Powered by Deep Web Technologies
Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

,"Natural Gas Depleted Fields Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural...

2

Maryland Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Maryland Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

3

Tennessee Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Tennessee Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

4

Nebraska Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Nebraska Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

5

Arkansas Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Arkansas Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

6

Colorado Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Colorado Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

7

Oklahoma Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oklahoma Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

8

Oregon Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Oregon Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

9

Ohio Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Ohio Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

10

Montana Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Montana Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

11

HEAT CAPACITY MEASUREMENTS IN PULSED MAGNETIC FIELDS  

E-Print Network (OSTI)

(World Scientific, to be published) The new NHMFL 60T quasi-continuous magnet produces a flat-top field for a period of 100 ms at 60 Tesla, and for longer time at lower fields, e.g. 0.5 s at 35 Tesla. We have developed for the first time the capability to measure heat capacity at very high magnetic fields in the NHMFL 60T quasi-continuous magnet at LANL, using a probe built out of various plastic materials. The field plateau allows us to utilize a heat-pulse method to obtain heat capacity data. Proof-of-principle heat capacity experiments were performed on a variety of correlated electron systems. Both magnet performance characteristics and physical properties of various materials studied hold out a promise of wide application of this new tool. 1 I. TECHNIQUE The 60 Tesla Long-Pulse (60TLP) magnet was recently commissioned at the Los Alamos National Laboratory. This magnet produces a flat-top field for a period of 100 ms at 60

M. Jaime; R. Movshovich; J. L. Sarrao; J. Kim; G. Stewart; W. P. Beyermann

1999-01-01T23:59:59.000Z

12

New Mexico Natural Gas Underground Storage Depleted Fields Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Million Cubic Feet) New Mexico Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

13

Natural Gas Depleted Fields Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

14

Capacity degradation of field-tested silica gel samples  

DOE Green Energy (OSTI)

Researchers at the Solar Energy Research Institute (SERI) have begun preliminary studies to quantify the effect of contamination of silica gel used in dehumidification processes of desiccant cooling systems. Sorption capacity degradation of field tested samples was measured, and the source of degradation was quantified using surface analysis experimental methods.

Penney, T.R.; Pesaran, A.A.; Thomas, T.M.

1985-06-01T23:59:59.000Z

15

Information channel capacity in the field theory estimation  

E-Print Network (OSTI)

The construction of the information capacity for the vector position parameter in the Minkowskian space-time is presented. This lays the statistical foundations of the kinematical term of the Lagrangian of the physical action for many field theory models, derived by the extremal physical information method of Frieden and Soffer.

J. S?adkowski; J. Syska

2012-12-26T23:59:59.000Z

16

Ramp Metering and the Capacity of Active Freeway Bottlenecks  

E-Print Network (OSTI)

The objective of this study is to determine whether ramp meters increase the capacity of active freeway bottlenecks, and if they do, how. The traffic flow characteristics at twenty-seven active bottlenecks in the Twin Cities have been studied for seven weeks without ramp metering and seven weeks with ramp metering. A series of hypotheses regarding the relationships between ramp metering and the capacity of active bottlenecks are developed and tested against empirical traffic data. It is found that meters increase the bottleneck capacity by postponing and sometimes eliminating bottleneck activations (a 73 % increase in the duration of the pre-queue transition period), accommodating higher (2%) flows during the pre-queue transition period, and increasing queue discharge flow rates after breakdown (3%). The two-capacity hypothesis about flow drops after breakdown was also examined and results strongly suggest the percentage flow drops at various bottlenecks follow a normal distribution (mean 5.5%, standard deviation 2.3%). The implications of these findings on the design of efficient ramp control strategies are discussed, as well as future research directions.

Lei Zhang; David Levinson

2003-01-01T23:59:59.000Z

17

,"U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","nga_epg0_sacwd_nus_mmcfa.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/nga_epg0_sacwd_nus_mmcfa.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov"

18

Recent activities at the Cerro Prieto field  

DOE Green Energy (OSTI)

The purpose of this paper is to describe some of the latest activities of interest to reservoir engineers at the Cerro Prieto geothermal field. Special emphasis is given to the wells drilled in 1978 for exploration purposes and to provide steam to the existing and future power plants. The present power output is 75MW. Two additional 37.5MW units are scheduled to go on line in March and May 1979, while the total generating capacity at Cerro Prieto will reach about 400MW in 1985. Additional information is available in a number of papers in References 1 and 2.

Alonso, E. H.; Dominguez, A.B.; Lippmann, M.J.; Manon, M.A.; Schroeder, R.C.; Witherspoon, P.A.

1978-01-01T23:59:59.000Z

19

,"U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (Count)" Depleted Fields Capacity (Count)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Number of Underground Storage Depleted Fields Capacity (Count)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_8a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_8a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:06 PM"

20

,"U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Depleted Fields Capacity (MMcf)" Depleted Fields Capacity (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","U.S. Natural Gas Underground Storage Depleted Fields Capacity (MMcf)",1,"Annual",2012 ,"Release Date:","12/12/2013" ,"Next Release Date:","1/7/2014" ,"Excel File Name:","na1391_nus_2a.xls" ,"Available from Web Page:","http://tonto.eia.gov/dnav/ng/hist/na1391_nus_2a.htm" ,"Source:","Energy Information Administration" ,"For Help, Contact:","infoctr@eia.doe.gov" ,,"(202) 586-8800",,,"12/12/2013 5:43:05 PM"

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Assessment of Alaska's North Slope Oil Field Capacity to Sequester CO{sub 2}  

Science Conference Proceedings (OSTI)

The capacity of 21 major fields containing more than 95% of the North Slope of Alaska's oil were investigated for CO{sub 2} storage by injecting CO{sub 2} as an enhanced oil recovery (EOR) agent. These fields meet the criteria for the application of miscible and immiscible CO{sub 2}-EOR methods and contain about 40 billion barrels of oil after primary and secondary recovery. Volumetric calculations from this study indicate that these fields have a static storage capacity of 3 billion metric tons of CO{sub 2}, assuming 100% oil recovery, re-pressurizing the fields to pre-fracturing pressure and applying a 50% capacity reduction to compensate for heterogeneity and for water invasion from the underlying aquifer. A ranking produced from this study, mainly controlled by field size and fracture gradient, identifies Prudhoe, Kuparuk, and West Sak as possessing the largest storage capacities under a 20% safety factor on pressures applied during storage to avoid over-pressurization, fracturing, and gas leakage. Simulation studies were conducted using CO{sub 2} Prophet to determine the amount of oil technically recoverable and CO{sub 2} gas storage possible during this process. Fields were categorized as miscible, partially miscible, and immiscible based on the miscibility of CO{sub 2} with their oil. Seven sample fields were selected across these categories for simulation studies comparing pure CO{sub 2} and water-alternating-gas injection. Results showed that the top two fields in each category for recovery and CO{sub 2} storage were Alpine and Point McIntyre (miscible), Prudhoe and Kuparuk (partially miscible), and West Sak and Lisburne (immiscible). The study concludes that 5 billion metric tons of CO{sub 2} can be stored while recovering 14.2 billion barrels of the remaining oil.

Umekwe, Pascal, E-mail: wpascals@gmail.com [Baker Hughes (United States)] [Baker Hughes (United States); Mongrain, Joanna, E-mail: Joanna.Mongrain@shell.com [Shell International Exploration and Production Co (United States)] [Shell International Exploration and Production Co (United States); Ahmadi, Mohabbat, E-mail: mahmadi@alaska.edu [University of Alaska Fairbanks, Petroleum Engineering Department (United States)] [University of Alaska Fairbanks, Petroleum Engineering Department (United States); Hanks, Catherine, E-mail: chanks@gi.alaska.edu [University of Alaska Fairbanks, Geophysical Institute (United States)] [University of Alaska Fairbanks, Geophysical Institute (United States)

2013-03-15T23:59:59.000Z

22

Active molecular plasma in a magnetic field  

SciTech Connect

The propagation of electromagnetic oscillations in an active molecules plasma in a constant external magnetic field is investigated. (AIP)

Kovtun, V.P.

1981-05-01T23:59:59.000Z

23

CRITICAL FIELD FOR SUPERCONDUCTIVITY AND LOW-TEMPERATURE NORMAL-STATE HEAT CAPACITY OF TUNGSTEN  

E-Print Network (OSTI)

LOW-TEMPERATURE NORMAL-STATE HEAT CAPACITY OF TUNGSTEN B. B.Temperature Nonnal-State Heat Capacity of Tungsten* B. n.single crystal This work, heat capacity 57,000a 4 d' 1&11.

Triplett, B.B.

2008-01-01T23:59:59.000Z

24

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

25

CRITICAL FIELD FOR SUPERCONDUCTIVITY AND LOW-TEMPERATURE NORMAL-STATE HEAT CAPACITY OF TUNGSTEN  

E-Print Network (OSTI)

y CRITICAL FIELD FOR SUPERCONDUCTIVITY AND LOW-TEMPERATURECritical Field for Superconductivity and Low-Temperaturemagnetic field for superconductivity In tungsten from 5.5 to

Triplett, B.B.

2008-01-01T23:59:59.000Z

26

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of Aquifers Working Gas Capacity of Depleted Fields Total Number of Existing Fields Number of Existing Salt...

27

Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

. . Underground Natural Gas Storage Capacity by State, December 31, 1996 (Capacity in Billion Cubic Feet) Table State Interstate Companies Intrastate Companies Independent Companies Total Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Number of Active Fields Capacity Percent of U.S. Capacity Alabama................. 0 0 1 3 0 0 1 3 0.04 Arkansas ................ 0 0 3 32 0 0 3 32 0.40 California................ 0 0 10 470 0 0 10 470 5.89 Colorado ................ 4 66 5 34 0 0 9 100 1.25 Illinois ..................... 6 259 24 639 0 0 30 898 11.26 Indiana ................... 6 16 22 97 0 0 28 113 1.42 Iowa ....................... 4 270 0 0 0 0 4 270 3.39 Kansas ................... 16 279 2 6 0 0 18 285 3.57 Kentucky ................ 6 167 18 49 0 0 24 216 2.71 Louisiana................ 8 530 4 25 0 0 12 555 6.95 Maryland ................ 1 62

28

Two-stage approach for the assessment of distributed generation capacity mixture in active distribution networks  

Science Conference Proceedings (OSTI)

Distribution networks are limited with spare capacities to integrate increased volumes of distributed generation (DG). Network constraints and congestion

D. Jayaweera; S. Islam; S. Neduvelil

2013-01-01T23:59:59.000Z

29

Cluster magnetic fields from active galactic nuclei  

E-Print Network (OSTI)

Active galactic nuclei (AGN) found at the centers of clusters of galaxies are a possible source for weak cluster-wide magnetic fields. To evaluate this scenario, we present 3D adaptive mesh refinement MHD simulations of a cool-core cluster that include injection of kinetic, thermal, and magnetic energy via an AGN-powered jet. Using the MHD solver in FLASH 2, we compare several sub-resolution approaches that link the estimated accretion rate as measured on the simulation mesh to the accretion rate onto the central black hole and the resulting feedback. We examine the effects of magnetized outflows on the accretion history of the black hole and discuss the ability of these models to magnetize the cluster medium.

Sutter, P M; Yang, H -Y

2009-01-01T23:59:59.000Z

30

Field Operations Program Activities Status Report  

Science Conference Proceedings (OSTI)

The Field Operations Program is an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed by the Idaho National Engineering and Environmental Laboratory. The Program's goals are to evaluate electric vehicles in real-world applications and environments, support electric vehicle technology advancement, develop infrastructure elements necessary to support significant electric vehicle use, support increased use of electric vehicles in federal fleets, and increase overall awareness and acceptance of electric vehicles. This report covers Program activities from fiscal year 1997 through mid-fiscal year 1999. The Field Operations Program succeeded the Site Operator Program, which ended in September 1996. Electric vehicle testing conducted by the Program includes baseline performance testing (EV America testing), accelerated reliability (life-cycle) testing, and fleet testing. The baseline performance parameters include accelerations, braking, range, energy efficiency, and charging time. The Program collects accelerated reliability and fleet operations data on electric vehicles operated by the Program's Qualified Vehicle Testing (QVT) partners. The Program's QVT partners have over 3 million miles of electric vehicle operating experience.

J. E. Francfort; D. V. O'Hara; L. A. Slezak

1999-05-01T23:59:59.000Z

31

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea  

Open Energy Info (EERE)

Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Microseismicity and 3-D Mapping of an Active Geothermal Field, Kilauea Lower East Rift Zone, Puna, Hawaii Abstract The local fault and dike structures in Puna, southeastern Hawaii, are of interest both in terms of electricity productionand volcanic hazard monitoring. The geothermal powerplant at Puna has a 30 MW capacity and is built on a sectionof the Kilauea Lower East Rift Zone that was resurfaced by lava flows as recently as 1955 and 1960.The Puna Borehole Network was established in 2006 inorder to provide detailed seismic data about the Puna geothermal field. The array consists of eight 3-component borehole

32

Application Of Active Audiomagnetotellurics (Aamt) In The Geothermal Field  

Open Energy Info (EERE)

Audiomagnetotellurics (Aamt) In The Geothermal Field Audiomagnetotellurics (Aamt) In The Geothermal Field Of Travale, Tuscany Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Application Of Active Audiomagnetotellurics (Aamt) In The Geothermal Field Of Travale, Tuscany Details Activities (0) Areas (0) Regions (0) Abstract: In October 1981 the AAMT method was tested in the geothermal field of Travale. This method is based on the MT method, but uses artificial EM fields excited by a transmitter some kilometres from the receiving station. The transmitter consists of a switch mode amplifier for the lower frequency band (< 300 Hz) and six stacked linear amplifiers for the high frequency band. Maximum output is about 5 kW. For measurement of the very small EM field at the receiver the correlation technique is used

33

Active Faulting in the Coso Geothermal Field, Eastern California | Open  

Open Energy Info (EERE)

Faulting in the Coso Geothermal Field, Eastern California Faulting in the Coso Geothermal Field, Eastern California Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Active Faulting in the Coso Geothermal Field, Eastern California Details Activities (1) Areas (1) Regions (0) Abstract: New mapping documents a series of late Quaternary NNE-striking normal faults in the central Coso Range that dip northwest, toward and into the main production area of the Coso geothermal field. The faults exhibit geomorphic features characteristic of Holocene activity, and locally are associated with fumaroles and hydothermal alteration. The active faults sole into or terminate against the brittle-ductile transition zone (BDT) at a depth of about 4 to 5 km. The BDT is arched upward over a volume of crust

34

Improved braking torque generation capacity of an eddy current brake with time varying magnetic fields: A numerical study  

Science Conference Proceedings (OSTI)

Eddy current brakes (ECB) are electrically controlled and non-contact actuators used as assistive brakes in vehicles. ECBs exhibit insufficient generated braking torque at low speeds. In order to overcome this, the use of AC magnetic fields with fixed ... Keywords: Automotive applications, Brake-by-wire, Eddy current brakes, Finite element analysis, Time-varying magnetic field

Kerem Karakoc; Edward J. Park; Afzal Suleman

2012-10-01T23:59:59.000Z

35

ABRUPT LONGITUDINAL MAGNETIC FIELD CHANGES IN FLARING ACTIVE REGIONS  

Science Conference Proceedings (OSTI)

We characterize the changes in the longitudinal photospheric magnetic field during 38 X-class and 39 M-class flares within 65{sup 0} of disk center using 1 minute GONG magnetograms. In all 77 cases, we identify at least one site in the flaring active region where clear, permanent, stepwise field changes occurred. The median duration of the field changes was about 15 minutes and was approximately equal for X-class and for M-class flares. The absolute values of the field changes ranged from the detection limit of {approx}10 G to as high as {approx}450 G in two exceptional cases. The median value was 69 G. Field changes were significantly stronger for X-class than for M-class flares and for limb flares than for disk-center flares. Longitudinal field changes less than 100 G tended to decrease longitudinal field strengths, both close to disk center and close to the limb, while field changes greater than 100 G showed no such pattern. Likewise, longitudinal flux strengths tended to decrease during flares. Flux changes, particularly net flux changes near disk center, correlated better than local field changes with GOES peak X-ray flux. The strongest longitudinal field and flux changes occurred in flares observed close to the limb. We estimate the change of Lorentz force associated with each flare and find that this is large enough in some cases to power seismic waves. We find that longitudinal field decreases would likely outnumber increases at all parts of the solar disk within 65{sup 0} of disk center, as in our observations, if photospheric field tilts increase during flares as predicted by Hudson et al.

Petrie, G. J. D. [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Sudol, J. J. [West Chester University, West Chester, PA 19383 (United States)

2010-12-01T23:59:59.000Z

36

Effects of adsorbed water vapor on the Wheeler kinetic rate constant and kinetic adsorption capacity for activated carbon adsorbents  

SciTech Connect

Activated carbon plays a key role reducing organic vapor emissions to the environment from synthetic chemical manufacturing, pesticide manufacturing, in odor control, for removal of contaminant vapors during remediation of hazardous waste sites, and as an adsorption matrix for collection of organic vapors from ambient air in occupational and environmental settings to assess exposure. The Wheeler dynamic adsorption model has been evaluated under laboratory conditions and has shown potential for predicting activated carbon bed penetration. Water vapor is a normal constituent of ambient air that is present at concentrations 1-2 orders of magnitude greater than the concentrations of potentially toxic air contaminants. Many investigations have shown that adsorbed water vapor can reduce the breakthrough-time of activated charcoal beds. The effect of adsorbed water vapor on the predictive power of the Wheeler model has not been evaluated. The research evaluated the effect of water vapor adsorbed on activated charcoal on the subsequent adsorption of four air contaminants, carbon tetrachloride, 1,1,1-trichloroethane, 1,1,2-trichloroethylene, and 1-propanol. The adsorbent used in this research had a large surface area, 1200 m[sup 2]/g and that 95% of the surface area was associated with micropores (pores with diameters less than 2 micrometers). Kinetic adsorption capacities for all four adsorbates were not affected by the presence of water vapor except for some observed enhancement. The kinetic trial data suggest that the primary effect of adsorbed water vapor was to reduce the effective pore radius of the smaller mesopores thus restricting pore diffusion. This results in an increase in the critical bed capacity with shorter breakthrough times for adsorbent beds.

Hall, T.A.

1992-01-01T23:59:59.000Z

37

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

38

Microalloying of transition metal silicides by mechanical activation and field-activated reaction  

DOE Patents (OSTI)

Alloys of transition metal suicides that contain one or more alloying elements are fabricated by a two-stage process involving mechanical activation as the first stage and densification and field-activated reaction as the second stage. Mechanical activation, preferably performed by high-energy planetary milling, results in the incorporation of atoms of the alloying element(s) into the crystal lattice of the transition metal, while the densification and field-activated reaction, preferably performed by spark plasma sintering, result in the formation of the alloyed transition metal silicide. Among the many advantages of the process are its ability to accommodate materials that are incompatible in other alloying methods.

Munir, Zuhair A. (Davis, CA); Woolman, Joseph N. (Davis, CA); Petrovic, John J. (Los Alamos, NM)

2003-09-02T23:59:59.000Z

39

Liquid heat capacity lasers  

DOE Patents (OSTI)

The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

Comaskey, Brian J. (Walnut Creek, CA); Scheibner, Karl F. (Tracy, CA); Ault, Earl R. (Livermore, CA)

2007-05-01T23:59:59.000Z

40

GENERATING CAPACITY  

E-Print Network (OSTI)

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating capacity consistent with mandatory reliability criteria. A large part of the problem can be associated with the failure of wholesale spot market prices for energy and operating reserves to rise to high enough levels during periods when generating capacity is fully utilized. Reforms to wholesale energy markets, the introduction of well-design forward capacity markets, and symmetrical treatment of demand response and generating capacity resources to respond to market and institutional imperfections are discussed. This policy reform program is compatible with improving the efficiency of spot wholesale electricity markets, the continued evolution of competitive retail markets, and restores incentives for efficient investment in generating capacity consistent with operating reliability criteria applied by system operators. It also responds to investment disincentives that have been associated with volatility in wholesale energy prices, limited hedging opportunities and to concerns about regulatory opportunism. 1

Paul L. Joskow; Paul L. Joskow; Paul L. Joskow

2006-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Load Capacity of Bodies  

E-Print Network (OSTI)

For the stress analysis in a plastic body $\\Omega$, we prove that there exists a maximal positive number $C$, the \\emph{load capacity ratio,} such that the body will not collapse under any external traction field $t$ bounded by $Y_{0}C$, where $Y_0$ is the elastic limit. The load capacity ratio depends only on the geometry of the body and is given by $$ \\frac{1}{C}=\\sup_{w\\in LD(\\Omega)_D} \\frac{\\int_{\\partial\\Omega}|w|dA} {\\int_{\\Omega}|\\epsilon(w)|dV}=\\left\\|\\gamma_D\\right\\|. $$ Here, $LD(\\Omega)_D$ is the space of isochoric vector fields $w$ for which the corresponding stretchings $\\epsilon(w)$ are assumed to be integrable and $\\gamma_D$ is the trace mapping assigning the boundary value $\\gamma_D(w)$ to any $w\\in LD(\\Omega)_D$.

Reuven Segev

2005-11-01T23:59:59.000Z

42

Locating an active fault zone in Coso geothermal field by analyzing seismic  

Open Energy Info (EERE)

Locating an active fault zone in Coso geothermal field by analyzing seismic Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Proceedings: Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data Details Activities (1) Areas (1) Regions (0) Abstract: Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems is of a vital importance to plan geothermal production and injection drilling, since an active fault zone often acts as a fracture-extensive low-velocity wave guide to seismic waves. We have located an active fault zone in the Coso geothermal field, California, by identifying and analyzing

43

Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint  

DOE Green Energy (OSTI)

This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

Schreck, S.; Robinson, M.

2007-08-01T23:59:59.000Z

44

Determination of the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis  

Science Conference Proceedings (OSTI)

This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl{sub 2} was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl{sub 2} were 1.75, 0.688, and 0.230 mg of HgCl{sub 2} per gram of powdered activated carbon derived from carbon black at 30, 70, and 150{sup o} for 500 {mu}g/m{sup 3} of HgCl{sub 2}, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer-Emmett-eller (BET) models were used to simulate the adsorption of HgCl{sub 2}. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30{sup o}, whereas the Freundlich isotherm fit the experimental results better at 70 and 150{sup o}. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl{sub 2} by PAC-derived carbon black favored adsorption at various HgCl{sub 2} concentrations and temperatures. 35 refs., 7 figs., 3 tabs.

Hsun-Yu Lin; Chung-Shin Yuan; Wei-Ching Chen; Chung-Hsuang Hung [National Sun Yat-Sen University, Taiwan (China). Institute of Environmental Engineering

2006-11-15T23:59:59.000Z

45

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets”, Papers andand Steven Stoft, “Installed Capacity and Price Caps: Oil onElectricity Markets Have a Capacity requirement? If So, How

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

46

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

47

Microseismicity and 3-D Mapping of an Active Geothermal Field...  

Open Energy Info (EERE)

Shear wave polarization indicates that the active,fluid-filled fracture system trends SW-NE, consistent with the orientation of the LERZ. Double difference relocation...

48

Modeling the electrical field created by mass neural activity  

Science Conference Proceedings (OSTI)

Gamma oscillations of large scale electrical activity are used in electrophysiological studies as markers for neural activity and functional processes in the cortex, yet the nature of this mass neural phenomenon and its relation to the evoked response ... Keywords: ECoG, ERD, Gamma oscillations, Simulation

Eran Privman; Rafael Malach; Yehezkel Yeshurun

2013-04-01T23:59:59.000Z

49

Total Natural Gas Underground Storage Capacity  

Annual Energy Outlook 2012 (EIA)

Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes...

50

Solar Energy Education. Home economics: student activities. Field test edition  

DOE Green Energy (OSTI)

A view of solar energy from the standpoint of home economics is taken in this book of activities. Students are provided information on solar energy resources while performing these classroom activities. Instructions for the construction of a solar food dryer and a solar cooker are provided. Topics for study include window treatments, clothing, the history of solar energy, vitamins from the sun, and how to choose the correct solar home. (BCS)

Not Available

1981-03-01T23:59:59.000Z

51

A Survey Of Seismic Activity Near Wairakei Geothermal Field, New Zealand |  

Open Energy Info (EERE)

Of Seismic Activity Near Wairakei Geothermal Field, New Zealand Of Seismic Activity Near Wairakei Geothermal Field, New Zealand Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A Survey Of Seismic Activity Near Wairakei Geothermal Field, New Zealand Details Activities (0) Areas (0) Regions (0) Abstract: A five-week survey showed that seismic activity within 20 km of Wairakei Geothermal Field took place mainly at shallow depths (< 2 km), in or close to the Taupo Fault Belt, and occurred in swarms. Twenty-eight earthquakes, with magnitudes (M) between -1.3 and +2.8, were located; 43 other earthquakes, with M < 0.2, were recorded but could not be located. The distribution of located earthquakes did not correlate with known areas of surface geothermal activity. No located earthquake occurred beneath the

52

Solar Energy Education. Industrial arts: student activities. Field test edition  

DOE Green Energy (OSTI)

In this teaching manual several activities are presented to introduce students to information on solar energy through classroom instruction. Wind power is also included. Instructions for constructing demonstration models for passive solar systems, photovoltaic cells, solar collectors and water heaters, and a bicycle wheel wind turbine are provided. (BCS)

Not Available

1981-02-01T23:59:59.000Z

53

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

54

A U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand  

Open Energy Info (EERE)

U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: A U-Th Calcite Isochron Age From An Active Geothermal Field In New Zealand Details Activities (0) Areas (0) Regions (0) Abstract: We report here the first U-Th disequilibrium age for a hydrothermal mineral from an active geothermal system in New Zealand. Vein calcite recovered from a depth of 389 m in Well Thm-1 at the Tauhara geothermal field has an age of 99±44 ka BP. This age was determined using a leachate-leachate isochron technique on four silicate containing sub-samples of calcite from a single vein. Although the error on this isochron age is considerable, it is significantly younger than the earlier

55

Solar activity reconstructed over the last 7000 years: The influence of geomagnetic field changes  

E-Print Network (OSTI)

Solar activity reconstructed over the last 7000 years: The influence of geomagnetic field changes I activity depends, however, on independently evaluated data of the geomagnetic dipole strength variations to the earlier geomagnetic reconstructions. We have revised the earlier sunspot activity reconstruction since

Usoskin, Ilya G.

56

A Pilot Study of Pregnancy Outcome, Physical Activity and Magnetic Field Exposure  

Science Conference Proceedings (OSTI)

This brief describes a pilot study that addresses the feasibility of a study of pregnancy outcomes in assisted reproductive technology (ART) populations in relation to magnetic field exposure and physical activity.

2012-12-31T23:59:59.000Z

57

Comparison of Productive Capacity  

U.S. Energy Information Administration (EIA)

Appendix B Comparison of Productive Capacity Comparisons of base case productive capacities for this and all previous studies were made (Figure B1).

58

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

59

Field test of a downhole-activated centralizer to reduce casing drag  

Science Conference Proceedings (OSTI)

A good cementation is based on an adequate centralization. Conventional bow-type centralizers create a drag force, which is not acceptable under certain conditions. The downhole-activated centralizer (DAC{trademark}) was developed for use in highly inclined wells and whenever restrictions in the wellbore like close tolerance wellheads have to be passed. It can be released by external hydraulic pressure, by temperature or by a chemical reaction. The first downhole-activated centralizers with pressure released locking mechanism were field tested in two wells offshore Italy. These field tests proved the function and the effectiveness of the downhole-activated centralizers under operational conditions.

