy fuel, and from less harmful substances like fish oil or vegetable oil, Fig. 3, whichLidar fluorosensing of mineral oil spills on the sea surface Theo Hengstermann and Rainer Reuter Airborne .fluorosensor measurements over maritime oil spills show that this method enables a sensitive

  12. Raman Lidar Profiles–Temperature (RLPROFTEMP) Value-Added Product

    SciTech Connect (OSTI)

    Newsom, RK; Sivaraman, C; McFarlane, SA

    2012-10-31T23:59:59.000Z

    The purpose of this document is to describe the Raman Lidar Profiles–Temperature (RLPROFTEMP) value-added product (VAP) and the procedures used to derive atmospheric temperature profiles from the raw RL measurements. Sections 2 and 4 describe the input and output variables, respectively. Section 3 discusses the theory behind the measurement and the details of the algorithm, including calibration and overlap correction.

  13. Lidar on the Phoenix mission to Mars James Whiteway,1

    E-Print Network [OSTI]

    Duck, Thomas J.

    Cameron Dickinson,1 Leonce Komguem,1 and Clive Cook1 Received 30 August 2007; revised 9 March 2008 of backscattered laser light from airborne dust and clouds. These observations will be coordinated with solar, and C. Cook (2008), Lidar on the Phoenix mission to Mars, J. Geophys. Res., 113, E00A08, doi:10

  14. absorption lidar performance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorption lidar performance First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Development of a...

  15. absorption lidar sensitivity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorption lidar sensitivity First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Development of a...

  16. absorption lidar system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorption lidar system First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Development of a differential...

  17. INTEGRATED LIDAR & PHOTOGRAMMETRIC DOCUMENTATION OF THE RED GULCH DINOSAUR

    E-Print Network [OSTI]

    Falkingham, Peter

    101 INTEGRATED LIDAR & PHOTOGRAMMETRIC DOCUMENTATION OF THE RED GULCH DINOSAUR TRACKSITE (WYOMING Resource Technology Section, National Operations Center, Bu- reau of Land Management, Bldg. 50 Denver, CO of successful schemes is testament to the advances made in attitudes and approaches to fossil site management

  18. Intrusion detection sensor testing tools

    SciTech Connect (OSTI)

    Hayward, D.R.

    1994-08-01T23:59:59.000Z

    Intrusion detection sensors must be frequently tested to verify that they are operational, and they must be periodically tested to verify that they are functioning at required performance levels. Concerns involving this testing can include: The significant amount of manpower required, inconsistent results due to variability in methods and personnel, exposure of personnel to hazardous environments, and difficulty in obtaining access to the areas containing some of the intrusion sensors. To address these concerns, the Department of Energy directed Sandia National Labs. to develop intrusion detection sensor testing tools. Over the past two years Sandia has developed several sensor testing tool prototypes. This paper describes the evolution of an exterior intrusion detection sensor tester and automatic data logger, and also describes various interior intrusion detection sensor test fixtures that can be remotely activated to simulate an intruder.

  19. Picosecond to Second Dynamics Reveals a Structural Transition in Clostridium botulinum NO-Sensor Triggered by the Activator BAY-41-

    E-Print Network [OSTI]

    Supporting Information ABSTRACT: Soluble guanylate cyclase (sGC) is the mammalian endogenous nitric oxide (NO 41-2272 (a lead compound for drug design in cardiovascular treatment), sGC can also be activatedGC) is the receptor of the endogenous messenger nitric oxide (NO) in many cells. It catalyzes the formation of c

  20. Annotating Smart Environment Sensor Data for Activity Learning S. Szewcyzk, K. Dwan, B. Minor, B.Swedlove, and D. Cook

    E-Print Network [OSTI]

    Cook, Diane J.

    in smart homes offer unprecedented opportunities for providing health monitoring and assistance of smart home residents, we need to design technologies that recognize and track the activities that people the smart home resident, and is often inaccurate. Therefore, in this paper we investigate four alternative

  1. Assessment and Optimization of Lidar Measurement Availability for Wind Turbine Control (Poster)

    SciTech Connect (OSTI)

    Scholbrock, F. A.; Fleming, P.; Wright, A.; Davoust, S.; Jehu, A.; Bouillet, M.; Bardon M.; Vercherin, B.

    2014-02-01T23:59:59.000Z

    Integrating Lidar to improve wind turbine controls is a potential breakthrough for reducing the cost of wind energy. By providing undisturbed wind measurements up to 400m in front of the rotor, Lidar may provide an accurate update of the turbine inflow with a preview time of several seconds. Focusing on loads, several studies have evaluated potential reductions using integrated Lidar, either by simulation or full scale field testing.

  2. SciTech Connect: Field Test Results from Lidar Measured Yaw Control...

    Office of Scientific and Technical Information (OSTI)

    Conference: Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint Citation Details In-Document...

  3. Structural Analysis of Southern Dixie Valley using LiDAR and...

    Open Energy Info (EERE)

    Structural Analysis of Southern Dixie Valley using LiDAR and Low-Sun-Angle Aerial Photography, NAS Fallon Geothermal Exploration Project, Dixie Valley, Nevada Jump to: navigation,...

  4. Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design,Design,

    E-Print Network [OSTI]

    Schindelhauer, Christian

    Sensor Relocation with Mobile Sensors:Sensor Relocation with Mobile Sensors: Design,Design, Implementation, and EvaluationImplementation, and Evaluation Jie Teng, Tim Bolbrock, Guohong Cao, and Tom La of Freiburg #12;OverviewOverview · Sensor networks · mobile sensor · mobile robot · Mote · sensor relocation

  5. Evaluation of tropospheric water vapor profiling using eye-safe, infrared differential absorption lidar

    SciTech Connect (OSTI)

    Rye, B.J. [Colorado Univ., Boulder, CO (United States). Cooperative Inst. for Research in Environmental Sciences]|[National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.; Machol, J.L.; Grund, C.J.; Hardesty, R.M. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Environmental Technology Lab.

    1996-05-14T23:59:59.000Z

    Continuous, high quality profiles of water vapor, free of systematic bias, and of moderate temporal and spatial resolution are fundamental to the success of the ARM CART program. In addition, these should be acquired over long periods at low operational and maintenance cost. The development and verification of realistic climate model parameterizations for clouds and net radiation balance, and the correction of other CART site sensor observations for interferences due to the presence of water vapor are critically dependent on water vapor profile measurements. To date, application of profiles have been limited by vertical resolution and uniqueness and high operating cost, or diminished daytime performance, lack of eye-safety, and high maintenance cost. Recent developments in infrared laser and detector technology make possible compact IR differential absorption lidar (DIAL) systems at eye-safe wavelengths. In the studies reported here, we develop DIAL system performance models and examine the potential of solving some of the shortcomings of previous methods using parameters representative of current technologies. These simulations are also applied to determine the strengths and weaknesses unique to the DIAL method for this application.

  6. Tracking Honey Bees Using LIDAR (Light Detection and Ranging) Technology

    SciTech Connect (OSTI)

    BENDER, SUSAN FAE ANN; RODACY, PHILIP J.; SCHMITT, RANDAL L.; HARGIS JR., PHILIP J.; JOHNSON, MARK S.; KLARKOWSKI, JAMES R.; MAGEE, GLEN I.; BENDER, GARY LEE

    2003-01-01T23:59:59.000Z

    The Defense Advanced Research Projects Agency (DARPA) has recognized that biological and chemical toxins are a real and growing threat to troops, civilians, and the ecosystem. The Explosives Components Facility at Sandia National Laboratories (SNL) has been working with the University of Montana, the Southwest Research Institute, and other agencies to evaluate the feasibility of directing honeybees to specific targets, and for environmental sampling of biological and chemical ''agents of harm''. Recent work has focused on finding and locating buried landmines and unexploded ordnance (UXO). Tests have demonstrated that honeybees can be trained to efficiently and accurately locate explosive signatures in the environment. However, it is difficult to visually track the bees and determine precisely where the targets are located. Video equipment is not practical due to its limited resolution and range. In addition, it is often unsafe to install such equipment in a field. A technology is needed to provide investigators with the standoff capability to track bees and accurately map the location of the suspected targets. This report documents Light Detection and Ranging (LIDAR) tests that were performed by SNL. These tests have shown that a LIDAR system can be used to track honeybees. The LIDAR system can provide both the range and coordinates of the target so that the location of buried munitions can be accurately mapped for subsequent removal.

  7. ARM: ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Coulter, Richard; Widener, Kevin; Bharadwaj, Nitin; Johnson, Karen; Martin, Timothy

    ARSCL: cloud base height from first Clothiaux algorithms on Vaisala or Belfort ceilometers, Micropulse lidar, and MMCR

  8. ARM: 10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Newsom, Rob; Goldsmith, John

    10-minute Raman Lidar: aerosol depolarization profiles and single layer cloud optical depths from first Turner algorithm

  9. Characterization of Sensor Performance and Durability for Structural Health Monitoring Systems

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    Characterization of Sensor Performance and Durability for Structural Health Monitoring Systems with regard to successfully implementing Structural Health Monitoring technologies in Air Force systems sensor system design and packaging. Keywords: Structural Health Monitoring, Piezo Wafer Active Sensors

  10. With the development of the MEMS technology and of wireless networking, the sensor network area has been an active field of research in the last five years. Sensor network

    E-Print Network [OSTI]

    Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3 The SoC/NoC Model. 16 3.1 System to monitoring applications and provide high resolution obser- vations of the environment. The main constraint of the sensor networks is energy as the nodes are powered with non renewable batteries, and numerous techniques

  11. URBAN AEROSOLS SURVEY USING LIDAR AND NUMERICAL MODEL S. GEFFROY1

    E-Print Network [OSTI]

    Boyer, Edmond

    URBAN AEROSOLS SURVEY USING LIDAR AND NUMERICAL MODEL S. GEFFROY1 , L. SOULHAC2 , E. FREJAFON3 , R technologique ALATA BP2, F-60550 Verneuil-en-Halatte, France. Keywords: LIDAR, URBAN AEROSOLS, MODEL, IMPACT SURVEY. INTRODUCTION The impact of particulate matters and aerosols on environment and on radiative

  12. Turbine Reliability and Operability Optimization through the use of Direct Detection Lidar Final Technical Report

    SciTech Connect (OSTI)

    Johnson, David K; Lewis, Matthew J; Pavlich, Jane C; Wright, Alan D; Johnson, Kathryn E; Pace, Andrew M

    2013-02-01T23:59:59.000Z

    The goal of this Department of Energy (DOE) project is to increase wind turbine efficiency and reliability with the use of a Light Detection and Ranging (LIDAR) system. The LIDAR provides wind speed and direction data that can be used to help mitigate the fatigue stress on the turbine blades and internal components caused by wind gusts, sub-optimal pointing and reactionary speed or RPM changes. This effort will have a significant impact on the operation and maintenance costs of turbines across the industry. During the course of the project, Michigan Aerospace Corporation (MAC) modified and tested a prototype direct detection wind LIDAR instrument; the resulting LIDAR design considered all aspects of wind turbine LIDAR operation from mounting, assembly, and environmental operating conditions to laser safety. Additionally, in co-operation with our partners, the National Renewable Energy Lab and the Colorado School of Mines, progress was made in LIDAR performance modeling as well as LIDAR feed forward control system modeling and simulation. The results of this investigation showed that using LIDAR measurements to change between baseline and extreme event controllers in a switching architecture can reduce damage equivalent loads on blades and tower, and produce higher mean power output due to fewer overspeed events. This DOE project has led to continued venture capital investment and engagement with leading turbine OEMs, wind farm developers, and wind farm owner/operators.

  13. A technique for autocalibration of cloud lidar EWAN J. O'CONNOR

    E-Print Network [OSTI]

    Hogan, Robin

    The lidar return backscattered from clouds is a power- ful tool in the remote sensing of clouds (e.g. Platt signal from the atmosphere (e.g. Fernald et al., 1972; Platt, 1973). To detect molecular backscatter. The integrated backscatter is equal to the reciprocal of twice the lidar ra- tio (Platt, 1979

  14. Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology

    E-Print Network [OSTI]

    Weishampel, John F.

    #12;Geospatial revolution and remote sensing LiDAR in Mesoamerican archaeology Arlen F. Chasea,1. The impor- tance of this geospatial innovation is demonstrated with newly acquired LiDAR data from in the remote geospatial imaging of cultural landscapes, including ancient communities and their anthropogenic

  15. BUILDING ROOF SEGMENTATION AND RECONSTRUCTION FROM LIDAR POINT CLOUDS USING CLUSTERING TECHNIQUES

    E-Print Network [OSTI]

    Shan, Jie

    BUILDING ROOF SEGMENTATION AND RECONSTRUCTION FROM LIDAR POINT CLOUDS USING CLUSTERING TECHNIQUES presents an approach to creating a polyhedral model of building roof from LiDAR point clouds using. The normal vectors are then clustered together to determine the principal directions of the roof planes

  16. 3-D tomographic imaging of ocean mines from real and simulated lidar returns

    E-Print Network [OSTI]

    Singer, Andrew C

    3-D tomographic imaging of ocean mines from real and simulated lidar returns Nail C¸adalli, Peter J of underwater objects, where the trans- mitted laser beam can penetrate the air-water interface and illuminate by using an accurate statistical model that incorporates multiple scattering. Keywords: lidar, ocean optics

  17. Complete Residential Urban Area Reconstruction from Dense Aerial LiDAR Point Clouds

    E-Print Network [OSTI]

    Shahabi, Cyrus

    Complete Residential Urban Area Reconstruction from Dense Aerial LiDAR Point Clouds Qian-Yi Zhou area modeling and residential area modeling is that the latter usually con- tains rich vegetation. Thus representing the 3D urban reality of residential areas. Keywords: urban modeling, LiDAR, residential area

  18. Modeling Residential Urban Areas from Dense Aerial LiDAR Point Clouds

    E-Print Network [OSTI]

    Shahabi, Cyrus

    Modeling Residential Urban Areas from Dense Aerial LiDAR Point Clouds Qian-Yi Zhou and Ulrich models for residential areas from aerial LiDAR scans. The key differ- ence between downtown area modeling and residential area modeling is that the latter usually contains rich vegetation. Thus, we propose a robust

  19. A new cloud and aerosol layer detection method based on micropulse lidar measurements

    E-Print Network [OSTI]

    Li, Zhanqing

    A new cloud and aerosol layer detection method based on micropulse lidar measurements Chuanfeng algorithm to detect aerosols and clouds based on micropulse lidar measurements. A semidiscretization is then introduced. Combined with empirical threshold values, we determine if the signal waves indicate clouds

  20. Use of a lidar forward model for global comparisons of cloud fraction

    E-Print Network [OSTI]

    Hogan, Robin

    555 Use of a lidar forward model for global comparisons of cloud fraction between the ICESat lidar in extinction-to-backscatter ratio and effective radius affect the forward modeled mean cloud fraction by no more than 10%. 1. Introduction Clouds play a major role in the Earth's radiation budget and predictions

  1. Design & implementation of a wireless sensor prototyping kit

    E-Print Network [OSTI]

    Hope, Jamison Roger

    2005-01-01T23:59:59.000Z

    In recent years, wireless sensor networks (WSN) has become an active area of research among computer scientists. In this work, JONA, a prototyping kit for wireless sensors, will be described. The intention of this kit is ...

  2. Mixed potential sensors for CO monitoring

    SciTech Connect (OSTI)

    Mukundan, R. (Rangachary); Brosha, E. L. (Eric L.); Garzon, F. H. (Fernando H.)

    2001-01-01T23:59:59.000Z

    A carbon monoxide sensor based on the phenomenon of 'mixed-potential' has been developed. The sensor consists of platinum and gold wire-electrodes embedded in a Ce{sub 0.8}Gd{sub 0.2}O{sub 1.9} electrolyte. The sensor response to 500 ppm of CO in room air is {approx} 100 mV at 400 C. The response time to 90% of level is < 5 sec and the response is stable over a period of several months. Moreover, the sensor to sensor reproducibility of these controlled-interface sensors is excellent. The sensor in combination with an activated carbon filter shows great promise for application as a room air CO monitor.

  3. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    SciTech Connect (OSTI)

    Newsom, Rob K.

    2011-04-14T23:59:59.000Z

    Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds show that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.

  4. Sensor apparatus

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID) [Idaho Falls, ID; Telschow, Kenneth L. (Idaho Falls, ID) [Idaho Falls, ID

    2009-12-22T23:59:59.000Z

    A sensor apparatus and method for detecting an environmental factor is shown that includes an acoustic device that has a characteristic resonant vibrational frequency and mode pattern when exposed to a source of acoustic energy and, futher, when exposed to an environmental factor, produces a different resonant vibrational frequency and/or mode pattern when exposed to the same source of acoustic energy.

  5. Gas sensor

    DOE Patents [OSTI]

    Schmid, Andreas K.; Mascaraque, Arantzazu; Santos, Benito; de la Figuera, Juan

    2014-09-09T23:59:59.000Z

    A gas sensor is described which incorporates a sensor stack comprising a first film layer of a ferromagnetic material, a spacer layer, and a second film layer of the ferromagnetic material. The first film layer is fabricated so that it exhibits a dependence of its magnetic anisotropy direction on the presence of a gas, That is, the orientation of the easy axis of magnetization will flip from out-of-plane to in-plane when the gas to be detected is present in sufficient concentration. By monitoring the change in resistance of the sensor stack when the orientation of the first layer's magnetization changes, and correlating that change with temperature one can determine both the identity and relative concentration of the detected gas. In one embodiment the stack sensor comprises a top ferromagnetic layer two mono layers thick of cobalt deposited upon a spacer layer of ruthenium, which in turn has a second layer of cobalt disposed on its other side, this second cobalt layer in contact with a programmable heater chip.

  6. Field emission chemical sensor

    DOE Patents [OSTI]

    Panitz, J.A.

    1983-11-22T23:59:59.000Z

    A field emission chemical sensor for specific detection of a chemical entity in a sample includes a closed chamber enclosing two field emission electrode sets, each field emission electrode set comprising (a) an electron emitter electrode from which field emission electrons can be emitted when an effective voltage is connected to the electrode set; and (b) a collector electrode which will capture said electrons emitted from said emitter electrode. One of the electrode sets is passive to the chemical entity and the other is active thereto and has an active emitter electrode which will bind the chemical entity when contacted therewith.

  7. ARM - Field Campaign - Aerosol Lidar Validation Experiment - ALIVE

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032)8Li (59AJ76)ARM2, 2006ObservationsInfraredgovCampaignsAerosol Lidar

  8. ARM - Field Campaign - M-PACE - Polarization Diversity Lidar (PDL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARM Data Discovery

  9. ARM - Field Campaign - M-PACE HSR Lidar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL) Campaign Links M-PACE Website ARM Data DiscoveryHSR

  10. Active Sensors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindeySanta Clara, California Sector: Solar

  11. Using CO2 Lidar for Standoff Detection of a Perfluorocarbon Tracer in Air

    SciTech Connect (OSTI)

    Heiser,J.H.; Smith, S.; Sedlacek, A.

    2008-02-06T23:59:59.000Z

    The Tag, Track and Location System Program (TTL) is investigating the use of PFTs as tracers for tagging and tracking items of interest or fallen soldiers. In order for the tagging and tracking to be valuable there must be a location system that can detect the PFTs. This report details the development of an infrared lidar platform for standoff detection of PFTs released into the air from a tagged object or person. Furthering work performed using a table top lidar system in an indoor environment; a mobile mini lidar platform was assembled using an existing Raman lidar platform, a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was then successfully demonstrated at an outdoor test. The lidar system was able to detect PFTs released into a vehicle from a distance of 100 meters. In its final, fully optimized configuration the lidar was capable of repeatedly detecting PFTs in the air released from tagged vehicles. Responses were immediate and clear. This report details the results of a proof-of-concept demonstration for standoff detection of a perfluorocarbon tracer (PFT) using infrared lidar. The project is part of the Tag, Track and Location System Program and was performed under a contract with Tracer Detection Technology Corp. with funding from the Office of Naval Research. A lidar capable of detecting PFT releases at distance was assembled by modifying an existing Raman lidar platform by incorporating a grating tunable CO{sub 2} IR laser, Judson HgCdTe detector and miscellaneous folding optics and electronics. The lidar achieved {approx}200 ppb-m sensitivity in laboratory and indoor testing and was successfully demonstrated at an outdoor test. The demonstration test (scripted by the sponsor) consisted of three parked cars, two of which were tagged with the PFT. The cars were located 70 (closest) to 100 meters (farthest) from the lidar (the lidar beam path was limited by site constraints and was {approx}100 meters). When one door of each of the cars was opened (sequentially), the lidar was clearly able to determine which vehicles had been tagged and which one was not. The lidar is probably capable of greater than 0.5 kilometer standoff distances based on the extreme amount of signal return achieved (so much that the system had to be de-tuned). The BNL lidar system, while optimized to the extent possible with available parts and budget, was not as sensitive as it could be. Steps to improve the lidar are detailed in this report and include using a better laser system (for more stable power output), dual wavelengths (to improve the sensitivity and allow common mode noise reduction and to allow the use of the lidar in a scanning configuration), heterodyning (for range resolved PFT detection) and an off-axis optical configuration (for improved near field sensitivity).

  12. Corrosion sensor

    DOE Patents [OSTI]

    Glass, Robert S. (Livermore, CA); Clarke, Jr., Willis L. (San Ramon, CA); Ciarlo, Dino R. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    A corrosion sensor array incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis.

  13. Corrosion sensor

    DOE Patents [OSTI]

    Glass, R.S.; Clarke, W.L. Jr.; Ciarlo, D.R.

    1994-04-26T23:59:59.000Z

    A corrosion sensor array is described incorporating individual elements for measuring various elements and ions, such as chloride, sulfide, copper, hydrogen (pH), etc. and elements for evaluating the instantaneous corrosion properties of structural materials. The exact combination and number of elements measured or monitored would depend upon the environmental conditions and materials used which are subject to corrosive effects. Such a corrosion monitoring system embedded in or mounted on a structure exposed to the environment would serve as an early warning system for the onset of severe corrosion problems for the structure, thus providing a safety factor as well as economic factors. The sensor array is accessed to an electronics/computational system, which provides a means for data collection and analysis. 7 figures.

  14. Sensor assembly

    DOE Patents [OSTI]

    Bennett, Thomas E.; Nelson, Drew V.

    2004-04-13T23:59:59.000Z

    A ribbon-like sensor assembly is described wherein a length of an optical fiber embedded within a similar lengths of a prepreg tow. The fiber is ""sandwiched"" by two layers of the prepreg tow which are merged to form a single consolidated ribbon. The consolidated ribbon achieving a generally uniform distribution of composite filaments near the embedded fiber such that excess resin does not ""pool"" around the periphery of the embedded fiber.

  15. Monitoring Energy Consumption In Wireless Sensor Networks

    E-Print Network [OSTI]

    Turau, Volker

    Monitoring Energy Consumption In Wireless Sensor Networks Matthias Witt, Christoph Weyer, it may impair the ability of the sensor network to function. Therefore, minimizing energy consumption energy consumption in both standby and active modes is the basis of wireless networks. Energy preserving

  16. Complex-optical-field lidar system for range and vector velocity measurement

    E-Print Network [OSTI]

    Gao, Shuang; Sullivan, Maurice O.; Hui, Rongqing

    2012-11-01T23:59:59.000Z

    Complex-optical-field lidar system for range and vector velocity measurement Shuang Gao,1,2 Maurice O’Sullivan,3 and Rongqing Hui2,* 1Department of Electronic Engineering and Information Science, University of Science and Technology of China... lidar system based on the measurement of complex optical field is demonstrated for the first time. An electro-optic in- phase/quadrature (I/Q) modulator is used in the lidar transmitter to realize carrier-suppressed complex optical field modulation...

  17. Online Sensor Calibration Assessment in Nuclear Power Systems

    SciTech Connect (OSTI)

    Coble, Jamie B.; Ramuhalli, Pradeep; Meyer, Ryan M.; Hashemian, Hash

    2013-06-01T23:59:59.000Z

    Safe, efficient, and economic operation of nuclear systems (nuclear power plants, fuel fabrication and storage, used fuel processing, etc.) relies on transmission of accurate and reliable measurements. During operation, sensors degrade due to age, environmental exposure, and maintenance interventions. Sensor degradation can affect the measured and transmitted signals, including sensor failure, signal drift, sensor response time, etc. Currently, periodic sensor recalibration is performed to avoid these problems. Sensor recalibration activities include both calibration assessment and adjustment (if necessary). In nuclear power plants, periodic recalibration of safety-related sensors is required by the plant technical specifications. Recalibration typically occurs during refueling outages (about every 18 to 24 months). Non-safety-related sensors also undergo recalibration, though not as frequently. However, this approach to maintaining sensor calibration and performance is time-consuming and expensive, leading to unnecessary maintenance, increased radiation exposure to maintenance personnel, and potential damage to sensors. Online monitoring (OLM) of sensor performance is a non-invasive approach to assess instrument calibration. OLM can mitigate many of the limitations of the current periodic recalibration practice by providing more frequent assessment of calibration and identifying those sensors that are operating outside of calibration tolerance limits without removing sensors or interrupting operation. This can support extended operating intervals for unfaulted sensors and target recalibration efforts to only degraded sensors.

  18. Nanostructures and Porous Silicon: Activity at Interfaces in Sensors & Photocatalytic Reactors Chui-Lai Cheung, New York University, 2010 SURF Fellow

    E-Print Network [OSTI]

    Li, Mo

    was the anode. The current density was kept constant anywhere between 3 mA/cm2 and 50 mA/cm2 for each individual be formed by etching silicon wafers under a constant current density in HF solutions. These silicon­ as efficient gas sensors, for example. Metal particles can be deposited on the increased surface area

  19. Duty-Cycle-Aware Broadcast in Wireless Sensor Networks

    E-Print Network [OSTI]

    Liu, Jiangchuan (JC)

    active and dormant states, so as to conserve energy and extend the network lifetime. Unfortunately fails to capture the uniqueness of energy-constrained wireless sensor networks. The sensor nodesDuty-Cycle-Aware Broadcast in Wireless Sensor Networks Feng Wang Jiangchuan Liu School of Computing

  20. Hydrogen sensor

    DOE Patents [OSTI]

    Duan, Yixiang (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); Cao, Wenqing (Katy, TX)

    2010-11-23T23:59:59.000Z

    A hydrogen sensor for detecting/quantitating hydrogen and hydrogen isotopes includes a sampling line and a microplasma generator that excites hydrogen from a gas sample and produces light emission from excited hydrogen. A power supply provides power to the microplasma generator, and a spectrometer generates an emission spectrum from the light emission. A programmable computer is adapted for determining whether or not the gas sample includes hydrogen, and for quantitating the amount of hydrogen and/or hydrogen isotopes are present in the gas sample.

  1. Development of a lidar polarimeter technique of measuring suspended solids in water

    E-Print Network [OSTI]

    Presley, David W

    1980-01-01T23:59:59.000Z

    of depolarization would indicate the relative concentration of scattering particles. The laboratory measurements supported the hypothesis and established the potential of measuri ng suspended solids, turbi dity and transmi ssi vi ty using a lidar polarimeter...

  2. Fully automatic calibration of LIDAR and video streams from a vehicle

    E-Print Network [OSTI]

    Bileschi, Stanley M.

    This work describes a fully automatic technique to calibrate a geometric mapping between lidar and video feeds on a mobile ground-based platform. This data association is a crucial first step for any multi-modal scene ...

  3. Studying Clouds and Aerosols with Lidar Depolarization Ratio and Backscatter Relationships

    E-Print Network [OSTI]

    Cho, Hyoun-Myoung

    2012-02-14T23:59:59.000Z

    comparison of mineral dust aerosol retrievals from two instruments, MODIS and CALIPSO lidar. And, we implement and evaluate a new mineral dust detection algorithm based on the analysis of thin dust radiative signature. In comparison, three commonly used...

  4. Accessing the Energy Department’s Lidar Buoy Data off Virginia Beach

    Broader source: Energy.gov [DOE]

    In December 2014, Pacific Northwest National Laboratory (PNNL) deployed the Energy Department’s floating lidar buoy off of Virginia Beach, Virginia, in less than 30 meters (m) of water,...

  5. Configurable dynamic privacy for pervasive sensor networks

    E-Print Network [OSTI]

    Gong, Nan-Wei

    2009-01-01T23:59:59.000Z

    Ubiquitous computing sensor networks have greatly augmented the functionality of interactive media systems by adding the ability to capture and store activity-related information. Analyzing the information recorded from ...

  6. Assessing Available Woody Plant Biomass on Rangelands with Lidar and Multispectral Remote Sensing

    E-Print Network [OSTI]

    Ku, Nian-Wei

    2012-07-16T23:59:59.000Z

    ASSESSING AVAILABLE WOODY PLANT BIOMASS ON RANGELANDS WITH LIDAR AND MULTISPECTRAL REMOTE SENSING A Thesis by NIAN-WEI KU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... ASSESSING AVAILABLE WOODY PLANT BIOMASS ON RANGELANDS WITH LIDAR AND MULTISPECTRAL REMOTE SENSING A Thesis by NIAN-WEI KU Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements...

  7. Algorithms and Software Tools for Extracting Coastal Morphological Information from Airborne LiDAR Data

    E-Print Network [OSTI]

    Gao, Yige

    2010-07-14T23:59:59.000Z

    ALGORITHMS AND SOFTWARE TOOLS FOR EXTRACTING COASTAL MORPHOLOGICAL INFORMATION FROM AIRBORNE LiDAR DATA A Thesis by YIGE GAO Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment... of the requirements for the degree of MASTER OF SCIENCE May 2009 Major Subject: Geography ALGORITHMS AND SOFTWARE TOOLS FOR EXTRACTING COASTAL MORPHOLOGICAL INFORMATION FROM AIRBORNE LiDAR DATA A Thesis by YIGE GAO...

  8. Retrieval of Urban Boundary Layer Structures from Doppler Lidar Data. Part I: Accuracy Assessment

    SciTech Connect (OSTI)

    Xia, Quanxin; Lin, Ching Long; Calhoun, Ron; Newsom, Rob K.

