National Library of Energy BETA

Sample records for active closed loop

  1. Closed loop steam cooled airfoil

    DOE Patents [OSTI]

    Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

    2006-04-18

    An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

  2. Time Activity Time Activity Time Activity Tuesday CLOSED CONFERENCE CLOSED CONFERENCE CLOSED CONFERENCE

    E-Print Network [OSTI]

    Burg, Theresa

    Time Activity Time Activity Time Activity Tuesday CLOSED CONFERENCE CLOSED CONFERENCE CLOSED CONFERENCE 2-Jun-15 Wednesday CLOSED CONFERENCE CLOSED CONFERENCE CLOSED CONFERENCE 3-Jun-15 Thursday CLOSED

  3. Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood

    E-Print Network [OSTI]

    Closed Loop Recycling of PreservativeClosed Loop Recycling of Preservative Treated WoodTreated Wood estimated that about 5 million tons of spent preservative treated wood istons of spent preservative treated wood is disposed of annually into landfills in thedisposed of annually into landfills in the United

  4. Closing the Loop over Wireless Networks:Closing the Loop over Wireless Networks: Fundamentals and Applications

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    Wireless Networks: Fundamentals and Applications Karl H. Johansson Electrical Engineering, Royal Institute4/9/2008 1 Closing the Loop over Wireless Networks:Closing the Loop over Wireless Networks: Fundamentals and Applications Karl H. Johansson Electrical Engineering, Royal Institute of Technology Stockholm

  5. Closed-loop pulsed helium ionization detector

    DOE Patents [OSTI]

    Ramsey, Roswitha S. (Knoxville, TN); Todd, Richard A. (Knoxville, TN)

    1987-01-01

    A helium ionization detector for gas chromatography is operated in a constant current, pulse-modulated mode by configuring the detector, electrometer and a high voltage pulser in a closed-loop control system. The detector current is maintained at a fixed level by varying the frequency of fixed-width, high-voltage bias pulses applied to the detector. An output signal proportional to the pulse frequency is produced which is indicative of the charge collected for a detected species.

  6. Closed loop pulsating heat pipes Part A: parametric experimental investigations

    E-Print Network [OSTI]

    Khandekar, Sameer

    Closed loop pulsating heat pipes Part A: parametric experimental investigations Piyanun; accepted 1 May 2003 Abstract Closed loop pulsating heat pipes (CLPHPs) are complex heat transfer devices range of pulsating heat pipes is experimentally studied thereby providing vital information

  7. ORC Closed Loop Control Systems for Transient and Steady State...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles System-level models using...

  8. Closed-loop control of anesthesia in children 1 Robust closed-loop control of induction and

    E-Print Network [OSTI]

    : During closed-loop control, a drug infusion is continually adjusted according to a measure of clinical. Remifentanil was administered as a bolus (0.5 g/kg), followed by continuous infusion (0.03 g/kg/min). The propofol infusion was closed-loop controlled throughout induction and maintenance of anesthesia, using

  9. Closed-loop real-time control on distributed networks 

    E-Print Network [OSTI]

    Ambike, Ajit Dilip

    2004-11-15

    This thesis is an e?ort to develop closed-loop control strategies on computer networks and study their stability in the presence of network delays and packet losses. An algorithm using predictors was designed to ...

  10. Diesel Combustion Control with Closed-Loop Control of the Injection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Combustion Control with Closed-Loop Control of the Injection Strategy Diesel Combustion Control with Closed-Loop Control of the Injection Strategy New control strategies are...

  11. An Innovative Pressure Sensor Glow Plug Offers Improved Diesel Engine Closed-loop Control

    Broader source: Energy.gov [DOE]

    Describes glow plug with integrated pressure sensor for closed-loop control of diesel engine combustion

  12. Closed-Loop Energy Management Control of Large Industrial Facilities 

    E-Print Network [OSTI]

    Childress, R. L.

    2002-01-01

    providing steam to the process. A Sell Advisor calculates Make-Buy decisions based on real-time electrical prices, fuel prices and boiler loads. Condensing turbines are coordinated with closed-loop control to provide the lowest energy cost to the plant. When...

  13. Closing the Learning-Planning Loop with Predictive State Representations

    E-Print Network [OSTI]

    Guestrin, Carlos

    Closing the Learning-Planning Loop with Predictive State Representations Byron Boots Machine and sta- tistically consistent spectral algorithm for learning the pa- rameters of a Predictive State the essential features of the environment. This representation allows accurate prediction with a small number

  14. Heliostat System with Wireless Closed-Loop Control

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a SunShot Initiative project led by Thermata to develop and demonstrate the first practical heliostat to use closed-loop tracking that can optically sense and control the reflected sunlight beam at the target. The expected benefits of this system include the reduction in the total installed cost of the heliostat field in a power tower concentrating solar power project.

  15. Closed-loop air cooling system for a turbine engine

    DOE Patents [OSTI]

    North, William Edward (Winter Springs, FL)

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  16. "Closed-loop" analysis of a thermo-charged capacitor

    E-Print Network [OSTI]

    Germano D'Abramo

    2015-05-04

    In this Letter, an explicit application of conservation of energy and zero net work principle around a closed path ("closed-loop" analysis) is carried out on a thermo-charged capacitor at equilibrium with ambient heat at uniform temperature. This analysis corroborates the results of previous studies [Phys.Lett.A 374 (2010) 1801, Physica A 390 (2011) 481] that a potential drop $\\Delta V$ does actually occur at capacitor terminals. Finally, a conventional photoelectric emission experiment is proposed to indirectly text thermo-charged capacitor functioning.

  17. Closed loop air cooling system for combustion turbines

    DOE Patents [OSTI]

    Huber, David John (North Canton, OH); Briesch, Michael Scot (Orlando, FL)

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  18. Planning for ClosedLoop Execution Using Partially Observable Markovian Decision Processes

    E-Print Network [OSTI]

    Chrisman, Lonnie

    Planning for Closed­Loop Execution Using Partially Observable Markovian Decision Processes Lonnie@cs.cmu.edu Abstract A distinction is drawn between open­loop and closed­loop plans, where the latter explicitly spec­ ifies how run­time feedback is to be acquired and used. It is argued that some planning problems

  19. Closed-Loop and Activity-Guided Optogenetic Control Logan Grosenick,1,2,3,6 James H. Marshel,1,2,6 and Karl Deisseroth1,2,4,5,*

    E-Print Network [OSTI]

    Deisseroth, Karl

    advances and opportunities in this area, and we review in detail the known caveats and limitations in the engineering literature concerned with using an error signal-- that is, the difference between measured output system. In neural systems, closed-loop optogenetics could allow important basic-science investigations

  20. Closed loop computer control for an automatic transmission

    DOE Patents [OSTI]

    Patil, Prabhakar B. (Detroit, MI)

    1989-01-01

    In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determined from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.

  1. MAGNETIC RECONNECTION: FROM 'OPEN' EXTREME-ULTRAVIOLET LOOPS TO CLOSED POST-FLARE ONES OBSERVED BY SDO

    SciTech Connect (OSTI)

    Zhang, Jun; Yang, Shuhong; Li, Ting; Zhang, Yuzong; Li, Leping [Key Laboratory of Solar Activity, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Jiang, Chaowei, E-mail: zjun@nao.cas.cn, E-mail: shuhongyang@nao.cas.cn, E-mail: liting@nao.cas.cn, E-mail: yuzong@nao.cas.cn, E-mail: lepingli@nao.cas.cn, E-mail: cwjiang@spaceweather.ac.cn [SIGMA Weather Group, State Key Laboratory for Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-10-10

    We employ Solar Dynamics Observatory observations and select three well-observed events including two flares and one extreme-ultraviolet (EUV) brightening. During the three events, the EUV loops clearly changed. One event was related to a major solar flare that took place on 2012 July 12 in active region NOAA AR 11520. 'Open' EUV loops rooted in a facula of the AR deflected to the post-flare loops and then merged with them while the flare ribbon approached the facula. Meanwhile, 'open' EUV loops rooted in a pore disappeared from top to bottom as the flare ribbon swept over the pore. The loop evolution was similar in the low-temperature channels (e.g., 171 Å) and the high-temperature channels (e.g., 94 Å). The coronal magnetic fields extrapolated from the photospheric vector magnetograms also show that the fields apparently 'open' prior to the flare become closed after it. The other two events were associated with a B1.1 flare on 2010 May 24 and an EUV brightening on 2013 January 03, respectively. During both of these two events, some 'open' loops either disappeared or darkened before the formation of new closed loops. We suggest that the observations reproduce the picture predicted by the standard magnetic reconnection model: 'open' magnetic fields become closed due to reconnection, manifesting as a transformation from 'open' EUV loops to closed post-flare ones.

  2. ORC Closed Loop Control Systems for Transient and Steady State Duty Cycles

    Broader source: Energy.gov [DOE]

    System-level models using iterative concept analysis are being used on a closed loop controlled, waste heat recovery system running automatically over various drive cycles.

  3. Closed-Loop Compensation Method for Oscillations Caused by Control Valve Stiction

    E-Print Network [OSTI]

    Wang, Jiandong

    Closed-Loop Compensation Method for Oscillations Caused by Control Valve Stiction Jiandong Wang-loop compensation method to remove oscillations caused by control valve stiction. With the control loop operating movements for the control valve to arrive at a desired position. A systematic way to design the parameters

  4. Noise Analysis of ClosedLoop Vibratory Rate Gyros Dennis Kim and Robert M'Closkey

    E-Print Network [OSTI]

    M'Closkey, Robert T.

    Noise Analysis of Closed­Loop Vibratory Rate Gyros Dennis Kim and Robert M'Closkey Mechanical detailed noise analysis of closed­loop MEMS vibratory gyros whose noise characteristics are dominated by the mechanical­thermal noise of the sensor's vibrating structure as well as the electrical noise associated

  5. 2102, Page 1 Experimental Investigation of Closed Loop Oscillating Heat Pipe as the

    E-Print Network [OSTI]

    Ghajar, Afshin J.

    2102, Page 1 Experimental Investigation of Closed Loop Oscillating Heat Pipe as the Condenser The aim of this article is to experimentally investigate the application of a closed loop oscillating heat pipe (CLOHP) as the condenser for a vapor compression refrigeration system. Split type air conditioner

  6. Roadmap to Realistic Modeling of Closed Loop Pulsating Heat Pipes Sameer Khandekar

    E-Print Network [OSTI]

    Khandekar, Sameer

    Roadmap to Realistic Modeling of Closed Loop Pulsating Heat Pipes Sameer Khandekar§ and Manfred modeling of pulsating heat pipes through `first' principles is a contemporary problem which remains quite is presented which is based on the fact that at high enough heat flux level, Closed Loop Pulsating Heat Pipes

  7. Operational limit of closed loop pulsating heat pipes Honghai Yang a,*, S. Khandekar b

    E-Print Network [OSTI]

    Khandekar, Sameer

    Operational limit of closed loop pulsating heat pipes Honghai Yang a,*, S. Khandekar b , M. Groll c an experimental study on the operational limitation of closed loop pulsating heat pipes (CLPHPs), which consist pipes; Performance limit; Dry-out 1. Introduction Pulsating heat pipes (PHPs) or oscillating heat pipes

  8. Closed loop pulsating heat pipes Part B: visualization and semi-empirical modeling

    E-Print Network [OSTI]

    Khandekar, Sameer

    Closed loop pulsating heat pipes Part B: visualization and semi-empirical modeling Sameer Khandekar May 2003 Abstract Pulsating heat pipes have received growing attention from experimental performance results of a fairly large matrix of closed loop pulsating heat pipes. This paper, which

  9. DIFFUSION INDUCED CHAOS IN A CLOSED LOOP THERMOSYPHON

    E-Print Network [OSTI]

    Van Vleck, Erik S.

    VLECK SIAM J. APPL. MATH. c 1998 Society for Industrial and Applied Mathematics Vol. 58, No. 4, pp. 1072 a prescribed heat flux along the loop wall and the contribution of axial diffusion. The well, driven by gravity, natural convection, pumps, etc. These types of devices are called ther- mosyphons

  10. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase...

    Open Energy Info (EERE)

    ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR Reservoir Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: ICFT- An Initial...

  11. New Developments in Closed Loop Combustion Control Using Flue Gas Analysis 

    E-Print Network [OSTI]

    Nelson, R. L.

    1981-01-01

    New developments in closed loop combustion control are causing radical changes in the way combustion control systems are implemented. The recent availability of in line flue gas analyzers and microprocessor technology are teaming up to produce...

  12. Poisoned Feedback: The Impact of Malicious Users in Closed-Loop Multiuser MIMO Systems

    E-Print Network [OSTI]

    Mukherjee, Amitav

    2010-01-01

    Accurate channel state information (CSI) at the transmitter is critical for maximizing spectral efficiency on the downlink of multi-antenna networks. In this work we analyze a novel form of physical layer attacks on such closed-loop wireless networks. Specifically, this paper considers the impact of deliberately inaccurate feedback by malicious users in a multiuser multicast system. Numerical results demonstrate the significant degradation in performance of closed-loop transmission schemes due to intentional feedback of false CSI by adversarial users.

  13. Closed loop control of the induction heating process using miniature magnetic sensors

    DOE Patents [OSTI]

    Bentley, Anthony E.; Kelley, John Bruce; Zutavern, Fred J.

    2003-05-20

    A method and system for providing real-time, closed-loop control of the induction hardening process. A miniature magnetic sensor located near the outer surface of the workpiece measures changes in the surface magnetic field caused by changes in the magnetic properties of the workpiece as it heats up during induction heating (or cools down during quenching). A passive miniature magnetic sensor detects a distinct magnetic spike that appears when the saturation field, B.sub.sat, of the workpiece has been exceeded. This distinct magnetic spike disappears when the workpiece's surface temperature exceeds its Curie temperature, due to the sudden decrease in its magnetic permeability. Alternatively, an active magnetic sensor can measure changes in the resonance response of the monitor coil when the excitation coil is linearly swept over 0-10 MHz, due to changes in the magnetic permeability and electrical resistivity of the workpiece as its temperature increases (or decreases).

  14. Power Generating Stationary Engines Nox Control: A Closed Loop...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Acquisition Active DPF for Off-Road Particulate Matter (PM) Control A Universal Dual-Fuel Controller for OEMAftermarket Diesel Engineswith Comprehensive Fuel & Emission...

  15. Closed-loop separation control over a sharp edge ramp using Genetic Programming

    E-Print Network [OSTI]

    Debien, Antoine; Mazellier, Nicolas; Duriez, Thomas; Cordier, Laurent; Noack, Bernd R; Abel, Markus W; Kourta, Azeddine

    2015-01-01

    We experimentally perform open and closed-loop control of a separating turbulent boundary layer downstream from a sharp edge ramp. The turbulent boundary layer just above the separation point has a Reynolds number $Re_{\\theta}\\approx 3\\,500$ based on momentum thickness. The goal of the control is to mitigate separation and early re-attachment. The forcing employs a spanwise array of active vortex generators. The flow state is monitored with skin-friction sensors downstream of the actuators. The feedback control law is obtained using model-free genetic programming control (GPC) (Gautier et al. 2015). The resulting flow is assessed using the momentum coefficient, pressure distribution and skin friction over the ramp and stereo PIV. The PIV yields vector field statistics, e.g. shear layer growth, the backflow area and vortex region. GPC is benchmarked against the best periodic forcing. While open-loop control achieves separation reduction by locking-on the shedding mode, GPC gives rise to similar benefits by acc...

  16. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOE Patents [OSTI]

    Eres, Djula (Knoxville, TN); Sharp, Jeffrey W. (Knoxville, TN)

    1996-01-01

    A method and apparatus for digital epitaxy. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced.

  17. Apparatus for externally controlled closed-loop feedback digital epitaxy

    DOE Patents [OSTI]

    Eres, D.; Sharp, J.W.

    1996-07-30

    A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 5 figs.

  18. Film cooling air pocket in a closed loop cooled airfoil

    DOE Patents [OSTI]

    Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC); Osgood, Sarah Jane (East Thetford, VT); Bagepalli, Radhakrishna (Schenectady, NY); Webbon, Waylon Willard (Greenville, SC); Burdgick, Steven Sebastian (Schenectady, NY)

    2002-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending between them. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. To provide for air film cooing of select portions of the airfoil outer surface, at least one air pocket is defined on a wall of at least one of the cavities. Each air pocket is substantially closed with respect to the cooling medium in the cavity and cooling air pumped to the air pocket flows through outlet apertures in the wall of the airfoil to cool the same.

  19. Closing the loop: Linking Datasets to Publications and Back

    E-Print Network [OSTI]

    Alberto Accomazzi; Guenther Eichhorn; Arnold Rots

    2006-11-17

    With the mainstream adoption of references to datasets in astronomical manuscripts, researchers today are able to provide direct links from their papers to the original data that were used in their study. Following a process similar to the verification of references in manuscripts, publishers have been working with the NASA Astrophysics Data System (ADS) to validate and maintain links to these datasets. Similarly, many astronomical data centers have been tracking publications based on the observations that they archive, and have been working with the ADS to maintain links between their datasets and the bibliographic records in question. In addition to providing a valuable service to ADS users, maintaining these correlations allows the data centers to evaluate the scientific impact of their missions. Until recently, these two activities have evolved in parallel on independent tracks, with ADS playing a central role in bridging the connection between publishers and data centers. However, the ADS is now implementing the capability for all parties involved to find out which data links have been published with which manuscripts, and vice versa. This will allow data centers to periodically harvest the ADS to find out if there are new papers which reference datasets available in their archives. In this paper we summarize the state of the dataset linking project and describe the new harvesting interface.

  20. Limitations, performance and instrumentation of closed-loop feedback based distributed adaptive

    E-Print Network [OSTI]

    Beigl, Michael

    Limitations, performance and instrumentation of closed-loop feedback based distributed adaptive performance. Finally, we present measure- ments from an instrumentation using USRP software radios at various. This is especially useful in large scale sensor networks since the number of potentially available nodes

  1. Motor Modeling and Position Control Lab Week 3: Closed Loop Control

    E-Print Network [OSTI]

    Krovi, Venkat

    Motor Modeling and Position Control Lab Week 3: Closed Loop Control 1. Review In the first week of motor modeling lab, a mathematical model of a DC motor from first principles was derived to obtain specifically for this motor model. In the second week, a physical DC motor (Quanser SRV-02) was used for open

  2. Understanding operational regimes of closed loop pulsating heat pipes: an experimental study

    E-Print Network [OSTI]

    Khandekar, Sameer

    Understanding operational regimes of closed loop pulsating heat pipes: an experimental study Sameer are proven solutions for modern microelectronics thermal management. In this context, heat pipe research is being continuously pursued evolving newer solutions to suit present requirements. Pulsating heat pipes

  3. Closing the Learning-Planning Loop with PSRs Byron Boots beb@cs.cmu.edu

    E-Print Network [OSTI]

    Gordon, Geoffrey J.

    Closing the Learning-Planning Loop with PSRs Byron Boots beb@cs.cmu.edu Sajid M. Siddiqi* siddiqi under grant number 4400161514, and a project with MobileFusion/TTC. BEB was supported by the NSF under grant number EEEC-0540865. BEB and GJG were both supported by ONR MURI grant number N00014

  4. Closing the Loop on Big Data Rob Nowak www.ece.wisc.edu/~nowak

    E-Print Network [OSTI]

    Qiu, Robert Caiming

    Closing the Loop on Big Data data Rob Nowak www.ece.wisc.edu/~nowak NSF Big Data Workshop March 21, 2013 #12;model space questions /queries "training data" BIG DATA: A Marriage of Machine and Man Human Judgements labeling, annotation, comparisons #12;model space questions /queries "training data" BIG DATA

  5. POISONED FEEDBACK: THE IMPACT OF MALICIOUS USERS IN CLOSED-LOOP MULTIUSER MIMO SYSTEMS

    E-Print Network [OSTI]

    Swindlehurst, A. Lee

    POISONED FEEDBACK: THE IMPACT OF MALICIOUS USERS IN CLOSED-LOOP MULTIUSER MIMO SYSTEMS Amitav systems based on malicious feedback of CSI. In particular, we examine malicious or poisoned feedback of the trans- mitter are listed in Sec. 3. Numerical results that depict the impact of poisoned feedback

  6. Towards Understanding Architectural Tradeoffs in MEMS Closed-Loop Feedback Control

    E-Print Network [OSTI]

    Sherwood, Tim

    Towards Understanding Architectural Tradeoffs in MEMS Closed-Loop Feedback Control Greg Hoover, California 93106 sherwood@cs.ucsb.edu ABSTRACT Micro-Electro-Mechanical Systems (MEMS) combine litho on the scale of microns. However, the physical scale of MEMS devices can make controlling them computationally

  7. A Numerical Approach to the Kinematic Analysis of Deployable Structures forming a Closed Loop

    E-Print Network [OSTI]

    Pellegrino, Sergio

    A Numerical Approach to the Kinematic Analysis of Deployable Structures forming a Closed Loop W This paper is concerned with the kinematics of deployable structures, based on the concept of a mechanical, CB2 1PZ, UK. pellegrino@eng.cam.ac.uk March 20, 2006 Keywords: Deployable structures, kinematic

  8. Permeation of Limonene through Disposable Nitrile Gloves in the Robot Hand Whole Glove and ASTM Closed Loop Models

    E-Print Network [OSTI]

    Banaee, Sean

    2015-01-01

    Closed Loop versus Static Robot Hand Methods …………. …… 5.5.3R, Que Hee S: A moving robot hand system for Whole-GloveNitrile Gloves in the Robot Hand Whole Glove and ASTM Closed

  9. A statistical mechanical model of closed loop plectoneme supercoiling and its variational approximation

    E-Print Network [OSTI]

    Dominic J. O'. Lee

    2015-04-17

    Presented here, is a technical manuscript that may form the basis of later published work. In it, we develop a statistical mechanical model to describe a closed loop plectoneme, applicable for when the closed loop is sufficiently supercoiled. The model divides the system up into end loops and a braided section; the end loops are assumed to contribute little to the super-coil writhe. Within the braided section, the model incorporates interactions that depend on the structure of the molecule; in particular, we consider those that depend on helical structure. A method for approximating the steric interactions is utilized that we had previously used in other publications. We go on to construct variational approximations for our closed loop plectoneme model in two cases. The first case is where helix dependent interactions are strong, and in the second case they are considered weak. In developing these approximations, we approximate the Fuller-White condition by replacing, in all expressions that depend on twist, writhe with average writhe, valid when the braided section is sufficiently long. How this approximation is made and the conditions when this approximation is valid are also discussed. The approximation allows for a Legendre transformation of the free energy, which with the introduction of moment (or torque), effectively allowing for twist and average writhe to be treated independently in the transformed (Gibbs like) free energy. Next, we then show how one may compute the average writhe of the braided section. Lastly, we discuss how some of the approximations considered may be relaxed, and discuss how the resulting model free energy might be computed by MC simulation.

  10. Simulation of Open-loop Plasma Vertical Movement Response in Damavand Tokamak Using Closed-loop Subspace System Identification

    E-Print Network [OSTI]

    Farahania, N Darestani

    2015-01-01

    A formulation of a multi-input single-output closed-loop subspace system identification method is employed for the purpose of obtaining control-relevant model of the vacuum-plasma response in Damavand tokamak. Such a model is particularly well suited for robust controller design. The accuracy of the estimate of the plant dynamics is estimated by different experiments. The method described in this paper is a worst-case identification technique, in that it aims to minimize the error between the identified model and the true plant. The identified model fitness around defined operating point is more than 90% and with comparison by physical-based model it has better root mean square measure of the goodness of the fit.

  11. AB Method of Irrigation without Water (Closed-loop water cycle)

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-12-26

    Author suggests and researches a new revolutionary idea for a closed-loop irrigation method. He offers to cover a given site by a thin closed film with controlled heat conductivity and clarity located at an altitude of 50 300 m. The film is supported at altitude by small additional atmospheric overpressure and connected to the ground by thin cables. Authors show that this closed dome allows full control of the weather in a given region (the day is always fine, the rain is only at night, no strong winds). The dome (having control of the clarity of film and heat conductivity) converts the cold regions to subtropics, hot deserts and desolate wildernesses to prosperous regions with a temperate climate. This is a realistic and cheap method of evaporation economical irrigation and virtual weather control on Earth at the current time.

  12. A study of the augmented Lagrangian method for open loop and closed loop constrained multibody dynamic systems 

    E-Print Network [OSTI]

    Webb, Glenn Viktor

    1995-01-01

    and/or revolute joints. An open loop system consisting of n bars suspended vertically from a pivot is used to study (1) the effect of the number of degrees of freedom and the Schur complement on the convergence of the Lagrange multipliers...

  13. On-board Velocity Estimation and Closed-loop Control of a Quadrotor UAV based on Optical Flow

    E-Print Network [OSTI]

    On-board Velocity Estimation and Closed-loop Control of a Quadrotor UAV based on Optical Flow an efficient fall back routine for any kind of UAV (Unmanned Aerial Vehicles) since we rely solely. The results show that our approach is able to recover the ego-motion of a flying UAV in realistic conditions

  14. 352 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11, NO. 3. JUNE 1995 Closed-Loop Kinematic Calibration

    E-Print Network [OSTI]

    Hollerbach, John M.

    ~ 352 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 11, NO. 3. JUNE 1995 Closed-Loop Kinematic Abstract- A method is presented for autonomous kinematic calibrationof the RSI 6-DOFhand controller,a two-loopparallel mechanism comprised of three 6-DOF arms with potentiometers on the first three joints of each arm

  15. Closing the loop between traffic/pollution sensing and vehicle route control NSF CPS Workshop, March 17-18, 2011

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    Closing the loop between traffic/pollution sensing and vehicle route control NSF CPS Workshop manager and vehicle route/speed enforcement with the aim of simultaneously reducing congestion, pollution); the on-board navigator; the vehicle control knobs (breaks, accelerator, steering wheel) and; last

  16. Studies on the closed-loop digital control of multi-modular reactors

    SciTech Connect (OSTI)

    Bernard, J.A. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. (Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering)

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  17. Studies on the closed-loop digital control of multi-modular reactors. Final report

    SciTech Connect (OSTI)

    Bernard, J.A. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Nuclear Reactor Lab.; Henry, A.F.; Lanning, D.D.; Meyer, J.E. [Massachusetts Inst. of Tech., Cambridge, MA (United States). Dept. of Nuclear Engineering

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  18. Apparatus and method for closed-loop control of reactor power in minimum time

    DOE Patents [OSTI]

    Bernard, Jr., John A. (72 Paul Revere Rd., Needham Heights, MA 02194)

    1988-11-01

    Closed-loop control law for altering the power level of nuclear reactors in a safe manner and without overshoot and in minimum time. Apparatus is provided for moving a fast-acting control element such as a control rod or a control drum for altering the nuclear reactor power level. A computer computes at short time intervals either the function: .rho.=(.beta.-.rho.).omega.-.lambda..sub.e '.rho.-.SIGMA..beta..sub.i (.lambda..sub.i -.lambda..sub.e ')+l* .omega.+l* [.omega..sup.2 +.lambda..sub.e '.omega.] or the function: .rho.=(.beta.-.rho.).omega.-.lambda..sub.e .rho.-(.lambda..sub.e /.lambda..sub.e)(.beta.-.rho.)+l* .omega.+l* [.omega..sup.2 +.lambda..sub.e .omega.-(.lambda..sub.e /.lambda..sub.e).omega.] These functions each specify the rate of change of reactivity that is necessary to achieve a specified rate of change of reactor power. The direction and speed of motion of the control element is altered so as to provide the rate of reactivity change calculated using either or both of these functions thereby resulting in the attainment of a new power level without overshoot and in minimum time. These functions are computed at intervals of approximately 0.01-1.0 seconds depending on the specific application.

  19. Belgian experience in applying the {open_quotes}leak-before-break{close_quotes} concept to the primary loop piping

    SciTech Connect (OSTI)

    Gerard, R.; Malekian, C.; Meessen, O. [Tractebel Energy Engineering, Brussels (Belgium)

    1997-04-01

    The Leak Before Break (LBB) concept allows to eliminate from the design basis the double-ended guillotine break of the primary loop piping, provided it can be demonstrated by a fracture mechanics analysis that a through-wall flaw, of a size giving rise to a leakage still well detectable by the plant leak detection systems, remains stable even under accident conditions (including the Safe Shutdown Earthquake (SSE)). This concept was successfully applied to the primary loop piping of several Belgian Pressurized Water Reactor (PWR) units, operated by the Utility Electrabel. One of the main benefits is to permit justification of supports in the primary loop and justification of the integrity of the reactor pressure vessel and internals in case of a Loss Of Coolant Accident (LOCA) in stretch-out conditions. For two of the Belgian PWR units, the LBB approach also made it possible to reduce the number of large hydraulic snubbers installed on the primary coolant pumps. Last but not least, the LBB concept also facilitates the steam generator replacement operations, by eliminating the need for some pipe whip restraints located close to the steam generator. In addition to the U.S. regulatory requirements, the Belgian safety authorities impose additional requirements which are described in details in a separate paper. An novel aspect of the studies performed in Belgium is the way in which residual loads in the primary loop are taken into account. Such loads may result from displacements imposed to close the primary loop in a steam generator replacement operation, especially when it is performed using the {open_quote}two cuts{close_quotes} technique. The influence of such residual loads on the LBB margins is discussed in details and typical results are presented.

  20. Heating mechanisms for intermittent loops in active region cores from AIA/SDO EUV observations

    SciTech Connect (OSTI)

    Cadavid, A. C.; Lawrence, J. K.; Christian, D. J.; Jess, D. B.; Nigro, G.

    2014-11-01

    We investigate intensity variations and energy deposition in five coronal loops in active region cores. These were selected for their strong variability in the AIA/SDO 94 Å intensity channel. We isolate the hot Fe XVIII and Fe XXI components of the 94 Å and 131 Å by modeling and subtracting the 'warm' contributions to the emission. HMI/SDO data allow us to focus on 'inter-moss' regions in the loops. The detailed evolution of the inter-moss intensity time series reveals loops that are impulsively heated in a mode compatible with a nanoflare storm, with a spike in the hot 131 Å signals leading and the other five EUV emission channels following in progressive cooling order. A sharp increase in electron temperature tends to follow closely after the hot 131 Å signal confirming the impulsive nature of the process. A cooler process of growing emission measure follows more slowly. The Fourier power spectra of the hot 131 Å signals, when averaged over the five loops, present three scaling regimes with break frequencies near 0.1 min{sup –1} and 0.7 min{sup –1}. The low frequency regime corresponds to 1/f noise; the intermediate indicates a persistent scaling process and the high frequencies show white noise. Very similar results are found for the energy dissipation in a 2D 'hybrid' shell model of loop magneto-turbulence, based on reduced magnetohydrodynamics, that is compatible with nanoflare statistics. We suggest that such turbulent dissipation is the energy source for our loops.

  1. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOE Patents [OSTI]

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  2. A Random Loop Generator for Planning the Motions of Closed Kinematic Chains using PRM Methods

    E-Print Network [OSTI]

    Cortés, Juan

    - France fjcortes,nic,jplg@laas.fr Abstract Closed kinematic chains in mechanical systems rep- resent a challenge for their motion analysis, and therefore, for path planning. Closed mechanisms ap- pear in di#11 with each other. The analysis of closed kinematic chains can be ex- pressed as an inverse kinematics problem

  3. A Random Loop Generator for Planning the Motions of Closed Kinematic Chains using PRM Methods

    E-Print Network [OSTI]

    Cortés, Juan

    {jcortes,nic,jpl}@laas.fr Abstract Closed kinematic chains in mechanical systems rep- resent a challenge for their motion analysis, and therefore, for path planning. Closed mechanisms ap- pear in different areas where with each other. The analysis of closed kinematic chains can be ex- pressed as an inverse kinematics problem

  4. Graphical method in loop quantum gravity: I. Derivation of the closed formula for the matrix element of the volume operator

    E-Print Network [OSTI]

    Jinsong Yang; Yongge Ma

    2015-06-11

    To adopt a practical method to calculate the action of geometrical operators on quantum states is a crucial task in loop quantum gravity. In the series of papers, we will introduce a graphical method, developed by Yutsis and Brink, to loop quantum gravity. The graphical method provides a very powerful technique for simplifying complicated calculations. In this first paper, the closed formula of volume operator is derived via the graphical method. By employing suitable and non-ambiguous graphs to represent the acting of operators as well as the spin network states, we use the simple rules for transforming graphs to yield the resulting formula. Comparing with the complicated algebraic derivation in some literatures, our procedure is more concise, intuitive and visual. The resulting matrix elements of volume operator is compact and uniform, fitting for both gauge-invariant and gauge-variant spin network states.

  5. Abstract--Presented are a methodology and a DFII-based tool for AC-stability analysis of a wide variety of closed-loop

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    variety of closed-loop continuous-time (operational amplifiers and other linear circuits). The methodology loop identification and full- circuit stability analysis, which gives better picture of the circuit use a technique that may be viewed as analogous to time- domain analysis1 of circuit's transfer

  6. Implementation of a closed-loop structural control system using wireless sensor networks

    E-Print Network [OSTI]

    Stanford University

    systems (bridges, buildings, tunnels, dams) exposed to earthquakes, hurricanes, and typhoons. To mitigate], semi-active hydraulic dampers (SHD) [4], electrorheological (ER) dampers [5], and magnetorheological

  7. Method of digital epitaxy by externally controlled closed-loop feedback

    DOE Patents [OSTI]

    Eres, D.; Sharp, J.W.

    1994-07-19

    A method and apparatus for digital epitaxy are disclosed. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced. 4 figs.

  8. Method of digital epilaxy by externally controlled closed-loop feedback

    DOE Patents [OSTI]

    Eres, Djula (Knoxville, TN); Sharp, Jeffrey W. (Knoxville, TN)

    1994-01-01

    A method and apparatus for digital epitaxy. The apparatus includes a pulsed gas delivery assembly that supplies gaseous material to a substrate to form an adsorption layer of the gaseous material on the substrate. Structure is provided for measuring the isothermal desorption spectrum of the growth surface to monitor the active sites which are available for adsorption. The vacuum chamber housing the substrate facilitates evacuation of the gaseous material from the area adjacent the substrate following exposure. In use, digital epitaxy is achieved by exposing a substrate to a pulse of gaseous material to form an adsorption layer of the material on the substrate. The active sites on the substrate are monitored during the formation of the adsorption layer to determine if all the active sites have been filled. Once the active sites have been filled on the growth surface of the substrate, the pulse of gaseous material is terminated. The unreacted portion of the gas pulse is evacuated by continuous pumping. Subsequently, a second pulse is applied when availability of active sites is determined by studying the isothermal desorption spectrum. These steps are repeated until a thin film of sufficient thickness is produced.

  9. Solar Flare Activity Closely Monitored | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVES PursuantEnergySolar Flare Activity Closely Monitored

  10. Facilitation of polymer looping and giant polymer diffusivity in crowded solutions of active particles

    E-Print Network [OSTI]

    Shin, J; Kim, W K; Metzler, R

    2015-01-01

    We study the dynamics of polymer chains in a bath of self-propelled particles (SPP) by extensive Langevin dynamics simulations in a two dimensional system. Specifically, we analyse the polymer looping properties versus the SPP activity and investigate how the presence of the active particles alters the chain conformational statistics. We find that SPPs tend to extend flexible polymer chains while they rather compactify stiffer semiflexible polymers, in agreement with previous results. Here we show that larger activities of SPPs yield a higher effective temperature of the bath and thus facilitate looping kinetics of a passive polymer chain. We explicitly compute the looping probability and looping time in a wide range of the model parameters. We also analyse the motion of a monomeric tracer particle and the polymer's centre of mass in the presence of the active particles in terms of the time averaged mean squared displacement, revealing a giant diffusivity enhancement for the polymer chain via SPP pooling. Our...

  11. Enterprise Lead Input and Tracking Environment This tool solves the problem of tracking sales leads in a closed loop fashion, as depicted

    E-Print Network [OSTI]

    Fisher, Kathleen

    ELITE Enterprise Lead Input and Tracking Environment This tool solves the problem of tracking sales leads in a closed loop fashion, as depicted in the figure below, in a simple and novel fashion, in a web handles a variety of tasks, such as lead evaluation, lead scoring, lead distribution, alerting, reporting

  12. 82 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, PART 1, VOL. 47, NO. 1, JANUARY 2000 Fig. 5. Output voltage waveform in the closed-loop dc-ac power inverter.

    E-Print Network [OSTI]

    Leuciuc, Adrian

    devices from dc sources, such as cars or recreational vehicles, or in uninterruptible power supplies voltage waveform in the closed-loop dc-ac power inverter. Horizontal scale: 5 ms/div.; vertical scale: 0.2 V/div. Fig. 6. Bode plots of the closed-loop power inverter . Packard 4194A Network Analyzer, Bode

  13. Verifiable Active Safety for Automotive Cyber-Physical Systems with Humans in the Loop

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    Verifiable Active Safety for Automotive Cyber-Physical Systems with Humans in the Loop Francesco-6925 A recent trend in the automotive industry is the rapid inclusion of electronics, computers and controls that focus entirely on improved functionality and overall system robustness. This makes the automotive sector

  14. Behaviour of oscillations in loop structures above active regions

    E-Print Network [OSTI]

    Kolobov, D Y; Chelpanov, A A; Kochanov, A A; Anfinogentov, S A; Chupin, S A; Myshyakov, I I; Tomin, V E

    2015-01-01

    In this study we combine the multiwavelength ultraviolet -- optical (Solar Dynamics Observatory, SDO) and radio (Nobeyama Radioheliograph, NoRH) observations to get further insight into space-frequency distribution of oscillations at different atmospheric levels of the Sun. We processed the observational data on NOAA 11711 active region and found oscillations propagating from the photospheric level through the transition region upward into the corona. The power maps of low-frequency (1--2 mHz) oscillations reproduce well the fan-like coronal structures visible in the Fe ix 171A line. High frequency oscillations (5--7 mHz) propagate along the vertical magnetic field lines and concentrate inside small-scale elements in the umbra and at the umbra-penumbra boundary. We investigated the dependence of the dominant oscillation frequency upon the distance from the sunspot barycentre to estimate inclination of magnetic tubes in higher levels of sunspots where it cannot be measured directly, and found that this angle i...