Kinzel, H. [Weatherford Oil Tool GmbH, Langenhagen (Germany); Calderoni, A. [Agip SpA, Milan (Italy)

1995-06-01T23:59:59.000Z

60

MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS  

SciTech Connect

Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M., E-mail: schryver@lmsal.co [Lockheed Martin Advanced Technology Center, Palo Alto, CA 94304 (United States)

2010-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Bucking Coil Implementation on PMT for Active Cancelling of Magnetic Field  

SciTech Connect

Aerogel and water Cerenkov detectors were employed to tag kaons for a lambda hypernuclear spectroscopic experiment which used the (e,e'K{sup +}) reaction in experimental Hall C at Jefferson Lab (JLab E05-115). Fringe fields from the kaon spectrometer magnet yielded ~5 Gauss at the photomultiplier tubes (PMT) for these detectors which could not be easily shielded. As this field results in a lowered kaon detection efficiency, we implemented a bucking coil on each photomultiplier tubes to actively cancel this magnetic field, thus maximizing kaon detection efficiency.

Gogami, T; Asaturyan, A; Bono, J; Baturin, P; Chen, C; Chiba, A; Chiga, N; Fujii, Y; Hashimoto, O; Kawama, D; Maruta, T; Maxwell, V; Mkrtchyan, A; Nagao, S; Nakamura, S N; Reinhold, J; Shichijo, A; Tang, L; Taniya, N; Wood, S A; Ye, Z

2013-11-01T23:59:59.000Z

62

Network Routing Capacity  

E-Print Network (OSTI)

We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every non-negative rational number is the routing capacity of some network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used.

Jillian Cannons; Randall Dougherty; Christopher Freiling; Kenneth Zeger

2005-01-01T23:59:59.000Z

63

Tri-Laboratory Linux Capacity Cluster 2007 SOW  

SciTech Connect

The Advanced Simulation and Computing (ASC) Program (formerly know as Accelerated Strategic Computing Initiative, ASCI) has led the world in capability computing for the last ten years. Capability computing is defined as a world-class platform (in the Top10 of the Top500.org list) with scientific simulations running at scale on the platform. Example systems are ASCI Red, Blue-Pacific, Blue-Mountain, White, Q, RedStorm, and Purple. ASC applications have scaled to multiple thousands of CPUs and accomplished a long list of mission milestones on these ASC capability platforms. However, the computing demands of the ASC and Stockpile Stewardship programs also include a vast number of smaller scale runs for day-to-day simulations. Indeed, every 'hero' capability run requires many hundreds to thousands of much smaller runs in preparation and post processing activities. In addition, there are many aspects of the Stockpile Stewardship Program (SSP) that can be directly accomplished with these so-called 'capacity' calculations. The need for capacity is now so great within the program that it is increasingly difficult to allocate the computer resources required by the larger capability runs. To rectify the current 'capacity' computing resource shortfall, the ASC program has allocated a large portion of the overall ASC platforms budget to 'capacity' systems. In addition, within the next five to ten years the Life Extension Programs (LEPs) for major nuclear weapons systems must be accomplished. These LEPs and other SSP programmatic elements will further drive the need for capacity calculations and hence 'capacity' systems as well as future ASC capability calculations on 'capability' systems. To respond to this new workload analysis, the ASC program will be making a large sustained strategic investment in these capacity systems over the next ten years, starting with the United States Government Fiscal Year 2007 (GFY07). However, given the growing need for 'capability' systems as well, the budget demands are extreme and new, more cost effective ways of fielding these systems must be developed. This Tri-Laboratory Linux Capacity Cluster (TLCC) procurement represents the ASC first investment vehicle in these capacity systems. It also represents a new strategy for quickly building, fielding and integrating many Linux clusters of various sizes into classified and unclassified production service through a concept of Scalable Units (SU). The programmatic objective is to dramatically reduce the overall Total Cost of Ownership (TCO) of these 'capacity' systems relative to the best practices in Linux Cluster deployments today. This objective only makes sense in the context of these systems quickly becoming very robust and useful production clusters under the crushing load that will be inflicted on them by the ASC and SSP scientific simulation capacity workload.

Seager, M

2007-03-22T23:59:59.000Z

64

Applications of oxygen activation for injection and production profiling in the Kuparuk River field  

SciTech Connect

A new time-dependent method of oxygen-activation logging, now being used in the Kuparuk River field on the North Slope of Alaska, provides critical data for waterflood performance evaluation, assessment of ultimate recovery, and evaluation of potential for infill drilling and EOR projects without the use of radioactive tracer materials.

Pearson, C.M.; Renke, S.M. (Arco Alaska Inc., Anchorage, AK (United States)); McKeon, D.C.; Meisenhelder, J.P. (Schlumberger, Houston, TX (United States)); Scott, H.D.

1993-06-01T23:59:59.000Z

65

Active construction of experience through mobile media: a field study with implications for recording and sharing  

Science Conference Proceedings (OSTI)

To fully appreciate the opportunities provided by interactive and ubiquitous multimedia to record and share experiences, we report on an ethnographic investigation on the settings and nature of human memory and experience at a large-scale event. We studied ... Keywords: Active spectators, Constructive memory, Ethnographic field study, Large-scale events, Mobile and ubiquitous multimedia, Sharing experiences

Giulio Jacucci; Antti Oulasvirta; Antti Salovaara

2007-04-01T23:59:59.000Z

66

An overview of the ENEA activities in the field of coupled codes NPP simulation  

SciTech Connect

In the framework of the nuclear research activities in the fields of safety, training and education, ENEA (the Italian National Agency for New Technologies, Energy and the Sustainable Development) is in charge of defining and pursuing all the necessary steps for the development of a NPP engineering simulator at the 'Casaccia' Research Center near Rome. A summary of the activities in the field of the nuclear power plants simulation by coupled codes is here presented with the long term strategy for the engineering simulator development. Specifically, results from the participation in international benchmarking activities like the OECD/NEA 'Kalinin-3' benchmark and the 'AER-DYN-002' benchmark, together with simulations of relevant events like the Fukushima accident, are here reported. The ultimate goal of such activities performed using state-of-the-art technology is the re-establishment of top level competencies in the NPP simulation field in order to facilitate the development of Enhanced Engineering Simulators and to upgrade competencies for supporting national energy strategy decisions, the nuclear national safety authority, and the R and D activities on NPP designs. (authors)

Parisi, C.; Negrenti, E.; Sepielli, M. [ENEA Casaccia Research Center, Santa Maria di Galeria, 00123, Rome (Italy); Del Nevo, A. [ENEA Brasimone Research Center, Camugnano, 40032 (Italy)

2012-07-01T23:59:59.000Z

67

OpenEI - Electric Capacity  

Open Energy Info (EERE)

New Zealand Energy New Zealand Energy Outlook (2010): Electricity and Generation Capacity http://en.openei.org/datasets/node/357 The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included.

License
field field-type-text

68

Topological changes of the photospheric magnetic field inside active regions: a prelude to flares  

E-Print Network (OSTI)

The observations of magnetic field variations as a signature of flaring activity is one of the main goal in solar physics. Some efforts in the past give apparently no unambiguous observations of changes. We observed that the scaling laws of the current helicity inside a given flaring active region change clearly and abruptly in correspondence with the eruption of big flares at the top of that active region. Comparison with numerical simulations of MHD equations, indicates that the change of scaling behavior in the current helicity, seems to be associated to a topological reorganization of the footpoint of the magnetic field loop, namely to dissipation of small scales structures in turbulence. It is evident that the possibility of forecasting in real time high energy flares, even if partially, has a wide practical interest to prevent the effects of big flares on Earth and its environment.

L. Sorriso-Valvo; V. Carbone; V. Abramenko; V. Yurchyshyn; A. Noullez; H. Politano; A. Pouquet; P. Veltri

2002-07-11T23:59:59.000Z

69

Modeling Capacity Reservation Contract  

E-Print Network (OSTI)

In this paper we model a scenario where a chip designer (buyer) buys capacity from chip manufacturers (suppliers) in the presence of demand uncertainty faced by the buyer. We assume that the buyer knows the probability distribution of his demand. The supplier offers the buyer to reserve capacity in advance at a price that is lower than the historical average of the spot price. The supplier’s price (if the buyer reserves capacity in advance) is function of her capacity, demand for her capacity, unit production cost, the average spot market price and the amount of capacity reserved by the buyer. Based on these parameters we derive the price the suppliers will charge. We formulate the problem from the buyer’s perspective. The buyer’s decisions are how much capacity to reserve and from how many suppliers. The optimal solution is obtained numerically. Our model addresses the following issues that are not covered in the current literature on capacity reservation models. In the existing literature the supplier’s price is an exogenous parameter. We model the supplier’s price from relevant parameters mentioned above. This makes our model richer. For example, if the expected capacity utilization for the supplier is likely to be low then the supplier will charge a lower price for capacity reservation. In reality, the buyer sources from multiple suppliers. Most mathematical models on capacity reservation, we are aware of, assumes a single buyer and a single supplier. We generalize this to a single buyer and multiple suppliers.

Jishnu Hazra; B. Mahadevan; Sudhi Seshadri

2002-01-01T23:59:59.000Z

70

Pennsylvania Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Depleted Fields Capacity (Million Cubic Feet) Pennsylvania Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1...

71

Did Open Solar Magnetic Field Increase during the Last 100 Years: A Reanalysis of Geomagnetic Activity  

E-Print Network (OSTI)

Long-term geomagnetic activity presented by the aa index has been used to show that the heliospheric magnetic field has more than doubled during the last 100 years. However, serious concern has been raised on the long-term consistency of the aa index and on the centennial rise of the solar magnetic field. Here we reanalyze geomagnetic activity during the last 100 years by calculating the recently suggested IHV (Inter-Hour Variability) index as a measure of local geomagnetic activity for seven stations. We find that local geomagnetic activity at all stations follows the same qualitative long-term pattern: an increase from early 1900s to 1960, a dramatic dropout in 1960s and a (mostly weaker) increase thereafter. Moreover, at all stations, the activity at the end of the 20th century has a higher average level than at the beginning of the century. This agrees with the result based on the aa index that global geomagnetic activity, and thereby, the open solar magnetic field has indeed increased during the last 100 years. However, quantitatively, the estimated centennial increase varies greatly from one station to another. We find that the relative increase is higher at the high-latitude stations and lower at the low and mid-latitude stations. These differences may indicate that the fraction of solar wind disturbances leading to only moderate geomagnetic activity has increased during the studied time interval. We also show that the IHV index needs to be corrected for the long-term change of the daily curve, and calculate the corrected IHV values. Most dramatically, we find the centennial increase in global geomagnetic activity was considerably smaller, only about one half of that depicted by the aa index.

K. Mursula; D. Martini; A. Karinen

2004-11-16T23:59:59.000Z

72

Increasing State Capacity Through Clans  

E-Print Network (OSTI)

their role in increasing state capacity With the decline ofhere focus on state capacity and the associated discussionselements of state capacity during the transition from one

Doyle, Jr, Thomas Martin

2009-01-01T23:59:59.000Z

73

Natural Gas Depleted Fields Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 6,801,291 6,805,490 6,917,547 7,074,773 7,104,948 7,038,245 1999-2012 Alabama 11,000 11,000 11,000 11,000 13,500 13,500 1999-2012 Arkansas 22,000 22,000 21,760 21,760 21,359 21,853 1999-2012 California 487,711 498,705 513,005 542,511 570,511 592,411 1999-2012 Colorado 98,068 95,068 105,768 105,768 105,858 124,253 1999-2012 Illinois 103,731 103,606 103,606 218,106 220,070 220,070 1999-2012 Indiana 32,804 32,946 32,946 30,003 30,003 30,003 1999-2012 Iowa 0 1999-2012 Kansas 287,996 281,291 281,370 283,891 283,800 283,974 1999-2012 Kentucky 210,792 210,792 210,801 212,184 212,184 212,184 1999-2012 Louisiana 527,051 527,051 528,626 528,626 528,626 402,626 1999-2012 Maryland 64,000 64,000 64,000 64,000 64,000 64,000 1999-2012

74

Working Gas Capacity of Depleted Fields  

U.S. Energy Information Administration (EIA) Indexed Site

,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 ,583,786 3,659,968 3,733,993 3,769,113 3,720,980 2008-2012 Alabama 9,000 9,000 9,000 11,200 11,200 2008-2012 Arkansas 14,500 13,898 13,898 12,036 12,178 2008-2012 California 283,796 296,096 311,096 335,396 349,296 2008-2012 Colorado 42,579 48,129 49,119 48,709 60,582 2008-2012 Illinois 51,418 51,418 87,368 87,368 87,368 2008-2012 Indiana 12,791 12,791 13,545 13,545 13,809 2008-2012 Iowa 0 2012-2012 Kansas 118,885 118,964 122,814 122,850 122,968 2008-2012 Kentucky 94,598 96,855 100,971 100,971 100,971 2008-2012 Louisiana 284,544 284,544 284,544 285,779 211,780 2008-2012 Maryland 17,300 18,300 18,300 18,300 18,300 2008-2012 Michigan 660,693 664,486 664,906 670,473 671,041 2008-2012 Mississippi 53,140 65,220 70,320 68,159 68,159 2008-2012

75

Working Gas Capacity of Depleted Fields  

Annual Energy Outlook 2012 (EIA)

,583,786 3,659,968 3,733,993 3,769,113 2008-2011 Alabama 9,000 9,000 9,000 11,200 2008-2011 Arkansas 14,500 13,898 13,898 12,036 2008-2011 California 283,796 296,096 311,096...

76

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Field TesTing oF AcTivATed cArbon Field TesTing oF AcTivATed cArbon injecTion opTions For Mercury conTrol AT TXu's big brown sTATion Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. Lignite coal is unique because of its highly variable ash content (rich in alkali and alkaline-earth elements), high moisture levels, low chlorine content, and high calcium content. Unique to Texas lignite coals are relatively high iron and selenium concentrations. When combusting Texas lignite coals, up to 80 percent of the mercury in the flue gas is present as elemental mercury, which is not readily captured by downstream pollution control devices. To better understand the factors that influence mercury control at units firing

77

Capacity Markets for Electricity  

E-Print Network (OSTI)

Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market”, Power WorkingFelder (1996), “Should Electricity Markets Have a Capacity

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

78

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

79

Capacity on Finsler Spaces  

E-Print Network (OSTI)

Here, the concept of electric capacity on Finsler spaces is introduced and the fundamental conformal invariant property is proved, i.e. the capacity of a compact set on a connected non-compact Finsler manifold is conformal invariant. This work enables mathematicians and theoretical physicists to become more familiar with the global Finsler geometry and one of its new applications.

Bidabad, B

2009-01-01T23:59:59.000Z

80

capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 9, and contains only the reference case. The dataset uses gigawatts. The data is broken down into power only, combined heat and power, cumulative planned additions, cumulative unplanned conditions, and cumulative retirements and total electric power sector capacity . Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO capacity consumption EIA Electricity generating Data application/vnd.ms-excel icon AEO2011: Electricity Generating Capacity- Reference Case (xls, 130.1 KiB) Quality Metrics Level of Review Peer Reviewed Comment

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Battery capacity indicator  

SciTech Connect

This patent describes a battery capacity indicator for providing a continuous indication of battery capacity for a battery powered device. It comprises means for periodically effecting a first and a second positive discharge rate of the battery; voltage measurement means, for measuring the battery terminal voltage at the first and second positive discharge rates during the operation of the device, and for generating a differential battery voltage value in response thereto; memory means for storing a set of predetermined differential battery voltage values and a set of predetermined battery capacity values, each of the set of predetermined differential battery voltage values defining one of the set of predetermined battery capacity values; comparison means, coupled to the memory means and to the voltage measurement means, for comparing the measured differential battery voltage values with the set of predetermined differential battery voltage values, and for selecting the predetermined battery capacity value corresponding thereto.

Kunznicki, W.J.

1991-07-16T23:59:59.000Z

82

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Definitions Definitions Definitions Since 2006, EIA has reported two measures of aggregate capacity, one based on demonstrated peak working gas storage, the other on working gas design capacity. Demonstrated Peak Working Gas Capacity: This measure sums the highest storage inventory level of working gas observed in each facility over the 5-year range from May 2005 to April 2010, as reported by the operator on the Form EIA-191M, "Monthly Underground Gas Storage Report." This data-driven estimate reflects actual operator experience. However, the timing for peaks for different fields need not coincide. Also, actual available maximum capacity for any storage facility may exceed its reported maximum storage level over the last 5 years, and is virtually certain to do so in the case of newly commissioned or expanded facilities. Therefore, this measure provides a conservative indicator of capacity that may understate the amount that can actually be stored.

83

Optimal design of measurement network for neutronic activity field reconstruction by data assimilation  

E-Print Network (OSTI)

Using data assimilation framework, to merge information from model and measurement, an optimal reconstruction of the neutronic activity field can be determined for a nuclear reactor core. In this paper, we focus on solving the inverse problem of determining an optimal repartition of the measuring instruments within the core, to get the best possible results from the data assimilation reconstruction procedure. The position optimisation is realised using Simulated Annealing algorithm, based on the Metropolis-Hastings one. Moreover, in order to address the optimisation computing challenge, algebraic improvements of data assimilation have been developed and are presented here.

Bertrand Bouriquet; Jean-Philippe Argaud; Romain Cugnart

2011-04-12T23:59:59.000Z

84

Lateral Capacity Exchange and Its Impact on Capacity Investment Decisions  

E-Print Network (OSTI)

We study the problem of capacity exchange between two …rms in anticipation of the mismatch between demand and capacity and its impact on …rm’s capacity investment decisions. For given capacity investment levels of the two …rms, we demonstrate how capacity price may be determined and how much capacity should be exchanged when either manufacturer acts as a Stackelberg leader in the capacity exchange game. By benchmarking against the centralized system, we show that a side payment may be used to coordinate the capacity exchange decisions. We then study the …rms’capacity investment decisions using a biform game framework in which capacity investment decisions are made individually and exchange decisions are made as in a centralized system. We demonstrate the existence and uniqueness of the Nash equilibrium capacity investment levels and study the impact of …rms’share of the capacity exchange surplus on their capacity investment levels.

Amiya K. Chakravartyz; Jun Zhangy

2005-01-01T23:59:59.000Z

85

Capacity Markets for Electricity  

E-Print Network (OSTI)

Global Agenda, August 15. [6] FERC, Docket No. EL01-63-003,at http://www.pjm.com. [7] FERC, Docket No. ER01-1440-capacity of the others” (FERC, 2001). Therefore, if an LSE

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

86

Refinery Capacity Report 2007  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2007-06-29T23:59:59.000Z

87

Refinery Capacity Report 2009  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2009-06-25T23:59:59.000Z

88

Refinery Capacity Report 2008  

Reports and Publications (EIA)

Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; current and projected capacities for atmospheric crude oil distillation, downstream charge, production, and storage capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

Information Center

2008-06-20T23:59:59.000Z

89

Forward capacity market CONEfusion  

Science Conference Proceedings (OSTI)

In ISO New England and PJM it was assumed that sponsors of new capacity projects would offer them into the newly established forward centralized capacity markets at prices based on their levelized net cost of new entry, or ''Net CONE.'' But the FCCMs have not operated in the way their proponents had expected. To clear up the CONEfusion, FCCM designs should be reconsidered to adapt them to the changing circumstances and to be grounded in realistic expectations of market conduct. (author)

Wilson, James F.

2010-11-15T23:59:59.000Z

90

The private capacity of quantum channels is not additive  

E-Print Network (OSTI)

Recently there has been considerable activity on the subject of additivity of various quantum channel capacities. Here, we construct a family of channels with sharply bounded classical, hence private capacity. On the other hand, their quantum capacity when combined with a zero private (and zero quantum) capacity erasure channel, becomes larger than the previous classical capacity. As a consequence, we can conclude for the first time that the classical private capacity is non-additive. In fact, in our construction even the quantum capacity of the tensor product of two channels can be greater than the sum of their individual classical private capacities. We show that this violation occurs quite generically: every channel can be embedded into our construction, and a violation occurs whenever the given channel has larger entanglement assisted quantum capacity than (unassisted) classical capacity.

Ke Li; Andreas Winter; XuBo Zou; GuangCan Guo

2009-03-25T23:59:59.000Z

91

Inspection of surveillance equipment and activities at DOE Field Office, Richland  

Science Conference Proceedings (OSTI)

The purpose of this inspection was to review surveillance activities by the Department of Energy's (DOE) Field Office, Richland (RL) and contractor employees at the RL Hanford site for efficiency and economy and compliance with laws and regulations. The scope included surveillance activities, procedures, training, types of surveillance equipment, and management controls over the equipment and activities. We also looked at Departmental policies and procedures regarding the equipment and activities. Allegations of illegal surveillance that came to our attention during the course of this inspection were referred to the Department of Justice. As part of our review, inspectors were on-site at RL from February 11, 1991, through March 1, 1991. Follow-up trips to RL were also made in April, May, and June 1991. We also conducted interviews at Albuquerque, Savannah River, and Germantown of former RL employees and RL contractors who were on travel. Officials from DOE's Office of General Counsel (OGC), Office of Security Affairs, and Office of Safeguards and Security (S S) were also interviewed regarding the Department's purchase and possession of wiretapping and eavesdropping devices. We obtained 75 signed sworn statements from 55 individuals during the course of the inspection. 1 fig., 1 tab.

Not Available

1991-09-30T23:59:59.000Z

92

OpenEI - capacity  

Open Energy Info (EERE)

Scope: 

field-items">
field-item odd"> United States
Data<...

93

Formulation of ELF magnetic fields' effects on malondialdehyde level and myeloperoxidase activity in kidney using genetic programming  

Science Conference Proceedings (OSTI)

In vivo exposure effects of electromagnetic fields (EMFs) on various tissues of experiment animals have been investigated. In this sense, modeling and formulation of these biological effects have been of significant importance. In this study extremely ... Keywords: ELF magnetic fields, Genetic programming, MDA level, MPO activity

Gülay Tohumoglu; Ay?e G. Canseven; Abdulkadir Çevik; Nesrin Seyhan

2007-04-01T23:59:59.000Z

94

Near-Field Hydrology Data Package for the Immobilized Low-Activity Waste 2001 Performance Assessment  

SciTech Connect

Lockheed Martin Hanford Company (LMHC) is designing and assessing the performance of disposal facilities to receive radioactive wastes that are currently stored in single- and double-shell tanks at the Hanford Site. The preferred method for disposing of the portion that is classified as immobilized low-activity waste (ILAW) is to vitrify the waste and place the product in new-surface, shallow land burial facilities. The LMHC project to assess the performance of these disposal facilities is the Hanford ILAW Performance Assessment (PA) Activity. The goal of this project is to provide a reasonable expectation that the disposal of the waste is protective of the general public, groundwater resources, air resources, surface water resources, and inadvertent intruders. Achieving this goal will require prediction of contaminant migration from the facilities. This migration is expected to occur primarily via the movement of water through the facilities and the consequent transport of dissolved contaminants in the pore water of the vadose zone. Pacific Northwest National Laboratory (PNNL) assists LMHC in its performance assessment activities. One of PNNL's tasks is to provide estimates of the physical, hydraulic, and transport properties of the materials comprising the disposal facilities and the disturbed region around them. These materials are referred to as the near-field materials. Their properties are expressed as parameters of constitutive models used in simulations of subsurface flow and transport. In addition to the best-estimate parameter values, information on uncertainty in the parameter values and estimates of the changes in parameter values over time are required to complete the PA. These parameter estimates and information are contained in this report, the Near-Field Hydrology Data Package.

PD Meyer; RJ Serne

1999-12-21T23:59:59.000Z

95

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report With Data as of January 1, 2013 | Release Date: June 21, 2013 | Next Release Date: June 20, 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 2005 2004 2003 2002 2001 2000 1999 1997 1995 1994 Go Data series include fuel, electricity, and steam purchased for consumption at the refinery; refinery receipts of crude oil by method of transportation; and current and projected atmospheric crude oil distillation, downstream charge, and production capacities. Respondents are operators of all operating and idle petroleum refineries (including new refineries under construction) and refineries shut down during the previous year, located in the 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, and other U.S. possessions.

96

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

Refinery Capacity Report Refinery Capacity Report June 2013 With Data as of January 1, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or other Federal agencies. Table 1. Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2013

97

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor rotation is provided with an eccentric cam on a crank pin under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180[degree] apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons whose connecting rods ride on a crank pin without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation. 6 figs.

Wolfe, R.W.

1984-10-30T23:59:59.000Z

98

Dual capacity reciprocating compressor  

DOE Patents (OSTI)

A multi-cylinder compressor 10 particularly useful in connection with northern climate heat pumps and in which different capacities are available in accordance with reversing motor 16 rotation is provided with an eccentric cam 38 on a crank pin 34 under a fraction of the connecting rods, and arranged for rotation upon the crank pin between opposite positions 180.degree. apart so that with cam rotation on the crank pin such that the crank throw is at its normal maximum value all pistons pump at full capacity, and with rotation of the crank shaft in the opposite direction the cam moves to a circumferential position on the crank pin such that the overall crank throw is zero. Pistons 24 whose connecting rods 30 ride on a crank pin 36 without a cam pump their normal rate with either crank rotational direction. Thus a small clearance volume is provided for any piston that moves when in either capacity mode of operation.

Wolfe, Robert W. (Wilkinsburg, PA)

1984-01-01T23:59:59.000Z

99

California Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic...

100

New Mexico Working Natural Gas Underground Storage Depleted Fields...  

U.S. Energy Information Administration (EIA) Indexed Site

Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet)...

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

102

Study on Modification and Fluoride-Adsorption Capacity of Zeolite  

Science Conference Proceedings (OSTI)

This Adsorption and ion exchange is thought to be an effective method. Zeolite is a kind of normal adsorber. The adsorption capacity of natural zeolite is low, so it must be activated in order to attain a higher adsorption capacity. On this condition, ... Keywords: zeolite, modify, fluoride removal, adsorption capacity

Sun Xingbin; Xi Chengju; Hou Zhaochao

2010-03-01T23:59:59.000Z

103

LEDS Capacity Building and Training Inventory | Open Energy Information  

Open Energy Info (EERE)

LEDS Capacity Building and Training Inventory LEDS Capacity Building and Training Inventory Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve LEDS Capacity Building and Training Activities and Resources Upcoming Capacity Building Events CLEAN shares capacity building activity information to encourage technical institutions to better coordinate efforts and avoid duplication of effort. If you are aware of an upcoming LEDS-related training or capacity building event please add it to the calendar below. Add Capacity Building or Training Event Webinars Title Developer Biopower Tool Webinar National Renewable Energy Laboratory United States Department of Energy Centro de Energías Renovables (CER) CESC-Webinar: Building an Innovation and Entrepreneurship Driven Economy: How Policies Can Foster Risk Capital Investment in Renewable Energy Clean Energy Solutions Center

104

Utah Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

124,465 124,465 124,465 124,465 124,465 124,465 2002-2013 Total Working Gas Capacity 54,898 54,898 54,898 54,898 54,898 54,898 2012-2013 Total Number of Existing Fields 3 3 3 3 3...

105

Ohio Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

577,944 577,944 577,944 577,944 577,944 577,944 2002-2013 Total Working Gas Capacity 230,350 228,030 228,030 228,030 228,030 230,828 2012-2013 Total Number of Existing Fields 24 24...

106

Maryland Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

64,000 64,000 64,000 64,000 64,000 64,000 1988-2011 Salt Caverns 0 1999-2011 Depleted Fields 64,000 64,000 64,000 64,000 64,000 64,000 1999-2011 Total Working Gas Capacity 17,300...

107

Pennsylvania Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

774,309 774,309 774,309 774,309 774,309 774,309 2002-2013 Total Working Gas Capacity 434,174 433,084 433,084 433,084 433,084 433,214 2012-2013 Total Number of Existing Fields 51 51...

108

Oregon Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

29,565 29,565 29,565 29,565 29,565 29,565 2002-2013 Total Working Gas Capacity 15,935 15,935 15,935 15,935 15,935 15,935 2012-2013 Total Number of Existing Fields 7 7 7 7 7 7...