    2008-01-01T23:59:59.000Z

    Two coherent Doppler lidars from the US Army Research Laboratory (ARL) and Arizona State University (ASU) were deployed in the Joint Urban 2003 atmospheric dispersion field experiment (JU2003) held in Oklahoma City. The dual lidar data are used to evaluate the accuracy of the four-dimensional variational data assimilation (4DVAR) method and identify the coherent flow structures in the urban boundary layer. The objectives of the study are three-fold. The first objective is to examine the effect of eddy viscosity models on the quality of retrieved velocity data. The second objective is to determine the fidelity of single-lidar 4DVAR and evaluate the difference between single- and dual-lidar retrievals. The third objective is to correlate the retrieved flow structures with the ground building data. It is found that the approach of treating eddy viscosity as part of control variables yields better results than the approach of prescribing viscosity. The ARL single-lidar 4DVAR is able to retrieve radial velocity fields with an accuracy of 98% in the along-beam direction and 80-90% in the cross-beam direction. For the dual-lidar 4DVAR, the accuracy of retrieved radial velocity in the ARL cross-beam direction improves to 90-94%. By using the dual-lidar retrieved data as a reference, the single-lidar 4DVAR is able to recover fluctuating velocity fields with 70-80% accuracy in the along-beam direction and 60-70% accuracy in the cross-beam direction. Large-scale convective roll structures are found in the vicinity of downtown airpark and parks. Vortical structures are identified near the business district. Strong updrafts and downdrafts are also found above a cluster of restaurants.

  9. Mapping forests with Lidar provides flexible, accurate data with many uses

    E-Print Network [OSTI]

    Kelly, Maggi; Tommaso, Stefania Di

    2015-01-01T23:59:59.000Z

    and high-resolution optical sensors such as Worldview-2associ- ated with optical sensors, which can make moderate-A complementary Quickbird (optical sensors of moderate and

  10. An Atmospheric Radiation Measurement Value-Added Product to Retrieve Optically Thin Cloud Visible Optical Depth using Micropulse Lidar

    SciTech Connect (OSTI)

    Lo, C; Comstock, JM; Flynn, C

    2006-10-01T23:59:59.000Z

    The purpose of the Micropulse Lidar (MPL) Cloud Optical Depth (MPLCOD) Value-Added Product (VAP) is to retrieve the visible (short-wave) cloud optical depth for optically thin clouds using MPL. The advantage of using the MPL to derive optical depth is that lidar is able to detect optically thin cloud layers that may not be detected by millimeter cloud radar or radiometric techniques. The disadvantage of using lidar to derive optical depth is that the lidar signal becomes attenuation limited when ? approaches 3 (this value can vary depending on instrument specifications). As a result, the lidar will not detect optically thin clouds if an optically thick cloud obstructs the lidar beam.

  11. active magnetic regenerative: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position...

  12. active rf pulse: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by this sensor synchronized with the electric activity of the electrocardiogram (ECG). The shape of the magnetic wave was largely altered by shifting the sensor position...

  13. Sensor response rate accelerator

    DOE Patents [OSTI]

    Vogt, Michael C. (Westmont, IL)

    2002-01-01T23:59:59.000Z

    An apparatus and method for sensor signal prediction and for improving sensor signal response time, is disclosed. An adaptive filter or an artificial neural network is utilized to provide predictive sensor signal output and is further used to reduce sensor response time delay.

  14. Evaluation of infrasound sensors

    SciTech Connect (OSTI)

    Kromer, R.P.; McDonald, T.S.

    1998-08-01T23:59:59.000Z

    Sandia is evaluating the performance of various infrasound sensors that could be used as part of the International Monitoring Systems (IMS). Specifications for infrasound stations are outlined in CTBT/PC/II/1/Add.2. This document specifies minimum requirements for sensor, digitizer and system. The infrasound sensors evaluation task has the following objectives: provide an overview of the sensors presently in use; evaluate these sensors with respect to the requirements of the IMS.

  15. Decentralized TDOA Sensor Pairing in Multihop Wireless Sensor Networks

    E-Print Network [OSTI]

    Meng, Wei; Lihua, Xie; Wendong, Xiao

    2013-01-01T23:59:59.000Z

    localization in wireless sensor networks,” IEEE Signallocalization in wireless sensor networks,” IEEE Trans.techniques for wireless sensor networks: A survey,” IEEE

  16. Mobility in Wireless Sensor Networks

    E-Print Network [OSTI]

    Mehta, Ankur Mukesh

    2012-01-01T23:59:59.000Z

    Channel-Specific Wireless Sensor Network Path Data”. In:Average Power in Wireless Sensor Networks through Data Ratedesign space of wireless sensor networks”. In: IEEE Wireless

  17. Aircraft Cabin Environmental Quality Sensors

    E-Print Network [OSTI]

    Gundel, Lara

    2010-01-01T23:59:59.000Z

    Gale et al. (2006) and evaluation of sensor performance byConclusions from evaluation of representative sensor systemsConclusions from evaluation of representative sensor systems

  18. Simple Doppler Wind Lidar adaptive observation experiments with 3D-Var and an ensemble Kalman filter in a global primitive equations model

    E-Print Network [OSTI]

    Maryland at College Park, University of

    the next few years, the first Doppler Wind Lidar (DWL) will be deployed in space by the European Space1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 Simple Doppler Wind Lidar adaptive Experiments, we compare several adaptive observation strategies designed to subsample Doppler Wind Lidar (DWL

  19. The effect of specular reflection on spaceborne lidar measurements of ice clouds ROBIN J. HOGAN # AND ANTHONY J. ILLINGWORTH

    E-Print Network [OSTI]

    Hogan, Robin

    The effect of specular reflection on spaceborne lidar measurements of ice clouds ROBIN J. HOGAN echo in terms of cloud radiative properties problematic, so is of concern for spaceborne cloud lidar which have among their primary aims the global measurement of ice clouds. The NASA Calipso li­ dar

  20. New functional polymers for sensors, smart materials and solar cells

    E-Print Network [OSTI]

    Lobez Comeras, Jose Miguel

    2012-01-01T23:59:59.000Z

    Organic polymers can be used as the active component of sensors, smart materials, chemical-delivery systems and the active layer of solar cells. The rational design and modification of the chemical structure of polymers ...

  1. Application of Multizone HVAC Control Using Wireless Sensor Networks and Actuating Vent Registers

    E-Print Network [OSTI]

    Watts, W.; Koplow, M.; Redfern, A.; Wright, P.

    2007-01-01T23:59:59.000Z

    on an embedded server, and temperature sensors that were distributed throughout the house. The residence is divided into four Control Zones. Zone 1 contains the downstairs living, dining, and kitchen area. Zone 2 contains the bathrooms and laundry... radiation. The temperature and humidity sensors are manufactured by Sensirion, models SH11 and SH15. The light sensors consist of a thermally sensitive radiation sensor (TSR) and a photosynthetic active radiation sensor, manufactured by Hamamatsu...

  2. Radionuclide Sensors for Water Monitoring

    SciTech Connect (OSTI)

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2003-06-01T23:59:59.000Z

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particles in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

  3. Radionuclide Sensors for Water Monitoring

    SciTech Connect (OSTI)

    Grate, Jay W.; Egorov, Oleg B.; DeVol, Timothy A.

    2004-06-29T23:59:59.000Z

    Radionuclide contamination in the soil and groundwater at U.S. Department of Energy (DOE) sites is a severe problem that requires monitoring and remediation. Radionuclide measurement techniques are needed to monitor surface waters, groundwater, and process waters. Typically, water samples are collected and transported to an analytical laboratory, where costly radiochemical analyses are performed. To date, there has been very little development of selective radionuclide sensors for alpha- and beta-emitting radionuclides such as 90Sr, 99Tc, and various actinides of interest. The objective of this project is to investigate novel sensor concepts and materials for sensitive and selective determination of beta- and alpha-emitting radionuclide contaminants in water. To meet the requirements for low-level, isotope-specific detection, the proposed sensors are based on radiometric detection. As a means to address the fundamental challenge of the short ranges of beta and alpha particle s in water, our overall approach is based on localization of preconcentration/separation chemistries directly on or within the active area of a radioactivity detector. Automated microfluidics is used for sample manipulation and sensor regeneration or renewal. The outcome of these investigations will be the knowledge necessary to choose appropriate chemistries for selective preconcentration of radionuclides from environmental samples, new materials that combine chemical selectivity with scintillating properties, new materials that add chemical selectivity to solid-state diode detectors, new preconcentrating column sensors, and improved instrumentation and signal processing for selective radionuclide sensors. New knowledge will provide the basis for designing effective probes and instrumentation for field and in situ measurements.

  4. Application of proximity sensors to robotic manipulations

    E-Print Network [OSTI]

    Fink, Rainer J.

    1992-01-01T23:59:59.000Z

    sensor based finger attached to a UMI RTX robot. Although the system operated quite slowly, Etter reported that the system functioned as a voice activated assist system for grasping stationary objects. Results indicated that a more sensitive, accurate...APPLICATION OF PROXIMITY SENSORS TO ROBOTIC MANIPULATIONS A Thesis by RAINER Z. FINK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August...

  5. Remote control and telescope auto-alignment system for multiangle LIDAR under development at CEILAP, Argentina

    E-Print Network [OSTI]

    Pallotta, Juan; Otero, Lidia; Chouza, Fernando; Raul, Delia; Gonzalez, Francisco; Etchegoyen, Alberto; Quel, Eduardo

    2013-01-01T23:59:59.000Z

    At CEILAP (CITEDEF-CONICET), a multiangle LIDAR is under development to monitor aerosol extinction coefficients in the frame of the CTA (Cherenkov Telescope Array) Project. This is an initiative to build the next generation of ground-based instruments to collect very high energy gamma-ray radiation (>10 GeV). The atmospheric conditions are very important for CTA observations, and LIDARs play an important role in the measurement of the aerosol optical depth at any direction. The LIDAR being developed at CEILAP was conceived to operate in harsh environmental conditions during the shifts, and these working conditions may produce misalignments. To minimize these effects, the telescopes comprising the reception unit are controlled by a self-alignment system. This paper describes the self-alignment method and hardware automation.

  6. RisR1212(EN) Meteorology and lidar data

    E-Print Network [OSTI]

    . Jřrgensen Risř National Laboratory, Roskilde, Denmark May 2002 #12;Abstract This report describes sensors, thermocouple arrays, a fully instrumented release rig, a passive smoke machine, a meteorological were set out in the far range for the purpose of studying environ- mental effects. This report deals

  7. Millimeter-wave sensors

    E-Print Network [OSTI]

    Kim, Seoktae

    2006-04-12T23:59:59.000Z

    New millimeter wave interferometric, multifunctional sensors have been studied for industrial sensing applications: displacement measurement, liquid-level gauging and velocimetry. Two types of configuration were investigated to implement the sensor...

  8. Digital Sensor Technology

    SciTech Connect (OSTI)

    Ted Quinn; Jerry Mauck; Richard Bockhorst; Ken Thomas

    2013-07-01T23:59:59.000Z

    The nuclear industry has been slow to incorporate digital sensor technology into nuclear plant designs due to concerns with digital qualification issues. However, the benefits of digital sensor technology for nuclear plant instrumentation are substantial in terms of accuracy, reliability, availability, and maintainability. This report demonstrates these benefits in direct comparisons of digital and analog sensor applications. It also addresses the qualification issues that must be addressed in the application of digital sensor technology.

  9. Giant magnetoresistive sensor

    DOE Patents [OSTI]

    Stearns, Daniel G. (Los Altos, CA); Vernon, Stephen P. (Pleasanton, CA); Ceglio, Natale M. (Livermore, CA); Hawryluk, Andrew M. (Modesto, CA)

    1999-01-01T23:59:59.000Z

    A magnetoresistive sensor element with a three-dimensional micro-architecture is capable of significantly improved sensitivity and highly localized measurement of magnetic fields. The sensor is formed of a multilayer film of alternately magnetic and nonmagnetic materials. The sensor is optimally operated in a current perpendicular to plane mode. The sensor is useful in magnetic read/write heads, for high density magnetic information storage and retrieval.

  10. This paper presents an investigation of power and energy transduction in piezoelectric wafer active sensors (PWAS) on isotropic structure for structural health

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    crested wave pattern. The power and energy transduction flow chart for a complete pitch-catch setup to structure. This 1-D and 2-D model allows examination of power and energy flow for linear and circular is sensed by active interrogation of the structure with elastic waves. The power and energy flow in active

  11. Oscillatory motion based measurement method and sensor for measuring wall shear stress due to fluid flow

    DOE Patents [OSTI]

    Armstrong, William D. (Laramie, WY); Naughton, Jonathan (Laramie, WY); Lindberg, William R. (Laramie, WY)

    2008-09-02T23:59:59.000Z

    A shear stress sensor for measuring fluid wall shear stress on a test surface is provided. The wall shear stress sensor is comprised of an active sensing surface and a sensor body. An elastic mechanism mounted between the active sensing surface and the sensor body allows movement between the active sensing surface and the sensor body. A driving mechanism forces the shear stress sensor to oscillate. A measuring mechanism measures displacement of the active sensing surface relative to the sensor body. The sensor may be operated under periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor measurably changes the amplitude or phase of the motion of the active sensing surface, or changes the force and power required from a control system in order to maintain constant motion. The device may be operated under non-periodic excitation where changes in the nature of the fluid properties or the fluid flow over the sensor change the transient motion of the active sensor surface or change the force and power required from a control system to maintain a specified transient motion of the active sensor surface.

  12. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    SciTech Connect (OSTI)

    S, Motty G, E-mail: mottygs@gmail.com; Satyanarayana, M., E-mail: mottygs@gmail.com; Krishnakumar, V., E-mail: mottygs@gmail.com; Dhaman, Reji k., E-mail: mottygs@gmail.com [Department of Optoelectronics, University of Kerala, Kariavattom, Trivandrum-695 581, Kerala (India)

    2014-10-15T23:59:59.000Z

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5{sup 0} N, 79.2{sup 0} E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology.

  13. Polyimide Capacitive Humidity Sensors 

    E-Print Network [OSTI]

    Lofgren, H.; Mills, F.

    1988-01-01T23:59:59.000Z

    The need for a full-range, low cast humidity sensor has led Honeywell to develop a capacitive relative humidity (RH) sensor with resistance to environmental contaminants. The sensor is used in a bridge circuit to give either a voltage or a current...

  14. Sensor Networks and Consensus

    E-Print Network [OSTI]

    Schenato, Luca

    3 Dic 2009 1/32 Sensor Networks and Consensus An application: Localization and Tracking Distributed Sensors Calibration Randomized Kalman Filter Distributed Kalman Smoother Simone Del Favero PhD Thesis: Localization and Tracking Distributed Sensors Calibration Randomized Kalman Filter Distributed Kalman Smoother

  15. Polyimide Capacitive Humidity Sensors

    E-Print Network [OSTI]

    Lofgren, H.; Mills, F.

    1988-01-01T23:59:59.000Z

    The need for a full-range, low cast humidity sensor has led Honeywell to develop a capacitive relative humidity (RH) sensor with resistance to environmental contaminants. The sensor is used in a bridge circuit to give either a voltage or a current...

  16. Automotive vehicle sensors

    SciTech Connect (OSTI)

    Sheen, S.H.; Raptis, A.C.; Moscynski, M.J.

    1995-09-01T23:59:59.000Z

    This report is an introduction to the field of automotive vehicle sensors. It contains a prototype data base for companies working in automotive vehicle sensors, as well as a prototype data base for automotive vehicle sensors. A market analysis is also included.

  17. Sensor Data Management, Validation, Correction, and Provenance for Building Technologies

    SciTech Connect (OSTI)

    Castello, Charles C [ORNL; Sanyal, Jibonananda [ORNL; Rossiter, Jeffrey S [ORNL; Hensley, Zachary [Tennessee Technological University; New, Joshua Ryan [ORNL

    2014-01-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) conducts research on technologies that use a wide range of sensors to develop and characterize building energy performance. The management of high-resolution sensor data, analysis, and tracing lineage of such activities is challenging. Missing or corrupt data due to sensor failure, fouling, drifting, calibration error, or data logger failure is another issue. This paper focuses on sensor data management, validation, correction, and provenance to combat these issues, ensuring complete and accurate sensor datasets for building technologies applications and research. The design and development of two integrated software products are discussed: Sensor Data Validation and Correction (SensorDVC) and the Provenance Data Management System (ProvDMS) platform.

  18. QUANTIFYING FOREST ABOVEGROUND CARBON POOLS AND FLUXES USING MULTI-TEMPORAL LIDAR A report on field monitoring, remote sensing MMV, GIS integration, and modeling results for forestry field validation test to quantify aboveground tree biomass and carbon

    SciTech Connect (OSTI)

    Lee Spangler; Lee A. Vierling; Eva K. Stand; Andrew T. Hudak; Jan U.H. Eitel; Sebastian Martinuzzi

    2012-04-01T23:59:59.000Z

    Sound policy recommendations relating to the role of forest management in mitigating atmospheric carbon dioxide (CO{sub 2}) depend upon establishing accurate methodologies for quantifying forest carbon pools for large tracts of land that can be dynamically updated over time. Light Detection and Ranging (LiDAR) remote sensing is a promising technology for achieving accurate estimates of aboveground biomass and thereby carbon pools; however, not much is known about the accuracy of estimating biomass change and carbon flux from repeat LiDAR acquisitions containing different data sampling characteristics. In this study, discrete return airborne LiDAR data was collected in 2003 and 2009 across {approx}20,000 hectares (ha) of an actively managed, mixed conifer forest landscape in northern Idaho, USA. Forest inventory plots, established via a random stratified sampling design, were established and sampled in 2003 and 2009. The Random Forest machine learning algorithm was used to establish statistical relationships between inventory data and forest structural metrics derived from the LiDAR acquisitions. Aboveground biomass maps were created for the study area based on statistical relationships developed at the plot level. Over this 6-year period, we found that the mean increase in biomass due to forest growth across the non-harvested portions of the study area was 4.8 metric ton/hectare (Mg/ha). In these non-harvested areas, we found a significant difference in biomass increase among forest successional stages, with a higher biomass increase in mature and old forest compared to stand initiation and young forest. Approximately 20% of the landscape had been disturbed by harvest activities during the six-year time period, representing a biomass loss of >70 Mg/ha in these areas. During the study period, these harvest activities outweighed growth at the landscape scale, resulting in an overall loss in aboveground carbon at this site. The 30-fold increase in sampling density between the 2003 and 2009 did not affect the biomass estimates. Overall, LiDAR data coupled with field reference data offer a powerful method for calculating pools and changes in aboveground carbon in forested systems. The results of our study suggest that multitemporal LiDAR-based approaches are likely to be useful for high quality estimates of aboveground carbon change in conifer forest systems.

  19. Optimized Node Selection for Compressive Sleeping Wireless Sensor Networks

    E-Print Network [OSTI]

    Chen, Wei; Wassell, Ian J.

    2015-02-05T23:59:59.000Z

    1Optimized Node Selection for Compressive Sleeping Wireless Sensor Networks Wei Chen, Member, IEEE, and Ian J. Wassell Abstract—In this paper, we propose an active node selection framework for compressive sleeping wireless sensor networks (WSNs... development oftechnologies in sensing, computing and communication has made it possible to employ wireless sensor networks (WSNs) to continuously monitor physical phenomena in a variety of applications, for example air quality monitoring, wildlife tracking...

  20. Unattended ground sensor situation assessment workstation

    SciTech Connect (OSTI)

    Jeppesen, D.; Trellue, R.

    1997-04-01T23:59:59.000Z

    Effective utilization of unattended ground sensors (UGSs) in a theater reconnaissance, surveillance, target acquisition, and kill assessment environment requires that a human operator be able to interpret, and collectively assess, the significance of real time data obtained from UGS emplacements over large geographical regions of interest. The products of this UGS data interpretation and assessment activity can then be used in the decision support process for command level evaluation of appropriate courses of action. Advancements in both sensor hardware technology and in software systems and processing technology have enabled the development of practical real time situation assessment capabilities based upon information from unattended ground sensors. A decision support workstation that employs rule-based expert system processing of reports from unattended ground sensors is described. The primary goal of this development activity is to produce a suite of software to track vehicles using data from unattended ground sensors. The situational assessment products from this system have stand-alone utility, but are also intended to provide cueing support for overhead sensors and supplementary feeds to all-source fusion centers. The conceptual framework, developmental architecture, and demonstration field tests of the system are described.

  1. Impact Assessment of Simulated Doppler Wind Lidars with a Multivariate Variational Assimilation in the Tropics

    E-Print Network [OSTI]

    Stoffelen, Ad

    forecast errors of the European Centre for Medium-Range Weather Forecasts (ECMWF) model. Tropical mass­windImpact Assessment of Simulated Doppler Wind Lidars with a Multivariate Variational Assimilation, De Bilt, Netherlands CHRISTOPHE ACCADIA AND PETER SCHL�SSEL European Organisation

  2. Lidars in Wind Energy Jakob Mann, Ferhat Bingl, Torben Mikkelsen, Ioannis Antoniou, Mike

    E-Print Network [OSTI]

    Lidars in Wind Energy Jakob Mann, Ferhat Bingöl, Torben Mikkelsen, Ioannis Antoniou, Mike Courtney, Gunner Larsen, Ebba Dellwik Juan Jose Trujillo* and Hans E. Jřrgensen Wind Energy Department Risř of the presentation · Introduction to wind energy · Accurate profiles of the mean wind speed · Wakes behind turbines

  3. Master thesis: "Validation of wake-simulation models based on long-range lidar measurements."

    E-Print Network [OSTI]

    Peinke, Joachim

    REpower 6M wind turbines with rotor blades of different designs installed in the Ellhöft/Westre wind farm developed by the wind turbine manufacturer. Work plan 2011 2012 Task 11 12 01 02 03 04 05 06 07 08 09 10 Figure 1: Simulation of lidar measurements in the wake of a wind turbine using a LES generated wind field

  4. Biomass and Bioenergy 31 (2007) 646655 Estimating biomass of individual pine trees using airborne lidar

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Biomass and Bioenergy 31 (2007) 646­655 Estimating biomass of individual pine trees using airborne biomass and bio-energy feedstocks. The overall goal of this study was to develop a method for assessing aboveground biomass and component biomass for individual trees using airborne lidar data in forest settings

  5. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30T23:59:59.000Z

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  6. Surface-Layer Wind and Turbulence Profiling from LIDAR: Theory and Measurements

    E-Print Network [OSTI]

    Surface-Layer Wind and Turbulence Profiling from LIDAR: Theory and Measurements Régis DANIELIAN (Vestas Wind System) Hans Ejsing JŘRGENSEN (Wind Energy Department, Risř. Contact: haej@risoe.dk) Torben MIKKELSEN (Wind Energy Department, Risř. Contact: tomi@risoe.dk) Jacob MANN (Wind Energy Department, Risř

  7. Remote sensing the wind using Lidars and Sodars Ioannis Antoniou (1)

    E-Print Network [OSTI]

    masts for their mounting and the costs associated with the purchase, erection and instrumentation for wind energy applications. The first reason is that the cost (purchase, erection, instrumentation with power curve and resource assessment measurements. Both SODAR (SOund Detection And Ranging) and LIDAR

  8. LIDAR OBSERVATIONS AND COMPARISON WITH NUMERICAL SIMULATION OF A LAKE MICHIGAN LAND BREEZE FRONT

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    of the Lake-Induced Convection Experiments (Lake-ICE), on December 21, 1997 the University of Wisconsin VolumeLIDAR OBSERVATIONS AND COMPARISON WITH NUMERICAL SIMULATION OF A LAKE MICHIGAN LAND BREEZE FRONT G circulation over Lake Michigan. Backscatter returns revealed a steady offshore flow extending 1.5 to 4 km

  9. Bistatic receiver model for airborne lidar returns incident on an imaging array from underwater objects

    E-Print Network [OSTI]

    Singer, Andrew C

    returns from the surrounding water medium and ocean bottom. Our results provide a generalization ocean lidar return, obtained by a CCD array. © 2002 Optical Society of America OCIS codes: 010.3640, 030 a laser to generate a short, high-powered pulse of light. The transmitted laser beam can penetrate the air

  10. Topographic accuracy assessment of bare earth lidar-derived unstructured meshes Matthew V. Bilskie

    E-Print Network [OSTI]

    Central Florida, University of

    : Shallow water equations Unstructured mesh Lidar DEM Storm surge Accuracy a b s t r a c t This study water equations model. A methodology is developed to compute root mean square error (RMSE) and the 95th, urban regions, etc.) and have coarse mesh resolution in areas outside the focus region (e.g. deep water

  11. Master Thesis: Dual-Doppler technique applied to scanning lidars for the characterization of

    E-Print Network [OSTI]

    Peinke, Joachim

    -lidar system was developed and installed at the offshore wind farm "alpha ventus". This system includes three and wind turbine wakes in large wind farms offshore. Wind Energy, 12(5):431­444, 2009. [2] Brian Hirth, D of multiple wakes in a wind farm M. van Dooren Supervisors: D. Trabucchi, K. S. Hansen University

  12. Review of remote-sensor potential for wind-energy studies

    SciTech Connect (OSTI)

    Hooke, W.H.

    1981-03-01T23:59:59.000Z

    This report evaluates a number of remote-sensing systems such as radars, lidars, and acoustic echo sounders which are potential alternatives to the cup- and propeller anemometers routinely used in wind energy siting. The high costs and demanding operational requirements of these sensors currently preclude their use in the early stages of a multi-phase wind energy siting strategy such as that recently articulated by Hiester and Pennell (1981). Instead, these systems can be used most effectively in the lattermost stages of the siting process - what Hiester and Pennell (1981) refer to as the site development phase, necessary only for the siting of large wind-energy conversion systems (WECS) or WECS clusters. Even for this particular application only four techniques appear to be operational now; that is, if used properly, these techniques should provide the data sets currently considered adequate for wind-energy siting purposes. They are, in rough order of increasing expense and operating demands: optical transverse wind sensors; acoustic Doppler sounders; time-of-flight and continuous wave (CW) Doppler lidar; and frequency-modulated, continuous wave (FM-CW) Doppler radar.

  13. Sensor Grid: Integration of Wireless Sensor Networks and the Grid

    E-Print Network [OSTI]

    Teo, Yong-Meng

    Sensor Grid: Integration of Wireless Sensor Networks and the Grid Hock Beng Lim1 , Yong Meng Teo1 Microsystems, Inc. E-mail: [limhb, teoym]@comp.nus.edu.sg Abstract Wireless sensor networks have emerged to the sharing of sensor resources in wireless sensor networks. There are several issues and challenges

  14. Detailed Hydrographic Feature Extraction from High-Resolution LiDAR Data

    SciTech Connect (OSTI)

    Danny L. Anderson

    2012-05-01T23:59:59.000Z

    Detailed hydrographic feature extraction from high-resolution light detection and ranging (LiDAR) data is investigated. Methods for quantitatively evaluating and comparing such extractions are presented, including the use of sinuosity and longitudinal root-mean-square-error (LRMSE). These metrics are then used to quantitatively compare stream networks in two studies. The first study examines the effect of raster cell size on watershed boundaries and stream networks delineated from LiDAR-derived digital elevation models (DEMs). The study confirmed that, with the greatly increased resolution of LiDAR data, smaller cell sizes generally yielded better stream network delineations, based on sinuosity and LRMSE. The second study demonstrates a new method of delineating a stream directly from LiDAR point clouds, without the intermediate step of deriving a DEM. Direct use of LiDAR point clouds could improve efficiency and accuracy of hydrographic feature extractions. The direct delineation method developed herein and termed “mDn”, is an extension of the D8 method that has been used for several decades with gridded raster data. The method divides the region around a starting point into sectors, using the LiDAR data points within each sector to determine an average slope, and selecting the sector with the greatest downward slope to determine the direction of flow. An mDn delineation was compared with a traditional grid-based delineation, using TauDEM, and other readily available, common stream data sets. Although, the TauDEM delineation yielded a sinuosity that more closely matches the reference, the mDn delineation yielded a sinuosity that was higher than either the TauDEM method or the existing published stream delineations. Furthermore, stream delineation using the mDn method yielded the smallest LRMSE.

  15. Workshop: Dados SAR e LIDAR para Anlise de Parmetros Biofsicos e de Estrutura Vertical de Tipologias Florestais (SAR and LIDAR Data for the Analysis of Biophysical Parameters and Vertical Structure from Forest Typologies)

    E-Print Network [OSTI]

    forests, allowing the optimized planning and operational management of forest resources. Microwave, Brazil) 10:45h Design and Implementation of Lidar & Radar Surveys for Forest Carbon Monitoring in REDD

  16. Modeling Human Behavior from Simple Sensors in the Home

    E-Print Network [OSTI]

    Canny, John

    Modeling Human Behavior from Simple Sensors in the Home Ryan Aipperspach, Elliot Cohen, and John {ryanaip, jfc}@cs.berkeley.edu, emcohen3@berkeley.edu Abstract. Pervasive sensors in the home have a variety of applications including energy minimization, activity monitoring for elders, and tutors

  17. Capacitive chemical sensor

    DOE Patents [OSTI]

    Manginell, Ronald P; Moorman, Matthew W; Wheeler, David R

    2014-05-27T23:59:59.000Z

    A microfabricated capacitive chemical sensor can be used as an autonomous chemical sensor or as an analyte-sensitive chemical preconcentrator in a larger microanalytical system. The capacitive chemical sensor detects changes in sensing film dielectric properties, such as the dielectric constant, conductivity, or dimensionality. These changes result from the interaction of a target analyte with the sensing film. This capability provides a low-power, self-heating chemical sensor suitable for remote and unattended sensing applications. The capacitive chemical sensor also enables a smart, analyte-sensitive chemical preconcentrator. After sorption of the sample by the sensing film, the film can be rapidly heated to release the sample for further analysis. Therefore, the capacitive chemical sensor can optimize the sample collection time prior to release to enable the rapid and accurate analysis of analytes by a microanalytical system.

  18. Working Group Report: Sensors

    SciTech Connect (OSTI)

    Artuso, M.; et al.,

    2013-10-18T23:59:59.000Z

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  19. Contact stress sensor

    DOE Patents [OSTI]

    Kotovsky, Jack

    2014-02-11T23:59:59.000Z

    A method for producing a contact stress sensor that includes one or more MEMS fabricated sensor elements, where each sensor element of includes a thin non-recessed portion, a recessed portion and a pressure sensitive element adjacent to the recessed portion. An electric circuit is connected to the pressure sensitive element. The circuit includes a pressure signal circuit element configured to provide a signal upon movement of the pressure sensitive element.

  20. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, Joseph (Las Cruces, NM); Olsen, Khris (Richland, WA); Larson, David (Las Cruces, NM)

    1997-01-01T23:59:59.000Z

    An electrochemical sensor for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis.

  1. Fiber optic geophysical sensors

    DOE Patents [OSTI]

    Homuth, E.F.