  15. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, T.E.

    1997-08-26

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only an inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window. 5 figs.

  16. Window-closing safety system

    DOE Patents [OSTI]

    McEwan, Thomas E. (Livermore, CA)

    1997-01-01

    A safety device includes a wire loop embedded in the glass of a passenger car window and routed near the closing leading-edge of the window. The wire loop carries microwave pulses around the loop to and from a transceiver with separate output and input ports. An evanescent field only and inch or two in radius is created along the wire loop by the pulses. Just about any object coming within the evanescent field will dramatically reduce the energy of the microwave pulses received back by the transceiver. Such a loss in energy is interpreted as a closing area blockage, and electrical interlocks are provided to halt or reverse a power window motor that is actively trying to close the window.

  17. SATB1 packages densely-looped, transciptionally-active chromatinfor coordinated expression of cytokine genes

    SciTech Connect (OSTI)

    Cai, Shutao; Lee, Charles C.; Kohwi-Shigematsu, Terumi

    2006-05-23

    SATB1 is an important regulator of nuclear architecture that anchors specialized DNA sequences onto its cage-like network and recruits chromatin remodeling/modifying factors to control gene transcription. We studied the role of SATB1 in regulating the coordinated expression of Il5, Il4, and Il13 from the 200kb cytokine gene cluster region of mouse chromosome 11 during T-helper 2 (Th2)-cell activation. We show that upon cell activation, SATB1 is rapidly induced to form a unique transcriptionally-active chromatin structure that includes the cytokine gene region. Chromatin is folded into numerous small loops all anchored by SATB1, is histone H3 acetylated at lysine 9/14, and associated with Th2-specific factors, GATA3, STAT6, c-Maf, the chromatin-remodeling enzyme Brg-1, and RNA polymerase II across the 200kb region. Before activation, the chromatin displays some of these features, such as association with GATA3 and STAT6, but these were insufficient for cytokine gene expression. Using RNA interference (RNAi), we show that upon cell activation, SATB1 is not only required for chromatin folding into dense loops, but also for c-Maf induction and subsequently for Il4, Il5, and Il13 transcription. Our results show that SATB1 is an important determinant for chromatin architecture that constitutes a novel higher-order, transcriptionally-active chromatin structure upon Th2-cell activation.

  18. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, Gregory F. (Naperville, IL); Minkov, Vladimir (Skokie, IL); Petrick, Michael (Joliet, IL)

    1988-01-01

    A magnetohydrodynamic (MHD) power generating system in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  19. Open-cycle magnetohydrodynamic power plant based upon direct-contact closed-loop high-temperature heat exchanger

    DOE Patents [OSTI]

    Berry, G.F.; Minkov, V.; Petrick, M.

    1981-11-02

    A magnetohydrodynamic (MHD) power generating system is described in which ionized combustion gases with slag and seed are discharged from an MHD combustor and pressurized high temperature inlet air is introduced into the combustor for supporting fuel combustion at high temperatures necessary to ionize the combustion gases, and including a heat exchanger in the form of a continuous loop with a circulating heat transfer liquid such as copper oxide. The heat exchanger has an upper horizontal channel for providing direct contact between the heat transfer liquid and the combustion gases to cool the gases and condense the slag which thereupon floats on the heat transfer liquid and can be removed from the channel, and a lower horizontal channel for providing direct contact between the heat transfer liquid and pressurized air for preheating the inlet air. The system further includes a seed separator downstream of the heat exchanger.

  20. Central Safety Factor and #12;ßN Control on NSTX-U via Beam Power and Plasma Boundary Shape Modification, using TRANSP for Closed Loop Simulations

    SciTech Connect (OSTI)

    Boyer, M. D. [PPPL; Andre, R. [PPPL; Gates, David A. [PPPL; Gerhardt, S. [PPPL; Goumiri, I. R. [Princeton University; Menard, Jon [PPPL

    2014-08-01

    The high-performance operational goals of NSTX-U will require development of advanced feedback control algorithms, including control of ßN and the safety factor profile. In this work, a novel approach to simultaneously controlling #12;ßN and the value of the safety factor on the magnetic axis, q0, through manipulation of the plasma boundary shape and total beam power, is proposed. Simulations of the proposed scheme show promising results and motivate future experimental implementation and eventual integration into a more complex current profile control scheme planned to include actuation of individual beam powers, density, and loop voltage. As part of this work, a flexible framework for closed loop simulations within the high-fidelity code TRANSP was developed. The framework, used here to identify control-design-oriented models and to tune and test the proposed controller, exploits many of the predictive capabilities of TRANSP and provides a means for performing control calculations based on user-supplied data (controller matrices, target waveforms, etc.). The flexible framework should enable high-fidelity testing of a variety of control algorithms, thereby reducing the amount of expensive experimental time needed to implement new control algorithms on NSTX-U and other devices.

  1. A solar active region loop compared with a 2D MHD model

    E-Print Network [OSTI]

    Gontikakis, C; Dara, H C; Tsinganos, K

    2005-01-01

    We analyzed a coronal loop observed with the Normal Incidence Spectrometer (NIS), which is part of the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory (SOHO). The measured Doppler shifts and proper motions along the selected loop strongly indicate unidirectional flows. Analysing the Emission Measure Curves of the observed spectral lines, we estimated that the temperature along the loop was about 380000 K. We adapted a solution of the ideal MHD steady equations to our set of measurements. The derived energy balance along the loop, as well as the advantages/disadvantages of this MHD model for understanding the characteristics of solar coronal loops are discussed.

  2. A solar active region loop compared with a 2D MHD model

    E-Print Network [OSTI]

    C. Gontikakis; G. J. D. Petrie; H. C. Dara; K. Tsinganos

    2005-03-31

    We analyzed a coronal loop observed with the Normal Incidence Spectrometer (NIS), which is part of the Coronal Diagnostic Spectrometer (CDS) on board the Solar and Heliospheric Observatory (SOHO). The measured Doppler shifts and proper motions along the selected loop strongly indicate unidirectional flows. Analysing the Emission Measure Curves of the observed spectral lines, we estimated that the temperature along the loop was about 380000 K. We adapted a solution of the ideal MHD steady equations to our set of measurements. The derived energy balance along the loop, as well as the advantages/disadvantages of this MHD model for understanding the characteristics of solar coronal loops are discussed.

  3. CNCC Craig Campus Geothermal Project: 82-well closed loop GHP well field to provide geothermal energy as a common utilitiy for a new community college campus

    SciTech Connect (OSTI)

    Chevron Energy Solutions; Matt Rush; Scott Shulda

    2011-01-03

    Colorado Northwestern Community College (CNCC) is working collaboratively with recipient vendor Chevron Energy Solutions, an energy services company (ESCO), to develop an innovative GHP project at the new CNCC Campus constructed in 2010/2011 in Craig, Colorado. The purpose of the CNCC Craig Campus Geothermal Program scope was to utilize an energy performance contracting approach to develop a geothermal system with a shared closed-loop field providing geothermal energy to each building's GHP mechanical system. Additional benefits to the project include promoting good jobs and clean energy while reducing operating costs for the college. The project has demonstrated that GHP technology is viable for new construction using the energy performance contracting model. The project also enabled the project team to evaluate several options to give the College a best value proposition for not only the initial design and construction costs but build high performance facilities that will save the College for many years to come. The design involved comparing the economic feasibility of GHP by comparing its cost to that of traditional HVAC systems via energy model, financial life cycle cost analysis of energy savings and capital cost, and finally by evaluating the compatibility of the mechanical design for GHP compared to traditional HVAC design. The project shows that GHP system design can be incorporated into the design of new commercial buildings if the design teams, architect, contractor, and owner coordinate carefully during the early phases of design. The public also benefits because the new CNCC campus is a center of education for the much of Northwestern Colorado, and students in K-12 programs (Science Spree 2010) through the CNCC two-year degree programs are already integrating geothermal and GHP technology. One of the greatest challenges met during this program was coordination of multiple engineering and development stakeholders. The leadership of Principle Investigator Pres. John Boyd of CNCC met this challenge by showing clear leadership in setting common goals and resolving conflicts early in the program.

  4. SDO/AIA AND HINODE/EIS OBSERVATIONS OF INTERACTION BETWEEN AN EUV WAVE AND ACTIVE REGION LOOPS

    SciTech Connect (OSTI)

    Yang, Liheng; Zhang, Jun; Li, Ting; Liu, Wei; Shen, Yuandeng E-mail: zjun@bao.ac.cn

    2013-09-20

    We present detailed analysis of an extreme-ultraviolet (EUV) wave and its interaction with active region (AR) loops observed by the Solar Dynamics Observatory/Atmospheric Imaging Assembly and the Hinode EUV Imaging Spectrometer (EIS). This wave was initiated from AR 11261 on 2011 August 4 and propagated at velocities of 430-910 km s{sup –1}. It was observed to traverse another AR and cross over a filament channel on its path. The EUV wave perturbed neighboring AR loops and excited a disturbance that propagated toward the footpoints of these loops. EIS observations of AR loops revealed that at the time of the wave transit, the original redshift increased by about 3 km s{sup –1}, while the original blueshift decreased slightly. After the wave transit, these changes were reversed. When the EUV wave arrived at the boundary of a polar coronal hole, two reflected waves were successively produced and part of them propagated above the solar limb. The first reflected wave above the solar limb encountered a large-scale loop system on its path, and a secondary wave rapidly emerged 144 Mm ahead of it at a higher speed. These findings can be explained in the framework of a fast-mode magnetosonic wave interpretation for EUV waves, in which observed EUV waves are generated by expanding coronal mass ejections.

  5. Mathematical Analysis of High-Temperature Co-electrolysis of CO2 and O2 Production in a Closed-Loop Atmosphere Revitalization System

    SciTech Connect (OSTI)

    Michael G. McKellar; Manohar S. Sohal; Lila Mulloth; Bernadette Luna; Morgan B. Abney

    2010-03-01

    NASA has been evaluating two closed-loop atmosphere revitalization architectures based on Sabatier and Bosch carbon dioxide, CO2, reduction technologies. The CO2 and steam, H2O, co-electrolysis process is another option that NASA has investigated. Utilizing recent advances in the fuel cell technology sector, the Idaho National Laboratory, INL, has developed a CO2 and H2O co-electrolysis process to produce oxygen and syngas (carbon monoxide, CO and hydrogen, H2 mixture) for terrestrial (energy production) application. The technology is a combined process that involves steam electrolysis, CO2 electrolysis, and the reverse water gas shift (RWGS) reaction. A number of process models have been developed and analyzed to determine the theoretical power required to recover oxygen, O2, in each case. These models include the current Sabatier and Bosch technologies and combinations of those processes with high-temperature co-electrolysis. The cases of constant CO2 supply and constant O2 production were evaluated. In addition, a process model of the hydrogenation process with co-electrolysis was developed and compared. Sabatier processes require the least amount of energy input per kg of oxygen produced. If co-electrolysis replaces solid polymer electrolyte (SPE) electrolysis within the Sabatier architecture, the power requirement is reduced by over 10%, but only if heat recuperation is used. Sabatier processes, however, require external water to achieve the lower power results. Under conditions of constant incoming carbon dioxide flow, the Sabatier architectures require more power than the other architectures. The Bosch, Boudouard with co-electrolysis, and the hydrogenation with co-electrolysis processes require little or no external water. The Bosch and hydrogenation processes produce water within their reactors, which aids in reducing the power requirement for electrolysis. The Boudouard with co-electrolysis process has a higher electrolysis power requirement because carbon dioxide is split instead of water, which has a lower heat of formation. Hydrogenation with co-electrolysis offers the best overall power performance for two reasons: it requires no external water, and it produces its own water, which reduces the power requirement for co-electrolysis.

  6. Submitted to "The Encyclopedia of Materials: Science and Technology", Elsevier Science Ltd. Real-Time Process Monitoring by P-Polarized Reflectance Spectroscopy and Closed-Loop

    E-Print Network [OSTI]

    Computation, b Department of Mathematics; North Carolina State University, Raleigh, NC 27695 c Department pre-designed source injection profiles (open-loop conditions). #12;3 1. Introduction Real-time optical has been on the monitoring of surface processes by reflection high energy electron diffraction (RHEED

  7. Submitted to ``The Encyclopedia of Materials: Science and Technology'', Elsevier Science Ltd. RealTime Process Monitoring by PPolarized Reflectance Spectroscopy and ClosedLoop

    E-Print Network [OSTI]

    Computation, b Department of Mathematics; North Carolina State University, Raleigh, NC 27695 c Department to films grown using pre­designed source injection profiles (open­loop conditions). #12; 3 1. Introduction by reflection high energy electron diffraction (RHEED) (Yoshimoto, M. et al. 1994), reflectance difference

  8. A Threonine on the Active Site Loop Controls Transition State Formation in Escherichia Coli Respiratory Complex II

    SciTech Connect (OSTI)

    Tomasiak, T.M.; Maklashina, E.; Cecchini, G.; Iverson, T.M.

    2009-05-26

    In Escherichia coli, the complex II superfamily members succinate:ubiquinone oxidoreductase (SQR) and quinol:fumarate reductase (QFR) participate in aerobic and anaerobic respiration, respectively. Complex II enzymes catalyze succinate and fumarate interconversion at the interface of two domains of the soluble flavoprotein subunit, the FAD binding domain and the capping domain. An 11-amino acid loop in the capping domain (Thr-A234 to Thr-A244 in quinol:fumarate reductase) begins at the interdomain hinge and covers the active site. Amino acids of this loop interact with both the substrate and a proton shuttle, potentially coordinating substrate binding and the proton shuttle protonation state. To assess the loop's role in catalysis, two threonine residues were mutated to alanine: QFR Thr-A244 (act-T; Thr-A254 in SQR), which hydrogen-bonds to the substrate at the active site, and QFR Thr-A234 (hinge-T; Thr-A244 in SQR), which is located at the hinge and hydrogen-bonds the proton shuttle. Both mutations impair catalysis and decrease substrate binding. The crystal structure of the hinge-T mutation reveals a reorientation between the FAD-binding and capping domains that accompanies proton shuttle alteration. Taken together, hydrogen bonding from act-T to substrate may coordinate with interdomain motions to twist the double bond of fumarate and introduce the strain important for attaining the transition state.

  9. Practical Experiences from the USE of a Method for Active Functional Tests and Optimization of Coil Energy Recovery Loop Systems in AHUs 

    E-Print Network [OSTI]

    Eriksson, J.

    2004-01-01

    A method, based on simulation models, for active functional tests and optimization of coil energy recovery loop systems in Air Handling Units (AHUs) have been developed and a first version implemented in the program Engineering Equation Solver (EES...

  10. Resonant activation in a colored multiplicative thermal noise driven closed system

    SciTech Connect (OSTI)

    Ray, Somrita; Bag, Bidhan Chandra; Mondal, Debasish

    2014-05-28

    In this paper, we have demonstrated that resonant activation (RA) is possible even in a thermodynamically closed system where the particle experiences a random force and a spatio-temporal frictional coefficient from the thermal bath. For this stochastic process, we have observed a hallmark of RA phenomena in terms of a turnover behavior of the barrier-crossing rate as a function of noise correlation time at a fixed noise variance. Variance can be fixed either by changing temperature or damping strength as a function of noise correlation time. Our another observation is that the barrier crossing rate passes through a maximum with increase in coupling strength of the multiplicative noise. If the damping strength is appreciably large, then the maximum may disappear. Finally, we compare simulation results with the analytical calculation. It shows that there is a good agreement between analytical and numerical results.

  11. Active Harmonic Filtering Using Current Controlled Grid-Connected DG Units with Closed-Loop Power Control

    E-Print Network [OSTI]

    Berning, Torsten

    of nonlinear loads, such as variable speed drives, light-emitting diode (LED) lamps, compact fluorescent lamps

  12. Loop-bed combustion apparatus

    DOE Patents [OSTI]

    Shang, Jer-Yu (Fairfax, VA); Mei, Joseph S. (Morgantown, WV); Slagle, Frank D. (Kingwood, WV); Notestein, John E. (Morgantown, WV)

    1984-01-01

    The present invention is directed to a combustion apparatus in the configuration of a oblong annulus defining a closed loop. Particulate coal together with a sulfur sorbent such as sulfur or dolomite is introduced into the closed loop, ignited, and propelled at a high rate of speed around the loop. Flue gas is withdrawn from a location in the closed loop in close proximity to an area in the loop where centrifugal force imposed upon the larger particulate material maintains these particulates at a location spaced from the flue gas outlet. Only flue gas and smaller particulates resulting from the combustion and innerparticle grinding are discharged from the combustor. This structural arrangement provides increased combustion efficiency due to the essentially complete combustion of the coal particulates as well as increased sulfur absorption due to the innerparticle grinding of the sorbent which provides greater particle surface area.

  13. Loop Representations

    E-Print Network [OSTI]

    B. Bruegmann

    1993-12-02

    The loop representation plays an important role in canonical quantum gravity because loop variables allow a natural treatment of the constraints. In these lectures we give an elementary introduction to (i) the relevant history of loops in knot theory and gauge theory, (ii) the loop representation of Maxwell theory, and (iii) the loop representation of canonical quantum gravity. (Based on lectures given at the 117. Heraeus Seminar, Bad Honnef, Sept. 1993)

  14. Myoelectric activity of the cecum and proximal loop of the ascending colon in the cow 

    E-Print Network [OSTI]

    Steiner, Adrian

    1993-01-01

    Six Jersey cows were implanted with 8 pairs of bipolar electrodes in the ileo-ceco-colic (ICC) area. Starting at day 11 after surgery, myoelectric activity was recorded at 2- to 3-day intervals, three times for 8 hours or four times for 6 hours. A...

  15. Close Window Close Window

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    and UT Arlington engineers have developed a wireless monitoring system that uses electrical impulsesPrint Page or Close Window Print Page or Close Window Doctors, engineers develop new wireless to track esophageal reflux. The wireless technology, called radio frequency identification (RFID), has been

  16. Acetylation of MEK2 and I B kinase (IKK) activation loop residues by YopJ inhibits signaling

    E-Print Network [OSTI]

    McMahon, Harvey

    Institute of Fundamental Research, Mumbai 400005, India Communicated by Richard Henderson, Medical Research the acetylation of two serine residues in the activa- tion loop of the MAP kinase kinase, MEK2. This covalent

  17. Cascading Closed Loop Cycle Power Generation 

    E-Print Network [OSTI]

    Romero, M.

    2008-01-01

    the combustion of fossil fuels. The WOWGen® power plant inherently reduces emissions and Greenhouse Gases (GHG) by producing power from waste heat without consuming fuel, thus increasing the overall energy efficiency of any industrial plant or power generation...

  18. The HTGR Closed - Loop Energy System 

    E-Print Network [OSTI]

    Leeth, G. G.

    1981-01-01

    pipe (TCP), combined with the HTGR to serve dispersed industrial heat and electrical loads. Heat in various forms can be supplied at temperatures up to about 1700 F. The system substitutes nuclear energy for fluid fuels, conserves energy compared...

  19. Loop-to-loop coupling.

    SciTech Connect (OSTI)

    Warne, Larry Kevin; Lucero, Larry Martin; Langston, William L.; Salazar, Robert Austin; Coleman, Phillip Dale; Basilio, Lorena I.; Bacon, Larry Donald

    2012-05-01

    This report estimates inductively-coupled energy to a low-impedance load in a loop-to-loop arrangement. Both analytical models and full-wave numerical simulations are used and the resulting fields, coupled powers and energies are compared. The energies are simply estimated from the coupled powers through approximations to the energy theorem. The transmitter loop is taken to be either a circular geometry or a rectangular-loop (stripline-type) geometry that was used in an experimental setup. Simple magnetic field models are constructed and used to estimate the mutual inductance to the receiving loop, which is taken to be circular with one or several turns. Circuit elements are estimated and used to determine the coupled current and power (an equivalent antenna picture is also given). These results are compared to an electromagnetic simulation of the transmitter geometry. Simple approximate relations are also given to estimate coupled energy from the power. The effect of additional loads in the form of attached leads, forming transmission lines, are considered. The results are summarized in a set of susceptibility-type curves. Finally, we also consider drives to the cables themselves and the resulting common-to-differential mode currents in the load.

  20. Pausing and activating thread state upon pin assertion by external logic monitoring polling loop exit time condition

    DOE Patents [OSTI]

    Chen, Dong; Giampapa, Mark; Heidelberger, Philip; Ohmacht, Martin; Satterfield, David L; Steinmacher-Burow, Burkhard; Sugavanam, Krishnan

    2013-05-21

    A system and method for enhancing performance of a computer which includes a computer system including a data storage device. The computer system includes a program stored in the data storage device and steps of the program are executed by a processer. The processor processes instructions from the program. A wait state in the processor waits for receiving specified data. A thread in the processor has a pause state wherein the processor waits for specified data. A pin in the processor initiates a return to an active state from the pause state for the thread. A logic circuit is external to the processor, and the logic circuit is configured to detect a specified condition. The pin initiates a return to the active state of the thread when the specified condition is detected using the logic circuit.

  1. Well-observed dynamics of flaring and peripheral coronal magnetic loops during an M-class limb flare

    SciTech Connect (OSTI)

    Shen, Jinhua; Zhou, Tuanhui; Ji, Haisheng; Feng, Li; Wiegelmann, Thomas; Inhester, Bernd

    2014-08-20

    In this paper, we present a variety of well-observed dynamic behaviors for the flaring and peripheral magnetic loops of the M6.6 class extreme limb flare that occurred on 2011 February 24 (SOL2011-02-24T07:20) from EUV observations by the Atmospheric Imaging Assembly on the Solar Dynamics Observatory and X-ray observations by RHESSI. The flaring loop motion confirms the earlier contraction-expansion picture. We find that the U-shaped trajectory delineated by the X-ray corona source of the flare roughly follows the direction of a filament eruption associated with the flare. Different temperature structures of the coronal source during the contraction and expansion phases strongly suggest different kinds of magnetic reconnection processes. For some peripheral loops, we discover that their dynamics are closely correlated with the filament eruption. During the slow rising to abrupt, fast rising of the filament, overlying peripheral magnetic loops display different responses. Two magnetic loops on the elbow of the active region had a slow descending motion followed by an abrupt successive fast contraction, while magnetic loops on the top of the filament were pushed outward, slowly being inflated for a while and then erupting as a moving front. We show that the filament activation and eruption play a dominant role in determining the dynamics of the overlying peripheral coronal magnetic loops.

  2. Fast flux locked loop

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Independence, MO)

    2002-09-10

    A flux locked loop for providing an electrical feedback signal, the flux locked loop employing radio-frequency components and technology to extend the flux modulation frequency and tracking loop bandwidth. The flux locked loop of the present invention has particularly useful application in read-out electronics for DC SQUID magnetic measurement systems, in which case the electrical signal output by the flux locked loop represents an unknown magnetic flux applied to the DC SQUID.

  3. Closing Plenary

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels|Programs |Chart ofClark EnergyClosing Gaps in Modeling

  4. Siphon flow in a cool magnetic loop

    E-Print Network [OSTI]

    Bethge, C; Peter, H; Lagg, A

    2011-01-01

    We investigate the properties of a structure in the solar chromosphere in an active region to find out whether the feature is consistent with a siphon flow in a magnetic loop filled with chromospheric material.

  5. Electromechanical emulation of active vibratory Wenyuan Chena...

    E-Print Network [OSTI]

    Dupont, Pierre

    Electromechanical emulation of active vibratory systems Wenyuan Chena... and Pierre E. Dupont, Massachusetts 02215 wychen@alum.bu.edu; pierre@bu.edu Abstract: The design of a simple electromechanical system by closed- loop control of electromechanical shakers attached to the passive system and driven so

  6. Damped transverse oscillations of interacting coronal loops

    E-Print Network [OSTI]

    Soler, Roberto

    2015-01-01

    Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations compared to those of an isolated loop. Here we theoretically investigate resonantly damped transverse oscillations of interacting non-uniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. ...

  7. Project Profile: Heliostat System with Wireless Closed-Loop Control

    Broader source: Energy.gov [DOE]

    Thermata, under the 2012 SunShot Concentrating Solar Power (CSP) R&D funding opportunity announcement (FOA), is demonstrating a collector system with enhanced optical tracking capability. The unit includes a control system that provides real-time information to adjust the location of the reflected sunlight. It demonstrates a prototype heliostat system that meets the cost, performance, and reliability objectives of the SunShot Initiative.

  8. Heliostat System with Wireless Closed-Loop Control (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Thermata is one of the 2012 SunShot CSP R&D awardees for their advanced collectors. This fact sheet explains the motivation, description, and impact of the project.

  9. CNCC Craig Campus Geothermal Program: 82-well closed loop GHP...

    Open Energy Info (EERE)

    Milestones Geothermal energy provided by a ground source heat pump system will reduce consumption of electricity (60% is from coal) and natural gas resources compared to...

  10. Film cooling for a closed loop cooled airfoil

    DOE Patents [OSTI]

    Burdgick, Steven Sebastian (Schenectady, NY); Yu, Yufeng Phillip (Simpsonville, SC); Itzel, Gary Michael (Simpsonville, SC)

    2003-01-01

    Turbine stator vane segments have radially inner and outer walls with vanes extending therebetween. The inner and outer walls are compartmentalized and have impingement plates. Steam flowing into the outer wall plenum passes through the impingement plate for impingement cooling of the outer wall upper surface. The spent impingement steam flows into cavities of the vane having inserts for impingement cooling the walls of the vane. The steam passes into the inner wall and through the impingement plate for impingement cooling of the inner wall surface and for return through return cavities having inserts for impingement cooling of the vane surfaces. At least one film cooling hole is defined through a wall of at least one of the cavities for flow communication between an interior of the cavity and an exterior of the vane. The film cooling hole(s) are defined adjacent a potential low LCF life region, so that cooling medium that bleeds out through the film cooling hole(s) reduces a thermal gradient in a vicinity thereof, thereby the increase the LCF life of that region.

  11. Optimal Power Flow: Closing the Loop over Corrupted Data

    E-Print Network [OSTI]

    Johansson, Karl Henrik

    application are the Supervisory Control and Data Acquisition (SCADA) systems. In power networks, the SCADA System. Modern SCADA/EMS systems collect large amounts of measurement data and, using a State Estimator attack. We denote the data corruption by a. cyber attacks on SCADA/EMS systems operating power net- works

  12. Student Project Model Checking of a Closed-Loop

    E-Print Network [OSTI]

    (PCA) infusion pump. They have also implemented a failure scenario where the safety of the patient.2 Model Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 PCA Infusion Pump such as infusion pumps can affect the patient'

  13. Ageing is important: closing the fouling-cleaning loop

    E-Print Network [OSTI]

    Ishiyama, E.M.; Paterson, W.R.; Wilson, D.I.

    2013-09-20

    , time, and cost. This paper reports a reformulation of the cleaning scheduling problem to consider the choice of cleaning method, as well as the timing of cleaning. A case study based on a shell-and-tube heat exchanger processing crude oil is used...

  14. Open versus closed loop capacity equilibria in electricity markets ...

    E-Print Network [OSTI]

    2012-05-06

    energy market is frequently represented using conjectural variations. Consid- ... market efficiency (as measured by total social welfare) is ambiguous. Thus,.

  15. In situ conversion process utilizing a closed loop heating system

    DOE Patents [OSTI]

    Sandberg, Chester Ledlie (Palo Alto, CA); Fowler, Thomas David (Houston, TX); Vinegar, Harold J. (Bellaire, TX); Schoeber, Willen Jan Antoon Henri (Houston, TX)

    2009-08-18

    An in situ conversion system for producing hydrocarbons from a subsurface formation is described. The system includes a plurality of u-shaped wellbores in the formation. Piping is positioned in at least two of the u-shaped wellbores. A fluid circulation system is coupled to the piping. The fluid circulation system is configured to circulate hot heat transfer fluid through at least a portion of the piping to form at least one heated portion of the formation. An electrical power supply is configured to provide electrical current to at least a portion of the piping located below an overburden in the formation to resistively heat at least a portion of the piping. Heat transfers from the piping to the formation.

  16. Energy Cost Savings Calculator for Commercial Boilers: Closed Loop, Space

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n cEnergy (AZ,LocalEfficiency |< BackHeating Applications Only |

  17. Tachyon condensation in boundary string field theory at one loop

    E-Print Network [OSTI]

    K. Bardakci; A. Konechny

    2001-08-21

    We compute the one-loop partition function for quadratic tachyon background in open string theory. Both closed and open string representations are developed. Using these representations we study the one-loop divergences in the partition function in the presence of the tachyon background. The divergences due to the open and closed string tachyons are treated by analytic continuation in the tachyon mass squared. We pay particular attention to the imaginary part of the analytically continued expressions. The last one gives the decay rate of the unstable vacuum. The dilaton tadpole is also given some partial consideration. The partition function is further used to study corrections to tachyon condensation processes describing brane descent relations. Assuming the boundary string field theory prescription for construction of the string field action via partition function holds at one loop level we study the one-loop corrections to the tachyon potential and to the tensions of lower-dimensional branes.

  18. Permutations and the Loop

    E-Print Network [OSTI]

    T. W. Brown

    2008-05-07

    We consider the one-loop two-point function for multi-trace operators in the U(2) sector of \\cN=4 supersymmetric Yang-Mills at finite N. We derive an expression for it in terms of U(N) and S_{n+1} group theory data, where n is the length of the operators. The Clebsch-Gordan operators constructed in 0711.0176, which are diagonal at tree level, only mix at one loop if you can reach the same (n+1)-box Young diagram by adding a single box to each of the n-box Young diagrams of their U(N) representations (which organise their multi-trace structure). Similar results are expected for higher loops and for other sectors of the global symmetry group.

  19. String Loop Corrections to Stable Non-BPS Branes

    E-Print Network [OSTI]

    N. D. Lambert; I. Sachs

    2000-10-31

    We calculate the string loop corrections to the tachyon potential for stable non-BPS Dp-branes on the orbifold T^4/Z_2. We find a non-trivial phase structure and we show that, after tachyon condensation, the non-BPS Dp-branes are attracted to each other for p=0,1,2. We then identify the corresponding closed string boundary states together with the massless long range fields they excite. For p=3,4 the string loop correction diverge. We identify the massless closed string fields responsible for these divergencies and regularise the partition function using a Fischler-Susskind mechanism.

  20. Hybrid Combustion-Gasification Chemical Looping

    SciTech Connect (OSTI)

    Herbert Andrus; Gregory Burns; John Chiu; Gregory Lijedahl; Peter Stromberg; Paul Thibeault

    2009-01-07

    For the past several years Alstom Power Inc. (Alstom), a leading world-wide power system manufacturer and supplier, has been in the initial stages of developing an entirely new, ultra-clean, low cost, high efficiency power plant for the global power market. This new power plant concept is based on a hybrid combustion-gasification process utilizing high temperature chemical and thermal looping technology The process consists of the oxidation, reduction, carbonation, and calcination of calcium-based compounds, which chemically react with coal, biomass, or opportunity fuels in two chemical loops and one thermal loop. The chemical and thermal looping technology can be alternatively configured as (i) a combustion-based steam power plant with CO{sub 2} capture, (ii) a hybrid combustion-gasification process producing a syngas for gas turbines or fuel cells, or (iii) an integrated hybrid combustion-gasification process producing hydrogen for gas turbines, fuel cells or other hydrogen based applications while also producing a separate stream of CO{sub 2} for use or sequestration. In its most advanced configuration, this new concept offers the promise to become the technology link from today's Rankine cycle steam power plants to tomorrow's advanced energy plants. The objective of this work is to develop and verify the high temperature chemical and thermal looping process concept at a small-scale pilot facility in order to enable AL to design, construct and demonstrate a pre-commercial, prototype version of this advanced system. In support of this objective, Alstom and DOE started a multi-year program, under this contract. Before the contract started, in a preliminary phase (Phase 0) Alstom funded and built the required small-scale pilot facility (Process Development Unit, PDU) at its Power Plant Laboratories in Windsor, Connecticut. Construction was completed in calendar year 2003. The objective for Phase I was to develop the indirect combustion loop with CO{sub 2} separation, and also syngas production from coal with the calcium sulfide (CaS)/calcium sulfate (CaSO{sub 4}) loop utilizing the PDU facility. The results of Phase I were reported in Reference 1, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase I Report' The objective for Phase II was to develop the carbonate loop--lime (CaO)/calcium carbonate (CaCO{sub 3}) loop, integrate it with the gasification loop from Phase I, and ultimately demonstrate the feasibility of hydrogen production from the combined loops. The results of this program were reported in Reference 3, 'Hybrid Combustion-Gasification Chemical Looping Coal Power Development Technology Development Phase II Report'. The objective of Phase III is to operate the pilot plant to obtain enough engineering information to design a prototype of the commercial Chemical Looping concept. The activities include modifications to the Phase II Chemical Looping PDU, solids transportation studies, control and instrumentation studies and additional cold flow modeling. The deliverable is a report making recommendations for preliminary design guidelines for the prototype plant, results from the pilot plant testing and an update of the commercial plant economic estimates.

  1. NETL - Chemical Looping Reactor

    SciTech Connect (OSTI)

    2013-07-24

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  2. NETL - Chemical Looping Reactor

    ScienceCinema (OSTI)

    None

    2014-06-26

    NETL's Chemical Looping Reactor unit is a high-temperature integrated CLC process with extensive instrumentation to improve computational simulations. A non-reacting test unit is also used to study solids flow at ambient temperature. The CLR unit circulates approximately 1,000 pounds per hour at temperatures around 1,800 degrees Fahrenheit.

  3. Improved Control Strategy for Active Bouncers used in Klystron Modulators

    E-Print Network [OSTI]

    Aguglia, D; Benedetti, M; Garcia Retegui, R; Maestri, S; Nisbet, D

    2012-01-01

    This paper introduces a closed-loop control system for klystron modulators. The system is based on the discharge of a capacitor into a step-up voltage transformer and an active bouncer implemented with a multiphase buck converter. In order to obtain a constant Klystron voltage at the at-top, the active bouncer must compensate both the capacitor discharge and the pulse transformer characteristic. The proposed control includes an inner voltage regulation loop that controls the active bouncer output voltage and an outer one that controls the klystron voltage. The primary side current and main capacitor voltage are included in the regulation loops to simplify the controllers. Simulations demonstrate that the strategy adopted allows to obtain a precision better than 0:1% on a 110 kV klystron. Experimental tests have shown that the multiphase converter is able to track a high dynamics reference even under variable output voltage conditions.

  4. Loop Gas Model for Open Strings

    E-Print Network [OSTI]

    V. Kazakov; I. Kostov

    1992-05-18

    The open string with one-dimensional target space is formulated in terms of an SOS, or loop gas, model on a random surface. We solve an integral equation for the loop amplitude with Dirichlet and Neumann boundary conditions imposed on different pieces of its boundary. The result is used to calculate the mean values of order and disorder operators, to construct the string propagator and find its spectrum of excitations. The latter is not sensible neither to the string tension $\\L$ nor to the mass $\\mu$ of the ``quarks'' at the ends of the string. As in the case of closed strings, the SOS formulation allows to construct a Feynman diagram technique for the string interaction amplitudes.

  5. The Astrophysical Journal Submitted, 2000 August 7 Modeling of Coronal EUV Loops Observed with TRACE

    E-Print Network [OSTI]

    Hudson, Hugh

    measure distribution peaks in the temperature range of 3­5 MK, an overwhelming large number of EUV loops loops and transient brightenings. Subject headings: Sun: Corona --- Sun : Active Regions --- Sun : EUV to the interpretation of EUV loops, for which physical parameters such as density n e (s) and temperature T (s) along

  6. Coupled dual loop absorption heat pump

    DOE Patents [OSTI]

    Sarkisian, Paul H. (Watertown, MA); Reimann, Robert C. (Lafayette, NY); Biermann, Wendell J. (Fayetteville, NY)

    1985-01-01

    A coupled dual loop absorption system which utilizes two separate complete loops. Each individual loop operates at three temperatures and two pressures. This low temperature loop absorber and condenser are thermally coupled to the high temperature loop evaporator, and the high temperature loop condenser and absorber are thermally coupled to the low temperature generator.

  7. Dynamic PID loop control

    SciTech Connect (OSTI)

    Pei, L.; Klebaner, A.; Theilacker, J.; Soyars, W.; Martinez, A.; Bossert, R.; DeGraff, B.; Darve, C.; /Fermilab

    2011-06-01

    The Horizontal Test Stand (HTS) SRF Cavity and Cryomodule 1 (CM1) of eight 9-cell, 1.3GHz SRF cavities are operating at Fermilab. For the cryogenic control system, how to hold liquid level constant in the cryostat by regulation of its Joule-Thompson JT-valve is very important after cryostat cool down to 2.0 K. The 72-cell cryostat liquid level response generally takes a long time delay after regulating its JT-valve; therefore, typical PID control loop should result in some cryostat parameter oscillations. This paper presents a type of PID parameter self-optimal and Time-Delay control method used to reduce cryogenic system parameters oscillation.

  8. Three-loop static potential

    E-Print Network [OSTI]

    Alexander V. Smirnov; Vladimir A. Smirnov; Matthias Steinhauser

    2010-04-12

    We compute the three-loop corrections to the potential of two heavy quarks. In particular we consider in this Letter the purely gluonic contribution which provides in combination with the fermion corrections of Ref. \\cite{Smirnov:2008pn} the complete answer at three loops.