109

Colorado Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

122,086 122,086 122,086 122,086 122,086 122,086 2002-2013 Total Working Gas Capacity 60,582 60,582 60,582 60,582 60,582 60,582 2012-2013 Total Number of Existing Fields 10 10 10 10...

110

Iowa Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

288,210 288,210 288,210 288,210 288,210 288,210 2002-2013 Total Working Gas Capacity 90,313 90,313 90,313 90,313 90,313 90,313 2012-2013 Total Number of Existing Fields 4 4 4 4 4 4...

111

Tennessee Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

1,200 1,200 1,200 1,200 0 1998-2011 Salt Caverns 0 1999-2011 Aquifers 0 1999-2011 Depleted Fields 1,200 1,200 1,200 1,200 0 1999-2011 Total Working Gas Capacity 860 860 0 2008-2011...

112

Arkansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 Total Working Gas Capacity 12,178 12,178 12,178 12,178 12,178 12,178 2012-2013 Total Number of Existing Fields 2 2 2 2 2 2...

113

Iowa Underground Natural Gas Storage Capacity  

Annual Energy Outlook 2012 (EIA)

275,200 278,238 284,747 284,811 288,010 288,210 1988-2011 Aquifers 275,200 278,238 284,747 284,811 288,010 288,210 1999-2011 Depleted Fields 0 1999-2011 Total Working Gas Capacity...

114

Washington Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

43,316 39,341 39,287 39,210 41,309 43,673 1988-2011 Aquifers 43,316 39,341 39,287 39,210 41,309 43,673 1999-2011 Depleted Fields 0 1999-2011 Total Working Gas Capacity 23,033...

115

Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

9,500 9,500 9,500 9,500 9,500 9,500 2002-2013 Total Working Gas Capacity 5,400 5,400 5,400 5,400 5,400 5,400 2012-2013 Total Number of Existing Fields 2 2 2 2 2 2...

116

Nebraska Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

39,469 34,850 34,850 34,850 34,850 34,850 1988-2011 Salt Caverns 0 1999-2011 Depleted Fields 39,469 34,850 34,850 34,850 34,850 34,850 1999-2011 Total Working Gas Capacity 13,619...

117

California Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

592,711 592,711 592,711 592,711 592,711 599,711 2002-2013 Total Working Gas Capacity 349,296 349,296 349,296 349,296 349,296 374,296 2012-2013 Total Number of Existing Fields 14 14...

118

Montana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

376,301 376,301 376,301 376,301 376,301 376,301 2002-2013 Total Working Gas Capacity 197,501 197,501 197,501 197,501 197,501 197,501 2012-2013 Total Number of Existing Fields 5 5 5...

119

Maryland Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

4,000 64,000 64,000 64,000 64,000 64,000 2002-2013 Total Working Gas Capacity 18,300 18,300 18,300 18,300 18,300 18,300 2012-2013 Total Number of Existing Fields 1 1 1 1 1 1...

120

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

110,749 110,749 110,749 110,749 110,749 110,749 2002-2013 Total Working Gas Capacity 33,024 33,024 33,024 33,024 33,024 33,024 2012-2013 Total Number of Existing Fields 22 22 22 22...

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

West Virginia Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

524,332 524,337 524,337 524,337 524,337 524,337 2002-2013 Total Working Gas Capacity 256,454 257,322 257,319 257,315 257,311 258,072 2012-2013 Total Number of Existing Fields 30 30...

122

Illinois Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

999,931 999,931 999,931 999,931 999,931 1,000,281 2002-2013 Total Working Gas Capacity 302,962 302,962 302,962 302,962 302,962 303,312 2012-2013 Total Number of Existing Fields 28...

123

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

370,838 370,838 370,838 370,838 370,838 370,838 2002-2013 Total Working Gas Capacity 180,358 180,358 180,358 180,358 180,358 180,358 2012-2013 Total Number of Existing Fields 13 13...

124

New York Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

245,579 245,579 245,779 245,779 245,779 245,779 2002-2013 Total Working Gas Capacity 129,026 129,026 129,221 129,221 129,221 129,551 2012-2013 Total Number of Existing Fields 26 26...

125

Louisiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

74,940 674,940 708,440 708,303 715,203 714,443 2002-2013 Total Working Gas Capacity 399,572 399,572 424,021 423,472 428,072 428,482 2012-2013 Total Number of Existing Fields 17 17...

126

Wyoming Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

124,937 124,937 124,937 157,985 157,985 157,985 2002-2013 Total Working Gas Capacity 48,705 48,705 48,705 73,705 73,705 73,705 2012-2013 Total Number of Existing Fields 9 9 9 9 9 9...

127

Kentucky Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

21,723 221,723 221,723 221,723 221,723 221,723 2002-2013 Total Working Gas Capacity 107,600 107,600 107,600 107,600 107,600 107,600 2012-2013 Total Number of Existing Fields 23 23...

128

Quantum Zero-error Capacity  

E-Print Network (OSTI)

We define here a new kind of quantum channel capacity by extending the concept of zero-error capacity for a noisy quantum channel. The necessary requirement for which a quantum channel has zero-error capacity greater than zero is given. Finally, we point out some directions on how to calculate the zero-error capacity of such channels.

Rex A. C. Medeiros; Francisco M. De Assis

2006-11-08T23:59:59.000Z

129

Capacity Value of Solar Power  

Science Conference Proceedings (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

130

Refinery Capacity Report  

U.S. Energy Information Administration (EIA) Indexed Site

1 1 Idle Operating Total Stream Day Barrels per Idle Operating Total Calendar Day Barrels per Atmospheric Crude Oil Distillation Capacity Idle Operating Total Operable Refineries Number of State and PAD District a b b 14 10 4 1,617,500 1,205,000 412,500 1,708,500 1,273,500 435,000 ............................................................................................................................................... PAD District I 1 0 1 182,200 0 182,200 190,200 0 190,200 ................................................................................................................................................................................................................................................................................................ Delaware......................................

131

INTERMITTENCY AND MULTIFRACTALITY SPECTRA OF THE MAGNETIC FIELD IN SOLAR ACTIVE REGIONS  

SciTech Connect

We present the results of a study of intermittency and multifractality of magnetic structures in solar active regions (ARs). Line-of-sight magnetograms for 214 ARs of different flare productivity observed at the center of the solar disk from 1997 January until 2006 December are utilized. Data from the Michelson Doppler Imager (MDI) instrument on board the Solar and Heliospheric Observatory operating in the high resolution mode, the Big Bear Solar Observatory digital magnetograph, and the Hinode SOT/SP instrument were used. Intermittency spectra were derived from high-order structure functions and flatness functions. The flatness function exponent is a measure of the degree of intermittency. We found that the flatness function exponent at scales below approximately 10 Mm is correlated with flare productivity (the correlation coefficient is -0.63). The Hinode data show that the intermittency regime is extended toward small scales (below 2 Mm) as compared to the MDI data. The spectra of multifractality, derived from the structure functions and flatness functions, are found to be broader for ARs of higher flare productivity as compared to those of low flare productivity. The magnetic structure of high-flaring ARs consists of a voluminous set of monofractals, and this set is much richer than that for low-flaring ARs. The results indicate the relevance of the multifractal organization of the photospheric magnetic fields to the flaring activity. The strong intermittency observed in complex and high-flaring ARs is a hint that we observe a photospheric imprint of enhanced sub-photospheric dynamics.

Abramenko, Valentyna; Yurchyshyn, Vasyl [Big Bear Solar Observatory, 40386 North Shore Lane, Big Bear City, CA 92314 (United States)

2010-10-10T23:59:59.000Z

132

Heat capacity of a two-component superfluid Fermi gas  

E-Print Network (OSTI)

We investigate mean-field effects in two- component trapped Fermi gases in the superfluid phase, in the vicinity of s-wave Feshbach resonances. Within the resonance superfluidity approach (Holland et al., 2001) we calculate the ground state energy and the heat capacity as function of temperature. Heat capacity is analyzed for different trap aspect ratios. We find that trap anisotropy is an important factor in determining both the value of heat capacity near the transition temperature and the transition temperature itself.

Alexander V. Avdeenkov

2003-09-25T23:59:59.000Z

133

Capacities associated with scalar signed Riesz kernels, and analytic capacity  

E-Print Network (OSTI)

The real and imaginari parts of the Cauchy kernel in the plane are scalar Riesz kernels of homogeneity -1. One can associate with each of them a natural notion of capacity related to bounded potentials. The main result of the paper asserts that these capacities are comparable to classical analytic capacity, thus stressing the real variables nature of analytic capacity. Higher dimensional versions of this result are also considered.

Mateu, Joan; Verdera, Joan

2010-01-01T23:59:59.000Z

134

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

Solid state laser technology is a very well developed field and numerous embodiments and modes of operation have been demonstrated. A more recent development has been the pumping of a solid state laser active medium with an array of diode lasers (diode pumping, for short). These diode pump packages have previously been developed to pump solid state lasers with good efficiency, but low average power. This invention is a method and the resulting apparatus for operating a solid state laser in the heat capacity mode. Instead of cooling the laser, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself.

Albrecht, G.; George, E.V.; Krupke, W. [and others

1994-12-31T23:59:59.000Z

135

Multipath Channels of Unbounded Capacity  

E-Print Network (OSTI)

The capacity of discrete-time, noncoherent, multipath fading channels is considered. It is shown that if the variances of the path gains decay faster than exponentially, then capacity is unbounded in the transmit power.

Koch, Tobias

2008-01-01T23:59:59.000Z

136

Phase Preference by Active, Acetate-Utilizing Bacteria at the Rifle, CO Integrated Field Research Challenge Site  

SciTech Connect

Previous experiments at the Rifle, Colorado Integrated Field Research Challenge (IFRC) site demonstrated that field-scale addition of acetate to groundwater reduced the ambient soluble uranium concentration. In this report, sediment samples collected before and after acetate field addition were used to assess the active microbes via {sup 13}C acetate stable isotope probing on 3 phases [coarse sand, fines (8-approximately 150 {micro}m), groundwater (0.2-8 {micro}m)] over a 24-day time frame. TRFLP results generally indicated a stronger signal in {sup 13}C-DNA in the 'fines' fraction compared to the sand and groundwater. Before the field-scale acetate addition, a Geobacter-like group primarily synthesized {sup 13}C-DNA in the groundwater phase, an alpha Proteobacterium primarily grew on the fines/sands, and an Acinetobacter sp. and Decholoromonas-like OTU utilized much of the {sup 13}C acetate in both groundwater and particle-associated phases. At the termination of the field-scale acetate addition, the Geobacter-like species was active on the solid phases rather than the groundwater, while the other bacterial groups had very reduced newly synthesized DNA signal. These findings will help to delineate the acetate utilization patterns of bacteria in the field and can lead to improved methods for stimulating distinct microbial populations in situ.

Kerkhof, L.; Williams, K.H.; Long, P.E.; McGuinness, L.

2011-02-21T23:59:59.000Z

137

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

Science Conference Proceedings (OSTI)

The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

2009-01-07T23:59:59.000Z

138

Independent Oversight Review of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation, November 2013  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of the of the Savannah River Field Office Tritium Facilities Radiological Controls Activity-Level Implementation May 2011 November 2013 Office of Safety and Emergency Management Evaluations Office of Enforcement and Oversight Office of Health, Safety and Security U.S. Department of Energy Table of Contents 1.0 Purpose................................................................................................................................................ 1 2.0 Scope................................................................................................................................................... 1 3.0 Background ......................................................................................................................................... 1

139

Heat capacities of elastic solids  

E-Print Network (OSTI)

The work function is embedded in the equation describing the relationship between the constant volume and constant pressure heat capacities. The modification of the work function results that the relationship between these quantities must be changed accordingly. Using the newly derived work functions of elastic solids the description of the heat capacities and the relationship between the heat capacities are given for solid phase.

Garai, J

2005-01-01T23:59:59.000Z

140

Symmetrical Symplectic Capacity with Applications  

E-Print Network (OSTI)

In this paper, we first introduce the concept of symmetrical symplectic capacity for symmetrical symplectic manifolds, and by using this symmetrical symplectic capacity theory we prove that there exists at least one symmetric closed characteristic (brake orbit and $S$-invariant brake orbit are two examples) on prescribed symmetric energy surface which has a compact neighborhood with finite symmetrical symplectic capacity.

Liu, Chungen

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

An Assessment of Railway Capacity  

E-Print Network (OSTI)

In this paper, we review the main concepts and methods to perform capacity analyses, and we present an automated tool that is able to perform several capacity analyses. Capacity is extremely dependent on infrastructure, traffic, and operating parameters. Therefore, an in-depth study of the main factors that influence railway capacity is performed on several Spanish railway infrastructures. The results show how the capacity varies according to factors such as train speed, commercial stops, train heterogeneity, distance between railway signals, and timetable robustness.

M. Abril; F. Barber; A L. Ingolotti; A M. A. Salido; P. Tormos; B A. Lova

2007-01-01T23:59:59.000Z

142

Entangling capacity with local ancilla  

E-Print Network (OSTI)

We investigate the entangling capacity of a dynamical operation with access to local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result; a property we call resource independence of the entangling capacity. We prove several useful upper-bounds on the entangling capacity that hold for general qudit dynamical operations, and for a whole family of entanglement measures including log-negativity and log-robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independence for all two-qudit unitaries.

Campbell, Earl T

2010-01-01T23:59:59.000Z

143

NONLINEAR FORCE-FREE FIELD MODELING OF A SOLAR ACTIVE REGION USING SDO/HMI AND SOLIS/VSM DATA  

Science Conference Proceedings (OSTI)

We use SDO/HMI and SOLIS/VSM photospheric magnetic field measurements to model the force-free coronal field above a solar active region, assuming magnetic forces dominate. We take measurement uncertainties caused by, e.g., noise and the particular inversion technique, into account. After searching for the optimum modeling parameters for the particular data sets, we compare the resulting nonlinear force-free model fields. We show the degree of agreement of the coronal field reconstructions from the different data sources by comparing the relative free energy content, the vertical distribution of the magnetic pressure, and the vertically integrated current density. Though the longitudinal and transverse magnetic flux measured by the VSM and HMI is clearly different, we find considerable similarities in the modeled fields. This indicates the robustness of the algorithm we use to calculate the nonlinear force-free fields against differences and deficiencies of the photospheric vector maps used as an input. We also depict how much the absolute values of the total force-free, virial, and the free magnetic energy differ and how the orientation of the longitudinal and transverse components of the HMI- and VSM-based model volumes compare to each other.

Thalmann, J. K.; Wiegelmann, T. [Max-Plank-Institut fuer Sonnensystemforschung, Max-Planck-Str. 2, 37191 Katlenburg-Lindau (Germany); Pietarila, A. [National Solar Observatory, 950 N. Cherry Avenue, Tucson, AZ 85719 (United States); Sun, X., E-mail: thalmann@mps.mpg.de [W. W. Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

2012-08-15T23:59:59.000Z

144

Decentralized capacity management and internal pricing  

E-Print Network (OSTI)

Press. Goex, R. (2002). Capacity planning and pricing undermanufacturing on innovation, capacity and pro?tability.Mieghem, V. J. (2003). Capacity management, investment and

Dutta, Sunil; Reichelstein, Stefan

2010-01-01T23:59:59.000Z

145

Capacity consideration of wireless ad hoc networks  

E-Print Network (OSTI)

Capacity ProblemCurrent Research on Capacity of Wireless Ad HocChapter 3 Upper Bound on the Capacity of Wireless Ad Hoc

Tan, Yusong

2008-01-01T23:59:59.000Z

146

Are there capacity limitations in symmetry perception?  

E-Print Network (OSTI)

1980). The demonstration of capacity limitation. Cognitive1972). Visual processing capacity and attentional control.J. (1996). Goodness of CAPACITY LIMIT OF SYMMETRY PERCEPTION

Huang, L Q; Pashler, Harold; Junge, J A

2004-01-01T23:59:59.000Z

147

The Ergodic Capacity of Interference Networks  

E-Print Network (OSTI)

A. Jafar, “The ergodic capacity of interference networks,”Gupta and P. R. Kumar, “The capacity of wireless networks,”cooperation achieves optimal capacity scaling in ad hoc

Jafar, Syed A

2010-01-01T23:59:59.000Z

148

Mapping Individual Variations in Learning Capacity  

E-Print Network (OSTI)

in working memory capacity. Integrative Physiological andVariations in Learning Capacity Eduardo Mercado IIIdifferences in learning capacity are evident in humans and

Mercado III, Eduardo

2011-01-01T23:59:59.000Z

149

Definition: Capacity Emergency | Open Energy Information  

Open Energy Info (EERE)

Emergency Jump to: navigation, search Dictionary.png Capacity Emergency A capacity emergency exists when a Balancing Authority Area's operating capacity, plus firm purchases from...

150

Electric Capacity | OpenEI  

Open Energy Info (EERE)

Capacity Capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes an annual Energy Outlook, which presents projections of New Zealand's future energy supply, demand, prices and greenhouse gas emissions. The principle aim of these projections is to inform the national energy debate. Included here are the model results for electricity and generation capacity. The spreadsheet provides an interactive tool for selecting which model results to view, and which scenarios to evaluate; full model results for each scenario are also included. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated December 15th, 2010 (3 years ago) Keywords Electric Capacity Electricity Generation New Zealand projections

151

Adaptive capacity and its assessment  

SciTech Connect

This paper reviews the concept of adaptive capacity and various approaches to assessing it, particularly with respect to climate variability and change. I find that adaptive capacity is a relatively under-researched topic within the sustainability science and global change communities, particularly since it is uniquely positioned to improve linkages between vulnerability and resilience research. I identify opportunities for advancing the measurement and characterization of adaptive capacity by combining insights from both vulnerability and resilience frameworks, and I suggest several assessment approaches for possible future development that draw from both frameworks and focus on analyzing the governance, institutions, and management that have helped foster adaptive capacity in light of recent climatic events.

Engle, Nathan L.

2011-04-20T23:59:59.000Z

152

Solar Energy Education. Humanities: activities and teacher's guide. Field test edition  

DOE Green Energy (OSTI)

Activities are outlined to introduce students to information on solar energy while performing ordinary classroom work. In this teaching manual solar energy is integrated with the humanities. The activities include such things as stories, newspapers, writing assignments, and art and musical presentations all filled with energy related terms. An energy glossary is provided. (BCS)

Not Available

1982-01-01T23:59:59.000Z

153

Author's personal copy Ramp metering and freeway bottleneck capacity  

E-Print Network (OSTI)

Author's personal copy Ramp metering and freeway bottleneck capacity Lei Zhang a,1 , David Levinson Accepted 16 January 2010 Keywords: Ramp metering Highway capacity Active bottleneck Queue discharge flow Twin Cities ramp meter shut-off a b s t r a c t This study aims to determine whether ramp meters

Levinson, David M.

154

A CRITICAL ASSESSMENT OF NONLINEAR FORCE-FREE FIELD MODELING OF THE SOLAR CORONA FOR ACTIVE REGION 10953  

Science Conference Proceedings (OSTI)

Nonlinear force-free field (NLFFF) models are thought to be viable tools for investigating the structure, dynamics, and evolution of the coronae of solar active regions. In a series of NLFFF modeling studies, we have found that NLFFF models are successful in application to analytic test cases, and relatively successful when applied to numerically constructed Sun-like test cases, but they are less successful in application to real solar data. Different NLFFF models have been found to have markedly different field line configurations and to provide widely varying estimates of the magnetic free energy in the coronal volume, when applied to solar data. NLFFF models require consistent, force-free vector magnetic boundary data. However, vector magnetogram observations sampling the photosphere, which is dynamic and contains significant Lorentz and buoyancy forces, do not satisfy this requirement, thus creating several major problems for force-free coronal modeling efforts. In this paper, we discuss NLFFF modeling of NOAA Active Region 10953 using Hinode/SOT-SP, Hinode/XRT, STEREO/SECCHI-EUVI, and SOHO/MDI observations, and in the process illustrate three such issues we judge to be critical to the success of NLFFF modeling: (1) vector magnetic field data covering larger areas are needed so that more electric currents associated with the full active regions of interest are measured, (2) the modeling algorithms need a way to accommodate the various uncertainties in the boundary data, and (3) a more realistic physical model is needed to approximate the photosphere-to-corona interface in order to better transform the forced photospheric magnetograms into adequate approximations of nearly force-free fields at the base of the corona. We make recommendations for future modeling efforts to overcome these as yet unsolved problems.

DeRosa, Marc L.; Schrijver, Carolus J.; Aschwanden, Markus J.; Cheung, Mark C. M. [Lockheed Martin Solar and Astrophysics Laboratory, 3251 Hanover St. B/252, Palo Alto, CA 94304 (United States); Barnes, Graham; Leka, K. D. [North West Research Associates, Colorado Research Associates Division, 3380 Mitchell Ln., Boulder, CO 80301 (United States); Lites, Bruce W. [High Altitude Observatory, National Center for Atmospheric Research , P.O. Box 3000, Boulder, CO 80307 (United States); Amari, Tahar; Canou, Aurelien [CNRS, Centre de Physique Theorique de l'Ecole Polytechnique, 91128 Palaiseau Cedex (France); McTiernan, James M. [Space Sciences Laboratory, University of California at Berkeley, 7 Gauss Way, Berkeley, CA 94720 (United States); Regnier, Stephane [Mathematics Institute, University of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom); Thalmann, Julia K.; Wiegelmann, Thomas; Inhester, Bernd; Tadesse, Tilaye [Max-Planck-Institut fuer Sonnensystemforschung, Max-Planck-Strasse 2, 37191 Katlenburg-Lindau (Germany); Valori, Gherardo [Astrophysikalisches Institut Potsdam, An der Sternwarte 16, 14482 Potsdam (Germany); Wheatland, Michael S. [School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Conlon, Paul A. [Astrophysics Research Group, School of Physics, Trinity College Dublin, Dublin 2 (Ireland); Fuhrmann, Marcel [Institut fuer Physik, Universitaet Potsdam, Am Neuen Palais 10, 14469 Potsdam (Germany)

2009-05-10T23:59:59.000Z

155

Battery Capacity Measurement And Analysis  

E-Print Network (OSTI)

In this paper, we look at different battery capacity models that have been introduced in the literatures. These models describe the battery capacity utilization based on how the battery is discharged by the circuits that consume power. In an attempt to validate these models, we characterize a commercially available lithium coin cell battery through careful measurements of the current and the voltage output of the battery under different load profile applied by a micro sensor node. In the result, we show how the capacity of the battery is affected by the different load profile and provide analysis on whether the conventional battery models are applicable in the real world. One of the most significant finding of our work will show that DC/DC converter plays a significant role in determining the battery capacity, and that the true capacity of the battery may only be found by careful measurements.

Using Lithium Coin; Sung Park; Andreas Savvides; Mani B. Srivastava

2001-01-01T23:59:59.000Z

156

Measuring wind plant capacity value  

DOE Green Energy (OSTI)

Electric utility planners and wind energy researchers pose a common question: What is the capacity value of a wind plant? Tentative answers, which can be phrased in a variety of ways, are based on widely varying definitions and methods of calculation. From the utility`s point of view, a resource that has no capacity value also has a reduced economic value. Utility planners must be able to quantify the capacity value of a wind plant so that investment in conventional generating capacity can be potentially offset by the capacity value of the wind plant. Utility operations personnel must schedule its conventional resources to ensure adequate generation to meet load. Given a choice between two resources, one that can be counted on and the other that can`t, the utility will avoid the risky resource. This choice will be reflected in the price that the utility will pay for the capacity: higher capacity credits result in higher payments. This issue is therefore also important to the other side of the power purchase transaction -- the wind plant developer. Both the utility and the developer must accurately assess the capacity value of wind. This article summarizes and evaluates some common methods of evaluating capacity credit. During the new era of utility deregulation in the United States, it is clear that many changes will occur in both utility planning and operations. However, it is my judgement that the evaluation of capacity credit for wind plants will continue to play an important part in renewable energy development in the future.

Milligan, M.R.

1996-01-01T23:59:59.000Z

157

Underground Natural Gas Working Storage Capacity - Methodology  

Gasoline and Diesel Fuel Update (EIA)

Summary Prices Exploration & Reserves Production Imports/Exports Pipelines Storage Consumption All Natural Gas Data Reports Analysis & Projections Most Requested Consumption Exploration & Reserves Imports/Exports & Pipelines Prices Production Projections Storage All Reports ‹ See All Natural Gas Reports Underground Natural Gas Working Storage Capacity With Data for November 2012 | Release Date: July 24, 2013 | Next Release Date: Spring 2014 Previous Issues Year: 2013 2012 2011 2010 2009 2008 2007 2006 Go Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in November 2012 on Form EIA-191, "Monthly Natural Gas Underground Storage

158

Property:Device Nameplate Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Nameplate Capacity (MW) Nameplate Capacity (MW) Jump to: navigation, search Property Name Device Nameplate Capacity (MW) Property Type String Pages using the property "Device Nameplate Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 8MW 1MW Farms of multiple machines will be deployed with installed capacity of circa 20MW + MHK Projects/Algiers Light Project + 40 kW + MHK Projects/Anconia Point Project + 40 kW + MHK Projects/Ashley Point Project + 40 kW + MHK Projects/Avondale Bend Project + 40 kW + MHK Projects/Bar Field Bend + 40 kW + MHK Projects/Barfield Point + 40 kW + MHK Projects/Bayou Latenache + 40 kW + MHK Projects/BioSTREAM Pilot Plant + 250kW pilot 1MW commercial scale + MHK Projects/Bondurant Chute + 40 kW +

159

Sorbent Activation Process for Mercury Control: Field Testing at the Ameren Meredosia Power Plant  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) and the Illinois State Geological Survey have developed and patented a technology for the on-site production of activated carbon (AC). The basic approach of the sorbent activation process (SAP) is to use coal from the plant site to form AC for direct injection into flue gas upstream of the particulate control device for mercury adsorption. The SAP process is designed to help significantly reduce the cost of AC for power plant mercury control. This report summa...

2009-12-03T23:59:59.000Z

160

CHARACTERISTICS AND EVOLUTION OF THE MAGNETIC FIELD AND CHROMOSPHERIC EMISSION IN AN ACTIVE REGION CORE OBSERVED BY HINODE  

Science Conference Proceedings (OSTI)

We describe the characteristics and evolution of the magnetic field and chromospheric emission in an active region core observed by the Solar Optical Telescope (SOT) on Hinode. Consistent with previous studies, we find that the moss is unipolar, the spatial distribution of magnetic flux evolves slowly, and that the magnetic field is only moderately inclined. We also show that the field-line inclination and horizontal component are coherent, and that the magnetic field is mostly sheared in the inter-moss regions where the highest magnetic flux variability is seen. Using extrapolations from spectropolarimeter magnetograms, we show that the magnetic connectivity in the moss is different from that in the quiet Sun because most of the magnetic field extends to significant coronal heights. The magnetic flux, field vector, and chromospheric emission in the moss also appear highly dynamic but actually show only small-scale variations in magnitude on timescales longer than the cooling times for hydrodynamic loops computed from our extrapolations, suggesting high-frequency (continuous) heating events. Some evidence is found for flux (Ca II intensity) changes on the order of 100-200 G (DN) on timescales of 20-30 minutes that could be taken as indicative of low-frequency heating. We find, however, that only a small fraction (10%) of our simulated loops would be expected to cool on these timescales, and we do not find clear evidence that the flux changes consistently produce intensity changes in the chromosphere. Using observations from the EUV Imaging Spectrometer (EIS), we also determine that the filling factor in the moss is {approx}16%, consistent with previous studies and larger than the size of an SOT pixel. The magnetic flux and chromospheric intensity in most individual SOT pixels in the moss vary by less than {approx}20% and {approx}10%, respectively, on loop cooling timescales. In view of the high energy requirements of the chromosphere, we suggest that these variations could be sufficient for the heating of 'warm' EUV loops, but that the high basal levels may be more important for powering the hot core loops rooted in the moss. The magnetic field and chromospheric emission appear to evolve gradually on spatial scales comparable to the cross-field scale of the fundamental coronal structures inferred from EIS measurements.