    1991-03-19T23:59:59.000Z

    A fiber optic geophysical sensor is described in which laser light is passed through a sensor interferometer in contact with a geophysical event, and a reference interferometer not in contact with the geophysical event but in the same general environment as the sensor interferometer. In one embodiment, a single tunable laser provides the laser light. In another embodiment, separate tunable lasers are used for the sensor and reference interferometers. The invention can find such uses as monitoring for earthquakes, and the weighing of objects. 2 figures.

  2. Method to determine and adjust the alignment of the transmitter and receiver fields of view of a LIDAR system

    DOE Patents [OSTI]

    Schmitt, Randal L. (Tijeras, NM); Henson, Tammy D. (Albuquerque, NM); Krumel, Leslie J. (Cedar Crest, NM); Hargis, Jr., Philip J. (Albuquerque, NM)

    2006-06-20T23:59:59.000Z

    A method to determine the alignment of the transmitter and receiver fields of view of a light detection and ranging (LIDAR) system. This method can be employed to determine the far-field intensity distribution of the transmitter beam, as well as the variations in transmitted laser beam pointing as a function of time, temperature, or other environmental variables that may affect the co-alignment of the LIDAR system components. In order to achieve proper alignment of the transmitter and receiver optical systems when a LIDAR system is being used in the field, this method employs a laser-beam-position-sensing detector as an integral part of the receiver optics of the LIDAR system.

  3. Fabrication of 3D Silicon Sensors

    SciTech Connect (OSTI)

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; /SINTEF, Oslo; Kenney, C.; Hasi, J.; /SLAC; Da Via, C.; /Manchester U.; Parker, S.I.; /Hawaii U.

    2012-06-06T23:59:59.000Z

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  4. Towards optimal energy-quality tradeoff in tracking via sensor Alessio Benavoli and Luigi Chisci

    E-Print Network [OSTI]

    Chisci, Luigi

    proportional to the number of active sensors, energy efficiency calls for the implementation, inside about the current sensor energy status. This is certainly efficient in terms of tracking qualityTowards optimal energy-quality tradeoff in tracking via sensor networks Alessio Benavoli and Luigi

  5. We propose a wearable PIR thermal sensor system that can help users to perceive the

    E-Print Network [OSTI]

    Zhu, Zhigang

    We propose a wearable PIR thermal sensor system that can help users to perceive the surrounding environment from a thermal perspective. Wireless PIR sensor network technology has been developed to track and recognize multiple moving human subjects, as well as understand their activities. However, the PIR sensor

  6. QueueTrak: Automated Line Length Detection using a Wireless Sensor Network

    E-Print Network [OSTI]

    Whitehouse, Kamin

    , it uses a series of custom active infrared sensors to detect the length of a line in a store or restaurant the design, implementation, and evaluation of QueueTrak, a sensor network that measures the length of linesQueueTrak: Automated Line Length Detection using a Wireless Sensor Network Jared Alexander, Matthew

  7. 6189-47, Session 10 Optical spatial filtering velocimetry sensor for real-time

    E-Print Network [OSTI]

    6189-47, Session 10 Optical spatial filtering velocimetry sensor for real-time in-plane vibration-contact, low-cost optical sensor for real time detection and active vibration control of mechanical devices sensitivity to any translational vibration. The calibration of the sensor is independent of the optical

  8. Field Test Results of Using a Nacelle-Mounted Lidar for Improving Wind Energy Capture by Reducing Yaw Misalignment (Presentation)

    SciTech Connect (OSTI)

    Fleming, P.; Scholbrock, A.; Wright, A.

    2014-11-01T23:59:59.000Z

    Presented at the Nordic Wind Power Conference on November 5, 2014. This presentation describes field-test campaigns performed at the National Wind Technology Center in which lidar technology was used to improve the yaw alignment of the Controls Advanced Research Turbine (CART) 2 and CART3 wind turbines. The campaigns demonstrated that whether by learning a correction function to the nacelle vane, or by controlling yaw directly with the lidar signal, a significant improvement in power capture was demonstrated.

  9. Comments on ''Accuracy of Raman lidar water vapor calibration and its applicability to long-term measurements''

    SciTech Connect (OSTI)

    Whiteman, David N.; Venable, Demetrius; Landulfo, Eduardo

    2011-05-20T23:59:59.000Z

    In a recent publication, Leblanc and McDermid [Appl. Opt., 47, 5592 (2008)]APOPAI0003-693510.1364/AO.47.005592 proposed a hybrid calibration technique for Raman water vapor lidar involving a tungsten lamp and radiosondes. Measurements made with the lidar telescope viewing the calibration lamp were used to stabilize the lidar calibration determined by comparison with radiosonde. The technique provided a significantly more stable calibration constant than radiosondes used alone. The technique involves the use of a calibration lamp in a fixed position in front of the lidar receiver aperture. We examine this configuration and find that such a configuration likely does not properly sample the full lidar system optical efficiency. While the technique is a useful addition to the use of radiosondes alone for lidar calibration, it is important to understand the scenarios under which it will not provide an accurate quantification of system optical efficiency changes. We offer examples of these scenarios. Scanning of the full telescope aperture with the calibration lamp can circumvent most of these limitations. Based on the work done to date, it seems likely that the use of multiple calibration lamps in different fixed positions in front of the telescope may provide sufficient redundancy for long-term calibration needs. Further full-aperture scanning experiments, performed over an extended period of time, are needed to determine a ''best practice'' for the use of multiple calibration lamps in the hybrid technique.

  10. Sensors & Materials | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sensors and Materials Argonne uses its materials and engineering expertise to develop, test, and deploy sensors and materials to detect nuclear and radiological materials, chemical...

  11. Gyro Enhanced Orientation Sensor

    E-Print Network [OSTI]

    Sheikh, Yaser Ajmal

    ­ container handling, hydraulic lift systems, machine tools www.microstrain.com #12;Copyright © 2006 Micro3DM-GX1® Gyro Enhanced Orientation Sensor Technical Product Overview Micro Sensors.Big Ideas protocol. Embedded microcontrollers relieve the host system from the burden of orientation calculations

  12. Sensors for Environmental Observatories

    E-Print Network [OSTI]

    Hamilton, Michael P.

    Sensors for Environmental Observatories Report of the NSF-Sponsored Workshop December 2004 #12 States of America. 2005. #12;Sensors for Environmental Observatories Report of the NSF Sponsored Workshop Evaluation Center (WTEC), Inc. 4800 Roland Avenue Baltimore, Maryland 21210 #12;In recent years

  13. Inference in sensor networks : graphical models and particle methods

    E-Print Network [OSTI]

    Ihler, Alexander T. (Alexander Thomas), 1976-

    2005-01-01T23:59:59.000Z

    Sensor networks have quickly risen in importance over the last several years to become an active field of research, full of difficult problems and applications. At the same time, graphical models have shown themselves to ...

  14. Renewable-reagent electrochemical sensor

    DOE Patents [OSTI]

    Wang, J.; Olsen, K.B.

    1999-08-24T23:59:59.000Z

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery is described. The probe comprises an integrated membrane sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s). 19 figs.

  15. Renewable-reagent electrochemical sensor

    DOE Patents [OSTI]

    Wang, Joseph (Las Cruces, NM); Olsen, Khris B. (Richland, WA)

    1999-01-01T23:59:59.000Z

    A new electrochemical probe(s) design allowing for continuous (renewable) reagent delivery. The probe comprises an integrated membrane-sampling/electrochemical sensor that prevents interferences from surface-active materials and greatly extends the linear range. The probe(s) is useful for remote or laboratory-based monitoring in connection with microdialysis sampling and electrochemical measurements of metals and organic compounds that are not readily detected in the absence of reacting with the compound. Also disclosed is a method of using the probe(s).

  16. OAK 270 - The use of Lidar/radiometer (LIRAD) in the ARM program to obtain optical properties and microphysics of high and midlevel clouds

    SciTech Connect (OSTI)

    C.M.R. Platt; R.T. Austin; S.A. Young; and G.L. Stephens

    2002-12-13T23:59:59.000Z

    OAK 270 - The use of Lidar/Radiometer (LIRAD) in the ARM program to obtain optical properties and microphysics of high and midlevel clouds

  17. Three dimensional winds: A maximum cross-correlation application to elastic lidar data

    SciTech Connect (OSTI)

    Buttler, W.T.

    1996-05-01T23:59:59.000Z

    Maximum cross-correlation techniques have been used with satellite data to estimate winds and sea surface velocities for several years. Los Alamos National Laboratory (LANL) is currently using a variation of the basic maximum cross-correlation technique, coupled with a deterministic application of a vector median filter, to measure transverse winds as a function of range and altitude from incoherent elastic backscatter lidar (light detection and ranging) data taken throughout large volumes within the atmospheric boundary layer. Hourly representations of three-dimensional wind fields, derived from elastic lidar data taken during an air-quality study performed in a region of complex terrain near Sunland Park, New Mexico, are presented and compared with results from an Environmental Protection Agency (EPA) approved laser doppler velocimeter. The wind fields showed persistent large scale eddies as well as general terrain-following winds in the Rio Grande valley.

  18. Sensor Relocation with Mobile Sensors: Design, Implementation, and Evaluation

    E-Print Network [OSTI]

    Schindelhauer, Christian

    Sensor Relocation with Mobile Sensors: Design, Implementation, and Evaluation Jie Teng, Tim on implementation and evaluation due to the difficulty of building mobile sensors. In the litera- ture, some--Mobile sensors are useful in many environments because they can move to increase the sensing coverage

  19. Mobile RobotsSensor Networks Autonomous Sensor/Actuator Networks

    E-Print Network [OSTI]

    Breu, Ruth

    mobile networks with dynamic topology Optimized task allocation and communication based on application and energy constraints Secure communication and data management in mobile sensor networks Solution SpaceMobile RobotsSensor Networks Autonomous Sensor/Actuator Networks ROSES RObot assisted SEnsor

  20. The Experimental Cloud Lidar Pilot Study (ECLIPS) for cloud-radiation research

    SciTech Connect (OSTI)

    Platt, C.M.; Young, S.A. [Division of Atmospheric Research, Victoria (Australia)] [Division of Atmospheric Research, Victoria (Australia); Carswell, A.I.; Pal, S.R. [York Univ., North York, Ontario (Canada)] [York Univ., North York, Ontario (Canada); McCormick, M.P.; Winker, D.M. [NASA Langley Research Center, Hampton, VA (United States)] [NASA Langley Research Center, Hampton, VA (United States); DelGuasta, M.; Stefanutti, L. [Institute Ricerca Onde Elettromagnetiche, Florence (Italy)] [Institute Ricerca Onde Elettromagnetiche, Florence (Italy); Eberhard, W.L.; Hardesty, M. [NOAA Environmental Technology Lab., Boulder, CO (United States)] [and others] [NOAA Environmental Technology Lab., Boulder, CO (United States); and others

    1994-09-01T23:59:59.000Z

    The Experimental Cloud Lidar Pilot Study (ECLIPS) was initiated to obtain statistics on cloud-base height, extinction, optical depth, cloud brokenness, and surface fluxes. Two observational phases have taken place, in October-December 1989 and April-July 1991, with intensive 30-day periods selected within the two time intervals. Data are being archived at NASA Langley Research Center, and, once there, are readily available to the international scientific community. 43 refs., 13 figs., 4 tabs.

  1. Linearly Organized Turbulence Structures Observed Over a Suburban Area by Dual-Doppler Lidar

    SciTech Connect (OSTI)

    Newsom, Rob K.; Calhoun, Ron; Ligon, David; Allwine, K Jerry

    2008-04-01T23:59:59.000Z

    Dual-Doppler lidar observations are used to investigate the structure and evolution of surface layer flow over a suburban area. The observations were made during the Joint Urban 2003 (JU2003) field experiment in Oklahoma City in the summer of 2003. This study focuses specifically on a 10-hour sequence of scan data beginning shortly after noon local time on July 7, 2003. During this period two coherent Doppler lidars performed overlapping low elevation angle sector scans upwind and south of Oklahoma City’s central business district (CBD). Radial velocity data from the two lidars are processed to reveal the structure and evolution of the horizontal velocity field in the surface layer throughout the afternoon and evening transition periods. The retrieved velocity fields clearly show a tendency for turbulence structures to be elongated in the direction of the mean flow throughout the entire 10-hour study period. As the stratification changed from unstable to weakly stable the turbulence structures became increasingly more linearly organized, and the cross-stream separation between high- and low-speed regoins decreased. The spatially resolved velocity fields are used to estimate streamwise and cross-stream turbulence length scales as functions of stability.

  2. Aircraft as a meteorological sensor

    E-Print Network [OSTI]

    Haak, Hein

    Meteorological Institute 2 | The aircraft as a meteorological sensor Photo cover: A KLM Airbus A330-200 landsAircraft as a meteorological sensor Using Mode-S Enhanced Surveillance data to derive upper air Meteorological Institute 3 | The aircraft as a meteorological sensor Aircraft as a meteorological sensor Using

  3. Electrochemical micro sensor

    DOE Patents [OSTI]

    Setter, Joseph R. (Naperville, IL); Maclay, G. Jordan (Maywood, IL)

    1989-09-12T23:59:59.000Z

    A micro-amperometric electrochemical sensor for detecting the presence of a pre-determined species in a fluid material is disclosed. The sensor includes a smooth substrate having a thin coating of solid electrolytic material deposited thereon. The working and counter electrodes are deposited on the surface of the solid electrolytic material and adhere thereto. Electrical leads connect the working and counter electrodes to a potential source and an apparatus for measuring the change in an electrical signal caused by the electrochemical oxidation or reduction of the species. Alternatively, the sensor may be fabricated in a sandwich structure and also may be cylindrical, spherical or other shapes.

  4. Remote electrochemical sensor

    DOE Patents [OSTI]

    Wang, J.; Olsen, K.; Larson, D.

    1997-10-14T23:59:59.000Z

    An electrochemical sensor is described for remote detection, particularly useful for metal contaminants and organic or other compounds. The sensor circumvents technical difficulties that previously prevented in-situ remote operations. The microelectrode, connected to a long communications cable, allows convenient measurements of the element or compound at timed and frequent intervals and instrument/sample distances of ten feet to more than 100 feet. The sensor is useful for both downhole groundwater monitoring and in-situ water (e.g., shipboard seawater) analysis. 21 figs.

  5. Wireless passive radiation sensor

    DOE Patents [OSTI]

    Pfeifer, Kent B; Rumpf, Arthur N; Yelton, William G; Limmer, Steven J

    2013-12-03T23:59:59.000Z

    A novel measurement technique is employed using surface acoustic wave (SAW) devices, passive RF, and radiation-sensitive films to provide a wireless passive radiation sensor that requires no batteries, outside wiring, or regular maintenance. The sensor is small (<1 cm.sup.2), physically robust, and will operate unattended for decades. In addition, the sensor can be insensitive to measurement position and read distance due to a novel self-referencing technique eliminating the need to measure absolute responses that are dependent on RF transmitter location and power.

  6. Geographically distributed environmental sensor system

    DOE Patents [OSTI]

    French, Patrick; Veatch, Brad; O'Connor, Mike

    2006-10-03T23:59:59.000Z

    The present invention is directed to a sensor network that includes a number of sensor units and a base unit. The base station operates in a network discovery mode (in which network topology information is collected) in a data polling mode (in which sensed information is collected from selected sensory units). Each of the sensor units can include a number of features, including an anemometer, a rain gauge, a compass, a GPS receiver, a barometric pressure sensor, an air temperature sensor, a humidity sensor, a level, and a radiant temperature sensor.

  7. Complex pendulum biomass sensor

    DOE Patents [OSTI]

    Hoskinson, Reed L. (Rigby, ID); Kenney, Kevin L. (Idaho Falls, ID); Perrenoud, Ben C. (Rigby, ID)

    2007-12-25T23:59:59.000Z

    A complex pendulum system biomass sensor having a plurality of pendulums. The plurality of pendulums allow the system to detect a biomass height and density. Each pendulum has an angular deflection sensor and a deflector at a unique height. The pendulums are passed through the biomass and readings from the angular deflection sensors are fed into a control system. The control system determines whether adjustment of machine settings is appropriate and either displays an output to the operator, or adjusts automatically adjusts the machine settings, such as the speed, at which the pendulums are passed through the biomass. In an alternate embodiment, an entanglement sensor is also passed through the biomass to determine the amount of biomass entanglement. This measure of entanglement is also fed into the control system.

  8. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, A.D.; Smartt, H.B.; Taylor, P.L.

    1994-01-04T23:59:59.000Z

    An integrated optical sensor for arc welding having multifunction feedback control is described. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties. 6 figures.

  9. Modular sensor network node

    DOE Patents [OSTI]

    Davis, Jesse Harper Zehring (Berkeley, CA); Stark, Jr., Douglas Paul (Tracy, CA); Kershaw, Christopher Patrick (Hayward, CA); Kyker, Ronald Dean (Livermore, CA)

    2008-06-10T23:59:59.000Z

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  10. Remote Sensor Placement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    developed to place the sensor nodes in the field. Contact Institute Director Charles Farrar (505) 663-5330 Email UCSD EI Director Michael Todd (858) 534-5951 Professional Staff...

  11. Integrated optical sensor

    DOE Patents [OSTI]

    Watkins, Arthur D. (Idaho Falls, ID); Smartt, Herschel B. (Idaho Falls, ID); Taylor, Paul L. (Idaho Falls, ID)

    1994-01-01T23:59:59.000Z

    An integrated optical sensor for arc welding having multifunction feedback control. The sensor, comprising generally a CCD camera and diode laser, is positioned behind the arc torch for measuring weld pool position and width, standoff distance, and post-weld centerline cooling rate. Computer process information from this sensor is passed to a controlling computer for use in feedback control loops to aid in the control of the welding process. Weld pool position and width are used in a feedback loop, by the weld controller, to track the weld pool relative to the weld joint. Sensor standoff distance is used in a feedback loop to control the contact tip to base metal distance during the welding process. Cooling rate information is used to determine the final metallurgical state of the weld bead and heat affected zone, thereby controlling post-weld mechanical properties.

  12. Capacitance pressure sensor

    DOE Patents [OSTI]

    Eaton, William P. (Tijeras, NM); Staple, Bevan D. (Albuquerque, NM); Smith, James H. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    A microelectromechanical (MEM) capacitance pressure sensor integrated with electronic circuitry on a common substrate and a method for forming such a device are disclosed. The MEM capacitance pressure sensor includes a capacitance pressure sensor formed at least partially in a cavity etched below the surface of a silicon substrate and adjacent circuitry (CMOS, BiCMOS, or bipolar circuitry) formed on the substrate. By forming the capacitance pressure sensor in the cavity, the substrate can be planarized (e.g. by chemical-mechanical polishing) so that a standard set of integrated circuit processing steps can be used to form the electronic circuitry (e.g. using an aluminum or aluminum-alloy interconnect metallization).

  13. Magnetic infrasound sensor

    DOE Patents [OSTI]

    Mueller, Fred M. (Los Alamos, NM); Bronisz, Lawrence (Los Alamos, NM); Grube, Holger (Los Alamos, NM); Nelson, David C. (Santa Fe, NM); Mace, Jonathan L. (Los Alamos, NM)

    2006-11-14T23:59:59.000Z

    A magnetic infrasound sensor is produced by constraining a permanent magnet inside a magnetic potential well above the surface of superconducting material. The magnetic infrasound sensor measures the position or movement of the permanent magnet within the magnetic potential well, and interprets the measurements. Infrasound sources can be located and characterized by combining the measurements from one or more infrasound sensors. The magnetic infrasound sensor can be tuned to match infrasound source types, resulting in better signal-to-noise ratio. The present invention can operate in frequency modulation mode to improve sensitivity and signal-to-noise ratio. In an alternate construction, the superconductor can be levitated over a magnet or magnets. The system can also be driven, so that time resolved perturbations are sensed, resulting in a frequency modulation version with improved sensitivity and signal-to-noise ratio.

  14. Semi-Automated DIRSIG Scene Modeling from 3D LIDAR and Passive Imaging Sources

    E-Print Network [OSTI]

    Kerekes, John

    powerful tool for algorithm testing and sensor evaluation. However, the extensive time required to create given the parameters of the sensor. This may be done to evaluate an existing sensor under a host synthetic multispectral and hyperspectral images from the visible to long wave infrared (0.4 to 20 microns

  15. Thermal microphotonic sensor and sensor array

    DOE Patents [OSTI]

    Watts, Michael R. (Albuquerque, NM); Shaw, Michael J. (Tijeras, NM); Nielson, Gregory N. (Albuquerque, NM); Lentine, Anthony L. (Albuquerque, NM)

    2010-02-23T23:59:59.000Z

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  16. Distributed Sensor Coordination for Advanced Energy Systems

    SciTech Connect (OSTI)

    Tumer, Kagan

    2013-07-31T23:59:59.000Z

    The ability to collect key system level information is critical to the safe, efficient and reli- able operation of advanced energy systems. With recent advances in sensor development, it is now possible to push some level of decision making directly to computationally sophisticated sensors, rather than wait for data to arrive to a massive centralized location before a decision is made. This type of approach relies on networked sensors (called “agents” from here on) to actively collect and process data, and provide key control deci- sions to significantly improve both the quality/relevance of the collected data and the as- sociating decision making. The technological bottlenecks for such sensor networks stem from a lack of mathematics and algorithms to manage the systems, rather than difficulties associated with building and deploying them. Indeed, traditional sensor coordination strategies do not provide adequate solutions for this problem. Passive data collection methods (e.g., large sensor webs) can scale to large systems, but are generally not suited to highly dynamic environments, such as ad- vanced energy systems, where crucial decisions may need to be reached quickly and lo- cally. Approaches based on local decisions on the other hand cannot guarantee that each agent performing its task (maximize an agent objective) will lead to good network wide solution (maximize a network objective) without invoking cumbersome coordination rou- tines. There is currently a lack of algorithms that will enable self-organization and blend the efficiency of local decision making with the system level guarantees of global decision making, particularly when the systems operate in dynamic and stochastic environments. In this work we addressed this critical gap and provided a comprehensive solution to the problem of sensor coordination to ensure the safe, reliable, and robust operation of advanced energy systems. The differentiating aspect of the proposed work is in shift- ing the focus towards “what to observe” rather than “how to observe” in large sensor networks, allowing the agents to actively determine both the structure of the network and the relevance of the information they are seeking to collect. In addition to providing an implicit coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Outcome Summary: All milestones associated with this project have been completed. In particular, private sensor objective functions were developed which are aligned with the global objective function, sensor effectiveness has been improved by using “sensor teams,” system efficiency has been improved by 30% using difference evaluation func- tions, we have demonstrated system reconfigurability for 20% changes in system con- ditions, we have demonstrated extreme scalability of our proposed algorithm, we have demonstrated that sensor networks can overcome disruptions of up to 20% in network conditions, and have demonstrated system reconfigurability to 20% changes in system conditions in hardware-based simulations. This final report summarizes how each of these milestones was achieved, and gives insight into future research possibilities past the work which has been completed. The following publications support these milestones [6, 8, 9, 10, 16, 18, 19].

  17. Proceedings of EARSeL-SIG-Workshop LIDAR, Dresden/FRG, June 16 17, 2000 EARSeL eProceedings No. 1 28

    E-Print Network [OSTI]

    Oldenburg, Carl von Ossietzky Universität

    and Development Center, Coastal and Hydraulics Laboratory, Joint Airborne Lidar Bathymetry Technical Center Hydrographic Operational Airborne Lidar Survey) system has been used to collect regional data gives an overview of SHOALS, the RSMDP and the SHOALS data sets that have been collected for the region

  18. TARSHA-KURDI, F., LANDES, T., GRUSSENMEYER, P., (2008). Extended RANSAC algorithm for automatic detection of building roof planes from Lidar data.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    2008-01-01T23:59:59.000Z

    detection of building roof planes from Lidar data. The Photogrammetric Journal of Finland. Vol. 21, n°1, 2008, pp.97-109. EXTENDED RANSAC ALGORITHM FOR AUTOMATIC DETECTION OF BUILDING ROOF PLANES FROM LIDAR the detection of 3D building roof planes are of crucial importance. For this purpose, this paper studies

  19. Novel Hall sensors developed for magnetic field imaging systems.

    SciTech Connect (OSTI)

    Cambel, V.; Karapetrov, G.; Novosad, V.; Bartolome, E.; Gregusova, D.; Fedor, J.; Kudela, R.; Soltys, J.; Materials Science Division; Slovak Academy of Sciences; Univ. Autonoma de Barcelona

    2007-09-01T23:59:59.000Z

    We report here on the fabrication and application of novel planar Hall sensors based on shallow InGaP/AlGaAs/GaAs heterostructure with a two-dimensional electron gas (2DEG) as an active layer. The sensors are developed for two kinds of experiments. In the first one, magnetic samples are placed directly on the Hall sensor. Room temperature experiments of permalloy objects evaporated onto the sensor are presented. In the second experiment, the sensor scans close over a multigranular superconducting sample prepared on a YBCO thin film. Large-area and high-resolution scanning experiments were performed at 4.2 K with the Hall probe scanning system in a liquid helium flow cryostat.

  20. Wireless Sensor Networks for Home Health Care

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    Wireless Sensor Networks for Home Health Care Chris R.Cooperation between wireless sensor networks and existingapplications of wireless sensor networks. In this paper we

  1. Special Issue on “Wireless Sensor Networks”

    E-Print Network [OSTI]

    Yao, Kung; Zhang, Qian; Zhao, Qing

    2009-01-01T23:59:59.000Z

    Special Issue on “Wireless Sensor Networks” Kung Yao & Qianand tracking, etc. Wireless sensor networks utilize theaspects of wireless sensor networks. The first paper, “

  2. Data Transport Control in Wireless Sensor Networks

    E-Print Network [OSTI]

    Zhang, Hongwei; Naik, Vinayak S

    2008-01-01T23:59:59.000Z

    Congestion in Wireless Sensor Networks. ACM SenSys SandeepJohn Anderson (2002). Wireless Sensor Networks for HabitatWorkshop on Wireless Sensor Networks and Applications Miklos

  3. Antenna-based "Smart Skin" Sensors for Sustainable, Wireless Sensor Networks

    E-Print Network [OSTI]

    Tentzeris, Manos

    Antenna-based "Smart Skin" Sensors for Sustainable, Wireless Sensor Networks Hoseon Leet, George-less, or sustainable, wireless sensor networks with "smart skin" sensor nodes. These sensors are highly applicable a wireless sensor network with smart sensors requires a lot of power due to the mass number of sensor nodes

  4. Piezoelectric Wafer Active Sensors Structural Health Monitoring

    E-Print Network [OSTI]

    Giurgiutiu, Victor

    portions of the fuselage #12;Dr. Victor Giurgiutiu - Univ. South Carolina3 Motivation ­ American Airlines Giurgiutiu - Univ. South Carolina5 The Opportunity The Need: - Integrated Vehicle Health Management system Victor Giurgiutiu (jurjutzu) University of South Carolina #12;Motivation: Aloha Airlines Boeing 737 April

  5. Sensor Fusion for Nuclear Proliferation Activity Monitoring

    SciTech Connect (OSTI)

    Adel Ghanem, Ph D

    2007-03-30T23:59:59.000Z

    The objective of Phase 1 of this STTR project is to demonstrate a Proof-of-Concept (PoC) of the Geo-Rad system that integrates a location-aware SmartTag (made by ZonTrak) and a radiation detector (developed by LLNL). It also includes the ability to transmit the collected radiation data and location information to the ZonTrak server (ZonService). The collected data is further transmitted to a central server at LLNL (the Fusion Server) to be processed in conjunction with overhead imagery to generate location estimates of nuclear proliferation and radiation sources.

  6. Category:Active Sensors | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:EzfeedflagBiomassSustainableCSLInformationMissouri:Catalyst2-M Probe Survey

  7. Sensor Characteristics Reference Guide

    SciTech Connect (OSTI)

    Cree, Johnathan V.; Dansu, A.; Fuhr, P.; Lanzisera, Steven M.; McIntyre, T.; Muehleisen, Ralph T.; Starke, M.; Banerjee, Pranab; Kuruganti, T.; Castello, C.

    2013-04-01T23:59:59.000Z

    The Buildings Technologies Office (BTO), within the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), is initiating a new program in Sensor and Controls. The vision of this program is: • Buildings operating automatically and continuously at peak energy efficiency over their lifetimes and interoperating effectively with the electric power grid. • Buildings that are self-configuring, self-commissioning, self-learning, self-diagnosing, self-healing, and self-transacting to enable continuous peak performance. • Lower overall building operating costs and higher asset valuation. The overarching goal is to capture 30% energy savings by enhanced management of energy consuming assets and systems through development of cost-effective sensors and controls. One step in achieving this vision is the publication of this Sensor Characteristics Reference Guide. The purpose of the guide is to inform building owners and operators of the current status, capabilities, and limitations of sensor technologies. It is hoped that this guide will aid in the design and procurement process and result in successful implementation of building sensor and control systems. DOE will also use this guide to identify research priorities, develop future specifications for potential market adoption, and provide market clarity through unbiased information

  8. A Wireless Sensor Network Air Pollution Monitoring System

    E-Print Network [OSTI]

    Khedo, Kavi K; Mungur, Avinash; Mauritius, University of; Mauritius,; 10.5121/ijwmn.2010.2203

    2010-01-01T23:59:59.000Z

    Sensor networks are currently an active research area mainly due to the potential of their applications. In this paper we investigate the use of Wireless Sensor Networks (WSN) for air pollution monitoring in Mauritius. With the fast growing industrial activities on the island, the problem of air pollution is becoming a major concern for the health of the population. We proposed an innovative system named Wireless Sensor Network Air Pollution Monitoring System (WAPMS) to monitor air pollution in Mauritius through the use of wireless sensors deployed in huge numbers around the island. The proposed system makes use of an Air Quality Index (AQI) which is presently not available in Mauritius. In order to improve the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithm named Recursive Converging Quartiles (RCQ). The algorithm is used to merge data to eliminate duplicates, filter out invalid readings and summarise them into a simpler form which significantly reduce the amount of dat...

  9. Structural vibration measurement and analysis using a novel digital sensor 

    E-Print Network [OSTI]

    Minier, Elizabeth Altagracia

    1992-01-01T23:59:59.000Z

    the sensors into the laminae of a composite material. The primary uses of these sensors include providing feedback signals to active vibration dampers and reporting the occurance of damage. It is the purview of the conceptual designer to exploit new.../QB = BN3903 NPN Transistor Figure 8. Schematic diagram of digital sensor circuit 24 will snap "high". Similarly as the signal falls below the reference level, the outputs will snap "low". The resulting signals are near-square wave outputs at two logic...