  9. Heating and cooling of coronal loops observed by SDO

    E-Print Network [OSTI]

    Li, Leping; Chen, Feng; Zhang, Jun

    2015-01-01

    Context: One of the most prominent processes suggested to heat the corona to well above 10^6 K builds on nanoflares, short bursts of energy dissipation. Aims: We compare observations to model predictions to test the validity of the nanoflare process. Methods: Using extreme UV data from AIA/SDO and HMI/SDO line-of-sight magnetograms we study the spatial and temporal evolution of a set of loops in active region AR 11850. Results: We find a transient brightening of loops in emission from Fe xviii forming at about 7.2 MK while at the same time these loops dim in emission from lower temperatures. This points to a fast heating of the loop that goes along with evaporation of material that we observe as apparent upward motions in the image sequence. After this initial phases lasting for some 10 min, the loops brighten in a sequence of AIA channels showing cooler and cooler plasma, indicating the cooling of the loops over a time scale of about one hour. A comparison to the predictions from a 1D loop model shows that t...

  10. Sampling-Based Motion Planning under Kinematic Loop-Closure Constraints

    E-Print Network [OSTI]

    Cortés, Juan

    ). Complex articulated mechanisms with closed kinematic chains appear in all the domains where motion- ple closed kinematic chains. biology for the structural analysis of protein loops. All. Basically, motion constraints are due to the kinematic structure of the mechanism and to collision avoid

  11. Closed Brayton cycle power conversion systems for nuclear reactors :

    SciTech Connect (OSTI)

    Wright, Steven A.; Lipinski, Ronald J.; Vernon, Milton E.; Sanchez, Travis

    2006-04-01

    This report describes the results of a Sandia National Laboratories internally funded research program to study the coupling of nuclear reactors to gas dynamic Brayton power conversion systems. The research focused on developing integrated dynamic system models, fabricating a 10-30 kWe closed loop Brayton cycle, and validating these models by operating the Brayton test-loop. The work tasks were performed in three major areas. First, the system equations and dynamic models for reactors and Closed Brayton Cycle (CBC) systems were developed and implemented in SIMULINKTM. Within this effort, both steady state and dynamic system models for all the components (turbines, compressors, reactors, ducting, alternators, heat exchangers, and space based radiators) were developed and assembled into complete systems for gas cooled reactors, liquid metal reactors, and electrically heated simulators. Various control modules that use proportional-integral-differential (PID) feedback loops for the reactor and the power-conversion shaft speed were also developed and implemented. The simulation code is called RPCSIM (Reactor Power and Control Simulator). In the second task an open cycle commercially available Capstone C30 micro-turbine power generator was modified to provide a small inexpensive closed Brayton cycle test loop called the Sandia Brayton test-Loop (SBL-30). The Capstone gas-turbine unit housing was modified to permit the attachment of an electrical heater and a water cooled chiller to form a closed loop. The Capstone turbine, compressor, and alternator were used without modification. The Capstone systems nominal operating point is 1150 K turbine inlet temperature at 96,000 rpm. The annular recuperator and portions of the Capstone control system (inverter) and starter system also were reused. The rotational speed of the turbo-machinery is controlled by adjusting the alternator load by using the electrical grid as the load bank. The SBL-30 test loop was operated at the manufacturers site (Barber-Nichols Inc.) and installed and operated at Sandia. A sufficiently detailed description of the loop is provided in this report along with the design characteristics of the turbo-alternator-compressor set to allow other researchers to compare their results with those measured in the Sandia test-loop. The third task consisted of a validation effort. In this task the test loop was operated and compared with the modeled results to develop a more complete understanding of this electrically heated closed power generation system and to validate the model. The measured and predicted system temperatures and pressures are in good agreement, indicating that the model is a reasonable representation of the test loop. Typical deviations between the model and the hardware results are less than 10%. Additional tests were performed to assess the capability of the Brayton engine to continue to remove decay heat after the reactor/heater is shutdown, to develop safe and effective control strategies, and to access the effectiveness of gas inventory control as an alternative means to provide load following. In one test the heater power was turned off to simulate a rapid reactor shutdown, and the turbomachinery was driven solely by the sensible heat stored in the heater for over 71 minutes without external power input. This is an important safety feature for CBC systems as it means that the closed Brayton loop will keep cooling the reactor without the need for auxiliary power (other than that needed to circulate the waste heat rejection coolant) provided the heat sink is available.

  12. Thermoelectric Power Generation System with Loop Thermosyphon...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation System with Loop Thermosyphon in Future High Efficiency Hybrid Vehicles Thermoelectric Power Generation System with Loop Thermosyphon in Future High Efficiency Hybrid...

  13. Loop-deformed Poincaré algebra

    E-Print Network [OSTI]

    Jakub Mielczarek

    2013-04-08

    In this essay we present evidence suggesting that loop quantum gravity leads to deformation of the local Poincar\\'e algebra within the limit of high energies. This deformation is a consequence of quantum modification of effective off-shell hypersurface deformation algebra. Surprisingly, the form of deformation suggests that the signature of space-time changes from Lorentzian to Euclidean at large curvatures. We construct particular realization of the loop-deformed Poincar\\'e algebra and find that it can be related to curved momentum space, which indicates the relationship with recently introduced notion of relative locality. The presented findings open a new way of testing loop quantum gravity effects.

  14. Absolute Free Energy and Entropy of a Mobile Loop of the Enzyme Acetylcholinesterase Mihail Mihailescu and Hagai Meirovitch*

    E-Print Network [OSTI]

    Meirovitch, Hagai

    Absolute Free Energy and Entropy of a Mobile Loop of the Enzyme Acetylcholinesterase Mihail dissociation measurements suggest that the free-energy (F) penalty for the loop displacement is F ) Ffree contribution of water to the total free energy. Namely, for water densities close to the experimental value

  15. Induction loop detector systems crosstalk 

    E-Print Network [OSTI]

    Bhagat, Victor

    1994-01-01

    traffic control systems are necessary to obtain maximum possible efficiency from our freeway systems. A major component of freeway management systems is the induction loop detector. This research effort evaluated the methods by which crosstalk could...

  16. Measurability of Wilson loop operators

    E-Print Network [OSTI]

    David Beckman; Daniel Gottesman; Alexei Kitaev; John Preskill

    2001-10-22

    We show that the nondemolition measurement of a spacelike Wilson loop operator W(C) is impossible in a relativistic non-Abelian gauge theory. In particular, if two spacelike-separated magnetic flux tubes both link with the loop C, then a nondemolition measurement of W(C) would cause electric charge to be transferred from one flux tube to the other, a violation of relativistic causality. A destructive measurement of W(C) is possible in a non-Abelian gauge theory with suitable matter content. In an Abelian gauge theory, many cooperating parties distributed along the loop C can perform a nondemolition measurement of the Wilson loop operator if they are equipped with a shared entangled ancilla that has been prepared in advance. We also note that Abelian electric charge (but not non-Abelian charge) can be transported superluminally, without any accompanying transmission of information.

  17. Calibration of a Parallel Robot Using Multiple Kinematic Closed Ali Nahvi, John M. Hollerbach

    E-Print Network [OSTI]

    Hollerbach, John M.

    ,he shoulder joint 2 Mechanism Kinematics The kinematic model is shown in Figure 2. A, (i=1,2,3,4) representsCalibration of a Parallel Robot Using Multiple Kinematic Closed Loops Ali Nahvi, John M. Hollerbach be kinematically calibrated using joint an- gle readings alone [l . By placement of the closed dit

  18. Simulations of Solar Jets Confined by Coronal Loops

    E-Print Network [OSTI]

    Wyper, P F

    2015-01-01

    Coronal jets are collimated, dynamic events that occur over a broad range of spatial scales in the solar corona. In the open magnetic field of coronal holes, jets form quasi-radial spires that can extend far out into the heliosphere, while in closed-field regions the jet outflows are confined to the corona. We explore the application of the embedded-bipole model to jets occurring in closed coronal loops. In this model, magnetic free energy is injected slowly by footpoint motions that introduce twist within the closed dome of the jet source region, and is released rapidly by the onset of an ideal kink-like instability. Two length scales characterize the system: the width (N) of the jet source region and the footpoint separation (L) of the coronal loop that envelops the jet source. We find that the jet characteristics are highly sensitive to the ratio L/N, in both the conditions for initiation and the subsequent dynamics. The longest-lasting and most energetic jets occur along long coronal loops with large L/N ...

  19. Modeling solar coronal bright point oscillations with multiple nanoflare heated loops

    E-Print Network [OSTI]

    Chandrashekhar, K

    2015-01-01

    Intensity oscillations of coronal bright points (BPs) have been studied for past several years. It has been known for a while that these BPs are closed magnetic loop like structures. However, initiation of such intensity oscillations is still an enigma. There have been many suggestions to explain these oscillations, but modeling of such BPs have not been explored so far. Using a multithreaded nanoflare heated loop model we study the behavior of such BPs in this work. We compute typical loop lengths of BPs using potential field line extrapolation of available data (Chandrashekhar et al. 2013), and set this as the length of our simulated loops. We produce intensity like observables through forward modeling and analyze the intensity time series using wavelet analysis, as was done by previous observers. The result reveals similar intensity oscillation periods reported in past observations. It is suggested these oscillations are actually shock wave propagations along the loop. We also show that if one considers di...

  20. Structure of processes in flow reactor and closed reactor: Flow reactor

    E-Print Network [OSTI]

    Greifswald, Ernst-Moritz-Arndt-Universität

    Structure of processes in flow reactor and closed reactor: Flow reactor Closed reactor Active Zone -- chemical quasi- equilibria, similarity principles and macroscopic kinetics", in: Lectures on Plasma Physics

  1. Method and apparatus for operating a powertrain system upon detecting a stuck-closed clutch

    DOE Patents [OSTI]

    Hansen, R. Anthony

    2014-02-18

    A powertrain system includes a multi-mode transmission having a plurality of torque machines. A method for controlling the powertrain system includes identifying all presently applied clutches including commanded applied clutches and the stuck-closed clutch upon detecting one of the torque-transfer clutches is in a stuck-closed condition. A closed-loop control system is employed to control operation of the multi-mode transmission accounting for all the presently applied clutches.

  2. Thermodynamics in Loop Quantum Cosmology

    E-Print Network [OSTI]

    Li-Fang Li; Jian-Yang Zhu

    2008-12-18

    Loop quantum cosmology (LQC) is very powerful to deal with the behavior of early universe. And the effective loop quantum cosmology gives a successful description of the universe in the semiclassical region. We consider the apparent horizon of the Friedmann-Robertson-Walker universe as a thermodynamical system and investigate the thermodynamics of LQC in the semiclassical region. The effective density and effective pressure in the modified Friedmann equation from LQC not only determine the evolution of the universe in LQC scenario but are actually also found to be the thermodynamic quantities. This result comes from the energy definition in cosmology (the Misner-Sharp gravitational energy) and is consistent with thermodynamic laws. We prove that within the framework of loop quantum cosmology, the elementary equation of equilibrium thermodynamics is still valid.

  3. An accelerated closed universe

    E-Print Network [OSTI]

    Sergio del Campo; Mauricio Cataldo; Francisco Pena

    2004-08-03

    We study a model in which a closed universe with dust and quintessence matter components may look like an accelerated flat Friedmann-Robertson-Walker (FRW) universe at low redshifts. Several quantities relevant to the model are expressed in terms of observed density parameters, $\\Omega_M$ and $\\Omega_{\\Lambda}$, and of the associated density parameter $\\Omega_Q$ related to the quintessence scalar field $Q$.

  4. Chinese Magic in Loop Integrals

    E-Print Network [OSTI]

    B. F. L. Ward

    2011-06-02

    We present an approach to higher point loop integrals using Chinese magic in the virtual loop integration variable. We show, using the five point function in the important e^+e^-\\to f\\bar{f}+\\gamma process for ISR as a pedagogical vehicle, that we get an expression for it directly reduced to one scalar 5-point function and 4-, 3-, and 2- point integrals, thereby avoiding the computation of the usual three tensor 5-pt Passarino-Veltman reduction. We argue that this offers potential for greater numerical stability.

  5. running and when the locking loop is closed. The closed-loop frequency fluctuations exhibit a root-mean-square (r.m.s.)

    E-Print Network [OSTI]

    Wunsch, Carl

    by solid deposits and water condensation, and also prevents combustion of flammable gases such as hydrogen., Sutter, D. H., Gallmann, L., Matuschek, N. & Keller, U. Frontiers in ultrashort pulse generation: Pushing

  6. Psychosocial Aspects of Closed and Open Loop Insulin Delivery: Closing the Loop In Adults with Type 1 Diabetes in the Home Setting

    E-Print Network [OSTI]

    Barnard, Katharine D.; Wysocki, Tim; Thabit, Hood; Evans, Mark L.; Amiel, Stephanie; Heller, Simon; Young, Amanda; Hovorka, Roman

    2015-02-20

    the low participant numbers and the fact that the trial was powered on time spent in target glucose range, so lacked statistical power to detect significant differences in psychosocial functioning between the two arms. Similar challenges have been... , it was really good”. 007 Better sleep “It did away with the intrusiveness and not having to wake up and check blood glucose levels” 017 “Better sleep pattern …When it worked it was fantastic … I had 8 hours uninterrupted which is fantastic”. 009 19...

  7. Loop quantum gravity and observations

    E-Print Network [OSTI]

    A. Barrau; J. Grain

    2015-10-28

    Quantum gravity has long been thought to be completely decoupled from experiments or observations. Although it is true that smoking guns are still missing, there are now serious hopes that quantum gravity phenomena might be tested. We review here some possible ways to observe loop quantum gravity effects either in the framework of cosmology or in astroparticle physics.

  8. Detecting and escaping infinite loops using Bolt

    E-Print Network [OSTI]

    Kling, Michael (Michael W.)

    2012-01-01

    In this thesis we present Bolt, a novel system for escaping infinite loops. If a user suspects that an executing program is stuck in an infinite loop, the user can use the Bolt user interface, which attaches to the running ...

  9. ALTERNATIVE LOOP RINGS Kenneth Kunen \\Lambda

    E-Print Network [OSTI]

    Kunen, Ken

    ALTERNATIVE LOOP RINGS Kenneth Kunen \\Lambda University of Wisconsin, Madison, WI 53706, U.S.A. email: kunen@math.wisc.edu December 24, 1996 DRAFT Abstract The right alternative law implies the left alternative law in loop rings of characteristic other than 2. We also exhibit a loop which fails to be a right

  10. Reheating Closed String Inflation

    E-Print Network [OSTI]

    Daniel Green

    2007-10-02

    Protecting the inflationary potential from quantum corrections typically requires symmetries that constrain the form of couplings of the inflaton to other sectors. We will explore how these restrictions affect reheating in models with UV completions. In particular, we look at how reheating occurs when inflation is governed by closed strings, using N-flation as an example. We find that coupling the inflaton preferentially to the Standard Model is difficult, and hidden sectors are typically reheated. Observational constraints are only met by a fraction of the models. In some working models, relativistic relics in the hidden sector provide dark matter candidates with masses that range from keV to PeV, with lighter masses being preferred.

  11. Open-loop heat-recovery dryer

    DOE Patents [OSTI]

    TeGrotenhuis, Ward Evan

    2013-11-05

    A drying apparatus is disclosed that includes a drum and an open-loop airflow pathway originating at an ambient air inlet, passing through the drum, and terminating at an exhaust outlet. A passive heat exchanger is included for passively transferring heat from air flowing from the drum toward the exhaust outlet to air flowing from the ambient air inlet toward the drum. A heat pump is also included for actively transferring heat from air flowing from the passive heat exchanger toward the exhaust outlet to air flowing from the passive heat exchanger toward the drum. A heating element is also included for further heating air flowing from the heat pump toward the drum.

  12. From GHz to mHz: A Multiwavelength Study of the Acoustically Active 14 August 2004 M7.4 Solar Flare

    E-Print Network [OSTI]

    J. C. Martinez-Oliveros; H. Moradi; D. Besliu-Ionescu; A. -C Donea; P. S. Cally; C. Lindsey

    2007-07-13

    We carried out an electromagnetic acoustic analysis of the solar flare of 14 August 2004 in active region AR10656 from the radio to the hard X-ray spectrum. The flare was a GOES soft X-ray class M7.4 and produced a detectable sun quake, confirming earlier inferences that relatively low-energy flares may be able to generate sun quakes. We introduce the hypothesis that the seismicity of the active region is closely related to the heights of coronal magnetic loops that conduct high-energy particles from the flare. In the case of relatively short magnetic loops, chromospheric evaporation populates the loop interior with ionized gas relatively rapidly, expediting the scattering of remaining trapped high-energy electrons into the magnetic loss cone and their rapid precipitation into the chromosphere. This increases both the intensity and suddenness of the chromospheric heating, satisfying the basic conditions for an acoustic emission that penetrates into the solar interior.

  13. Calculating loops without loop calculations: NLO computation of pentaquark correlators

    E-Print Network [OSTI]

    S. Groote; J. G. Körner; A. A. Pivovarov

    2012-08-27

    We compute next-to-leading order (NLO) perturbative QCD corrections to the correlators of interpolating pentaquark currents. We employ modular techniques in configuration space which saves us from the onus of having to do loop calculations. The modular technique is explained in some detail. We present explicit NLO results for several interpolating pentaquark currents that have been written down in the literature. Our modular approach is easily adapted to the case of NLO corrections to multiquark correlators with an arbitrary number of quarks/antiquarks.

  14. Chemical Looping | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR JumpMaine: EnergyEnergy InformationChemical Looping Jump

  15. Integration Rules for Loop Scattering Equations

    E-Print Network [OSTI]

    Baadsgaard, Christian; Bourjaily, Jacob L; Damgaard, Poul H; Feng, Bo

    2015-01-01

    We formulate new integration rules for one-loop scattering equations analogous to those at tree-level, and test them in a number of non-trivial cases for amplitudes in scalar $\\phi^3$-theory. This formalism greatly facilitates the evaluation of amplitudes in the CHY representation at one-loop order, without the need to explicitly sum over the solutions to the loop-level scattering equations.

  16. Polyakov loop renormalization with gradient flow

    E-Print Network [OSTI]

    Peter Petreczky; Hans-Peter Schadler

    2015-11-14

    We propose to use the gradient flow for the renormalization of Polyakov loops in various representations. We study Polyakov loops in 2+1 flavor QCD using the HISQ action and lattices with temporal extents $N_\\tau$=6, 8, 10 and 12 in various representations, including fundamental, sextet, adjoint, decuplet, 15-plet and 27-plet. This alternative renormalization procedure allows for the renormalization over a large temperature range from $T$=100 MeV - 800 MeV, with small errors not only for the fundamental, but also for the higher representations of the Polyakov loop. We discuss the results of this procedure and Casimir scaling of the Polyakov loop.

  17. Hard-thermal-loop QED thermodynamics

    E-Print Network [OSTI]

    Nan Su; Jens O. Andersen; Michael Strickland

    2009-11-24

    The weak-coupling expansion for thermodynamic quantities in thermal field theories is poorly convergent unless the coupling constant is tiny. We discuss the calculation of the free energy for a hot gas of electrons and photons to three-loop order using hard-thermal-loop perturbation theory (HTLpt). We show that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ~ 2. The reorganization is gauge invariant by construction, and due to the cancellations among various contributions, we obtain a completely analytic result for the resummed thermodynamic potential at three loops.

  18. Loop formation in polymers in crowded environment

    E-Print Network [OSTI]

    K. Haydukivska; V. Blavatska

    2015-11-12

    We analyze the probability of a single loop formation in a long flexible polymer chain in disordered environment in $d$ dimensions. The structural defects are considered to be correlated on large distances $r$ according to a power law $\\sim r^{-a}$. Working within the frames of continuous chain model and applying the direct polymer renormalization scheme, we obtain the values of critical exponents governing the scaling of probabilities of loop formation with various positions along the chain as function of loops length. Our results quantitatively reveal that the presence of structural defects in environment decreases the probability of loop formation in polymer macromolecules.

  19. Hardware In The Loop Simulator in UAV Rapid Development Life Cycle

    E-Print Network [OSTI]

    Adiprawita, Widyawardana; Semibiring, Jaka

    2008-01-01

    Field trial is very critical and high risk in autonomous UAV development life cycle. Hardware in the loop (HIL) simulation is a computer simulation that has the ability to simulate UAV flight characteristic, sensor modeling and actuator modeling while communicating in real time with the UAV autopilot hardware. HIL simulation can be used to test the UAV autopilot hardware reliability, test the closed loop performance of the overall system and tuning the control parameter. By rigorous testing in the HIL simulator, the risk in the field trial can be minimized.

  20. Multispectral polarimetric sensor for glucose monitoring utilizing a digital closed-loop control system 

    E-Print Network [OSTI]

    Gorde, Harshal Wasudeo

    1998-01-01

    disadvantages of conventional methods is the invasive nature of the tests that raise the risk of patient infection and discomfort. The polarimetric approach is currently being researched to determine glucose levels in the body non-invasively. Polarized light...

  1. Microfluidic device incorporating closed loop feedback control for uniform and tunable production of micro-droplets

    E-Print Network [OSTI]

    Rothstein, Jonathan

    with high-resolution and sensitivity.1 The physics of the fluid flow through microchannels within numbers as a result of the disparately small length scales, thereby remaining laminar even for fluids, Accepted 2nd February 2010 First published as an Advance Article on the web 25th February 2010 DOI: 10

  2. Closed-loop Real-time Control of a Novel Linear Magnetostrictive Actuator 

    E-Print Network [OSTI]

    Chen, Chien-Fan

    2010-10-12

    . By changing the duty ratio of the PWM signal, the current in the coils can be changed from zero to its maximum value. With a current controller using an integrator with a gain of 10, the current can be controlled with high response time and an error of /- 0...

  3. Directly induced swing for closed loop control of electroslag remelting furnace

    DOE Patents [OSTI]

    Damkroger, Brian (Corrales, NM)

    1998-01-01

    An apparatus and method for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal.

  4. Directly induced swing for closed loop control of electroslag remelting furnace

    DOE Patents [OSTI]

    Damkroger, B.

    1998-04-07

    An apparatus and method are disclosed for controlling an electroslag remelting furnace, imposing a periodic fluctuation on electrode drive speed and thereby generating a predictable voltage swing signal. The fluctuation is preferably done by imposition of a sine, square, or sawtooth wave on the drive dc offset signal. 8 figs.

  5. Power Generating Stationary Engines Nox Control: A Closed Loop Control Technology

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  6. Steelcase Closed Loop Energy Recovery System - What We Have Learned With Our Operation 

    E-Print Network [OSTI]

    Dornbos, D. L., Sr.

    1983-01-01

    stream is not consistent complicating the combustion control process. A communication network is necessary to avoid waste/fuel contamination and to encourage interest in overall system efficiency. To achieve maximum potential, a comprehensive management...

  7. Polarimetric glucose sensing utilizing a digital closed-loop control system 

    E-Print Network [OSTI]

    Cameron, Brent Duane

    1996-01-01

    The condition known as diabetes mellitus afflicts millions of people worldwide. The primary cause of this disease is a decreased secretion of insulin into the bloodstream. This reduced insulin circulation can result in ...

  8. Closed-loop insulin delivery for treatment of type 1 diabetes

    E-Print Network [OSTI]

    Elleri, Daniela; Dunger, David B.; Hovorka, Roman

    2011-11-09

    associated with low sensor-measured glu- cose levels sustained for 2 to 4 hours may lead to seizures [28]. The body’s defensive mechanisms against hypoglycemia are impaired during the night in people with type 1 diabetes, who have lost the ability to release... . J Diabetes Sci Technol 2010, 4:961-975. 23. Kovatchev B, Patek S, Dassau E, Doyle FJ III, Magni L, De NG, Cobelli C: Control to range for diabetes: functionality and modular architecture. J Diabetes Sci Technol 2009, 3:1058-1065. 24. Hovorka R, Allen...

  9. Closed-loop torque feedback for a universal field-oriented controller

    DOE Patents [OSTI]

    De Doncker, R.W.A.A.; King, R.D.; Sanza, P.C.; Haefner, K.B.

    1992-11-24

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation. 1 figure.

  10. Closed-loop torque feedback for a universal field-oriented controller

    SciTech Connect (OSTI)

    De Doncker, Rik W. A. A.; King, Robert D.; Sanza, Peter C.; Haefner, Kenneth B.

    1992-01-01

    A torque feedback system is employed in a universal field-oriented (UFO) controller to tune a torque-producing current command and a slip frequency command in order to achieve robust torque control of an induction machine even in the event of current regulator errors and during transitions between pulse width modulated (PWM) and square wave modes of operation.

  11. In situ heat treatment process utilizing a closed loop heating system

    DOE Patents [OSTI]

    Vinegar, Harold J. (Bellaire, TX); Nguyen, Scott Vinh (Houston, TX)

    2010-12-07

    Systems and methods for an in situ heat treatment process that utilizes a circulation system to heat one or more treatment areas are described herein. The circulation system may use a heated liquid heat transfer fluid that passes through piping in the formation to transfer heat to the formation. In some embodiments, the piping may be positioned in at least two of the wellbores.

  12. Using Theorem Provers to Guarantee Closed-Loop System Properties Nikos Arechiga

    E-Print Network [OSTI]

    Platzer, André

    methods for verification apply logical analysis to well defined mathematical models to determine whether in so far as the model correctly represents the system being analyzed. Tools that implement formal], [6], [13], [14] cannot deal directly with the complex models used for automotive control system

  13. Self-organized critical noise amplification in human closed loop control

    E-Print Network [OSTI]

    Kreiter, Andreas K.

    ) were experimentally found (Beggs and Plenz, 2003) also in the firing behavior of neural populations

  14. Closed loop adaptive control of spectrum-producing step using neural networks

    DOE Patents [OSTI]

    Fu, C.Y.

    1998-11-24

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller. 7 figs.

  15. Closed loop adaptive control of spectrum-producing step using neural networks

    DOE Patents [OSTI]

    Fu, Chi Yung (San Francisco, CA)

    1998-01-01

    Characteristics of the plasma in a plasma-based manufacturing process step are monitored directly and in real time by observing the spectrum which it produces. An artificial neural network analyzes the plasma spectrum and generates control signals to control one or more of the process input parameters in response to any deviation of the spectrum beyond a narrow range. In an embodiment, a plasma reaction chamber forms a plasma in response to input parameters such as gas flow, pressure and power. The chamber includes a window through which the electromagnetic spectrum produced by a plasma in the chamber, just above the subject surface, may be viewed. The spectrum is conducted to an optical spectrometer which measures the intensity of the incoming optical spectrum at different wavelengths. The output of optical spectrometer is provided to an analyzer which produces a plurality of error signals, each indicating whether a respective one of the input parameters to the chamber is to be increased or decreased. The microcontroller provides signals to control respective controls, but these lines are intercepted and first added to the error signals, before being provided to the controls for the chamber. The analyzer can include a neural network and an optional spectrum preprocessor to reduce background noise, as well as a comparator which compares the parameter values predicted by the neural network with a set of desired values provided by the microcontroller.

  16. Vct system having closed loop control employing spool valve actuated by a stepper motor

    SciTech Connect (OSTI)

    Quin, S.B. Jr.; Siemon, E.C.

    1993-06-15

    An internal combustion engine is described comprising: a crankshaft, the crankshaft being rotable about an axis; a cam shaft, the cam shaft being rotatable about a second axis, the second axis being parallel to the axis, the cam shaft being subject to torque reversals during the rotation thereof; a vane, the vane having at least one lobe, the vane being attached to the cam shaft, being rotatable with the cam shaft and being non-oscillatable with respect to the cam shaft; a housing, the housing being rotatable with the cam shaft and being oscillatable with respect to the cam shaft, the housing having at least one recess, the recess receiving the lobe, the lobe being oscillatable within the recess; rotary movement transmitting means for transmitting rotary movement from the crankshaft to the housing; actuating means for varying the position of the housing relative to the cam shaft in reaction to torque reversals in the cam shaft, the actuating means comprising a stepper motor, a lead screw and a proportional spool valve, the position of the spool valve being controlled by the position of the lead screw driven by the stepper motor, the actuating means also delivering hydraulic fluid to the vane; and processing means for controlling the position of the actuating means.

  17. Closing the loop : improving technology transfer by learning from the past

    E-Print Network [OSTI]

    Witinski, Paul (Paul F.)

    2010-01-01

    Technology transfer is a significant challenge within the highly regulated pharmaceutical industry. While much focus is put on the logistics and strategy of the process, less attention has been paid to how to change the ...

  18. Optimal Prices and Production Rate in a Closed Loop Supply Chain under Heavy Traffic

    E-Print Network [OSTI]

    Ghosh, Arka P.

    uncertainties in addition to those already present in manufacturing and selling new products. Demand uncertainty less material and energy than manufacturing, prevents potentially harmful disposal, and retains some of the value added by the original manufacturing process. To the original producer or a third party reprocessor

  19. Diesel Combustion Control with Closed-Loop Control of the Injection Strategy

    Broader source: Energy.gov [DOE]

    New control strategies are enabler for new combustion concepts for further reduction of engine out emission

  20. Analysis and design of closed-loop control of power electronic converter systems 

    E-Print Network [OSTI]

    Huang, Yenchin

    1997-01-01

    filter system to cancel neutral current harmonic (IOOA) in a threephase four-wire electric distribution system. (b)Input power factor correction and harmonic reduction stage of a commercially available electronic ballast (12OV, 64W) for fluorescent...

  1. Decomposition Based Solution Approaches for Multi-product Closed-Loop Supply Chain Network Design Models 

    E-Print Network [OSTI]

    Easwaran, Gopalakrishnan

    2010-01-16

    on decomposition techniques, heuristics, and meta-heuristic approaches to seek a solution that characterizes the configuration of the CLSC network, along with the coordinated forward and reverse flows....

  2. Steelcase's Closed-Loop Energy Recovery System Results in $250,000 Savings Annually 

    E-Print Network [OSTI]

    Wege, P. M.

    1981-01-01

    includes wood, cardboard, paper, fabrics, paint sludge, and solvent sludge. Incineration reduces waste volume, cutting landfill and hauling charges substantially. Heat recovery has lowered natural gas bills by 10%. Net annual savings average more than $250...

  3. Robust free space board-to-board optical interconnect with closed loop MEMS tracking

    E-Print Network [OSTI]

    2009-01-01

    Optical beam steering using MEMS-controllable mi- crolensNikola- jeff, G. Andersson, MEMS-based vcsel beam steeringWu, O. Solgaard, Optical MEMS for lightwave commu- nication.

  4. Analytical model and simulations of closed-loop rebreather systems for Earth and Space applications

    E-Print Network [OSTI]

    Josan-Drinceanu, Ioana

    2015-01-01

    Humans in extreme environments, regardless of whether in space or deep in the oceans of the Earth, rely on life support systems to be kept alive and perform their exploration missions. Diving is similar to extravehicular ...

  5. Pollution Reduction System that Generates Profits (Cascading Closed Loop Cycle - CCLC) 

    E-Print Network [OSTI]

    Stinger, D. H.; Mian, F.

    2004-01-01

    Cleaning (FFGC) system can also be installed to eliminate any residual pollutants thereby returning pristine air to the environment. You can turn your planned pollution reduction system cost into a profit-generating power plant. Introduction... savings for a client will be $7.4 million assuming the average heat rate for utility plants of 10,200 btu/kw- hr(1) and a natural gas price of $6.00/MMBtu. Rather then generate additional power; the client could operate its power plant at reduced power...

  6. Closed-loop controlled filament stretching and break-up of polymer solutions

    E-Print Network [OSTI]

    Yeh, Roger, 1980-

    2005-01-01

    A constant true (radial) strain rate filament stretching experiment has been the Holy Grail of extensional rheological studies. These experiments are performed on a Filament Stretching Extensional Rheometer (FiSER). A ...

  7. Robust free space board-to-board optical interconnect with closed loop MEMS tracking

    E-Print Network [OSTI]

    2009-01-01

    simulated one-dimensional mechanical vibration be- tween therange for typical mechanical vibration within an of?ce orin the presence of mechanical vibration. Due to the low

  8. Leveraging a Cohesive Supply Chain to Close the Loop on EPS Packaging

    E-Print Network [OSTI]

    California at San Diego, University of

    (Ship Cargo to China) x=CO2 emissions from recycling methods in China Question: Does x exceed 0.22 lb CO Mail-back? Manufacturing New: 3.73 lb CO2 Take-Back: 0.59 lb CO2 (Truck Cargo) Recycling: 0.37+x lb CO22? Conversion Rate Sources: Life Technologies, Carbonfund, USGS World Petroleum Assessment 2000, EPA

  9. CNCC Craig Campus Geothermal Program: 82-well closed loop GHP well field to

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank, Maine:Kansas: Energy Resources JumpCIA-The World FactbookCN Solar Co

  10. ICFT- An Initial Closed-Loop Flow Test of the Fenton Hill Phase II HDR

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:on Openei | Open Energy2010) | OpenHywindIBEW Local 103

  11. Installation of a close loop water system for cooling the turbine bearing oil

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity a particle or aHowInside

  12. UWB communication receiver feedback loop

    DOE Patents [OSTI]

    Spiridon, Alex (Palo Alto, CA); Benzel, Dave (Livermore, CA); Dowla, Farid U. (Castro Valley, CA); Nekoogar, Faranak (San Ramon, CA); Rosenbury, Erwin T. (Castro Valley, CA)

    2007-12-04

    A novel technique and structure that maximizes the extraction of information from reference pulses for UWB-TR receivers is introduced. The scheme efficiently processes an incoming signal to suppress different types of UWB as well as non-UWB interference prior to signal detection. Such a method and system adds a feedback loop mechanism to enhance the signal-to-noise ratio of reference pulses in a conventional TR receiver. Moreover, sampling the second order statistical function such as, for example, the autocorrelation function (ACF) of the received signal and matching it to the ACF samples of the original pulses for each transmitted bit provides a more robust UWB communications method and system in the presence of channel distortions.

  13. COCV'04 Preliminary Version Into the Loops

    E-Print Network [OSTI]

    Goldberg, Benjamin

    optimizations employed by Intel's ORC compiler. Tvoc, however, is somewhat limited when dealing with loop optimizations have been performed (in the case of the current ORC, this instrumentation is fortunately part transformations performed by the Intel ORC compiler. Key words: Translation validation, formal methods, loop

  14. Ground Loops for Heat Pumps and Refrigeration 

    E-Print Network [OSTI]

    Braud, H. J.

    1986-01-01

    Ground loops are used for water source heat pumps. Refrigeration can be put on a ground loop. Water-cooled condensing units are more efficient than air-cooled, and they can be put indoors. Indoor location makes piping for desuperheater hot water...

  15. Cool transition region loops observed by the Interface Region Imaging Spectrograph

    E-Print Network [OSTI]

    Huang, Zhenghua; Li, Bo; Madjarska, Maria S

    2015-01-01

    We report on the first Interface Region Imaging Spectrograph (IRIS) study of cool transition region loops. This class of loops has received little attention in the literature. A cluster of such loops was observed on the solar disk in active region NOAA11934, in the Si IV 1402.8 \\AA\\ spectral raster and 1400 \\AA\\ slit-jaw (SJ) images. We divide the loops into three groups and study their dynamics and interaction. The first group comprises relatively stable loops, with 382--626\\,km cross-sections. Observed Doppler velocities are suggestive of siphon flows, gradually changing from -10 km/s at one end to 20 km/s at the other end of the loops. Nonthermal velocities from 15 to 25 km/s were determined. These physical properties suggest that these loops are impulsively heated by magnetic reconnection occurring at the blue-shifted footpoints where magnetic cancellation with a rate of $10^{15}$ Mx/s is found. The released magnetic energy is redistributed by the siphon flows. The second group corresponds to two footpoin...

  16. Testing Closeness of Discrete Distributions

    E-Print Network [OSTI]

    Fortnow, Lance

    Given samples from two distributions over an n-element set, we wish to test whether these distributions are statistically close. We present an algorithm which uses sublinear in n, specifically, O(n[superscript 2/3]?[superscript ...

  17. COMBINING PARTICLE ACCELERATION AND CORONAL HEATING VIA DATA-CONSTRAINED CALCULATIONS OF NANOFLARES IN CORONAL LOOPS

    SciTech Connect (OSTI)

    Gontikakis, C.; Efthymiopoulos, C.; Georgoulis, M. K.; Patsourakos, S.; Anastasiadis, A.

    2013-07-10

    We model nanoflare heating of extrapolated active-region coronal loops via the acceleration of electrons and protons in Harris-type current sheets. The kinetic energy of the accelerated particles is estimated using semi-analytical and test-particle-tracing approaches. Vector magnetograms and photospheric Doppler velocity maps of NOAA active region 09114, recorded by the Imaging Vector Magnetograph, were used for this analysis. A current-free field extrapolation of the active-region corona was first constructed. The corresponding Poynting fluxes at the footpoints of 5000 extrapolated coronal loops were then calculated. Assuming that reconnecting current sheets develop along these loops, we utilized previous results to estimate the kinetic energy gain of the accelerated particles. We related this energy to nanoflare heating and macroscopic loop characteristics. Kinetic energies of 0.1-8 keV (for electrons) and 0.3-470 keV (for protons) were found to cause heating rates ranging from 10{sup -6} to 1 erg s{sup -1} cm{sup -3}. Hydrodynamic simulations show that such heating rates can sustain plasma in coronal conditions inside the loops and generate plasma thermal distributions that are consistent with active-region observations. We concluded the analysis by computing the form of X-ray spectra generated by the accelerated electrons using the thick-target approach. These spectra were found to be in agreement with observed X-ray spectra, thus supporting the plausibility of our nanoflare-heating scenario.