Brooks, David H.; Warren, Harry P. [Space Science Division, Code 7673, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R., E-mail: dhbrooks@ssd5.nrl.navy.mi [Department of Physics, Alabama A and M, 4900 Meridian Street, Normal, AL 35762 (United States)

2010-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Locating an active fault zone in Coso geothermal field by analyzing seismic guided waves from microearthquake data  

DOE Green Energy (OSTI)

Active fault systems usually provide high-permeability channels for hydrothermal outflow in geothermal fields. Locating such fault systems is of a vital importance to plan geothermal production and injection drilling, since an active fault zone often acts as a fracture-extensive low-velocity wave guide to seismic waves. We have located an active fault zone in the Coso geothermal field, California, by identifying and analyzing a fault-zone trapped Rayleigh-type guided wave from microearthquake data. The wavelet transform is employed to characterize guided-wave's velocity-frequency dispersion, and numerical methods are used to simulate the guided-wave propagation. The modeling calculation suggests that the fault zone is {approx} 200m wide, and has a P wave velocity of 4.80 km/s and a S wave velocity of 3.00 km/s, which is sandwiched between two half spaces with relatively higher velocities (P wave velocity 5.60 km/s, and S wave velocity 3.20 km/s). zones having vertical or nearly vertical dipping fault planes.

SGP-TR-150-16

1995-01-26T23:59:59.000Z

162

Automation in modeling: using automation for finishing room capacity planning  

Science Conference Proceedings (OSTI)

Capacity planning of a furniture finishing system using both deterministic analysis and stochastic simulation is conveniently performed with the aid ActiveX Automation. Users interactively build a complete model of a finishing system with an Excel interface, ...

Ryan Heath Melton; C. Thomas Culbreth; Stephen D. Roberts; Jeffrey A. Joines

2001-12-01T23:59:59.000Z

163

Solar Energy Education. Social studies: activities and teacher's guide. Field test edition  

DOE Green Energy (OSTI)

Solar energy information is made available to students through classroom instruction by way of the Solar Energy Education teaching manuals. In this manual solar energy, as well as other energy sources like wind power, is introduced by performing school activities in the area of social studies. A glossary of energy related terms is included. (BCS)

Not Available

1982-01-01T23:59:59.000Z

164

New High Capacity Getter for Vacuum-Insulated Mobile Liquid Hydrogen Storage Systems  

DOE Green Energy (OSTI)

Current ''Non evaporable getters'' (NEGs), based on the principle of metallic surface sorption of gas molecules, are important tools for the improving the performance of many vacuum systems. High porosity alloys or powder mixtures of Zr, Ti, Al, V, Fe and other metals are the base materials for this type of getters. The continuous development of vacuum technologies has created new challenges for the field of getter materials. The main sorption parameters of the current NEGs, namely, pumping speed and sorption capacity, have reached certain upper limits. Chemically active metals are the basis of a new generation of NEGs. The introduction of these new materials with high sorption capacity at room temperature is a long-awaited development. These new materials enable the new generation of NEGs to reach faster pumping speeds, significantly higher sticking rates and sorption capacities up to 104 times higher during their lifetimes. Our development efforts focus on producing these chemically active metals with controlled insulation or protection. The main structural forms of our new getter materials are spherical powders, granules and porous multi-layers. The full pumping performance can take place at room temperature with activation temperatures ranging from room temperature to 650 C. In one of our first pilot projects, our proprietary getter solution was successfully introduced as a getter pump in a double-wall mobile LH2 tank system. Our getters were shown to have very high sorption capacity of all relevant residual gases, including H2. This new concept opens the opportunity for significant vacuum improvements, especially in the field of H2 pumping which is an important task in many different vacuum applications.

H. Londer; G. R. Myneni; P. Adderley; G. Bartlok; J. Setina; W. Knapp; D. Schleussner

2006-05-01T23:59:59.000Z

165

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY COMMUNITY CAPACITY BUILDING THROUGH TECHNOLOGY Empowering Communities in the Age of E-Government Prepared by Melinda Downing, Environmental Justice Program Manager, U.S. Department of Energy MAR 06 MARCH 2006 Since 1999, the Department of Energy has worked with the National Urban Internet and others to create community capacity through technology.  Empowering Communities in the Age of E-Government Table of Contents Message from the Environmental Justice Program Manager . . . . . . . . 3 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Partnerships. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Process Chart: From Agency to Community. . . . . . . . . . . . . . . . . . . 7 Case Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

166

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Methodology Methodology Methodology Demonstrated Peak Working Gas Capacity Estimates: Estimates are based on aggregation of the noncoincident peak levels of working gas inventories at individual storage fields as reported monthly over a 60-month period ending in April 2010 on Form EIA-191M, "Monthly Natural Gas Underground Storage Report." The months of measurement for the peak storage volumes by facilities may differ; i.e., the months do not necessarily coincide. As such, the noncoincident peak for any region is at least as big as any monthly volume in the historical record. Data from Form EIA-191M, "Monthly Natural Gas Underground Storage Report," are collected from storage operators on a field-level basis. Operators can report field-level data either on a per reservoir basis or on an aggregated reservoir basis. It is possible that if all operators reported on a per reservoir basis that the demonstrated peak working gas capacity would be larger. Additionally, these data reflect inventory levels as of the last day of the report month, and a facility may have reached a higher inventory on a different day of the report month, which would not be recorded on Form EIA-191M.

167

Modulated active charge exchange fast ion diagnostic for the C-2 field-reversed configuration experiment  

Science Conference Proceedings (OSTI)

A diagnostic technique for measuring the fast-ion energy distribution in a field-reversed configuration plasma was developed and tested on the C-2 experiment. A deuterium neutral beam modulated at 22 kHz is injected into the plasma, producing a localized charge-exchange target for the confined fast protons. The escaping fast neutrals are detected by a neutral particle analyzer. The target beam transverse size ({approx}15 cm) defines the spatial resolution of the method. The equivalent current density of the target beam is {density ({approx}6 Multiplication-Sign 10{sup 9} cm{sup -3}) that highly exceeds the background neutral density in the core of C-2. The deuterium fast-ions due to the target beam (E{approx}27 keV), are not confined in C-2 and thus make a negligible contribution to the measured signals.

Korepanov, S.; Smirnov, A.; Clary, R.; Dettrick, S. [Tri Alpha Energy, Inc., Rancho Santa Margarita, California 92688 (United States); Deichuli, P.; Kondakov, A.; Murakhtin, S. [Budker Institute of Nuclear Physics, Novosibirsk (Russian Federation)

2012-10-15T23:59:59.000Z

168

High Capacity Immobilized Amine Sorbents  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Immobilized Amine Sorbents Capacity Immobilized Amine Sorbents Opportunity The Department of Energy's National Energy Technology Laboratory is seeking licensing partners interested in implementing United States Patent Number 7,288,136 entitled "High Capacity Immobilized Amine Sorbents." Disclosed in this patent is the invention of a method that facilitates the production of low-cost carbon dioxide (CO 2 ) sorbents for use in large-scale gas-solid processes. This method treats an amine to increase the number of secondary amine groups and impregnates the amine in a porous solid support. As a result of this improvement, the method increases CO 2 capture capacity and decreases the cost of using an amine-enriched solid sorbent in CO 2 capture systems. Overview The U.S. Department of Energy has placed a high priority on the separation

169

generation capacity | OpenEI  

Open Energy Info (EERE)

generation capacity generation capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO Electricity electricity market module region generation capacity Data application/vnd.ms-excel icon AEO2011: Electricity Generation Capacity by Electricity Market Module Region and Source- Reference Case (xls, 10.6 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata Average vote Your vote

170

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities...

171

Time-dependent restricted-active-space self-consistent field theory for laser-driven many-electron dynamics  

E-Print Network (OSTI)

We present the time-dependent restricted-active-space self-consistent field (TD-RASSCF) theory as a new framework for the time-dependent many-electron problem. The theory generalizes the multiconfigurational time-dependent Hartree-Fock (MCTDHF) theory by incorporating the restricted-active-space scheme well known in time-independent quantum chemistry. Optimization of the orbitals as well as the expansion coefficients at each time step makes it possible to construct the wave function accurately while using only a relatively small number of electronic configurations. In numerical calculations of high-order harmonic generation spectra of a one-dimensional model of atomic beryllium interacting with a strong laser pulse, the TD-RASSCF method is reasonably accurate while largely reducing the computational complexity. The TD-RASSCF method has the potential to treat large atoms and molecules beyond the capability of the MCTDHF method.

Miyagi, Haruhide

2013-01-01T23:59:59.000Z

172

Environmental Survey preliminary report, Department of Energy (DOE) activities at Santa Susana Field Laboratories, Ventura County, California  

Science Conference Proceedings (OSTI)

This report presents the preliminary findings from the first phase of the Environmental Survey of the United States Department of Energy (DOE) activities at the Santa Susana Field Laboratories Site (DOE/SSFL), conducted May 16 through 26, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by an private contractor. The objective of the survey is to identify environmental problems and areas of environmental risk associated with DOE activities at SSFL. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at SSFL, and interviews with site personnel. 90 refs., 17 figs., 28 tabs.

Not Available

1989-02-01T23:59:59.000Z

173

Capacity Markets and Market Stability  

Science Conference Proceedings (OSTI)

The good news is that market stability can be achieved through a combination of longer-term contracts, auctions for far enough in the future to permit new entry, a capacity management system, and a demand curve. The bad news is that if and when stable capacity markets are designed, the markets may seem to be relatively close to where we started - with integrated resource planning. Market ideologues will find this anathema. (author)

Stauffer, Hoff

2006-04-15T23:59:59.000Z

174

Capacity Value of Wind Power  

Science Conference Proceedings (OSTI)

Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to overall system adequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America are highlighted with a description of open research questions also given.

Keane, Andrew; Milligan, Michael; Dent, Chris; Hasche, Bernhard; DAnnunzio, Claudine; Dragoon, Ken; Holttinen, Hannele; Samaan, Nader A.; Soder, Lennart; O'Malley, Mark J.

2011-05-04T23:59:59.000Z

175

3-D nonlinear force-free field reconstruction of solar active region 11158 by direct boundary integral equation  

E-Print Network (OSTI)

A 3-D coronal magnetic field is reconstructed for NOAA 11158 on Feb 14, 2011. A GPU-accelerated direct boundary integral equation (DBIE) method is implemented. This is about 1000 times faster than the original DBIE used on solar NLFFF modeling. Using the SDO/HMI vector magnetogram as the bottom boundary condition, the reconstructed magnetic field lines are compared with the projected EUV loop structures from different views three-dimensionally by SDO/AIA and STEREO A/B spacecraft simultaneously for the first time. They show very good agreement so that the topological configurations of the magnetic fields can be analyzed, thus its role in the flare process of the active region can be better understood. A quantitative comparison with some stereoscopically reconstructed coronal loops shows that the present averaged misalignment angles are at the same order as the state-of-the-art results obtained with reconstructed coronal loops as prescribed conditions and better than other NLFFF methods. It is found that the o...

Wang, Rui; Tan, Baolin

2013-01-01T23:59:59.000Z

176

Atmospheric Crude Oil Distillation Operable Capacity  

Gasoline and Diesel Fuel Update (EIA)

(Barrels per Calendar Day) (Barrels per Calendar Day) Data Series: Total Number of Operable Refineries Number of Operating Refineries Number of Idle Refineries Atmospheric Crude Oil Distillation Operable Capacity (B/CD) Atmospheric Crude Oil Distillation Operating Capacity (B/CD) Atmospheric Crude Oil Distillation Idle Capacity (B/CD) Atmospheric Crude Oil Distillation Operable Capacity (B/SD) Atmospheric Crude Oil Distillation Operating Capacity (B/SD) Atmospheric Crude Oil Distillation Idle Capacity (B/SD) Vacuum Distillation Downstream Charge Capacity (B/SD) Thermal Cracking Downstream Charge Capacity (B/SD) Thermal Cracking Total Coking Downstream Charge Capacity (B/SD) Thermal Cracking Delayed Coking Downstream Charge Capacity (B/SD Thermal Cracking Fluid Coking Downstream Charge Capacity (B/SD) Thermal Cracking Visbreaking Downstream Charge Capacity (B/SD) Thermal Cracking Other/Gas Oil Charge Capacity (B/SD) Catalytic Cracking Fresh Feed Charge Capacity (B/SD) Catalytic Cracking Recycle Charge Capacity (B/SD) Catalytic Hydro-Cracking Charge Capacity (B/SD) Catalytic Hydro-Cracking Distillate Charge Capacity (B/SD) Catalytic Hydro-Cracking Gas Oil Charge Capacity (B/SD) Catalytic Hydro-Cracking Residual Charge Capacity (B/SD) Catalytic Reforming Charge Capacity (B/SD) Catalytic Reforming Low Pressure Charge Capacity (B/SD) Catalytic Reforming High Pressure Charge Capacity (B/SD) Catalytic Hydrotreating/Desulfurization Charge Capacity (B/SD) Catalytic Hydrotreating Naphtha/Reformer Feed Charge Cap (B/SD) Catalytic Hydrotreating Gasoline Charge Capacity (B/SD) Catalytic Hydrotreating Heavy Gas Oil Charge Capacity (B/SD) Catalytic Hydrotreating Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Kerosene/Jet Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Diesel Fuel Charge Capacity (B/SD) Catalytic Hydrotreating Other Distillate Charge Capacity (B/SD) Catalytic Hydrotreating Residual/Other Charge Capacity (B/SD) Catalytic Hydrotreating Residual Charge Capacity (B/SD) Catalytic Hydrotreating Other Oils Charge Capacity (B/SD) Fuels Solvent Deasphalting Charge Capacity (B/SD) Catalytic Reforming Downstream Charge Capacity (B/CD) Total Coking Downstream Charge Capacity (B/CD) Catalytic Cracking Fresh Feed Downstream Charge Capacity (B/CD) Catalytic Hydro-Cracking Downstream Charge Capacity (B/CD) Period:

177

A kinematic wave theory of capacity drop  

E-Print Network (OSTI)

Capacity drop at active bottlenecks is one of the most puzzling traffic phenomena, but a thorough understanding is practically important for designing variable speed limit and ramp metering strategies. In this study, we attempt to develop a simple model of capacity drop within the framework of kinematic wave theory based on the observation that capacity drop occurs when an upstream queue forms at an active bottleneck. In addition, we assume that the fundamental diagrams are continuous in steady states. This assumption is consistent with observations and can avoid unrealistic infinite characteristic wave speeds in discontinuous fundamental diagrams. A core component of the new model is an entropy condition defined by a discontinuous boundary flux function. For a lane-drop area, we demonstrate that the model is well-defined, and its Riemann problem can be uniquely solved. We theoretically discuss traffic stability with this model subject to perturbations in density, upstream demand, and downstream supply. We clarify that discontinuous flow-density relations, or so-called "discontinuous" fundamental diagrams, are caused by incomplete observations of traffic states. Theoretical results are consistent with observations in the literature and are verified by numerical simulations and empirical observations. We finally discuss potential applications and future studies.

Wen-Long Jin; Qi-Jian Gan; Jean-Patrick Lebacque

2013-10-09T23:59:59.000Z

178

Broadband coherent light generation in Raman-active crystals driven by femtosecond laser fields  

E-Print Network (OSTI)

I studied a family of closely connected topics related to the production and application of ultrashort laser pulses. I achieved broadband cascade Raman generation in crystals, producing mutually coherent frequency sidebands which can possibly be used to synthesize optical pulses as short as a fraction of a femtosecond (fs). Unlike generation using gases, there is no need for a cumbersome vacuum system when working with room temperature crystals. Our method, therefore, shows promise for a compact system. One problem for sideband generation in solids is phase matching, because the dispersion is significant. I solved this problem by using non-collinear geometry. I observed what to our knowledge is a record-large number of spectral sidebands generated in a popular Raman crystal PbWO4 covering infrared, visible, and ultraviolet spectral regions, when I applied two 50 fs laser pulses tuned close to the Raman resonance. Similar generation in diamond was also observed, which shows that the method is universal. When a third probe pulse is applied, a very interesting 2-D color array is generated in both crystals. As many as 40 anti-Stokes and 5 Stokes sidebands are generated when a pair of time-delayed linear chirped pulses are applied to the PbWO4 crystal. This shows that pulses with picosecond duration, which is on the order of the coherence decay time, is more effective for sidebands generation than Fourier transform limited fs pulses. I also studied the technique of fs coherent Raman anti-Stokes scattering (CARS) which is used as a tool for detecting dipicolinic acid, the marker molecule for bacterial spores. I observed that there is a maximum when the concentration dependence of the near-resonant CARS signal is measured. I presented a model to describe this behavior, and found an analytical solution that agrees with our experimental data. Theoretically, I explored a possible application for single-cycle pulses: laser induced nuclear fusion. I performed both classical and quantum mechanical calculations for a system of two nuclei moving under a superintense ultrashort field. From our calculation I noted that the nuclear collisions occur on a sub-attosecond time scale, and are predicted to result in an emission of zeptosecond bursts of light.

Zhi, Miaochan

2007-12-01T23:59:59.000Z

179

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Total Working Gas Capacity Total Number of Existing Fields Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area Apr-13 May-13 Jun-13 Jul-13 Aug-13 Sep-13 View History U.S. 9,072,508 9,104,181 9,111,242 9,117,296 9,132,250 9,171,017 1989-2013 Alaska 83,592 83,592 83,592 83,592 83,592 83,592 2013-2013 Lower 48 States 8,988,916 9,020,589 9,027,650 9,033,704 9,048,658 9,087,425 2012-2013 Alabama 35,400 35,400 35,400 35,400 35,400 35,400 2002-2013 Arkansas 21,853 21,853 21,853 21,853 21,853 21,853 2002-2013 California 592,711 592,711 592,711 599,711 599,711 599,711 2002-2013 Colorado 122,086 122,086 122,086 122,086 122,086 122,086 2002-2013

180

OpenEI - production capacity  

Open Energy Info (EERE)

National Biorefineries National Biorefineries Database http://en.openei.org/datasets/node/50

License
field field-type-text field-field-license-type"> Type of License:  Other (please specify below)
Source of data Source name: 

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Optimal Capacity Adjustments for Supply Chain Control  

E-Print Network (OSTI)

Decisions on capacity are often treated separately from those of production and inventory. In most situations, capacity issues are longer-term, so capacity-related decisions are considered strategic and thus not part of ...

Budiman, Benny

182

Building Regulatory Capacity for Change  

NLE Websites -- All DOE Office Websites (Extended Search)

Regulatory Capacity for Regulatory Capacity for Change PRESENTED BY Sarah Spencer-Workman, LEED AP July 27, 2011 "How to identify and review laws relevant to buildings and find places and opportunities that can accept changes that would support building energy objectives" Presentation Highlights Rulemaking Community and Stakeholder Identification To Support Code Changes Engagement: Building Capacity for Change Pay It Forward RULEMAKING : Plan Development and Research of Laws Relevant to Buildings How is it conducted? 'Landscape' Review Key words or phrases to look for Identify "home rule" jurisdictions Update and review cycle built in 'Landscape' Review:

183

production capacity | OpenEI  

Open Energy Info (EERE)

production capacity production capacity Dataset Summary Description No description given. Source Oak Ridge National Laboratory Date Released November 30th, 2009 (4 years ago) Date Updated Unknown Keywords biodiesel ethanol location production capacity transportation Data application/zip icon Biorefineries.zip (zip, 7 MiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments Login or register to post comments If you rate this dataset, your published comment will include your rating.

184

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

185

Worldwide Energy Efficiency Action through Capacity Building...  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and...

186

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

and tank farms. Excludes storage capacity of refineries, fuel ethanol plants, and pipelines. 2 Percent exclusive use is that portion of capacity in operation that is for the...

187

High Capacity Hydrogen Storage Nanocomposite - Energy ...  

Energy Storage Advanced Materials High Capacity Hydrogen Storage Nanocomposite Processes to add metal hydrideds to nanocarbon structures to yield high capacity ...

188

Property:Cooling Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Jump to: navigation, search This is a property of type Number. Pages using the property "Cooling Capacity" Showing 2 pages using this property. D Distributed Generation...

189

Economic Dispatch of Electric Generation Capacity | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Economic Dispatch of Electric Generation Capacity Economic Dispatch of Electric Generation Capacity A report to congress and the states pursuant to sections 1234 and 1832 of the...

190

California Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) California Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

191

Resource Adequacy Capacity - Power Marketing - Sierra Nevada...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resource Adequacy Capacity Resource Adequacy Capacity Resource Adequacy Plan - Current Local Resource Adequacy Plan (Word - 175K) - Notice of Proposed Final Resource Adequacy Plan...

192

Washington Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Washington Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

193

Missouri Natural Gas Underground Storage Acquifers Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Missouri Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

194

Mississippi Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Mississippi Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

195

Minnesota Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Minnesota Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

196

Pennsylvania Working Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Pennsylvania Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

197

Washington Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Washington Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

198

EIA Crude Oil Distillation Capacity (Table 36)  

U.S. Energy Information Administration (EIA)

(Important Note on Sources of Crude Oil Distillation Capacity Estimates) Table 3.6 World Crude Oil Distillation Capacity, January 1, 1970 - January 1, 2009

199

Property:Project Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Installed Capacity (MW) Installed Capacity (MW) Jump to: navigation, search Property Name Project Installed Capacity (MW) Property Type String Pages using the property "Project Installed Capacity (MW)" Showing 25 pages using this property. (previous 25) (next 25) M MHK Projects/40MW Lewis project + 0 + MHK Projects/ADM 5 + 1 + MHK Projects/AWS II + 1 + MHK Projects/Admirality Inlet Tidal Energy Project + 22 + MHK Projects/Agucadoura + 2 + MHK Projects/Alaska 18 + 10 + MHK Projects/Alaska 36 + 10 + MHK Projects/Algiers Cutoff Project + 16 + MHK Projects/Algiers Light Project + 0 + MHK Projects/Anconia Point Project + 0 + MHK Projects/Ashley Point Project + 0 + MHK Projects/Astoria Tidal Energy + 300 + MHK Projects/Avondale Bend Project + 0 + MHK Projects/Bar Field Bend + 0 +

200

ABRUPT CHANGES OF THE PHOTOSPHERIC MAGNETIC FIELD IN ACTIVE REGIONS AND THE IMPULSIVE PHASE OF SOLAR FLARES  

SciTech Connect

We compared time profiles of changes of the unsigned photospheric magnetic flux in active regions with those of their associated soft X-ray (SXR) bursts for a sample of 75 {>=} M5 flares well observed by Global Oscillation Network Group longitudinal magnetographs. Sixty-six of these events had stepwise changes in the spatially integrated unsigned flux during the SXR flares. In superposed epoch plots for these 66 events, there is a sharp increase in the unsigned magnetic flux coincident with the onset of the flare impulsive phase while the end of the stepwise change corresponds to the time of peak SXR emission. We substantiated this result with a histogram-based comparison of the timing of flux steps (onset, midpoint of step, and end) for representative points in the flaring regions with their associated SXR event time markers (flare onset, onset of impulsive phase, time of peak logarithmic derivative, maximum). On an individual event basis, the principal part of the stepwise magnetic flux change occurred during the main rise phase of the SXR burst (impulsive phase onset to SXR peak) for {approx}60% of the 66 cases. We find a close timing agreement between magnetic flux steps and >100 keV emission for the three largest hard X-ray (>100 keV) bursts in our sample. These results identify the abrupt changes in photospheric magnetic fields as an impulsive phase phenomenon and indicate that the coronal magnetic field changes that drive flares are rapidly transmitted to the photosphere.

Cliver, E. W. [Space Vehicles Directorate, Air Force Research Laboratory, Sunspot, NM 88349 (United States); Petrie, G. J. D. [National Solar Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); Ling, A. G. [Atmospheric Environmental Research, Lexington, MA 02421 (United States)

2012-09-10T23:59:59.000Z

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

U.S. Working Natural Gas Underground Storage Depleted Fields...  

Annual Energy Outlook 2012 (EIA)

Depleted Fields Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Depleted Fields Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

202

Entangling and disentangling capacities of nonlocal maps  

E-Print Network (OSTI)

Entangling and disentangling capacities are the key manifestation of the nonlocal content of a quantum operation. A lot of effort has been put recently into investigating (dis)entangling capacities of unitary operations, but very little is known about capacities of non-unitary operations. Here we investigate (dis)entangling capacities of unital CPTP maps acting on two qubits.

Berry Groisman

2007-04-08T23:59:59.000Z

203

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Louisiana Refinery Catalytic Reforming Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

204

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity ...  

U.S. Energy Information Administration (EIA)

Oklahoma Refinery Vacuum Distillation Downstream Charge Capacity as of January 1 (Barrels per Stream Day)

205

Georgia Refinery Marketable Petroleum Coke Production Capacity ...  

U.S. Energy Information Administration (EIA)

Georgia Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

206

High capacity immobilized amine sorbents  

DOE Patents (OSTI)

A method is provided for making low-cost CO.sub.2 sorbents that can be used in large-scale gas-solid processes. The improved method entails treating an amine to increase the number of secondary amine groups and impregnating the amine in a porous solid support. The method increases the CO.sub.2 capture capacity and decreases the cost of utilizing an amine-enriched solid sorbent in CO.sub.2 capture systems.

Gray, McMahan L. (Pittsburgh, PA); Champagne, Kenneth J. (Fredericktown, PA); Soong, Yee (Monroeville, PA); Filburn, Thomas (Granby, CT)

2007-10-30T23:59:59.000Z

207

Building Energy Software Tools Directory : CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

CHP Capacity Optimizer Back to Tool CHP Capacity Optimizer data entry screen CHP Capacity Optimizer results screen CHP Capacity Optimizer restult map...

208

Investigation of Mechanical Activation on Li-N-H Systems Using 6Li Magic Angle Spinning Nuclear Magnetic Resonance at Ultra-High Field  

SciTech Connect

Abstract The significantly enhanced spectral resolution in the 6Li MAS NMR spectra of Li-N-H systems at ultra-high field of 21.1 tesla is exploited, for the first time, to study the detailed electronic and chemical environmental changes associated with mechanical activation of Li-N-H system using high energy balling milling. Complementary to ultra-high field studies, the hydrogen discharge dynamics are investigated using variable temperature in situ 1H MAS NMR at 7.05 tesla field. The significantly enhanced spectral resolution using ultra-high filed of 21.1 tesla was demonstrated along with several major findings related to mechanical activation, including the upfield shift of the resonances in 6Li MAS spectra induced by ball milling, more efficient mechanical activation with ball milling at liquid nitrogen temperature than with ball milling at room temperature, and greatly enhanced hydrogen discharge exhibited by the liquid nitrogen ball milled samples.

Hu, Jian Zhi; Kwak, Ja Hun; Yang, Zhenguo; Osborn, William; Markmaitree, Tippawan; Shaw, Leonard D.

2008-07-15T23:59:59.000Z

209

Dynamic Deferral of Workload for Capacity Provisioning in Data Centers  

E-Print Network (OSTI)

Recent increase in energy prices has led researchers to find better ways for capacity provisioning in data centers to reduce energy wastage due to the variation in workload. This paper explores the opportunity for cost saving and proposes a novel approach for capacity provisioning under bounded latency requirements for the workload. We investigate how many servers to be kept active and how much workload to be delayed for energy saving while meeting every deadline. We present an offline LP formulation for capacity provisioning by dynamic deferral and give two online algorithms to determine the capacity of the data center and the assignment of workload to servers dynamically. We prove the feasibility of the online algorithms and show that their worst case performance are bounded by a constant factor with respect to the offline formulation. We validate our algorithms on synthetic workload generated from two real HTTP traces and show that they actually perform much better in practice than the worst case, resultin...