  10. Wireless sensor networks for measuring traffic

    E-Print Network [OSTI]

    Varaiya, Pravin

    Wireless sensor networks for measuring traffic University of California, Berkeley Sing Yiu Cheung, Sinem Coleri, and Pravin Varaiya 2 Outline · Traffic measurement · Wireless Sensor Networks · Vehicle wireless sensor networks compete? 7 Outline · Traffic measurement · Wireless Sensor Networks · Vehicle

  11. Integrated Mirco-Machined Hydrogen Gas Sensors

    SciTech Connect (OSTI)

    Frank DiMeoJr. Ing--shin Chen

    2005-12-15T23:59:59.000Z

    The widespread use of hydrogen as both an industrial process gas and an energy storage medium requires fast, selective detection of hydrogen gas. This report discusses the development of a new type of solid-state hydrogen gas sensor that couples novel metal hydride thin films with a MEMS (Micro-Electro-Mechanical System) structure known as a micro-hotplate. In this project, Micro-hotplate structures were overcoated with engineered multilayers that serve as the active hydrogen-sensing layer. The change in electrical resistance of these layers when exposed to hydrogen gas was the measured sensor output. This project focused on achieving the following objectives: (1) Demonstrating the capabilities of micro-machined H2 sensors; (2) Developing an understanding of their performance; (3) Critically evaluating the utility and viability of this technology for life safety and process monitoring applications. In order to efficiently achieve these objectives, the following four tasks were identified: (1) Sensor Design and Fabrication; (2) Short Term Response Testing; (3) Long Term Behavior Investigation; (4) Systems Development. Key findings in the project include: The demonstration of sub-second response times to hydrogen; measured sensitivity to hydrogen concentrations below 200 ppm; a dramatic improvement in the sensor fabrication process and increased understanding of the processing properties and performance relationships of the devices; the development of improved sensing multilayers; and the discovery of a novel strain based hydrogen detection mechanism. The results of this program suggest that this hydrogen sensor technology has exceptional potential to meet the stringent demands of life safety applications as hydrogen utilization and infrastructure becomes more prevalent.

  12. Unsupervised Activity Analysis and Monitoring Algorithms for Effective Surveillance Systems

    E-Print Network [OSTI]

    in escalators and at platforms as well as human presence at lift ) that provide a global view of the activ- ity of sensors deployed in the real world, being it in large scale sensor networks or closed-circuit television

  13. Capacitive proximity sensor

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-05-31T23:59:59.000Z

    A proximity sensor based on a closed field circuit is disclosed. The circuit comprises a ring oscillator using a symmetrical array of plates that creates an oscillating displacement current. The displacement current varies as a function of the proximity of objects to the plate array. Preferably the plates are in the form of a group of three pair of symmetric plates having a common center, arranged in a hexagonal pattern with opposing plates linked as a pair. The sensor produces logic level pulses suitable for interfacing with a computer or process controller. The proximity sensor can be incorporated into a load cell, a differential pressure gauge, or a device for measuring the consistency of a characteristic of a material where a variation in the consistency causes the dielectric constant of the material to change. 14 figs.

  14. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, Joseph B. (Harriman, TN); Muhs, Jeffrey D. (Lenoir City, TN); Tobin, Kenneth W. (Harriman, TN)

    1995-01-01T23:59:59.000Z

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  15. Optical displacement sensor

    DOE Patents [OSTI]

    Carr, Dustin W. (Albuquerque, NM)

    2008-04-08T23:59:59.000Z

    An optical displacement sensor is disclosed which uses a vertical-cavity surface-emitting laser (VCSEL) coupled to an optical cavity formed by a moveable membrane and an output mirror of the VCSEL. This arrangement renders the lasing characteristics of the VCSEL sensitive to any movement of the membrane produced by sound, vibrations, pressure changes, acceleration, etc. Some embodiments of the optical displacement sensor can further include a light-reflective diffractive lens located on the membrane or adjacent to the VCSEL to control the amount of lasing light coupled back into the VCSEL. A photodetector detects a portion of the lasing light from the VCSEL to provide an electrical output signal for the optical displacement sensor which varies with the movement of the membrane.

  16. Fiber optic vibration sensor

    DOE Patents [OSTI]

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10T23:59:59.000Z

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  17. Chemiresistor urea sensor

    DOE Patents [OSTI]

    Glass, Robert S. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A sensor to detect and quantify urea in fluids resulting from hemodialysis procedures, and in blood and other body fluids. The sensor is based upon a chemiresistor, which consists of an interdigitated array of metal fingers between which a resistance measured. The interdigitated array is fabricated on a suitable substrate. The surface of the array of fingers is covered with a coating containing the enzyme urease which catalyzes the hydrolysis of urea to form the ammonium ion, the bicarbonate ion, and hydroxide-chemical products which provide the basis for the measured signal. In a typical application, the sensor could be used at bedside, in conjunction with an appropriate electronics/computer system, in order to determine the hemodialysis endpoint. Also, the chemiresistor used to detect urea, can be utilized with a reference chemiresistor which does not contain urease, and connected in a differential measurement arrangement, such that the reference chemiresistor would cancel out any fluctuations due to background effects.

  18. ARM - Evaluation Product - MicroPulse LIDAR Cloud Optical Depth (MPLCOD)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006Datastreamstwrcam40m Documentation DataDatastreamsxsaprhsrhi1-minProductsMicroPulse LIDAR Cloud Optical Depth

  19. ARM - Field Campaign - NASA Coordinated Airborne CO2 Lidar Flight Test

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa- Polarization Diversity Lidar (PDL)govCampaignsMixed-Phase Arctic Cloud

  20. Tactile sensing using elastomeric sensors

    E-Print Network [OSTI]

    Jia, Xiaodan (Xiaodan Stella)

    2012-01-01T23:59:59.000Z

    GelSight, namely, elastomeric sensor, is a novel tactile sensor to get the 3D information of contacting surfaces. Using GelSight, some tactile properties, such as softness and roughness, could be gained through image ...

  1. Fluorescent temperature sensor

    DOE Patents [OSTI]

    Baker, Gary A [Los Alamos, NM; Baker, Sheila N [Los Alamos, NM; McCleskey, T Mark [Los Alamos, NM

    2009-03-03T23:59:59.000Z

    The present invention is a fluorescent temperature sensor or optical thermometer. The sensor includes a solution of 1,3-bis(1-pyrenyl)propane within a 1-butyl-1-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid solvent. The 1,3-bis(1-pyrenyl)propane remains unassociated when in the ground state while in solution. When subjected to UV light, an excited state is produced that exists in equilibrium with an excimer. The position of the equilibrium between the two excited states is temperature dependent.

  2. Chemical sensor system

    DOE Patents [OSTI]

    Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

    2002-01-01T23:59:59.000Z

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  3. Implantable medical sensor system

    DOE Patents [OSTI]

    Darrow, Christopher B. (Pleasanton, CA); Satcher, Jr., Joe H. (Modesto, CA); Lane, Stephen M. (Oakland, CA); Lee, Abraham P. (Walnut Creek, CA); Wang, Amy W. (Berkeley, CA)

    2001-01-01T23:59:59.000Z

    An implantable chemical sensor system for medical applications is described which permits selective recognition of an analyte using an expandable biocompatible sensor, such as a polymer, that undergoes a dimensional change in the presence of the analyte. The expandable polymer is incorporated into an electronic circuit component that changes its properties (e.g., frequency) when the polymer changes dimension. As the circuit changes its characteristics, an external interrogator transmits a signal transdermally to the transducer, and the concentration of the analyte is determined from the measured changes in the circuit. This invention may be used for minimally invasive monitoring of blood glucose levels in diabetic patients.

  4. Sensors & Measurement | Clean Energy | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Electronics Systems Research Sustainable Electricity Systems Biology Transportation Clean Energy Home | Science & Discovery | Clean Energy | Research Areas | Sensors &...

  5. Open Standards for Sensor Information Processing

    SciTech Connect (OSTI)

    Pouchard, Line Catherine [ORNL; Poole, Stephen W [ORNL; Lothian, Josh [ORNL

    2009-07-01T23:59:59.000Z

    This document explores sensor standards, sensor data models, and computer sensor software in order to determine the specifications and data representation best suited for analyzing and monitoring computer system health using embedded sensor data. We review IEEE 1451, OGC Sensor Model Language and Transducer Model Language (TML), lm-sensors and Intelligent Platform Management Inititative (IPMI).

  6. Future Directions for Magnetic Sensors

    E-Print Network [OSTI]

    and Engineering Laboratory Magnetic tunnel junction (MTJ) sensors are rapidly becoming the technology of choiceFuture Directions for Magnetic Sensors: HYBRIDMATERIALS Our goal is to develop the scientific expertise needed to allow modeling and simulation to become the driving force in improving magnetic sensors

  7. Shape memory alloy thaw sensors

    SciTech Connect (OSTI)

    Shahinpoor, Mohsen (Albuquerque, NM); Martinez, David R. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the Austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states.

  8. Sensor system for web inspection

    DOE Patents [OSTI]

    Sleefe, Gerard E. (1 Snowcap Ct., Cedar Crest, NM 87008); Rudnick, Thomas J. (626 E. Jackson Rd., St. Louis, MO 63119); Novak, James L. (11048 Malaguena La. NE., Albuquerque, NM 87111)

    2002-01-01T23:59:59.000Z

    A system for electrically measuring variations over a flexible web has a capacitive sensor including spaced electrically conductive, transmit and receive electrodes mounted on a flexible substrate. The sensor is held against a flexible web with sufficient force to deflect the path of the web, which moves relative to the sensor.

  9. Sensors and Controls Workshop Summary Report

    SciTech Connect (OSTI)

    Susan Maley; Robert R. Romanosky

    2001-11-30T23:59:59.000Z

    Higher operating efficiencies, emission reductions, improved reliability, and lower operating costs are benefits that the power industry can realize with the utilization of sensors and controls. However, for the power industry to derive the maximum benefit from sensors and controls, improvements in existing technologies and novel approaches to challenging measurements are needed. Recognizing the importance of sensors and controls, the U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) sponsored a sensors and controls workshop on April 17 to 18, 2001, in Washington, DC. The workshop focused on identifying technology needs in sensors and controls for existing fossil-energy power plants as well as future facilities conceived under the Vision 21 Program. Forty-six experts from 29 organizations, including private industry, research laboratories, academia, and government agencies, attended the workshop. The meeting opened with keynote speakers from NETL and the private sector. NETL officials spoke of the Vision 21 and advanced research programs. Speakers from the Electric Power Research Institute (EPRI) and Delphi Automotive Systems Research Laboratory discussed the improvements realized with their respective operation through the use of sensors and controls. NETL keynote speakers Robert Romanosky and Carl Bauer emphasized that developing sensor and control systems plays a critical role in DOE Office of Fossil Energy Vision 21 Program, clean coal activities under the Power Plant Improvement Initiative, and the proposed Clean Coal Power Initiative. The Vision 21 Program is aimed at providing technologies for ultra-clean fossil-fuel-based energy production with 60- to 75-percent efficiencies and near zero emissions. The program also uses a modular approach to present opportunities to not only generate power, but also co-produce clean fuels, chemicals, steam, and other useful products. The ultra-high efficiency and environmental performance goals of the Vision 21 Program mean that facilities must operate at optimum conditions, while adapting in real-time to changes in load and feedstock. These are challenging performance goals. They will require advanced control and sensing systems that can be adapted and optimized in real time. To improve the overall plant performance of existing power plants, one of the most cost-effective methods is to update the sensor and control systems.

  10. IN-LINE CHEMICAL SENSOR DEPLOYMENT IN A TRITIUM PLANT

    SciTech Connect (OSTI)

    Tovo, L.; Wright, J.; Torres, R.; Peters, B.

    2013-10-02T23:59:59.000Z

    The Savannah River Tritium Plant (TP) relies on well understood but aging sensor technology for process gas analysis. Though new sensor technologies have been brought to various readiness levels, the TP has been reluctant to install technologies that have not been tested in tritium service. This gap between sensor technology development and incorporating new technologies into practical applications demonstrates fundamental challenges that exist when transitioning from status quo to state-of-the-art in an extreme environment such as a tritium plant. These challenges stem from three root obstacles: 1) The need for a comprehensive assessment of process sensing needs and requirements; 2) The lack of a pick-list of process-compatible sensor technologies; and 3) The need to test technologies in a tritium-contaminated process environment without risking production. At Savannah River, these issues are being addressed in a two phase project. In the first phase, TP sensing requirements were determined by a team of process experts. Meanwhile, Savannah River National Laboratory sensor experts identified candidate technologies and related them to the TP processing requirements. The resulting roadmap links the candidate technologies to actual plant needs. To provide accurate assessments of how a candidate sensor technology would perform in a contaminated process environment, an instrument demonstration station was established within a TP glove box. This station was fabricated to TP process requirements and designed to handle high activity samples. The combination of roadmap and demonstration station provides the following assets: ? Creates a partnership between the process engineers and researchers for sensor selection, maturation, and insertion, ? Selects the right sensors for process conditions ? Provides a means for safely inserting new sensor technology into the process without risking production, and ? Provides a means to evaluate off normal occurrences where and when they occur. This paper discusses the process to identify and demonstrate new sensor technologies for the Savannah River TP.

  11. Hierarchical Nanoceramics for Industrial Process Sensors

    SciTech Connect (OSTI)

    Ruud, James, A.; Brosnan, Kristen, H.; Striker, Todd; Ramaswamy, Vidya; Aceto, Steven, C.; Gao, Yan; Willson, Patrick, D.; Manoharan, Mohan; Armstrong, Eric, N., Wachsman, Eric, D.; Kao, Chi-Chang

    2011-07-15T23:59:59.000Z

    This project developed a robust, tunable, hierarchical nanoceramics materials platform for industrial process sensors in harsh-environments. Control of material structure at multiple length scales from nano to macro increased the sensing response of the materials to combustion gases. These materials operated at relatively high temperatures, enabling detection close to the source of combustion. It is anticipated that these materials can form the basis for a new class of sensors enabling widespread use of efficient combustion processes with closed loop feedback control in the energy-intensive industries. The first phase of the project focused on materials selection and process development, leading to hierarchical nanoceramics that were evaluated for sensing performance. The second phase focused on optimizing the materials processes and microstructures, followed by validation of performance of a prototype sensor in a laboratory combustion environment. The objectives of this project were achieved by: (1) synthesizing and optimizing hierarchical nanostructures; (2) synthesizing and optimizing sensing nanomaterials; (3) integrating sensing functionality into hierarchical nanostructures; (4) demonstrating material performance in a sensing element; and (5) validating material performance in a simulated service environment. The project developed hierarchical nanoceramic electrodes for mixed potential zirconia gas sensors with increased surface area and demonstrated tailored electrocatalytic activity operable at high temperatures enabling detection of products of combustion such as NOx close to the source of combustion. Methods were developed for synthesis of hierarchical nanostructures with high, stable surface area, integrated catalytic functionality within the structures for gas sensing, and demonstrated materials performance in harsh lab and combustion gas environments.

  12. Thick film hydrogen sensor

    DOE Patents [OSTI]

    Hoffheins, Barbara S. (Knoxville, TN); Lauf, Robert J. (Oak Ridge, TN)

    1995-01-01T23:59:59.000Z

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  13. Carbon dioxide sensor

    DOE Patents [OSTI]

    Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

    2011-11-15T23:59:59.000Z

    The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

  14. Lean blowoff detection sensor

    SciTech Connect (OSTI)

    Thornton, Jimmy (Morgantown, WV); Straub, Douglas L. (Morgantown, WV); Chorpening, Benjamin T. (Morgantown, WV); Huckaby, David (Morgantown, WV)

    2007-04-03T23:59:59.000Z

    Apparatus and method for detecting incipient lean blowoff conditions in a lean premixed combustion nozzle of a gas turbine. A sensor near the flame detects the concentration of hydrocarbon ions and/or electrons produced by combustion and the concentration monitored as a function of time are used to indicate incipient lean blowoff conditions.

  15. Lidar Investigation of Tropical Nocturnal Boundary Layer Aerosols and Cloud Macrophysics

    SciTech Connect (OSTI)

    Manoj, M. G.; Devara, PC S.; Taraphdar, Sourav

    2013-10-01T23:59:59.000Z

    Observational evidence of two-way association between nocturnal boundary layer aerosols and cloud macrophysical properties under different meteorological conditions is reported in this paper. The study has been conducted during 2008-09 employing a high space-time resolution polarimetric micro-pulse lidar over a tropical urban station in India. Firstly, the study highlights the crucial role of boundary layer aerosols and background meteorology on the formation and structure of low-level stratiform clouds in the backdrop of different atmospheric stability conditions. Turbulent mixing induced by the wind shear at the station, which is associated with a complex terrain, is found to play a pivotal role in the formation and structural evolution of nocturnal boundary layer clouds. Secondly, it is shown that the trapping of energy in the form of outgoing terrestrial radiation by the overlying low-level clouds can enhance the aerosol mixing height associated with the nocturnal boundary layer. To substantiate this, the long-wave heating associated with cloud capping has been quantitatively estimated in an indirect way by employing an Advanced Research Weather Research and Forecasting (WRF-ARW) model version 2.2 developed by National Center for Atmospheric Research (NCAR), Colorado, USA, and supplementary data sets; and differentiated against other heating mechanisms. The present investigation as well establishes the potential of lidar remote-sensing technique in exploring some of the intriguing aspects of the cloud-environment relationship.

  16. Lidar Measurements of the Vertical Distribution of Aerosol Optical and Physical Properties over Central Asia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chen, Boris B.; Sverdlik, Leonid G.; Imashev, Sanjar A.; Solomon, Paul A.; Lantz, Jeffrey; Schauer, James J.; Shafer, Martin M.; Artamonova, Maria S.; Carmichael, Gregory R.

    2013-01-01T23:59:59.000Z

    The vertical structure of aerosol optical and physical properties was measured by Lidar in Eastern Kyrgyzstan, Central Asia, from June 2008 to May 2009. Lidar measurements were supplemented with surface-based measurements of PM2.5and PM10mass and chemical composition in both size fractions. Dust transported into the region is common, being detected 33% of the time. The maximum frequency occurred in the spring of 2009. Dust transported to Central Asia comes from regional sources, for example, Taklimakan desert and Aral Sea basin, and from long-range transport, for example, deserts of Arabia, Northeast Africa, Iran, and Pakistan. Regional sources are characterized by pollutionmore »transport with maximum values of coarse particles within the planetary boundary layer, aerosol optical thickness, extinction coefficient, integral coefficient of aerosol backscatter, and minimum values of the Ĺngström exponent. Pollution associated with air masses transported over long distances has different characteristics during autumn, winter, and spring. During winter, dust emissions were low resulting in high values of the Ĺngström exponent (about 0.51) and the fine particle mass fraction (64%). Dust storms were more frequent during spring with an increase in coarse dust particles in comparison to winter. The aerosol vertical profiles can be used to lower uncertainty in estimating radiative forcing.« less

  17. Quantifying and relating land-surface and subsurface variability in permafrost environments using LiDAR and surface geophysical

    E-Print Network [OSTI]

    LiDAR and surface geophysical datasets S. S. Hubbard & C. Gangodagamage & B. Dafflon & H. Wainwright. Wullschleger Abstract The value of remote sensing and surface geophysical data for characterizing the spatial to extract geomorphic metrics, which potentially indicate drainage potential. Geophysical data were used

  18. Lidar observations of polar mesospheric clouds at Rothera, Antarctica (67.5S, 68.0W)

    E-Print Network [OSTI]

    Chu, Xinzhao

    Chu,1 Graeme J. Nott,2 Patrick J. Espy,2 Chester S. Gardner,1 Jan C. Diettrich,2 Mark A. Clilverd,2 and Martin J. Jarvis2 Received 15 September 2003; revised 15 October 2003; accepted 30 October 2003. Diettrich, M. A. Clilverd, and M. J. Jarvis (2004), Lidar observations of polar mesospheric clouds

  19. A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 slicing

    E-Print Network [OSTI]

    Sheridan, Jennifer

    A comparison of cloud top heights computed from airborne lidar and MAS radiance data using CO2 in assessing the accuracy of the CO2-slicing cloud height algorithm. Infrared measurements of upwelling which included various single- layer and multilayer cloud conditions. Overall, the CO2-slicing method

  20. Estimating forest structural characteristics with airborne lidar scanning and a near-real time profiling laser systems

    E-Print Network [OSTI]

    Zhao, Kaiguang

    2009-05-15T23:59:59.000Z

    for realtime remote sensing platforms, e.g., to provide timely information for urgent applications. This study aims to develop an airborne profiling LiDAR system, featured with on-the-fly data processing, for near real- or real- time forest inventory...

  1. Using LiDAR and normalized difference vegetation index to remotely determine LAI and percent canopy cover at varying scales

    E-Print Network [OSTI]

    Griffin, Alicia Marie Rutledge

    2009-05-15T23:59:59.000Z

    The use of airborne LiDAR (Light Detection and Ranging) as a direct method to evaluate forest canopy parameters is vital in addressing both forest management and ecological concerns. The overall goal of this study was to develop the use of airborne...

  2. Field Test Results from Lidar Measured Yaw Control for Improved Yaw Alignment with the NREL Controls Advanced Research Turbine: Preprint

    SciTech Connect (OSTI)

    Scholbrock, A.; Fleming, P.; Wright, A.; Slinger, C.; Medley, J.; Harris, M.

    2014-12-01T23:59:59.000Z

    This paper describes field tests of a light detection and ranging (lidar) device placed forward looking on the nacelle of a wind turbine and used as a wind direction measurement to directly control the yaw position of a wind turbine. Conventionally, a wind turbine controls its yaw direction using a nacelle-mounted wind vane. If there is a bias in the measurement from the nacelle-mounted wind vane, a reduction in power production will be observed. This bias could be caused by a number of issues such as: poor calibration, electromagnetic interference, rotor wake, or other effects. With a lidar mounted on the nacelle, a measurement of the wind could be made upstream of the wind turbine where the wind is not being influenced by the rotor's wake or induction zone. Field tests were conducted with the lidar measured yaw system and the nacelle wind vane measured yaw system. Results show that a lidar can be used to effectively measure the yaw error of the wind turbine, and for this experiment, they also showed an improvement in power capture because of reduced yaw misalignment when compared to the nacelle wind vane measured yaw system.

  3. Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Measurements at PEARL

    E-Print Network [OSTI]

    Eloranta, Edwin W.

    Arctic-Winter Climatology and Radiative Effects of Clouds and Aerosols Based on Lidar and Radar Atmospheric Radiative Transfer (SBDART) code. Results on the climatology and radiative effects of clouds, arctic regions are the site of interactions between aerosols, clouds, radiation and precipitations

  4. Emissive sensors and devices incorporating these sensors

    DOE Patents [OSTI]

    Swager, Timothy M; Zhang, Shi-Wei

    2013-02-05T23:59:59.000Z

    The present invention generally relates to luminescent and/or optically absorbing compositions and/or precursors to those compositions, including solid films incorporating these compositions/precursors, exhibiting increased luminescent lifetimes, quantum yields, enhanced stabilities and/or amplified emissions. The present invention also relates to sensors and methods for sensing analytes through luminescent and/or optically absorbing properties of these compositions and/or precursors. Examples of analytes detectable by the invention include electrophiles, alkylating agents, thionyl halides, and phosphate ester groups including phosphoryl halides, cyanides and thioates such as those found in certain chemical warfare agents. The present invention additionally relates to devices and methods for amplifying emissions, such as those produced using the above-described compositions and/or precursors, by incorporating the composition and/or precursor within a polymer having an energy migration pathway. In some cases, the compositions and/or precursors thereof include a compound capable of undergoing a cyclization reaction.

  5. Nuclear sensor signal processing circuit

    DOE Patents [OSTI]

    Kallenbach, Gene A. (Bosque Farms, NM); Noda, Frank T. (Albuquerque, NM); Mitchell, Dean J. (Tijeras, NM); Etzkin, Joshua L. (Albuquerque, NM)

    2007-02-20T23:59:59.000Z

    An apparatus and method are disclosed for a compact and temperature-insensitive nuclear sensor that can be calibrated with a non-hazardous radioactive sample. The nuclear sensor includes a gamma ray sensor that generates tail pulses from radioactive samples. An analog conditioning circuit conditions the tail-pulse signals from the gamma ray sensor, and a tail-pulse simulator circuit generates a plurality of simulated tail-pulse signals. A computer system processes the tail pulses from the gamma ray sensor and the simulated tail pulses from the tail-pulse simulator circuit. The nuclear sensor is calibrated under the control of the computer. The offset is adjusted using the simulated tail pulses. Since the offset is set to zero or near zero, the sensor gain can be adjusted with a non-hazardous radioactive source such as, for example, naturally occurring radiation and potassium chloride.

  6. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground.

  7. Two terminal micropower radar sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1995-11-07T23:59:59.000Z

    A simple, low power ultra-wideband radar motion sensor/switch configuration connects a power source and load to ground. The switch is connected to and controlled by the signal output of a radar motion sensor. The power input of the motion sensor is connected to the load through a diode which conducts power to the motion sensor when the switch is open. A storage capacitor or rechargeable battery is connected to the power input of the motion sensor. The storage capacitor or battery is charged when the switch is open and powers the motion sensor when the switch is closed. The motion sensor and switch are connected between the same two terminals between the source/load and ground. 3 figs.

  8. Hydrocarbon sensors and materials therefor

    DOE Patents [OSTI]

    Pham, Ai Quoc (San Jose, CA); Glass, Robert S. (Livermore, CA)

    2000-01-01T23:59:59.000Z

    An electrochemical hydrocarbon sensor and materials for use in sensors. A suitable proton conducting electrolyte and catalytic materials have been found for specific application in the detection and measurement of non-methane hydrocarbons. The sensor comprises a proton conducting electrolyte sandwiched between two electrodes. At least one of the electrodes is covered with a hydrocarbon decomposition catalyst. Two different modes of operation for the hydrocarbon sensors can be used: equilibrium versus non-equilibrium measurements and differential catalytic. The sensor has particular application for on-board monitoring of automobile exhaust gases to evaluate the performance of catalytic converters. In addition, the sensor can be utilized in monitoring any process where hydrocarbons are exhausted, for instance, industrial power plants. The sensor is low cost, rugged, sensitive, simple to fabricate, miniature, and does not suffer cross sensitivities.

  9. U.S. IOOS Regional Association Ocean Acidificiation Monitoring Activities April 2013 update

    E-Print Network [OSTI]

    Activity Funding Source ACT FY12 ­ pH sensor evaluation ACT Fy10 and FY11 ­ pCO2 sensor evaluation ACT and biogeochemical controls on OA. AOOS AOOS contributes funds to a consortium to support maintenance of OA sensors, AOOS funds were used to add OA sensors to an NSF-funded mooring in the Chukchi Sea, enabling

  10. Cloud Effects on Radiative Heating Rate Profiles over Darwin using ARM and A-train Radar/Lidar Observations

    SciTech Connect (OSTI)

    Thorsen, Tyler J.; Fu, Qiang; Comstock, Jennifer M.

    2013-06-11T23:59:59.000Z

    Observations of clouds from the ground-based U.S. Department of Energy Atmospheric Radiation Measurement program (ARM) and satellite-based A-train are used to compute cloud radiative forcing profiles over the ARM Darwin, Australia site. Cloud properties are obtained from both radar (the ARM Millimeter Cloud Radar (MMCR) and the CloudSat satellite in the A-train) and lidar (the ARM Micropulse lidar (MPL) and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite in the A-train) observations. Cloud microphysical properties are taken from combined radar and lidar retrievals for ice clouds and radar only or lidar only retrievals for liquid clouds. Large, statistically significant differences of up to 1.43 K/day exist between the mean ARM and A-train net cloud radiative forcing profiles. The majority of the difference in cloud radiative forcing profiles is shown to be due to a large difference in the cloud fraction above 12 km. Above this altitude the A-train cloud fraction is significantly larger because more clouds are detected by CALIPSO than by the ground-based MPL. It is shown that the MPL is unable to observe as many high clouds as CALIPSO due to being more frequently attenuated and a poorer sensitivity even in otherwise clear-sky conditions. After accounting for cloud fraction differences and instrument sampling differences due to viewing platform we determined that differences in cloud radiative forcing due to the retrieved ice cloud properties is relatively small. This study demonstrates that A-train observations are better suited for the calculation cloud radiative forcing profiles. In addition, we find that it is necessary to supplement CloudSat with CALIPSO observations to obtain accurate cloud radiative forcing profiles since a large portion of clouds at Darwin are detected by CALIPSO only.

  11. Sensor Development and Readout Prototyping for the STAR Pixel Detector

    SciTech Connect (OSTI)

    Greiner, L.; Anderssen, E.; Matis, H.S.; Ritter, H.G.; Stezelberger, T.; Szelezniak, M.; Sun, X.; Vu, C.; Wieman, H.

    2009-01-14T23:59:59.000Z

    The STAR experiment at the Relativistic Heavy Ion Collider (RHIC) is designing a new vertex detector. The purpose of this upgrade detector is to provide high resolution pointing to allow for the direct topological reconstruction of heavy flavor decays such as the D{sup 0} by finding vertices displaced from the collision vertex by greater than 60 microns. We are using Monolithic Active Pixel Sensor (MAPS) as the sensor technology and have a coupled sensor development and readout system plan that leads to a final detector with a <200 {micro}s integration time, 400 M pixels and a coverage of -1 < {eta} < 1. We present our coupled sensor and readout development plan and the status of the prototyping work that has been accomplished.

  12. INSENS sensor system

    SciTech Connect (OSTI)

    Myers, D.W.; Baker, J.; Benzel, D.M.; Fuess, D.A.

    1993-09-29T23:59:59.000Z

    This paper describes an unattended ground sensor system that has been developed for the immigration and Naturalization Service (INS). The system, known as INSENS, was developed at the Lawrence Livermore National Laboratory for use by the United States Border Patrol. This system assists in the detection of illegal entry of aliens and contraband (illegal drugs, etc.) into the United States along its land borders. Key to the system is its flexible modular design which allows future software and hardware enhancements to the system without altering the fundamental architecture of the system. Elements of the system include a sensor system capable of processing signals from multiple directional probes, a repeater system, and a handheld monitor system. Seismic, passive infrared (PIR), and magnetic probes are currently supported. The design of the INSENS system elements and their performance are described.