  18. Detecting Neutrino Magnetic Moments with Conducting Loops

    E-Print Network [OSTI]

    Apyan, Aram; Schmitt, Michael

    2007-01-01

    It is well established that neutrinos have mass, yet it is very difficult to measure those masses directly. Within the standard model of particle physics, neutrinos will have an intrinsic magnetic moment proportional to their mass. We examine the possibility of detecting the magnetic moment using a conducting loop. According to Faraday's Law of Induction, a magnetic dipole passing through a conducting loop induces an electromotive force, or EMF, in the loop. We compute this EMF for neutrinos in several cases, based on a fully covariant formulation of the problem. We discuss prospects for a real experiment, as well as the possibility to test the relativistic formulation of intrinsic magnetic moments.

  19. Detecting Neutrino Magnetic Moments with Conducting Loops

    E-Print Network [OSTI]

    Aram Apyan; Armen Apyan; Michael Schmitt

    2007-09-23

    It is well established that neutrinos have mass, yet it is very difficult to measure those masses directly. Within the standard model of particle physics, neutrinos will have an intrinsic magnetic moment proportional to their mass. We examine the possibility of detecting the magnetic moment using a conducting loop. According to Faraday's Law of Induction, a magnetic dipole passing through a conducting loop induces an electromotive force, or EMF, in the loop. We compute this EMF for neutrinos in several cases, based on a fully covariant formulation of the problem. We discuss prospects for a real experiment, as well as the possibility to test the relativistic formulation of intrinsic magnetic moments.

  20. Topological configurations of Yang-Mills field responsible for magnetic-monopole loops as quark confiner

    E-Print Network [OSTI]

    Akihiro Shibata; Kei-Ichi Kondo; Seikou Kato; Shoichi Ito; Toru Shinohara; Nobuyui Fukui

    2009-11-24

    We have given a new description of the lattice Yang-Mills theory a la Cho-Faddeev-Niemi-Shabanov, which has enabled us to confirm in a gauge-independent manner "Abelian"-dominance and magnetic-monopole dominance in the Wilson loop average, yielding a gauge-independent dual superconductor picture for quark confinement. In particular, we have given a new procedure (called reduction) for obtaining a gauge-independent magnetic monopole from a given Yang-Mills field. In this talk, we demonstrate how some of known topological configurations in the SU(2) Yang-Mills theory such as merons and instantons generate closed loops of magnetic-monopole current as the quark confiner, both of which are characterized by the gauge-invariant topological index, topological charge (density) and magnetic charge (density), respectively. We also try to detect which type of topological configurations exist in the lattice data involving magnetic-monopole loops generated by Monte Carlo simulation. Here we apply a new geometrical algorithm based on "computational homology" to discriminating each closed loop from clusters of magnetic-monopole current, since the magnetic-monopole current on a lattice is integer valued.

  1. Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    SciTech Connect (OSTI)

    Chapman, S. C., E-mail: S.C.Chapman@warwick.ac.uk [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Dendy, R. O. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Todd, T. N.; Webster, A. J.; Morris, J. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom); Watkins, N. W. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); Max Planck Institute for the Physics of Complex Systems, Dresden (Germany); Centre for the Analysis of Time Series, London School of Economics, London (United Kingdom); Department of Engineering and Innovation, Open University, Milton Keynes (United Kingdom); Calderon, F. A. [Centre for Fusion, Space and Astrophysics, Department of Physics, University of Warwick, Coventry (United Kingdom); JET-EFDA, Culham Science Centre, Abingdon, Oxfordshire (United Kingdom)

    2014-06-15

    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM.

  2. Quantum Loops in Non-Local Gravity

    E-Print Network [OSTI]

    Talaganis, Spyridon

    2015-01-01

    In this proceedings, I will consider quantum aspects of a non-local, infinite-derivative scalar field theory - a ${\\it toy \\, model}$ depiction of a covariant infinite-derivative, non-local extension of Einstein's general relativity which has previously been shown to be free from ghosts around the Minkowski background. The graviton propagator in this theory gets an exponential suppression making it ${\\it asymptotically \\, free}$, thus providing strong prospects of resolving various classical and quantum divergences. In particular, I will find that at $1$-loop, the $2$-point function is still divergent, but once this amplitude is renormalized by adding appropriate counter terms, the ultraviolet (UV) behavior of all other $1$-loop diagrams as well as the $2$-loop, $2$-point function remains well under control. I will go on to discuss how one may be able to generalize our computations and arguments to arbitrary loops.

  3. Loop spaces in motivic homotopy theory 

    E-Print Network [OSTI]

    Decker, Marvin Glen

    2009-06-02

    In topology loop spaces can be understood combinatorially using algebraic theories. This approach can be extended to work for certain model structures on categories of presheaves over a site with functorial unit interval objects, such as topological...

  4. Energy release in driven twisted coronal loops

    E-Print Network [OSTI]

    Bareford, M R; Browning, P K; Hood, A W

    2015-01-01

    In the present study we investigate magnetic reconnection in twisted magnetic fluxtubes with different initial configurations. In all considered cases, energy release is triggered by the ideal kink instability, which is itself the result of applying footpoint rotation to an initially potential field. The main goal of this work is to establish the influence of the field topology and various thermodynamic effects on the energy release process. Specifically, we investigate convergence of the magnetic field at the loop footpoints, atmospheric stratification, as well as thermal conduction. In all cases, the application of vortical driving at the footpoints of an initally potential field leads to an internal kink instability. With the exception of the curved loop with high footpoint convergence, the global geometry of the loop change little during the simulation. Footpoint convergence, curvature and atmospheric structure clearly influences the rapidity with which a loop achieves instability as well as the size of t...

  5. The Three-Loop Lattice Free Energy

    E-Print Network [OSTI]

    B. Alles; M. Campostrini; A. Feo; H. Panagopoulos

    2005-08-15

    We calculate the free energy of SU(N) gauge theories on the lattice, to three loops. Our result, combined with Monte Carlo data for the average plaquette, gives a more precise estimate of the gluonic condensate.

  6. The Art of Computing Loop Integrals

    E-Print Network [OSTI]

    Stefan Weinzierl

    2006-04-07

    A perturbative approach to quantum field theory involves the computation of loop integrals, as soon as one goes beyond the leading term in the perturbative expansion. First I review standard techniques for the computation of loop integrals. In a second part I discuss more advanced algorithms. For these algorithms algebraic methods play an important role. A special section is devoted to multiple polylogarithms. I tried to make these notes self-contained and accessible both to physicists and mathematicians.

  7. Effective potential for SU(2) Polyakov loops and Wilson loop eigenvalues

    E-Print Network [OSTI]

    Dominik Smith; Adrian Dumitru; Robert Pisarski; Lorenz von Smekal

    2013-07-24

    We simulate SU(2) gauge theory at temperatures ranging from slightly below $T_c$ to roughly $2T_c$ for two different values of the gauge coupling. Using a histogram method, we extract the effective potential for the Polyakov loop and for the phases of the eigenvalues of the thermal Wilson loop, in both the fundamental and adjoint representations. We show that the classical potential of the fundamental loop can be parametrized within a simple model which includes a Vandermonde potential and terms linear and quadratic in the Polyakov loop. We discuss how parametrizations for the other cases can be obtained from this model.

  8. Closed/open string diagrammatics

    E-Print Network [OSTI]

    2006-06-28

    May 3, 2006 ... In terms of open/closed theories beyond the topological level, many interesting results have ... The rough idea is that as the strings move and interact, they form the leaves .... center (or knowledge)” equations, hold for the c/o structure on ..... ponent, subject to the unique constraint that m1 + m2 + m3 is even.

  9. Nonabelian Debye screening and the {open_quotes}tsunami{close_quotes} problem

    SciTech Connect (OSTI)

    Pisarski, R.D. [Brookhaven National Lab., Upton, NY (United States)

    1997-09-22

    The phenomenon of Debye screening is familiar from electrolytes and many other systems. Recently, it has been recognized that in nonabelian gauge theories at high temperature, even perturbatively Debye screening is much more complicated than in nonrelativistic systems. This was originally derived as {open_quotes}hard thermal loops{close_quotes}. Hard thermal loops have been derived perturbatively, by a semiclassical truncation of the Schwinger-Dyson equations, and by classical kinetic theory. In this talk I give a pedagogical derivation, following that of Kelly, Liu, Lucchesi, and Manuel. The derivation is valid not just for a thermal distribution, but (modulo certain obvious restrictions) for an arbitrary initial distribution of particles. Consider, for example, the {open_quotes}tsunami{close_quotes} problem: suppose that one starts, at time t = 0, with a spatially homogenous, infinite wall of particles, all moving with the same velocity at the speed of light.

  10. Examining System-Wide Impacts of Solar PV Control Systems with a Power Hardware-in-the-Loop Platform

    SciTech Connect (OSTI)

    Williams, Tess L.; Fuller, Jason C.; Schneider, Kevin P.; Palmintier, Bryan; Lundstrom, Blake; Chakraborty, Sudipta

    2014-10-11

    High penetration levels of distributed solar PV power generation can lead to adverse power quality impacts such as excessive voltage rise, voltage flicker, and reactive power values that result in unacceptable voltage levels. Advanced inverter control schemes have been proposed that have the potential to mitigate many power quality concerns. However, closed-loop control may lead to unintended behavior in deployed systems as complex interactions can occur between numerous operating devices. In order to enable the study of the performance of advanced control schemes in a detailed distribution system environment, a Hardware-in-the-Loop (HIL) platform has been developed. In the HIL system, GridLAB-D, a distribution system simulation tool, runs in real-time mode at the Pacific Northwest National Laboratory (PNNL) and supplies power system parameters at a point of common coupling to hardware located at the National Renewable Energy Laboratory (NREL). Hardware inverters interact with grid and PV simulators emulating an operational distribution system and power output from the inverters is measured and sent to PNNL to update the real-time distribution system simulation. The platform is described and initial test cases are presented. The platform is used to study the system-wide impacts and the interactions of controls applied to inverters that are integrated into a simulation of the IEEE 8500-node test feeder, with inverters in either constant power factor control or active volt/VAR control. We demonstrate that this HIL platform is well-suited to the study of advanced inverter controls and their impacts on the power quality of a distribution feeder. Additionally, the results from HIL are used to validate GridLAB-D simulations of advanced inverter controls. ?

  11. Bootstrapping the Three-Loop Hexagon

    SciTech Connect (OSTI)

    Dixon, Lance J.; Drummond, James M.; Henn, Johannes M.; /Humboldt U., Berlin /Santa Barbara, KITP

    2011-11-08

    We consider the hexagonal Wilson loop dual to the six-point MHV amplitude in planar N = 4 super Yang-Mills theory. We apply constraints from the operator product expansion in the near-collinear limit to the symbol of the remainder function at three loops. Using these constraints, and assuming a natural ansatz for the symbol's entries, we determine the symbol up to just two undetermined constants. In the multi-Regge limit, both constants drop out from the symbol, enabling us to make a non-trivial confirmation of the BFKL prediction for the leading-log approximation. This result provides a strong consistency check of both our ansatz for the symbol and the duality between Wilson loops and MHV amplitudes. Furthermore, we predict the form of the full three-loop remainder function in the multi-Regge limit, beyond the leading-log approximation, up to a few constants representing terms not detected by the symbol. Our results confirm an all-loop prediction for the real part of the remainder function in multi-Regge 3 {yields} 3 scattering. In the multi-Regge limit, our result for the remainder function can be expressed entirely in terms of classical polylogarithms. For generic six-point kinematics other functions are required.

  12. Dynamic Tides in Close Binaries

    E-Print Network [OSTI]

    B. Willems

    2005-11-10

    The basic theory of dynamic tides in close binaries is reviewed. Particular attention is paid to resonances between dynamic tides and free oscillation modes and to the role of the apsidal-motion rate in probing the internal structure of binary components. The discussed effects are generally applicable to stars across the entire Hertzsprung-Russell diagram, including the binary OB-stars discussed at this meeting.

  13. String loops in the field of braneworld spherically symmetric black holes and naked singularities

    SciTech Connect (OSTI)

    Stuchlík, Z.; Kološ, M. E-mail: martin.kolos@fpf.slu.cz

    2012-10-01

    We study motion of current-carrying string loops in the field of braneworld spherically symmetric black holes and naked singularities. The spacetime is described by the Reissner-Nordström geometry with tidal charge b reflecting the non-local tidal effects coming from the external dimension; both positive and negative values of the spacetime parameter b are considered. We restrict attention to the axisymmetric motion of string loops when the motion can be fully governed by an appropriately defined effective potential related to the energy and angular momentum of the string loops. In dependence on these two constants of the motion, the string loops can be captured, trapped, or can escape to infinity. In close vicinity of stable equilibrium points at the centre of trapped states the motion is regular. We describe how it is transformed to chaotic motion with growing energy of the string loop. In the field of naked singularities the trapped states located off the equatorial plane of the system exist and trajectories unable to cross the equatorial plane occur, contrary to the trajectories in the field of black holes where crossing the equatorial plane is always admitted. We concentrate our attention to the so called transmutation effect when the string loops are accelerated in the deep gravitational field near the black hole or naked singularity by transforming the oscillatory energy to the energy of the transitional motion. We demonstrate that the influence of the tidal charge can be substantial especially in the naked singularity spacetimes with b > 1 where the acceleration to ultrarelativistic velocities with Lorentz factor ? ? 100 can be reached, being more than one order higher in comparison with those obtained in the black hole spacetimes.

  14. Entropic Motion in Loop Quantum Gravity

    E-Print Network [OSTI]

    J. Manuel Garcia-Islas

    2015-02-19

    Entropic forces result from an increase of the entropy of a thermodynamical physical system. It has been proposed that gravity is such a phenomenon and many articles have appeared on the literature concerning this problem. Loop quantum gravity has also considered such possibility. We propose a new method in loop quantum gravity which reproduces an entropic force. By considering the interaction between a fixed gravity state space and a particle state in loop quantum gravity, we show that it leads to a mathematical description of a random walk of such particle. The random walk in special situations, can be seen as an entropic motion in such a way that the particle will move towards a location where entropy increases. This may prove that such theory can reproduce gravity as it is expected.

  15. Modelling Rates of Gasification of a Char Particle in Chemical Looping Combustion

    E-Print Network [OSTI]

    Saucedo, Marco A.; Dennis, John S.; Scott, Stuart A.

    2014-07-15

    Rates of gasification of lignite char were compared when gasification with CO2 was undertaken in a fluidised bed of either (i) an active Fe-based oxygen carrier used for chemical looping or (ii) inert sand. The kinetics of the gasification were...

  16. Completely automated computation of the heavy-fermion corrections to the three-loop matching coefficient of the vector current

    E-Print Network [OSTI]

    Marquard, P; Seidel, D; Steinhauser, M

    2009-01-01

    We evaluate the corrections to the matching coefficient of the vector current between Quantum Chromodynamics (QCD) and Non-Relativistic QCD (NRQCD) to three-loop order containing a closed heavy-fermion loop. The result constitutes a building block both for the bottom- and top-quark system at threshold. Strong emphasis is put on our completely automated approach of the calculation including the generation of the Feynman diagrams, the identification of the topologies, the reduction to master integrals and the automated numerical computation of the latter.

  17. Completely automated computation of the heavy-fermion corrections to the three-loop matching coefficient of the vector current

    E-Print Network [OSTI]

    P. Marquard; J. H. Piclum; D. Seidel; M. Steinhauser

    2009-04-06

    We evaluate the corrections to the matching coefficient of the vector current between Quantum Chromodynamics (QCD) and Non-Relativistic QCD (NRQCD) to three-loop order containing a closed heavy-fermion loop. The result constitutes a building block both for the bottom- and top-quark system at threshold. Strong emphasis is put on our completely automated approach of the calculation including the generation of the Feynman diagrams, the identification of the topologies, the reduction to master integrals and the automated numerical computation of the latter.

  18. Automation of one-loop QCD corrections

    E-Print Network [OSTI]

    Valentin Hirschi; Rikkert Frederix; Stefano Frixione; Maria Vittoria Garzelli; Fabio Maltoni; Roberto Pittau

    2013-05-14

    We present the complete automation of the computation of one-loop QCD corrections, including UV renormalization, to an arbitrary scattering process in the Standard Model. This is achieved by embedding the OPP integrand reduction technique, as implemented in CutTools, into the MadGraph framework. By interfacing the tool so constructed, which we dub MadLoop, with MadFKS, the fully automatic computation of any infrared-safe observable at the next-to-leading order in QCD is attained. We demonstrate the flexibility and the reach of our method by calculating the production rates for a variety of processes at the 7 TeV LHC.

  19. Simultaneous activation of multiple memory systems during learning : insights from electrophysiology and modeling

    E-Print Network [OSTI]

    Thorn, Catherine A. (Catherine Ann), 1980-

    2010-01-01

    Parallel cortico-basal ganglia loops are thought to give rise to a diverse set of limbic, associative and motor functions, but little is known about how these loops operate and how their neural activities evolve during ...

  20. Belgium east loop active network management (Smart Grid Project) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:Bajo enInformationTianrunZhongmeiEMEA

  1. Hydrogen-bond driven loop-closure kinetics in unfolded polypeptide chains

    SciTech Connect (OSTI)

    Daidone, Isabella [University of Heidelberg; Neuweiler, H [University of Heidelberg; Doose, S [University of Heidelberg; Sauer, M [University of Heidelberg; Smith, Jeremy C [ORNL

    2010-12-01

    Characterization of the length dependence of end-to-end loop-closure kinetics in unfolded polypeptide chains provides an understanding of early steps in protein folding. Here, loop-closure in poly-glycine-serine peptides is investigated by combining single-molecule fluorescence spectroscopy with molecular dynamics simulation. For chains containing more than 10 peptide bonds loop-closing rate constants on the 20-100 nanosecond time range exhibit a power-law length dependence. However, this scaling breaks down for shorter peptides, which exhibit slower kinetics arising from a perturbation induced by the dye reporter system used in the experimental setup. The loop-closure kinetics in the longer peptides is found to be determined by the formation of intra-peptide hydrogen bonds and transient beta-sheet structure, that accelerate the search for contacts among residues distant in sequence relative to the case of a polypeptide chain in which hydrogen bonds cannot form. Hydrogen-bond-driven polypeptide-chain collapse in unfolded peptides under physiological conditions found here is not only consistent with hierarchical models of protein folding, that highlights the importance of secondary structure formation early in the folding process, but is also shown to speed up the search for productive folding events.

  2. Closed inductively coupled plasma cell

    DOE Patents [OSTI]

    Manning, T.J.; Palmer, B.A.; Hof, D.E.

    1990-11-06

    A closed inductively coupled plasma cell generates a relatively high power, low noise plasma for use in spectroscopic studies is disclosed. A variety of gases can be selected to form the plasma to minimize spectroscopic interference and to provide a electron density and temperature range for the sample to be analyzed. Grounded conductors are placed at the tube ends and axially displaced from the inductive coil, whereby the resulting electromagnetic field acts to elongate the plasma in the tube. Sample materials can be injected in the plasma to be excited for spectroscopy. 1 fig.

  3. Selective purge for hydrogenation reactor recycle loop

    SciTech Connect (OSTI)

    Baker, Richard W.; Lokhandwala, Kaaeid A.

    2001-01-01

    Processes and apparatus for providing improved contaminant removal and hydrogen recovery in hydrogenation reactors, particularly in refineries and petrochemical plants. The improved contaminant removal is achieved by selective purging, by passing gases in the hydrogenation reactor recycle loop or purge stream across membranes selective in favor of the contaminant over hydrogen.

  4. Loop expansion in Yang-Mills thermodynamics

    E-Print Network [OSTI]

    Ralf Hofmann

    2009-11-05

    We argue that a selfconsistent spatial coarse-graining, which involves interacting (anti)calorons of unit topological charge modulus, implies that real-time loop expansions of thermodynamical quantities in the deconfining phase of SU(2) and SU(3) Yang-Mills thermodynamics are, modulo 1PI resummations, determined by a finite number of connected bubble diagrams.

  5. A SYSTEMATIC SURVEY OF HIGH-TEMPERATURE EMISSION IN SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, VP 62, Huntsville, AL 35812 (United States); Brooks, David H. [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States)

    2012-11-10

    The recent analysis of observations taken with the EUV Imaging Spectrometer and X-Ray Telescope instruments on Hinode suggests that well-constrained measurements of the temperature distribution in solar active regions can finally be made. Such measurements are critical for constraining theories of coronal heating. Past analysis, however, has suffered from limited sample sizes and large uncertainties at temperatures between 5 and 10 MK. Here we present a systematic study of the differential emission measure distribution in 15 active region cores. We focus on measurements in the 'inter-moss' region, that is, the region between the loop footpoints, where the observations are easier to interpret. To reduce the uncertainties at the highest temperatures we present a new method for isolating the Fe XVIII emission in the AIA/SDO 94 A channel. The resulting differential emission measure distributions confirm our previous analysis showing that the temperature distribution in an active region core is often strongly peaked near 4 MK. We characterize the properties of the emission distribution as a function of the total unsigned magnetic flux. We find that the amount of high-temperature emission in the active region core is correlated with the total unsigned magnetic flux, while the emission at lower temperatures, in contrast, is inversely related. These results provide compelling evidence that high-temperature active region emission is often close to equilibrium, although weaker active regions may be dominated by evolving million degree loops in the core.

  6. Non-equilibrium of Ionization and the Detection of Hot Plasma in Nanoflare-heated Coronal Loops

    E-Print Network [OSTI]

    Fabio Reale; Salvatore Orlando

    2008-05-22

    Impulsive nanoflares are expected to transiently heat the plasma confined in coronal loops to temperatures of the order of 10 MK. Such hot plasma is hardly detected in quiet and active regions, outside flares. During rapid and short heat pulses in rarified loops the plasma can be highly out of equilibrium of ionization. Here we investigate the effects of the non-equilibrium of ionization (NEI) on the detection of hot plasma in coronal loops. Time-dependent loop hydrodynamic simulations are specifically devoted to this task, including saturated thermal conduction, and coupled to the detailed solution of the equations of ionization rate for several abundant elements. In our simulations, initially cool and rarified magnetic flux tubes are heated to 10 MK by nanoflares deposited either at the footpoints or at the loop apex. We test for different pulse durations, and find that, due to NEI effects, the loop plasma may never be detected at temperatures above ~5 MK for heat pulses shorter than about 1 min. We discuss some implications in the framework of multi-stranded nanoflare-heated coronal loops.

  7. Battery Hardware in the Loop | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hardware in the Loop Battery Hardware in the Loop Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on February 25, 2008 in Bethesda, Maryland....

  8. Parametric Multi-Level Tiling of Imperfectly Nested Loops

    SciTech Connect (OSTI)

    Hartono, Albert; Baskaran, Muthu M.; Bastoul, Cedric; Cohen, Albert; Krishnamoorthy, Sriram; Norris, Boyana; Ramanujam, J.; Sadayappan, Ponnuswamy

    2009-05-18

    Tiling is a critical loop transformation for generating high-performance code on modern architectures. Efficient generation of multilevel tiled code is essential to exploit several levels of parallelism and/or to maximize data reuse in deep memory hierarchies. Tiled loops with parameterized tile sizes (not compile time constants) facilitate runtime feedback and dynamic optimizations used in iterative compilation and automatic tuning. The existing parametric multilevel tiling approach has focused on transformation for perfectly nested loops, where all assignment statements are contained inside the innermost loop of a loop nest. Previous solutions to tiling for imperfect loop nests are limited to the case where tile sizes are fixed. In this paper, we present an approach to parameterized multilevel tiling for imperfectly nested loops. Our tiling algorithm generates loops that iterate over full rectangular tiles that are amenable for potential compiler optimizations such as register tiling. Experimental results using a number of computational benchmarks demonstrate the effectiveness of our tiling approach.

  9. Loop simulation capability for sodium-cooled systems

    E-Print Network [OSTI]

    Adekugbe, Oluwole A.

    1984-01-01

    A one-dimensional loop simulation capability has been implemented in the thermal-hydraulic analysis code, THERMIT-4E. This code had been used to simulate and investigate flow in test sections of experimental sodium loops ...

  10. Violation of the Holographic Principle in the Loop Quantum Gravity

    E-Print Network [OSTI]

    Ozan Sarg?n; Mir Faizal

    2015-09-01

    In this paper, we analyze the holographic principle using loop quantum gravity (LQG). This will be done by analysing a simple quantum mechanical system using polymeric quantization. As the polymeric quantization is the characteristic feature of loop quantum gravity, we will argue that this calculation will indicate the effect on the holographic principle from the loop quantum gravity. Thus, we will be able to explicitly demonstrate the violation of the holographic principle in the loop quantum gravity.

  11. Six-loop divergences in the supersymmetric Kahler sigma model

    E-Print Network [OSTI]

    I. Jack; D. R. T. Jones; J. Panvel

    1993-11-19

    The two-dimensional supersymmetric $\\s$-model on a K\\"ahler manifold has a non-vanishing $\\b$-function at four loops, but the $\\b$-function at five loops can be made to vanish by a specific choice of renormalisation scheme. We investigate whether this phenomenon persists at six loops, and conclude that it does not; there is a non-vanishing six-loop $\\b$-function irrespective of renormalisation scheme ambiguities.

  12. THERMAL HYDRAULICS KEYWORDS: neutron activation,

    E-Print Network [OSTI]

    Pázsit, Imre

    THERMAL HYDRAULICS KEYWORDS: neutron activation, flow measurements, evaluation methods FLOWACT, FLOW RATE MEASUREMENTS IN PIPES WITH THE PULSED-NEUTRON ACTIVATION METHOD PER LINDÉN,* GUDMAR GROSSHÖG- neutron activation (PNA) in a specially designed test loop. A stationary neutron generator was used

  13. On Termination of Integer Linear Loops Joel Ouaknine

    E-Print Network [OSTI]

    Oxford, University of

    On Termination of Integer Linear Loops Jo¨el Ouaknine Department of Computer Science Oxford con- cerns the termination of simple linear loops of the form: x u ; while Bx c do x Ax + a , where initial integer vectors u, such a loop terminates. The correctness of our algorithm relies

  14. Managing Performance vs. Accuracy Trade-offs With Loop Perforation

    E-Print Network [OSTI]

    Polz, Martin

    Managing Performance vs. Accuracy Trade-offs With Loop Perforation Stelios Sidiroglou Sasa-hoc, domain-specific techniques developed specifically for the computation at hand. Loop perforation provides of their iterations. A criticality testing phase filters out critical loops (whose perforation produces unacceptable

  15. A speech locked loop for cochlear implants and speech prostheses

    E-Print Network [OSTI]

    Wee, Keng Hoong

    We have previously described a feedback loop that combines an auditory processor with a low-power analog integrated-circuit vocal tract to create a speech-locked-loop. Here, we describe how the speech-locked loop can help ...

  16. Track-Following Control with Active Vibration Damping of a PZT-Actuated Suspension Dual-Stage Servo System

    E-Print Network [OSTI]

    Horowitz, Roberto

    Track-Following Control with Active Vibration Damping of a PZT-Actuated Suspension Dual-Stage Servo system in hard disk drives. The proposed control structure includes an active vibration damping control loop and a track-following control loop. The vibration damping control loop, which runs at a faster

  17. Track-Following Control with Active Vibration Damping of a PZT-Actuated Suspension Dual-Stage Servo System 1

    E-Print Network [OSTI]

    Horowitz, Roberto

    Track-Following Control with Active Vibration Damping of a PZT-Actuated Suspension Dual-Stage Servo system in hard disk drives. The proposed control structure includes an active vibration damping control loop and a track- following control loop. The vibration damping con- trol loop, which runs at a faster

  18. Advantages of dynamic “closed loop” stable isotope flux phenotyping over static “open loop” clamps in detecting silent genetic and dietary phenotypes

    E-Print Network [OSTI]

    2010-01-01

    and hepatic glucose production (HGP) studies Around ten miceHepatic glu- cose production (HGP) rate was determined usingthe fol- lowing equation: HGP (mg glucose/kg body weight/

  19. An indicator energy of two close levels

    E-Print Network [OSTI]

    Alexander V. Shamanin

    2013-09-17

    In this paper, we introduce a concept of an indicator energy of two close levels in the perturbation.

  20. Fermion Doubling in Loop Quantum Gravity

    E-Print Network [OSTI]

    Jacob Barnett; Lee Smolin

    2015-07-05

    In this paper, we show that the Hamiltonian approach to loop quantum gravity has a fermion doubling problem. To obtain this result, we couple loop quantum gravity to a free massless scalar and a chiral fermion field, gauge fixing the many fingered time gauge invariance by interpreting the scalar field as a physical clock. We expand around a quantum gravity state based on a regular lattice and consider the limit where the bare cosmological constant is large but the fermonic excitations have energies low in Planck units. We then make the case for identifying the energy spectrum in this approximation with that of a model of lattice fermion theory which is known to double.

  1. A new vacuum for Loop Quantum Gravity

    E-Print Network [OSTI]

    Bianca Dittrich; Marc Geiller

    2015-05-05

    We construct a new vacuum for loop quantum gravity, which is dual to the Ashtekar-Lewandowski vacuum. Because it is based on BF theory, this new vacuum is physical for $(2+1)$-dimensional gravity, and much closer to the spirit of spin foam quantization in general. To construct this new vacuum and the associated representation of quantum observables, we introduce a modified holonomy-flux algebra which is cylindrically consistent with respect to the notion of refinement by time evolution suggested in [1]. This supports the proposal for a construction of a physical vacuum made in [1,2], also for $(3+1)$-dimensional gravity. We expect that the vacuum introduced here will facilitate the extraction of large scale physics and cosmological predictions from loop quantum gravity.

  2. Bimetallic Fe-Ni Oxygen Carriers for Chemical Looping Combustion

    SciTech Connect (OSTI)

    Bhavsar, Saurabh; Veser, Goetz

    2013-11-06

    The relative abundance, low cost, and low toxicity of iron make Fe-based oxygen carriers of great interest for chemical looping combustion (CLC), an emerging technology for clean and efficient combustion of fossil and renewable fuels. However, Fe also shows much lower reactivity than other metals (such as Ni and Cu). Here, we demonstrate strong improvement of Fe-based carriers by alloying the metal phase with Ni. Through a combination of carrier synthesis and characterization with thermogravimetric and fixed-bed reactor studies, we demonstrate that the addition of Ni results in a significant enhancement in activity as well as an increase in selectivity for total oxidation. Furthermore, comparing alumina and ceria as support materials highlights the fact that reducible supports can result in a strong increase in oxygen carrier utilization.

  3. Division of Human Resources EMERGENCY CLOSING INFORMATION

    E-Print Network [OSTI]

    Meyers, Steven D.

    Division of Human Resources EMERGENCY CLOSING INFORMATION Human Resources / Attendance and Leave of Human Resources EMERGENCY CLOSING INFORMATION Human Resources / Attendance and Leave Emergency Closing Information Form questions: (813) 974-5717 Rev. 04/2010 Disruption of Power or Water

  4. FLOWS OF MASS, MOMENTUM AND ENERGY IN THE SOLAR ATMOSPHERE A SOHOORIENTED VIEW OF COLD LOOPS

    E-Print Network [OSTI]

    siphon flow loop models leads to the conclusion that such loop cannot be in steady state; in particular

  5. MAGNETIC LOOPS IN THE QUIET SUN

    SciTech Connect (OSTI)

    Wiegelmann, T.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Borrero, J. M.; Schmidt, W.; Pillet, V. MartInez; Bonet, J. A.; Domingo, V.; Knoelker, M.; Title, A. M.

    2010-11-10

    We investigate the fine structure of magnetic fields in the atmosphere of the quiet Sun. We use photospheric magnetic field measurements from SUNRISE/IMaX with unprecedented spatial resolution to extrapolate the photospheric magnetic field into higher layers of the solar atmosphere with the help of potential and force-free extrapolation techniques. We find that most magnetic loops that reach into the chromosphere or higher have one footpoint in relatively strong magnetic field regions in the photosphere. Ninety-one percent of the magnetic energy in the mid-chromosphere (at a height of 1 Mm) is in field lines, whose stronger footpoint has a strength of more than 300 G, i.e., above the equipartition field strength with convection. The loops reaching into the chromosphere and corona are also found to be asymmetric in the sense that the weaker footpoint has a strength B < 300 G and is located in the internetwork (IN). Such loops are expected to be strongly dynamic and have short lifetimes, as dictated by the properties of the IN fields.

  6. Lessons for Loop Quantum Gravity from Parametrised Field Theory

    E-Print Network [OSTI]

    Thomas Thiemann

    2010-10-12

    In a series of seminal papers, Laddha and Varadarajan have developed in depth the quantisation of Parametrised Field Theory (PFT) in the kind of discontinuous representations that are employed in Loop Quantum Gravity (LQG). In one spatial dimension (circle) PFT is very similar to the closed bosonic string and the constraint algebra is isomorphic to two mutually commuting Witt algebras. Its quantisation is therefore straightforward in LQG like representations which by design lead to non anomalous, unitary, albeit discontinuous representations of the spatial diffeomorphism group. In particular, the complete set of (distributional) solutions to the quantum constraints, a preferred and complete algebra of Dirac observables and the associated physical inner product has been constructed. On the other hand, the two copies of Witt algebras are classically isomorphic to the Dirac or hypersurface deformation algebra of General Relativity (although without structure functions). The question we address in this paper, also raised by Laddha and Varadarajan in their paper, is whether we can quantise the Dirac algebra in such a way that its space of distributional solutions coincides with the one just described. This potentially teaches us something about LQG where a classically equivalent formulation of the Dirac algebra in terms of spatial diffeomorphism Lie algebras is not at our disposal. We find that, in order to achieve this, the Hamiltonian constraint has to be quantised by methods that extend those previously considered. The amount of quantisation ambiguities is somewhat reduced but not eliminated. We also show that the algebra of Hamiltonian constraints closes in a precise sense, with soft anomalies, that is, anomalies that do not cause inconsistencies. We elaborate on the relevance of these findings for full LQG.

  7. Active stabilization of rotating stall in a three-stage axial compressor

    SciTech Connect (OSTI)

    Haynes, J.M.; Hendricks, G.J.; Epstein, A.H. . Gas Turbine Lab.)

    1994-04-01

    A three-stage, low-speed axial research compressor has been actively stabilized by damping low-amplitude circumferentially traveling waves, which can grow into rotating stall. Using a circumferential array of hot-wire sensors, and an array of high-speed individually positioned control vanes as the actuator, the first and second spatial harmonics of the compressor were stabilized down to a characteristic slope of 0.9, yielding an 8 percent increase in operating flow range. Stabilization of the third spatial harmonic did not alter the stalling flow coefficient. The actuators were also used open loop to determine the forced response behavior of the compressor. A system identification procedure applied to the forced response data then yielded the compressor transfer function. The Moore-Greitzer two-dimensional stability model was modified as suggested by the measurements to include the effect of blade row time lags on the compressor dynamics. This modified Moore-Greitzer model was then used to predict both the open and closed-loop dynamic response of the compressor. The model predictions agreed closely with the experimental results. In particular, the model predicted both the mass flow at stall without control and the design parameters needed by, and the range extension realized from, active control.

  8. Free energy of static quarks and the renormalized Polyakov loop in full QCD

    E-Print Network [OSTI]

    K. Petrov; for the RBC-Bielefeld Collaboration

    2007-10-23

    We present results from a detailed study of singlet free energies in full QCD with realistic quark masses. An improved scheme for the non-perturbative renormalization of the Polyakov loop is used and we compare its temperature dependence for QCD with different flavor content. We also analyze screening masses extracted from singlet free energies at various temperatures close to and above the QCD transition temperature. We conclude that the temperature dependence of screening masses is well described by perturbation theory up to a non-perturbative pre-factor. An effective running coupling has been determined for all temperature values giving additional insight into screening phenomena at high temperature.

  9. Method and apparatus for regenerating activated carbon containing an adsorbed volatile organic absorbate

    SciTech Connect (OSTI)

    Tiggelbeck, D.D.; Goyak, G.M.

    1993-07-27

    A method is described for regenerating spent activated carbon containing adsorbed volatile organic adsorbate comprising: establishing a confined downwardly moving bed of activated carbon; adding spent carbon to the top of said bed; introducing superheated steam into the bottom of said bed in contact with said carbon; recovering exit gas including predominantly superheated steam and volatilized adsorbate from the top of said bed; circulating a portion of said exit gas through a superheater and compressor to the bottom of said bed; withdrawing a portion of said exit gas through a cooler to condense steam and volatile adsorbate; continuously circulating superheated steam in a closed loop through said downwardly moving bed, said compressor and said superheater; recovering partially regenerated activated carbon containing residual volatile adsorbate from the bottom of said bed.

  10. Natural Ores as Oxygen Carriers in Chemical Looping Combustion

    SciTech Connect (OSTI)

    Tian, Hanjing; Siriwardane, Ranjani; Simonyi, Thomas; Poston, James

    2013-08-01

    Chemical looping combustion (CLC) is a combustion technology that utilizes oxygen from oxygen carriers (OC), such as metal oxides, instead of air to combust fuels. The use of natural minerals as oxygen carriers has advantages, such as lower cost and availability. Eight materials, based on copper or iron oxides, were selected for screening tests of CLC processes using coal and methane as fuels. Thermogravimetric experiments and bench-scale fixed-bed reactor tests were conducted to investigate the oxygen transfer capacity, reaction kinetics, and stability during cyclic reduction/oxidation reaction. Most natural minerals showed lower combustion capacity than pure CuO/Fe{sub 2}O{sub 3} due to low-concentrations of active oxide species in minerals. In coal CLC, chryscolla (Cu-based), magnetite, and limonite (Fe-based) demonstrated better reaction performances than other materials. The addition of steam improved the coal CLC performance when using natural ores because of the steam gasification of coal and the subsequent reaction of gaseous fuels with active oxide species in the natural ores. In methane CLC, chryscolla, hematite, and limonite demonstrated excellent reactivity and stability in 50-cycle thermogravimetric analysis tests. Fe{sub 2}O{sub 3}-based ores possess greater oxygen utilization but require an activation period before achieving full performance in methane CLC. Particle agglomeration issues associated with the application of natural ores in CLC processes were also studied by scanning electron microscopy (SEM).