Adnan, Muhammad Abdullah; Sugihara, Ryo; Gupta, Rajesh

2011-01-01T23:59:59.000Z

210

DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection  

Science Conference Proceedings (OSTI)

Based on results of field testing conducted by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), this article provides preliminary costs for mercury control via conventional activated carbon injection (ACI), brominated ACI, and conventional ACI coupled with the application of a sorbent enhancement additive (SEA) to coal prior to combustion. The economic analyses are reported on a plant-specific basis in terms of the cost required to achieve low (50%), mid (70%), and high (90%) levels of mercury removal 'above and beyond' the baseline mercury removal achieved by existing emission control equipment. In other words, the levels of mercury control are directly attributable to ACI. Mercury control costs via ACI have been amortized on a current dollar basis. Using a 20-year book life, levelized costs for the incremental increase in cost of electricity (COE), expressed in mills per kilowatt-hour (mills/kWh), and the incremental cost of mercury control, expressed in dollars per pound of mercury removed ($/lb Hg removed), have been calculated for each level of ACI mercury control. For this analysis, the increase in COE varied from 0.14 mills/kWh to 3.92 mills/kWh. Meanwhile, the incremental cost of mercury control ranged from $3810/lb Hg removed to $166 000/lb Hg removed. 13 refs., 4 figs., 3 tabs.

Andrew P. Jones; Jeffrey W. Hoffmann; Dennis N. Smith; Thomas J. Feeley III; James T. Murphy [National Energy Technology Laboratory, Pittsburgh, PA (United States)

2007-02-15T23:59:59.000Z

211

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

212

Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky...  

Open Energy Info (EERE)

search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Dixie Valley Geothermal Field Area (Wesnousky, Et Al., 2003) Exploration Activity Details...

213

The Effect of Technological Improvement on Capacity  

E-Print Network (OSTI)

We formulate a model of capacity expansion that is relevant to a service provider for whom the cost of capacity shortages would be considerable but difficult to quantify exactly. Due to demand uncertainty and a lead time for adding capacity, not all shortages are avoidable. In addition, technological innovations will reduce the cost of adding capacity but may not be completely predictable. Analytical expressions for the infinite horizon expansion cost and shortages are optimized numerically. Sensitivity analyses allow us to determine the impact of technological change on the optimal timing and sizes of capacity expansions to account for economies of scale, the time value of money and penalties for insufficient capacity.

Expansion For Uncertain; Dohyun Pak; Nattapol Pornsalnuwat; Sarah M. Ryan

2004-01-01T23:59:59.000Z

214

Field Demonstration of Active Desiccant Modules Designed to Integrate with Standard Unitary Rooftop Package Equipment - Final Report: Phase 3  

SciTech Connect

This report summarizes the investigation of two active desiccant module (ADM) pilot site installations initiated in 2001. Both pilot installations were retrofits at existing facilities served by conventional heating, ventilating, and air-conditioning (HVAC) systems that had encountered frequent humidity control, indoor air quality (IAQ), and other operational problems. Each installation involved combining a SEMCO, Inc., ADM (as described in Fischer and Sand 2002) with a standard packaged rooftop unit built by the Trane Company. A direct digital control (DDC) system integral to the ADM performed the dual function of controlling the ADM/rooftop combination and facilitating data collection, trending, and remote performance monitoring. The first installation involved providing preconditioned outdoor air to replace air exhausted from the large kitchen hood and bathrooms of a Hooters restaurant located in Rome, Georgia. This facility had previously added an additional rooftop unit in an attempt to achieve occupant comfort without success. The second involved conditioning the outdoor air delivered to each room of a wing of the Mountain Creek Inn at the Callaway Gardens resort. This hotel, designed in the ''motor lodge'' format with each room opening to the outdoors, is located in southwest Georgia. Controlling the space humidity always presented a serious challenge. Uncomfortable conditions and musty odors had caused many guests to request to move to other areas within the resort. This is the first field demonstration performed by Oak Ridge National Laboratory where significant energy savings, operating cost savings, and dramatically improved indoor environmental conditions can all be claimed as the results of a retrofit desiccant equipment field installation. The ADM/rooftop combination installed at the restaurant resulted in a reduction of about 34% in the electricity used by the building's air-conditioning system. This represents a reduction of approximately 15% in overall electrical energy consumption and a 12.5-kW reduction in peak demand. The cost of gas used for regeneration of the desiccant wheel over this period of time is estimated to be only $740, using a gas cost of $0.50 per therm--the summer rate in 2001. The estimated net savings is $5400 annually, resulting in a 1-2 year payback. It is likely that similar energy/cost savings were realized at the Callaway Gardens hotel. In this installation, however, a central plant supplied the chilled water serving fan coil units in the hotel wing retrofitted with the ADM, so it was not metered separately. Consequently, the owner could not provide actual energy consumption data specific to the facility. The energy and operating cost savings at both sites are directly attributable to higher cooling-season thermostat settings and decreased conventional system run times. These field installations were selected as an immediate and appropriate response to correct indoor humidity and fresh air ventilation problems being experienced by building occupants and owners, so no rigorous baseline-building vs. test-building energy use/operating cost savings results can be presented. The report presents several simulated comparisons between the ADM/roof HVAC approach and other equipment combinations, where both desiccant and conventional systems are modeled to provide comparable fresh air ventilation rates and indoor humidity levels. The results obtained from these simulations demonstrate convincingly the energy and operating cost savings obtainable with this hybrid desiccant/vapor-compression technology, verifying those actually seen at the pilot installations. The ADM approach is less expensive than conventional alternatives providing similar performance and indoor air quality and provides a very favorable payback (1 year or so) compared with oversized rooftop units that cannot be operated effectively with the necessary high outdoor air percentages.

Fischer, J

2004-03-15T23:59:59.000Z

215

Oil Production Capacity Expansion Costs for the Persian Gulf  

Gasoline and Diesel Fuel Update (EIA)

TR/0606 TR/0606 Distribution Category UC-950 Oil Production Capacity Expansion Costs For The Persian Gulf January 1996 Energy Information Administration Office of Oil and Gas U.S. Department of Energy Washington, DC 20585 This report was prepared by the Energy Information Administration, the independent statistical and analytical agency within the Department of Energy. The information contained herein should not be construed as advocating or reflecting any policy position of the Department of Energy or any other organization. Energy Information Administration Oil Production Capacity Expansion Costs for the Persian Gulf iii Preface Oil Production Capacity Expansion Costs for the Persian Gulf provides estimates of development and operating costs for various size fields in countries surrounding the Persian

216

U.S. Refining Capacity Utilization  

Reports and Publications (EIA)

This article briefly reviews recent trends in domestic refining capacity utilization and examines in detail the differences in reported crude oil distillation capacities and utilization rates among different classes of refineries.

Tancred Lidderdale

1995-10-01T23:59:59.000Z

217

Capacity Factor Risk At Nuclear Power Plants  

E-Print Network (OSTI)

We develop a model of the dynamic structure of capacity factor risk. It incorporates the risk that the capacity factor may vary widely from year-to-year, and also the risk that the reactor may be permanently shutdown prior ...

Du, Yangbo

218

Definition: Capacity Revenue | Open Energy Information  

Open Energy Info (EERE)

through the competitive capacity market for a capacity credit.1 References SmartGrid.gov 'Description of Benefits' An LikeLike UnlikeLike You like this.Sign Up to see...

219

Empirical Study of Ramp Metering and Capacity  

E-Print Network (OSTI)

Empirical Study of Ramp Metering and Capacity Michael J.EMPIRICAL STUDY OF RAMP METERING AND CAPACITY June 7, 2002Thus, the benefits of metering inflows at this on-ramp seem

Cassidy, Michael J.; Rudjanakanoknad, Jittichai

2002-01-01T23:59:59.000Z

220

On the capacity of bosonic channels  

E-Print Network (OSTI)

The capacity of the bosonic channel with additive Gaussian noise is unknown, but there is a known lower bound that is conjectured to be the capacity. We have quantified the gap that exists between this known achievable ...

Blake, Christopher Graham

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Capacity expansion in contemporary telecommunication networks  

E-Print Network (OSTI)

We study three capacity expansion problems in contemporary long distance telecommunication networks. The first two problems, motivated by a major long distance provider, address capacity expansion in national hybrid long ...

Sivaraman, Raghavendran

2007-01-01T23:59:59.000Z

222

Field Test and Performance Verification: Integrated Active Desiccant Rooftop Hybrid System Installed in a School - Final Report: Phase 4A  

SciTech Connect

This report summarizes the results of a field verification pilot site investigation that involved the installation of a hybrid integrated active desiccant/vapor-compression rooftop heating, ventilation, and air-conditioning (HVAC) unit at an elementary school in the Atlanta Georgia area. For years, the school had experienced serious humidity and indoor air quality (IAQ) problems that had resulted in occupant complaints and microbial (mold) remediation. The outdoor air louvers of the original HVAC units had been closed in an attempt to improve humidity control within the space. The existing vapor compression variable air volume system was replaced by the integrated active desiccant rooftop (IADR) system that was described in detail in an Oak Ridge National Laboratory (ORNL) report published in 2004 (Fischer and Sand 2004). The IADR system and all space conditions have been monitored remotely for more than a year. The hybrid system was able to maintain both the space temperature and humidity as desired while delivering the outdoor air ventilation rate required by American Society of Heating, Refrigerating and Air-Conditioning Engineers Standard 62. The performance level of the IADR unit and the overall system energy efficiency was measured and found to be very high. A comprehensive IAQ investigation was completed by the Georgia Tech Research Institute before and after the system retrofit. Before-and-after data resulting from this investigation confirmed a significant improvement in IAQ, humidity control, and occupant comfort. These observations were reported by building occupants and are echoed in a letter to ORNL from the school district energy manager. The IADR system was easily retrofitted in place of the original rooftop system using a custom curb adapter. All work was completed in-house by the school's maintenance staff over one weekend. A subsequent cost analysis completed for the school district by the design engineer of record concluded that the IADR system being investigated was actually less expensive to install than other less-efficient options, most of which were unable to deliver the required ventilation while maintaining the desired space humidity levels.

Fischer, J

2005-12-21T23:59:59.000Z

223

On Working Memory: Its organization and capacity limits  

E-Print Network (OSTI)

64 iii 6.2 Working memory capacity10 1.4 Capacity limits of workingcapacity . . . . . . . . . . . . . . . . . . . . . . . . . .

Lara, Antonio Homero

2010-01-01T23:59:59.000Z

224

Loads, capacity, and failure rate modeling  

SciTech Connect

Both failure rate and load capacity (stress-strength) interferenece methodologies are employed in the reliability analysis at nuclear facilities. Both of the above have been utilized in a heuristic failure rate model in terms of load capacity inference. Analytical solutions are used to demonstrate that infant mortality and random aging failures may be expressed implicity in terms of capacity variability, load variability, and capacity deterioration, and that mode interactions play a role in the formation of the bathtub curve for failure rates.

Lewis, E.E.; Chen, Hsin-Chieh

1994-12-31T23:59:59.000Z

225

Peak Underground Working Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

Peak Working Natural Gas Capacity. Data and Analysis from the Energy Information Administration (U.S. Dept. of Energy)

226

Texas Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

227

Colorado Number and Capacity of Petroleum Refineries  

U.S. Energy Information Administration (EIA)

Atmospheric Crude Oil Distillation Capacity : Operable ... Idle refineries represent refineries where distillation units were completely idle but not ...

228

Optimization of the Refrigerant Capacity in Multiphase ...  

Science Conference Proceedings (OSTI)

Symposium, Magnetic Materials for Energy Applications. Presentation Title, Optimization of the Refrigerant Capacity in Multiphase Magnetocaloric Materials.

229

Regional Profiles: Pipeline Capacity and Service  

U.S. Energy Information Administration (EIA)

Regional Profiles: Pipeline Capacity ... large petrochemical and electric utility industries drawn there ... accounts for large electricity load ...

230

Shannon capacity of nonlinear regenerative channels  

E-Print Network (OSTI)

We compute Shannon capacity of nonlinear channels with regenerative elements. Conditions are found under which capacity of such nonlinear channels is higher than the Shannon capacity of the classical linear additive white Gaussian noise channel. We develop a general scheme for designing the proposed channels and apply it to the particular nonlinear sine-mapping. The upper bound for regeneration efficiency is found and the asymptotic behavior of the capacity in the saturation regime is derived.

Sorokina, M A

2013-01-01T23:59:59.000Z

231

Robust Capacity Planning in Semiconductor Manufacturing  

E-Print Network (OSTI)

Oct 3, 2001 ... Abstract: We present a stochastic programming approach to capacity planning under demand uncertainty in semiconductor manufacturing.

232

Capacity of shrinking condensers in the plane  

E-Print Network (OSTI)

We show that the capacity of a class of plane condensers is comparable to the capacity of corresponding "dyadic condensers". As an application, we show that for plane condensers in that class the capacity blows up as the distance between the plates shrinks, but there can be no asymptotic estimate of the blow-up.

Arcozzi, N

2011-01-01T23:59:59.000Z

233

The Compound Capacity of Polar Codes  

E-Print Network (OSTI)

We consider the compound capacity of polar codes under successive cancellation decoding for a collection of binary-input memoryless output-symmetric channels. By deriving a sequence of upper and lower bounds, we show that in general the compound capacity under successive decoding is strictly smaller than the unrestricted compound capacity.

Hassani, S Hamed; Urbanke, Ruediger

2009-01-01T23:59:59.000Z

234

Preprint -January 2011 To be published in Journal of Physics: Conference Series An active feedback scheme for low field NMR  

E-Print Network (OSTI)

scheme for low field NMR experiments Emmanuel Baudin1, Kajum Safiullin1, Steven W. Morgan1,2 and Pierre-Jean Nacher1 Abstract. In low field nuclear magnetic resonance (NMR) it is desirable to combine proper the sample and the detection coil is needed for NMR with highly magnetized samples and a large bandwidth

Paris-Sud XI, Université de

235

High current capacity electrical connector  

DOE Patents (OSTI)

An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

Bettis, Edward S. (Oak Ridge, TN); Watts, Harry L. (Lake City, TN)

1976-01-13T23:59:59.000Z

236

DOE Transmission Capacity Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transmission Capacity Report Transmission Capacity Report DOE Transmission Capacity Report DOE Transmission Capacity Report: Transmission lines, substations, circuit breakers, capacitors, and other equipment provide more than just a highway to deliver energy and power from generating units to distribution systems. Transmission systems both complement and substitute for generation. Transmission generally enhances reliability; lowers the cost of electricity delivered to consumers; limits the ability of generators to exercise market power; and provides flexibility to protect against uncertainties about future fuel prices, load growth, generator construction, and other factors affecting the electric system. DOE Transmission Capacity Report More Documents & Publications Report to Congress:Impacts of the Federal Energy Regulatory Commission's

237

Capacity withholding in the Electricity Pool.  

E-Print Network (OSTI)

Electricity generators can raise the price of power by withholding their plant from the market. We discuss two ways in which this could have affected prices in the England and Wales Pool. Withholding low-cost capacity which should be generating will raise energy prices but make the pattern of generation less efficient. This pattern improved significantly after privatisation. Withholding capacity that was not expected to generate would raise the Capacity Payments based on spare capacity. On a multi-year basis, these did not usually exceed “competitive ” levels, the cost of keeping stations open. The evidence for large-scale capacity withholding is weak. Keywords: JEL:

Richard Green; Richard Green

2004-01-01T23:59:59.000Z

238

Capacity Value of Concentrating Solar Power Plants  

DOE Green Energy (OSTI)

This study estimates the capacity value of a concentrating solar power (CSP) plant at a variety of locations within the western United States. This is done by optimizing the operation of the CSP plant and by using the effective load carrying capability (ELCC) metric, which is a standard reliability-based capacity value estimation technique. Although the ELCC metric is the most accurate estimation technique, we show that a simpler capacity-factor-based approximation method can closely estimate the ELCC value. Without storage, the capacity value of CSP plants varies widely depending on the year and solar multiple. The average capacity value of plants evaluated ranged from 45%?90% with a solar multiple range of 1.0-1.5. When introducing thermal energy storage (TES), the capacity value of the CSP plant is more difficult to estimate since one must account for energy in storage. We apply a capacity-factor-based technique under two different market settings: an energy-only market and an energy and capacity market. Our results show that adding TES to a CSP plant can increase its capacity value significantly at all of the locations. Adding a single hour of TES significantly increases the capacity value above the no-TES case, and with four hours of storage or more, the average capacity value at all locations exceeds 90%.

Madaeni, S. H.; Sioshansi, R.; Denholm, P.

2011-06-01T23:59:59.000Z

239

Property:InstalledCapacity | Open Energy Information  

Open Energy Info (EERE)

InstalledCapacity InstalledCapacity Jump to: navigation, search Property Name InstalledCapacity Property Type Quantity Description Installed Capacity (MW) or also known as Total Generator Nameplate Capacity (Rated Power) Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

240

Optimal entangling capacity of dynamical processes  

SciTech Connect

We investigate the entangling capacity of dynamical operations when provided with local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result, a property we call resource independence of the entangling capacity. We prove several useful upper bounds on the entangling capacity that hold for general qudit dynamical operations and for a whole family of entanglement monotones including log negativity and log robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independent for all two-qudit unitary operators.

Campbell, Earl T. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom)

2010-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Optimal Entangling Capacity of Dynamical Processes  

E-Print Network (OSTI)

We investigate the entangling capacity of dynamical operations when provided with local ancilla. A comparison is made between the entangling capacity with and without the assistance of prior entanglement. An analytic solution is found for the log-negativity entangling capacity of two-qubit gates, which equals the entanglement of the Choi matrix isomorphic to the unitary operator. Surprisingly, the availability of prior entanglement does not affect this result; a property we call resource independence of the entangling capacity. We prove several useful upper-bounds on the entangling capacity that hold for general qudit dynamical operations, and for a whole family of entanglement monotones including log-negativity and log-robustness. The log-robustness entangling capacity is shown to be resource independent for general dynamics. We provide numerical results supporting a conjecture that the log-negativity entangling capacity is resource independence for all two-qudit unitaries.

Earl T. Campbell

2010-07-08T23:59:59.000Z

242

World nuclear capacity and fuel cycle requirements, November 1993  

SciTech Connect

This analysis report presents the current status and projections of nuclear capacity, generation, and fuel cycle requirements for all countries in the world using nuclear power to generate electricity for commercial use. Long-term projections of US nuclear capacity, generation, fuel cycle requirements, and spent fuel discharges for three different scenarios through 2030 are provided in support of the Department of Energy`s activities pertaining to the Nuclear Waste Policy Act of 1982 (as amended in 1987). The projections of uranium requirements also support the Energy Information Administration`s annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment.

Not Available

1993-11-30T23:59:59.000Z

243

Reservoir assessment of The Geysers Geothermal field  

DOE Green Energy (OSTI)

Big Sulphur Creek fault zone, in The Geysers Geothermal field, may be part of a deep-seated, wrench-style fault system. Hydrothermal fluid in the field reservoir may rise through conduits beneath the five main anomalies associated with the Big Sulphur Creek wrench trend. Some geophysical anomalies (electrical resistivity and audio-magnetotelluric) evidently are caused by the hot water geothermal field or zones of altered rocks; others (gravity, P-wave delays, and possibly electrical resistivity) probably respresent the underlying heat source, a possible magma chamber; and others (microearthquake activity) may be related to the steam reservoir. A large negative gravity anomaly and a few low-resistivity anomalies suggest areas generally favorable for the presence of steam zones, but these anomalies apparently do not directly indicate the known steam reservoir. At the current generating capacity of 930 MWe, the estimated life of The Geysers Geothermal field reservoir is 129 years. The estimated reservoir life is 60 years for the anticipated maximum generating capacity of 2000 MWe as of 1990. Wells at The Geysers are drilled with conventional drilling fluid (mud) until the top of the steam reservoir is reached; then, they are drilled with air. Usually, mud, temperature, caliper, dual induction, and cement bond logs are run on the wells.

Thomas, R.P.; Chapman, R.H.; Dykstra, H.

1981-01-01T23:59:59.000Z

244

Property:MeanCapacity | Open Energy Information  

Open Energy Info (EERE)

MeanCapacity MeanCapacity Jump to: navigation, search Property Name MeanCapacity Property Type Quantity Description Mean capacity potential at location based on the USGS 2008 Geothermal Resource Assessment if the United States Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

245

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2013 | Release Date: November 27, 2013 | Next Release Date: May 29, 2013 Previous Issues Year: September 2013 March 2013 September 2012 March 2012 September 2011 March 2011 September 2010 Go Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell storage capacity by type of facility, product, and Petroleum Administration for Defense District (PAD District). Net available shell storage capacity is broken down further to show the percent for exclusive use by facility operators and the percent leased to others. Crude oil storage capacity data are also provided for Cushing, Oklahoma, an

246

Definition: Nameplate Capacity | Open Energy Information  

Open Energy Info (EERE)

Definition Definition Edit with form History Facebook icon Twitter icon » Definition: Nameplate Capacity Jump to: navigation, search Dictionary.png Nameplate Capacity The maximum amount of electric energy that a generator can produce under specific conditions, as rated by the manufacturer. Generator nameplate capacity is expressed in some multiple of watts such as megawatts (MW), as indicated on a nameplate that is physically attached to the generator.[1] View on Wikipedia Wikipedia Definition Also Known As Capacity Related Terms electricity generation, power References ↑ http://www.nrc.gov/reading-rm/basic-ref/glossary/generator-nameplate-capacity.html Retr LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ieved from "http://en.openei.org/w/index.php?title=Definition:Nameplate_Capacity&oldid=480378"

247

Definition: Deferred Generation Capacity Investments | Open Energy  

Open Energy Info (EERE)

Generation Capacity Investments Generation Capacity Investments Utilities and grid operators ensure that generation capacity can serve the maximum amount of load that planning and operations forecasts indicate. The trouble is, this capacity is only required for very short periods each year, when demand peaks. Reducing peak demand and flattening the load curve should reduce the generation capacity required to service load and lead to cheaper electricity for customers.[1] Related Terms load, electricity generation, peak demand, smart grid References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Generation_Capacity_Investments&oldid=50257

248

Installed Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Geothermal Capacity Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Installed Geothermal Capacity International Market Map of U.S. Geothermal Power Plants List of U.S. Geothermal Power Plants Throughout the world geothermal energy is looked at as a potential source of renewable base-load power. As of 2005 there was 8,933 MW of installed power capacity within 24 countries. The International Geothermal Association (IGA) reported 55,709 GWh per year of geothermal electricity. The generation from 2005 to 2010 increased to 67,246 GWh, representing a 20% increase in the 5 year period. The IGA has projected that by 2015 the new installed capacity will reach 18,500 MW, nearly 10,000 MW greater than 2005. [1] Countries with the greatest increase in installed capacity (MW) between

249

Property:PlannedCapacity | Open Energy Information  

Open Energy Info (EERE)

PlannedCapacity PlannedCapacity Jump to: navigation, search Property Name PlannedCapacity Property Type Quantity Description The total planned capacity for a given area, region or project. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

250

The quantum capacity with symmetric side channels  

E-Print Network (OSTI)

We present an upper bound for the quantum channel capacity that is both additive and convex. Our bound can be interpreted as the capacity of a channel for high-fidelity quantum communication when assisted by a family of channels that have no capacity on their own. This family of assistance channels, which we call symmetric side channels, consists of all channels mapping symmetrically to their output and environment. The bound seems to be quite tight, and for degradable quantum channels it coincides with the unassisted channel capacity. Using this symmetric side channel capacity, we find new upper bounds on the capacity of the depolarizing channel. We also briefly indicate an analogous notion for distilling entanglement using the same class of (one-way) channels, yielding one of the few entanglement measures that is monotonic under local operations with one-way classical communication (1-LOCC), but not under the more general class of local operations with classical communication (LOCC).

Graeme Smith; John A. Smolin; Andreas Winter

2006-07-05T23:59:59.000Z

251

Channel capacities via $p$-summing norms  

E-Print Network (OSTI)

In this paper we show how \\emph{the metric theory of tensor products} developed by Grothendieck perfectly fits in the study of channel capacities, a central topic in \\emph{Shannon's information theory}. Furthermore, in the last years Shannon's theory has been generalized to the quantum setting to let the \\emph{quantum information theory} step in. In this paper we consider the classical capacity of quantum channels with restricted assisted entanglement. In particular these capacities include the classical capacity and the unlimited entanglement-assisted classical capacity of a quantum channel. To deal with the quantum case we will use the noncommutative version of $p$-summing maps. More precisely, we prove that the (product state) classical capacity of a quantum channel with restricted assisted entanglement can be expressed as the derivative of a completely $p$-summing norm.

Marius Junge; Carlos palazuelos

2013-05-05T23:59:59.000Z

252

Table 8. Capacity and Fresh Feed Input to Selected Downstream ...  

U.S. Energy Information Administration (EIA)

Capacity Inputs CapacityInputs Capacity Inputs Table 8. ... (EIA) Form EIA-820, "Annual Refinery Report." Inputs are from the form EIA-810, "Monthly Refinery Report."

253

Building Energy Software Tools Directory: CHP Capacity Optimizer  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links CHP Capacity Optimizer CHP Capacity Optimizer logo Selecting the proper installed capacity for cooling, heating, and power (CHP) equipment is critical to the...

254

On the capacity of isolated, curbside bus stops  

E-Print Network (OSTI)

New Jersey. Kohler, U. , 1991. Capacity of transit lanes.Symposium on Highway Capacity, Karlsruhe, Germany. St.Paulo. TRB, 1985. Highway Capacity Manual. Transportation

Gu, Weihua; Li, Yuwei; Cassidy, Michael J.; Griswold, Julia B.

2010-01-01T23:59:59.000Z

255

Property:Installed Capacity (MW) | Open Energy Information  

Open Energy Info (EERE)

Capacity (MW) Jump to: navigation, search Property Name Installed Capacity (MW) Property Type Number Retrieved from "http:en.openei.orgwindex.php?titleProperty:InstalledCapac...

256

Stochastic binary problems with simple penalties for capacity ...  

E-Print Network (OSTI)

capacity constraints, using simple penalties for capacities violations. In particular, we take a closer look at the knapsack problem with weights and capacity ...

257

Zero-rate feedback can achieve the empirical capacity  

E-Print Network (OSTI)

Achieving the empirical capacity using feedback: MemorylessGaussian feedback capacity,” IEEE Trans. Inf. Theory, vol.14] Y. -H. Kim, “Feedback capacity of stationary Gaussian

Eswaran, Krishnan; Sarwate, A D; Sahai, Anant; Gastpar, M

2010-01-01T23:59:59.000Z

258

Attention capacity and task difficulty in visual search  

E-Print Network (OSTI)

1980). The demonstration of capacity limitation. Cognitiveof automatic detection: Capacity and scanning in visualD. L. (1984). Central capacity limits in consistent mapping

Huang, L Q; Pashler, Harold

2005-01-01T23:59:59.000Z

259

Robust Dynamic Traffic Assignment under Demand and Capacity Uncertainty  

E-Print Network (OSTI)

Assignment under Demand and Capacity Uncertainty ? Giuseppeworst-case sce- nario of demand and capacity con?gurations.uncertain demands and capacities are modeled as unknown-but-

Calafiore, Giuseppe; El Ghaoui, Laurent

2008-01-01T23:59:59.000Z

260

End-to-end asymmetric link capacity estimation  

E-Print Network (OSTI)

A Simple and Accurate Capacity Estimation Technique. InGerla. Accuracy of Link Capacity Es- timates using Passiveto-end asymmetric link capacity estimation Ling-Jyh Chen,

Chen, Ling-Jyh; Sun, Tony; Yang, Guang; Sanadidi, Medy Y; Gerla, Mario

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area (Redirected from San Juan Volcanic Field Area) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0

262

EEI/DOE Transmission Capacity Report  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TRANSMISSION CAPACITY: TRANSMISSION CAPACITY: PRESENT STATUS AND FUTURE PROSPECTS Eric Hirst Consulting in Electric-Industry Restructuring Bellingham, Washington June 2004 Prepared for Energy Delivery Group Edison Electric Institute Washington, DC Russell Tucker, Project Manager and Office of Electric Transmission and Distribution U.S. Department of Energy Washington, DC Larry Mansueti, Project Manager ii iii CONTENTS Page SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v LIST OF ACRONYMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2. TRANSMISSION CAPACITY: DATA AND PROJECTIONS . . . . . . . . . . . . . . . . . . . 5 HISTORICAL DATA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 CURRENT CONDITIONS . . . . . . .