  13. Ultra-wideband impedance sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks.

  14. Ultra-wideband impedance sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1999-03-16T23:59:59.000Z

    The ultra-wideband impedance sensor (UWBZ sensor, or Z-sensor) is implemented in differential and single-ended configurations. The differential UWBZ sensor employs a sub-nanosecond impulse to determine the balance of an impedance bridge. The bridge is configured as a differential sample-and-hold circuit that has a reference impedance side and an unknown impedance side. The unknown impedance side includes a short transmission line whose impedance is a function of the near proximity of objects. The single-ended UWBZ sensor eliminates the reference side of the bridge and is formed of a sample and hold circuit having a transmission line whose impedance is a function of the near proximity of objects. The sensing range of the transmission line is bounded by the two-way travel time of the impulse, thereby eliminating spurious Doppler modes from large distant objects that would occur in a microwave CW impedance bridge. Thus, the UWBZ sensor is a range-gated proximity sensor. The Z-sensor senses the near proximity of various materials such as metal, plastic, wood, petroleum products, and living tissue. It is much like a capacitance sensor, yet it is impervious to moisture. One broad application area is the general replacement of magnetic sensors, particularly where nonferrous materials need to be sensed. Another broad application area is sensing full/empty levels in tanks, vats and silos, e.g., a full/empty switch in water or petroleum tanks. 2 figs.

  15. Small, Inexpensive Combined NOx Sensor and O2 Sensor

    SciTech Connect (OSTI)

    W. N. Lawless; C. F. Clark, Jr.

    2008-09-08T23:59:59.000Z

    It has been successfully demonstrated in this program that a zirconia multilayer structure with rhodium-based porous electrodes performs well as an amperometric NOx sensor. The sensitivity of the sensor bodies operating at 650 to 700 C is large, with demonstrated current outputs of 14 mA at 500 ppm NOx from sensors with 30 layers. The sensor bodies are small (4.5 x 4.2 x 3.1 mm), rugged, and inexpensive. It is projected the sensor bodies will cost $5 - $10 in production. This program has built on another successful development program for an oxygen sensor based on the same principles and sponsored by DOE. This oxygen sensor is not sensitive to NOx. A significant technical hurdle has been identified and solved. It was found that the 100% Rh electrodes oxidize rapidly at the preferred operating temperatures of 650 - 700 C, and this oxidation is accompanied by a volume change which delaminates the sensors. The problem was solved by using alloys of Rh and Pt. It was found that a 10%/90% Rh/Pt alloy dropped the oxidation rate of the electrodes by orders of magnitude without degrading the NOx sensitivity of the sensors, allowing long-term stable operation at the preferred operating temperatures. Degradation in the sensor output caused by temperature cycling was identified as a change in resistance at the junction between the sensor body and the external leads attached to the sensor body. The degradation was eliminated by providing strong mechanical anchors for the wire and processing the junctions to obtain good electrical bonds. The NOx sensors also detect oxygen and therefore the fully-packaged sensor needs to be enclosed with an oxygen sensor in a small, heated zirconia chamber exposed to test gas through a diffusion plug which limits the flow of gas from the outside. Oxygen is pumped from the interior of the chamber to lower the oxygen content and the combination of measurements from the NOx and oxygen sensors yields the NOx content of the gas. Two types of electronic control units were designed and built. One control unit provides independent constant voltages to the NOx and oxygen sensors and reads the current from them (that is, detects the amount of test gas present). The second controller holds the fully-assembled sensor at the desired operating temperature and controllably pumps excess oxygen from the test chamber. While the development of the sensor body was a complete success, the development of the packaging was only partially successful. All of the basic principles were demonstrated, but the packaging was too complex to optimize the operation within the resources of the program. Thus, no fully-assembled sensors were sent to outside labs for testing of cross-sensitivities, response times, etc. Near the end of the program, Sensata Technologies of Attleboro, MA tested the sensor bodies and confirmed the CeramPhysics measurements as indicated in the following attached letter. Sensata was in the process of designing their own packaging for the sensor and performing cross-sensitivity tests when they stopped all sensor development work due to the automotive industry downturn. Recently Ceramatec Inc. of Salt Lake City has expressed an interest in testing the sensor, and other licensing opportunities are being pursued.

  16. Sensor Network Demonstration for In Situ Decommissioning - 13332

    SciTech Connect (OSTI)

    Lagos, L.; Varona, J.; Awwad, A. [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States)] [Applied Research Center, Florida International University, 10555 West Flagler Street, Suite 2100, Miami, FL 33174 (United States); Rivera, J.; McGill, J. [Department of Energy - DOE, Environmental Management Office (United States)] [Department of Energy - DOE, Environmental Management Office (United States)

    2013-07-01T23:59:59.000Z

    Florida International University's (FIU's) Applied Research Center is currently supporting the Department of Energy's (DOE) Environmental Management Office of D and D and Facility Engineering program. FIU is supporting DOE's initiative to improve safety, reduce technical risks, and limit uncertainty within D and D operations by identifying technologies suitable to meet specific facility D and D requirements, assessing the readiness of those technologies for field deployment, and conducting feasibility studies and large scale demonstrations of promising technologies. During FY11, FIU collaborated with Savannah River National Laboratory in the development of an experimental test site for the demonstration of multiple sensor systems for potential use in the in situ decommissioning process. In situ decommissioning is a process in which the above ground portion of a facility is dismantled and removed, and the underground portion is filled with a cementious material such as grout. In such a scenario, the question remains on how to effectively monitor the structural health of the grout (cracking, flexing, and sinking), as well as track possible migration of contaminants within and out of the grouted monolith. The right types of sensors can aid personnel in better understanding the conditions within the entombed structure. Without sensors embedded in and around the monolith, it will be very difficult to estimate structural integrity and contaminant transport. Yet, to fully utilize the appropriate sensors and the provided data, their performance and reliability must be evaluated outside a laboratory setting. To this end, a large scale experimental setup and demonstration was conducted at FIU. In order to evaluate a large suite of sensor systems, FIU personnel designed and purchased a pre-cast concrete open-top cube, which served as a mock-up of an in situ DOE decommissioned facility. The inside of the cube measures 10 ft x 10 ft x 8 ft. In order to ensure that the individual sensors would be immobilized during the grout pouring activities, a set of nine sensor racks were designed. The 270 sensors provided by Idaho National Laboratory (INL), Mississippi State University (MSU), University of Houston (UH), and University of South Carolina (USC) were secured to these racks based on predetermined locations. Once sensor racks were installed inside the test cube, connected and debugged, approximately 32 cubic yards of special grout material was used to entomb the sensors. MSU provided and demonstrated four types of fiber loop ring-down (FLR) sensors for detection of water, temperature, cracks, and movement of fluids. INL provided and demonstrated time differenced 3D electrical resistivity tomography (ERT), advanced tensiometers for moisture content, and thermocouples for temperature measurements. University of Houston provided smart aggregate (SA) sensors, which detect crack severity and water presence. An additional UH sensor system demonstrated was a Fiber Bragg Grating (FBG) fiber optic system measuring strain, presence of water, and temperature. USC provided a system which measured acoustic emissions during cracking, as well as temperature and pH sensors. All systems were connected to a Sensor Remote Access System (SRAS) data networking and collection system designed, developed and provided by FIU. The purpose of SRAS was to collect and allow download of the raw sensor data from all the sensor system, as well as allow upload of the processed data and any analysis reports and graphs. All this information was made available to the research teams via the Deactivation and Decommissioning Knowledge Management and Information Tool (D and D KM-IT). As a current research effort, FIU is performing an energy analysis, and transferring several sensor systems to a Photovoltaic (PV) System to continuously monitor energy consumption parameters and overall power demands. Also, One final component of this research is focusing on developing an integrated data network to capture, log and analyze sensor system data in near real time from a single inte

  17. Rotational rate sensor

    DOE Patents [OSTI]

    Hunter, Steven L. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    A rate sensor for angular/rotational acceleration includes a housing defining a fluid cavity essentially completely filled with an electrolyte fluid. Within the housing, such as a toroid, ions in the fluid are swept during movement from an excitation electrode toward one of two output electrodes to provide a signal for directional rotation. One or more ground electrodes within the housing serve to neutralize ions, thus preventing any effect at the other output electrode.

  18. NOx Sensor Development

    SciTech Connect (OSTI)

    Woo, L Y; Glass, R S

    2009-10-27T23:59:59.000Z

    The objectives of this report are: (1) Develop an inexpensive, rapid-response, high-sensitivity and selective electrochemical sensor for oxides of nitrogen (NO{sub x}) for compression-ignition, direct-injection (CIDI) exhaust gas monitoring; (2) Explore and characterize novel, effective sensing methodologies based on impedance measurements; (3) Explore designs and manufacturing methods that could be compatible with mass fabrication; and (4) Collaborate with industry in order to (ultimately) transfer the technology to a supplier for commercialization.

  19. Final report on the PNL program to develop an alumina sensor. Sensors Development Program

    SciTech Connect (OSTI)

    Windisch, C.F. Jr.; Brenden, B.B.; Koski, O.H.; Williford, R.E.

    1992-10-01T23:59:59.000Z

    An alumina concentration sensor was required to ensure safe operating conditions for cermet inert anodes that were under development at the Pacific Northwest Laboratory (PNL)(a) for the electrolytic production of aluminum metal. The Sensors Development Program at PNL was conducted in response to this need for an alumina sensor. In all, eight different approaches to developing an alumina sensor were evaluated as part of this program. Each approach sought to correlate alumina concentration either to some spectral, physical, or electrical property of the molten electrolytic, or alternatively, to some operational characteristic of the reduction cell such as the integrity of the cermet anodes or the electrical noise generated by them during cell operation. The studies on electrical noise were performed using a large number of digital signal analysis (DSA) methods. There were two primary requirements for success for an alumina sensor to be used in conjunction with cermet anodes: (1) adequate sensitivity to alumina concentration at concentrations close to saturation, and (2) ease of use in an industrial setting. After numerous laboratory experiments as well as field studies in some cases, it was concluded that none of the approaches sufficiently satisfied the two criteria to serve as the basis for an alumina sensor. If further work is to continue in this area, it is recommended that the research focus on altemative DSA approaches, primarily because DSA methods would be so easy to use in an industrial environment. Due to the lack of correlation using DSA in the present work, however, it is recommended that altemative strategies for data collection and analysis be used in any further development activities.

  20. Deriving a Framework for Estimating Individual Tree Measurements with Lidar for Use in the TAMBEETLE Southern Pine Beetle Infestation Growth Model

    E-Print Network [OSTI]

    Stukey, Jared D.

    2011-02-22T23:59:59.000Z

    The overall goal of this study was to develop a framework for using airborne lidar to derive inputs for the SPB infestation growth model TAMBEETLE. The specific objectives were (1) to estimate individual tree characteristics of XY location...

  1. Sedimentological Reinterpretation of Surficial Unconsolidated Debris Flows and Stream Deposits of the Southern Flanks of Grand Mesa, CO: An Integrated LiDAR Approach

    E-Print Network [OSTI]

    Blakeley, Mitchell W.

    2014-08-08T23:59:59.000Z

    . This study developed a sedimentological description and interpretation of these deposits and tested the capabilities of terrestrial LiDAR (Light Detection and Ranging) for use in sedimentological studies. This research addressed the origin of the deposits...

  2. Sensors 2010, 10, 5872-5887; doi:10.3390/s100605872 ISSN 1424-8220

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    a pre-defined reference speed, to economize on fuel or energy consumption, to avoid speeding fines; sensorial fusion; RFID; autonomous vehicle OPEN ACCESS #12;Sensors 2010, 10 5873 1. Introduction Road.mdpi.com/journal/sensors Article An RFID-Based Intelligent Vehicle Speed Controller Using Active Traffic Signals Joshué Pérez

  3. Optimal Deployment of Large Wireless Sensor Networks

    E-Print Network [OSTI]

    Toumpis, Stavros

    1 Optimal Deployment of Large Wireless Sensor Networks S. Toumpis, Member, IEEE, and Leandros, Sensor networks. I. INTRODUCTION A. Wireless Sensor Networks Wireless sensor networks are comprised of sensors that are equipped with wireless transceivers and so are able to form a wireless network [3

  4. Optimal Deployment of Impromptu Wireless Sensor Networks

    E-Print Network [OSTI]

    Kumar, Anurag

    Optimal Deployment of Impromptu Wireless Sensor Networks Prasenjit Mondal, K. P. Naveen and Anurag to deploy sensors (such as motion sensors, or even imaging sensors) and a wireless interconnection network an impromptu deploy- ment of a wireless sensor network in a building. Fig. 2. Problem studied in this paper

  5. TRS-Fiber Optic Classifier Sensor Installation

    E-Print Network [OSTI]

    Prevedouros, Panos D.

    TRS-Fiber Optic Classifier Sensor Installation The sensor that the Traffic Recording System (TRS) uses is the Flexsense Portable Fiberoptic Sensor System by Optical Sensor Systems. This includes two is undetected by the TRS. The user must make sure that the sensors do not get bent or twisted or the fiber optic

  6. Sensor Compendium - A Snowmass Whitepaper-

    SciTech Connect (OSTI)

    Artuso, M. [Syracuse Univ., NY (United States); Battaglia, M. [Univ. of California, Santa Cruz, CA (United States); Bolla, G. [Purdue Univ., West Lafayette, IN (United States); Bortoletto, D. [Purdue Univ., West Lafayette, IN (United States); Caberera, B. [Stanford Univ., CA (United States); Carlstrom, J E [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Chang, C. L. [Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States); Cooper, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Da Via, C. [Univ. of Manchester (United Kingdom); Demarteau, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Fast, J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Frisch, H. [Univ. of Chicago, IL (United States), et al.

    2013-10-01T23:59:59.000Z

    Sensors play a key role in detecting both charged particles and photons for all three frontiers in Particle Physics. The signals from an individual sensor that can be used include ionization deposited, phonons created, or light emitted from excitations of the material. The individual sensors are then typically arrayed for detection of individual particles or groups of particles. Mounting of new, ever higher performance experiments, often depend on advances in sensors in a range of performance characteristics. These performance metrics can include position resolution for passing particles, time resolution on particles impacting the sensor, and overall rate capabilities. In addition the feasible detector area and cost frequently provides a limit to what can be built and therefore is often another area where improvements are important. Finally, radiation tolerance is becoming a requirement in a broad array of devices. We present a status report on a broad category of sensors, including challenges for the future and work in progress to solve those challenges.

  7. Shape memory alloy thaw sensors

    DOE Patents [OSTI]

    Shahinpoor, M.; Martinez, D.R.

    1998-04-07T23:59:59.000Z

    A sensor permanently indicates that it has been exposed to temperatures exceeding a critical temperature for a predetermined time period. An element of the sensor made from shape memory alloy changes shape when exposed, even temporarily, to temperatures above the austenitic temperature of the shape memory alloy. The shape change of the SMA element causes the sensor to change between two readily distinguishable states. 16 figs.

  8. Comparing Pulsed Doppler LIDAR with SODAR and Direct Measurements for Wind Assessment

    SciTech Connect (OSTI)

    Kelley, N. D.; Jonkman, B. J.; Scott, G. N.; Pichugina, Y. L.

    2007-07-01T23:59:59.000Z

    There is a pressing need for good wind-speed measurements at greater and greater heights to assess the availability of the resource in terms of power production and to identify any frequently occurring atmospheric structural characteristics that may create turbulence that impacts the operational reliability and lifetime of wind turbines and their components. In this paper, we summarize the results of a short study that compares the relative accuracies of wind speeds derived from a high-resolution pulsed Doppler LIDAR operated by the National Oceanic and Atmospheric Administration (NOAA) and a midrange Doppler SODAR with wind speeds measured by four levels of tower-based sonic anemometry up to a height of 116 m.

  9. SensorGrid: Integrating Sensor Networks and Grid Computing Chen-Khong Tham1

    E-Print Network [OSTI]

    Melbourne, University of

    SensorGrid: Integrating Sensor Networks and Grid Computing Chen-Khong Tham1 and Rajkumar Buyya2 Keywords: Sensors, Sensor Networks, Grid computing, SensorML, SensorWeb. 1. Introduction Recent advances in electronic circuit miniaturization and micro-electromechanical systems (MEMS) have led to the creation

  10. Special Issue "Underwater Sensor Nodes and Underwater Sensor Networks" A special issue of Sensors (ISSN 1424-8220)

    E-Print Network [OSTI]

    Chen, Min

    aquatic environments. Marine surveillance, pollution detection and monitoring, and oceanographic data (salinity, conductivity, turbidity, pH, oxygen, temperature, depth, etc.) - Sediments and pollution sensor nodes - Acoustic sensors - Underwater sensor network architectures - Wired and wireless protocols

  11. Sensors & Measurement | More Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    elements. The nexus of sensors, signal processing and analysis, modeling, and advanced control algorithms and architectures underpin this important field of technology at ORNL....

  12. Sensor Switch's Bright Manufacturing Future

    Broader source: Energy.gov [DOE]

    The switch helps with cost effective energy savings by turning off the lights when an occupancy sensor says the room is empty.

  13. Inter-sensor propagation delay estimation using sources of opportunity

    E-Print Network [OSTI]

    Vincent, Rémy; Michel, Olivier; Lacoume, Jean-Louis

    2015-01-01T23:59:59.000Z

    Propagation delays are intensively used for Structural Health Monitoring or Sensor Network Localization. In this paper, we study the performances of acoustic propagation delay estimation between two sensors, using sources of opportunity only. Such sources are defined as being uncontrolled by the user (activation time, location, spectral content in time and space), thus preventing the direct estimation with classical active approaches, such as TDOA, RSSI and AOA. Observation models are extended from the literature to account for the spectral characteristics of the sources in this passive context and we show how time-filtered sources of opportunity impact the retrieval of the propagation delay between two sensors. A geometrical analogy is then proposed that leads to a lower bound on the variance of the propagation delay estimation that accounts for both the temporal and the spatial properties of the sources field.

  14. Selective chemical detection by energy modulation of sensors

    DOE Patents [OSTI]

    Stetter, J.R.; Otagawa, T.

    1985-05-20T23:59:59.000Z

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulating means for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor means compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. 4 figs.

  15. Use of sensors in monitoring civil structures

    E-Print Network [OSTI]

    Daher, Bassam William, 1979-

    2004-01-01T23:59:59.000Z

    This thesis surveys the use of sensors and sensor networks in monitoring civil structures, with particular emphasis on the monitoring of bridges and highways using fiber optic sensors. Following a brief review of the most ...

  16. On the robustness of clustered sensor networks 

    E-Print Network [OSTI]

    Cho, Jung Jin

    2009-05-15T23:59:59.000Z

    Smart devices with multiple on-board sensors, networked through wired or wireless links, are distributed in physical systems and environments. Broad applications of such sensor networks include manufacturing quality control and wireless sensor...

  17. FUNDAMENTAL PERFORMANCE LIMITS OF WIRELESS SENSOR NETWORKS

    E-Print Network [OSTI]

    Li, Baochun

    FUNDAMENTAL PERFORMANCE LIMITS OF WIRELESS SENSOR NETWORKS ZHIHUA HU, BAOCHUN LI Abstract. Understanding the fundamental performance limits of wireless sensor networks is critical towards. Key words. Wireless sensor networks, network capacity, network lifetime. 1. Introduction. When

  18. Wireless Sensor Network Infrastructure : Construction and Evaluation

    E-Print Network [OSTI]

    Boyer, Edmond

    Wireless Sensor Network Infrastructure : Construction and Evaluation Kamal Beydoun, Violeta Felea main features for efficient energy management in wireless sensor networks. This paper aims to present a distributed and low-cost topology construction algorithm for wireless sensor networks, addressing

  19. Issues in autonomous mobile sensor networks

    E-Print Network [OSTI]

    Dharne, Avinash Gopal

    2009-05-15T23:59:59.000Z

    Autonomous mobile sensor networks consist of a number of autonomous mobile robots equipped with various sensors and tasked with a common mission. This thesis considers the topology control of such an ad hoc mobile sensor network. In particular, I...

  20. Remote Sensing of Mountain Environments Andreas Kb, Department of Geography, University of Zurich, Switzerland

    E-Print Network [OSTI]

    Kääb, Andreas

    ;2 · Visible light and near infrared (VNIR): sensors collect the reflected sunlight (passive sensor); data and near infrared light, short-wave infrared, thermal infrared, and microwaves) (Figure 1). Together, LIDAR; active sensor) apply often near infrared. · Short-wave infrared (SWIR): some surfaces show

  1. active noise control: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    significant noise ... Hong, Seung Hyuck 2009-01-01 2 Design of an Active Noise Control System using Plasma Actuators Engineering Websites Summary: and analysed from sensors located...

  2. Optical humidity sensor

    DOE Patents [OSTI]

    Tarvin, J.A.

    1987-02-10T23:59:59.000Z

    An optical dielectric humidity sensor is disclosed which includes a dielectric mirror having multiple alternating layers of two porous water-adsorbent dielectric materials with differing indices of refraction carried by a translucent substrate. A narrow-band polarized light source is positioned to direct light energy onto the mirror, and detectors are positioned to receive light energy transmitted through and reflected by the mirror. A ratiometer indicates humidity in the atmosphere which surrounds the dielectric mirror as a function of a ratio of light energies incident on the detectors. 2 figs.

  3. Rayleigh LIDAR and satellite (HALOE, SABER, CHAMP and COSMIC) measurements of stratosphere-mesosphere temperature over a southern sub-tropical site, Reunion (20.8° S; 55.5° E): climatology and comparison study

    E-Print Network [OSTI]

    Sivakumar, V.; Vishnu Prasanth, P.; Kishore, P.; Bencherif, H.; Keckhut, P.

    2011-01-01T23:59:59.000Z

    climatology of the mid- dle atmosphere from long-termLIDAR measurements at mid- dle and low latitudes, J.Over the southern tropics, mid- dle atmosphere temperature

  4. Intelligent Software Agents: Sensor Integration and Response

    SciTech Connect (OSTI)

    Kulesz, James J [ORNL; Lee, Ronald W [ORNL

    2013-01-01T23:59:59.000Z

    Abstract In a post Macondo world the buzzwords are Integrity Management and Incident Response Management. The twin processes are not new but the opportunity to link the two is novel. Intelligent software agents can be used with sensor networks in distributed and centralized computing systems to enhance real-time monitoring of system integrity as well as manage the follow-on incident response to changing, and potentially hazardous, environmental conditions. The software components are embedded at the sensor network nodes in surveillance systems used for monitoring unusual events. When an event occurs, the software agents establish a new concept of operation at the sensing node, post the event status to a blackboard for software agents at other nodes to see , and then react quickly and efficiently to monitor the scale of the event. The technology addresses a current challenge in sensor networks that prevents a rapid and efficient response when a sensor measurement indicates that an event has occurred. By using intelligent software agents - which can be stationary or mobile, interact socially, and adapt to changing situations - the technology offers features that are particularly important when systems need to adapt to active circumstances. For example, when a release is detected, the local software agent collaborates with other agents at the node to exercise the appropriate operation, such as: targeted detection, increased detection frequency, decreased detection frequency for other non-alarming sensors, and determination of environmental conditions so that adjacent nodes can be informed that an event is occurring and when it will arrive. The software agents at the nodes can also post the data in a targeted manner, so that agents at other nodes and the command center can exercise appropriate operations to recalibrate the overall sensor network and associated intelligence systems. The paper describes the concepts and provides examples of real-world implementations including the Threat Detection and Analysis System (TDAS) at the International Port of Memphis and the Biological Warning and Incident Characterization System (BWIC) Environmental Monitoring (EM) Component. Technologies developed for these 24/7 operational systems have applications for improved real-time system integrity awareness as well as provide incident response (as needed) for production and field applications.

  5. Transformer current sensor for superconducting magnetic coils

    DOE Patents [OSTI]

    Shen, Stewart S. (Oak Ridge, TN); Wilson, C. Thomas (Norris, TN)

    1988-01-01T23:59:59.000Z

    A transformer current sensor having primary turns carrying a primary current for a superconducting coil and secondary turns only partially arranged within the primary turns. The secondary turns include an active winding disposed within the primary turns and a dummy winding which is not disposed in the primary turns and so does not experience a magnetic field due to a flow of current in the primary turns. The active and dummy windings are wound in opposite directions or connected in series-bucking relationship, and are exposed to the same ambient magnetic field. Voltages which might otherwise develop in the active and dummy windings due to ambient magnetic fields thus cancel out. The resultant voltage is purely indicative of the rate of change of current flowing in the primary turns.

  6. Gas sensor incorporating a porous framework

    DOE Patents [OSTI]

    Yaghi, Omar M.; Czaja, Alexander U.; Wang, Bo; Furukawa, Hiroyasu; Galatsis, Kosmas; Wang, Kang L.

    2013-07-09T23:59:59.000Z

    The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

  7. Radionuclide Sensors for Environmental Monitoring: From Flow...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract: The development of in situ sensors for ultratrace detection applications in process control and environmental monitoring remains a significant challenge. Such sensors...

  8. Gas sensor incorporating a porous framework

    DOE Patents [OSTI]

    Yaghi, Omar M; Czaja, Alexander U; Wang, Bo; Galatsis, Kosmas; Wang, Kang L; Furukawa, Hiroyasu

    2014-05-27T23:59:59.000Z

    The disclosure provides sensor for gas sensing including CO.sub.2 gas sensors comprising a porous framework sensing area for binding an analyte gas.

  9. Wireless Magnetic Sensor Applications in Transportation Infrastructure

    E-Print Network [OSTI]

    Sanchez, Rene Omar

    2012-01-01T23:59:59.000Z

    and fourth vehicle downstream signature (five vehicleof Figures Upstream and downstream middle sensor raw signals2.2 Upstream and downstream middle sensor signature

  10. Flexible Pressure Sensors: Modeling and Experimental Characterization

    E-Print Network [OSTI]

    Viana, J.C.

    Flexible capacitive pressure sensors fabricated with nanocomposites were experimentally characterized and results compared with simulations from analytical modeling. Unlike traditional diaphragm silicon pressure sensors, ...

  11. Aircraft Cabin Environmental Quality Sensors

    SciTech Connect (OSTI)

    Gundel, Lara; Kirchstetter, Thomas; Spears, Michael; Sullivan, Douglas

    2010-05-06T23:59:59.000Z

    The Indoor Environment Department at Lawrence Berkeley National Laboratory (LBNL) teamed with seven universities to participate in a Federal Aviation Administration (FAA) Center of Excellence (COE) for research on environmental quality in aircraft. This report describes research performed at LBNL on selecting and evaluating sensors for monitoring environmental quality in aircraft cabins, as part of Project 7 of the FAA's COE for Airliner Cabin Environmental Research (ACER)1 effort. This part of Project 7 links to the ozone, pesticide, and incident projects for data collection and monitoring and is a component of a broader research effort on sensors by ACER. Results from UCB and LBNL's concurrent research on ozone (ACER Project 1) are found in Weschler et al., 2007; Bhangar et al. 2008; Coleman et al., 2008 and Strom-Tejsen et al., 2008. LBNL's research on pesticides (ACER Project 2) in airliner cabins is described in Maddalena and McKone (2008). This report focused on the sensors needed for normal contaminants and conditions in aircraft. The results are intended to complement and coordinate with results from other ACER members who concentrated primarily on (a) sensors for chemical and biological pollutants that might be released intentionally in aircraft; (b) integration of sensor systems; and (c) optimal location of sensors within aircraft. The parameters and sensors were selected primarily to satisfy routine monitoring needs for contaminants and conditions that commonly occur in aircraft. However, such sensor systems can also be incorporated into research programs on environmental quality in aircraft cabins.

  12. Collaborative Data Gathering in Wireless Sensor Networks using Measurement Co-Occurrence

    E-Print Network [OSTI]

    Kalpakis, Konstantinos

    activity of many WSN applica- tions. We focus on applications in which each sensor con- tinuously monitors the targets of interests in a field, and the base station is interested in getting every (discrete enumer

  13. HandWave : design and manufacture of a wearable wireless skin conductance sensor and housing

    E-Print Network [OSTI]

    Strauss, Marc D

    2005-01-01T23:59:59.000Z

    This thesis report details the design and manufacture of HandWave, a wearable wireless Bluetooth skin conductance sensor, and dedicated housing. The HandWave collects Electrodermal Activity (EDA) data by measuring skin ...

  14. Monday, March 29, 2010 A Bendable Heart Sensor

    E-Print Network [OSTI]

    Rogers, John A.

    Monday, March 29, 2010 A Bendable Heart Sensor New flexible electronics can better chart the heart a more detailed picture of the electrical activity of a beating heart. This high-resolution electrical map could help improve the diagnosis and treatment of heart abnormalities by pinpointing areas

  15. Dual neutron flux/temperature measurement sensor

    DOE Patents [OSTI]

    Mihalczo, J.T.; Simpson, M.L.; McElhaney, S.A.

    1994-10-04T23:59:59.000Z

    Simultaneous measurement of neutron flux and temperature is provided by a single sensor which includes a phosphor mixture having two principal constituents. The first constituent is a neutron sensitive 6LiF and the second is a rare-earth activated Y203 thermophosphor. The mixture is coated on the end of a fiber optic, while the opposite end of the fiber optic is coupled to a light detector. The detected light scintillations are quantified for neutron flux determination, and the decay is measured for temperature determination. 3 figs.

  16. Advanced Sensors and Instrumentation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment ofATVM LoanActiveMission »AdvancedServices »Sensors

  17. Energy efficient sensor network implementations

    SciTech Connect (OSTI)

    Frigo, Janette R [Los Alamos National Laboratory; Raby, Eric Y [Los Alamos National Laboratory; Brennan, Sean M [Los Alamos National Laboratory; Kulathumani, Vinod [WEST VIRGINIA UNIV.; Rosten, Ed [CAMBRIDGE UNIV.; Wolinski, Christophe [IRISA; Wagner, Charles [IRISA; Charot, Francois [IRISA

    2009-01-01T23:59:59.000Z

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study. We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.