  11. Gas Test Loop Booster Fuel Hydraulic Testing

    SciTech Connect (OSTI)

    Gas Test Loop Hydraulic Testing Staff

    2006-09-01

    The Gas Test Loop (GTL) project is for the design of an adaptation to the Advanced Test Reactor (ATR) to create a fast-flux test space where fuels and materials for advanced reactor concepts can undergo irradiation testing. Incident to that design, it was found necessary to make use of special booster fuel to enhance the neutron flux in the reactor lobe in which the Gas Test Loop will be installed. Because the booster fuel is of a different composition and configuration from standard ATR fuel, it is necessary to qualify the booster fuel for use in the ATR. Part of that qualification is the determination that required thermal hydraulic criteria will be met under routine operation and under selected accident scenarios. The Hydraulic Testing task in the GTL project facilitates that determination by measuring flow coefficients (pressure drops) over various regions of the booster fuel over a range of primary coolant flow rates. A high-fidelity model of the NW lobe of the ATR with associated flow baffle, in-pile-tube, and below-core flow channels was designed, constructed and located in the Idaho State University Thermal Fluids Laboratory. A circulation loop was designed and constructed by the university to provide reactor-relevant water flow rates to the test system. Models of the four booster fuel elements required for GTL operation were fabricated from aluminum (no uranium or means of heating) and placed in the flow channel. One of these was instrumented with Pitot tubes to measure flow velocities in the channels between the three booster fuel plates and between the innermost and outermost plates and the side walls of the flow annulus. Flow coefficients in the range of 4 to 6.5 were determined from the measurements made for the upper and middle parts of the booster fuel elements. The flow coefficient for the lower end of the booster fuel and the sub-core flow channel was lower at 2.3.

  12. Exact scheme independence at one loop

    E-Print Network [OSTI]

    Stefano Arnone; Antonio Gatti; Tim R. Morris

    2002-06-10

    The requirement that the quantum partition function be invariant under a renormalization group transformation results in a wide class of exact renormalization group equations, differing in the form of the kernel. Physical quantities should not be sensitive to the particular choice of the kernel. We demonstrate this scheme independence in four dimensional scalar field theory by showing that, even with a general kernel, the one-loop beta function may be expressed only in terms of the effective action vertices, and thus, under very general conditions, the universal result is recovered.

  13. Exact scheme independence at one loop

    E-Print Network [OSTI]

    Arnone, S; Morris, T R; Arnone, Stefano; Gatti, Antonio; Morris, Tim R.

    2002-01-01

    The requirement that the quantum partition function be invariant under a renormalization group transformation results in a wide class of exact renormalization group equations, differing in the form of the kernel. Physical quantities should not be sensitive to the particular choice of the kernel. We demonstrate this scheme independence in four dimensional scalar field theory by showing that, even with a general kernel, the one-loop beta function may be expressed only in terms of the effective action vertices, and thus, under very general conditions, the universal result is recovered.

  14. Loop Quantum Gravity: An Inside View

    E-Print Network [OSTI]

    Thomas Thiemann

    2006-08-29

    This is a (relatively) non -- technical summary of the status of the quantum dynamics in Loop Quantum Gravity (LQG). We explain in detail the historical evolution of the subject and why the results obtained so far are non -- trivial. The present text can be viewed in part as a response to an article by Nicolai, Peeters and Zamaklar [hep-th/0501114]. We also explain why certain no go conclusions drawn from a mathematically correct calculation in a recent paper by Helling et al [hep-th/0409182] are physically incorrect.

  15. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bell, Lon E; Crane, Douglas Todd

    2013-05-21

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  16. Thermoelectric power generator with intermediate loop

    DOE Patents [OSTI]

    Bel,; Lon E. (Altadena, CA); Crane, Douglas Todd (Pasadena, CA)

    2009-10-27

    A thermoelectric power generator is disclosed for use to generate electrical power from heat, typically waste heat. An intermediate heat transfer loop forms a part of the system to permit added control and adjustability in the system. This allows the thermoelectric power generator to more effectively and efficiently generate power in the face of dynamically varying temperatures and heat flux conditions, such as where the heat source is the exhaust of an automobile, or any other heat source with dynamic temperature and heat flux conditions.

  17. Chemical Looping Combustion | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclear SecurityChattan ooga Eag leChemical Looping

  18. Renormalization of the Polyakov loop with gradient flow

    E-Print Network [OSTI]

    P. Petreczky; H. -P. Schadler

    2015-11-24

    We use the gradient flow for the renormalization of the Polyakov loop in various representations. Using 2+1 flavor QCD with highly improved staggered quarks and lattices with temporal extents of $N_\\tau=6$, $8$, $10$ and $12$ we calculate the renormalized Polyakov loop in many representations including fundamental, sextet, adjoint, decuplet, 15-plet, 24-plet and 27-plet. This approach allows for the calculations of the renormalized Polyakov loops over a large temperature range from $T=116$ MeV up to $T=815$ MeV, with small errors not only for the Polyakov loop in fundamental representation, but also for the Polyakov loops in higher representations. We compare our results with standard renormalization schemes and discuss the Casimir scaling of the Polyakov loops.

  19. Closing Rocky Flats by 2006

    SciTech Connect (OSTI)

    Tuor, N. R.; Schubert, A. L.

    2002-02-26

    Safely accelerating the closure of Rocky Flats to 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy, Kaiser-Hill and its team of subcontractors, the site's employees, and taxpayers across the country. On June 30, 2000, Kaiser-Hill (KH) submitted to the Department of Energy (DOE), KH's plan to achieve closure of Rocky Flats by December 15, 2006, for a remaining cost of $3.96 billion (February 1, 2000, to December 15, 2006). The Closure Project Baseline (CPB) is the detailed project plan for accomplishing this ambitious closure goal. This paper will provide a status report on the progress being made toward the closure goal. This paper will: provide a summary of the closure contract completion criteria; give the current cost and schedule variance of the project and the status of key activities; detail important accomplishments of the past year; and discuss the challenges ahead.

  20. Quantum Corrections in Galileons from Matter Loops

    E-Print Network [OSTI]

    Lavinia Heisenberg

    2014-10-09

    Galileon interactions represent a class of effective field theories that have received much attention since their inception. They can be treated in their own right as scalar field theories with a specific global shift and Galilean symmetry or as a descendant of a more fundamental theory like massive gravity. It is well known that the Galileon theories are stable under quantum corrections thanks to the non-renormalization theorem which is not due to the symmetry. We consider different covariant couplings of this Galileon scalar field with the matter field: the conformal coupling, the disformal coupling and the longitudinal coupling. We compute the one-loop quantum corrections to the Galileon interactions from the coupling to the external matter fields. In all the considered cases of covariant couplings we show that the terms generated by one-loop matter corrections not only renormalize the Galileon interactions but also give rise to higher order derivative ghost interactions. However, the renormalized version of the Galileon interactions as well as the new interactions come at a scale suppressed by the original classical coupling scale and hence are harmless within the regime of validity of the effective field theory.

  1. Dismantling of Loop-Type Channel Equipment of MR Reactor in NRC 'Kurchatov Institute' - 13040

    SciTech Connect (OSTI)

    Volkov, Victor; Danilovich, Alexey; Zverkov, Yuri; Ivanov, Oleg; Kolyadin, Vyacheslav; Lemus, Alexey; Pavlenko, Vitaly; Semenov, Sergey; Fadin, Sergey; Shisha, Anatoly; Chesnokov, Alexander

    2013-07-01

    In 2009 the project of decommissioning of MR and RTF reactors was developed and approved by the Expert Authority of the Russian Federation (Gosexpertiza). The main objective of the decommissioning works identified in this project: - complete dismantling of reactor equipment and systems; - decontamination of reactor premises and site in accordance with the established sanitary and hygienic standards. At the preparatory stage (2008-2010) of the project the following works were executed: loop-type channels' dismantling in the storage pool; experimental fuel assemblies' removal from spent fuel repositories in the central hall; spent fuel assembly removal from the liquid-metal-cooled loop-type channel of the reactor core and its placement into the SNF repository; and reconstruction of engineering support systems to the extent necessary for reactor decommissioning. The project assumes three main phases of dismantling and decontamination: - dismantling of equipment/pipelines of cooling circuits and loop-type channels, and auxiliary reactor equipment (2011-2012); - dismantling of equipment in underground reactor premises and of both MR and RTF in-vessel devices (2013-2014); - decontamination of reactor premises; rehabilitation of the reactor site; final radiation survey of reactor premises, loop-type channels and site; and issuance of the regulatory authorities' de-registration statement (2015). In 2011 the decommissioning license for the two reactors was received and direct MR decommissioning activities started. MR primary pipelines and loop-type facilities situated in the underground reactor hall were dismantled. Works were also launched to dismantle the loop-type channels' equipment in underground reactor premises; reactor buildings were reconstructed to allow removal of dismantled equipment; and the MR/RTF decommissioning sequence was identified. In autumn 2011 - spring 2012 results of dismantling activities performed are: - equipment from underground rooms (No. 66, 66A, 66B, 72, 64, 63) - as well as from water and gas loop corridors - was dismantled, with the total radwaste weight of 53 tons and the total removed activity of 5,0 x 10{sup 10} Bq; - loop-type channel equipment from underground reactor hall premises was dismantled; - 93 loop-type channels were characterized, chopped and removed, with radwaste of 2.6 x 10{sup 13} Bq ({sup 60}Co) and 1.5 x 10{sup 13} Bq ({sup 137}Cs) total activity removed from the reactor pool, fragmented and packaged. Some of this waste was placed into the high-level waste (HLW) repository of the Center. Dismantling works were executed with application of remotely operated mechanisms, which promoted decrease of radiation impact on the personnel. The average individual dose for the personnel was 1.9 mSv/year in 2011, and the collective dose is estimated as 0.0605 man x Sv/year. (authors)

  2. Entropy mode loops and cosmological correlations during perturbative reheating

    SciTech Connect (OSTI)

    Kaya, Ali; Kutluk, Emine Seyma E-mail: seymakutluk@gmail.com

    2015-01-01

    Recently, it has been shown that during preheating the entropy modes circulating in the loops, which correspond to the inflaton decay products, meaningfully modify the cosmological correlation functions at superhorizon scales. In this paper, we determine the significance of the same effect when reheating occurs in the perturbative regime. In a typical two scalar field model, the magnitude of the loop corrections are shown to depend on several parameters like the background inflaton amplitude in the beginning of reheating, the inflaton decay rate and the inflaton mass. Although the loop contributions turn out to be small as compared to the preheating case, they still come out larger than the loop effects during inflation.

  3. Evolution equation for 3-quark Wilson loop operator

    E-Print Network [OSTI]

    R. E. Gerasimov; A. V. Grabovsky

    2012-12-07

    The evolution equation for the 3 quark Wilson loop operator has been derived in the leading logarithm approximation within Balitsky high energy operator expansion.

  4. Finite-dimensional representations of twisted hyper loop algebras

    E-Print Network [OSTI]

    Bianchi, Angelo

    2012-01-01

    We investigate the category of finite-dimensional representations of twisted hyper loop algebras, i.e., the hyperalgebras associated to twisted loop algebras over finite-dimensional simple Lie algebras. The main results are the classification of the irreducible modules, the definition of the universal highest-weight modules, called the Weyl modules, and, under a certain mild restriction on the characteristic of the ground field, a proof that the simple modules and the Weyl modules for the twisted hyper loop algebras are isomorphic to appropriate simple and Weyl modules for the non-twisted hyper loop algebras, respectively, via restriction of the action.

  5. Static properties of nuclear matter within the Boson Loop Expansion

    E-Print Network [OSTI]

    W. M. Alberico; R. Cenni; G. Garbarino; M. R. Quaglia

    2007-10-24

    The use of the Boson Loop Expansion is proposed for investigating the static properties of nuclear matter. We explicitly consider a schematic dynamical model in which nucleons interact with the scalar-isoscalar sigma meson. The suggested approximation scheme is examined in detail at the mean field level and at the one- and two-loop orders. The relevant formulas are provided to derive the binding energy per nucleon, the pressure and the compressibility of nuclear matter. Numerical results of the binding energy at the one-loop order are presented for Walecka's sigma-omega model in order to discuss the degree of convergence of the Boson Loop Expansion.

  6. Desert dust suppressing precipitation: A possible desertification feedback loop

    E-Print Network [OSTI]

    Daniel, Rosenfeld

    Desert dust suppressing precipitation: A possible desertification feedback loop Daniel Rosenfeld of land use exposing the topsoil can initiate such a desertification feedback process. Satellite

  7. Fast Model Based Approximation of the Closed-loop Performance Limits of Gas/Liquid Inline Separators for Accelerated Design

    E-Print Network [OSTI]

    Van den Hof, Paul

    trend in the oil and gas (exploration & production) industry is to use compact ­centrifugal forces based the centrifugal forces necessary for separating the light from the heavy component. The resulting separation force) to keep the downstream pumps and compressors within a proper operating range (preventing e.g. cavitation

  8. Closed-loop control of a SCR system using a NOx sensor cross-sensitive to NH3

    E-Print Network [OSTI]

    for an automotive selective catalytic reduction (SCR) system, for which the feedback is based on a NOx sensor illustrate the performance of the proposed approach. Keywords: Automotive emissions; Diesel engines; NOx, a mechanism is introduced to prevent large NH3-slip that could result from misinterpretation of data produced

  9. Rahul Mangharam Highlights My research develops the foundations of Cyber-Physical Systems (CPS) through closed loop modeling,

    E-Print Network [OSTI]

    Rajkumar, Ragunathan "Raj"

    domains spanning Medical Devices, Control over Wireless, Energy- Efficient Buildings, wireless networks and protocols, energy-efficient buildings and automotive systems in the scheduling scheme. This is used for coordinated control of building automation

  10. Closing the Loop on Groundwater-Surface Water Interactions, River Hydrodynamics, and Metabolism on the San Joaquin River Basin

    E-Print Network [OSTI]

    2009-01-01

    of the rate of change of NEP ? Pressure, temperature, andstation. Calculation of NEP from the SJR-Merced RiverNet Ecosystem Productivity (NEP) using dissolved oxygen (DO)

  11. The application of the electric analogue computer to the solution of closed-loop angular position servomechanisms problems 

    E-Print Network [OSTI]

    Evans, William Leon

    1950-01-01

    AND CONCLUSIONS VI I ~ AP PENDIX I ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ VIII ~ APPENDIX II IX. BIBLIOGRAPHY 59 6E 81 I' INTRODUCTIOH The h1story of the world and the advancement of civili- zation could be written 1n a treatise on how man has learned... t31 A H PL IF IER FEEDBACK FILTER IIO DC ERROR POKER MOTOR SELSYH 6EHERATOR ( I) 6EAR SELSVH (61 deox+ TRAHSFORNER 1 la AC ? ~) Fig. 4 G E Amplidyne Servo Demonstration Schematic e OUT by foz'oing a shaft z'otating at the desired speed...

  12. Overnight Closed Loop Insulin Delivery in Young People with Type 1 Diabetes: A Free-Living Randomised Clinical Trial

    E-Print Network [OSTI]

    Hovorka, Roman; Elleri, Daniela; Thabit, Hood; Allen, Janet M.; Leelarathna, Lalantha; El-Khairi, Ranna; Kumareswaran, Kavita; Caldwell, Karen; Calhoun, Peter; Kollman, Craig; Murphy, Helen R.; Acerini, Carlo L.; Wilinska, Malgorzata E.; Nodale, Marianna; Dunger, David B.

    2014-05-01

    Med Medtronic. M.E.W. received license fees from and has served as a consultant to BD Biosciences. R.H., M.E.W., and D.B.D. report patent applications. No other potential conflicts of interest relevant to this article were reported. Author Contributions. R... monitoring in children and adults with type 1 diabetes. Diabetes Care 2010;33: 1004–1008 31. National Paediatric Diabetes Audit Report 2010–11. London, Royal College of Paediatric and Child Care, 2012 care.diabetesjournals.org Hovorka and Associates 1211...

  13. Permeation of Limonene through Disposable Nitrile Gloves in the Robot Hand Whole Glove and ASTM Closed Loop Models

    E-Print Network [OSTI]

    Banaee, Sean

    2015-01-01

    Nitrile Gloves, American Industrial Hygiene Conference and2004 Banaee S. , Industrial hygiene risk factors at spinningEducation American Industrial Hygiene Foundation, Lawrence

  14. Supplementary Materials to "Adaptive Output-Feedback Control for Relative Degree Two Systems Based on Closed-Loop Reference Models"

    E-Print Network [OSTI]

    Qu, Zheng

    2015-09-14

    Abstract--- In this paper, a new adaptive output-feedback controller for multi-input-multi-output (MIMO) linear plant models with relative degree two is developed. The adaptive controller includes a baseline design based ...

  15. Diagnosis and Isolation of Air Gap Eccentricities in Closed-loop Controlled Doubly-Fed Induction Generators 

    E-Print Network [OSTI]

    Meenakshi Sundaram, Vivek

    2012-07-16

    With the widespread use of doubly-fed induction generators (DFIG) in wind energy conversion systems, condition monitoring is being given importance. Non-intrusive techniques like motor current signature analysis (MCSA), which involves looking...

  16. Fighting decoherence in a continuous two-qubit odd or even parity measurement with a closed-loop setup

    E-Print Network [OSTI]

    Anne E. B. Nielsen

    2014-10-03

    A parity measurement on two qubits, each consisting of a single atom in a cavity, can be realized by measuring the phase shift of a probe beam, which interacts sequentially with the two qubits, but imperfections lead to decoherence within the subspaces of a given parity. We demonstrate that a different setup, where the probe light interacts repeatedly with the qubits, can reduce the rate of decoherence within the odd or the even parity subspace significantly. We consider both the case of a resonant and the case of a nonresonant light-atom interaction and find that the performance is comparable if the parameters are chosen appropriately.

  17. Fighting decoherence in a continuous two-qubit odd/even parity measurement with a closed loop setup

    E-Print Network [OSTI]

    Nielsen, Anne E B

    2009-01-01

    A parity measurement on two qubits, each consisting of a single atom in a cavity, can be realized by measuring the phase shift of a probe beam, which interacts sequentially with the two qubits, but imperfections lead to decoherence within the subspaces of a given parity. We demonstrate that a different setup, where the probe light interacts repeatedly with the qubits, can reduce the rate of decoherence within the odd or the even parity subspace significantly. We consider both the case of a resonant and the case of a nonresonant light-atom interaction and find that the performance is comparable if the parameters are chosen appropriately.

  18. Permeation of Limonene through Disposable Nitrile Gloves in the Robot Hand Whole Glove and ASTM Closed Loop Models

    E-Print Network [OSTI]

    Banaee, Sean

    2015-01-01

    Certification in Occupational Health & Safety Management System (OHSAS 18001) and environment management systems (ISO

  19. Modular Low Cost High Energy Exhaust Heat Thermoelectric Generator with Closed-Loop Exhaust By-Pass System

    Broader source: Energy.gov [DOE]

    Poster presented at the 16th Directions in Engine-Efficiency and Emissions Research (DEER) Conference in Detroit, MI, September 27-30, 2010.

  20. Permeation of Limonene through Disposable Nitrile Gloves in the Robot Hand Whole Glove and ASTM Closed Loop Models

    E-Print Network [OSTI]

    Banaee, Sean

    2015-01-01

    and one air blank) were used with water as the collectionand one air blank) were used with water as the collectionand one air blank) were used with water as the collection

  1. Dynamics of the Coupled Human-climate System Resulting from Closed-loop Control of Solar Geoengineering

    SciTech Connect (OSTI)

    MacMartin, Douglas; Kravitz, Benjamin S.; Keith, David; Jarvis, Andrew

    2014-07-08

    If solar radiation management (SRM) were ever implemented, feedback of the observed climate state might be used to adjust the radiative forcing of SRM, in order to compensate for uncertainty in either the forcing or the climate response; this would also compensate for unexpected changes in the system, e.g. a nonlinear change in climate sensitivity. This feedback creates an emergent coupled human-climate system, with entirely new dynamics. In addition to the intended response to greenhouse-gas induced changes, the use of feedback would also result in a geoengineering response to natural climate variability. We use a simple box-diffusion dynamic model to understand how changing feedback-control parameters and time delay affect the behavior of this coupled natural-human system, and verify these predictions using the HadCM3L general circulation model. In particular, some amplification of natural variability is unavoidable; any time delay (e.g., to average out natural variability, or due to decision-making) exacerbates this amplification, with oscillatory behavior possible if there is a desire for rapid correction (high feedback gain), but a delayed response needed for decision making. Conversely, the need for feedback to compensate for uncertainty, combined with a desire to avoid excessive amplification, results in a limit on how rapidly SRM could respond to uncertain changes.

  2. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 5, SEPTEMBER 2007 2941 Enhancing Closed-Loop Wireless Systems Through

    E-Print Network [OSTI]

    Waterloo, University of

    (WCDMA), joint source­channel coding, mode 1 of the Third Generation Partner- ship Project (3GPP). I by Bell Mobility, Com- munications and Information Technology Ontario (CITO), and by the Nat- ural, Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada (e

  3. 774 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 47, NO. 3, AUGUST 1998 Performance of Closed-Loop Power

    E-Print Network [OSTI]

    Chockalingam, A.

    is with Qualcomm, Inc., San Diego, CA 92121 USA. P. Dietrich is with Metricom, Los Gatos, CA 95030 USA. L. B

  4. Permeation of Limonene through Disposable Nitrile Gloves in the Robot Hand Whole Glove and ASTM Closed Loop Models

    E-Print Network [OSTI]

    Banaee, Sean

    2015-01-01

    IISRP: Acrylonitrile-Butadiene, Rubber (NBR), 2002. http://chemical-resistant gloves. (37) Acrylonitrile butadiene ornitrile butadiene rubber (NBR) has unique features such as a

  5. Gas mixtures for spark gap closing switches

    DOE Patents [OSTI]

    Christophorou, Loucas G. (Oak Ridge, TN); McCorkle, Dennis L. (Knoxville, TN); Hunter, Scott R. (Oak Ridge, TN)

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  6. Gas mixtures for spark gap closing switches

    DOE Patents [OSTI]

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  7. Strategic Need for Multi-Purpose Thermal Hydraulic Loop for Support of Advanced Reactor Technologies

    SciTech Connect (OSTI)

    James E. O'Brien; Piyush Sabharwall; Su-Jong Yoon; Gregory K. Housley

    2014-09-01

    This report presents a conceptual design for a new high-temperature multi fluid, multi loop test facility for the INL to support thermal hydraulic, materials, and thermal energy storage research for nuclear and nuclear-hybrid applications. In its initial configuration, the facility will include a high-temperature helium loop, a liquid salt loop, and a hot water/steam loop. The three loops will be thermally coupled through an intermediate heat exchanger (IHX) and a secondary heat exchanger (SHX). Research topics to be addressed with this facility include the characterization and performance evaluation of candidate compact heat exchangers such as printed circuit heat exchangers (PCHEs) at prototypical operating conditions, flow and heat transfer issues related to core thermal hydraulics in advanced helium-cooled and salt-cooled reactors, and evaluation of corrosion behavior of new cladding materials and accident-tolerant fuels for LWRs at prototypical conditions. Based on its relevance to advanced reactor systems, the new facility has been named the Advanced Reactor Technology Integral System Test (ARTIST) facility. Research performed in this facility will advance the state of the art and technology readiness level of high temperature intermediate heat exchangers (IHXs) for nuclear applications while establishing the INL as a center of excellence for the development and certification of this technology. The thermal energy storage capability will support research and demonstration activities related to process heat delivery for a variety of hybrid energy systems and grid stabilization strategies. Experimental results obtained from this research will assist in development of reliable predictive models for thermal hydraulic design and safety codes over the range of expected advanced reactor operating conditions. Proposed/existing IHX heat transfer and friction correlations and criteria will be assessed with information on materials compatibility and instrumentation needs. The experimental database will guide development of appropriate predictive methods and be available for code verification and validation (V&V) related to these systems.

  8. Exact scheme independence at two loops

    E-Print Network [OSTI]

    Stefano Arnone; Antonio Gatti; Tim R. Morris; Oliver J. Rosten

    2003-11-11

    We further develop an algorithmic and diagrammatic computational framework for very general exact renormalization groups, where the embedded regularisation scheme, parametrised by a general cutoff function and infinitely many higher point vertices, is left unspecified. Calculations proceed iteratively,by integrating by parts with respect to the effective cutoff, thus introducing effective propagators, and differentials of vertices that can be expanded using the flow equations; many cancellations occur on using the fact that the effective propagator is the inverse of the classical Wilsonian two-point vertex. We demonstrate the power of these methods by computing the beta function up to two loops in massless four dimensional scalar field theory, obtaining the expected universal coefficients, independent of the details of the regularisation scheme.

  9. Gas Test Loop Functional and Technical Requirements

    SciTech Connect (OSTI)

    Glen R. Longhurst; Soli T. Khericha; James L. Jones

    2004-09-01

    This document defines the technical and functional requirements for a gas test loop (GTL) to be constructed for the purpose of providing a high intensity fast-flux irradiation environment for developers of advanced concept nuclear reactors. This capability is needed to meet fuels and materials testing requirements of the designers of Generation IV (GEN IV) reactors and other programs within the purview of the Advanced Fuel Cycle Initiative (AFCI). Space nuclear power development programs may also benefit by the services the GTL will offer. The overall GTL technical objective is to provide developers with the means for investigating and qualifying fuels and materials needed for advanced reactor concepts. The testing environment includes a fast-flux neutron spectrum of sufficient intensity to perform accelerated irradiation testing. Appropriate irradiation temperature, gaseous environment, test volume, diagnostics, and access and handling features are also needed. This document serves to identify those requirements as well as generic requirements applicable to any system of this kind.

  10. Observation of reversed hysteresis loops and negative coercivity in granular GaAs{endash}Fe hybrid structures

    SciTech Connect (OSTI)

    Fumagalli, P.; Sommer, G.; Lippitz, H.; Haneda, S.; Munekata, H.

    2001-06-01

    We have studied GaAs{endash}Fe granular magnetic-semiconductor hybrid structures by magneto-optic spectroscopy in a photon-energy range from 0.7 to 5 eV at temperatures from 7 to 300 K in magnetic fields up to 1.8 T. The structures have been grown by alternative molecular-beam deposition of GaAs and Fe. At the chosen substrate temperature of T{sub s}=580{degree}C the Fe precipitates into clusters of nanometer to submicron size which are in part ferromagnetically ordered at 300 K. The polar Kerr spectra at 300 and 7 K show for the hybrid structures with high Fe content a broad negative peak with a Kerr rotation of {minus}0.2{degree} at a photon energy of 0.9 eV. The spectral dependence is very similar to pure Fe. Looking at the polar Kerr hysteresis loops at 300 K, a striking behavior is found. The hysteresis loops are reversed, i.e., the magneto-optic hysteresis curves decrease faster when decreasing the fields than the situation is when closing the hysteresis loop on the way back. This peculiar behavior is discussed in the context of local exchange-bias like coupling between ferromagnetic Fe clusters and an antiferromagnetic FeAs surrounding. An alternative model of two superimposed Kerr hysteresis loops is proposed as well. {copyright} 2001 American Institute of Physics.

  11. Electricity generation with looped transmission networks: Bidding to an ISO

    E-Print Network [OSTI]

    Ferris, Michael C.

    Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes, 2323 Audubon St, New Orleans, LA 70125-4117, USA; www.EKonomicsLLC.com ¶ Department of Economics

  12. Analysis of heat transfer in unlooped and looped pulsating

    E-Print Network [OSTI]

    Zhang, Yuwen

    to the exchange of sensible heat. Higher surface tension results in a slight increase in the total heat transfer into turns. There are two types of PHPs: the looped pulsating heat pipe and the unlooped pulsating heat pipeAnalysis of heat transfer in unlooped and looped pulsating heat pipes M.B. Sha®i and A. Faghri

  13. Supply Regulation Techniques for Phase-Locked Loops

    E-Print Network [OSTI]

    Palermo, Sam

    Supply Regulation Techniques for Phase-Locked Loops Vivekananth Gurumoorthy and Samuel Palermo-- Phase-locked loops (PLLs) which employ voltage regulators for low supply-noise sensitivity often rely. This paper compares various supply regulation techniques on the basis of their ability to reject noise from

  14. The static quark potential to three loops in perturbation theory

    E-Print Network [OSTI]

    Alexander V. Smirnov; Vladimir A. Smirnov; Matthias Steinhauser

    2010-06-29

    The static potential constitutes a fundamental quantity of Quantum Chromodynamics. It has recently been evaluated to three-loop accuracy. In this contribution we provide details on the calculation and present results for the 14 master integrals which contain a massless one-loop insertion.

  15. Singlet Free Energies and Renormalized Polyakov Loop in full QCD

    E-Print Network [OSTI]

    K. Petrov

    2006-10-05

    We calculate the free energy of a static quark anti-quark pair and the renormalized Polyakov loop in 2+1- and 3- flavor QCD using $16^3 \\times 4$ and $16^3 \\times 6$ lattices and improved staggered p4 action. We also compare the renormalized Polyakov loop with the results of our earlier studies.

  16. Loop summarization and termination analysis Aliaksei Tsitovich1

    E-Print Network [OSTI]

    Kröning, Daniel

    Loop summarization and termination analysis Aliaksei Tsitovich1 , Natasha Sharygina1 , Christoph M termination analysis based on loop summarization. The algorithm relies on a library of ab- stract domains Introduction The program termination problem has received increased interest in the recent past. In practice

  17. Efficiently finding optimal winding-constrained loops in the plane

    E-Print Network [OSTI]

    Vernaza, Paul

    Efficiently finding optimal winding- constrained loops in the plane Paul Vernaza, Venkatraman winding- constrained loops in the plane that are optimal with respect to a minimum-cost objective times it winds around each obstacle, enabling us to reduce the problem of finding paths satisfying

  18. Bolt: On-Demand Infinite Loop Escape in Unmodified Binaries

    E-Print Network [OSTI]

    Rinard, Martin

    . Bolt supports an on- demand usage model--a user can attach Bolt to a running application at any point the application has successfully escaped from the loop, Bolt detaches from the application. To support the onBolt: On-Demand Infinite Loop Escape in Unmodified Binaries Michael Kling Sasa Misailovic Michael

  19. Closed strings from decaying D-branes

    E-Print Network [OSTI]

    Neil Lambert; Hong Liu; Juan Maldacena

    2007-02-05

    We compute the emission of closed string radiation from homogeneous rolling tachyons. For an unstable decaying D$p$-brane the radiated energy is infinite to leading order for $p\\leq 2$ and finite for $p>2$. The closed string state produced by a decaying brane is closely related to the state produced by D-instantons at a critical Euclidean distance from $t=0$. In the case of a D0 brane one can cutoff this divergence so that we get a finite energy final state which would be the state that the brane decays into.

  20. Control and optimization system and method for chemical looping processes

    SciTech Connect (OSTI)

    Lou, Xinsheng; Joshi, Abhinaya; Lei, Hao

    2014-06-24

    A control system for optimizing a chemical loop system includes one or more sensors for measuring one or more parameters in a chemical loop. The sensors are disposed on or in a conduit positioned in the chemical loop. The sensors generate one or more data signals representative of an amount of solids in the conduit. The control system includes a data acquisition system in communication with the sensors and a controller in communication with the data acquisition system. The data acquisition system receives the data signals and the controller generates the control signals. The controller is in communication with one or more valves positioned in the chemical loop. The valves are configured to regulate a flow of the solids through the chemical loop.

  1. RECURRENT TWO-SIDED LOOP-TYPE JETS DUE TO A BIPOLE EMERGING BELOW TRANSEQUATORIAL LOOPS

    SciTech Connect (OSTI)

    Jiang, Yunchun; Bi, Yi; Yang, Jiayan; Li, Haidong; Yang, Bo; Zheng, Ruisheng

    2013-10-01

    We report four successive two-sided loop-type jets centered around a small bipole emerging below transequatorial interconnecting loops (TILs). They occurred at the very first emerging stage of the bipole in a short recurrent period of only 12 minutes. During this term, the emerging flux consisted of a main bipole, but showed a mixed-polarity field morphology with the appearance and then disappearance of a small magnetic feature in its interior. However, no associated cancellation of the bipole with the nearby flux was observed in this process. In multi-wavelength EUV images, the jets started nearly simultaneously and were similar in appearance. Each jet consisted of a pair of components that connected to two bright footpoints around the bipole and were ejected from the emergence location to opposite directions. While the two bright footpoints were separated by a gap and had consistent evolution with that of the bipole, the jet base region covering them accordingly showed four episodes of emission enhancement that peaked approximately at the jet start times. Compatible with the magnetic-reconnection jet mechanism, the recurrent two-sided loop-type jets are explained as a result of reconnection between the emerging bipole and the overlying TILs.

  2. Game Preserves and Closed Areas (Montana)

    Broader source: Energy.gov [DOE]

    Game preserves and closed areas exist within the state of Montana for the protection of all the game animals and birds. Construction and development is limited in these areas. Currently, only three...

  3. The pomeron in closed bosonic string theory

    SciTech Connect (OSTI)

    Fazio, A. R.

    2010-12-22

    We compute the couplings of the pomeron to the first few mass levels of closed bosonic string states in flat space. We recognize the deviation from the linearity of the Regge trajectories in a five dimensional anti De Sitter background.

  4. Three-loop Three-Linear Vertices and Four-Loop MOM beta functions in massless QCD

    E-Print Network [OSTI]

    K. G. Chetyrkin; A. Retey

    2000-07-10

    In this paper we present a full set of 2- and 3-point functions for massless QCD at three-loop order in the MSbar scheme. The vertex functions are evaluated at the asymmetric point with one vanishing momentum. These results are used to relate the MSbar coupling constant to that of various momentum subtraction renormalization schemes at three-loop order. With the help of the known four-loop MS-bar beta-function we then determine the four-loop coefficients of the corresponding MOM beta-functions. As an application we consider the momentum dependence (running) of the three-gluon asymmetrical vertex recently computed within the lattice approach by Ph. Boucaud et al. (JHEP 04 006 (2000)). An account of the four-loop term in the corresponding beta-function leads to a significant (around 30%) decrease of the value of the non-perturbative power-suppressed correction to the running.

  5. The One-Loop Six-Dimensional Hexagon Integral and its Relation to MHV Amplitudes in N=4 SYM

    SciTech Connect (OSTI)

    Dixon, Lance J.; Drummond, James M.; Henn, Johannes M.; /Humboldt U., Berlin

    2011-08-19

    We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral {tilde {Phi}}{sub 6} with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar N = 4 super-Yang-Mills theory, {Omega}{sup (1)} and {Omega}{sup (2)}. The derivative of {Omega}{sup (2)} with respect to one of the conformal invariants yields {tilde {Phi}}{sub 6}, while another first-order differential operator applied to {tilde {Phi}}{sub 6} yields {Omega}{sup (1)}. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in N = 4 super-Yang-Mills.

  6. Chemical Looping Combustion Reactions and Systems

    SciTech Connect (OSTI)

    Sarofim, Adel; Lighty, JoAnn; Smith, Philip; Whitty, Kevin; Eyring, Edward; Sahir, Asad; Alvarez, Milo; Hradisky, Michael; Clayton, Chris; Konya, Gabor; Baracki, Richard; Kelly, Kerry

    2014-03-01

    Chemical Looping Combustion (CLC) is one promising fuel-combustion technology, which can facilitate economic CO{sub 2} capture in coal-fired power plants. It employs the oxidation/reduction characteristics of a metal, or oxygen carrier, and its oxide, the oxidizing gas (typically air) and the fuel source may be kept separate. This topical report discusses the results of four complementary efforts: (5.1) the development of process and economic models to optimize important design considerations, such as oxygen carrier circulation rate, temperature, residence time; (5.2) the development of high-performance simulation capabilities for fluidized beds and the collection, parameter identification, and preliminary verification/uncertainty quantification; (5.3) the exploration of operating characteristics in the laboratoryscale bubbling bed reactor, with a focus on the oxygen carrier performance, including reactivity, oxygen carrying capacity, attrition resistance, resistance to deactivation, cost and availability; and (5.4) the identification of kinetic data for copper-based oxygen carriers as well as the development and analysis of supported copper oxygen carrier material. Subtask 5.1 focused on the development of kinetic expressions for the Chemical Looping with Oxygen Uncoupling (CLOU) process and validating them with reported literature data. The kinetic expressions were incorporated into a process model for determination of reactor size and oxygen carrier circulation for the CLOU process using ASPEN PLUS. An ASPEN PLUS process model was also developed using literature data for the CLC process employing an iron-based oxygen carrier, and the results of the process model have been utilized to perform a relative economic comparison. In Subtask 5.2, the investigators studied the trade-off between modeling approaches and available simulations tools. They quantified uncertainty in the high-performance computing (HPC) simulation tools for CLC bed applications. Furthermore, they performed a sensitivity analysis for velocity, height and polydispersity and compared results against literature data for experimental studies of CLC beds with no reaction. Finally, they present an optimization space using simple non-reactive configurations. In Subtask 5.3, through a series of experimental studies, behavior of a variety of oxygen carriers with different loadings and manufacturing techniques was evaluated under both oxidizing and reducing conditions. The influences of temperature, degree of carrier conversion and thermodynamic driving force resulting from the difference between equilibrium and system O{sub 2} partial pressures were evaluated through several experimental campaigns, and generalized models accounting for these influences were developed to describe oxidation and oxygen release. Conversion of three solid fuels with widely ranging reactivities was studied in a small fluidized bed system, and all but the least reactive fuel (petcoke) were rapidly converted by oxygen liberated from the CLOU carrier. Attrition propensity of a variety of carriers was also studied, and the carriers produced by freeze granulation or impregnation of preformed substrates displayed the lowest rates of attrition. Subtask 5.4 focused on gathering kinetic data for a copper-based oxygen carrier to assist with modeling of a functioning chemical looping reactor. The kinetics team was also responsible for the development and analysis of supported copper oxygen carrier material.