263

Quantum capacity of channel with thermal noise  

E-Print Network (OSTI)

The quantum capacity of thermal noise channel is studied. The extremal input state is obtained at the postulation that the coherent information is convex or concave at its vicinity. When the input energy tends to infinitive, it is verified by perturbation theory that the coherent information reaches its maximum at the product of identical thermal state input. The quantum capacity is obtained for lower noise channel and it is equal the one shot capacity.

Xiao-yu Chen

2006-02-11T23:59:59.000Z

264

North Dakota Refining Capacity Study  

Science Conference Proceedings (OSTI)

According to a 2008 report issued by the United States Geological Survey, North Dakota and Montana have an estimated 3.0 to 4.3 billion barrels of undiscovered, technically recoverable oil in an area known as the Bakken Formation. With the size and remoteness of the discovery, the question became 'can a business case be made for increasing refining capacity in North Dakota?' And, if so what is the impact to existing players in the region. To answer the question, a study committee comprised of leaders in the region's petroleum industry were brought together to define the scope of the study, hire a consulting firm and oversee the study. The study committee met frequently to provide input on the findings and modify the course of the study, as needed. The study concluded that the Petroleum Area Defense District II (PADD II) has an oversupply of gasoline. With that in mind, a niche market, naphtha, was identified. Naphtha is used as a diluent used for pipelining the bitumen (heavy crude) from Canada to crude markets. The study predicted there will continue to be an increase in the demand for naphtha through 2030. The study estimated the optimal configuration for the refinery at 34,000 barrels per day (BPD) producing 15,000 BPD of naphtha and a 52 percent refinery charge for jet and diesel yield. The financial modeling assumed the sponsor of a refinery would invest its own capital to pay for construction costs. With this assumption, the internal rate of return is 9.2 percent which is not sufficient to attract traditional investment given the risk factor of the project. With that in mind, those interested in pursuing this niche market will need to identify incentives to improve the rate of return.

Dennis Hill; Kurt Swenson; Carl Tuura; Jim Simon; Robert Vermette; Gilberto Marcha; Steve Kelly; David Wells; Ed Palmer; Kuo Yu; Tram Nguyen; Juliam Migliavacca

2011-01-05T23:59:59.000Z

265

Quantum Capacities of Channels with small Environment  

E-Print Network (OSTI)

We investigate the quantum capacity of noisy quantum channels which can be represented by coupling a system to an effectively small environment. A capacity formula is derived for all cases where both system and environment are two-dimensional--including all extremal qubit channels. Similarly, for channels acting on higher dimensional systems we show that the capacity can be determined if the channel arises from a sufficiently small coupling to a qubit environment. Extensions to instances of channels with larger environment are provided and it is shown that bounds on the capacity with unconstrained environment can be obtained from decompositions into channels with small environment.

Michael M. Wolf; David Perez-Garcia

2006-07-11T23:59:59.000Z

266

Share of Conversion Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the early to mid 1980’s, Atlantic Basin refiners rapidly expanded their conversion capacity as a consequence of the belief that world crude production would get ...

267

Natural gas, renewables dominate electric capacity additions ...  

U.S. Energy Information Administration (EIA)

These appear in a separate EIA survey collecting data on net metering and distributed generation. More capacity was added in the first half of 2012 than was retired.

268

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA)

Containing storage capacity data for crude oil, petroleum products, and selected biofuels. The report includes tables detailing working and net available shell ...

269

When does noise increase the quantum capacity?  

E-Print Network (OSTI)

Superactivation is the property that two channels with zero quantum capacity can be used together to yield positive capacity. Here we demonstrate that this effect exists for a wide class of inequivalent channels, none of which can simulate each other. We also consider the case where one of two zero capacity channels are applied, but the sender is ignorant of which one is applied. We find examples where the greater the entropy of mixing of the channels, the greater the lower bound for the capacity. Finally, we show that the effect of superactivation is rather generic by providing example of superactivation using the depolarizing channel.

Fernando G. S. L. Brandão; Jonathan Oppenheim; Sergii Strelchuk

2011-07-21T23:59:59.000Z

270

,"Texas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Texas Underground Natural Gas Storage Capacity",11,"Annual",2011,"6301988" ,"Release...

271

An FPTAS for Capacity Constrained Assortment Optimization  

E-Print Network (OSTI)

May 13, 2013 ... In this paper, we consider the capacity constrained version of the assortment optimization problem where each item $i$ has weight $w_i$, and ...

272

,"Nebraska Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Underground Natural Gas...

273

,"Kentucky Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kentucky Underground Natural Gas...

274

,"Wyoming Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Underground Natural Gas...

275

,"Minnesota Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Underground Natural Gas...

276

,"Maryland Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Underground Natural Gas...

277

,"Indiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Indiana Underground Natural Gas...

278

,"West Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Underground Natural...

279

,"Michigan Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Underground Natural Gas...

280

,"California Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","California Underground Natural...

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

,"Mississippi Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Underground Natural...

282

,"Arkansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Underground Natural Gas...

283

,"Alabama Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Underground Natural Gas...

284

,"Oregon Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Underground Natural Gas...

285

,"New York Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New York Underground Natural Gas...

286

,"Missouri Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Underground Natural Gas...

287

,"Oklahoma Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Underground Natural Gas...

288

,"Washington Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Washington Underground Natural...

289

Refinery Capacity Report - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Energy Information Administration (U.S. Dept. of Energy) ... Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of ...

290

,"Kansas Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Underground Natural Gas...

291

Quantum Communication With Zero-Capacity Channels  

E-Print Network (OSTI)

Communication over a noisy quantum channel introduces errors in the transmission that must be corrected. A fundamental bound on quantum error correction is the quantum capacity, which quantifies the amount of quantum data that can be protected. We show theoretically that two quantum channels, each with a transmission capacity of zero, can have a nonzero capacity when used together. This unveils a rich structure in the theory of quantum communications, implying that the quantum capacity does not uniquely specify a channel's ability for transmitting quantum information.

Graeme Smith; Jon Yard

2008-07-30T23:59:59.000Z

292

,"Natural Gas Salt Caverns Storage Capacity "  

U.S. Energy Information Administration (EIA) Indexed Site

Salt Caverns Storage Capacity " ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Natural Gas...

293

,"New Mexico Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Underground Natural...

294

Optimization of Storage vs. Compression Capacity  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Volume vs. Compression Capacity Amgad Elgowainy Argonne National Laboratory Presentation at CSD Workshop Argonne National Laboratory March 21, 2013 0 5 10 15 20 25 0 100...

295

,"Montana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Montana Underground Natural Gas...

296

,"Virginia Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Underground Natural Gas...

297

,"Colorado Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Underground Natural Gas...

298

,"Utah Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Utah Underground Natural Gas...

299

Increasing water holding capacity for irrigation  

NLE Websites -- All DOE Office Websites (Extended Search)

Increasing water holding capacity for irrigation Reseachers recommend solutions for sediment trapping in irrigation system LANL and SNL leveraged technical expertise to determine...

300

,"Tennessee Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Underground Natural Gas...

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

,"Louisiana Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Underground Natural Gas...

302

,"Ohio Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Underground Natural Gas...

303

,"Pennsylvania Underground Natural Gas Storage Capacity"  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Underground Natural...

304

Total Atmospheric Crude Oil Distillation Capacity Former ...  

U.S. Energy Information Administration (EIA)

Former Corporation/Refiner Total Atmospheric Crude Oil Distillation Capacity (bbl/cd)a New Corporation/Refiner Date of Sale Table 14. Refinery Sales During 2005

305

PAD District 4 Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units: 575: 577: 562: 542: 578: 587: 1985-2013: Operable Capacity (Calendar Day) 625: 625: 630: 630: 630: 630: 1985 ...

306

,"Illinois Natural Gas Underground Storage Capacity (MMcf)"  

U.S. Energy Information Administration (EIA) Indexed Site

Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Natural Gas Underground Storage Capacity (MMcf)",1,"Monthly","52013" ,"Release...

307

Solar Energy and Capacity Value (Fact Sheet)  

SciTech Connect

This is a one-page, two-sided fact sheet on the capacity of solar power to provide value to utilities and power system operators.

Not Available

2013-09-01T23:59:59.000Z

308

Capacity of Byzantine Consensus with Capacity-Limited Point-to-Point Links  

E-Print Network (OSTI)

We consider the problem of maximizing the throughput of Byzantine consensus, when communication links have finite capacity. Byzantine consensus is a classical problem in distributed computing. In existing literature, the communication links are implicitly assumed to have infinite capacity. The problem changes significantly when the capacity of links is finite. We define the throughput and capacity of consensus, and identify upper bound of achievable consensus throughput. We propose an algorithm that achieves consensus capacity in complete four-node networks with at most 1 failure with arbitrary distribution of link capacities.

Liang, Guanfeng

2011-01-01T23:59:59.000Z

309

Applications of GridProbe Technology for Traffic Monitoring on High-Capacity Backbone Networks  

E-Print Network (OSTI)

Applications of GridProbe Technology for Traffic Monitoring on High-Capacity Backbone Networks Data for the UKLIGHT international high capacity experimental network. The proposed system will record data flow projects in the e-science framework to enable data collection on core activities on such high speed

Haddadi, Hamed

310

Upper critical fields and thermally-activated transport of Nd(0.7Fe0.3) FeAs single crystal  

SciTech Connect

We present measurements of the resistivity and the upper critical field H{sub c2} of Nd(O{sub 0.7}F{sub 0.3})FeAs single crystals in strong DC and pulsed magnetic fields up to 45 T and 60 T, respectively. We found that the field scale of H{sub c2} is comparable to {approx}100 T of high T{sub c} cuprates. H{sub c2}(T) parallel to the c-axis exhibits a pronounced upward curvature similar to what was extracted from earlier measurements on polycrystalline samples. Thus this behavior is indeed an intrinsic feature of oxypnictides, rather than manifestation of vortex lattice melting or granularity. The orientational dependence of H{sub c2} shows deviations from the one-band Ginzburg-Landau scaling. The mass anisotropy decreases as T decreases, from 9.2 at 44K to 5 at 34K. Spin dependent magnetoresistance and nonlinearities in the Hall coefficient suggest contribution to the conductivity from electron-electron interactions modified by disorder reminiscent that of diluted magnetic semiconductors. The Ohmic resistivity measured below T{sub c} but above the irreversibility field exhibits a clear Arrhenius thermally activated behavior over 4--5 decades. The activation energy has very different field dependencies for H{parallel}ab and H{perpendicular}ab. We discuss to what extent different pairing scenarios can manifest themselves in the observed behavior of H{sub c2}, using the two-band model of superconductivity. The results indicate the importance of paramagnetic effects on H{sub c2}(T), which may significantly reduce H{sub c2}(0) as compared to H{sub c2}(0) {approx}200--300 T based on extrapolations of H{sub c2}(T) near T{sub c} down to low temperatures.

Balakirev, Fedor F [Los Alamos National Laboratory; Jaroszynski, J [NHMFL, FSU; Hunte, F [NHMFL, FSU; Balicas, L [NHMFL, FSU; Jo, Youn - Jung [NHMFL, FSU; Raicevic, I [NHMFL, FSU; Gurevich, A [NHMFL, FSU; Larbalestier, D C [NHMFL, FSU; Fang, L [CHINA; Cheng, P [CHINA; Jia, Y [CHINA; Wen, H H [CHINA

2008-01-01T23:59:59.000Z

311

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

Albrecht, Georg (Livermore, CA); George, E. Victor (Livermore, CA); Krupke, William F. (Pleasanton, CA); Sooy, Walter (Pleasanton, CA); Sutton, Steven B. (Manteca, CA)

1996-01-01T23:59:59.000Z

312

High energy bursts from a solid state laser operated in the heat capacity limited regime  

DOE Patents (OSTI)

High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

1996-06-11T23:59:59.000Z

313

SIGMOIDAL ACTIVE REGION ON THE SUN: COMPARISON OF A MAGNETOHYDRODYNAMICAL SIMULATION AND A NONLINEAR FORCE-FREE FIELD MODEL  

SciTech Connect

In this paper we show that when accurate nonlinear force-free field (NLFFF) models are analyzed together with high-resolution magnetohydrodynamic (MHD) simulations, we can determine the physical causes for the coronal mass ejection (CME) eruption on 2007 February 12. We compare the geometrical and topological properties of the three-dimensional magnetic fields given by both methods in their pre-eruptive phases. We arrive at a consistent picture for the evolution and eruption of the sigmoid. Both the MHD simulation and the observed magnetic field evolution show that flux cancellation plays an important role in building the flux rope. We compute the squashing factor, Q, in different horizontal maps in the domains. The main shape of the quasi-separatrix layers (QSLs) is very similar between the NLFFF and MHD models. The main QSLs lie on the edge of the flux rope. While the QSLs in the NLFFF model are more complex due to the intrinsic large complexity in the field, the QSLs in the MHD model are smooth and possess lower maximum value of Q. In addition, we demonstrate the existence of hyperbolic flux tubes (HFTs) in both models in vertical cross sections of Q. The main HFT, located under the twisted flux rope in both models, is identified as the most probable site for reconnection. We also show that there are electric current concentrations coinciding with the main QSLs. Finally, we perform torus instability analysis and show that a combination between reconnection at the HFT and the resulting expansion of the flux rope into the torus instability domain is the cause of the CME in both models.

Savcheva, A.; Van Ballegooijen, A.; DeLuca, E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Pariat, E.; Aulanier, G., E-mail: savcheva@bu.edu [LESIA, Observatoire de Paris, CNRS, UPMC, Universite Paris Diderot, 92190 Meudon (France)

2012-05-01T23:59:59.000Z

314

Dynamic Capacity Investment with Two Competing Technologies  

Science Conference Proceedings (OSTI)

With the recent focus on sustainability, firms making adjustments to their production or distribution capacity levels often have the option of investing in newer technologies with lower carbon footprints and/or energy consumption. These more sustainable ... Keywords: dynamic capacity investment, sustainable operations, technology choice

Wenbin Wang, Mark E. Ferguson, Shanshan Hu, Gilvan C. Souza

2013-10-01T23:59:59.000Z

315

Challenging Times for Making Refinery Capacity Decisions  

Reports and Publications (EIA)

This presentation was given at the National Petrochemical and Refiners Association's annual meeting in March 2004. The presentation covers a wide range of refining issues from near term to long term, and focuses on refining capacity and factors affecting decisions to alter that capacity.

Information Center

2004-03-01T23:59:59.000Z

316

Constrained capacity of MIMO Rayleigh fading channels  

E-Print Network (OSTI)

In this thesis channel capacity of a special type of multiple-input multiple-output (MIMO) Rayleigh fading channels is studied, where the transmitters are subject to a finite phase-shift keying (PSK) input alphabet. The constraint on the input alphabet makes an analytical solution for the capacity beyond reach. However we are able to simplify the final expression, which requires a single expectation and thus can be evaluated easily through simulation. To facilitate simulations, analytical expressions are derived for the eigenvalues and eigenvectors of a covariance matrix involved in the simplified capacity expression. The simplified expression is used to provide some good approximations to the capacity at low signal-to-noise ratios (SNRs). Involved in derivation of the capacity is the capacity-achieving input distribution. It is proved that a uniform prior distribution is capacity achieving. We also show that it is the only capacity-achieving distribution for our channel model. On top of that we generalize the uniqueness case for an input distribution to a broader range of channels.

He, Wenyan

2011-05-01T23:59:59.000Z

317

On Quantum Capacity and its Bound  

E-Print Network (OSTI)

The quantum capacity of a pure quantum channel and that of classical-quantum-classical channel are discussed in detail based on the fully quantum mechanical mutual entropy. It is proved that the quantum capacity generalizes the so-called Holevo bound.

Masanori Ohya; Igor V. Volovich

2004-06-29T23:59:59.000Z

318

Capacity Bounded Grammars and Petri Nets  

E-Print Network (OSTI)

A capacity bounded grammar is a grammar whose derivations are restricted by assigning a bound to the number of every nonterminal symbol in the sentential forms. In the paper the generative power and closure properties of capacity bounded grammars and their Petri net controlled counterparts are investigated.

Stiebe, Ralf; 10.4204/EPTCS.3.18

2009-01-01T23:59:59.000Z

319

ON THE LOAD CAPACITY OF THE HYDRO-MAGNETICALLY LUBRICATED SLIDER BEARING  

SciTech Connect

The load capacity of liquid metal lubricated slider bearings subject to an applied magnetic field transverse to the film is investigated. The optimum profile is determined and found to be the Rayleigh step form with the riser location and step height ratio dependent on the strength of the magnetic field. Load capacity is favored by large magnetic fields, small film thicknesses, and electrically insulating bearing surfaces. Only modest load increases can be obtained from conventional magnets of reasonable size. Substantial load increases could be accomplished by the recently developed superconducting electromagnets. (auth)

Osterle, J.F.; Young, F.J.

1962-05-01T23:59:59.000Z

320

Table 6. Operable Crude Oil and Downstream Charge Capacity of ...  

U.S. Energy Information Administration (EIA)

Downstream Charge Capacity Table 6. ... (EIA), Form EIA-820, "Annual Refinery Report." Energy Information Administration, Refinery Capacity 2011 46. Title:

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Property:Capacity | Open Energy Information  

Open Energy Info (EERE)

Capacity Capacity Jump to: navigation, search Property Name Capacity Property Type Quantity Description Potential electric energy generation, default units of megawatts. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

322

Planned Geothermal Capacity | Open Energy Information  

Open Energy Info (EERE)

Planned Geothermal Capacity Planned Geothermal Capacity Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Planned Geothermal Capacity This article is a stub. You can help OpenEI by expanding it. General List of Development Projects Map of Development Projects Planned Geothermal Capacity in the U.S. is reported by the Geothermal Energy Association via their Annual U.S. Geothermal Power Production and Development Report (April 2011). Related Pages: GEA Development Phases Geothermal Development Projects Add.png Add a new Geothermal Project Please be sure the project does not already exist in the list below before adding - perhaps under a different name. Technique Developer Phase Project Type Capacity Estimate (MW) Location Geothermal Area Geothermal Region GEA Report

323

Property:GeneratingCapacity | Open Energy Information  

Open Energy Info (EERE)

GeneratingCapacity GeneratingCapacity Jump to: navigation, search Property Name GeneratingCapacity Property Type Quantity Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS 0.000001 TW,terawatt,terawatts,Terawatt,Terawatts,TeraWatt,TeraWatts,TERAWATT,TERAWATTS

324

Definition: Deferred Distribution Capacity Investments | Open Energy  

Open Energy Info (EERE)

Deferred Distribution Capacity Investments Deferred Distribution Capacity Investments Jump to: navigation, search Dictionary.png Deferred Distribution Capacity Investments As with the transmission system, reducing the load and stress on distribution elements increases asset utilization and reduces the potential need for upgrades. Closer monitoring and load management on distribution feeders could potentially extend the time before upgrades or capacity additions are required.[1] Related Terms load, transmission lines, transmission line, sustainability References ↑ SmartGrid.gov 'Description of Benefits' An inl LikeLike UnlikeLike You like this.Sign Up to see what your friends like. ine Glossary Definition Retrieved from "http://en.openei.org/w/index.php?title=Definition:Deferred_Distribution_Capacity_Investments&oldid=502613

325

Working and Net Available Shell Storage Capacity as of September 30, 2010 -  

Gasoline and Diesel Fuel Update (EIA)

Working and Net Available Shell Storage Capacity Working and Net Available Shell Storage Capacity With Data for September 2010 | Release Date: July 28, 2011 Working and Net Available Shell Storage Capacity as of September 30, 2010 is the Energy Information Administration's (EIA) first report containing semi-annual storage capacity data. It includes three tables detailing working and net available shell storage capacity by facility type, product, and PAD District as of September 30, 2010. EIA has reported weekly and monthly inventory levels of crude oil and petroleum products for decades. New storage capacity data can help analysts place petroleum inventory levels in context and better understand petroleum market activity and price movements, especially at key market centers such as Cushing, Oklahoma.

326

Sperry Low Temperature Geothermal Conversion System, Phase I and Phase II. Volume IV. Field activities. Final report  

DOE Green Energy (OSTI)

This volume describes those activities which took place at the Sperry DOE Gravity Head plant site at the East Mesa Geothermal Reservoir near Holtville, California between February 1980, when site preparation was begun, and November 1982, when production well 87-6 was permanently abandoned. Construction activities were terminated in July 1981 following the liner collapse in well 87-6. Large amounts of program time manpower, materials, and funds had been diverted in a nine-month struggle to salvage the production well. Once these efforts proved futile, there was no rationale for continuing with the site work unless and until sufficient funding to duplicate well 87-6 was obtained. Activities reported here include: plant construction and pre-operational calibration and testing, drilling and completion of well 87-6, final repair effort on well 87-6, abandonment of well 87-6, and performance evaluation of well 87.6. (MHR)

Harvey, C.

1984-01-01T23:59:59.000Z

327

Obtaining field pricing and audit cognizance has been identified as a critical path activity for our contract and financial assistance awards and modifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROCUREMENT AND ASSISTANCE MANAGEMENT PROCUREMENT AND ASSISTANCE MANAGEMENT OFFICE OF PROCUREMENT AND ASSISTANCE POLICY (MA-61) MANAGEMENT OF CONTRACT/FINANCIAL ASSISTANCE AUDIT SUPPORT FOR AMERICAN RECOVERY AND REINVESTMENT ACT ACTIONS (JULY 23, 2009) Obtaining field pricing and audit support has been identified as a critical path activity for our Recovery Act contract and financial assistance awards and modifications. In order to meet the aggressive schedule commitments for placing contracts and financial assistance awards, we need to manage the audit process more effectively through increased management attention both at the field contracting office and Headquarters level. The guidance and direction provided herein is written primarily to cover audit support from the Defense Contract Audit Agency (DCAA). It

328

Photovoltaics effective capacity: Interim final report 2  

DOE Green Energy (OSTI)

The authors provide solid evidence, based on more than 8 million data points, that regional photovoltaic (PV) effective capacity is largely unrelated to the region`s solar resource. They confirm, however, that effective capacity is strongly related to load-shape characteristics. The load-shape effective-capacity relationship appears to be valid for end-use loads as small as 100 kW, except possibly in the case of electrically heated buildings. This relationship was used as a tool to produce a US map of PV`s effective capacity. The regions of highest effective capacities include (1) the central US from the northern Great Plains to the metropolitan areas of Chicago and Detroit, down to the lower Mississippi Valley, (2) California and western Arizona, and (3) the northeast metropolitan corridor. The features of this map are considerably different from the traditional solar resource maps. They tend to reflect the socio-economic and climatic factors that indirectly drive PV`s effective capacity: e.g., commercial air-conditioning, little use of electric heat, and strong summer heat waves. The map provides a new and significant insight to a comprehensive valuation of the PV resource. The authors assembled preliminary evidence showing that end-use load type may be related to PV`s effective capacity. Highest effective capacities were found for (nonelectrically heated) office buildings, followed by hospitals. Lowest capacities were found for airports and residences. Many more data points are needed, however, to ascertain and characterize these preliminary findings.

Perez, R.; Seals, R. [State Univ. of New York, Albany, NY (United States). Atmospheric Sciences Research Center

1997-11-01T23:59:59.000Z

329

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

330

Information Capacity of Energy Harvesting Sensor Nodes  

E-Print Network (OSTI)

Sensor nodes with energy harvesting sources are gaining popularity due to their ability to improve the network life time and are becoming a preferred choice supporting 'green communication'. We study such a sensor node with an energy harvesting source and compare various architectures by which the harvested energy is used. We find its Shannon capacity when it is transmitting its observations over an AWGN channel and show that the capacity achieving energy management policy is the same as the throughput optimal policy. We also obtain the capacity for the system with energy inefficiencies in storage and an achievable rate when energy conserving sleep-wake modes are supported.

Rajesh, R

2010-01-01T23:59:59.000Z

331

On channels with finite Holevo capacity  

E-Print Network (OSTI)

We consider a nontrivial class of infinite dimensional quantum channels characterized by finiteness of the Holevo capacity. Some general properties of channels of this class are described. In particular, a special sufficient condition of existence of an optimal measure is obtained and examples of channels with no optimal measure are constructed. It is shown that each channel with finite Holevo capacity has a natural extension to the set of all positive normalized functionals on the algebra of all bounded operators. General properties of such an extension are described. The class of infinite dimensional channels, for which the Holevo capacity can be explicitly determined, is considered.

M. E. Shirokov

2006-02-07T23:59:59.000Z

332

INVESTIGATION OF THE HEAT CAPACITIES OF PROTEINS BY STATISTICAL MECHANICAL METHODS  

E-Print Network (OSTI)

In this study, the additional heat capacity which appear during the water dissociation of the proteins that are one of the soft materials, have been considered by the statistical mechanical methods. For this purpose, taking the electric field E and total dipole moment M as the thermodynamical variables and starting with the first law of thermodynamics an equation which reveals the thermodynamical relation between the additional heat capacity in effective electric field ?CE and the additional heat capacity at the constant total dipole moment ?CM, has been obtained. It is found that, the difference between the heat capacities depends linearly on the temperature. To bring up the hydration effect during the folding and unfolding of the proteins the physical properties of the apolar dissociation have been used. In the model used for this purpose; the folding and unfolding of the proteins in the formed electric field medium have been established on this basis. In this study with the purpose of revealing the additional effect to the heat capacity, the partition functions for the proteins which have been calculated in single protein molecule approach by A. Bakk, J.S. Hoye and A. Hansen; Physica A, 304, (2002), 355-361 have been taken in order to obtain the free energy. In this way, the additional free energy has been related to the heat capacities. By calculating the heat capacity in the effective electric field ?CE theoretically and taking the heat capacity at constant total dipole moment ?CM from the experimental data, the outcomes of the performed calculations have been investigated for Myoglobin and other proteins.

G. Oylumluoglu; Fevzi Büyükk?l?ç; Dogan Demirhan

2004-01-01T23:59:59.000Z

333

San Francisco Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Francisco Volcanic Field Geothermal Area San Francisco Volcanic Field Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Francisco Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (6) 10 References Area Overview Geothermal Area Profile Location: Arizona Exploration Region: Other GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

334

San Juan Volcanic Field Geothermal Area | Open Energy Information  

Open Energy Info (EERE)

San Juan Volcanic Field Geothermal Area San Juan Volcanic Field Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Geothermal Resource Area: San Juan Volcanic Field Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3 Regulatory and Environmental Issues 4 Exploration History 5 Well Field Description 6 Geology of the Area 7 Geofluid Geochemistry 8 NEPA-Related Analyses (0) 9 Exploration Activities (3) 10 References Area Overview Geothermal Area Profile Location: Colorado Exploration Region: Rio Grande Rift GEA Development Phase: 2008 USGS Resource Estimate Mean Reservoir Temp: Estimated Reservoir Volume: Mean Capacity: Click "Edit With Form" above to add content History and Infrastructure Operating Power Plants: 0 No geothermal plants listed. Add a new Operating Power Plant

335

Illinois Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Data Series Area 2006 2007 2008 2009 2010 2011 View History Total Storage Capacity 984,768 980,691...