  18. Development and Deployment of a Compact Eye-Safe Scanning Differential absorption Lidar (DIAL) for Spatial Mapping of Carbon Dioxide for Monitoring/Verification/Accounting at Geologic Sequestration Sites

    SciTech Connect (OSTI)

    Repasky, Kevin

    2014-03-31T23:59:59.000Z

    A scanning differential absorption lidar (DIAL) instrument for monitoring carbon dioxide has been developed. The laser transmitter uses two tunable discrete mode laser diodes (DMLD) operating in the continuous wave (cw) mode with one locked to the online absorption wavelength and the other operating at the offline wavelength. Two in-line fiber optic switches are used to switch between online and offline operation. After the fiber optic switch, an acousto- optic modulator (AOM) is used to generate a pulse train used to injection seed an erbium doped fiber amplifier (EDFA) to produce eye-safe laser pulses with maximum pulse energies of 66 {micro}J, a pulse repetition frequency of 15 kHz, and an operating wavelength of 1.571 {micro}m. The DIAL receiver uses a 28 cm diameter Schmidt-Cassegrain telescope to collect that backscattered light, which is then monitored using a photo-multiplier tube (PMT) module operating in the photon counting mode. The DIAL instrument has been operated from a laboratory environment on the campus of Montana State University, at the Zero Emission Research Technology (ZERT) field site located in the agricultural research area on the western end of the Montana State University campus, and at the Big Sky Carbon Sequestration Partnership site located in north-central Montana. DIAL data has been collected and profiles have been validated using a co-located Licor LI-820 Gas Analyzer point sensor.

  19. Observations of tropical cirrus properties in the pilot radiation observation experiment using lidar and the CSIRO ARM filter radiometer

    SciTech Connect (OSTI)

    Platt, C.M.R.; Young, S.A.; Manson, P.J.; Patterson, G.R. [CSIRO, Victoria (Australia)

    1995-04-01T23:59:59.000Z

    A narrow beam fast filter radiometer has been developed for the Atmospheric Radiation Measurement (ARM) Program. The radiometer is intended to operate alongside a lidar at ARM sites in a lidar/radiometer (LIRAD) configuration. The radiometer detects in three narrow bands at 8.62-, 10.86-, and 12.04-m central wavelengths in the atmospheric window. In addition, it has a variable field aperture that varies the radiance incident on the detector and also allows the field of view to be tailored to that of a lidar used in the LIRAD technique. The radiometer was deployed in the ARM Pilot Radiation Observation Experiment (PROBE) at Kavieng, Papua New Guinea in January-February 1993. The radiometer worked satisfactorily and appeared to be very stable. The radiometer was compared with a previous CSIRO radiometer and the improved performance of the ARM instrument was very evident. The ARM radiometer was also compared with a National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratories (ETL) interferometer and gave closely equivalent radiances. The LIRAD method was used at Kavieng to obtain the optical properties of cirrus clouds. Continuous observations of water vapor path obtained by the NOAA ETL microwave radiometer were employed to allow for the strong tropical water vapor absorption and emission. Cirrus cells that developed on one morning, independent of other clouds, had measured infrared emittances varying from <0.1 to 1.0.

  20. RealTime SpatioTemporal Query Processing in Mobile AdHoc Sensor Networks

    E-Print Network [OSTI]

    that has multiple sensors (e.g., mo­ tion sensors, acoustic sensors, infrared light emitting diodes,

  1. Ion mobility sensor system

    DOE Patents [OSTI]

    Xu, Jun; Watson, David B.; Whitten, William B.

    2013-01-22T23:59:59.000Z

    An ion mobility sensor system including an ion mobility spectrometer and a differential mobility spectrometer coupled to the ion mobility spectrometer. The ion mobility spectrometer has a first chamber having first end and a second end extending along a first direction, and a first electrode system that generates a constant electric field parallel to the first direction. The differential mobility spectrometer includes a second chamber having a third end and a fourth end configured such that a fluid may flow in a second direction from the third end to the fourth end, and a second electrode system that generates an asymmetric electric field within an interior of the second chamber. Additionally, the ion mobility spectrometer and the differential mobility spectrometer form an interface region. Also, the first end and the third end are positioned facing one another so that the constant electric field enters the third end and overlaps the fluid flowing in the second direction.

  2. Oxygen partial pressure sensor

    DOE Patents [OSTI]

    Dees, D.W.

    1994-09-06T23:59:59.000Z

    A method for detecting oxygen partial pressure and an oxygen partial pressure sensor are provided. The method for measuring oxygen partial pressure includes contacting oxygen to a solid oxide electrolyte and measuring the subsequent change in electrical conductivity of the solid oxide electrolyte. A solid oxide electrolyte is utilized that contacts both a porous electrode and a nonporous electrode. The electrical conductivity of the solid oxide electrolyte is affected when oxygen from an exhaust stream permeates through the porous electrode to establish an equilibrium of oxygen anions in the electrolyte, thereby displacing electrons throughout the electrolyte to form an electron gradient. By adapting the two electrodes to sense a voltage potential between them, the change in electrolyte conductivity due to oxygen presence can be measured. 1 fig.

  3. Micromechanical antibody sensor

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN); Jacobson, K. Bruce (Oak Ridge, TN); Doktycz, Mitchel J. (Knoxville, TN); Kennel, Stephen J. (Oak Ridge, TN); Warmack, Robert J. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A sensor apparatus is provided using a microcantilevered spring element having a coating of a detector molecule such as an antibody or antigen. A sample containing a target molecule or substrate is provided to the coating. The spring element bends in response to the stress induced by the binding which occurs between the detector and target molecules. Deflections of the cantilever are detected by a variety of detection techniques. The microcantilever may be approximately 1 to 200 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. A sensitivity for detection of deflections is in the range of 0.01 nanometers.

  4. Fluorescent optical position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2005-11-15T23:59:59.000Z

    A fluorescent optical position sensor and method of operation. A small excitation source side-pumps a localized region of fluorescence at an unknown position along a fluorescent waveguide. As the fluorescent light travels down the waveguide, the intensity of fluorescent light decreases due to absorption. By measuring with one (or two) photodetectors the attenuated intensity of fluorescent light emitted from one (or both) ends of the waveguide, the position of the excitation source relative to the waveguide can be determined by comparing the measured light intensity to a calibrated response curve or mathematical model. Alternatively, excitation light can be pumped into an end of the waveguide, which generates an exponentially-decaying continuous source of fluorescent light along the length of the waveguide. The position of a photodetector oriented to view the side of the waveguide can be uniquely determined by measuring the intensity of the fluorescent light emitted radially at that location.

  5. NSTX High Temperature Sensor Systems

    SciTech Connect (OSTI)

    B.McCormack; H.W. Kugel; P. Goranson; R. Kaita; et al

    1999-11-01T23:59:59.000Z

    The design of the more than 300 in-vessel sensor systems for the National Spherical Torus Experiment (NSTX) has encountered several challenging fusion reactor diagnostic issues involving high temperatures and space constraints. This has resulted in unique miniature, high temperature in-vessel sensor systems mounted in small spaces behind plasma facing armor tiles, and they are prototypical of possible high power reactor first-wall applications. In the Center Stack, Divertor, Passive Plate, and vessel wall regions, the small magnetic sensors, large magnetic sensors, flux loops, Rogowski Coils, thermocouples, and Langmuir Probes are qualified for 600 degrees C operation. This rating will accommodate both peak rear-face graphite tile temperatures during operations and the 350 degrees C bake-out conditions. Similar sensor systems including flux loops, on other vacuum vessel regions are qualified for 350 degrees C operation. Cabling from the sensors embedded in the graphite tiles follows narrow routes to exit the vessel. The detailed sensor design and installation methods of these diagnostic systems developed for high-powered ST operation are discussed.

  6. The Daytime Mixed Layer Observed by Radiosonde, Profiler, and LIDAR during MILAGRO

    SciTech Connect (OSTI)

    Shaw, William J.; Pekour, Mikhail S.; Coulter, Richard L.; Martin, Tim J.; Walters, Justin

    2007-10-19T23:59:59.000Z

    During the MILAGRO campaign centered in the Mexico City area, Pacific Northwest National Laboratory (PNNL) and Argonne National Laboratory (ANL) operated several atmospheric profiling systems at Veracruz and at two locations on the Central Mexican Plateau in the region around Mexico City. These systems included radiosondes, wind profilers, a sodar, and an aerosol backscatter lidar. An additional wind profiler was operated by the University of Alabama in Huntsville (UAH) at the Mexican Petroleum Institue (IMP) near the center of Mexico City. Because of the opportunity afforded by collocation of profilers, radiosondes, and a lidar, and because of the importance of boundary layer depth on aerosol properties, we have carried out a comparison of mixed layer depth as determined independently from these three types of measurement systems during the campaign. We have then used results of this comparison and additional measurements to develop a detailed description of the daily structure and evolution of the boundary layer on the Central Mexican Plateau during MILAGRO. Our analysis indicates that the profilers were more consistently successful in establishing the mixing layer depth during the daytime. The boundary layer growth was similar at the three locations, although the mixing layer tended to be slightly deeper in the afternoon in central Mexico City. The sodar showed that convection began about an hour after sunrise. Maximum daily mixed layer depths always reached 2000 m AGL and frequently extended to 4000 m. The rate and variability of mixing layer growth was essentially the same as that observed during the IMADA-AVER campaign in the same season in 1997. This growth did not seem to be related to whether deep convection was reported on a given day. Wind speeds within the boundary layer exhibited a daily low-altitude maximum in the late afternoon with lighter winds aloft, consistent with previous reports of diurnal regional circulations. Norte events, which produced high winds at Veracruz, did not appreciably modulate the winds on the plateau. Finally, despite the typically dry conditions at the surface, radiosonde profiles showed that relative humidity often exceeded 50% in the early morning and in the upper part of the boundary layer.

  7. Radioactive Target Detection Using Wireless Sensor Network

    E-Print Network [OSTI]

    Zhang, Tonglin

    Chapter 31 Radioactive Target Detection Using Wireless Sensor Network Tonglin Zhang Abstract for wireless sensor network data to detect and locate a hidden nuclear target in a large study area. The method assumes multiple radiation detectors have been used as sensor nodes in a wireless sensor network

  8. Sensors for Safety & Performance Stationary Systems

    E-Print Network [OSTI]

    for PEM Fuel Cell Vehicles · Interfacial Stability of Thin Film H2 Sensors · Sensors for Automotive Fuel Cell Systems · Micro-Machined Thin Film H2 Gas Sensors · Sensor Development for PEM Fuel Cell Systems for Fuel Cell Monitoring #12;Discussion Points Barriers ·Cost ·Application ·Lifetime ·Flexibility ·Public

  9. Multifunctional (NOx/CO/O2) Solid-State Sensors For Coal Combustion Control

    SciTech Connect (OSTI)

    Eric D. Wachsman

    2006-12-31T23:59:59.000Z

    Solid-state sensors were developed for coal combustion control and the understanding of sensing mechanisms was advanced. Several semiconducting metal oxides (p-type and n-type) were used to fabricate sensor electrodes. The adsorption/desorption characteristics and catalytic activities of these materials were measured with Temperature Programmed Desorption (TPD) and Temperature Programmed Reaction (TPR) experiments. The sensitivity, selectivity, and response time of these sensors were measured for steps of NO, NO{sub 2}, CO, CO{sub 2}, O{sub 2}, and H{sub 2}O vapor in simple N{sub 2}-balanced and multi-component, simulated combustion-exhaust streams. The role of electrode microstructure and fabrication parameters on sensing performance was investigated. Proof for the proposed sensing mechanism, Differential Electrode Equilibria, was demonstrated by relating the sensing behavior (sensitivities and cross-sensitivities) of the various electrode materials to their gas adsorption/desorption behaviors and catalytic activities. A multifunctional sensor array consisting of three sensing electrodes and an integrated heater and temperature sensors was fabricated with tape-casting and screen-printing and its NO{sub x} sensing performance was measured. The multifunctional sensor demonstrated it was possible to measure NO{sub 2} independent of NO by locally heating one of the sensing electrodes. The sensor technology was licensed to Fuel FX International, Inc. Fuel FX has obtained investor funding and is developing prototype sensors as a first step in their commercialization strategy for this technology.

  10. SENSOR PLACEMENT FOR MAXIMIZING LIFETIME PER UNIT COST IN WIRELESS SENSOR NETWORKS

    E-Print Network [OSTI]

    Chuah, Chen-Nee

    SENSOR PLACEMENT FOR MAXIMIZING LIFETIME PER UNIT COST IN WIRELESS SENSOR NETWORKS Yunxia Chen in a wireless sensor network (WSN). Analyzing the lifetime per unit cost of a linear WSN, we find that deploying of sensors deployed in the network, can be used to measure the utilization efficiency of sensors

  11. Heterogeneous Wireless Sensor Network Deployment and Topology Control Based on Irregular Sensor Model

    E-Print Network [OSTI]

    Chung, Yeh-Ching

    Heterogeneous Wireless Sensor Network Deployment and Topology Control Based on Irregular Sensor Introduction Wireless sensor network (WSN) is a key element of the pervasive/ubiquitous computing sensor network (heterogeneous WSN) consists of sensor nodes with different ability, such as different

  12. Multiple frequency method for operating electrochemical sensors

    DOE Patents [OSTI]

    Martin, Louis P. (San Ramon, CA)

    2012-05-15T23:59:59.000Z

    A multiple frequency method for the operation of a sensor to measure a parameter of interest using calibration information including the steps of exciting the sensor at a first frequency providing a first sensor response, exciting the sensor at a second frequency providing a second sensor response, using the second sensor response at the second frequency and the calibration information to produce a calculated concentration of the interfering parameters, using the first sensor response at the first frequency, the calculated concentration of the interfering parameters, and the calibration information to measure the parameter of interest.

  13. Carbon nanotube based pressure sensor for flexible electronics

    SciTech Connect (OSTI)

    So, Hye-Mi [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of); Sim, Jin Woo [Advanced Nano Technology Ltd., Seoul 132-710 (Korea, Republic of); Kwon, Jinhyeong [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); Yun, Jongju; Baik, Seunghyun [SKKU Advanced Institute of Nanotechnology (SAINT), Department of Energy Science and School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 440-746 (Korea, Republic of); Chang, Won Seok, E-mail: paul@kimm.re.kr [Department of Nano Mechanics, Nanomechanical Systems Research Division, Korea Institute of Machinery and Materials, Daejeon 305-343 (Korea, Republic of)

    2013-12-15T23:59:59.000Z

    Highlights: • The electromechanical change of vertically aligned carbon nanotubes. • Fabrication of CNT field-effect transistor on flexible substrate. • CNT based FET integrated active pressure sensor. • The integrated device yields an increase in the source-drain current under pressure. - Abstract: A pressure sensor was developed based on an arrangement of vertically aligned carbon nanotubes (VACNTs) supported by a polydimethylsiloxane (PDMS) matrix. The VACNTs embedded in the PDMS matrix were structurally flexible and provided repeated sensing operation due to the high elasticities of both the polymer and the carbon nanotubes (CNTs). The conductance increased in the presence of a loading pressure, which compressed the material and induced contact between neighboring CNTs, thereby producing a dense current path and better CNT/metal contacts. To achieve flexible functional electronics, VACNTs based pressure sensor was integrated with field-effect transistor, which is fabricated using sprayed semiconducting carbon nanotubes on plastic substrate.

  14. Compact orthogonal NMR field sensor

    DOE Patents [OSTI]

    Gerald, II, Rex E. (Brookfield, IL); Rathke, Jerome W. (Homer Glen, IL)

    2009-02-03T23:59:59.000Z

    A Compact Orthogonal Field Sensor for emitting two orthogonal electro-magnetic fields in a common space. More particularly, a replacement inductor for existing NMR (Nuclear Magnetic Resonance) sensors to allow for NMR imaging. The Compact Orthogonal Field Sensor has a conductive coil and a central conductor electrically connected in series. The central conductor is at least partially surrounded by the coil. The coil and central conductor are electrically or electro-magnetically connected to a device having a means for producing or inducing a current through the coil and central conductor. The Compact Orthogonal Field Sensor can be used in NMR imaging applications to determine the position and the associated NMR spectrum of a sample within the electro-magnetic field of the central conductor.

  15. Sensor applications of carbon nanotubes

    E-Print Network [OSTI]

    Rushfeldt, Scott I

    2005-01-01T23:59:59.000Z

    A search of published research on sensing mechanisms of carbon nanotubes was performed to identify applications in which carbon nanotubes might improve on current sensor technologies, in either offering improved performance, ...

  16. Sensor networks for social networks

    E-Print Network [OSTI]

    Farry, Michael P. (Michael Patrick)

    2006-01-01T23:59:59.000Z

    This thesis outlines the development of software that makes use of Bayesian belief networks and signal processing techniques to make meaningful inferences about real-world phenomena using data obtained from sensor networks. ...

  17. Buried fiber optic intrusion sensor 

    E-Print Network [OSTI]

    Maier, Eric William

    2004-09-30T23:59:59.000Z

    A distributed fiber optic intrusion sensor capable of detecting intruders from the pressure of their weight on the earth's surface was investigated in the laboratory and in field tests. The presence of an intruder above or in proximity...

  18. Beam characterization by wavefront sensor

    DOE Patents [OSTI]

    Neal, D.R.; Alford, W.J.; Gruetzner, J.K.

    1999-08-10T23:59:59.000Z

    An apparatus and method are disclosed for characterizing an energy beam (such as a laser) with a two-dimensional wavefront sensor, such as a Shack-Hartmann lenslet array. The sensor measures wavefront slope and irradiance of the beam at a single point on the beam and calculates a space-beamwidth product. A detector array such as a charge coupled device camera is preferably employed. 21 figs.

  19. The ATLAS Silicon Pixel Sensors

    E-Print Network [OSTI]

    Alam, M S; Einsweiler, K F; Emes, J; Gilchriese, M G D; Joshi, A; Kleinfelder, S A; Marchesini, R; McCormack, F; Milgrome, O; Palaio, N; Pengg, F; Richardson, J; Zizka, G; Ackers, M; Andreazza, A; Comes, G; Fischer, P; Keil, M; Klasen, V; Kühl, T; Meuser, S; Ockenfels, W; Raith, B; Treis, J; Wermes, N; Gössling, C; Hügging, F G; Wüstenfeld, J; Wunstorf, R; Barberis, D; Beccherle, R; Darbo, G; Gagliardi, G; Gemme, C; Morettini, P; Musico, P; Osculati, B; Parodi, F; Rossi, L; Blanquart, L; Breugnon, P; Calvet, D; Clemens, J-C; Delpierre, P A; Hallewell, G D; Laugier, D; Mouthuy, T; Rozanov, A; Valin, I; Aleppo, M; Caccia, M; Ragusa, F; Troncon, C; Lutz, Gerhard; Richter, R H; Rohe, T; Brandl, A; Gorfine, G; Hoeferkamp, M; Seidel, SC; Boyd, GR; Skubic, P L; Sícho, P; Tomasek, L; Vrba, V; Holder, M; Ziolkowski, M; D'Auria, S; del Papa, C; Charles, E; Fasching, D; Becks, K H; Lenzen, G; Linder, C

    2001-01-01T23:59:59.000Z

    Prototype sensors for the ATLAS silicon pixel detector have been developed. The design of the sensors is guided by the need to operate them in the severe LHC radiation environment at up to several hundred volts while maintaining a good signal-to-noise ratio, small cell size, and minimal multiple scattering. The ability to be operated under full bias for electrical characterization prior to the attachment of the readout integrated circuit electronics is also desired.

  20. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J; Trester, Dale B

    2014-02-04T23:59:59.000Z

    A battery system includes a platform having an aperture formed therethrough, a flexible member having a generally planar configuration and extending across the aperture, wherein a portion of the flexible member is coextensive with the aperture, a cell provided adjacent the platform, and a sensor coupled to the flexible member and positioned proximate the cell. The sensor is configured to detect a temperature of the cell.

  1. A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring

    E-Print Network [OSTI]

    Lynch, Jerome P.

    Articles A Summary Review of Wireless Sensors and Sensor Networks for Structural Health Monitoring performance and health. KEYWORDS: wireless sensors, structural monitoring, dam- age detection, smartb). Called structural health monitoring (SHM), this new paradigm offers an auto- mated method

  2. Pulse homodyne field disturbance sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-10-28T23:59:59.000Z

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two. 12 figs.

  3. Pulse homodyne field disturbance sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A field disturbance sensor operates with relatively low power, provides an adjustable operating range, is not hypersensitive at close range, allows co-location of multiple sensors, and is inexpensive to manufacture. The sensor includes a transmitter that transmits a sequence of transmitted bursts of electromagnetic energy. The transmitter frequency is modulated at an intermediate frequency. The sequence of bursts has a burst repetition rate, and each burst has a burst width and comprises a number of cycles at a transmitter frequency. The sensor includes a receiver which receives electromagnetic energy at the transmitter frequency, and includes a mixer which mixes a transmitted burst with reflections of the same transmitted burst to produce an intermediate frequency signal. Circuitry, responsive to the intermediate frequency signal indicates disturbances in the sensor field. Because the mixer mixes the transmitted burst with reflections of the transmitted burst, the burst width defines the sensor range. The burst repetition rate is randomly or pseudo-randomly modulated so that bursts in the sequence of bursts have a phase which varies. A second range-defining mode transmits two radio frequency bursts, where the time spacing between the bursts defines the maximum range divided by two.

  4. New Electronic Sensors Stick to Your Skin -Heart Rate Monitors -Popular Mechanics http://www.popularmechanics.com/science/health/breakthroughs/new-electronic-sensors-stick-to-your-skin?click=pm_latest[8/14/2011 5:59:45 AM

    E-Print Network [OSTI]

    Rogers, John A.

    New Electronic Sensors Stick to Your Skin - Heart Rate Monitors - Popular Mechanics http://www Electronic Sensors That Stick to Your Skin Like Temporary Tattoos Nice tattoo. Or is it a heart-rate monitor to measure the electrical activity of the heart, muscles and brain. And using the same principles behind

  5. Turn-key Raman lidar for profiling atmospheric water vapor, clouds, and aerosols at the US Southern Great Plains Climate Study Site

    SciTech Connect (OSTI)

    Goldsmith, J.E.M.; Blair, F.H.; Bisson, S.E.

    1997-12-31T23:59:59.000Z

    There are clearly identified scientific requirements for continuous profiling of atmospheric water vapor at the Department of Energy, Atmospheric Radiation Measurement program, Southern Great Plains CART (Cloud and Radiation Testbed) site in northern Oklahoma. Research conducted at several laboratories has demonstrated the suitability of Raman lidar for providing measurements that are an excellent match to those requirements. We have developed and installed a ruggedized Raman lidar system that resides permanently at the CART site, and that is computer automated to eliminate the requirements for operator interaction. In addition to the design goal of profiling water vapor through most of the troposphere during nighttime and through the boundary layer during daytime, the lidar provides quantitative characterizations of aerosols and clouds, including depolarization measurements for particle phase studies.

  6. Energy Aware Self-Organizing Density Management in Wireless Sensor Networks

    E-Print Network [OSTI]

    Merrer, Erwan Le; Kermarrec, Anne-Marie; Viana, Aline; Bertier, Marin

    2008-01-01T23:59:59.000Z

    Energy consumption is the most important factor that determines sensor node lifetime. The optimization of wireless sensor network lifetime targets not only the reduction of energy consumption of a single sensor node but also the extension of the entire network lifetime. We propose a simple and adaptive energy-conserving topology management scheme, called SAND (Self-Organizing Active Node Density). SAND is fully decentralized and relies on a distributed probing approach and on the redundancy resolution of sensors for energy optimizations, while preserving the data forwarding and sensing capabilities of the network. We present the SAND's algorithm, its analysis of convergence, and simulation results. Simulation results show that, though slightly increasing path lengths from sensor to sink nodes, the proposed scheme improves significantly the network lifetime for different neighborhood densities degrees, while preserving both sensing and routing fidelity.

  7. Micromechanical potentiometric sensors

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    A microcantilever potentiometric sensor utilized for detecting and measuring physical and chemical parameters in a sample of media is described. The microcantilevered spring element includes at least one chemical coating on a coated region, that accumulates a surface charge in response to hydrogen ions, redox potential, or ion concentrations in a sample of the media being monitored. The accumulation of surface charge on one surface of the microcantilever, with a differing surface charge on an opposing surface, creates a mechanical stress and a deflection of the spring element. One of a multitude of deflection detection methods may include the use of a laser light source focused on the microcantilever, with a photo-sensitive detector receiving reflected laser impulses. The microcantilevered spring element is approximately 1 to 100 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. An accuracy of detection of deflections of the cantilever is provided in the range of 0.01 nanometers of deflection. The microcantilever apparatus and a method of detection of parameters require only microliters of a sample to be placed on, or near the spring element surface. The method is extremely sensitive to the detection of the parameters to be measured.

  8. Micromechanical calorimetric sensor

    DOE Patents [OSTI]

    Thundat, Thomas G. (Knoxville, TN); Doktycz, Mitchel J. (Knoxville, TN)

    2000-01-01T23:59:59.000Z

    A calorimeter sensor apparatus is developed utilizing microcantilevered spring elements for detecting thermal changes within a sample containing biomolecules which undergo chemical and biochemical reactions. The spring element includes a bimaterial layer of chemicals on a coated region on at least one surface of the microcantilever. The chemicals generate a differential thermal stress across the surface upon reaction of the chemicals with an analyte or biomolecules within the sample due to the heat of chemical reactions in the sample placed on the coated region. The thermal stress across the spring element surface creates mechanical bending of the microcantilever. The spring element has a low thermal mass to allow detection and measuring of heat transfers associated with chemical and biochemical reactions within a sample placed on or near the coated region. A second surface may have a different material, or the second surface and body of microcantilever may be of an inert composition. The differential thermal stress between the surfaces of the microcantilever create bending of the cantilever. Deflections of the cantilever are detected by a variety of detection techniques. The microcantilever may be approximately 1 to 200 .mu.m long, approximately 1 to 50 .mu.m wide, and approximately 0.3 to 3.0 .mu.m thick. A sensitivity for detection of deflections is in the range of 0.01 nanometers. The microcantilever is extremely sensitive to thermal changes in samples as small as 30 microliters.

  9. Fiber optic hydrogen sensor

    DOE Patents [OSTI]

    Buchanan, B.R.; Prather, W.S.

    1991-01-01T23:59:59.000Z

    Apparatus and method for detecting a chemical substance by exposing an optic fiber having a core and a cladding to the chemical substance so that the chemical substance can be adsorbed onto the surface of the cladding. The optic fiber is coiled inside a container having a pair of valves for controlling the entrance and exit of the substance. Light from a light source is received by one end of the optic fiber, preferably external to the container, and carried by the core of the fiber. Adsorbed substance changes the transmissivity of the fiber as measured by a spectrophotometer at the other end, also preferably external to the container. Hydrogen is detected by the absorption of infrared light carried by an optic fiber with a silica cladding. Since the adsorption is reversible, a sensor according to the present invention can be used repeatedly. Multiple positions in a process system can be monitored using a single container that can be connected to each location to be monitored so that a sample can be obtained for measurement, or, alternatively, containers can be placed near each position and the optic fibers carrying the partially-absorbed light can be multiplexed for rapid sequential reading, by a single spectrophotometer.

  10. Energy Efficient Distributed Data Fusion In Multihop Wireless Sensor Networks

    E-Print Network [OSTI]

    Huang, Yi

    2010-01-01T23:59:59.000Z

    processing for a wireless sensor networks. Each circle ’S’techniques in wireless sensor networks: A survey,” IEEEestimation for wireless sensor networks, part i: Gaussian

  11. Improving the performance of distributed simulations of wireless sensor networks

    E-Print Network [OSTI]

    Jin, Zhong-Yi

    2010-01-01T23:59:59.000Z

    Overview of Wireless Sensor Networks . . 2.1.2 Difficultiesin parallel a wireless sensor network with two duty cycledin parallel a wireless sensor network with three nodes that

  12. Scalable Coverage Maintenance for Dense Wireless Sensor Networks

    E-Print Network [OSTI]

    Lu, Jun; Wang, Jinsu; Suda, Tatsuya

    2007-01-01T23:59:59.000Z

    get coverage in wireless sensor networks,” in Proceedings ofscheme for large wireless sensor networks,” in Pro- ceedingsWorkshop on Wireless Sensor Networks and Applications (

  13. Cubic-based 3-D Localization for Wireless Sensor Networks

    E-Print Network [OSTI]

    Shwe, Hnin Yu; Chong, Peter HJ

    2013-01-01T23:59:59.000Z

    Scheme in Stereo Wireless Sensor Networks,” in Advances infor mobile wireless sensor networks," Ad Hoc Networks, vol.and B. D. O. Anderson, "Wireless sensor network localization

  14. Data-driven modeling of phenomena in wireless sensor networks

    E-Print Network [OSTI]

    Kamthe, Ankur U.

    2012-01-01T23:59:59.000Z

    experimentation in wireless sensor networks. Commun. ACM,of Phenomena in Wireless Sensor Networks A dissertationBoavida, editors, Wireless Sensor Networks, volume 5970 of

  15. Reliable and Efficient Programming Abstractions for Wireless Sensor Networks

    E-Print Network [OSTI]

    Kothari, Nupur; Gummadi, Ramakrishna; Millstein, Todd; Govindan, Ramesh

    2007-01-01T23:59:59.000Z

    Macro-programming wireless sensor networks using Kairos. InAbstractions for Wireless Sensor Networks Nupur Kothari ?Keywords Wireless Sensor Networks, Macroprogramming, En-

  16. Fault Tolerant Evaluation of Continuous Selection Queries over Sensor Data

    E-Print Network [OSTI]

    Lazaridis, Iosif; Han, Qi; Mehrotra, Sharad; Venkatasubramanian, Nalini

    2009-01-01T23:59:59.000Z

    Evaluation of Continuous Selection Queries over Sensor Dataevaluation of continuous selection queries (CSQs) over sensor-sensor suffices and there is no Fault Tolerant Evaluation of

  17. The silicon microstrip sensors of the ATLAS semiconductor tracker

    E-Print Network [OSTI]

    Spieler, Helmuth G; ATLAS SCT Collaboration

    2008-01-01T23:59:59.000Z

    bias resistors. 6. Sensor Evaluation and Quality AssuranceHowever, an extensive evaluation of sensor characteristics6.3. Evaluation and Quality Assurance of irradiated sensors

  18. Optical and mechanical behavior of the optical fiber infrasound sensor

    E-Print Network [OSTI]

    DeWolf, Scott

    2009-01-01T23:59:59.000Z

    1.2 The Optical Fiber Infrasound Sensor . . . . . . .Fiber Infrasound Sensor Optical fibers are well known forSchnidrig. An optical fiber infrasound sensor: A new lower

  19. Virtual Oxygen Sensor for Innovative NOx and PM Emission Control...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies Virtual Oxygen Sensor for Innovative NOx and PM Emission Control Technologies A virtual O2 sensor for...