  7. TS LOOP NON-POTABLE PUMP EVALUATION

    SciTech Connect (OSTI)

    S. Goodin

    1999-05-14

    This analysis evaluates the existing subsurface non-potable water system from the portal pump to the end of the water line in the South Ramp and determines if the pump size and spacing meets the system pressure and flow requirements for construction operations and incipient fire fighting capability as established in the Subsurface Fire Hazards Analysis (CRWMS M&O 1998b). This analysis does not address the non potable water system in the Cross Drift which is covered under a previous design analysis (CRWMS-M&O 1998a). The Subsurface Fire Hazards Analysis references sections of OSHA 29 CFR 1910 Subpart L for requirements applicable to the incipient fire fighting hose stations used underground. This analysis does not address mechanical system valves, fittings, risers and other components of the system piping. This system is not designed or intended to meet all National Fire Protection Association (NFPA) codes for a fire fighting system but is only considered a backup system to fire extinguishers that are installed throughout the Topopah Springs (TS) Loop and may be used to fight small incipient stage fires.

  8. Fiber-bragg grating-loop ringdown method and apparatus

    SciTech Connect (OSTI)

    Wang, Chuji

    2008-01-29

    A device comprising a fiber grating loop ringdown (FGLRD) system of analysis is disclosed. A fiber Bragg grating (FBG) or Long-Period grating (LPG) written in a section of single mode fused silica fiber is incorporated into a fiber loop. By utilizing the wing areas of the gratings' bandwidth as a wavelength dependent attenuator of the light transmission, a fiber grating loop ringdown concept is formed. One aspect of the present invention is temperature sensing, which has been demonstrated using the disclosed device. Temperature measurements in the areas of accuracy, stability, high temperature, and dynamic range are also described.

  9. Resistive wall mode active control physics design for KSTAR

    SciTech Connect (OSTI)

    Park, Y. S., E-mail: ypark@pppl.gov; Sabbagh, S. A.; Bialek, J. M.; Berkery, J. W. [Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics, Columbia University, New York 10027 (United States); Bak, J. G.; Lee, S. G.; Oh, Y. K. [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)] [National Fusion Research Institute, Daejeon 305-806 (Korea, Republic of)

    2014-01-15

    As KSTAR H-mode operation approaches the region where the resistive wall mode (RWM) can be unstable, an important issue for future long pulse, high beta plasma operation is to evaluate RWM active feedback control performance using a planned active/passive RWM stabilization system on the device. In particular, an optimal design of feedback sensors allows mode stabilization up to the highest achievable ?{sub N} close to the ideal with-wall limit, ?{sub N}{sup wall}, with reduced control power requirements. The computed ideal n?=?1 mode structure from the DCON code has been input to the VALEN-3D code to calculate the projected performance of an active RWM control system in the KSTAR three-dimensional conducting structure device geometry. Control performance with the midplane locked mode detection sensors, off-midplane saddle loops, and magnetic pickup coils is examined. The midplane sensors measuring the radial component of the mode perturbation is found to be strongly affected by the wall eddy current. The off-axis saddle loops with proper compensation of the prompt applied field are computed to provide stabilization at ?{sub N} up to 86% of ?{sub N}{sup wall} but the low RWM amplitude computed in the off-axis regions near the sensors can produce a low signal-to-noise ratio. The required control power and bandwidth are also estimated with varied noise levels in the feedback sensors. Further improvements have been explored by examining a new RWM sensor design motivated by the off-midplane poloidal magnetic field sensors in NSTX. The new sensors mounted off of the copper passive stabilizer plates near the device midplane show a clear advantage in control performance corresponding to achieving 99% of ?{sub N}{sup wall} without the need of compensation of the prompt field. The result shows a significant improvement of RWM feedback stabilization using the new sensor set which motivates a future feedback sensor upgrade.

  10. Experimental Simulation of Closed Timelike Curves

    E-Print Network [OSTI]

    Martin Ringbauer; Matthew A. Broome; Casey R. Myers; Andrew G. White; Timothy C. Ralph

    2015-01-20

    Closed timelike curves are among the most controversial features of modern physics. As legitimate solutions to Einstein's field equations, they allow for time travel, which instinctively seems paradoxical. However, in the quantum regime these paradoxes can be resolved leaving closed timelike curves consistent with relativity. The study of these systems therefore provides valuable insight into non-linearities and the emergence of causal structures in quantum mechanics-essential for any formulation of a quantum theory of gravity. Here we experimentally simulate the non-linear behaviour of a qubit interacting unitarily with an older version of itself, addressing some of the fascinating effects that arise in systems traversing a closed timelike curve. These include perfect discrimination of non-orthogonal states and, most intriguingly, the ability to distinguish nominally equivalent ways of preparing pure quantum states. Finally, we examine the dependence of these effects on the initial qubit state, the form of the unitary interaction, and the influence of decoherence.

  11. Closed-orbit recurrences in molecular hydrogen

    SciTech Connect (OSTI)

    Wright, J. D.; DiSciacca, J. M.; Lambert, J. M.; Morgan, T. J. [Department of Physics, Wesleyan University, Middletown, Connecticut 06459 (United States)

    2010-06-15

    Using scaled-energy Stark spectroscopy, we report the observation of recurrences due to closed orbits, both geometric and diffractive, in the {nu}=0, R=1, nd Rydberg series of H{sub 2} (16closed-orbit theory prediction of diffractive trajectories due to inelastic scattering of the excited electron on the molecular core. We have made similar measurements in He, and a comparison between the recurrence properties of H{sub 2} and its united atom equivalent is given.

  12. ORNL/TM-2008/048 Uranyl Nitrate Flow Loop

    E-Print Network [OSTI]

    Pennycook, Steve

    ORNL/TM-2008/048 Uranyl Nitrate Flow Loop October 2008 Jennifer L. Ladd-Lively #12;DOCUMENT Government or any agency thereof. #12;ORNL/TM-2008/048 Nuclear Science and Technology Division URANYL NITRATE

  13. HIGH SPATIAL RESOLUTION OBSERVATIONS OF LOOPS IN THE SOLAR CORONA

    SciTech Connect (OSTI)

    Brooks, David H.; Ugarte-Urra, Ignacio [College of Science, George Mason University, 4400 University Drive, Fairfax, VA 22030 (United States); Warren, Harry P. [Space Science Division, Naval Research Laboratory, Washington, DC 20375 (United States); Winebarger, Amy R. [NASA Marshall Space Flight Center, ZP 13, Huntsville, AL 35812 (United States)

    2013-08-01

    Understanding how the solar corona is structured is of fundamental importance to determine how the Sun's upper atmosphere is heated to high temperatures. Recent spectroscopic studies have suggested that an instrument with a spatial resolution of 200 km or better is necessary to resolve coronal loops. The High Resolution Coronal Imager (Hi-C) achieved this performance on a rocket flight in 2012 July. We use Hi-C data to measure the Gaussian widths of 91 loops observed in the solar corona and find a distribution that peaks at about 270 km. We also use Atmospheric Imaging Assembly data for a subset of these loops and find temperature distributions that are generally very narrow. These observations provide further evidence that loops in the solar corona are often structured at a scale of several hundred kilometers, well above the spatial scale of many proposed physical mechanisms.

  14. Standing Slow MHD Waves in Radiatively Cooling Coronal Loops

    E-Print Network [OSTI]

    Al-Ghafri, Khalil Salim

    2015-01-01

    The standing slow magneto-acoustic oscillations in cooling coronal loops are investigated. There are two damping mechanisms which are considered to generate the standing acoustic modes in coronal magnetic loops namely thermal conduction and radiation. The background temperature is assumed to change temporally due to optically thin radiation. In particular, the background plasma is assumed to be radiatively cooling. The effects of cooling on longitudinal slow MHD modes is analytically evaluated by choosing a simple form of radiative function that ensures the temperature evolution of the background plasma due to radiation coincides with the observed cooling profile of coronal loops. The assumption of low-beta plasma leads to neglect the magnetic field perturbation and eventually reduces the MHD equations to a 1D system modelling longitudinal MHD oscillations in a cooling coronal loop. The cooling is assumed to occur on a characteristic time scale much larger than the oscillation period that subsequently enables...

  15. Experimental characterization and chemical kinetics study of chemical looping combustion

    E-Print Network [OSTI]

    Chen, Tianjiao, S.M. Massachusetts Institute of Technology

    2014-01-01

    Chemical looping combustion (CLC) is one of the most promising technologies to achieve carbon capture in fossil fuel power generation plants. A novel rotary-bed reactor concept was proposed by Zhao et. al. [1] in 2013. It ...

  16. Seismology of transversely oscillating coronal loops with siphon flows

    E-Print Network [OSTI]

    Terradas, J; Verth, G; Goossens, M

    2011-01-01

    There are ubiquitous flows observed in the solar atmosphere of sub-Alfv\\'{e}nic speeds, however after flaring and coronal mass ejection events flows can become Alfv\\'{e}nic. In this Letter, we derive an expression for the standing kink mode frequency due to siphon flow in coronal loops, valid for both low and high speed regimes. It is found that siphon flow introduces a linear spatially dependent phase shift along coronal loops and asymmetric eigenfunctions. We demonstrate how this theory can be used to determine the kink and flow speed of oscillating coronal loops with reference to an observational case study. It is shown that the presence of siphon flow can cause the underestimation of magnetic field strength in coronal loops using the traditional seismological methods.

  17. Enhanced Ultraviolet Cancellations in N = 5 Supergravity at Four Loop

    E-Print Network [OSTI]

    Zvi Bern; Scott Davies; Tristan Dennen

    2014-09-09

    We show that the four-loop four-point amplitudes of N = 5 supergravity are ultraviolet finite in four dimensions, contrary to expectations based on supersymmetry and duality-symmetry arguments. We explain why the diagrams of any covariant local formalism cannot manifestly exhibit the necessary cancellations for finiteness but instead require a new type of nontrivial ultraviolet cancellation that we call "enhanced cancellations". We also show that the three-loop four-point amplitudes in N = 4 and N = 5 supergravity theories display enhanced cancellations. To construct the loop integrand, we use the duality between color and kinematics. We apply standard methods for extracting ultraviolet divergences in conjunction with the FIRE5 integral reduction program to arrive at the four-loop results.

  18. Mechanisms Engineering Test Loop - Phase I Status Report - FY2015

    SciTech Connect (OSTI)

    Hvasta, M.; Grandy, C.; Lisowski, D.; Borowski, A.

    2015-09-01

    This report documents the current status of the Mechanisms Engineering Test Loop (METL) as of the end of FY2015. METL is currently in Phase I of its design and construction.

  19. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK SOURCE HEAT PUMP SYSTEMS Thesis Approved: ___________________________________________ Thesis Adviser pump systems. For detailed analysis and accurate simulation of the transient heat transfer in vertical

  20. Klystron "efficiency loop" for the ALS storage ring RF system

    E-Print Network [OSTI]

    Kwiatkowski, Slawomir; Julian, Jim; Baptiste, Kenneth

    2002-01-01

    to Mod, Feb. 7, 2002] SRRF Klystron Beam Current (A) [AfterTime (hrs) Figure 2: SRRF Klystron Efficiency Comparison forKLYSTRON “EFFICIENCY LOOP” FOR THE ALS STORAGE RING RF

  1. Klystron 'efficiency loop' for the ALS storage ring RF system

    SciTech Connect (OSTI)

    Kwiatkowski, Slawomir; Julian, Jim; Baptiste, Kenneth

    2002-05-20

    The recent energy crisis in California has led us to investigate the high power RF systems at the Advanced Light Source (ALS) in order to decrease the energy consumption and power costs. We found the Storage Ring Klystron Power Amplifier system operating as designed but with significant power waste. A simple proportional-integrator (PI) analog loop, which controls the klystron collector beam current, as a function of the output RF power, has been designed and installed. The design considerations, besides efficiency improvement, were to interface to the existing system without major expense. They were to also avoid the klystron cathode power supply filter's resonance in the loop's dynamics, and prevent a conflict with the existing Cavity RF Amplitude Loop dynamics. This efficiency loop will allow us to save up to 700 MW-hours of electrical energy per year and increase the lifetime of the klystron.

  2. Three dimensional instability of flexible ferromagnetic filament loop

    E-Print Network [OSTI]

    K. ?rglis; R. Livanovi?s; A. C?bers

    2010-09-07

    Dynamics of flexible ferromagnetic filaments in an external magnetic field is considered. We report the existence of a buckling instability of the ferromagnetic filament at the magnetic field reversion, which leads to the formation of a metastable loop. Its relaxation through three dimensional transformation of the configurations is observed experimentally and confirmed by numerical simulations. Bending modulus of the flexible ferromagnetic filaments synthesized by linking micron size core-shell ferromagnetic particles with DNA fragments is estimated by comparison of the parameters of the loops observed in the experiment with theoretical calculations. Formation of the loop and its relaxation are characterized by the numerically calculated writhe number. The relaxation time of the loop allows us to estimate the hydrodynamic drag of the filament.

  3. Quantum reduced loop gravity: extension to scalar field

    E-Print Network [OSTI]

    Jakub Bilski; Emanuele Alesci; Francesco Cianfrani

    2015-07-02

    The quantization of the Hamiltonian for a scalar field is performed in the framework of Quantum Reduced Loop Gravity. We outline how the regularization can be performed by using the analogous tools adopted in full Loop Quantum Gravity and the matrix elements of the resulting operator between basis states are analytic coefficients. These achievements open the way for a consistent analysis of the Quantum Gravity corrections to the classical dynamics of gravity in the presence of a scalar field in a cosmological setting.

  4. Entropy and Area of Black Holes in Loop Quantum Gravity

    E-Print Network [OSTI]

    I. B. Khriplovich

    2002-03-31

    Simple arguments related to the entropy of black holes strongly constrain the spectrum of the area operator for a Schwarzschild black hole in loop quantum gravity. In particular, this spectrum is fixed completely by the assumption that the black hole entropy is maximum. Within the approach discussed, one arrives in loop quantum gravity at a quantization rule with integer quantum numbers $n$ for the entropy and area of a black hole.

  5. Tree-Loop Duality Relation beyond simple poles

    E-Print Network [OSTI]

    Isabella Bierenbaum; Sebastian Buchta; Petros Draggiotis; Ioannis Malamos; German Rodrigo

    2012-11-21

    We develop the Tree-Loop Duality Relation for two- and three-loop integrals with multiple identical propagators (multiple poles). This is the extension of the Duality Relation for single poles and multiloop integrals derived in previous publications. We prove a generalization of the formula for single poles to multiple poles and we develop a strategy for dealing with higher-order pole integrals by reducing them to single pole integrals using Integration By Parts.

  6. The one-loop six-dimensional hexagon integral with three massive corners

    SciTech Connect (OSTI)

    Del Duca, Vittorio; Dixon, Lance J.; Drummond, James M.; Duhr, Claude; Henn, Johannes M.; Smirnov, Vladimir A.; /Moscow State U.

    2011-11-04

    We compute the six-dimensional hexagon integral with three non-adjacent external masses analytically. After a simple rescaling, it is given by a function of six dual conformally invariant cross-ratios. The result can be expressed as a sum of 24 terms involving only one basic function, which is a simple linear combination of logarithms, dilogarithms, and trilogarithms of uniform degree three transcendentality. Our method uses differential equations to determine the symbol of the function, and an algorithm to reconstruct the latter from its symbol. It is known that six-dimensional hexagon integrals are closely related to scattering amplitudes in N = 4 super Yang-Mills theory, and we therefore expect our result to be helpful for understanding the structure of scattering amplitudes in this theory, in particular at two loops.

  7. Determination of the Coronal Magnetic Field by Hot Loop Oscillations

    E-Print Network [OSTI]

    Tongjiang Wang; Davina E. Innes; Jiong Qiu

    2006-12-20

    We apply a new method to determine the magnetic field in coronal loops using observations of coronal loop oscillations. We analyze seven Doppler shift oscillation events detected by SUMER in the hot flare line Fe XIX to obtain oscillation periods of these events. The geometry, temperature, and electron density of the oscillating loops are measured from coordinated multi-channel soft X-ray imaging observations from SXT. All the oscillations are consistent with standing slow waves in their fundamental mode. The parameters are used to calculate the magnetic field of coronal loops based on MHD wave theory. For the seven events, the plasma $\\beta$ is in the range 0.15-0.91 with a mean of 0.33$\\pm$0.26, and the estimated magnetic field varies between 21-61 G with a mean of 34$\\pm$14 G. With background emission subtracted, the estimated magnetic field is reduced by 9%-35%. The maximum backgroud subtraction gives a mean of 22$\\pm$13 G in the range 12-51 G. We discuss measurement uncertainties and the prospect of determining coronal loop magnetic fields from future observations of coronal loops and Doppler shift oscillations.

  8. Triple loop heat exchanger for an absorption refrigeration system

    DOE Patents [OSTI]

    Reimann, Robert C. (Lafayette, NY)

    1984-01-01

    A triple loop heat exchanger for an absorption refrigeration system is disclosed. The triple loop heat exchanger comprises portions of a strong solution line for conducting relatively hot, strong solution from a generator to a solution heat exchanger of the absorption refrigeration system, conduit means for conducting relatively cool, weak solution from the solution heat exchanger to the generator, and a bypass system for conducting strong solution from the generator around the strong solution line and around the solution heat exchanger to an absorber of the refrigeration system when strong solution builds up in the generator to an undesirable level. The strong solution line and the conduit means are in heat exchange relationship with each other in the triple loop heat exchanger so that, during normal operation of the refrigeration system, heat is exchanged between the relatively hot, strong solution flowing through the strong solution line and the relatively cool, weak solution flowing through the conduit means. Also, the strong solution line and the bypass system are in heat exchange relationship in the triple loop heat exchanger so that if the normal flow path of relatively hot, strong solution flowing from the generator to an absorber is blocked, then this relatively, hot strong solution which will then be flowing through the bypass system in the triple loop heat exchanger, is brought into heat exchange relationship with any strong solution which may have solidified in the strong solution line in the triple loop heat exchanger to thereby aid in desolidifying any such solidified strong solution.

  9. Print this Page Close The nuclear deal

    E-Print Network [OSTI]

    league. B At least in the eyes of the United States, India is now a nuclear weapons state. The gamble 'Entity List', which was drawn up outside the non-proliferation laws after our nuclear weapon testsPrint this Page Close The nuclear deal July 20, 2005 | 19:05 ISTT P Sreenivasan | y assuming

  10. Closed timelike curves in general relativity

    E-Print Network [OSTI]

    W. B. Bonnor

    2002-11-13

    Many solutions of Einstein's field equations contain closed timelike curves (CTC). Some of these solutions refer to ordinary materials in situations which might occur in the laboratory, or in astrophysics. It is argued that, in default of a reasonable interpretation of CTC, general relativity does not give a satisfactory account of all phenomena within its terms of reference.

  11. Scalar fields in an anisotropic closed universe

    E-Print Network [OSTI]

    Mauricio Cataldo; Sergio del Campo

    2000-04-27

    We study in this article a class of homogeneous, but anisotropic cosmological models in which shear viscosity is included. Within the matter content we consider a component (the quintessence component) determined by the barotropic equations of state, $p=\\alpha \\rho$, with $\\alpha < 0$. We establish conditions under which a closed axisymmetrical cosmological model may look flat al low redshift.

  12. Augmented Reality for Close Quarters Combat

    SciTech Connect (OSTI)

    None

    2013-09-20

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  13. Augmented Reality for Close Quarters Combat

    ScienceCinema (OSTI)

    None

    2014-06-23

    Sandia National Laboratories has developed a state-of-the-art augmented reality training system for close-quarters combat (CQB). This system uses a wearable augmented reality system to place the user in a real environment while engaging enemy combatants in virtual space (Boston Dynamics DI-Guy). Umbra modeling and simulation environment is used to integrate and control the AR system.

  14. One-Loop Right-Handed Neutrino Threshold Corrections for Two-Loop Running in Supersymmetric Type I Seesaw Models

    E-Print Network [OSTI]

    Antusch, Stefan

    2015-01-01

    The renormalization group (RG) running of the neutrino mass operator is required for comparing the predictions of neutrino models at high energy with the experimental data at low energies. In the type I seesaw scenario with n_G right-handed neutrinos, the RG running is also performed in the effective theories above and between the thresholds given by the masses of the right-handed neutrinos. At these thresholds, the effective theories are matched. When calculating the two-loop RG running, the matching has to be performed at the one-loop level. In this work, we calculate the one-loop matching formulae in the MSSM extended by n_G right-handed neutrinos using supergraph techniques. Moreover we present a general formula for one-loop matching of superpotential operators which can readily be applied to any supersymmetric theory where chiral superfields are integrated out.

  15. Micro-Columnated Loop Heat Pipe: The Future of Electronic Substrates

    E-Print Network [OSTI]

    Dhillon, Navdeep Singh

    2012-01-01

    Loop Heat Pipes . . . . . . . . . . . . . . . . . . . .Heat Pipes . . . . . . . . . . . . . . . . . . . . . . . .of operation of a heat pipe [13]. . . . . . . . . . . . . .

  16. The Loop Current may not have protected South Florida this year Rejoined to

    E-Print Network [OSTI]

    Meyers, Steven D.

    this year. In fact, if the oil was spilling right now, the Loop Cur- rent would be doing just what experts complete Rejoined to loop current Site of oil spill The Loop Current, so-called because it loops through, to the heart of offshore oil fields. The Gulf of Mexico is not a flat body of water. Though the eye can

  17. NAME_______________________ (1) Stunt driver Fearless Freida is performing a loop-the-loop in her frictionless coaster car. She

    E-Print Network [OSTI]

    Ross, Joseph

    frictionless coaster car. She is initially propelled with speed vo towards the loop, then she coasts around the circular track, of diameter 10.0 m. Freida and her car have total mass 120 kg. (a) If her initial speed (vo) is 20 m/s, determine the speed at the top of the loop. (b) Draw free-body diagrams for the coaster car

  18. The concept of chemical looping reactions has been widely applied in chemical industries. Fundamental research on chemical looping reactions has also been applied to energy systems. Fossil fuel chemical looping applications were used with the steam-iron p

    E-Print Network [OSTI]

    of high efficiency operational processes, interest in chemical looping technology has resurfaced for itsThe concept of chemical looping reactions has been widely applied in chemical industries. Fundamental research on chemical looping reactions has also been applied to energy systems. Fossil fuel

  19. Use of Multiple Reheat Helium Brayton Cycles to Eliminate the Intermediate Heat Transfer Loop for Advanced Loop Type SFRs

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Samuel E. Bays

    2009-05-01

    The sodium intermediate heat transfer loop is used in existing sodium cooled fast reactor (SFR) plant design as a necessary safety measure to separate the radioactive primary loop sodium from the water of the steam Rankine power cycle. However, the intermediate heat transfer loop significantly increases the SFR plant cost and decreases the plant reliability due to the relatively high possibility of sodium leakage. A previous study shows that helium Brayton cycles with multiple reheat and intercooling for SFRs with reactor outlet temperature in the range of 510°C to 650°C can achieve thermal efficiencies comparable to or higher than steam cycles or recently proposed supercritical CO2 cycles. Use of inert helium as the power conversion working fluid provides major advantages over steam or CO2 by removing the requirement for safety systems to prevent and mitigate the sodium-water or sodium-CO2 reactions. A helium Brayton cycle power conversion system therefore makes the elimination of the intermediate heat transfer loop possible. This paper presents a pre-conceptual design of multiple reheat helium Brayton cycle for an advanced loop type SFR. This design widely refers the new horizontal shaft distributed PBMR helium power conversion design features. For a loop type SFR with reactor outlet temperature 550°C, the design achieves 42.4% thermal efficiency with favorable power density comparing with high temperature gas cooled reactors.

  20. Sec. Moniz to Georgia, Energy Department Scheduled to Close on...

    Office of Environmental Management (EM)

    Energy Department Scheduled to Close on Loan Guarantees to Construct New Nuclear Power Plant Reactors Sec. Moniz to Georgia, Energy Department Scheduled to Close on Loan...

  1. Sec. Moniz to Georgia, Energy Department Scheduled to Close on...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Georgia, Energy Department Scheduled to Close on Loan Guarantees to Construct New Nuclear Power Plant Reactors Sec. Moniz to Georgia, Energy Department Scheduled to Close on Loan...

  2. Solar Storm Closely Watched Worldwide | Department of Energy

    Energy Savers [EERE]

    Solar Storm Closely Watched Worldwide Solar Storm Closely Watched Worldwide March 9, 2012 - 10:14am Addthis While this week's solar storm captures the interest of scientists,...

  3. Collaborative Lubricating Oil Study on Emissions (CLOSE) Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CLOSE) Project Collaborative Lubricating Oil Study on Emissions (CLOSE) Project Extensive chemical and physical characterization performed on emissions from normal and high...

  4. Closing the Lithium-ion Battery Life Cycle: Poster handout |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Lithium-ion Battery Life Cycle: Poster handout Title Closing the Lithium-ion Battery Life Cycle: Poster handout Publication Type Miscellaneous Year of Publication 2014...

  5. Irradiated closed Friedmann brane-worlds

    E-Print Network [OSTI]

    Zoltán Keresztes; Ibolya Képíró

    2006-10-10

    We consider the evolution of a closed Friedmann brane irradiated by a bulk black hole. Both absorption on the brane and transmission across the brane are allowed, the latter representing a generalization over a previously studied model. Without transmission, a critical behaviour could be observed, when the acceleration due to radiation pressure and the deceleration introduced by the increasing self-gravity of the brane roughly compensate each other. We show here that increasing transmission leads to the disappearance of the critical behaviour.

  6. Closed inflationary universe in Patch Cosmology

    E-Print Network [OSTI]

    Sergio del Campo; Ramon Herrera; Pedro Labrana; Joel Saavedra

    2009-06-20

    In this article we study closed inflationary universe models using the Gauss-Bonnet Brane. We determine and characterize the existence of a universe with $\\Omega > 1$, with an appropriate period of inflation. We have found that this model is less restrictive in comparison with the standard approach where a scalar field is considered. We use recent astronomical observations to constrain the parameters appearing in the model.

  7. Quantum Mechanics and Closed Timelike Curves

    E-Print Network [OSTI]

    Florin Moldoveanu

    2007-04-23

    General relativity allows solutions exhibiting closed timelike curves. Time travel generates paradoxes and quantum mechanics generalizations were proposed to solve those paradoxes. The implications of self-consistent interactions on acausal region of space-time are investigated. If the correspondence principle is true, then all generalizations of quantum mechanics on acausal manifolds are not renormalizable. Therefore quantum mechanics can only be defined on global hyperbolic manifolds and all general relativity solutions exhibiting time travel are unphysical.

  8. Status Update: Closing Rocky Flats by 2006

    SciTech Connect (OSTI)

    Tuor, N.; Schubert, A.

    2003-02-25

    Safely closing Rocky Flats by December 2006 is a goal shared by many: the State of Colorado, the communities surrounding the site, the U.S. Congress, the Department of Energy (DOE), Kaiser-Hill and its team of subcontractors, the site's employees and taxpayers across the country. This paper will: provide a status of the Closure Project to date; describe important accomplishments of the past year; describe some of the closure-enhancing technologies enabling acceleration; and discuss the remaining challenges ahead.

  9. System design description for GCFR-core flow test loop

    SciTech Connect (OSTI)

    Huntley, W.R.; Grindell, A.G.

    1980-12-01

    The Core Flow Test Loop is a high-pressure, high-temperature, out-of-reactor helium circulation system that is being constructed to permit detailed study of the thermomechanical and thermal performance at prototypic steady-state and transient operating conditions of simulated segments of core assemblies for a GCFR Demonstration Plant, as designed by General Atomic Company. It will also permit the expermental verification of predictive analytical models of the GCFR core assemblies needed to reduce operational and safety uncertainties of the GCFR. Full-sized blanket assemblies and segments of fuel rod and control rod fuel assemblies will be simulated with test bundles of electrically powered fuel rod or blanket rod simulators. The loop will provide the steady-state and margin test requirements of bundle power and heat removal, and of helium coolant flow rate, pressure, and temperature for test bundles having up to 91 rods; these requirements set the maximum power, coolant helium flow, and thermal requirements for the loop. However, the size of the test vessel that contains the test bundles will be determined by the bundles that simulate a full-sized GCFR blanket assembly. The loop will also provide for power and coolant transients to simulate transient operation of GCFR core assemblies, including the capability for rapid helium depressurization to simulate the depressurization class of GCFR accidents. In addition, the loop can be used as an out-of-reactor test bed for characterizing in-reactor test bundle configurations.

  10. Emergent Universe With Exotic Matter In Loop Quantum Cosmology, DGP Brane World and Kaluza-Klein Cosmology

    E-Print Network [OSTI]

    Prabir Rudra

    2012-11-09

    In this work we have investigated the emergent scenario of the universe described by Loop quantum cosmology model, DGP brane model and Kaluza-Klein cosmology. Scalar field along with barotropic fluid as normal matter is considered as the matter content of the universe. In Loop quantum cosmology it is found that the emergent scenario is realized with the imposition of some conditions on the value of the density of normal matter in case of normal and phantom scalar field. This is a surprising result indeed considering the fact that scalar field is the dominating matter component. In case of Tachyonic field, emergent scenario is realized with some constraints on the value of $\\rho_{1}$ for both normal and phantom tachyon. In case of DGP brane-world realization of an emergent scenario is possible almost unconditionally for normal and phantom fields. Plots and table have been generated to testify this fact. In case of tachyonic field emergent scenario is realized with some constraints on $\\dot{H}$. In Kaluza-Klein cosmology emergent scenario is possible only for a closed universe in case of normal and phantom scalar field. For a tachyonic field realization of emergent universe is possible for all models(closed, open and flat).

  11. The massless higher-loop two-point function

    E-Print Network [OSTI]

    Francis Brown

    2008-04-10

    We introduce a new method for computing massless Feynman integrals analytically in parametric form. An analysis of the method yields a criterion for a primitive Feynman graph $G$ to evaluate to multiple zeta values. The criterion depends only on the topology of $G$, and can be checked algorithmically. As a corollary, we reprove the result, due to Bierenbaum and Weinzierl, that the massless 2-loop 2-point function is expressible in terms of multiple zeta values, and generalize this to the 3, 4, and 5-loop cases. We find that the coefficients in the Taylor expansion of planar graphs in this range evaluate to multiple zeta values, but the non-planar graphs with crossing number 1 may evaluate to multiple sums with $6^\\mathrm{th}$ roots of unity. Our method fails for the five loop graphs with crossing number 2 obtained by breaking open the bipartite graph $K_{3,4}$ at one edge.

  12. Automated event generation for loop-induced processes

    E-Print Network [OSTI]

    Hirschi, Valentin

    2015-01-01

    We present the first fully automated implementation of cross-section computation and event generation for loop-induced processes. This work is integrated in the MadGraph5_aMC@NLO framework. We describe the optimisations implemented at the level of the matrix element evaluation, phase space integration and event generation allowing for the simulation of large multiplicity loop-induced processes. Along with some selected differential observables, we illustrate our results with a table showing inclusive cross-sections for all loop-induced hadronic scattering processes with up to three final states in the SM as well as for some relevant two to four processes. Many of these are computed here for the first time.

  13. Automated event generation for loop-induced processes

    E-Print Network [OSTI]

    Valentin Hirschi; Olivier Mattelaer

    2015-09-29

    We present the first fully automated implementation of cross-section computation and event generation for loop-induced processes. This work is integrated in the MadGraph5_aMC@NLO framework. We describe the optimisations implemented at the level of the matrix element evaluation, phase space integration and event generation allowing for the simulation of large multiplicity loop-induced processes. Along with some selected differential observables, we illustrate our results with a table showing inclusive cross-sections for all loop-induced hadronic scattering processes with up to three final states in the SM as well as for some relevant two to four processes. Many of these are computed here for the first time.

  14. Loop-induced Neutrino Masses: A Case Study

    E-Print Network [OSTI]

    Geng, Chao-Qiang; Tsai, Lu-Hsing

    2014-01-01

    We study the cocktail model in which the Majorana neutrino masses are generated by the so-called "cocktail" three-loop diagrams with the dark matter particle running in the loops. In particular, we give the correct analytic expressions of the neutrino masses in the model by the detailed calculation of the cocktail diagrams. Based on the reliable numerical calculation of the loop integrals, we explore the parameter space which can give the correct orders of neutrino masses while satisfying other experimental constraints, such as those from the neutrinoless double beta decay, low-energy lepton flavor violation processes, electroweak precision tests, and collider searches. As a result, the large couplings and the large mass difference between the two singly-charged (neutral) scalars are required.

  15. Expansion-loop enclosure resolves subsea line problems

    SciTech Connect (OSTI)

    Rich, S.K.; Alleyne, A.G.

    1998-08-03

    Recent design and construction of a Gulf of Mexico subsea pipeline illustrate the use of buried, enclosed expansion loops to resolve problems from expansion and upheaval buckling. Buried, subsea pipelines operating at high temperatures and pressures experience extreme compressive loads caused by the axial restraint of the soil. The high axial forces combined with imperfections in the seabed may overstress the pipeline or result in upheaval buckling. Typically, expansion loops, or doglegs, are installed to protect the pipeline risers from expansion and to alleviate axial forces. Buried expansion loops, however, are rendered virtually ineffective by the lateral restraint of the soil. Alternative methods to reduce expansion may increase the potential of upheaval buckling or overstressing the pipeline. Therefore, system design must consider expansion and upheaval buckling together. Discussed here are methods of prevention and control of expansion and upheaval buckling, evaluating the impact on the overall system.

  16. From Classical To Quantum Gravity: Introduction to Loop Quantum Gravity

    E-Print Network [OSTI]

    Kristina Giesel; Hanno Sahlmann

    2013-01-02

    We present an introduction to the canonical quantization of gravity performed in loop quantum gravity, based on lectures held at the 3rd quantum geometry and quantum gravity school in Zakopane in 2011. A special feature of this introduction is the inclusion of new proposals for coupling matter to gravity that can be used to deparametrize the theory, thus making its dynamics more tractable. The classical and quantum aspects of these new proposals are explained alongside the standard quantization of vacuum general relativity in loop quantum gravity.

  17. Path Integral of Bianchi I models in Loop Quantum Cosmology

    E-Print Network [OSTI]

    Xiao Liu; Fei Huang; Jian-Yang Zhu

    2013-02-01

    A path integral formulation of the Bianchi I models containing a massless scalar field in loop quantum cosmology is constructed. Following the strategy used in the homogenous and isotropic case, the calculation is extended to the simplest non-isotropic models according to the $\\bar{\\mu}$ and $\\bar{\\mu}^{\\prime}$ scheme. It is proved from the path integral angle that the quantum dynamic lacks the full invariance with respect to fiducial cell scaling in the $\\bar{\\mu}$ scheme, but it does not in the $\\bar{\\mu}^{\\prime}$ scheme. The investigation affirms the equivalence of the canonical approach and the path integral approach in loop quantum cosmology.

  18. Loop formulation of supersymmetric Yang-Mills quantum mechanics

    E-Print Network [OSTI]

    Kyle Steinhauer; Urs Wenger

    2014-10-01

    We derive the fermion loop formulation of N=4 supersymmetric SU(N) Yang-Mills quantum mechanics on the lattice. The loop formulation naturally separates the contributions to the partition function into its bosonic and fermionic parts with fixed fermion number and provides a way to control potential fermion sign problems arising in numerical simulations of the theory. Furthermore, we present a reduced fermion matrix determinant which allows the projection into the canonical sectors of the theory and hence constitutes an alternative approach to simulate the theory on the lattice.

  19. One-Loop Soft Theorems via Dual Superconformal Symmetry

    E-Print Network [OSTI]

    Brandhuber, Andreas; Spence, Bill; Travaglini, Gabriele

    2015-01-01

    We study soft theorems at one loop in planar N=4 super Yang-Mills theory through finite order in the infrared regulator and to subleading order in the soft parameter {\\delta}. In particular, we derive a universal constraint from dual superconformal symmetry, which we use to bootstrap subleading log {\\delta} behaviour. Moreover, we determine the complete infrared-finite subleading soft contribution of n-point MHV amplitudes using momentum twistors. Finally, we compute the subleading log {\\delta} behaviour of one-loop NMHV ratio functions at six and seven points, finding that universality holds within but not between helicity sectors.

  20. Closed-field capacitive liquid level sensor

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-01-01

    A liquid level sensor based on a closed field circuit comprises a ring oscillator using a symmetrical array of plate units that creates a displacement current. The displacement current varies as a function of the proximity of a liquid to the plate units. The ring oscillator circuit produces an output signal with a frequency inversely proportional to the presence of a liquid. A continuous liquid level sensing device and a two point sensing device are both proposed sensing arrangements. A second set of plates may be located inside of the probe housing relative to the sensing plate units. The second set of plates prevent any interference between the sensing plate units.

  1. Close range fault tolerant noncontacting position sensor

    DOE Patents [OSTI]

    Bingham, Dennis N. (Idaho Falls, ID); Anderson, Allen A. (Shelley, ID)

    1996-01-01

    A method and system for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations.

  2. Close range fault tolerant noncontacting position sensor

    DOE Patents [OSTI]

    Bingham, D.N.; Anderson, A.A.

    1996-02-20

    A method and system are disclosed for locating the three dimensional coordinates of a moving or stationary object in real time. The three dimensional coordinates of an object in half space or full space are determined based upon the time of arrival or phase of the wave front measured by a plurality of receiver elements and an established vector magnitudes proportional to the measured time of arrival or phase at each receiver element. The coordinates of the object are calculated by solving a matrix equation or a set of closed form algebraic equations. 3 figs.