336

Heat Capacity as A Witness of Entanglement  

E-Print Network (OSTI)

We demonstrate that the presence of entanglement in macroscopic bodies (e.g. solids) in thermodynamical equilibrium could be revealed by measuring heat-capacity. The idea is that if the system were in a separable state, then for certain Hamiltonians heat capacity would not tend asymptotically to zero as the temperature approaches absolute zero. Since this would contradict the third law of thermodynamics, one concludes that the system must contain entanglement. The separable bounds are obtained by minimization of the heat capacity over separable states and using its universal low-temperature behavior. Our results open up a possibility to use standard experimental techniques of solid state physics -- namely, heat capacity measurements -- to detect entanglement in macroscopic samples.

Marcin Wiesniak; Vlatko Vedral; Caslav Brukner

2005-08-26T23:59:59.000Z

337

renewable energy generating capacity | OpenEI  

Open Energy Info (EERE)

energy generating capacity energy generating capacity Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 16, and contains only the reference case. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO generation renewable energy renewable energy generating capacity Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generating Capacity and Generation- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed Comment Temporal and Spatial Coverage Frequency Annually Time Period 2008-2035 License License Open Data Commons Public Domain Dedication and Licence (PDDL) Comment Rate this dataset Usefulness of the metadata

338

U.S. Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View History Gross Input to Atmospheric Crude Oil Distillation Units 15,450 15,027 14,659 15,177 15,289 15,362 1985-2012 Operable Capacity (Calendar...

339

Definition: Capacity factor | Open Energy Information  

Open Energy Info (EERE)

power)12 View on Wikipedia Wikipedia Definition The net capacity factor of a power plant is the ratio of its actual output over a period of time, to its potential output if...

340

California Interstate Natural Gas Pipeline Capacity Levels ...  

U.S. Energy Information Administration (EIA)

PG&E Gas Transmission - NW Tuscarora Pipeline (Malin OR) 110 Mmcf/d 2,080 Mmcf/d Total Interstate Pipeline Capacity into California 7,435 Mmcf/d Net Natural Gas ...

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

,"California Natural Gas Underground Storage Capacity (MMcf)...  

U.S. Energy Information Administration (EIA) Indexed Site

,,"(202) 586-8800",,,"10312013 6:21:10 PM" "Back to Contents","Data 1: California Natural Gas Underground Storage Capacity (MMcf)" "Sourcekey","N5290CA2"...

342

Peak Underground Working Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

Note: 1) 'Demonstrated Peak Working Gas Capacity' is the sum of the highest storage inventory level of working gas observed in each facility over the prior 5-year period as...

343

Internal Markets for Supply Chain Capacity Allocation  

E-Print Network (OSTI)

This paper explores the possibility of solving supply chain capacity allocation problems using internal markets among employees of the same company. Unlike earlier forms of transfer pricing, IT now makes it easier for such ...

McAdams, David

2005-07-08T23:59:59.000Z

344

Optimal capacity adjustment for supply chain control  

E-Print Network (OSTI)

This research attempts to answer the questions involving the time and size of capacity adjustments for better supply chain management. The objective of this research is to analytically determine simple structures to adjust ...

Budiman, Benny S., 1969-

2004-01-01T23:59:59.000Z

345

Feedback Capacity of the Compound Channel  

E-Print Network (OSTI)

In this work, we find the capacity of a compound finite-state channel (FSC) with time-invariant deterministic feedback. We consider the use of fixed length block codes over the compound channel. Our achievability result ...

Shrader, Brooke E.

346

Capacity-Speed Relationships in Prefrontal Cortex  

E-Print Network (OSTI)

Working memory (WM) capacity and WM processing speed are simple cognitive measures that underlie human performance in complex processes such as reasoning and language comprehension. These cognitive measures have shown to ...

Prabhakaran, Vivek

347

Minimal capacity points and the Lowest eigenfunctions  

E-Print Network (OSTI)

We introduce the concept of the point of minimal capacity of the domain, and observe a connection between this point and the lowest eigenfunction of a Laplacian on this domain, in one special case.

Mark Levi; Jia Pan

2011-04-04T23:59:59.000Z

348

Integrated Real-Time Capacity and Inventory Allocation for Reparable Service Parts in a Two-Echelon Supply System  

Science Conference Proceedings (OSTI)

Two critical decisions must be made daily when managing multiechelon repair and distribution systems for service parts: (1) allocating available repair capacity among different items and (2) allocating available inventories to field stocking locations ... Keywords: emergency shipment, inventory, limited capacity, multiechelon system, periodic review, priority dispatch rule, real-time allocation, reparable service parts

Kathryn E. Caggiano; John A. Muckstadt; James A. Rappold

2006-01-01T23:59:59.000Z

349

Lattice Heat Capacity of Mesoscopic Nanostructures  

E-Print Network (OSTI)

We present a rigorous full quantum mechanical model for the lattice heat capacity of mesoscopic nanostructures in various dimensions. Model can be applied to arbitrary nanostructures with known vibrational spectrum in zero, one, two, or three dimensions. The limiting case of infinitely sized multi-dimensional materials are also found, which are in agreement with well-known results. As examples, we obtain the heat capacity of fullerenes.

Gharekhanlou, B; Vafai, A

2010-01-01T23:59:59.000Z

350

Measuring the capacity impacts of demand response  

Science Conference Proceedings (OSTI)

Critical peak pricing and peak time rebate programs offer benefits by increasing system reliability, and therefore, reducing capacity needs of the electric power system. These benefits, however, decrease substantially as the size of the programs grows relative to the system size. More flexible schemes for deployment of demand response can help address the decreasing returns to scale in capacity value, but more flexible demand response has decreasing returns to scale as well. (author)

Earle, Robert; Kahn, Edward P.; Macan, Edo

2009-07-15T23:59:59.000Z

351

Technical Assessment Guide -- Generation Capacity Addition Topics  

Science Conference Proceedings (OSTI)

This report discusses the challenges facing the power industry with regard to capacity addition. These challenges include technological and regulatory risks, life cycle management, and material and labor escalation forecast. The report also examines the market trends for CT and CTCC, as this technology has become a reliable technology for capacity addition, and provides the cost data for various switchyard configurations. These topics have been addressed in past TAG reports and the content in this ...

2013-03-06T23:59:59.000Z

352

Heat capacity in weakly correlated liquids  

Science Conference Proceedings (OSTI)

Previously unavailable numerical data related to the heat capacity in two- and three-dimensional liquid Yukawa systems are obtained by means of fluctuation theory. The relations between thermal conductivity and diffusion constants are numerically studied and discussed. New approximation for heat capacity dependence on non-ideality parameter for weakly correlated systems of particles is proposed. Comparison of the obtained results to the existing theoretical and numerical data is discussed.

Khrustalyov, Yu. V.; Vaulina, O. S. [Joint Institute for High Temperatures RAS, 125412, Izhorskaya St., 13 bld.2, Moscow (Russian Federation); Moscow Institute of Physics and Technology, 117303, Kerchenskaya St., 1A bld.1, Moscow (Russian Federation); Koss, X. G. [Joint Institute for High Temperatures RAS, 125412, Izhorskaya St., 13 bld.2, Moscow (Russian Federation)

2012-12-15T23:59:59.000Z

353

EPRI Increased Transmission Capacity Workshop Proceedings  

Science Conference Proceedings (OSTI)

This report documents the proceedings of EPRI's Increased Overhead Transmission Capacity Workshop. The workshop was held on September 20, 2011 at the offices of the American Transmission Company in Waukesha, Wisconsin. Participants included members of the EPRI Increased Overhead Transmission Capacity Task Force. The workshop was a joint effort of two EPRI research projects: (1) Increased Power Flow Guidebook and Ratings for Overhead Lines, and (2) Impact of High Temperature Operation on Conductor Systems...

2011-11-30T23:59:59.000Z

354

Capacity Value of Wind Power - Summary  

Science Conference Proceedings (OSTI)

Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for generation system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to generation system aequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America, along with some new analysis, are highlighted with a discussion of relevant issues also given.

O'Malley, M.; Milligan, M.; Holttinen, H.; Dent, C.; Keane, A.

2010-01-01T23:59:59.000Z

355

Parametric Evaluation of Active Neutron Interrogation for the Detection of Shielded Highly-Enriched Uranium in the Field  

SciTech Connect

Parametric studies using numerical simulations are being performed to assess the performance capabilities and limits of active neutron interrogation for detecting shielded highly enriched uranium (HEU). Varying the shield material, HEU mass, HEU depth inside the shield, and interrogating neutron source energy, the simulations account for both neutron and photon emission signatures from the HEU with resolution in both energy and time. The results are processed to represent different irradiation timing schemes and several different classes of radiation detectors, and evaluated using a statistical approach considering signal intensity over background. This paper describes the details of the modeling campaign and some preliminary results, weighing the strengths of alternative measurement approaches for the different irradiation scenarios.

D. L. Chcihester; E. H. Seabury; S. J. Thompson; R. R. C. Clement

2011-10-01T23:59:59.000Z

356

Heat capacity and compactness of denatured proteins  

E-Print Network (OSTI)

One of the striking results of protein thermodynamics is that the heat capacity change upon denaturation is large and positive. This change is generally ascribed to the exposure of non-polar groups to water on denaturation, in analogy to the large heat capacity change for the transfer of small non-polar molecules from hydrocarbons to water. Calculations of the heat capacity based on the exposed surface area of the completely unfolded denatured state give good agreement with experimental data. This result is difficult to reconcile with evidence that the heat denatured state in the absence of denaturants is reasonably compact. In this work, sample conformations for the denatured state of truncated CI2 are obtained by use of an effective energy function for proteins in solution. The energy function gives denatured conformations that are compact with radii of gyration that are slightly larger than that of the native state. The model is used to estimate the heat capacity, as well as that of the native state, at 300 and 350 K via finite enthalpy differences. The calculations show that the heat capacity of denaturation can have large positive contributions from non-covalent intraprotein interactions because these interactions change more with temperature in non-native conformations than in the native state. Including this contribution, which has been neglected in empirical surface area models, leads to heat capacities of unfolding for compact denatured states that are consistent with the experimental heat capacity data. Estimates of the stability curve of CI2 made with the effective energy function support the present model. # 1999 Elsevier Science B.V. All rights reserved.

Themis Lazaridis; Martin Karplus

1999-01-01T23:59:59.000Z

357

Model documentation: Electricity Market Module, Electricity Capacity Planning submodule  

SciTech Connect

The National Energy Modeling System (NEMS) is a computer modeling system developed by the Energy Information Administration (EIA). The NEMS produces integrated forecasts for energy markets in the United States by achieving a general equilibrium solution for energy supply and demand. Currently, for each year during the period from 1990 through 2010, the NEMS describes energy supply, conversion, consumption, and pricing. The Electricity Market Module (EMM) is the electricity supply component of the National Energy Modeling System (NEMS). The supply of electricity is a conversion activity since electricity is produced from other energy sources (e.g., fossil, nuclear, and renewable). The EMM represents the generation, transmission, and pricing of electricity. The EMM consists of four main submodules: Electricity Capacity Planning (ECP), Electricity Fuel Dispatching (EFD), Electricity Finance and Pricing (EFP), and Load and Demand-Side Management (LDSM). The ECP evaluates changes in the mix of generating capacity that are necessary to meet future demands for electricity and comply with environmental regulations. The EFD represents dispatching (i.e., operating) decisions and determines how to allocate available capacity to meet the current demand for electricity. Using investment expenditures from the ECP and operating costs from the EFD, the EFP calculates the price of electricity, accounting for state-level regulations involving the allocation of costs. The LDSM translates annual demands for electricity into distributions that describe hourly, seasonal, and time-of-day variations. These distributions are used by the EFD and the ECP to determine the quantity and types of generating capacity that are required to insure reliable and economical supplies of electricity. The EMM also represents nonutility suppliers and interregional and international transmission and trade. These activities are included in the EFD and the ECP.

1994-04-07T23:59:59.000Z

358

CLEAN-Capacity Building and Training for Low Emissions Development Planning  

Open Energy Info (EERE)

CLEAN-Capacity Building and Training for Low Emissions Development Planning CLEAN-Capacity Building and Training for Low Emissions Development Planning Jump to: navigation, search Tool Summary Name: CLEAN-Capacity Building and Training for Low Emissions Development Planning Agency/Company /Organization: CLEAN, National Renewable Energy Laboratory Sector: Climate, Energy, Land Topics: Low emission development planning Resource Type: Presentation, Training materials, Video, Webinar Cost: Free References: CLEAN Webinar[1] Webinar Pre sentations CLEAN PPT 5 20 2011 (2).pdf TNA Capacity Building- webinar CLEAN-24 May 2011 Final.pdf ESMAP-CLEAN 20110524.pdf Announcement The Coordinated Low Emissions Assistance Network (CLEAN) will be offering a free webinar on Low Emission Development Strategies (LEDS): Capacity Building and Training to explore activity design, lessons learned, future

359

Can Bounded Rationality Explain Excess Capacity? ?  

E-Print Network (OSTI)

Excess capacity is observed in many markets especially those where a substantial initial investment is required. The theoretical literature often explains this feature by strategic attempts to deter entry or to limit new entrants ’ market shares but the empirical evidence for such a rationale is mixed. Moreover, excess capacity has also been observed in experimental studies on capacityconstrained games where there is no entry (and therefore no entry-deterrence motive). This paper explores experimentally another rationale for excess capacity: rather than (in addition to) being a threat to (potential) entrants, excess capacity held by incumbents may constitute a valuable option to reap extra gains from competition with an inexperienced entrant, if he turns out to makes a mistake. In our experimental design we used the level of experience (the number of periods played) as a proxy for the level of rationality and matched subjects with different levels of experience. We find evidence of excess capacity decreasing with opponent’s experience. ? This paper is a sustantially revised version of a chapter of Le Coq and Sturluson’s 2003 Stockholm School of Economics Ph.D. thesis. It was before circulated as "Does Opponent’s experience matter?". The authors would like to thank Tore Ellingsen for his insightful comments in the project’s infancy, Urs Fischbacher for allowig us tousethez-TreesoftwareandHans-TheoNorman for technical help. We thank also seminar participants at the IIOC 2004 (Chicago), EARIE 2003 (Lausanne), SAET 2003 (Rhodos) for helpful comments. We gratefully acknowledge financial

Chloélecoq Jon; Thor Sturluson

2006-01-01T23:59:59.000Z

360

Gravo-thermodynamics of the Intracluster Medium: negative heat capacity and dilation of cooling time scales  

E-Print Network (OSTI)

The time scale for cooling of the gravitationally bound gaseous intracluster medium (ICM) is not determined by radiative processes alone. If the ICM is in quasi-hydrostatic equilibrium in the fixed gravitational field of the dark matter halo then energy losses incurred by the gravitational potential energy of the gas should also be taken into account. This "gravitational heating" has been known for a while using explicit solutions to the equations of motion. Here, we re-visit this effect by applying the virial theorem to gas in quasi-hydrostatic equilibrium in an external gravitational field, neglecting the gravity of the gas. For a standard NFW form of halo profiles and for a finite gas density, the response of the gas temperature to changes in the total energy is significantly delayed. The effective cooling time could be prolonged by more than an order of magnitude inside the scale radius ($\\rs$) of the halo. Gas lying at a distance twice the scale radius, has negative heat capacity so that the temperature increases as a result of energy losses. Although external heating (e.g. by AGN activity) is still required to explain the lack of cool ICM near the center, the analysis here may circumvent the need for heating in farther out regions where the effective cooling time could be prolonged to become larger than the cluster age and also explains the increase of temperature with radius in these regions.

Adi Nusser

2008-06-12T23:59:59.000Z

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

U.S. Fuel Ethanol Plant Production Capacity  

U.S. Energy Information Administration (EIA)

U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District: Number of Plants: 2013 Nameplate Capacity: 2012 Nameplate Capacity

362

On the capacity of network coding for random networks  

E-Print Network (OSTI)

d ) , the network NC coding capacity C s;t ; ;t > (1 0 )8, AUGUST 2005 On the Capacity of Network Coding for Randomthat the network coding capacity concentrates around the

Ramamoorthy, A; Shi, J; Wesel, R D

2005-01-01T23:59:59.000Z

363

Zero-error capacity of a quantum channel  

E-Print Network (OSTI)

We define the quantum zero-error capacity, a new kind of classical capacity of a noisy quantum channel. Moreover, the necessary requirement for which a quantum channel has zero-error capacity greater than zero is also given.

Rex A. C. Medeiros; Francisco M. de Assis

2004-03-26T23:59:59.000Z

364

Africa - CCS capacity building | Open Energy Information  

Open Energy Info (EERE)

Africa - CCS capacity building Africa - CCS capacity building Jump to: navigation, search Name Africa - CCS capacity building Agency/Company /Organization Energy Research Centre of the Netherlands Partner EECG Consultants, the University of Maputo, the Desert Research Foundation Namibia and the South Africa New Energy Research Institute Sector Energy Focus Area Conventional Energy Resource Type Training materials Website http://www.ccs-africa.org/ Program Start 2010 Program End 2011 Country Botswana, Mozambique, Namibia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

365

DOE mixed waste treatment capacity analysis  

SciTech Connect

This initial DOE-wide analysis compares the reported national capacity for treatment of mixed wastes with the calculated need for treatment capacity based on both a full treatment of mixed low-level and transuranic wastes to the Land Disposal Restrictions and on treatment of transuranic wastes to the WIPP waste acceptance criteria. The status of treatment capacity is reported based on a fifty-element matrix of radiation-handling requirements and functional treatment technology categories. The report defines the classifications for the assessment, describes the models used for the calculations, provides results from the analysis, and includes appendices of the waste treatment facilities data and the waste stream data used in the analysis.

Ross, W.A.; Wehrman, R.R.; Young, J.R.; Shaver, S.R.

1994-06-01T23:59:59.000Z

366

Heat capacity at the glass transition  

E-Print Network (OSTI)

A fundamental problem of glass transition is to explain the jump of heat capacity at the glass transition temperature $T_g$ without asserting the existence of a distinct solid glass phase. This problem is also common to other disordered systems, including spin glasses. We propose that if $T_g$ is defined as the temperature at which the liquid stops relaxing at the experimental time scale, the jump of heat capacity at $T_g$ follows as a necessary consequence due to the change of system's elastic, vibrational and thermal properties. In this picture, we discuss time-dependent effects of glass transition, and identify three distinct regimes of relaxation. Our approach explains widely observed logarithmic increase of $T_g$ with the quench rate and the correlation of heat capacity jump with liquid fragility.

Kostya Trachenko; Vadim Brazhkin

2010-02-10T23:59:59.000Z

367

Definition: Capacity Benefit Margin | Open Energy Information  

Open Energy Info (EERE)

Benefit Margin Benefit Margin Jump to: navigation, search Dictionary.png Capacity Benefit Margin The amount of firm transmission transfer capability preserved by the transmission provider for Load- Serving Entities (LSEs), whose loads are located on that Transmission Service Provider's system, to enable access by the LSEs to generation from interconnected systems to meet generation reliability requirements. Preservation of CBM for an LSE allows that entity to reduce its installed generating capacity below that which may otherwise have been necessary without interconnections to meet its generation reliability requirements. The transmission transfer capability preserved as CBM is intended to be used by the LSE only in times of emergency generation deficiencies.[1] Related Terms

368

Correlation between thermal expansion and heat capacity  

E-Print Network (OSTI)

Theoretically predicted linear correlation between the volume coefficient of thermal expansion and the thermal heat capacity was investigated for highly symmetrical atomic arrangements. Normalizing the data of these thermodynamic parameters to the Debye temperature gives practically identical curves from zero Kelvin to the Debye temperature. This result is consistent with the predicted linear correlation. At temperatures higher than the Debye temperature the normalized values of the thermal expansion are always higher than the normalized value of the heat capacity. The detected correlation has significant computational advantage since it allows calculating the volume coefficient of thermal expansion from one experimental data by using the Debye function.

Jozsef Garai

2004-04-25T23:59:59.000Z

369

Modeling the Capacity and Emissions Impacts of Reduced Electricity...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Title Modeling the Capacity and Emissions Impacts of Reduced Electricity Demand Publication Type Report...

370

Changing World Product Markets and Potential Refining Capacity ...  

U.S. Energy Information Administration (EIA)

Energy Information Administration ... Asia Demand growth, product mix, trade Price Signals for Capacity Changes Capacity ... 150 AZ Clean Fuels FCC/RCC Coking ...

371

Indonesia-ECN Capacity building for energy policy formulation...  

Open Energy Info (EERE)

ECN Capacity building for energy policy formulation and implementation of sustainable energy projects Jump to: navigation, search Name CASINDO: Capacity development and...

372

GIZ-Developing Climate Policy Capacity within the South African...  

Open Energy Info (EERE)

Policy Capacity within the South African Department of Environmental Affairs (DEA) Jump to: navigation, search Name South Africa - Developing Climate Policy Capacity within DEA...

373

Changing World Product Markets and Potential Refining Capacity Increases  

Reports and Publications (EIA)

The presentation explores potential refinery capacity increases over the next 5 years in various world regions, based on changing demand patterns, changing price incentives, and capacity expansion announcements.

Information Center

2006-03-20T23:59:59.000Z

374

Assessing the Control Systems Capacity for Demand Response in...  

NLE Websites -- All DOE Office Websites (Extended Search)

the Control Systems Capacity for Demand Response in California Industries Title Assessing the Control Systems Capacity for Demand Response in California Industries Publication Type...

375

EIA - Reference Case Projections for Electricity Capacity and...  

Gasoline and Diesel Fuel Update (EIA)

for Electricity Capacity and Generation by Fuel (2003-2030) International Energy Outlook 2006 Reference Case Projections for Electricity Capacity and Generation by Fuel Data Tables...

376

Dynamics of the Oil Transition: Modeling Capacity, Costs, and Emissions  

E-Print Network (OSTI)

extra-heavy oil and shale have zero Resource- Cost), whileof the Oil Transition: Modeling Capacity, Costs, andof the oil transition: modeling capacity, costs, and

Brandt, Adam R.; Farrell, Alexander E.

2008-01-01T23:59:59.000Z

377

Texas Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

View History: Monthly Annual Download Data (XLS File) Texas Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Natural Gas Underground Storage Capacity (Million...

378

Indonesia-Enhancing Capacity for Low Emission Development Strategies...  

Open Energy Info (EERE)

Indonesia-Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) Jump to: navigation, search Name Indonesia-Enhancing Capacity for Low Emission Development Strategies...

379

Indonesia-Strengthening Planning Capacity for Low Carbon Growth...  

Open Energy Info (EERE)

Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia Jump to: navigation, search Name Indonesia-Strengthening Planning Capacity for Low Carbon Growth...

380

Working crude oil storage capacity at Cushing, Oklahoma rises ...  

U.S. Energy Information Administration (EIA)

Greenhouse gas data, ... as reported in EIA's recently released report on Working and Net Available Shell Storage Capacity. Utilization of working storage capacity ...

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

India-Vulnerability Assessment and Enhancing Adaptive Capacities...  

Open Energy Info (EERE)

Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to...

382

Solar Energy and Capacity Value (Fact Sheet), NREL (National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Solar Energy and Capacity Value e Solar Energy Can Provide Valuable Capacity to Utilities and Power System Operators Solar photovoltaic (PV) systems and concentrating solar power...

383

"Assessment of the Adequacy of Natural Gas Pipeline Capacity...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

"Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States" Report Now Available "Assessment of the Adequacy of Natural Gas Pipeline Capacity in...

384

Assessment of the Adequacy of Natural Gas Pipeline Capacity in...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Assessment of the Adequacy of Natural Gas Pipeline Capacity in the Northeast United States - November 2013 Assessment of the Adequacy of Natural Gas Pipeline Capacity in the...

385

Gulf Coast (PADD 3) Shell Storage Capacity at Operable Refineries  

U.S. Energy Information Administration (EIA)

Propane/Propylene: 4,376: 3,520: 3,565-----1982-2013: ... Notes: Shell storage capacity is the design capacity of the tank. See Definitions, Sources, ...

386

Estimates of Peak Underground Working Gas Storage Capacity in the ...  

U.S. Energy Information Administration (EIA)

Estimates of Peak Underground Working Gas Storage Capacity in the United States, 2009 Update The aggregate peak capacity for U.S. underground natural gas storage is ...

387

Lower 48 States Total Natural Gas Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

data. Release Date: 9302013 Next Release Date: 10312013 Referring Pages: Total Natural Gas Underground Storage Capacity Lower 48 States Underground Natural Gas Storage Capacity...

388

Stochastic binary problems with simple penalties for capacity ...  

E-Print Network (OSTI)

Mar 24, 2009 ... Abstract: This paper studies stochastic programs with first-stage binary variables and capacity constraints, using simple penalties for capacities ...

389

Indiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Indiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

390

Wyoming Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Wyoming Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

391

Louisiana Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Louisiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

392

Louisiana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Louisiana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

393

Virginia Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Virginia Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

394

On the complexity of maximizing the minimum Shannon capacity in ...  

E-Print Network (OSTI)

capacity in wireless networks by joint channel assignment and power allocation ... tal Shannon capacity of any mobile user in the system. The corresponding.

395

New Mexico Working Natural Gas Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New Mexico Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

396

Washington Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Washington Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

397

Iowa Natural Gas Underground Storage Acquifers Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Underground Storage Acquifers Capacity (Million Cubic Feet) Iowa Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

398

Illinois Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Illinois Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

399

New York Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) New York Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

400

Y-12 builds capacity to meet nuclear testing schedule - Or: ...  

NLE Websites -- All DOE Office Websites (Extended Search)

builds capacity to meet nuclear testing schedule - Or: Increasing capacity to meet nuclear testing schedule (title as it appeared in The Oak Ridger) The continuing high volume...

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Maryland Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Maryland Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

402

Oklahoma Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oklahoma Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

403

Alabama Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Alabama Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

404

Kansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

405

Utah Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Utah Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

406

Tennessee Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Tennessee Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

407

Missouri Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Missouri Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

408

Oregon Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Oregon Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

409

DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process DOE Issues Enforcement Guidance on Large-Capacity Clothes Washer Waivers and the Waiver Process...

410

Colorado Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Colorado Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

411

Montana Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Montana Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

412

Minnesota Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Minnesota Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

413

Arkansas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Arkansas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

414

Minnesota Natural Gas Count of Underground Storage Capacity ...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Minnesota Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

415

Iowa Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Iowa Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

416

Nebraska Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Nebraska Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

417

California Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) California Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

418

Texas Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Texas Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

419

Capacity and Energy Payments to Small Power Producers and Cogenerators...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Capacity and Energy Payments to Small Power Producers and Cogenerators Under PURPA Docket (Georgia) Capacity and Energy Payments to Small Power Producers and Cogenerators Under...

420

Property:Number of Plants included in Capacity Estimate | Open...  

Open Energy Info (EERE)

of Plants included in Capacity Estimate Jump to: navigation, search Property Name Number of Plants included in Capacity Estimate Property Type Number Retrieved from "http:...

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Pennsylvania Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Pennsylvania Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

422

Working and Net Available Shell Storage Capacity as of ...  

U.S. Energy Information Administration (EIA)

Revision to Working and Net Available Shell Storage Capacity as of September 30, 2010 . Crude oil storage capacity data at tank farms reported for PAD District 2 and ...

423

Kentucky Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Kentucky Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

424

Michigan Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Michigan Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

425

Ohio Working Natural Gas Underground Storage Capacity (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Ohio Working Natural Gas Underground Storage Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

426

Mississippi Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Mississippi Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

427

CLEAN-Capacity Building and Training for Low Emissions Development...  