  20. Information-based self-organization of sensor nodes of a sensor network

    DOE Patents [OSTI]

    Ko, Teresa H. (Castro Valley, CA); Berry, Nina M. (Tracy, CA)

    2011-09-20T23:59:59.000Z

    A sensor node detects a plurality of information-based events. The sensor node determines whether at least one other sensor node is an information neighbor of the sensor node based on at least a portion of the plurality of information-based events. The information neighbor has an overlapping field of view with the sensor node. The sensor node sends at least one communication to the at least one other sensor node that is an information neighbor of the sensor node in response to at least one information-based event of the plurality of information-based events.

  1. iCalm: Measuring electrodermal activity in almost any setting

    E-Print Network [OSTI]

    Hedman, Elliott Bruce

    The iCalm sensor is a wireless, wearable, washable wristband that can measure electrodermal activity and physical activity in almost any natural setting. This platform has many applications including health monitoring for ...

  2. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    SciTech Connect (OSTI)

    Gangodagamage, Chandana; Wullschleger, Stan

    2014-07-03T23:59:59.000Z

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  3. A digital map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for Barrow, Alaska

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gangodagamage, Chandana; Wullschleger, Stan

    This dataset represent a map of the high center (HC) and low center (LC) polygon boundaries delineated from high resolution LiDAR data for the arctic coastal plain at Barrow, Alaska. The polygon troughs are considered as the surface expression of the ice-wedges. The troughs are in lower elevations than the interior polygon. The trough widths were initially identified from LiDAR data, and the boundary between two polygons assumed to be located along the lowest elevations on trough widths between them.

  4. Condition monitoring through advanced sensor and computational technology : final report (January 2002 to May 2005).

    SciTech Connect (OSTI)

    Kim, Jung-Taek (Korea Atomic Energy Research Institute, Daejon, Korea); Luk, Vincent K.

    2005-05-01T23:59:59.000Z

    The overall goal of this joint research project was to develop and demonstrate advanced sensors and computational technology for continuous monitoring of the condition of components, structures, and systems in advanced and next-generation nuclear power plants (NPPs). This project included investigating and adapting several advanced sensor technologies from Korean and US national laboratory research communities, some of which were developed and applied in non-nuclear industries. The project team investigated and developed sophisticated signal processing, noise reduction, and pattern recognition techniques and algorithms. The researchers installed sensors and conducted condition monitoring tests on two test loops, a check valve (an active component) and a piping elbow (a passive component), to demonstrate the feasibility of using advanced sensors and computational technology to achieve the project goal. Acoustic emission (AE) devices, optical fiber sensors, accelerometers, and ultrasonic transducers (UTs) were used to detect mechanical vibratory response of check valve and piping elbow in normal and degraded configurations. Chemical sensors were also installed to monitor the water chemistry in the piping elbow test loop. Analysis results of processed sensor data indicate that it is feasible to differentiate between the normal and degraded (with selected degradation mechanisms) configurations of these two components from the acquired sensor signals, but it is questionable that these methods can reliably identify the level and type of degradation. Additional research and development efforts are needed to refine the differentiation techniques and to reduce the level of uncertainties.

  5. A joint study of the lower ionosphere by radar, lidar, and spectrometer

    SciTech Connect (OSTI)

    Zhou, Qihou.

    1991-01-01T23:59:59.000Z

    The dynamics and associated phenomena occurring in the lower ionospheric-E region, especially the mesopause region between 80 km to 110 km at low latitude, are studied. In particular, incoherent scatter radar (ISR), sodium lidar and airglow spectrometry are used to study the ionospheric structure and neutral sodium structure. The simultaneous study of the ionospheric plasma and neutral atomic sodium is unprecedented in scope and detail. The joint study of the mesopause region reveals that plasma, neutral densities and temperature are interconnected through the same atmospheric dynamics. The theme of the thesis is to explain the formation of the controversial sporadic sodium layer (SSL) events. Strong correlation is established between the average total ion and sodium concentrations, and between sporadic-E and SSL events. The mechanism proposed in the thesis, which invokes temperature fluctuations induced by tides and gravity waves, finds good agreement with observations. Tides and gravity waves can converge ions into thin layers through the windshear mechanisms and can influence the concentration of atomic sodium through temperature fluctuations. Sodium abundance is shown to augment rapidly when the temperature is increased. Gravity wave theory states that the ion convergence node coincides with a temperature maximum for a westward propagating gravity wave, and coincides with a temperature minimum for an eastward propagating wave. Because tidal winds propagate westward, the ion layer coincides with the temperature maximum which consequently induces higher sodium concentration. This can account for the general correlation between sodium and total ion concentration and is supported by the O2(0-1) rotational temperature. Gravity waves and their interaction with tidal winds are believed to be responsible for the close association between sudden sodium layers and sporadic-E layers.

  6. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, T.E.

    1996-12-03T23:59:59.000Z

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance. 6 figs.

  7. Range gated strip proximity sensor

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    A range gated strip proximity sensor uses one set of sensor electronics and a distributed antenna or strip which extends along the perimeter to be sensed. A micro-power RF transmitter is coupled to the first end of the strip and transmits a sequence of RF pulses on the strip to produce a sensor field along the strip. A receiver is coupled to the second end of the strip, and generates a field reference signal in response to the sequence of pulse on the line combined with received electromagnetic energy from reflections in the field. The sensor signals comprise pulses of radio frequency signals having a duration of less than 10 nanoseconds, and a pulse repetition rate on the order of 1 to 10 MegaHertz or less. The duration of the radio frequency pulses is adjusted to control the range of the sensor. An RF detector feeds a filter capacitor in response to received pulses on the strip line to produce a field reference signal representing the average amplitude of the received pulses. When a received pulse is mixed with a received echo, the mixing causes a fluctuation in the amplitude of the field reference signal, providing a range-limited Doppler type signature of a field disturbance.

  8. Sensors Synergistic With Nature For In-pile Nuclear Reactor Measurements

    SciTech Connect (OSTI)

    James A. Smith; Dale K. Kotter; Steven L. Garrett; Randall A. Ali

    2012-10-01T23:59:59.000Z

    To be able to evolve fuel and structural microstructure within a nuclear power reactor in an engineered manner, an effective extreme environment sensor must exist. The development of sensor technology for nondestructive and nonintrusive measurements in harsh environments is a very active field. However most of the effort has been in adapting existing sensing technology to meet the harsh environmental requirements. A different approach is being presented. The fundamental question that we are trying to answer is how do we take advantage of the harsh environment and maintain synergy between the sensor and the environment. This paper will discuss the synergistic senor being developed that takes advantage of the harsh environments.

  9. Energy-Aware Active Chemical Sensing Rakesh Gosangi and Ricardo Gutierrez-Osuna

    E-Print Network [OSTI]

    Gutierrez-Osuna, Ricardo

    ,rgutier}@cse.tamu.edu Abstract-- We propose an adaptive sensing framework for metal-oxide (MOX) sensors that seeks to minimize, the responses obtained by modulating the working temperature of MOX sensors during gas exposure contain more to actively modulate the operating temperature of MOX sensors according to the two criteria mentioned above

  10. National Renewable Energy Laboratory Hydrogen Safety Sensor Development

    E-Print Network [OSTI]

    -of-plant components such as air compressors, and sensors and controls." #12;Safety Sensor Performance Goals

  11. Mobile sensor network to monitor wastewater collection pipelines

    E-Print Network [OSTI]

    Lim, Jungsoo

    2012-01-01T23:59:59.000Z

    Advanced pipeline monitoringDesign of mobile pipeline floating sensor “SewerSnortIllustration of mobile pipeline floating sensor monitoring

  12. A standalone capacitively coupled occupancy sensor

    E-Print Network [OSTI]

    Thompson, William H., M. Eng. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    This thesis presents the design and implementation of a standalone, capacitively coupled, occupancy sensor. Unlike previous iterations, the new sensor is decoupled from the fluorescent lamp. A well controlled, high voltage ...

  13. Cantilever Sensors: Nanomechanical Tools for Diagnostics

    E-Print Network [OSTI]

    Datar, Ram

    Cantilever sensors have attracted considerable attention over the last decade because of their potential as a highly sensitive sensor platform for high throughput and multiplexed detection of proteins and nucleic acids. A ...

  14. Automatic Calibration of Multiple Coplanar Sensors

    E-Print Network [OSTI]

    Brookshire, Jonathan

    This paper describes an algorithm for recovering the rigid 3-DOF transformation (offset and rotation) between pairs of sensors mounted rigidly in a common plane on a mobile robot. The algorithm requires only a set of sensor ...

  15. Sensor network localization based on natural phenomena

    E-Print Network [OSTI]

    Kim, Daniel Sang

    2006-01-01T23:59:59.000Z

    Autonomous localization is crucial for many sensor network applications. The goal of this thesis is to develop a distributed localization algorithm for the PLUG indoor sensor network by analyzing sound and light sensory ...

  16. Nanocomposite Flexible Pressure Sensor for Biomedical Applications

    E-Print Network [OSTI]

    Fachin, F.

    A new approach for the fabrication of flexible pressure sensors based on aligned carbon nanotubes (A-CNTs) is described in this paper. The technology is suitable for blood pressure sensors that can be attached to a stent-graft ...

  17. Adaptive sampling in autonomous marine sensor networks

    E-Print Network [OSTI]

    Eickstedt, Donald Patrick

    2006-01-01T23:59:59.000Z

    In this thesis, an innovative architecture for real-time adaptive and cooperative control of autonomous sensor platforms in a marine sensor network is described in the context of the autonomous oceanographic network scenario. ...

  18. Distributed MIMO for wireless sensor networks 

    E-Print Network [OSTI]

    Wen, Xiaojun

    2011-11-22T23:59:59.000Z

    Over the past decade, wireless sensor networks have gained more research attention for their potential applications in healthcare, defense, environmental monitoring, etc. Due to the strict energy limitation in the sensor ...

  19. Simultaneous sensor calibration and path estimation

    E-Print Network [OSTI]

    Rudoy, Melanie Beth

    2006-01-01T23:59:59.000Z

    This thesis presents two topics related to the simultaneous calibration of a network of imaging sensors, i.e. cameras, and the recovery of the trajectory of an object moving among those sensors. The non-overlapping fields ...

  20. Design guidelines for optical resonator biochemical sensors

    E-Print Network [OSTI]

    Kimerling, Lionel C.

    In this paper, we propose a design tool for dielectric optical resonator-based biochemical refractometry sensors. Analogous to the widely accepted photodetector figure of merit, the detectivity D*, we introduce a new sensor ...

  1. Underwater Data Collection Using Robotic Sensor Networks

    E-Print Network [OSTI]

    Hollinger, Geoffrey A.

    We examine the problem of utilizing an autonomous underwater vehicle (AUV) to collect data from an underwater sensor network. The sensors in the network are equipped with acoustic modems that provide noisy, range-limited ...

  2. Pressure sensor for sealed containers

    DOE Patents [OSTI]

    Hodges, Franklin R. (Loudon, TN)

    2001-01-01T23:59:59.000Z

    A magnetic pressure sensor for sensing a pressure change inside a sealed container. The sensor includes a sealed deformable vessel having a first end attachable to an interior surface of the sealed container, and a second end. A magnet mounted to the vessel second end defining a distance away from the container surface provides an externally detectable magnetic field. A pressure change inside the sealed container causes deformation of the vessel changing the distance of the magnet away from the container surface, and thus the detectable intensity of the magnetic field.

  3. Low noise optical position sensor

    DOE Patents [OSTI]

    Spear, J.D.

    1999-03-09T23:59:59.000Z

    A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments. 14 figs.

  4. Low noise optical position sensor

    DOE Patents [OSTI]

    Spear, Jonathan David (Berkeley, CA)

    1999-01-01T23:59:59.000Z

    A novel optical position sensor is described that uses two component photodiodes electrically connected in parallel, with opposing polarities. A lens provides optical gain and restricts the acceptance angle of the detector. The response of the device to displacements of an optical spot is similar to that of a conventional bi-cell type position sensitive detector. However, the component photodiode design enables simpler electronic amplification with inherently less electrical noise than the bi-cell. Measurements by the sensor of the pointing noise of a focused helium-neon laser as a function of frequency demonstrate high sensitivity and suitability for optical probe beam deflection experiments.

  5. Fluorescent fluid interface position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D.

    2004-02-17T23:59:59.000Z

    A new fluid interface position sensor has been developed, which is capable of optically determining the location of an interface between an upper fluid and a lower fluid, the upper fluid having a larger refractive index than a lower fluid. The sensor functions by measurement, of fluorescence excited by an optical pump beam which is confined within a fluorescent waveguide where that waveguide is in optical contact with the lower fluid, but escapes from the fluorescent waveguide where that waveguide is in optical contact with the upper fluid.

  6. Feasibility study of long-life micro fuel cell power supply for sensor networks for space and terrestrial applications

    E-Print Network [OSTI]

    Manyapu, Kavya Kamal

    2010-01-01T23:59:59.000Z

    Sensor networks used for activities like border security, search and rescue, planetary exploration, commonly operate in harsh environments for long durations, where human supervision is minimal. A major challenge confronting ...

  7. Sensor Wars: Detecting and Defending Against Spam Attacks in Wireless Sensor Networks

    E-Print Network [OSTI]

    Levi, Albert

    network are discussed in [7]. Security, network bandwidth and power consumption in sensor networksSensor Wars: Detecting and Defending Against Spam Attacks in Wireless Sensor Networks Serdar Sancak@sabanciuniv.edu Abstract--Anti-nodes deployed inside a wireless sensor network can frequently generate dummy data packets

  8. Extension of the Semantic Sensor Network Ontology for Wireless Sensor Networks

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Extension of the Semantic Sensor Network Ontology for Wireless Sensor Networks: The Stimulus Wireless Se- mantic Sensor Network ontology, in an agri-environmental scenario to illustrate the interest technolo- gies, Wireless Sensor Network (WSN) becomes widely used. WSN usually consists of a set

  9. Sensors and Actuators A xxx (2004) xxxxxx Micromachined silicon force sensor based on diffractive optical

    E-Print Network [OSTI]

    Quake, Stephen R.

    2004-01-01T23:59:59.000Z

    that is designed to only be sensitive to axial deflections of the probe. The optical-encoder force sensor exhibits­membrane interactions under various physiological conditions. The force sensor is an optical encoder based on transSensors and Actuators A xxx (2004) xxx­xxx Micromachined silicon force sensor based on diffractive

  10. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOE Patents [OSTI]

    Aylott, Jonathan W. (Ann Arbor, MI); Chen-Esterlit, Zoe (Ann Arbor, MI); Friedl, Jon H. (Ames, IA); Kopelman, Raoul (Ann Arbor, MI); Savvateev, Vadim N. (Ames, IA); Shinar, Joseph (Ames, IA)

    2001-12-18T23:59:59.000Z

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  11. Horizontal-Velocity and Variance Measurements in the Stable Boundary Layer Using Doppler Lidar: Sensitivity to Averaging Procedures

    SciTech Connect (OSTI)

    Pichugina, Yelena L.; Banta, Robert M.; Kelley, Neil D.; Jonkman, Bonnie J.; Tucker, Sara C.; Newsom, Rob K.; Brewer, W. A.

    2008-08-01T23:59:59.000Z

    Quantitative data on turbulence variables aloft--above the region of the atmosphere conveniently measured from towers--has been an important but difficult measurement need for advancing understanding and modeling of the stable boundary layer (SBL). Vertical profiles of streamwise velocity variances obtained from NOAA’s High Resolution Doppler Lidar (HRDL), which have been shown to be numerically equivalent to turbulence kinetic energy (TKE) for stable conditions, are a measure of the turbulence in the SBL. In the present study, the mean horizontal wind component U and variance ?u2 were computed from HRDL measurements of the line-of-sight (LOS) velocity using a technique described in Banta, et al. (2002). The technique was tested on datasets obtained during the Lamar Low-Level Jet Project (LLLJP) carried out in early September 2003, near the town of Lamar in southeastern Colorado. This paper compares U with mean wind speed obtained from sodar and sonic anemometer measurements. It then describes several series of averaging tests that produced the best correlation between TKE calculated from sonic anemometer data at several tower levels and lidar measurements of horizontal velocity variance ?u2. The results show high correlation (0.71-0.97) of the mean U and average wind speed measured by sodar and in-situ instruments, independent of sampling strategies and averaging procedures. Comparison of estimates of variance, on the other hand, proved sensitive to both the spatial and temporal averaging techniques.

  12. High pressure fiber optic sensor system

    SciTech Connect (OSTI)

    Guida, Renato; Xia, Hua; Lee, Boon K; Dekate, Sachin N

    2013-11-26T23:59:59.000Z

    The present application provides a fiber optic sensor system. The fiber optic sensor system may include a small diameter bellows, a large diameter bellows, and a fiber optic pressure sensor attached to the small diameter bellows. Contraction of the large diameter bellows under an applied pressure may cause the small diameter bellows to expand such that the fiber optic pressure sensor may measure the applied pressure.

  13. Presented by SensorNet: The New Science of

    E-Print Network [OSTI]

    .S. Department of Energy DeNap_SensorNet_SC10 SensorNet Collection Processing DisseminationSecurity Knowledge requirements Regulations Technology Intelligent Real world #12;3 Managed by UT-Battelle for the U.S. Department of Energy DeNap_SensorNet_SC10 SensorNet SensorNet is ORNL's research in sensor network interoperability

  14. Algorithms For Wireless Sensor Networks Sartaj Sahni and Xiaochun Xu

    E-Print Network [OSTI]

    Sahni, Sartaj K.

    Algorithms For Wireless Sensor Networks Sartaj Sahni and Xiaochun Xu Department of Computer for wireless sensor networks. We focus on sensor deployment and coverage, routing and sensor fusion. Keywords: Wireless sensor networks, algorithms, routing, coverage, fusion. 1 Introduction A wireless sensor network

  15. Performance Characterization of Random Proximity Sensor Networks

    E-Print Network [OSTI]

    Jensen, Grant J.

    Performance Characterization of Random Proximity Sensor Networks Agostino Capponi Department-- In this paper, we characterize the localization per- formance and connectivity of sensors networks consisting for signal processing. Each sensor has severe constraints on the battery power, and can only communicate

  16. 700:20131001.1211 Fine Sun Sensor

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    700:20131001.1211 Fine Sun Sensor The Laboratory for Atmospheric and Space Physics (LASP) at the University of Colorado, Boulder is a world leader in space-based research including measurements of the Sun with respect to sun center. LASP has built sun position sensors for decades beginning with sensors for sub

  17. Mobile Phone Based Drifting Lagrangian Flow Sensors

    E-Print Network [OSTI]

    predicting the outcome and impact of silt disturbed by dredging operations; maintaining the health of fish a new approach to the design of low-cost floating sensors for hydrodynamic studies, leveraging low-cost mobile phone sensor platforms have recently been developed to provide low-cost sensor data collection [1

  18. Gradient Clock Synchronization in Wireless Sensor Networks

    E-Print Network [OSTI]

    Gradient Clock Synchronization in Wireless Sensor Networks Philipp Sommer Computer Engineering- olution. Without doubt, time is a first-class citizen in wireless sensor networks. Without accurate time if the nodes in the wireless sensor network manage to have an adequate agreement of time. Indeed

  19. DISTRIBUTED OPPORTUNISTIC TRANSMISSION FOR WIRELESS SENSOR NETWORKS

    E-Print Network [OSTI]

    Islam, M. Saif

    DISTRIBUTED OPPORTUNISTIC TRANSMISSION FOR WIRELESS SENSOR NETWORKS Qing Zhao and Lang Tong School Strategy We consider the problem of information retrieval in sensor networks with mobile access points on Communica- tion and Networks under Grant DAAD19-01-2-0011. ˘ Fig. 1: Sensor networks with mobile access

  20. Distributed A Wireless Sensor Network for

    E-Print Network [OSTI]

    Distributed Computing A Wireless Sensor Network for Orienteering Competitions Master's Thesis-wave Monopole Antennas . . . . . . . . . . . . . 13 5 MAC and Routing in Wireless Sensor Networks 14 5.1 Medium and waterproof cases free of charge. i #12;Abstract This thesis deals with the development of a wireless sensor

  1. A Virtual Infrastructure for Wireless Sensor Networks

    E-Print Network [OSTI]

    Stojmenovic, Ivan

    &CHAPTER 4 A Virtual Infrastructure for Wireless Sensor Networks STEPHAN OLARIU and QINGWEN XU Old, and wireless communications 107 Handbook of Sensor Networks: Algorithms and Architectures, Edited by I and communication infra- structures, called wireless sensor networks, will have a significant impact on a wide array

  2. Detecting Phantom Nodes in Wireless Sensor Networks

    E-Print Network [OSTI]

    Kim, Dae-Shik

    Detecting Phantom Nodes in Wireless Sensor Networks Joengmin Hwang, Tian He and Yongdae Kim With thousands of tiny devices, Wireless Sensor Networks (WSNs) can support ubiquitous surveillance with a very number of phantom nodes. Key words: Sensor networks, localization, secure localization, location

  3. Fiber optic sensor and method for making

    DOE Patents [OSTI]

    Vartuli, James Scott; Bousman, Kenneth Sherwood; Deng, Kung-Li; McEvoy, Kevin Paul; Xia, Hua

    2010-05-18T23:59:59.000Z

    A fiber optic sensor including a fiber having a modified surface integral with the fiber wherein the modified surface includes an open pore network with optical agents dispersed within the open pores of the open pore network. Methods for preparing the fiber optic sensor are also provided. The fiber optic sensors can withstand high temperatures and harsh environments.

  4. Environmental Cyberinfrastructure Needs For Distributed Sensor Networks

    E-Print Network [OSTI]

    Hamilton, Michael P.

    1 Environmental Cyberinfrastructure Needs For Distributed Sensor Networks 12-14 August 2003;2 Environmental Cyberinfrastructure Needs for Distributed Sensor Networks A Report from a National Science Cyberinfrastructure Needs for Distributed Sensor Networks: A Report from a National Science Foundation Sponsored

  5. Selective chemical detection by energy modulation of sensors

    DOE Patents [OSTI]

    Stetter, Joseph R. (Naperville, IL); Otagawa, Takaaki (Solon, OH)

    1991-01-01T23:59:59.000Z

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level.

  6. Selective chemical detection by energy modulation of sensors

    DOE Patents [OSTI]

    Stetter, J.R.; Otagawa, T.

    1991-09-10T23:59:59.000Z

    A portable instrument for use in the field in detecting, identifying, and quantifying a component of a sampled fluid includes a sensor which chemically reacts with the component of interest or a derivative thereof, an electrical heating filament for heating the sample before it is applied to the sensor, and modulator for continuously varying the temperature of the filament (and hence the reaction rate) between two values sufficient to produce the chemical reaction. In response to this thermal modulation, the sensor produces a modulated output signal, the modulation of which is a function of the activation energy of the chemical reaction, which activation energy is specific to the particular component of interest and its concentration. Microprocessor which compares the modulated output signal with standard responses for a plurality of components to identify and quantify the particular component of interest. In particular, the concentration of the component of interest is proportional to the amplitude of the modulated output signal, while the identifying activation output energy of the chemical interaction indicative of that component is proportional to a normalized parameter equal to the peak-to-peak amplitude divided by the height of the upper peaks above a base line signal level. 5 figures.

  7. Observational Studies of Atmospheric Aerosols over Bozeman, Montana, Using a Two-Color Lidar, a Water Vapor DIAL, a Solar Radiometer,

    E-Print Network [OSTI]

    Shaw, Joseph A.

    Observational Studies of Atmospheric Aerosols over Bozeman, Montana, Using a Two-Color Lidar form 24 June 2010) ABSTRACT Coordinated observational data of atmospheric aerosols were collected over-based nephelometer. The optical properties and spatial distribution of the atmospheric aerosols were inferred from

  8. SilviLaser 2011, Oct. 16-19, 2011 Hobart, Australia Towards automated and operational forest inventories with T-Lidar

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    inventories with T-Lidar A. Othmani1 , A. Piboule2 , M. Krebs3 , C. Stolz1 and L.F.C. Lew Yan Voon1 1 Cluny, France, michael.krebs@ensam.eu Keywords: terrestrial laser scanning, forest inventory, tree detection, DBH. Abstract Forest inventory automation has become a major issue in forestry. The complexity

  9. Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave radiometer data are systematically compared to models to quantify and

    E-Print Network [OSTI]

    Hogan, Robin

    Cloud fraction, liquid and ice water contents derived from long-term radar, lidar, and microwave a systematic evaluation of clouds in forecast models. Clouds and their associated microphysical processes for end users of weather forecasts, who may be interested not only in cloud cover, but in other variables

  10. Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data

    E-Print Network [OSTI]

    Stoffelen, Ad

    Evaluation of Cloud-Phase Retrieval Methods for SEVIRI on Meteosat-8 Using Ground-Based Lidar and Cloud Radar Data ERWIN L. A. WOLTERS, ROBERT A. ROEBELING, AND ARNOUT J. FEIJT Royal Netherlands 2007) ABSTRACT Three cloud-phase determination algorithms from passive satellite imagers are explored

  11. Mini-lidar sensor for the remote stand-off sensing of chemical/biological substances and method for sensing same

    DOE Patents [OSTI]

    Ray, Mark D.; Sedlacek, Arthur J.

    2003-08-19T23:59:59.000Z

    A method and apparatus for remote, stand-off, and high efficiency spectroscopic detection of biological and chemical substances. The apparatus including an optical beam transmitter which transmits a beam having an axis of transmission to a target, the beam comprising at least a laser emission. An optical detector having an optical detection path to the target is provided for gathering optical information. The optical detection path has an axis of optical detection. A beam alignment device fixes the transmitter proximal to the detector and directs the beam to the target along the optical detection path such that the axis of transmission is within the optical detection path. Optical information gathered by the optical detector is analyzed by an analyzer which is operatively connected to the detector.

  12. Radiochemical Sensor for Continuous and Remote Liquid Effluents Monitoring

    SciTech Connect (OSTI)

    Tarancon, A.; Garcia, J.F.; Rauret, G. [Departament de Quimica Analitica. Facultat de Quimica. Universitat de Barcelona (Spain); Padro, A. [Serveis Cientifico-Tecnics. Universitat de Barcelona. Sole Sabaris Barcelona (Spain)

    2008-07-01T23:59:59.000Z

    On-line radioactivity monitoring in liquid effluents is an increasing need according to the international regulations at present. Classical activity determination procedures include the sequence of sampling, chemical treatment, measurement and data treatment. These steps are man-power consuming, generate a great amount of waste and introduce an important delay between the potential pollution event and its detection and quantification. To overcome these limitations, we have developed a radiochemical sensor for liquid effluents capable of sending information about the specific activity and volume of a contamination episode to a remote position, on line and continuously. The capabilities of the sensor developed here allow detecting and quantifying contamination pulses of alpha, beta and gamma emitters of different volumes and activity levels included in a continuous stream. Sensor receptor includes two detection systems, one addressed to determine alpha, beta and gamma events and the other to detect sample gamma emissions. Detailed sensor structure will be shown at the conference because patent is in process at this moment. Detection efficiencies (%) obtained in the alpha-beta-gamma system for the range of contamination volumes considered (2- 300 ml) are: 1.6 - 3.2%, for Pu-240; 22.2 - 58.4%, for Sr-90/Y-90 and 8.8 -17.7%, for Cs-134. In the gamma system, values for Cs-134 detection range from 0.6% to 1.3%. Prediction errors obtained show that sensor is capable to detect Sr-90/Y-90 contamination pulses of at least 2 ml and 3 Bq/ml with a relative error lower of 10% in activity and 60% in volume. When contamination pulse increases up to 7 ml, relative errors decrease to 5% for both magnitudes. For Pu-240 and Cs-134, when contamination pulses are of at least 7 ml and 300 Bq/ml, the relative errors obtained in determinations performed in the alpha-beta-gamma system are lower than 10% in activity and 20 % in volume. The same errors are obtained in the gamma system for Cs-134 when contamination pulses are higher than 7 ml and activities up to 1300 Bq/ml. (authors)

  13. Consensus Filters for Sensor Networks and Distributed Sensor Fusion Reza Olfati-Saber and Jeff S. Shamma

    E-Print Network [OSTI]

    Shamma, Jeff S.

    Consensus Filters for Sensor Networks and Distributed Sensor Fusion Reza Olfati-Saber and Jeff S for sensor fusion in sensor networks. This paper introduces a distributed filter that allows the nodes of a sensor network to track the average of n sensor measurements using an average consensus based distributed

  14. LIDAR Wind Speed Measurement Analysis and Feed-Forward Blade Pitch Control for Load Mitigation in Wind Turbines: January 2010--January 2011

    SciTech Connect (OSTI)

    Dunne, F.; Simley, E.; Pao, L.Y.

    2011-10-01T23:59:59.000Z

    This report examines the accuracy of measurements that rely on Doppler LIDAR systems to determine their applicability to wind turbine feed-forward control systems and discusses feed-forward control system designs that use preview wind measurements. Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feed-forward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. The first half of this report examines the accuracy of different measurement scenarios that rely on coherent continuous-wave or pulsed Doppler LIDAR systems to determine their applicability to feed-forward control. In particular, the impacts of measurement range and angular offset from the wind direction are studied for various wind conditions. A realistic case involving a scanning LIDAR unit mounted in the spinner of a wind turbine is studied in depth with emphasis on choices for scan radius and preview distance. The effects of turbulence parameters on measurement accuracy are studied as well. Continuous-wave and pulsed LIDAR models based on typical commercially available units were used in the studies present in this report. The second half of this report discusses feed-forward control system designs that use preview wind measurements. Combined feedback/feed-forward blade pitch control is compared to industry standard feedback control when simulated in realistic turbulent above-rated winds. The feed-forward controllers are designed to reduce fatigue loads, increasing turbine lifetime and therefore reducing the cost of energy. Three feed-forward designs are studied: non-causal series expansion, Preview Control, and optimized FIR filter. The input to the feed-forward controller is a measurement of incoming wind speeds that could be provided by LIDAR. Non-causal series expansion and Preview Control methods reduce blade root loads but increase tower bending in simulation results. The optimized FIR filter reduces loads overall, keeps pitch rates low, and maintains rotor speed regulation and power capture, while using imperfect wind measurements provided by the spinning continuous-wave LIDAR model.

  15. Sensor test facilities and capabilities at the Nevada Test Site

    SciTech Connect (OSTI)

    Boyer, W.B.; Burke, L.J.; Gomez, B.J.; Livingston, L.; Nelson, D.S.; Smathers, D.C.