  3. Quantum mechanics of the closed collapsing Universe

    E-Print Network [OSTI]

    K. A. Viarenich; V. L. Kalashnikov; S. L. Cherkas

    2007-12-31

    Two approaches to quantization of Freedman's closed Universe are compared. In the first approach, the Shrodinger's norm of the wave function of Universe is used, and in the second approach, the Klein-Gordon's norm is used. The second one allows building the quasi-Heisenberg operators as functions of time and finding their average values. It is shown that the average value of the Universe scale factor oscillates with damping and approaches to some constant value at the end of the Universe evolution.

  4. LOCA with consequential or delayed LOOP accidents: Unique issues, plant vulnerability, and CDF contributions

    SciTech Connect (OSTI)

    Martinez-Guridi, G.; Samanta, P.; Chu, L.; Yang, J.

    1998-08-01

    A loss-of-coolant accident (LOCA) can cause a loss-of-offsite power (LOOP) wherein the LOOP is usually delayed by few seconds or longer. Such an accident is called LOCA with consequential LOOP, or LOCA with delayed LOOP (here, abbreviated as LOCA/LOOP). This paper analyzes the unique conditions that are associated with a LOCA/LOOP, presents a model, and quantifies its contribution to core damage frequency (CDF). The results show that the CDF contribution can be a dominant contributor to risk for certain plant designs, although boiling water reactors (BWRs) are less vulnerable than pressurized water reactors (PWRs).

  5. Numerical Model Construction with Closed Observables

    E-Print Network [OSTI]

    Felix Dietrich; Gerta Köster; Hans-Joachim Bungartz

    2015-10-18

    Performing analysis, optimization and control using simulations of many-particle systems is computationally demanding when no macroscopic model for the dynamics of the variables of interest is available. In case observations on the macroscopic scale can only be produced via legacy simulator code or live experiments, finding a model for these macroscopic variables is challenging. In this paper, we employ time-lagged embedding theory to construct macroscopic numerical models from output data of a black box, such as a simulator or live experiments. Since the state space variables of the constructed, coarse model are dynamically closed and observable by an observation function, we call these variables closed observables. The approach is an online-offline procedure, as model construction from observation data is performed offline and the new model can then be used in an online phase, independent of the original. We illustrate the theoretical findings with numerical models constructed from time series of a two-dimensional ordinary differential equation system, and from the density evolution of a transport-diffusion system. Applicability is demonstrated in a real-world example, where passengers leave a train and the macroscopic model for the density flow onto the platform is constructed with our approach. If only the macroscopic variables are of interest, simulation runtimes with the numerical model are three orders of magnitude lower compared to simulations with the original fine scale model. We conclude with a brief discussion of possibilities of numerical model construction in systematic upscaling, network optimization and uncertainty quantification.

  6. GRACE at ONE-LOOP: Automatic calculation of 1-loop diagrams in the electroweak theory with gauge parameter independence checks

    E-Print Network [OSTI]

    G. Belanger; F. Boudjema; J. Fujimoto; T. Ishikawa; T. Kaneko; K. Kato; Y. Shimizu

    2006-04-18

    We describe the main building blocks of a generic automated package for the calculation of Feynman diagrams. These blocks include the generation and creation of a model file, the graph generation, the symbolic calculation at an intermediate level of the Dirac and tensor algebra, implementation of the loop integrals, the generation of the matrix elements or helicity amplitudes, methods for the phase space integrations and eventually the event generation. The report focuses on the fully automated systems for the calculation of physical processes based on the experience in developing GRACE-loop. As such, a detailed description of the renormalisation procedure in the Standard Model is given emphasizing the central role played by the non-linear gauge fixing conditions for the construction of such automated codes. The need for such gauges is better appreciated when it comes to devising efficient and powerful algorithms for the reduction of the tensorial structures of the loop integrals. A new technique for these reduction algorithms is described. Explicit formulae for all two-point functions in a generalised non-linear gauge are given, together with the complete set of counterterms. We also show how infrared divergences are dealt with in the system. We give a comprehensive presentation of some systematic test-runs which have been performed at the one-loop level for a wide variety of two-to-two processes to show the validity of the gauge check. These cover fermion-fermion scattering, gauge boson scattering into fermions, gauge bosons and Higgs bosons scattering processes. Comparisons with existing results on some one-loop computation in the Standard Model show excellent agreement. We also briefly recount some recent development concerning the calculation of mutli-leg one-loop corrections.

  7. DOE Award # DE-SC0008085 Close-Out Report for UIUC Portion of Grant

    SciTech Connect (OSTI)

    Teixeira, Kristina Anderson; DeLucia, Evan H

    2014-11-20

    This is the final technical report for the University of Illinois (UIUC) portion of grant # SC0008085 (CARBON DYNAMICS OF FOREST RECOVERY UNDER A CHANGING CLIMATE: FORCINGS, FEEDBACKS, AND IMPLICATIONS FOR EARTH SYSTEM MODELING), which closed June 14, 2014. The grant remains active at the Smithsonian.

  8. A Radiation Tolerant Phase Locked Loop Design for Digital Electronics 

    E-Print Network [OSTI]

    Kumar, Rajesh

    2011-10-21

    oscillator (VCO), the phase frequency detector (PFD) and the charge pump/loop filter-are designed in a radiation tolerant manner. Whenever possible, the circuit elements used in our PLL exploit the fact that if a gate is implemented using only PMOS (NMOS...

  9. Conformal Behavior at Four Loops and Scheme (In)Dependence

    E-Print Network [OSTI]

    Thomas A. Ryttov

    2014-10-01

    We search for infrared zeros of the beta function and evaluate the anomalous dimension of the mass at the associated fixed point for asymptotically free vector-like fermionic gauge theories with gauge group SU(N). The fixed points of the beta function are studied at the two, three and four loop level in two different explicit schemes. These are the modified regularization invariant, RI', scheme and the minimal momentum subtraction, mMOM, scheme. The search is performed in Landau gauge where the beta function of the gauge parameter vanishes. We then compare our findings to earlier identical investigations performed in the modified minimal subtraction, $\\bar{\\text{MS}}$, scheme. It is found that the value of the anomalous dimension of the mass is smaller at three and four loops than at two loops. This seems to be a generic pattern that is observed in all three different schemes. We then estimate the value of the anomalous dimension to be $\\gamma \\sim 0.225-0.375$ for twelve fundamental flavors and three colors, $\\gamma \\sim 0.500 - 0.593$ for two adjoint flavors and two colors and finally $\\gamma \\sim 1.12-1.70$ for two two-indexed flavors and three colors with the lower and upper bound set by the minimum and maximum value respectively over all three schemes and at three and four loops. Our analysis suggests that the former two theories lie in the conformal window while the latter belongs to the chirally broken phase.

  10. Combined Loop Transformation and Hierarchy Allocation for Data Reuse Optimization

    E-Print Network [OSTI]

    Cong, Jason "Jingsheng"

    transformation framework was established based on parametric integer linear programming [6-8]. Data dependenceCombined Loop Transformation and Hierarchy Allocation for Data Reuse Optimization Jason Cong, Peng Zhang, Yi Zou Computer Science Department University of California, Los Angeles Los Angeles, CA 90095

  11. MODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE

    E-Print Network [OSTI]

    exchanger model is crucial for analysis of hybrid ground source heat pump systems. Ground source heat pumps in a hybrid ground source heat pump application under different climate conditions. An actual office buildingMODELING OF VERTICAL GROUND LOOP HEAT EXCHANGERS FOR GROUND SOURCE HEAT PUMP SYSTEMS By CENK

  12. FUSION OF HAMILTONIAN LOOP GROUP MANIFOLDS AND COBORDISM

    E-Print Network [OSTI]

    Woodward, Christopher

    FUSION OF HAMILTONIAN LOOP GROUP MANIFOLDS AND COBORDISM E. MEINRENKEN AND C. WOODWARD Abstract. We References 32 1. Introduction Let G be a compact, connected, simply connected, simple Lie group and \\Sigma. In a sequel [15] to this paper, we apply our method to compute the coefficients of the fusion ring (Verlinde

  13. Automation of Multi-leg One-loop virtual Amplitudes

    E-Print Network [OSTI]

    D. Maitre

    2010-06-29

    In the last few years, much progress has been made in the computation of one-loop virtual matrix elements for processes involving many external particles. In this contribution the methods that have enabled this recent progress are briefly reviewed with a focus on their computing and automation aspects.

  14. EIS-0417: South Mountain Freeway (Loop 202); Phoenix, Arizona

    Broader source: Energy.gov [DOE]

    Federal Highway Administration and Arizona Department of Transportation, with Western Area Power Administration as a cooperating agency, prepared an EIS that analyzes the potential environmental impacts of the proposed South Mountain Freeway (Loop 202) project in the Greater Metropolitan Phoenix Area.

  15. Bootstrapping Multi-Parton Loop Amplitudes in QCD

    SciTech Connect (OSTI)

    Bern, Zvi; /UCLA; Dixon, Lance J.; /SLAC; Kosower, David A.; /Saclay, SPhT

    2005-07-06

    The authors present a new method for computing complete one-loop amplitudes, including their rational parts, in non-supersymmetric gauge theory. This method merges the unitarity method with on-shell recursion relations. It systematizes a unitarity-factorization bootstrap approach previously applied by the authors to the one-loop amplitudes required for next-to-leading order QCD corrections to the processes e{sup +}e{sup -} {yields} Z, {gamma}* {yields} 4 jets and pp {yields} W + 2 jets. We illustrate the method by reproducing the one-loop color-ordered five-gluon helicity amplitudes in QCD that interfere with the tree amplitude, namely A{sub 5;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}) and A{sub 5;1}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup +}). Then we describe the construction of the six- and seven-gluon amplitudes with two adjacent negative-helicity gluons, A{sub 6;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}) and A{sub 7;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}, 7{sup +}), which uses the previously-computed logarithmic parts of the amplitudes as input. They present a compact expression for the six-gluon amplitude. No loop integrals are required to obtain the rational parts.

  16. ORIGINAL ARTICLE Comparative genomics-guided loop-mediated isothermal

    E-Print Network [OSTI]

    Hsiang, Tom

    ORIGINAL ARTICLE Comparative genomics-guided loop-mediated isothermal amplification sequencing and analytical techniques, genomic sequence data of prok- aryotes are accumulating at a very rapid pace. As of October 2008, there are 873 complete and pub- lished genome sequences, as well as 2025

  17. Complete Two-Loop Corrections to H -> gamma gamma

    E-Print Network [OSTI]

    Giampiero Passarino; Christian Sturm; Sandro Uccirati

    2007-07-10

    In this paper the complete two-loop corrections to the Higgs-boson decay, H -> gamma gamma, are presented. The evaluations of both QCD and electroweak corrections are based on a numerical approach. The results cover all kinematical regions, including the WW normal-threshold, by introducing complex masses in the relevant (gauge-invariant) parts of the LO and NLO amplitudes.

  18. Complete three-loop QCD corrections to the decay H -> ??

    E-Print Network [OSTI]

    P. Maierhöfer; P. Marquard

    2012-12-26

    We present the result for the three-loop singlet QCD corrections to the decay of a Higgs boson into two photons and improve the calculation for the non-singlet case. With the new result presented, the decay width Gamma(H -> \\gamma \\gamma) is completely known at O(G_F \\alpha ^2 \\alpha_s^2, G_F \\alpha ^3).

  19. Into the Loops: Practical Issues in Translation Validation for

    E-Print Network [OSTI]

    Barrett, Clark W.

    optimizations employed by Intel's ORC compiler. Tvoc, however, is somewhat limited when dealing with loop ORC, this instrumentation is fortu- nately part of the compiler). This paper addresses all the issues by the Intel ORC compiler, describes a methodology for translation validation in the presence of combinations

  20. Multiprotein DNA Looping Jose M. G. Vilar* and Leonor Saiz

    E-Print Network [OSTI]

    Saiz, Leonor

    symmetric counterpart on the other operator if DNA is looped. The typical way to obtain the statistical, and telomere maintenance. DOI: 10.1103/PhysRevLett.96.238103 PACS numbers: 87.14.Gg, 05.50.+q, 87.15.He, 87 [7], replication [4], and telomere maintenance [8]. Disruption or alteration of these processes often

  1. Loop invariants on demand K. Rustan M. Leino0

    E-Print Network [OSTI]

    Leino, K. Rustan M.

    a dynamic and automatic form of value-based trace partitioning. Finally, the technique can be incorporated on the data (as is done in predicate abstraction [20]) and summaries of the effects of certain control paths (like loop invariants [18,24]). A trend that has emerged in the last decade is to start with coarse

  2. On the q-quantum gravity loop algebra

    E-Print Network [OSTI]

    Seth Major

    2008-02-19

    A class of deformations of the q-quantum gravity loop algebra is shown to be incompatible with the combinatorics of Temperley-Lieb recoupling theory with deformation parameter at a root of unity. This incompatibility appears to extend to more general deformation parameters.

  3. Opening the Loops -Towards Semantic, Information-centric Networking

    E-Print Network [OSTI]

    Opening the Loops - Towards Semantic, Information-centric Networking in the Internet of Things}@comsys.rwth-aachen.de Abstract--The advent of the Internet of Things (IoT) paradigm in increasing deployments promises and distributed implementation of the proposed infrastructure. I. INTRODUCTION The vision of an Internet of Things

  4. Meson Decays with Isospin Breaking at Two Loops

    E-Print Network [OSTI]

    Lunds Universitet,

    -loop quantum cor- rections. The low energy constants of order p6 are estimated by means of a resonance chiral's notes Number of pages 137 Price Security class Distributor Karim Ghorbani Department of Theoretical Physics (IPM-LHP06), Tehran, Iran, 15-20 May 2006, pp 0009. i Johan Bijnens, Niclas Danielsson, Karim

  5. Whistler wave radiation from a pulsed loop antenna located in a cylindrical duct with enhanced plasma density

    SciTech Connect (OSTI)

    Kudrin, Alexander V.; Shkokova, Natalya M.; Ferencz, Orsolya E.; Zaboronkova, Tatyana M.

    2014-11-15

    Pulsed radiation from a loop antenna located in a cylindrical duct with enhanced plasma density is studied. The radiated energy and its distribution over the spatial and frequency spectra of the excited waves are derived and analyzed as functions of the antenna and duct parameters. Numerical results referring to the case where the frequency spectrum of the antenna current is concentrated in the whistler range are reported. It is shown that under ionospheric conditions, the presence of an artificial duct with enhanced density can lead to a significant increase in the energy radiated from a pulsed loop antenna compared with the case where the same source is immersed in the surrounding uniform magnetoplasma. The results obtained can be useful in planning active ionospheric experiments with pulsed electromagnetic sources operated in the presence of artificial field-aligned plasma density irregularities that are capable of guiding whistler waves.

  6. Open string amplitudes of closed topological vertex

    E-Print Network [OSTI]

    Takasaki, Kanehisa

    2015-01-01

    The closed topological vertex is the simplest "off-strip" case of non-compact toric Calabi-Yau threefolds with acyclic web diagrams. By the diagrammatic method of topological vertex, open string amplitudes of topological string theory therein can be obtained by gluing a single topological vertex to an "on-strip" subdiagram of the tree-like web diagram. If non-trivial partitions are assigned to just two parallel external lines of the web diagram, the amplitudes can be calculated with the aid of techniques borrowed from the melting crystal models. These amplitudes are thereby expressed as matrix elements, modified by simple prefactors, of an operator product on the Fock space of 2D charged free fermions. This fermionic expression can be used to derive $q$-difference equations for generating functions of special subsets of the amplitudes. These $q$-difference equations may be interpreted as the defining equation of a quantum mirror curve.

  7. Open string amplitudes of closed topological vertex

    E-Print Network [OSTI]

    Kanehisa Takasaki; Toshio Nakatsu

    2015-07-25

    The closed topological vertex is the simplest "off-strip" case of non-compact toric Calabi-Yau threefolds with acyclic web diagrams. By the diagrammatic method of topological vertex, open string amplitudes of topological string theory therein can be obtained by gluing a single topological vertex to an "on-strip" subdiagram of the tree-like web diagram. If non-trivial partitions are assigned to just two parallel external lines of the web diagram, the amplitudes can be calculated with the aid of techniques borrowed from the melting crystal models. These amplitudes are thereby expressed as matrix elements, modified by simple prefactors, of an operator product on the Fock space of 2D charged free fermions. This fermionic expression can be used to derive $q$-difference equations for generating functions of special subsets of the amplitudes. These $q$-difference equations may be interpreted as the defining equation of a quantum mirror curve.

  8. Open string amplitudes of closed topological vertex

    E-Print Network [OSTI]

    Kanehisa Takasaki; Toshio Nakatsu

    2015-11-20

    The closed topological vertex is the simplest ``off-strip'' case of non-compact toric Calabi-Yau threefolds with acyclic web diagrams. By the diagrammatic method of topological vertex, open string amplitudes of topological string theory therein can be obtained by gluing a single topological vertex to an ``on-strip'' subdiagram of the tree-like web diagram. If non-trivial partitions are assigned to just two parallel external lines of the web diagram, the amplitudes can be calculated with the aid of techniques borrowed from the melting crystal models. These amplitudes are thereby expressed as matrix elements, modified by simple prefactors, of an operator product on the Fock space of 2D charged free fermions. This fermionic expression can be used to derive $q$-difference equations for generating functions of special subsets of the amplitudes. These $q$-difference equations may be interpreted as the defining equation of a quantum mirror curve.

  9. Possibility of synthesizing doubly closed superheavy nucleus

    E-Print Network [OSTI]

    Y. Aritomo

    2006-09-16

    The possibility of synthesizing a doubly magic superheavy nucleus, $^{298}114_{184}$, is investigated on the basis of fluctuation-dissipation dynamics. In order to synthesize this nucleus, we must generate more neutron-rich compound nuclei because of the neutron emissions from excited compound nuclei. The compound nucleus $^{304}114$ has two advantages to achieving a high survival probability. First, because of small neutron separation energy and rapid cooling, the shell correction energy recovers quickly. Secondly, owing to neutron emissions, the neutron number of the nucleus approaches that of the double closed shell and the nucleus obtains a large fission barrier. Because of these two effects, the survival probability of $^{304}114$ does not decrease until the excitation energy $E^{*}= 50$ MeV. These properties lead to a rather high evaporation reside cross section.

  10. An evaluation of inductance loop detector lead length and optimal speed trap distance 

    E-Print Network [OSTI]

    Hamm, Robert Alan

    1994-01-01

    component of freeway management systems is the inductance loop detector. This research effort evaluated the use of inductance loop detectors in a freeway management situation to determine maximum permissible lead lengths and an optimal speed trap distance...

  11. SU(2) Lattice Gauge Theory- Local Dynamics on Non-intersecting Electric flux Loops

    E-Print Network [OSTI]

    Ramesh Anishetty; Indrakshi Raychowdhury

    2014-11-12

    We use Schwinger Bosons as prepotentials for lattice gauge theory to de?ne local linking oper- ators and calculate their action on linking states for 2 + 1 dimensional SU(2) lattice gauge theory. We develop a diagrammatic technique and associate a set of (lattice Feynman) rules to compute the entire loop dynamics diagrammatically. The physical loop space is shown to contain only non- intersecting loop con?gurations after solving the Mandelstam constraint. The smallest plaquette loops are contained in the physical loop space and other con?gurations are generated by the action of a set of fusion operators on this basic loop states enabling one to charaterize any arbitrary loop by the basic plaquette together with the fusion variables. Consequently, the full Kogut-Susskind Hamiltonian and the dynamics of all possible non-intersecting physical loops are formulated in terms of these fusion variables.

  12. SIMULATION AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP

    E-Print Network [OSTI]

    SIMULATION AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP SYSTEMS By JASON EARL AND VALIDATION OF HYBRID GROUND SOURCE AND WATER-LOOP HEAT PUMP SYSTEMS Thesis Approved: Dr. Jeffrey D. Spitler

  13. High Performance Loop Filter Design for Continuous-time Sigma-delta ADC 

    E-Print Network [OSTI]

    Gui, Fan

    2014-11-12

    Continuous-time (CT) sigma-delta (??) analog-to-digital converters (ADCs) are widely used in wireless transceiver. Loop filter becomes a critical component in the implementation of high resolution large bandwidth CT ?? ADC because it determines loop...

  14. Development of a Water Loop Simulation at the Texas A&M University Main Campus 

    E-Print Network [OSTI]

    Xue, H.; Deng, S.; Claridge, D. E.; Liu, M.

    2000-01-01

    A computer simulation model is an economic and convenient tool to perform analysis of chilled water loop. The primary objective of this paper is developing procedure for simulating and optimizing chilled water loop with computer simulation model. A...

  15. Why and how to use a differential equation method to calculate multi-loop integrals

    E-Print Network [OSTI]

    M. Czachor; H. Czyz

    2001-10-26

    A short pedagogical introduction to a differential method used to calculate multi-loop scalar integrals is presented. As an example it is shown how to obtain, using the method, large mass expansion of the two loop sunrise master integrals.

  16. Real Time (20 Second) Data Base Single Loop (Packed into 3 bytes)

    E-Print Network [OSTI]

    ) Data Base Single Loop (Packed into 3 bytes) ------------------------------------------- Data Element;------------------------------------------------------------------------- --- Real Time (20 Second) Data Base Station (Packed into 3 bytes Loops | 3 | [0]|Data Present, 0=No Data | |Scan Cnt| 11 | [0]|

  17. Verification of coronal loop diagnostics using realistic three-dimensional hydrodynamic models

    SciTech Connect (OSTI)

    Winebarger, Amy R.; Lionello, Roberto; Linker, Jon A.; Miki?, Zoran; Mok, Yung E-mail: lionel@predsci.com E-mail: mikicz@predsci.com

    2014-11-10

    Many different techniques have been used to characterize the plasma in the solar corona: density-sensitive spectral line ratios are used to infer the density, the evolution of coronal structures in different passbands is used to infer the temperature evolution, and the simultaneous intensities measured in multiple passbands are used to determine the emission measure distributions. All these analysis techniques assume that the intensity of the structures can be isolated through background subtraction. In this paper, we use simulated observations from a three-dimensional hydrodynamic simulation of a coronal active region to verify these diagnostics. The density and temperature from the simulation are used to generate images in several passbands and spectral lines. We identify loop structures in the simulated images and calculate the background. We then determine the density, temperature, and emission measure distribution as a function of time from the observations and compare these with the true temperature and density of the loop. We find that the overall characteristics of the temperature, density, and emission measure are recovered by the analysis methods, but the details are not. For instance, the emission measure curves calculated from the simulated observations are much broader than the true emission measure distribution, though the average temperature evolution is similar. These differences are due, in part, to a limitation of the analysis methods, but also to inadequate background subtraction.

  18. RELAP-7: Demonstrating the integration of two-phase flow components for an ideal BWR loop

    SciTech Connect (OSTI)

    Hongbin Zhang; Haihua Zhao; Ling Zou; David Andrs; John Peterson; Ray Berry; Richard Martineua

    2013-06-01

    This is DOE Level 3 milestone report documenting RELAP-7's capability to simulate an ideal BWR loop.

  19. Systems Using Hardware-in-the-Loop (Poster) Lundstrom, B.; Shirazi...

    Office of Scientific and Technical Information (OSTI)

    HARDWARE; LOOP; POSTER; Buildings; Electricity, Resources, and Buildings Systems; Solar Energy - Thermal ELECTRICITY; GRID; ICS; INTERCONNECTION; SYSTEM; EVALUATOR;...

  20. 2007 Solar Decathlon Closing Ceremony and Awards | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2007 Solar Decathlon Closing Ceremony and Awards 2007 Solar Decathlon Closing Ceremony and Awards October 19, 2007 - 3:21pm Addthis Remarks as Prepared for Secretary Bodman Thank...

  1. Estimation and prediction of travel time from loop detector data for intelligent transportation systems applications 

    E-Print Network [OSTI]

    Vanajakshi, Lelitha Devi

    2005-11-01

    ., or from indirect methods such as loop detectors. Because of their wide spread deployment, travel time estimation from loop detector data is one of the most widely used methods. However, the major criticism about loop detector data is the high probability...

  2. Effective SU(2) Polyakov Loop Theories with Heavy Quarks on the Lattice

    E-Print Network [OSTI]

    Philipp Scior; David Scheffler; Dominik Smith; Lorenz von Smekal

    2014-12-22

    We compare SU(2) Polyakov loop models with different effective actions with data from full two-color QCD simulations around and above the critical temperature. We then apply the effective theories at finite temperature and density to extract quantities like Polyakov loop correlators, effective Polyakov loop potentials and baryon density.

  3. Laboratory simulations of astrophysical jets and solar coronal loops: new results

    E-Print Network [OSTI]

    Bellan, Paul M.

    Laboratory simulations of astrophysical jets and solar coronal loops: new results P. M. Bellan, D jets and in addition are intimately related to solar coronal loops. The jets are driven to solar coronal loops; the experimental layouts and images of typical plasmas are shown in Figs.1 and 2

  4. Loops of Energy Bands for Bloch Waves in Optical Lattices By Matt Coles and Dmitry Pelinovsky

    E-Print Network [OSTI]

    Pelinovsky, Dmitry

    Loops of Energy Bands for Bloch Waves in Optical Lattices By Matt Coles and Dmitry Pelinovsky We in this context. These bifurcations generate loops in the energy bands of the Bloch waves near the ends is the possibility of loops in the energy bands associated with the nonlinear Bloch waves. This possibility was first

  5. Affine Nash groups over real closed fields Ehud Hrushovski

    E-Print Network [OSTI]

    Pillay, Anand

    Affine Nash groups over real closed fields Ehud Hrushovski Hebrew University of Jerusalem Anand Nash group over a real closed field R is Nash isogenous to the semialgebraically connected component connected affine Nash groups over arbitrary real closed fields. 1 Introduction and preliminaries The Nash

  6. Emerald Ash BY: DAVE CLOSE, ERIC WISEMAN AND SARAH GUGERCIN

    E-Print Network [OSTI]

    Liskiewicz, Maciej

    Emerald Ash Borer BY: DAVE CLOSE, ERIC WISEMAN AND SARAH GUGERCIN VIRGINIA TECH PUBLICATION HORT-69NP #12;Emerald Ash Borer by Eric Wiseman, Sarah Gugercin, and Dave Close © 2013 Virginia Tech the Emerald Ash Borer Online Training Modules (2010), by Eric Wiseman, Sarah Gugercin, and Dave Close

  7. Close Contact Fluctuations: Time of Contact

    E-Print Network [OSTI]

    Daniel R. Bush; Amit K. Chattopadhyay

    2014-12-03

    The letter resolves the long standing debate as to the proper time scale ($$) of the onset of the immunological synapse (IS) bond, the non-covalent chemical bond defining the immune pathways involving T-cells and antigen presenting cells (APC). Results from our model calculations show $$ to be of the order of seconds instead of minutes. Close to the linearly stable regime, we show that in between the two critical spatial thresholds defined by the integrin:ligand pair ($\\Delta_2\\sim$ 40-45 nm) and the T cell receptor (TCR):pMHC bond ($\\Delta_1\\sim$ 14-15 nm), $$ grows monotonically with increasing co-receptor bond length separation $\\delta$ (= $\\Delta_2-\\Delta_1\\sim$ 26-30 nm) while $$ decays with $\\Delta_1$ for fixed $\\Delta_2$. The non-universal $\\delta$-dependent power-law structure of the probability density function (PDF) further explains why only the TCR:pMHC bond is a likely candidate to form a stable synapse.

  8. Hybrid Quantum Cosmology: Combining Loop and Fock Quantizations

    E-Print Network [OSTI]

    Guillermo A. Mena Marugan; Mercedes Martin-Benito

    2009-07-22

    As a necessary step towards the extraction of realistic results from Loop Quantum Cosmology, we analyze the physical consequences of including inhomogeneities. We consider in detail the quantization of a gravitational model in vacuo which possesses local degrees of freedom, namely, the linearly polarized Gowdy cosmologies with the spatial topology of a three-torus. We carry out a hybrid quantization which combines loop and Fock techniques. We discuss the main aspects and results of this hybrid quantization, which include the resolution of the cosmological singularity, the polymeric quantization of the internal time, a rigorous definition of the quantum constraints and the construction of their solutions, the Hilbert structure of the physical states, and the recovery of a conventional Fock quantization for the inhomogeneities.

  9. Magnetic and electric screening masses from Polyakov-loop correlations

    E-Print Network [OSTI]

    Y. Maezawa; S. Aoki; S. Ejiri; T. Hatsuda; N. Ishii; K. Kanaya; N. Ukita; T. Umeda

    2008-11-04

    Screening properties of the quark gluon plasma are studied from Polyakov-loop correlation in lattice QCD simulations with two flavors of improved Wilson quarks at temperatures $T/\\Tpc \\simeq 1$--4 where $\\Tpc$ is the pseudocritical temperature. Using the Euclidean-time reflection symmetry and the charge conjugation symmetry, we introduce various types of Polyakov-loop correlation functions and extract screening masses in magnetic and electric sectors. We find that the temperature dependence of the screening masses are well described by the weak coupling expansion. We also find that a ratio of the screening masses in the electric sector to the magnetic sector shows qualitative agreement with a prediction from the dimensionally-reduced effective field theory and the N=4 supersymmetric Yang-Mills theory at $1.3 < T/\\Tpc < 3$.

  10. Alternative quantization of the Hamiltonian in isotropic loop quantum cosmology

    E-Print Network [OSTI]

    Jinsong Yang; You Ding; Yongge Ma

    2009-04-28

    Since there are quantization ambiguities in constructing the Hamiltonian constraint operator in isotropic loop quantum cosmology, it is crucial to check whether the key features of loop quantum cosmology, such as the quantum bounce and effective scenario, are robust against the ambiguities. In this paper, we consider a typical quantization ambiguity arising from the quantization of the field strength of the gravitational connection. An alternative Hamiltonian constraint operator is constructed, which is shown to have the correct classical limit by the semiclassical analysis. The effective Hamiltonian incorporating higher order quantum corrections is also obtained. In the spatially flat FRW model with a massless scalar field, the classical big bang is again replaced by a quantum bounce. Moreover, there are still great possibilities for the expanding universe to recollapse due to the quantum gravity effect. Thus, these key features are robust against this quantization ambiguity.

  11. Higher curvature counter terms cause the bounce in loop cosmology

    E-Print Network [OSTI]

    Helling, Robert C

    2009-01-01

    In the loop approach to the quantisation of gravity, one uses a Hilbert space which is too singular for some operators to be realised as derivatives. This is usually addressed by instead using finite difference operators at the Planck scale, a process known as ``polymerisation''. In the symmetry reduced example of loop cosmology, we study an ambiguity in the regularisation which we relate to the ambiguity of fixing the coefficients of infinitely many higher curvature counter terms augmenting the Einstein-Hilbert action. Thus the situation is comparable to he one in a naive perturbative treatment of quantum gravity with a cut-off where the necessary presence of infinitely many higher derivative terms compromises predictability. As a by-product, we demonstrate in an appendix that it is possible to have higher curvature actions for gravity which still lead to first order equations of motion like in the Friedmann case.

  12. Higher curvature counter terms cause the bounce in loop cosmology

    E-Print Network [OSTI]

    Robert C. Helling

    2009-12-17

    In the loop approach to the quantisation of gravity, one uses a Hilbert space which is too singular for some operators to be realised as derivatives. This is usually addressed by instead using finite difference operators at the Planck scale, a process known as ``polymerisation''. In the symmetry reduced example of loop cosmology, we study an ambiguity in the regularisation which we relate to the ambiguity of fixing the coefficients of infinitely many higher curvature counter terms augmenting the Einstein-Hilbert action. Thus the situation is comparable to he one in a naive perturbative treatment of quantum gravity with a cut-off where the necessary presence of infinitely many higher derivative terms compromises predictability. As a by-product, we demonstrate in an appendix that it is possible to have higher curvature actions for gravity which still lead to first order equations of motion like in the Friedmann case.

  13. Evolution of reconnection along an arcade of magnetic loops

    E-Print Network [OSTI]

    Paolo C. Grigis; Arnold O. Benz

    2005-04-20

    RHESSI observations of a solar flare showing continuous motions of double hard X-ray sources interpreted as footpoints of magnetic loops are presented. The temporal evolution shows many distinct emission peaks of duration of some tens of seconds ('elementary flare bursts'). Elementary flare bursts have been interpreted as instabilities or oscillations of the reconnection process leading to an unsteady release of magnetic energy. These interpretations based on two-dimensional concepts cannot explain these observations, showing that the flare elements are displaced in a third dimension along the arcade. Therefore, the observed flare elements are not a modulation of the reconnection process, but originate as this process progresses along an arcade of magnetic loops. Contrary to previous reports, we find no correlation between footpoint motion and hard X-ray flux. This flare apparently contradicts the predictions of the standard translation invariant 2.5D reconnection models.

  14. Measuring temperature-dependent propagating disturbances in coronal fan loops using multiple SDO/AIA channels and the surfing transform technique

    SciTech Connect (OSTI)

    Uritsky, Vadim M.; Ofman, Leon [Catholic University of America, Washington, D.C. 20064 (United States); Davila, Joseph M.; Viall, Nicholeen M. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2013-11-20

    A set of co-aligned high-resolution images from the Atmospheric Imaging Assembly (AIA) on board the Solar Dynamics Observatory is used to investigate propagating disturbances (PDs) in warm fan loops at the periphery of a non-flaring active region NOAA AR 11082. To measure PD speeds at multiple coronal temperatures, a new data analysis methodology is proposed enabling a quantitative description of subvisual coronal motions with low signal-to-noise ratios of the order of 0.1%. The technique operates with a set of one-dimensional 'surfing' signals extracted from position-time plots of several AIA channels through a modified version of Radon transform. The signals are used to evaluate a two-dimensional power spectral density distribution in the frequency-velocity space that exhibits a resonance in the presence of quasi-periodic PDs. By applying this analysis to the same fan loop structures observed in several AIA channels, we found that the traveling velocity of PDs increases with the temperature of the coronal plasma following the square-root dependence predicted for slow mode magneto-acoustic waves which seem to be the dominating wave mode in the loop structures studied. This result extends recent observations by Kiddie et al. to a more general class of fan loop system not associated with sunspots and demonstrating consistent slow mode activity in up to four AIA channels.

  15. SOLAR MOSS PATTERNS: HEATING OF CORONAL LOOPS BY TURBULENCE AND MAGNETIC CONNECTION TO THE FOOTPOINTS

    SciTech Connect (OSTI)

    Kittinaradorn, R.; Ruffolo, D.; Matthaeus, W. H. E-mail: scdjr@mahidol.ac.th

    2009-09-10

    We address the origin of the patchy dark and bright emission structure, known as 'moss', observed by TRACE extreme ultraviolet observations of the solar disk. Here we propose an explanation based on turbulent, patchy heat conduction from the corona into the transition region. Computer simulations demonstrate that magnetic turbulence in coronal loops develops a flux rope structure with current sheets near the flux rope boundaries. Localized heating due to current sheet activity such as magnetic reconnection is followed by heat conduction along turbulent magnetic field lines. The field line trajectories tend to remain near the flux rope boundaries, resulting in selective heating of the plasma in the transition region. This can explain the network of bright regions in the observed moss morphology.

  16. Separable sequences in Bianchi I loop quantum cosmology

    SciTech Connect (OSTI)

    Cartin, Daniel; Khanna, Gaurav [Naval Academy Preparatory School, 197 Elliot Street, Newport, Rhode Island 02841 (United States); Physics Department, University of Massachusetts at Dartmouth, North Dartmouth, Massachusetts 02747 (United States)

    2005-10-15

    In this paper, we discuss the properties of one-parameter sequences that arise when solving the Hamiltonian constraint in Bianchi I loop quantum cosmology using a separation of variables method. In particular, we focus on finding an expression for the sequence for all real values of the parameter, and discuss the preclassicality of this function. We find that the behavior of these preclassical sequences imply time asymmetry on either side of the classical singularity in Bianchi I cosmology.

  17. Independent Loop Invariants for 2+1 Gravity

    E-Print Network [OSTI]

    R. Loll

    1994-08-03

    We identify an explicit set of complete and independent Wilson loop invariants for 2+1 gravity on a three-manifold $M=\\R\\times\\Sigma^g$, with $\\Sigma^g$ a compact oriented Riemann surface of arbitrary genus $g$. In the derivation we make use of a global cross section of the $PSU(1,1)$-principal bundle over Teichm\\"uller space given in terms of Fenchel-Nielsen coordinates.

  18. Longitudinal magnetohydrodynamics oscillations in dissipative, cooling coronal loops

    SciTech Connect (OSTI)

    Al-Ghafri, K. S.; Ruderman, M. S.; Williamson, A.; Erdélyi, R., E-mail: app08ksa@sheffield.ac.uk, E-mail: m.s.ruderman@sheffield.ac.uk, E-mail: app09aw@sheffield.ac.uk, E-mail: robertus@sheffield.ac.uk [Solar Physics and Space Plasma Research Centre (SP2RC), University of Sheffield, Hicks Building, Hounsfield Road, Sheffield S3 7RH (United Kingdom)

    2014-05-01

    This paper investigates the effect of cooling on standing slow magnetosonic waves in coronal magnetic loops. The damping mechanism taken into account is thermal conduction that is a viable candidate for dissipation of slow magnetosonic waves in coronal loops. In contrast to earlier studies, here we assume that the characteristic damping time due to thermal conduction is not small, but arbitrary, and can be of the order of the oscillation period, i.e., a temporally varying plasma is considered. The approximation of low-beta plasma enables us to neglect the magnetic field perturbation when studying longitudinal waves and consider, instead, a one-dimensional motion that allows a reliable first insight into the problem. The background plasma temperature is assumed to be decaying exponentially with time, with the characteristic cooling timescale much larger than the oscillation period. This assumption enables us to use the WKB method to study the evolution of the oscillation amplitude analytically. Using this method we obtain the equation governing the oscillation amplitude. The analytical expressions determining the wave properties are evaluated numerically to investigate the evolution of the oscillation frequency and amplitude with time. The results show that the oscillation period increases with time due to the effect of plasma cooling. The plasma cooling also amplifies the amplitude of oscillations in relatively cool coronal loops, whereas, for very hot coronal loop oscillations the damping rate is enhanced by the cooling. We find that the critical point for which the amplification becomes dominant over the damping is in the region of 4 MK. These theoretical results may serve as impetus for developing the tools of solar magneto-seismology in dynamic plasmas.