Open Energy Info (EERE)

CLEAN-Capacity Building and Training for Low Emissions Development Planning Jump to: navigation, search Tool Summary Name: CLEAN-Capacity Building and Training for Low Emissions...

428

Natural gas, renewables dominate electric capacity additions in ...  

U.S. Energy Information Administration (EIA)

Of the ten states with the highest levels of capacity additions, most of the new capacity uses natural gas or renewable energy sources.

429

Capacity Regions and Sum-Rate Capacities of Vector Gaussian Interference Channels  

E-Print Network (OSTI)

The capacity regions of vector, or multiple-input multiple-output, Gaussian interference channels are established for very strong interference and aligned strong interference. Furthermore, the sum-rate capacities are established for Z interference, noisy interference, and mixed (aligned weak/intermediate and aligned strong) interference. These results generalize known results for scalar Gaussian interference channels.

Shang, Xiaohu; Kramer, Gerhard; Poor, H Vincent

2009-01-01T23:59:59.000Z

430

activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Teachers Needed to Participate in Fermilabyrinth - a Program for Midlevel Students You and your students can experience "cutting-edge" Web technology as part of a Fermilab Education Office pilot program. Fermilabyrinth is a collection of online games based on the hands-on Quarks to Quasars exhibits at the Lederman Science Center. The games can stand alone as a virtual field trip or be part of an inquiry-based classroom project. Although we are still developing some features of the site, there is currently quite a bit to see at http://www-ed.fnal.gov/projects/labyrinth/. For more information about the site, please contact Spencer Pasero at spasero@fnal.gov or (630) 840-3076. SIMply Prairie - a Pilot Program for Midlevel Students: Teachers Needed for Pilot Program

431

Partial energies fluctuations and negative heat capacities  

E-Print Network (OSTI)

We proceed to a critical examination of the method used in nuclear fragmentation to exhibit signals of negative heat capacity. We show that this method leads to unsatisfactory results when applied to a simple and well controlled model. Discrepancies are due to incomplete evaluation of potential energies.

Xavier Campi; H. Krivine; E. Plagnol; N. Sator

2004-06-16T23:59:59.000Z

432

Partial energies fluctuations and negative heat capacities  

E-Print Network (OSTI)

We proceed to a critical examination of the method used in nuclear fragmentation to exhibit signals of negative heat capacity. We show that this method leads to unsatisfactory results when applied to a simple and well controlled model. Discrepancies are due to incomplete evaluation of potential energies.

Campi, X; Plagnol, E; Campi, Xavier; ccsd-00002099, ccsd

2004-01-01T23:59:59.000Z

433

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY  

E-Print Network (OSTI)

PROJECT REPORT HVAC EQUIPMENT DEMOGRAPHICS AND CAPACITY ANALYSIS TOOLS APPLICABLE TO MULTI Commercial HVAC Design Process 12 5.0 Conclusion 18 6.0 References 19 TABLE OF CONTENTS SECTIONS #12;MULTI performance by collectively improving the enve- lope, lighting and HVAC systems. The primary goals of the UC

California at Davis, University of

434

Michigan Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

1,078,979 1,078,979 1,078,979 1,079,424 1,079,424 1,079,424 2002-2013 Total Working Gas Capacity 673,200 673,200 674,010 674,455 674,455 674,967 2012-2013 Total Number of Existing...

435

Missouri Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

32,505 32,940 32,876 10,889 11,502 13,845 1988-2011 Aquifers 32,505 32,940 32,876 10,889 11,502 13,845 1999-2011 Total Working Gas Capacity 11,276 3,040 3,656 6,000 2008-2011...

436

Missouri Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

13,845 13,845 13,845 13,845 13,845 13,845 2002-2013 Total Working Gas Capacity 6,000 6,000 6,000 6,000 6,000 6...

437

Minnesota Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

7,000 7,000 7,000 7,000 7,000 7,000 2002-2013 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2,000 2...

438

Midwest (PADD 2) Refinery Utilization and Capacity  

U.S. Energy Information Administration (EIA)

Gross Input to Atmospheric Crude Oil Distillation Units: 3,318: 3,217: 3,151: 3,087: 3,336: 3,572: 1985-2013: Operable Capacity (Calendar Day) 3,769: 3,769: 3,769 ...

439

CSEM WP 124 Capacity Markets for Electricity  

E-Print Network (OSTI)

CSEM WP 124 Capacity Markets for Electricity Anna Creti, LEEERNA, University of Toulouse for Electricity Anna Creti LEEERNA, University of Toulouse Natalia Fabra Universidad Carlos III de Madrid February 2004 Abstract The creation of electricity markets has raised the fundamental question as to whether

California at Berkeley. University of

440

Computing with competencies: Modelling organizational capacities  

Science Conference Proceedings (OSTI)

The notion of competency provides an observable account of concrete human capacities under specific work conditions. The fact that competencies are subject to concrete kinds of measurement entails that they are subject to some extent to comparison and ... Keywords: Competencies, Competency gap analysis, Learning technology, Ontologies, Skills

Elena GarcíA-Barriocanal; Miguel-Angel Sicilia; Salvador SáNchez-Alonso

2012-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Photo Identification, Summer Activity Pattern, Estimated Field Metabolic Rate and Territory Quality of Adult Male Sea Otters (Enhydra lutris) in Simpson Bay, Prince William Sound, Alaska  

E-Print Network (OSTI)

This project describes a portion of a long-term study of the behavioral ecology of sea otters. Sub-studies of this project include the development of an individual recognition program for sea otters, the construction of male sea otter activity and energy budgets, and the assessment of male sea otter territory quality. The Sea Otter Nose Matching Program, or "SONMaP", was developed to identify individual sea otters in Simpson Bay, Prince William Sound, Alaska, using a blotch-pattern recognition algorithm based on the shape and location of nose scars. The performance of the SONMaP program was tested using images of otters collected during the 2002-03 field seasons, and previously matched by visually comparing every image in a catalog of 1,638 animals. In 48.9% of the visually matched images, the program accurately selected the correct image in the first 10% of the catalog. Individual follows and instantaneous sampling were used during the summers of 2004-06, to observe male sea otter behavior. Six behaviors (foraging, grooming, interacting with other otters, patrolling, resting, and surface swimming) were observed during four time periods (dawn, day, dusk, night) to create 24-hr activity budgets. Male sea otters spent 27% of their time resting, 26% swimming, 19% grooming, 14% foraging, 9% patrolling and 5% interacting with other otters. Field Metabolic Rate (FMR) was estimated by combining the energetic costs for foraging, grooming, resting, and swimming behaviors of captive otters from Yeates et al. (2007) with these activity budgets. "Swimming" accounted for the greatest percentage (43%) of energy expended each day followed by grooming (23%), resting (15%), feeding (13%) and other (5%). With a peak summer sea otter density of 5.6 otters km-2, the low percentage of time spent foraging indicates that Simpson Bay is below equilibrium density. Territory quality was assessed for male sea otters using four attributes: territory size, shoreline enclosure, accessibility, and number of females observed feeding in each territory. Each attribute was coded with a score of 0-2, and total quality scores ranged from 0.14-1.96 (0.9 + 0.61 SD). High quality territories had large areas, moderate shoreline enclosure, high accessibility, and many foraging females.

Finerty, Shannon E.

2010-05-01T23:59:59.000Z

442

Indiana Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

443

Total Natural Gas Underground Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

444

Kansas Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

445

Mississippi Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

446

California Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

447

Oklahoma Underground Natural Gas Storage Capacity  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

448

Total Working Gas Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

-No Data Reported; --= Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Notes: Existing fields ...

449

Changing World Product Markets and Potential Refining Capacity ...  

U.S. Energy Information Administration (EIA)

Changing World Product Markets and Potential Refining Capacity Increases. NPRA Annual Meeting March 2006

450

Colorado Refinery Marketable Petroleum Coke Production Capacity as ...  

U.S. Energy Information Administration (EIA)

Colorado Refinery Marketable Petroleum Coke Production Capacity as of January 1 (Barrels per Stream Day)

451

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity ...  

U.S. Energy Information Administration (EIA)

Guam Refinery Operable Atmospheric Crude Oil Distillation Capacity as of January 1 (Barrels per Calendar Day)

452

activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Detecting Things We Cannot See: Learning the Concepts of Control and Detecting Things We Cannot See: Learning the Concepts of Control and Variable in an Experiment Submitted by Anita Brook-Dupree, 1996 TRAC teacher at Fermilab, Teacher, Alternative Middle Years School, Philadelphia, PA. Particle physicists at Fermilab in Batavia, Illinois are faced with the problem of detecting the presence of sub-atomic particles they cannot see. During my summer as a TRAC teacher at Fermilab, I tried to think of ways to teach middle school students about things we cannot see. I want to thank my nine-year-old daughter Gia for the idea for the following activity. I was lamenting that I could not come up with ideas of how to relate the work of Fermilab scientists to anything that my students would understand. Then I was reminded by my daughter, that when I brought her to school on the

453

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Net Available Shell Storage Capacity by PAD District as of September 30, 2013 Net Available Shell Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 In Operation Idle 1 Refineries Crude Oil 17,334 831 21,870 1,721 86,629 3,468 4,655 174 39,839 1,230 170,327 7,424 Fuel Ethanol 174 - 175 1 289 - 134 - 92 - 864 1 Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,267 23 11,599 382 28,865 78 641 19 2,412 23 44,784 525 Propane/Propylene (dedicated)

454

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working Storage Capacity by PAD District as of September 30, 2013 Working Storage Capacity by PAD District as of September 30, 2013 (Thousand Barrels) Commodity 1 2 3 4 5 U.S. Total Ending Stocks Utilization Rate 1 Refineries Crude Oil 15,154 17,952 72,858 4,109 35,324 145,397 90,778 62% Fuel Ethanol 151 142 257 114 79 743 482 65% Natural Gas Plant Liquids and Liquefied Refinery Gases 2 1,149 10,996 24,902 581 2,219 39,847 19,539 49% Propane/Propylene (dedicated) 3 405 3,710 3,886 54 199 8,254 4,104 NA Motor Gasoline (incl. Motor Gasoline Blending Components)

455

Working and Net Available Shell Storage Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

Working and Net Available Shell Working and Net Available Shell Storage Capacity November 2013 With Data as of September 30, 2013 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | Working and Net Available Shell Storage Capacity as of September 30, 2013 This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data, analyses, and forecasts are independent of approval by any other officer or employee of the United States Government. The views in this report therefore should not be construed as representing those of the Department of Energy or

456

On Quantum Capacity of Compound Channels  

E-Print Network (OSTI)

In this paper we address the issue of universal or robust communication over quantum channels. Specifically, we consider memoryless communication scenario with channel uncertainty which is an analog of compound channel in classical information theory. We determine the quantum capacity of finite compound channels and arbitrary compound channels with informed decoder. Our approach in the finite case is based on the observation that perfect channel knowledge at the decoder does not increase the capacity of finite quantum compound channels. As a consequence we obtain coding theorem for finite quantum averaged channels, the simplest class of channels with long-term memory. The extension of these results to quantum compound channels with uninformed encoder and decoder, and infinitely many constituents remains an open problem.

I. Bjelakovic; H. Boche; J. Noetzel

2008-08-07T23:59:59.000Z

457

Heat capacity and pairing transition in nuclei  

E-Print Network (OSTI)

A simple model based on the canonical-ensemble theory is outlined for hot nuclei. The properties of the model are discussed with respect to the Fermi gas model and the breaking of Cooper pairs. The model describes well the experimental level density of deformed nuclei in various mass regions. The origin of the so-called S-shape of the heat capacity curve Cv(T) is discussed.

M. Guttormsen; M. Hjorth-Jensen; E. Melby; J. Rekstad; A. Schiller; S. Siem

2001-04-30T23:59:59.000Z

458

Minnesota Underground Natural Gas Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

7,000 7,000 7,000 7,000 7,000 7,000 1988-2011 Aquifers 7,000 7,000 7,000 7,000 7,000 7,000 1999-2011 Total Working Gas Capacity 2,000 2,000 2,000 2,000 2008-2011 Aquifers 2,000...

459

Pushing Capacity Payments Forward: Agent-Based Simulation of Available Capacity Markets  

Science Conference Proceedings (OSTI)

This study demonstrates that agent-based simulation is a useful tool for analyzing existing and proposed design features of electricity markets. The study documents not only how this technology functions, but how it can be used. Experiments using computer-based agents were used to simulate the effects of capacity markets on energy markets, and the project takes a particularly close look at the proposed Available Capacity (ACAP) market of the California independent system operator (CA-ISO). These agents p...

2003-11-07T23:59:59.000Z

460

On the heat channel and its capacity  

E-Print Network (OSTI)

The heat channel is defined by an analog filter and a subsequent inaccurate measurement of the filter output signal. The filter is related to the solution of the heat equation and to the heat kernel of the quantum mechanical harmonic oscillator, so the name of the channel. The channel is modeled as an infinite-dimensional vector Gaussian channel and the capacity in terms of average energy of the input signal is derived. The relation to rate distortion theory is investigated by calculating the rate distortion function of a closely connected Gaussian process. An application to optical fiber communication is given. Characterizations of the capacity/rate distortion function by water-filling/reverse water-filling in the time-frequency plane are stated and proved. Finally, a second formula for the capacity of the heat channel based on average energy of the measured filter output signal is derived. The result is interpreted in context of estimation theory and a parallel to a famous formula connecting mutual informat...

Hammerich, Edwin

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Ground-water characterization field activities for 1995--1996 Laboratory for Energy-Related Health Research, University of California, Davis  

SciTech Connect

This report documents ground-water characterization field activities completed from August to December 1995 and in January 1996 at the Laboratory for Energy-Related Health Research (LEHR) in Davis, California. The ground water at LEHR is one of several operable units under investigation by Pacific Northwest National Laboratory for the US Department of Energy. The purpose of this work was to further characterize the hydrogeology beneath the LEHR site, with the primary focus on ground water. The objectives were to estimate hydraulic properties for the two uppermost saturated hydrogeologic units (i.e., HSU-1 and HSU-2), and to determine distributions of contaminants of concern in these units. Activities undertaken to accomplish these objectives include well installation, geophysical logging, well development, ground-water sampling, slug testing, Westbay ground-water monitoring system installation, continuous water-level monitoring, Hydropunch installation, and surveying. Ground-water samples were collected from 61 Hydropunch locations. Analytical results from these locations and the wells indicate high chloroform concentrations trending from west/southwest to east/northeast in the lower portion of HSU-1 and in the upper and middle portions of HSU-2. The chloroform appears to originate near Landfill 2. Tritium was not found above the MCL in any of the well or Hydropunch samples. Hexavalent chromium was found at four locations with concentrations above the MCL in HSU-1 and at one location in HSU-2. One well in HSU-1 had a total chromium concentration above the MCL. Nitrate-nitrogen above the MCL was found at several Hydropunch locations in both HSU-1 and HSU-2.

Liikala, T.L.; Lanigan, D.C.; Last, G.V. [and others

1996-05-01T23:59:59.000Z

462

Temporary Losses of Highway Capacity and Impacts on Performance: Phase 2  

SciTech Connect

Traffic congestion and its impacts significantly affect the nation's economic performance and the public's quality of life. In most urban areas, travel demand routinely exceeds highway capacity during peak periods. In addition, events such as crashes, vehicle breakdowns, work zones, adverse weather, railroad crossings, large trucks loading/unloading in urban areas, and other factors such as toll collection facilities and sub-optimal signal timing cause temporary capacity losses, often worsening the conditions on already congested highway networks. The impacts of these temporary capacity losses include delay, reduced mobility, and reduced reliability of the highway system. They can also cause drivers to re-route or reschedule trips. Such information is vital to formulating sound public policies for the highway infrastructure and its operation. In response to this need, Oak Ridge National Laboratory, sponsored by the Federal Highway Administration (FHWA), made an initial attempt to provide nationwide estimates of the capacity losses and delay caused by temporary capacity-reducing events (Chin et al. 2002). This study, called the Temporary Loss of Capacity (TLC) study, estimated capacity loss and delay on freeways and principal arterials resulting from fatal and non-fatal crashes, vehicle breakdowns, and adverse weather, including snow, ice, and fog. In addition, it estimated capacity loss and delay caused by sub-optimal signal timing at intersections on principal arterials. It also included rough estimates of capacity loss and delay on Interstates due to highway construction and maintenance work zones. Capacity loss and delay were estimated for calendar year 1999, except for work zone estimates, which were estimated for May 2001 to May 2002 due to data availability limitations. Prior to the first phase of this study, which was completed in May of 2002, no nationwide estimates of temporary losses of highway capacity by type of capacity-reducing event had been made. This report describes the second phase of the TLC study (TLC2). TLC2 improves upon the first study by expanding the scope to include delays from rain, toll collection facilities, railroad crossings, and commercial truck pickup and delivery (PUD) activities in urban areas. It includes estimates of work zone capacity loss and delay for all freeways and principal arterials, rather than for Interstates only. It also includes improved estimates of delays caused by fog, snow, and ice, which are based on data not available during the initial phase of the study. Finally, computational errors involving crash and breakdown delay in the original TLC report are corrected.

Chin, S.M.

2004-11-10T23:59:59.000Z

463

Natural Gas Underground Storage Capacity (Summary)  

U.S. Energy Information Administration (EIA) Indexed Site

New Reservoir Discoveries in Old Fields Estimated Production Number of Producing Gas Wells Gross Withdrawals Gross Withdrawals From Gas Wells Gross Withdrawals From Oil...

464

Natural gas productive capacity for the lower 48 states 1984 through 1996, February 1996  

SciTech Connect

This is the fourth wellhead productive capacity report. The three previous ones were published in 1991, 1993, and 1994. This report should be of particular interest to those in Congress, Federal and State agencies, industry, and the academic community, who are concerned with the future availability of natural gas. The EIA Dallas Field Office has prepared five earlier reports regarding natural gas productive capacity. These reports, Gas Deliverability and Flow Capacity of Surveillance Fields, reported deliverability and capacity data for selected gas fields in major gas producing areas. The data in the reports were based on gas-well back-pressure tests and estimates of gas-in-place for each field or reservoir. These reports use proven well testing theory, most of which has been employed by industry since 1936 when the Bureau of Mines first published Monograph 7. Demand for natural gas in the United States is met by a combination of natural gas production, underground gas storage, imported gas, and supplemental gaseous fuels. Natural gas production requirements in the lower 48 States have been increasing during the last few years while drilling has remained at low levels. This has raised some concern about the adequacy of future gas supplies, especially in periods of peak heating or cooling demand. The purpose of this report is to address these concerns by presenting a 3-year projection of the total productive capacity of natural gas at the wellhead for the lower 48 States. Alaska is excluded because Alaskan gas does not enter the lower-48 States pipeline system. The Energy Information Administration (EIA) generates this 3-year projection based on historical gas-well drilling and production data from State, Federal, and private sources. In addition to conventional gas-well gas, coalbed gas and oil-well gas are also included.

NONE

1996-02-09T23:59:59.000Z

465

EPA-GHG Inventory Capacity Building | Open Energy Information  

Open Energy Info (EERE)

EPA-GHG Inventory Capacity Building EPA-GHG Inventory Capacity Building Jump to: navigation, search Tool Summary Name: US EPA GHG inventory Capacity Building Agency/Company /Organization: United States Environmental Protection Agency Sector: Energy, Land Topics: GHG inventory, Background analysis Resource Type: Training materials, Lessons learned/best practices References: US EPA GHG inventory Capacity Building[1] Logo: US EPA GHG inventory Capacity Building "Developing greenhouse gas inventories is an important first step to managing emissions. U.S. EPA's approach for building capacity to develop GHG inventories is based on the following lessons learned from working alongside developing country experts: Technical expertise for GHG inventories already exists in developing countries.

466

1992 Annual Capacity Report. Revision 1  

SciTech Connect

The Standard Contract for Disposal of Spent Nuclear Fuel and/or High-Level Radioactive Waste (10 CFR Part 961) requires the Department of Energy (DOE) to issue an Annual Capacity Report (ACR) for planning purposes. This report is the fifth in the series published by DOE. In May 1993, DOE published the 1992 Acceptance Priority Ranking (APR) that established the order in which DOE will allocate projected acceptance capacity. As required by the Standard Contract, the acceptance priority ranking is based on the date the spent nuclear fuel (SNF) was permanently discharged, with the owners of the oldest SNF, on an industry-wide basis, given the highest priority. The 1992 ACR applies the projected waste acceptance rates in Table 2.1 to the 1992 APR, resulting in individual allocations for the owners and generators of the SNF. These allocations are listed in detail in the Appendix, and summarized in Table 3.1. The projected waste acceptance rates for SNF presented in Table 2.1 are nominal and assume a site for a Monitored Retrievable Storage (MRS) facility will be obtained; the facility will initiate operations in 1998; and the statutory linkages between the MRS facility and the repository set forth in the Nuclear Waste Policy Act of 1982, as amended (NWPA), will be modified. During the first ten years following projected commencement of Civilian Radioactive Waste Management System (CRWMS) operation, the total quantity of SNF that could be accepted is projected to be 8,200 metric tons of uranium (MTU). This is consistent with the storage capacity licensing conditions imposed on an MRS facility by the NWPA. The annual acceptance rates provide an approximation of the system throughput and are subject to change as the program progresses.

Not Available

1993-05-01T23:59:59.000Z

467

Quantum Confinement and Negative Heat Capacity  

E-Print Network (OSTI)

Thermodynamics dictates that the specific heat of a system is strictly non-negative. However, in finite classical systems there are well known theoretical and experimental cases where this rule is violated, in particular finite atomic clusters. Here, we show for the first time that negative heat capacity can also occur in finite quantum systems. The physical scenario on which this effect might be experimentally observed is discussed. Observing such an effect might lead to the design of new light harvesting nano devices, in particular a solar nano refrigerator.

Pablo Serra; Marcelo Carignano; Fahhad Alharbi; Sabre Kais

2013-05-09T23:59:59.000Z

468

Electrical Generating Capacities of Geothermal Slim Holes  

DOE Green Energy (OSTI)

Theoretical calculations are presented to estimate the electrical generating capacity of the hot fluids discharged from individual geothermal wells using small wellhead generating equipment over a wide range of reservoir and operating conditions. The purpose is to appraise the possibility of employing slim holes (instead of conventional production-size wells) to power such generators for remote off-grid applications such as rural electrification in developing countries. Frequently, the generating capacity desired is less than one megawatt, and can be as low as 100 kilowatts; if slim holes can be usefully employed, overall project costs will be significantly reduced. This report presents the final results of the study. Both self-discharging wells and wells equipped with downhole pumps (either of the ''lineshaft'' or the ''submersible'' type) are examined. Several power plant designs are considered, including conventional single-flash backpressure and condensing steam turbines, binary plants, double-flash steam plants, and steam turbine/binary hybrid designs. Well inside diameters from 75 mm to 300 mm are considered; well depths vary from 300 to 1200 meters. Reservoir temperatures from 100 C to 240 C are examined, as are a variety of reservoir pressures and CO2 contents and well productivity index values.

Pritchett, J.W.

1998-10-01T23:59:59.000Z

469

U.S. Fuel Ethanol Plant Production Capacity  

Gasoline and Diesel Fuel Update (EIA)

U.S. Fuel Ethanol Plant Production Capacity U.S. Fuel Ethanol Plant Production Capacity Release Date: May 20, 2013 | Next Release Date: May 2014 Previous Issues Year: 2013 2012 2011 Go Notice: Changes to Petroleum Supply Survey Forms for 2013 This is the third release of U.S. Energy Information Administration data on fuel ethanol production capacity. EIA first reported fuel ethanol production capacities as of January 1, 2011 on November 29, 2011. This new report contains production capacity data for all operating U.S. fuel ethanol production plants as of January 1, 2013. U.S. Nameplate Fuel Ethanol Plant Production Capacity as of January 1, 2013 PAD District Number of Plants 2013 Nameplate Capacity 2012 Nameplate Capacity (MMgal/year) (mb/d) (MMgal/year) (mb/d) PADD 1 4 360 23 316 21

470

Natural Gas Productive Capacity for the Lower-48 States  

Gasoline and Diesel Fuel Update (EIA)

for the Lower-48 States for the Lower-48 States 6/4/01 Click here to start Table of Contents Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Summary - PPT Slide Natural Gas Productive Capacity for the Lower-48 States - Summary - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - Natural Gas Productive Capacity for the Lower-48 States - Methodology - PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide PPT Slide Other Areas PPT Slide PPT Slide PPT Slide

471

Availability-Aware Spare Capacity Allocation with Partially Protected Rings.  

E-Print Network (OSTI)

??This thesis work focuses on designing a survivable IP-core network with the minimal investment of spare capacity. A span-oriented spare capacity allocation (SCA) scheme is… (more)

Zulhasnine, Mohammad

2008-01-01T23:59:59.000Z

472

A reduction theorem for capacity of positive maps  

E-Print Network (OSTI)

We prove a reduction theorem for capacity of positive maps of finite dimensional C*-algebras, thus reducing the computation of capacity to the case when the image of a nonscalar projection is never a projection.

Erling Stormer

2005-10-06T23:59:59.000Z

473

Alaska Natural Gas Underground Storage Capacity (Million Cubic...  

U.S. Energy Information Administration (EIA) Indexed Site

Capacity (Million Cubic Feet) Alaska Natural Gas Underground Storage Capacity (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 17,902 17,902 83,592...

474

Evaluation of capacity release transactions in the natural gas industry  

E-Print Network (OSTI)

The purpose of this thesis is to analyze capacity release transactions in the natural gas industry and to state some preliminary conclusions about how the capacity release market is functioning. Given FERC's attempt to ...

Lautzenhiser, Stephen

1994-01-01T23:59:59.000Z

475

Storage and capacity rights markets in the natural gas industry  

E-Print Network (OSTI)

This dissertation presents a different approach at looking at market power in capacity rights markets that goes beyond the functional aspects of capacity rights markets as access to transportation services. In particular, ...

Paz-Galindo, Luis A.

1999-01-01T23:59:59.000Z

476

Montana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Montana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

477

Utah Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Utah Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

478

Virginia Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Virginia Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

479

Kansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

480

Alabama Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Alabama Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

Note: This page contains sample records for the topic "active fields capacity" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Michigan Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Michigan Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

482

An Efficient Algorithm for Computing Robust Minimum Capacity st Cuts  

E-Print Network (OSTI)

Apr 3, 2008 ... The Minimum Capacity s-t Cut Problem (Min Cut) is an intensively ... In this paper, we study Min Cut when arc capacities are uncertain but ...

483

Maryland Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Maryland Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

484

Arkansas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Arkansas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

485

Iowa Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Iowa Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

486

Colorado Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Colorado Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

487

Illinois Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Illinois Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

488

Nebraska Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Nebraska Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

489

U.S. Working Natural Gas Underground Storage Acquifers Capacity...  

Gasoline and Diesel Fuel Update (EIA)

Acquifers Capacity (Million Cubic Feet) U.S. Working Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

490

Texas Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Texas Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

491

Ohio Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Ohio Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

492

Missouri Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Missouri Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

493

Oklahoma Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oklahoma Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

494

Indiana Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Indiana Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

495

Wyoming Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Wyoming Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

496

Oregon Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Oregon Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

497

Kentucky Natural Gas Count of Underground Storage Capacity (Number...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) Kentucky Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4...

498

New Mexico Natural Gas Underground Storage Acquifers Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Acquifers Capacity (Million Cubic Feet) New Mexico Natural Gas Underground Storage Acquifers Capacity (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

499

New Mexico Natural Gas Count of Underground Storage Capacity...  

U.S. Energy Information Administration (EIA) Indexed Site

Count of Underground Storage Capacity (Number of Elements) New Mexico Natural Gas Count of Underground Storage Capacity (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3...

500

How much electric supply capacity is needed to keep U.S ...  

U.S. Energy Information Administration (EIA)

Today in Energy ... tags: capacity demand electricity generation capacity NERC (North American Electric Reliability Corporation)