    1996-12-31T23:59:59.000Z

    Sandia National Laboratories has recently developed two major field test capabilities for unattended ground sensor systems at the Department of energy`s Nevada Test Site (NTS). The first capability utilizes the NTS large area, varied terrain, and intrasite communications systems for testing sensors for detecting and tracking vehicular traffic. Sensor and ground truth data can be collected at either of two secure control centers. This system also includes an automated ground truth capability that consists of differential Global Positioning Satellite (GPS) receivers on test vehicles and live TV coverage of critical road sections. Finally there is a high-speed, secure computer network link between the control centers and the Air Force`s Theater Air Command and Control Simulation Facility in Albuquerque NM. The second capability is Bunker 2-300. It is a facility for evaluating advanced sensor systems for monitoring activities in underground cut-and-cover facilities. The main part of the facility consists of an underground bunker with three large rooms for operating various types of equipment. This equipment includes simulated chemical production machinery and controlled seismic and acoustic signal sources. There has been a thorough geologic and electromagnetic characterization of the region around the bunker. Since the facility is in a remote location, it is well-isolated from seismic, acoustic, and electromagnetic interference.

  16. Seal Whiskers as Sensors! INTRODUCTION

    E-Print Network [OSTI]

    and 2) to develop a flow sensor capable of detecting hydrodynamic features, such as the vortex street them, allowing them to reduce drag by avoiding strong head-on currents, lock into and track the wake to vibrate. Compared to a circular cylinder (top leB) and an ellipse (top

  17. Microelectromechanical systems contact stress sensor

    DOE Patents [OSTI]

    Kotovsky, Jack (Oakland, CA)

    2007-12-25T23:59:59.000Z

    A microelectromechanical systems stress sensor comprising a microelectromechanical systems silicon body. A recess is formed in the silicon body. A silicon element extends into the recess. The silicon element has limited freedom of movement within the recess. An electrical circuit in the silicon element includes a piezoresistor material that allows for sensing changes in resistance that is proportional to bending of the silicon element.

  18. Battery system with temperature sensors

    DOE Patents [OSTI]

    Wood, Steven J.; Trester, Dale B.

    2012-11-13T23:59:59.000Z

    A battery system to monitor temperature includes at least one cell with a temperature sensing device proximate the at least one cell. The battery system also includes a flexible member that holds the temperature sensor proximate to the at least one cell.

  19. Buried fiber optic intrusion sensor

    E-Print Network [OSTI]

    Maier, Eric William

    2004-09-30T23:59:59.000Z

    to the buried sensor induces a phase shift in light propagating along the fiber which allows for the detection and localization of intrusions. Through the use of an ultra-stable erbium-doped fiber laser and phase sensitive optical time domain reflectometry...

  20. Fiber optic coupled optical sensor

    DOE Patents [OSTI]

    Fleming, Kevin J. (Albuquerque, NM)

    2001-01-01T23:59:59.000Z

    A displacement sensor includes a first optical fiber for radiating light to a target, and a second optical fiber for receiving light from the target. The end of the first fiber is adjacent and not axially aligned with the second fiber end. A lens focuses light from the first fiber onto the target and light from the target onto the second fiber.

  1. Network Embedded Systems Sensor Networks

    E-Print Network [OSTI]

    Amir, Yair

    Battery Energy Reserve Manager = Bank Each task requests an account with conditions W ­ fraction Tracking 9 #12;Virtual Battery: An Energy Reserve Abstraction for Embedded Sensor Networks Qing Cao of real battery allocated N ­ number of energy installments L ­ expected lifetime of the task C

  2. Microscale autonomous sensor and communications module

    DOE Patents [OSTI]

    Okandan, Murat; Nielson, Gregory N

    2014-03-25T23:59:59.000Z

    Various technologies pertaining to a microscale autonomous sensor and communications module are described herein. Such a module includes a sensor that generates a sensor signal that is indicative of an environmental parameter. An integrated circuit receives the sensor signal and generates an output signal based at least in part upon the sensor signal. An optical emitter receives the output signal and generates an optical signal as a function of the output signal. An energy storage device is configured to provide power to at least the integrated circuit and the optical emitter, and wherein the module has a relatively small diameter and thickness.

  3. Chemical micro-sensor

    DOE Patents [OSTI]

    Ruggiero, Anthony J.

    2005-05-03T23:59:59.000Z

    An integrated optical capillary electrophoresis system for analyzing an analyte. A modulated optical pump beam impinges on an capillary containing the analyte/buffer solution which is separated by electrophoresis. The thermally-induced change in the index of refraction of light in said electrophoresis capillary is monitored using an integrated micro-interferometer. The interferometer includes a first interferometer arm intersecting the electrophoresis capillary proximate the excitation beam and a second, reference interferometer arm. Changes in index of refraction in the analyte measured by interrogating the interferometer state using white light interferometry and a phase-generated carrier demodulation technique. Background thermo-optical activity in the buffer solution is cancelled by splitting the pump beam and exciting pure buffer solution in a second section of capillary where it crosses the reference arm of the interferometer.

  4. Synthesis of Metal Oxide Nanomaterials for Chemical Sensors by Molecular Beam Epitaxy

    SciTech Connect (OSTI)

    Nandasiri, Manjula I.; Kuchibhatla, Satyanarayana V N T; Thevuthasan, Suntharampillai

    2013-12-01T23:59:59.000Z

    Since the industrial revolution, detection and monitoring of toxic matter, chemical wastes, and air pollutants has become an important environmental issue. Thus, it leads to the development of chemical sensors for various environmental applications. The recent disastrous oil spills over the near-surface of ocean due to the offshore drilling emphasize the use of chemical sensors for prevention and monitoring of the processes that might lead to these mishaps.1, 2 Chemical sensors operated on a simple principle that the sensing platform undergoes a detectable change when exposed to the target substance to be sensed. Among all the types of chemical sensors, solid state gas sensors have attracted a great deal of attention due to their advantages such as high sensitivity, greater selectivity, portability, high stability and low cost.3, 4 Especially, semiconducting metal oxides such as SnO2, TiO2, and WO3 have been widely used as the active sensing platforms in solid state gas sensors.5 For the enhanced properties of solid state gas sensors, finding new sensing materials or development of existing materials will be needed. Thus, nanostructured materials such as nanotubes,6-8 nanowires,9-11 nanorods,12-15 nanobelts,16, 17 and nano-scale thin films18-23 have been synthesized and studied for chemical sensing applications.

  5. Ammonia and ammonium hydroxide sensors for ammonia/water absorption machines: Literature review and data compilation

    SciTech Connect (OSTI)

    Anheier, N.C. Jr.; McDonald, C.E.; Cuta, J.M.; Cuta, F.M.; Olsen, K.B.

    1995-05-01T23:59:59.000Z

    This report describes an evaluation of various sensing techniques for determining the ammonia concentration in the working fluid of ammonia/water absorption cycle systems. The purpose of this work was to determine if any existing sensor technology or instrumentation could provide an accurate, reliable, and cost-effective continuous measure of ammonia concentration in water. The resulting information will be used for design optimization and cycle control in an ammonia-absorption heat pump. PNL researchers evaluated each sensing technology against a set of general requirements characterizing the potential operating conditions within the absorption cycle. The criteria included the physical constraints for in situ operation, sensor characteristics, and sensor application. PNL performed an extensive literature search, which uncovered several promising sensing technologies that might be applicable to this problem. Sixty-two references were investigated, and 33 commercial vendors were identified as having ammonia sensors. The technologies for ammonia sensing are acoustic wave, refractive index, electrode, thermal, ion-selective field-effect transistor (ISFET), electrical conductivity, pH/colormetric, and optical absorption. Based on information acquired in the literature search, PNL recommends that follow-on activities focus on ISFET devices and a fiber optic evanescent sensor with a colormetric indicator. The ISFET and fiber optic evanescent sensor are inherently microminiature and capable of in situ measurements. Further, both techniques have been demonstrated selective to the ammonium ion (NH{sub 4}{sup +}). The primary issue remaining is how to make the sensors sufficiently corrosion-resistant to be useful in practice.

  6. Fabrication of thermal microphotonic sensors and sensor arrays

    DOE Patents [OSTI]

    Shaw, Michael J. (Tijeras, NM); Watts, Michael R. (Albuquerque, NM); Nielson, Gregory N. (Albuquerque, NM)

    2010-10-26T23:59:59.000Z

    A thermal microphotonic sensor is fabricated on a silicon substrate by etching an opening and a trench into the substrate, and then filling in the opening and trench with silicon oxide which can be deposited or formed by thermally oxidizing a portion of the silicon substrate surrounding the opening and trench. The silicon oxide forms a support post for an optical resonator which is subsequently formed from a layer of silicon nitride, and also forms a base for an optical waveguide formed from the silicon nitride layer. Part of the silicon substrate can be selectively etched away to elevate the waveguide and resonator. The thermal microphotonic sensor, which is useful to detect infrared radiation via a change in the evanescent coupling of light between the waveguide and resonator, can be formed as a single device or as an array.

  7. Real-Time Spatio-Temporal Query Processing in Mobile Ad-Hoc Sensor Networks

    E-Print Network [OSTI]

    that has multiple sensors (e.g., mo- tion sensors, acoustic sensors, infrared light emitting diodes, and pa

  8. Six degree of freedom sensor

    DOE Patents [OSTI]

    Vann, C.S.

    1999-03-16T23:59:59.000Z

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing. 3 figs.

  9. Six degree of freedom sensor

    DOE Patents [OSTI]

    Vann, Charles S. (Fremont, CA)

    1999-01-01T23:59:59.000Z

    This small, non-contact optical sensor increases the capability and flexibility of computer controlled machines by detecting its relative position to a workpiece in all six degrees of freedom (DOF). At a fraction of the cost, it is over 200 times faster and up to 25 times more accurate than competing 3-DOF sensors. Applications range from flexible manufacturing to a 6-DOF mouse for computers. Until now, highly agile and accurate machines have been limited by their inability to adjust to changes in their tasks. By enabling them to sense all six degrees of position, these machines can now adapt to new and complicated tasks without human intervention or delay--simplifying production, reducing costs, and enhancing the value and capability of flexible manufacturing.

  10. A precise narrow-beam filter infrared radiometer and its use with lidar in the ARM Program

    SciTech Connect (OSTI)

    Platt, C.M.R.

    1992-05-01T23:59:59.000Z

    The first six months of the grant (December 1991--May 1992) have been taken up with the design and specification for the new narrow-beam radiometer. The radiometer will be built and tested at the Division of Atmospheric Research over the next three months. Improved algorithms for obtaining cloud extinction have also been developed. It is proposed during 1993 to use the radiometer in conjunction with a new CSIRO 3-wavelength lidar in the ARM PROBE experiment at Kavieng, New Guinea, which is a test mission under tropical conditions for the ARM CART Tropical West Pacific site, and is part of the TOGA COARE experiment. During the latter part of 1992, the radiometer will be tested thoroughly and tested at the Division of Atmospheric Research, Aspendale.

  11. Lipid nanotube or nanowire sensor

    DOE Patents [OSTI]

    Noy, Aleksandr (Belmont, CA); Bakajin, Olgica (San Leandro, CA); Letant, Sonia (Livermore, CA); Stadermann, Michael (Dublin, CA); Artyukhin, Alexander B. (Menlo Park, CA)

    2009-06-09T23:59:59.000Z

    A sensor apparatus comprising a nanotube or nanowire, a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer. Also a biosensor apparatus comprising a gate electrode; a source electrode; a drain electrode; a nanotube or nanowire operatively connected to the gate electrode, the source electrode, and the drain electrode; a lipid bilayer around the nanotube or nanowire, and a sensing element connected to the lipid bilayer.

  12. Laser cooling of infrared sensors.

    SciTech Connect (OSTI)

    Hasselbeck, M. P. (Michael P.); Sheik-Bahae, M (Mansoor); Thiede, J. (Jared); Distel, J. R. (James R.); Greenfield, S. R. (Scott R.); Patterson, Wendy M.; Bigotta, S.; Imangholi, B.; Seletskiy, D. (Denis); Bender, D.; Vankipuram, V.; Vadiee, N.; Epstein, Richard I.

    2004-01-01T23:59:59.000Z

    We present an overview of laser cooling of solids. In this all-solid-state approach to refrigeration, heat is removed radiatively when an engineered material is exposed to high power laser light. We report a record amount of net cooling (88 K below ambient) that has been achieved with a sample made from doped fluoride glass. Issues involved in the design of a practical laser cooler are presented. The possibility of laser cooling of semiconductor sensors is discussed.

  13. Embedded Sensor System for Early Pathology Detection in Building Construction

    E-Print Network [OSTI]

    Torres, Santiago J Barro

    2009-01-01T23:59:59.000Z

    Structure pathology detection is an important security task in building construction, which is performed by an operator by looking manually for damages on the materials. This activity could be dangerous if the structure is hidden or difficult to reach. On the other hand, embedded devices and wireless sensor networks (WSN) are becoming popular and cheap, enabling the design of an alternative pathology detection system to monitor structures based on these technologies. This article introduces a ZigBee WSN system, intending to be autonomous, easy to use and with low power consumption. Its functional parts are fully discussed with diagrams, as well as the protocol used to collect samples from sensor nodes. Finally, several tests focused on range and power consumption of our prototype are shown, analysing whether the results obtained were as expected or not.

  14. Application of Geiger-mode photo sensors in Cherenkov detectors

    E-Print Network [OSTI]

    Gamal Ahmed; Paul Buehler; Michael Cargnelli; Roland Hohler; Johann Marton; Herbert Orth; Ken Suzuki

    2010-08-31T23:59:59.000Z

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. In our institute we are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  15. Application of Geiger-mode photo sensors in Cherenkov detectors

    E-Print Network [OSTI]

    Ahmed, Gamal; Cargnelli, Michael; Hohler, Roland; Marton, Johann; Orth, Herbert; Suzuki, Ken

    2010-01-01T23:59:59.000Z

    Silicon-based photosensors (SiPMs) working in the Geiger-mode represent an elegant solution for the readout of particle detectors working at low-light levels like Cherenkov detectors. Especially the insensitivity to magnetic fields makes this kind of sensors suitable for modern detector systems in subatomic physics which are usually employing magnets for momentum resolution. In our institute we are characterizing SiPMs of different manufacturers for selecting sensors and finding optimum operating conditions for given applications. Recently we designed and built a light concentrator prototype with 8x8 cells to increase the active photon detection area of an 8x8 SiPM (Hamamatsu MPPC S10931-100P) array. Monte Carlo studies, measurements of the collection efficiency, and tests with the MPPC were carried out. The status of these developments are presented.

  16. Cross delay line sensor characterization

    SciTech Connect (OSTI)

    Owens, Israel J [Los Alamos National Laboratory; Remelius, Dennis K [Los Alamos National Laboratory; Tiee, Joe J [Los Alamos National Laboratory; Buck, Steven E [Los Alamos National Laboratory; Whittemore, Stephen R [Los Alamos National Laboratory; Thompson, David C [Los Alamos National Laboratory; Shirey, Robert [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    There exists a wealth of information in the scientific literature on the physical properties and device characterization procedures for complementary metal oxide semiconductor (CMOS), charge coupled device (CCD) and avalanche photodiode (APD) format detectors. Numerous papers and books have also treated photocathode operation in the context of photomultiplier tube (PMT) operation for either non imaging applications or limited night vision capability. However, much less information has been reported in the literature about the characterization procedures and properties of photocathode detectors with novel cross delay line (XDL) anode structures. These allow one to detect single photons and create images by recording space and time coordinate (X, Y & T) information. In this paper, we report on the physical characteristics and performance of a cross delay line anode sensor with an enhanced near infrared wavelength response photocathode and high dynamic range micro channel plate (MCP) gain (> 10{sup 6}) multiplier stage. Measurement procedures and results including the device dark event rate (DER), pulse height distribution, quantum and electronic device efficiency (QE & DQE) and spatial resolution per effective pixel region in a 25 mm sensor array are presented. The overall knowledge and information obtained from XDL sensor characterization allow us to optimize device performance and assess capability. These device performance properties and capabilities make XDL detectors ideal for remote sensing field applications that require single photon detection, imaging, sub nano-second timing response, high spatial resolution (10's of microns) and large effective image format.

  17. Amorphous Diamond MEMS and Sensors

    SciTech Connect (OSTI)

    SULLIVAN, JOHN P.; FRIEDMANN, THOMAS A.; ASHBY, CAROL I.; DE BOER, MAARTEN P.; SCHUBERT, W. KENT; SHUL, RANDY J.; HOHLFELDER, ROBERT J.; LAVAN, D.A.

    2002-06-01T23:59:59.000Z

    This report describes a new microsystems technology for the creation of microsensors and microelectromechanical systems (MEMS) using stress-free amorphous diamond (aD) films. Stress-free aD is a new material that has mechanical properties close to that of crystalline diamond, and the material is particularly promising for the development of high sensitivity microsensors and rugged and reliable MEMS. Some of the unique properties of aD include the ability to easily tailor film stress from compressive to slightly tensile, hardness and stiffness 80-90% that of crystalline diamond, very high wear resistance, a hydrophobic surface, extreme chemical inertness, chemical compatibility with silicon, controllable electrical conductivity from insulating to conducting, and biocompatibility. A variety of MEMS structures were fabricated from this material and evaluated. These structures included electrostatically-actuated comb drives, micro-tensile test structures, singly- and doubly-clamped beams, and friction and wear test structures. It was found that surface micromachined MEMS could be fabricated in this material easily and that the hydrophobic surface of the film enabled the release of structures without the need for special drying procedures or the use of applied hydrophobic coatings. Measurements using these structures revealed that aD has a Young's modulus of {approx}650 GPa, a tensile fracture strength of 8 GPa, and a fracture toughness of 8 MPa{center_dot}m {sup 1/2}. These results suggest that this material may be suitable in applications where stiction or wear is an issue. Flexural plate wave (FPW) microsensors were also fabricated from aD. These devices use membranes of aD as thin as {approx}100 nm. The performance of the aD FPW sensors was evaluated for the detection of volatile organic compounds using ethyl cellulose as the sensor coating. For comparable membrane thicknesses, the aD sensors showed better performance than silicon nitride based sensors. Greater than one order of magnitude increase in chemical sensitivity is expected through the use of ultra-thin aD membranes in the FPW sensor. The discoveries and development of the aD microsystems technology that were made in this project have led to new research projects in the areas of aD bioMEMS and aD radio frequency MEMS.

  18. Collecting and Disseminating Smart Home Sensor Data in the CASAS Project D.J. Cook, M. Schmitter-Edgecombe, Aaron Crandall, Chad Sanders, and Brian Thomas

    E-Print Network [OSTI]

    Cook, Diane J.

    Collecting and Disseminating Smart Home Sensor Data in the CASAS Project D.J. Cook, M. Schmitter a physical smart home testbed. Expertise and resources are needed to design and install the sensors to test, compare, and enhance smart home and telemedicine technologies such as user modeling, activity

  19. Combinatorial Design of Key Distribution Mechanisms for Wireless Sensor Networks

    E-Print Network [OSTI]

    Bystroff, Chris

    Combinatorial Design of Key Distribution Mechanisms for Wireless Sensor Networks Seyit A. C¸amtepe1 of the most challenging security issues in wireless sensor networks where sensor nodes are randomly scattered-chain sizes. 1 Introduction and Problem Definition In this work, we consider a sensor network in which sensor

  20. Combinatorial Design of Key Distribution Mechanisms for Wireless Sensor Networks

    E-Print Network [OSTI]

    Bystroff, Chris

    Combinatorial Design of Key Distribution Mechanisms for Wireless Sensor Networks Seyit A. C� amtepe of the most challenging security issues in wireless sensor networks where sensor nodes are randomly scattered­chain sizes. 1 Introduction and Problem Definition In this work, we consider a sensor network in which sensor

  1. Position Estimation With Moving Beacons in Wireless Sensor Networks

    E-Print Network [OSTI]

    Dong, Liang

    Position Estimation With Moving Beacons in Wireless Sensor Networks Liang Dong and Frank L nodes in a wireless sensor network. Without GPS capability on any of the sensors, the position issue in wireless sensor networks. Accurate positions of sensor nodes improve the routing efficiency

  2. PSFQ: A Reliable Transport Protocol for Wireless Sensor Networks

    E-Print Network [OSTI]

    Han, Richard Y.

    PSFQ: A Reliable Transport Protocol for Wireless Sensor Networks Chieh-Yih Wan Dept. of Electrical class of reliable data applications emerging in wireless sensor networks. For example, currently sensor of sensors in wireless sensor networks on the fly (e.g., during disaster recovery). Due to the application

  3. Hallway Monitoring: Distributed Data Processing with Wireless Sensor Networks

    E-Print Network [OSTI]

    Baumgartner, Tobias

    infrared sensors (PIRs), con- nected to 30 wireless sensor nodes. There are also 29 LEDs and speakers, development, and evaluation of higher-level algorithms in real de- ployments in which sensor nodes can share, and 29 passive infrared sensors (PIRs) for motion detection. The construction of the load sensors has

  4. NONNEGATIVE UNMIXING METHODOLOGY APPLIED ON BRILLOUIN OPTICAL FIBER SENSOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    NONNEGATIVE UNMIXING METHODOLOGY APPLIED ON BRILLOUIN OPTICAL FIBER SENSOR Edouard Buchoud1 As a complement to conventional sensors, Distributed Optical Fiber Sensors (DOFS) have gradually played. In complementary to traditional sensors, distributed fiber optic sensors (DOFS) are an attractive tool for SHM [1

  5. Polymers for Chemical Sensors Using Hydrosilylation Chemistry

    SciTech Connect (OSTI)

    Grate, Jay W.; Kaganove, Steven N.; Nelson, David A.

    2001-06-28T23:59:59.000Z

    Sorbent and functionalized polymers play a key role in a diverse set of fields, including chemical sensors, separation membranes, solid phase extraction techniques, and chromatography. Sorbent polymers are critical to a number of sensor array or "electronic nose" systems. The responses of the sensors in the array give rise to patterns that can be used to distinguish one compound from another, provided that a sufficiently diverse set of sensing materials is present in the array. Figure 1 illustrates the concept of several sensors, each with a different sensor coating, giving rise to variable responses to an analyte that appear as a pattern in bar graph format. Using hydrosilylation as the bond-forming reaction, we have developed a versatile and efficient approach to developing sorbent polymers with diverse interactive properties for sensor applications. Both the chemical and physical properties of these polymers are predictable and tunable by design.

  6. Micromachined pressure sensors: Review and recent developments

    SciTech Connect (OSTI)

    Eaton, W.P.; Smith, J.H. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachines Dept.

    1997-03-01T23:59:59.000Z

    Since the discovery of piezoresistivity in silicon in the mid 1950s, silicon-based pressure sensors have been widely produced. Micromachining technology has greatly benefited from the success of the integrated circuits industry, burrowing materials, processes, and toolsets. Because of this, microelectromechanical systems (MEMS) are now poised to capture large segments of existing sensor markets and to catalyze the development of new markets. Given the emerging importance of MEMS, it is instructive to review the history of micromachined pressure sensors, and to examine new developments in the field. Pressure sensors will be the focus of this paper, starting from metal diaphragm sensors with bonded silicon strain gauges, and moving to present developments of surface-micromachined, optical, resonant, and smart pressure sensors. Considerations for diaphragm design will be discussed in detail, as well as additional considerations for capacitive and piezoresistive devices.

  7. Sensor network and soft sensor design for stable nonlinear dynamic systems

    E-Print Network [OSTI]

    Singh, Abhay Kumar

    2006-10-30T23:59:59.000Z

    is designing soft sensors for a given measurement structure. In case of high-dimensional systems, the application of conventional soft sensor or observer designs may not always be practical due to the high computational requirements or the resulting observers...

  8. HYDROCARBON AND SULFUR SENSORS FOR SOFC SYSTEMS

    SciTech Connect (OSTI)

    A.M. Azad; Chris Holt; Todd Lesousky; Scott Swartz

    2003-11-01T23:59:59.000Z

    The following report summarizes work conducted during the Phase I program Hydrocarbon and Sulfur Sensors for SOFC Systems under contract No. DE-FC26-02NT41576. For the SOFC application, sensors are required to monitor hydrocarbons and sulfur in order to increase the operation life of SOFC components. This report discusses the development of two such sensors, one based on thick film approach for sulfur monitoring and the second galvanic based for hydrocarbon monitoring.

  9. Sensor Development for PEM Fuel Cell Systems

    SciTech Connect (OSTI)

    Steve Magee; Richard Gehman

    2005-07-12T23:59:59.000Z

    This document reports on the work done by Honeywell Sensing and Control to investigate the feasibility of modifying low cost Commercial Sensors for use inside a PEM Fuel Cell environment. Both stationary and automotive systems were considered. The target environment is hotter (100 C) than the typical commercial sensor maximum of 70 C. It is also far more humid (100% RH condensing) than the more typical 95% RH non-condensing at 40 C (4% RH maximum at 100 C). The work focused on four types of sensors, Temperature, Pressure, Air Flow and Relative Humidity. Initial design goals were established using a market research technique called Market Driven Product Definition (MDPD). A series of interviews were conducted with various users and system designers in their facilities. The interviewing team was trained in data taking and analysis per the MDPD process. The final result was a prioritized and weighted list of both requirements and desires for each sensor. Work proceeded on concept development for the 4 types of sensors. At the same time, users were developing the actual fuel cell systems and gaining knowledge and experience in the use of sensors and controls systems. This resulted in changes to requirements and desires that were not anticipated during the MDPD process. The concepts developed met all the predicted requirements. At the completion of concept development for the Pressure Sensor, it was determined that the Fuel Cell developers were happy with off-the-shelf automotive pressure sensors. Thus, there was no incentive to bring a new Fuel Cell Specific Pressure Sensor into production. Work was therefore suspended. After the experience with the Pressure Sensor, the requirements for a Temperature Sensor were reviewed and a similar situation applied. Commercially available temperature sensors were adequate and cost effective and so the program was not continued from the Concept into the Design Phase.

  10. Hanford Site lighting occupancy sensor study

    SciTech Connect (OSTI)

    Richman, E.E.; Dittmer, A.L.; Keller, J.M.

    1993-09-01T23:59:59.000Z

    This study was designed to assess the potential energy savings from the use of lighting occupancy sensor control in the US Department of Energy (DOE) Hanford Site office facilities. The final results of the study provide useful information for assessing cost-effective use of occupancy sensor lighting control. The results also include specific application data for Hanford Site office building spaces that indicate where sensor technology could be applied for cost-effective energy savings.

  11. Carbon nanotube temperature and pressure sensors

    DOE Patents [OSTI]

    Ivanov, Ilia N; Geohegan, David Bruce

    2013-10-29T23:59:59.000Z

    The present invention, in one embodiment, provides a method of measuring pressure or temperature using a sensor including a sensor element composed of a plurality of carbon nanotubes. In one example, the resistance of the plurality of carbon nanotubes is measured in response to the application of temperature or pressure. The changes in resistance are then recorded and correlated to temperature or pressure. In one embodiment, the present invention provides for independent measurement of pressure or temperature using the sensors disclosed herein.

  12. DOI 10.1007/s11276-006-0724-8 Relay sensor placement in wireless sensor networks

    E-Print Network [OSTI]

    Wang, Lusheng

    DOI 10.1007/s11276-006-0724-8 Relay sensor placement in wireless sensor networks Xiuzhen Cheng Sensor Networks (WSNs) are ad hoc multihop sys- tems containing sensors connected by wireless links sensor net- works. In our study, this problem is modelled by a NP-hard network optimization problem named

  13. Structure and yarn sensor for fabric

    DOE Patents [OSTI]

    Mee, David K. (Knoxville, TN); Allgood, Glenn O. (Powell, TN); Mooney, Larry R. (Knoxville, TN); Duncan, Michael G. (Clinton, TN); Turner, John C. (Clinton, TN); Treece, Dale A. (Knoxville, TN)

    1998-01-01T23:59:59.000Z

    A structure and yarn sensor for fabric directly determines pick density in a fabric thereby allowing fabric length and velocity to be calculated from a count of the picks made by the sensor over known time intervals. The structure and yarn sensor is also capable of detecting full length woven defects and fabric. As a result, an inexpensive on-line pick (or course) density measurement can be performed which allows a loom or knitting machine to be adjusted by either manual or automatic means to maintain closer fiber density tolerances. Such a sensor apparatus dramatically reduces fabric production costs and significantly improves fabric consistency and quality for woven or knitted fabric.

  14. Electrochemical NOx Sensor for Monitoring Diesel Emissions

    Broader source: Energy.gov (indexed) [DOE]

    advanced prototype built on an alumina substrate, provided by Ford, with an integrated heating element * Substrate packaged by U.S. automotive supplier into a commercial sensor...

  15. Advanced Sensors, Control, Platforms, and Modeling

    Office of Environmental Management (EM)

    112 productivity and safety, and boost the U.S. sensor and automation industry. 113 2. Technology Assessment and Potential 114 2.1 Performance advances 115 DRAFT -...

  16. Sandia National Laboratories: Sensors & Optical Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optimizing Engines for Alternative Fuels On September 10, 2013, in CRF, Energy, Facilities, News, News & Events, Research & Capabilities, Sensors & Optical Diagnostics,...

  17. Uncertainty Quantification Techniques for Sensor Calibration...

    Office of Scientific and Technical Information (OSTI)

    Uncertainty Quantification Techniques for Sensor Calibration Monitoring in Nuclear Power Plants Re-direct Destination: This report describes research towards the development of...

  18. Cognitive Radio Networks as Sensor Networks

    E-Print Network [OSTI]

    Bandari, Dorna; Yang, Seung R.; Zhao, Yue; Pottie, Gregory

    2007-01-01T23:59:59.000Z

    assuming the cognitive radios know their own coordinates.Networked Sensing Cognitive Radio Networks As SensorIntroduction: Cognitive Radio (CR) Networks The Need For

  19. Compiling functional reactive macroprograms for sensor networks

    E-Print Network [OSTI]

    Newton, Ryan Rhodes, 1980-

    2005-01-01T23:59:59.000Z

    Sensor networks present a number of novel programming challenges for application developers. Their inherent limitations of computational power, communication bandwidth, and energy demand new approaches to programming that ...

  20. Characterization, Monitoring, and Sensor Technologies - Teaming...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization, Monitoring, and Sensor Technologies - Teaming with DOE to Develop, Transfer, and Deploy Technologies Ames Laboratory scientists are contributing their expertise...