  19. NOT-SO-GOOD LOOP-DISPLAY SCHEME IN FLOWCHART

    E-Print Network [OSTI]

    Kundu, Sukhamay

    entry point. ·? What happens if box "1" is itself a do-while loop? How about the case if it is a while on the same horizontal line, we can associate with each subtree a box with an entry-point and these boxes-Node and Branch-node: width, height, leftTopDisplacement (LTD), and leftBottomDisplacement (LBD) unique entry

  20. Strong cooperativity and inhibitory effects in DNA multi-looping processes

    E-Print Network [OSTI]

    Artur Garcia-Saez; J. Miguel Rubi

    2009-03-23

    We show the existence of a high interrelation between the different loops that may appear in a DNA segment. Conformational changes in a chain segment caused by the formation of a particular loop may either promote or prevent the appearance of another. The underlying loop selection mechanism is analyzed by means of a Hamiltonian model from which the looping free energy and the corresponding repression level can be computed. We show significant differences between the probability of single and multiple loop formation. The consequences that these collective effects might have on gene regulation processes are outlined.

  1. The first observed stellar X-ray flare oscillation: Constraints on the flare loop length and the magnetic field

    E-Print Network [OSTI]

    U. Mitra-Kraev; L. K. Harra; D. R. Williams; E. Kraev

    2005-03-17

    We present the first X-ray observation of an oscillation during a stellar flare. The flare occurred on the active M-type dwarf AT Mic and was observed with XMM-Newton. The soft X-ray light curve (0.2-12 keV) is investigated with wavelet analysis. The flare's extended, flat peak shows clear evidence for a damped oscillation with a period of around 750 s, an exponential damping time of around 2000 s, and an initial, relative peak-to-peak amplitude of around 15%. We suggest that the oscillation is a standing magneto-acoustic wave tied to the flare loop, and find that the most likely interpretation is a longitudinal, slow-mode wave, with a resulting loop length of (2.5 +- 0.2) e10 cm. The local magnetic field strength is found to be (105 +- 50) G. These values are consistent with (oscillation-independent) flare cooling time models and pressure balance scaling laws. Such a flare oscillation provides an excellent opportunity to obtain coronal properties like the size of a flare loop or the local magnetic field strength for the otherwise spatially-unresolved star.

  2. Onset of electron acceleration in a flare loop

    SciTech Connect (OSTI)

    Sharykin, Ivan; Liu, Siming [Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing, 210008 (China); Fletcher, Lyndsay, E-mail: liusm@pmo.ac.cn [School of Physics and Astronomy, SUPA, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

    2014-09-20

    We carried out a detailed analysis of X-ray and radio observations of a simple flare loop that occurred on 2002 August 12, with the impulsive hard X-ray (HXR) light curves dominated by a single pulse. The emission spectra of the early impulsive phase are consistent with an isothermal model in the coronal loop with a temperature reaching several keV. A power-law high-energy spectral tail is evident near the HXR peak time, in accordance with the appearance of footpoints at high energies, and is well correlated with the radio emission. The energy content of the thermal component keeps increasing gradually after the disappearance of this nonthermal component. These results suggest that electron acceleration only covers the central period of a longer and more gradual energy dissipation process and that the electron transport within the loop plays a crucial role in the formation of the inferred power-law electron distribution. The spectral index of power-law photons shows a very gradual evolution, indicating that the electron accelerator is in a quasi-steady state, which is confirmed by radio observations. These results are consistent with the theory of stochastic electron acceleration from a thermal background. Advanced modeling with coupled electron acceleration and spatial transport processes is needed to explain these observations more quantitatively, which may reveal the dependence of the electron acceleration on the spatial structure of the acceleration region.

  3. Lattice refining loop quantum cosmology, anisotropic models, and stability

    SciTech Connect (OSTI)

    Bojowald, Martin; Cartin, Daniel; Khanna, Gaurav [Institute for Gravitation and the Cosmos, Pennsylvania State University, 104 Davey Lab, University Park, Pennsylvania 16802 (United States); Naval Academy Preparatory School, 197 Elliot Street, Newport, Rhode Island 02841 (United States); Physics Department, University of Massachusetts at Dartmouth, North Dartmouth, Massachusetts 02747 (United States)

    2007-09-15

    A general class of loop quantizations for anisotropic models is introduced and discussed, which enhances loop quantum cosmology by relevant features seen in inhomogeneous situations. The main new effect is an underlying lattice which is being refined during dynamical changes of the volume. In general, this leads to a new feature of dynamical difference equations which may not have constant step-size, posing new mathematical problems. It is discussed how such models can be evaluated and what lattice refinements imply for semiclassical behavior. Two detailed examples illustrate that stability conditions can put strong constraints on suitable refinement models, even in the absence of a fundamental Hamiltonian which defines changes of the underlying lattice. Thus, a large class of consistency tests of loop quantum gravity becomes available. In this context, it will also be seen that quantum corrections due to inverse powers of metric components in a constraint are much larger than they appeared recently in more special treatments of isotropic, free scalar models where they were artificially suppressed.

  4. Master integrals for the four-loop Sudakov form factor

    E-Print Network [OSTI]

    Boels, Rutger; Yang, Gang

    2015-01-01

    The light-like cusp anomalous dimension is a universal function in the analysis of infrared divergences. In maximally ($\\mathcal{N}=4$) supersymmetric Yang-Mills theory (SYM) in the planar limit, it is known, in principle, to all loop orders. The non-planar corrections are not known in any theory, with the first appearing at the four-loop order. Probably the simplest quantity which contains this correction is the four-loop two-point form factor of the stress tensor multiplet. This form factor was obtained in integrand form in a previous work for $\\mathcal{N}=4$ SYM, up to a single parameter. In this work, a reduction of the appearing integrals obtained by solving integration-by-parts (IBP) identities using (a tweaked version of) Reduze is reported. The form factor is shown to be independent of the remaining parameter at integrand level due to an intricate pattern of cancellations after IBP reduction. The appearing master integrals are cross-checked using algebraic techniques explored in the Mint package. The ...

  5. Recipes and Ingredients for Neutrino Mass at Loop Level

    E-Print Network [OSTI]

    Yasaman Farzan; Silvia Pascoli; Michael A. Schmidt

    2013-03-25

    The large hierarchy between the neutrino mass scale and that of the other fermions seems to be unnatural from a theoretical point of view. Various strategies have been devised in order to generate naturally small values of neutrino masses. One of these techniques is neutrino mass generation at the loop level which requires a mechanism, e.g., a symmetry, to forbid the lower order contributions. Here, we study in detail the conditions on this type of symmetries. We put special emphasis on the discrete Z_n symmetries as a simple example but our results can be also extended to more general groups. We find that regardless of the details of the symmetry, in certain cases the existence of a lower order contribution to neutrino masses can be determined by the topology of the diagrams with a given number of loops. We discuss the lepton flavor violating rare decays as well as (g-2)_\\mu in this class of models, which generically appear at the one loop level. Typically the imposed symmetry has important implications for dark matter, with the possibility of stabilizing one or even multiple dark matter candidates.

  6. Soft X-ray emission in flaring coronal loops

    E-Print Network [OSTI]

    Pinto, R F; Brun, A S

    2014-01-01

    Solar flares are associated with intense soft X-ray emission generated by the hot flaring plasma in coronal magnetic loops. Kink unstable twisted flux-ropes provide a source of magnetic energy which can be released impulsively and account for the heating of the plasma in flares. We investigate the temporal, spectral and spatial evolution of the properties of the thermal X-ray emission produced in such kink-unstable magnetic flux-ropes using a series of MHD simulations. We deduce emission diagnostics and their temporal evolution and discuss the results of the simulations with respect to observations. The numerical setup used consists of a highly twisted loop embedded in a region of uniform and untwisted background coronal magnetic field. We let the kink instability develop, compute the evolution of the plasma properties in the loop (density, temperature) and deduce the X-ray emission properties of the plasma during the whole flaring episode. During the initial phase of the instability plasma heating is mostly ...

  7. Chandra Observations of the Northeastern Rim of the Cygnus Loop

    E-Print Network [OSTI]

    Satoru Katsuda; Hiroshi Tsunemi; Masashi Kimura; Koji Mori

    2008-06-25

    We present results from spatially resolved spectral analyses of the northeastern (NE) rim of the Cygnus Loop supernova remnant (SNR) based on two Chandra observations. One pointing includes northern outermost abundance-enhanced regions discovered by recent Suzaku observations, while the other pointing is located on regions with "normal" abundances in the NE rim of the Cygnus Loop. The superior spatial resolving power of Chandra allows us to reveal that the abundance-enhanced region is concentrated in an about 200"-thickness region behind the shock front. We confirm absolute metal abundances (i.e., relative to H) as well as abundance ratios between metals are consistent with those of the solar values within a factor of about 2. Also, we find that the emission measure in the region gradually decreases toward the shock front. These features are in contrast with those of the ejecta fragments around the Vela SNR, which leads us to believe that the abundance enhancements are not likely due to metal-rich ejecta. We suggest that the origin of the plasma in this region is the interstellar medium (ISM). In the "normal" abundance regions, we confirm that abundances are depleted to the solar values by a factor of about 5 that is not expected in the ISM around the Cygnus Loop. Introduction of non-thermal emission in our model fitting can not naturally resolve the abundance-depletion problem. The origin of the depletion still remains as an open question.

  8. The matter bounce scenario in loop quantum cosmology

    SciTech Connect (OSTI)

    Wilson-Ewing, Edward, E-mail: wilson-ewing@cpt.univ-mrs.fr [Aix-Marseille Université, CNRS UMR 7332, CPT, 13288 Marseille (France)

    2013-03-01

    In the matter bounce scenario, a dust-dominated contracting space-time generates scale-invariant perturbations that, assuming a nonsingular bouncing cosmology, propagate to the expanding branch and set appropriate initial conditions for the radiation-dominated era. Since this scenario depends on the presence of a bounce, it seems appropriate to consider it in the context of loop quantum cosmology where a bouncing universe naturally arises. For a pressureless collapsing universe in loop quantum cosmology, the predicted power spectrum of the scalar perturbations after the bounce is scale-invariant and the tensor to scalar ratio is negligibly small. A slight red tilt can be given to the scale-invariance of the scalar perturbations by a scalar field whose equation of state is P = ???, where ? is a small positive number. Then, the power spectrum for tensor perturbations is also almost scale-invariant with the same red tilt as the scalar perturbations, and the tensor to scalar ratio is expected to be r ? 9 × 10{sup ?4}. Finally, for the predicted amplitude of the scalar perturbations to agree with observations, the critical density in loop quantum cosmology must be of the order ?{sub c} ? 10{sup ?9}?{sub Pl}.

  9. Observational evidence for return currents in solar flare loops

    E-Print Network [OSTI]

    Marina Battaglia; Arnold O. Benz

    2008-06-11

    Context: The common flare scenario comprises an acceleration site in the corona and particle transport to the chromosphere. Using satellites available to date it has become possible to distinguish between the two processes of acceleration and transport, and study the particle propagation in flare loops in detail, as well as complete comparisons with theoretical predictions. Aims: We complete a quantitative comparison between flare hard X-ray spectra observed by RHESSI and theoretical predictions. This enables acceleration to be distinguished from transport and the nature of transport effects to be explored. Methods: Data acquired by the RHESSI satellite were analyzed using full sun spectroscopy as well as imaging spectroscopy methods. Coronal source and footpoint spectra of well observed limb events were analyzed and quantitatively compared to theoretical predictions. New concepts are introduced to existing models to resolve discrepancies between observations and predictions. Results: The standard thin-thick target solar flare model cannot explain the observations of all events. In the events presented here, propagation effects in the form of non-collisional energy loss are of importance to explain the observations. We demonstrate that those energy losses can be interpreted in terms of an electric field in the flare loop. One event seems consistent with particle propagation or acceleration in lower than average density in the coronal source. Conclusions: We find observational evidence for an electric field in flare loops caused by return currents.

  10. Evidence of thermal conduction suppression in a solar flaring loop by coronal seismology of slow-mode waves

    E-Print Network [OSTI]

    Wang, Tongjiang; Sun, Xudong; Provornikova, Elena; Davila, Joseph M

    2015-01-01

    Analysis of a longitudinal wave event observed by the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) is presented. A time sequence of 131 A images reveals that a C-class flare occurred at one footpoint of a large loop and triggered an intensity disturbance (enhancement) propagating along it. The spatial features and temporal evolution suggest that a fundamental standing slow-mode wave could be set up quickly after meeting of two initial disturbances from the opposite footpoints. The oscillations have a period of ~12 min and a decay time of ~9 min. The measured phase speed of 500$\\pm$50 km/s matches the sound speed in the heated loop of ~10 MK, confirming that the observed waves are of slow mode. We derive the time-dependent temperature and electron density wave signals from six AIA extreme-ultraviolet (EUV) channels, and find that they are nearly in phase.The measured polytropic index from the temperature and density perturbations is 1.64$\\pm$0.08 close to the adiabatic index ...

  11. Evidence for small-molecule-mediated loop stabilization in the structure of the isolated Pin1 WW domain

    SciTech Connect (OSTI)

    Mortenson, David E.; Kreitler, Dale F.; Yun, Hyun Gi; Gellman, Samuel H., E-mail: gellman@chem.wisc.edu; Forest, Katrina T., E-mail: gellman@chem.wisc.edu [University of Wisconsin-Madison, Madison, WI 53706 (United States)

    2013-12-01

    Two structures of a small protein with a defined tertiary fold, the isolated Pin1 WW domain, have been determined via racemic crystallization with small-molecule additives. These additives, which are either racemic or achiral, appear to stabilize a dynamic loop region of the structure. The human Pin1 WW domain is a small autonomously folding protein that has been useful as a model system for biophysical studies of ?-sheet folding. This domain has resisted previous attempts at crystallization for X-ray diffraction studies, perhaps because of intrinsic conformational flexibility that interferes with the formation of a crystal lattice. Here, the crystal structure of the human Pin1 WW domain has been obtained via racemic crystallization in the presence of small-molecule additives. Both enantiomers of a 36-residue variant of the Pin1 WW domain were synthesized chemically, and the l- and d-polypeptides were combined to afford diffracting crystals. The structural data revealed packing interactions of small carboxylic acids, either achiral citrate or a d,l mixture of malic acid, with a mobile loop region of the WW-domain fold. These interactions with solution additives may explain our success in crystallization of this protein racemate. Molecular-dynamics simulations starting from the structure of the Pin1 WW domain suggest that the crystal structure closely resembles the conformation of this domain in solution. The structural data presented here should provide a basis for further studies of this important model system.

  12. THE INTERSTELLAR MAGNETIC FIELD CLOSE TO THE SUN. II

    SciTech Connect (OSTI)

    Frisch, P. C.; Andersson, B-G; Berdyugin, A.; Piirola, V.; DeMajistre, R.; Funsten, H. O.; Magalhaes, A. M.; Seriacopi, D. B.; McComas, D. J.; Schwadron, N. A.; Slavin, J. D.; Wiktorowicz, S. J.

    2012-12-01

    The magnetic field in the local interstellar medium (ISM) provides a key indicator of the galactic environment of the Sun and influences the shape of the heliosphere. We have studied the interstellar magnetic field (ISMF) in the solar vicinity using polarized starlight for stars within 40 pc of the Sun and 90 Degree-Sign of the heliosphere nose. In Frisch et al. (Paper I), we developed a method for determining the local ISMF direction by finding the best match to a group of interstellar polarization position angles obtained toward nearby stars, based on the assumption that the polarization is parallel to the ISMF. In this paper, we extend the analysis by utilizing weighted fits to the position angles and by including new observations acquired for this study. We find that the local ISMF is pointed toward the galactic coordinates l, b =47 Degree-Sign {+-} 20 Degree-Sign , 25 Degree-Sign {+-} 20 Degree-Sign . This direction is close to the direction of the ISMF that shapes the heliosphere, l, b =33 Degree-Sign {+-} 4 Degree-Sign , 55 Degree-Sign {+-} 4 Degree-Sign , as traced by the center of the 'Ribbon' of energetic neutral atoms discovered by the Interstellar Boundary Explorer (IBEX) mission. Both the magnetic field direction and the kinematics of the local ISM are consistent with a scenario where the local ISM is a fragment of the Loop I superbubble. A nearby ordered component of the local ISMF has been identified in the region l Almost-Equal-To 0 Degree-Sign {yields} 80 Degree-Sign and b Almost-Equal-To 0 Degree-Sign {yields} 30 Degree-Sign , where PlanetPol data show a distance-dependent increase of polarization strength. The ordered component extends to within 8 pc of the Sun and implies a weak curvature in the nearby ISMF of {approx}0.{sup 0}25 pc{sup -1}. This conclusion is conditioned on the small sample of stars available for defining this rotation. Variations from the ordered component suggest a turbulent component of {approx}23 Degree-Sign . The ordered component and standard relations between polarization, color excess, and H{sup o} column density predict a reasonable increase of N(H) with distance in the local ISM. The similarity of the ISMF directions traced by the polarizations, the IBEX Ribbon, and pulsars inside the Local Bubble in the third galactic quadrant suggest that the ISMF is relatively uniform over spatial scales of 8-200 pc and is more similar to interarm than spiral-arm magnetic fields. The ISMF direction from the polarization data is also consistent with small-scale spatial asymmetries detected in GeV-TeV cosmic rays with a galactic origin. The peculiar geometrical relation found earlier between the cosmic microwave background dipole moment, the heliosphere nose, and the ISMF direction is supported by this study. The interstellar radiation field at {approx}975 A does not appear to play a role in grain alignment for the low-density ISM studied here.

  13. The 1-loop self-energy of an electron in a strong external magnetic field revisited

    E-Print Network [OSTI]

    Machet, Bruno

    2015-01-01

    I revisit the 1-loop self-energy of an electron in a strong, constant and uniform external magnetic field B. First, I show, after Tsai (1974), how, for an electron in the lowest Landau level, Schwinger's techniques, as explained by Dittrich and Reuter (1985) lead to the same integral deduced by Demeur (1953) and used later by Jancovici (1969). Then, I calculate the Demeur-Jancovici integral in the range $75 \\leq L\\equiv\\frac{|e|B}{m^2} \\leq 10\\,000$, which yields $\\delta m \\simeq \\frac{\\alpha m}{4\\pi} \\left[\\left(\\ln L-\\gamma_E-\\frac32\\right)^2 -\\frac94 +\\frac{\\pi}{\\beta-1} +\\frac{\\pi^2}{6} +\\frac{\\pi\\;\\Gamma[1-\\beta]}{L^{\\beta-1}} +\\frac{1}{L}\\left(\\frac{\\pi}{2-\\beta}-5\\right) +{\\cal O}(\\frac{1}{L^{\\geq 2}})\\right],\\ \\beta \\simeq 1.175$, close to Jancovici's last estimate $\\delta m \\simeq \\frac{\\alpha m}{4\\pi}\\left[\\left(\\ln 2L-\\gamma_E-\\frac32\\right)^2 +A+\\ldots\\right]$ with $A\\simeq 3.5$ (previously undetermined). The term proportional to $(\\ln\\frac{|e|B}{m^2})^2$ can never be considered to be leading and ...

  14. Triggering Mechanism for the Filament Eruption on 2005 September 13 in Active Region NOAA 10808

    E-Print Network [OSTI]

    Kaori Nagashima; Hiroaki Isobe; Takaaki Yokoyama; Takako T. Ishii; Takenori J. Okamoto; Kazunari Shibata

    2007-06-24

    On 2005 September 13 a filament eruption accompanied by a halo CME occurred in the most flare-productive active region NOAA 10808 in Solar Cycle 23. Using multi-wavelength observations before the filament eruption on Sep. 13th, we investigate the processes leading to the catastrophic eruption. We find that the filament slowly ascended at a speed of 0.1km/s over two days before the eruption. During slow ascending, many small flares were observed close to the footpoints of the filament, where new magnetic elements were emerging. On the basis of the observational facts we discuss the triggering mechanism leading to the filament eruption. We suggest the process toward the eruption as follows: First, a series of small flares played a role in changing the topology of the loops overlying the filament. Second, the small flares gradually changed the equilibrium state of the filament and caused the filament to ascend slowly over two days. Finally, a C2.9 flare that occurred when the filament was close to the critical point for loss of equilibrium directly led to the catastrophic filament eruption right after itself.

  15. PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP

    E-Print Network [OSTI]

    Oak Ridge National Laboratory

    PERFORMANCE OF A STIRLING ENGINE POWERED HEAT ACTIVATED HEAT PUMP W. D. C. Richards and W. L. Auxer General Electric Company Space Division King of Prussia, Pa. ABSTRACT A heat activated heat pump (HAHP by the heat pump effect. The Stirling engine/Rankine cycle refrigeration loop heat pump being developed would

  16. Closed-Form Solution to the Position Analysis of Watt-Baranov Trusses Using the Bilateration

    E-Print Network [OSTI]

    loops of the mechanism. The use of kinematic loops to this end has seldom been questioned de- spite the circular concatenation of the Watt mechanism irrespective of the re- sulting number of kinematic loops trusses, Assur kinematic chains, posi- tion analysis, bilateration, distance-based formulations. 1

  17. A unified view of coronal loop contraction and oscillation in flares

    E-Print Network [OSTI]

    Russell, Alexander J B; Fletcher, Lyndsay

    2015-01-01

    Context: Transverse loop oscillations and loop contractions are commonly associated with solar flares, but the two types of motion have traditionally been regarded as separate phenomena. Aims: We present an observation of coronal loops contracting and oscillating following onset of a flare. We aim to explain why both behaviours are seen together and why only some of the loops oscillate. Methods: A time sequence of SDO/AIA 171 \\r{A} images is analysed to identify positions of coronal loops following the onset of M6.4 flare SOL2012-03-09T03:53. We focus on five loops in particular, all of which contract during the flare, with three of them oscillating as well. A simple model is then developed for contraction and oscillation of a coronal loop. Results: We propose that coronal loop contractions and oscillations can occur in a single response to removal of magnetic energy from the corona. Our model reproduces the various types of loop motion observed and explains why the highest loops oscillate during their contra...

  18. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  19. Carnot{close_quote}s theorem as Noether{close_quote}s theorem for thermoacoustic engines

    SciTech Connect (OSTI)

    Smith, E.

    1998-09-01

    Onset in thermoacoustic engines, the transition to spontaneous self-generation of oscillations, is studied here as both a dynamical critical transition and a limiting heat engine behavior. The critical transition is interesting because it occurs for both dissipative and conservative systems, with common scaling properties. When conservative, the stable oscillations above the critical point also implement a reversible engine cycle satisfying Carnot{close_quote}s theorem, a universal conservation law for entropy flux. While criticality in equilibrium systems is naturally associated with symmetries and universal conservation laws, these are usually exploited with global minimization principles, which dynamical critical systems may not have if dissipation is essential to their criticality. Acoustic heat engines furnish an example connecting equilibrium methods with dynamical and possibly even dissipative critical transitions: A reversible engine is shown to map, by a change of variables, to an equivalent system in apparent thermal equilibrium; a Noether symmetry in the equilibrium field theory implies Carnot{close_quote}s theorem for the engine. Under the same association, onset is shown to be a process of spontaneous symmetry breaking and the scaling of the quality factor predicted for both the reversible {ital and irreversible} engines is shown to arise from the Ginzburg-Landau description of the broken phase. {copyright} {ital 1998} {ital The American Physical Society}

  20. Demolition/Construction to Close Parking Areas Near Accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DemolitionConstruction to Close Parking Areas Near Accelerator Site Entrance Demolition of the two Radiation Control Department trailers and Building 52 is expected to begin on...

  1. Collaborative Lubricating Oil Study on Emissions (CLOSE Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ace046lawson2010o.pdf More Documents & Publications Collaborative Lubricating Oil Study on Emissions (CLOSE Project) Collaborative Lubricating Oil Study on Emissions...

  2. Collaborative Lubricating Oil Study on Emissions (CLOSE Project...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ace046lawson2011o.pdf More Documents & Publications Collaborative Lubricating Oil Study on Emissions (CLOSE Project) Collaborative Lubricating Oil Study on Emissions...

  3. Energy Department Receives Prestigious Closing the Circle Awards...

    Energy Savers [EERE]

    four White House Closing the Circle (CTC) awards, which recognize federal leadership in green purchasing, electronics recycling, and energy efficiency practices. These awards are...

  4. How current loops and solenoids curve space-time

    E-Print Network [OSTI]

    A. Füzfa

    2015-04-01

    The curved space-time around current loops and solenoids carrying arbitrarily large steady electric currents is obtained from the numerical resolution of the coupled Einstein-Maxwell equations in cylindrical symmetry. The artificial gravitational field associated to the generation of a magnetic field produces gravitational redshift of photons and gravitational acceleration of neutral massive particles. The strength of the generated gravitational field is extremely weak from what can be obtained through present technology, although it might be detectable with high-precision measurements such as atom interferometry.

  5. Sinc function representation and three-loop master diagrams

    SciTech Connect (OSTI)

    Easther, Richard; Guralnik, Gerald; Hahn, Stephen

    2001-04-15

    We test the Sinc function representation, a novel method for numerically evaluating Feynman diagrams, by using it to evaluate the three-loop master diagrams. Analytical results have been obtained for all these diagrams, and we find excellent agreement between our calculations and the exact values. The Sinc function representation converges rapidly, and it is straightforward to obtain accuracies of 1 part in 10{sup 6} for these diagrams and with longer runs we found results better than 1 part in 10{sup 12}. Finally, this paper extends the Sinc function representation to diagrams containing massless propagators.

  6. FINGERPRINTS OF GALACTIC LOOP I ON THE COSMIC MICROWAVE BACKGROUND

    SciTech Connect (OSTI)

    Liu, Hao [Niels Bohr Institute and Discovery Center, Copenhagen University, Blegdamsvej 17, DK-2100 Copenhagen Ø (Denmark); Mertsch, Philipp [Kavli Institute for Particle Astrophysics and Cosmology, 2575 Sand Hill Road, M/S 29, Menlo Park, CA 94025 (United States); Sarkar, Subir, E-mail: liuhao@nbi.dk [Rudolf Peierls Centre for Theoretical Physics, University of Oxford, 1 Keble Road, Oxford OX1 3NP (United Kingdom)

    2014-07-10

    We investigate possible imprints of galactic foreground structures such as the ''radio loops'' in the derived maps of the cosmic microwave background. Surprisingly, there is evidence for these not only at radio frequencies through their synchrotron radiation, but also at microwave frequencies where emission by dust dominates. This suggests the mechanism is magnetic dipole radiation from dust grains enriched by metallic iron or ferrimagnetic molecules. This new foreground we have identified is present at high galactic latitudes, and potentially dominates over the expected B-mode polarization signal due to primordial gravitational waves from inflation.

  7. Hybrid Quantum Gowdy Cosmology: Combining Loop and Fock Quantizations

    E-Print Network [OSTI]

    Mercedes Martin-Benito; Luis J. Garay; Guillermo A. Mena Marugan

    2008-08-27

    We quantize an inhomogeneous cosmological model using techniques that include polymeric quantization. More explicitly, we construct well defined operators to represent the constraints and find the physical Hilbert space formed by their solutions, which reproduces the conventional Fock quantization for the inhomogeneities. The initial singularity is resolved in this inhomogeneous model in an extremely simple way and without imposing special boundary conditions, thus ensuring the robustness and generality of this resolution. Furthermore this quantization constitutes a well founded step towards the extraction of physical results and consequences from loop quantum cosmology, given the central role of the inhomogeneities in modern cosmology.

  8. Loop Quantum Theory Applied to Biology and Nonlinear Whole Biology

    E-Print Network [OSTI]

    Yi-Fang Chang

    2008-01-02

    The loop quantum theory, which constitutes a very small discontinuous space, as new method is applied to biology. The model of protein folding and lungs is proposed. In the model, some known results are used, and four approximate conclusions are obtained: their structures are quantized, their space regions are finite, various singularities correspond to folding and crossed points, and different types of catastrophe exist. Further, based on the inseparability and correlativity of the biological systems, the nonlinear whole biology is proposed, and four basic hypotheses are formed. It may unify reductionism and holism, structuralism and functionalism. Finally, the medical meaning of the theory is discussed briefly.

  9. Witten's loop in the flipped SU(5) unification

    E-Print Network [OSTI]

    Malinský, Michal; Kolešová, Helena

    2013-01-01

    We study a very simple, yet potentially realistic renormalizable flipped SU(5) scenario in which the right-handed neutrino masses are generated at very high energies by means of a two-loop diagram similar to that identified by E. Witten in the early 1980's in the SO(10) GUT framework. This mechanism leaves its traces in the baryon number violating signals such as the proton decay, especially in the "clean" channels with a charged lepton and a neutral meson in the final state.

  10. Witten's loop in the flipped SU(5) unification

    E-Print Network [OSTI]

    Michal Malinský; Carolina Arbeláez Rodríguez; Helena Kolešová

    2013-10-03

    We study a very simple, yet potentially realistic renormalizable flipped SU(5) scenario in which the right-handed neutrino masses are generated at very high energies by means of a two-loop diagram similar to that identified by E. Witten in the early 1980's in the SO(10) GUT framework. This mechanism leaves its traces in the baryon number violating signals such as the proton decay, especially in the "clean" channels with a charged lepton and a neutral meson in the final state.

  11. Emergence of General Relativity from Loop Quantum Gravity: A Summary

    E-Print Network [OSTI]

    Chun-Yen Lin

    2011-12-27

    A model is proposed to demonstrate that classical general relativity can emerge from loop quantum gravity, in a relational description of gravitational field in terms of the coordinates given by matter. Local Dirac observables and coherent states are defined to explore physical content of the model. Expectation values of commutators between the observables for the coherent states recover the four-dimensional diffeomorphism algebra and the large-scale dynamics of the gravitational field relative to the matter coordinates. Both results conform with general relativity up to calculable corrections near singularities.

  12. System having unmodulated flux locked loop for measuring magnetic fields

    DOE Patents [OSTI]

    Ganther, Jr., Kenneth R. (Olathe, KS); Snapp, Lowell D. (Blue Springs, MO)

    2006-08-15

    A system (10) for measuring magnetic fields, wherein the system (10) comprises an unmodulated or direct-feedback flux locked loop (12) connected by first and second unbalanced RF coaxial transmission lines (16a, 16b) to a superconducting quantum interference device (14). The FLL (12) operates for the most part in a room-temperature or non-cryogenic environment, while the SQUID (14) operates in a cryogenic environment, with the first and second lines (16a, 16b) extending between these two operating environments.

  13. Loop quantization of the Gowdy model with local rotational symmetry

    E-Print Network [OSTI]

    de Blas, Daniel Martín; Paw?owski, Tomasz

    2015-01-01

    We provide a full quantization of the vacuum Gowdy model with local rotational symmetry. We consider a redefinition of the constraints where the Hamiltonian Poisson-commutes with itself. We then apply of the canonical quantization program of loop quantum gravity within an improved dynamics scheme. We identify the exact solutions of the constraints and the physical observables, and we construct the physical Hilbert space. It is remarkable that quantum spacetimes are free of singularities. New quantum observables naturally arising in the treatment partially codify the discretization of the geometry. The preliminary analysis of the asymptotic future/past of the evolution indicates that the existing Abelianization technique needs further refinement.

  14. Dirac Fields in Loop Quantum Gravity and Big Bang Nucleosynthesis

    E-Print Network [OSTI]

    Martin Bojowald; Rupam Das; Robert J. Scherrer

    2008-03-19

    Big Bang nucleosynthesis requires a fine balance between equations of state for photons and relativistic fermions. Several corrections to equation of state parameters arise from classical and quantum physics, which are derived here from a canonical perspective. In particular, loop quantum gravity allows one to compute quantum gravity corrections for Maxwell and Dirac fields. Although the classical actions are very different, quantum corrections to the equation of state are remarkably similar. To lowest order, these corrections take the form of an overall expansion-dependent multiplicative factor in the total density. We use these results, along with the predictions of Big Bang nucleosynthesis, to place bounds on these corrections.

  15. Loop quantum cosmology, non-Gaussianity, and CMB power asymmetry

    E-Print Network [OSTI]

    Ivan Agullo

    2015-07-16

    We argue that the anomalous power asymmetry observed in the cosmic microwave background (CMB) may have originated in a cosmic bounce preceding inflation. In loop quantum cosmology (LQC) the big bang singularity is generically replaced by a bounce due to quantum gravitational effects. We compute the spectrum of inflationary non-Gaussianity and show that strong correlation between observable scales and modes with longer (super-horizon) wavelength arise as a consequence of the evolution of perturbations across the LQC bounce. These correlations are strongly scale dependent and induce a dipole-dominated modulation on large angular scales in the CMB, in agreement with observations.

  16. Loop quantum cosmology, non-Gaussianity, and CMB power asymmetry

    E-Print Network [OSTI]

    Agullo, Ivan

    2015-01-01

    We argue that the anomalous power asymmetry observed in the cosmic microwave background (CMB) may have originated in a cosmic bounce preceding inflation. In loop quantum cosmology (LQC) the big bang singularity is generically replaced by a bounce due to quantum gravitational effects. We compute the spectrum of inflationary non-Gaussianity and show that strong correlation between observable scales and modes with longer (super-horizon) wavelength arise as a consequence of the evolution of perturbations across the LQC bounce. These correlations are strongly scale dependent and induce a dipole-dominated modulation on large angular scales in the CMB, in agreement with observations.

  17. Supersymmetric Wilson Loops in N=4 Super Chern-Simons-matter Theory

    E-Print Network [OSTI]

    Ouyang, Hao; Zhang, Jia-ju

    2015-01-01

    We investigate the supersymmetric Wilson loops in d=3 N=4 super Chern-Simons-matter theory obtained from non-chiral orbifold of ABJM theory. We work in both the Minkowski spacetime and Euclidean space, and we construct the 1/4 and 1/2 BPS Wilson loops. We also give a complete proof that the difference between 1/4 and 1/2 Wilson loops are Q-exact with Q being some supercharge preserved by both the 1/4 and 1/2 Wilson loops. This is important in applying the localization techniques to compute the vacuum expectation values of Wilson loops. We also study the M-theory dual of the 1/2 BPS circular Wilson loop.

  18. Supersymmetric Wilson loops in N=4 super Chern-Simons-matter theory

    E-Print Network [OSTI]

    Hao Ouyang; Jun-Bao Wu; Jia-ju Zhang

    2015-12-03

    We investigate the supersymmetric Wilson loops in $d=3$ $\\mathcal{N}=4$ super Chern-Simons-matter theory obtained from non-chiral orbifold of ABJM theory. We work in both Minkowski spacetime and Euclidean space, and we construct 1/4 and 1/2 BPS Wilson loops. We also provide a complete proof that the difference between 1/4 and 1/2 Wilson loops is $Q$-exact with $Q$ being some supercharge that is preserved by both the 1/4 and 1/2 Wilson loops. This plays an important role in applying the localization techniques to compute the vacuum expectation values of Wilson loops. We also study the M-theory dual of the 1/2 BPS circular Wilson loop.

  19. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  20. Integrated Vehicle Thermal Management - Combining Fluid Loops in Electric Drive Vehicles (Presentation)

    SciTech Connect (OSTI)

    Rugh, J. P.

    2013-07-01

    Plug-in hybrid electric vehicles and electric vehicles have increased vehicle thermal management complexity, using separate coolant loop for advanced power electronics and electric motors. Additional thermal components result in higher costs. Multiple cooling loops lead to reduced range due to increased weight. Energy is required to meet thermal requirements. This presentation for the 2013 Annual Merit Review discusses integrated vehicle thermal management by combining fluid loops in electric drive vehicles.

  1. Two-loop enhancement factor for 1/Q corrections to event shapes in deep inelastic scattering

    E-Print Network [OSTI]

    Mrinal Dasgupta; Bryan R. Webber

    2000-10-22

    We compute the two-loop enhancement factors for our earlier one-loop calculations of leading (1/Q) power corrections to the mean values of some event shape variables in deep inelastic lepton scattering. The enhancement is found to be equal to the universal ``Milan factor'' for those shape variables considered, provided the one-loop calculation is performed in a particular way. As a result, the phenomenology of power corrections to DIS event shapes remains largely unaffected.

  2. Maintaining the closed magneticfieldline topology of a fieldreversed configuration (FRC)

    E-Print Network [OSTI]

    not significantly change the FRC's closed field structure. The FRC is an example of a self­organized plasma wherein the present field­line closure analysis. The study of field­line closure for FRC­like plasmas with transverse1 Maintaining the closed magnetic­field­line topology of a field­reversed configuration (FRC

  3. THE CARTESIAN CLOSED BICATEGORY OF GENERALISED SPECIES OF STRUCTURES

    E-Print Network [OSTI]

    Winskel, Glynn

    THE CARTESIAN CLOSED BICATEGORY OF GENERALISED SPECIES OF STRUCTURES M. FIORE, N. GAMBINO, M. HYLAND, AND G. WINSKEL Abstract. The concept of generalised species of structures between small establishes that the bicategory of generalised species of structures is cartesian closed. 1. Introduction

  4. Geometric control theory, closing lemma, and weak KAM theory

    E-Print Network [OSTI]

    Rifford, Ludovic

    Geometric control theory, closing lemma, and weak KAM theory Ludovic Rifford Universit´e de Nice - Sophia Antipolis Ludovic Rifford Weak KAM Theory in Italy #12;Outline Lecture 1: Geometric control) Lecture 4: Closing Aubry sets Ludovic Rifford Weak KAM Theory in Italy #12;Lecture 1 Geometric control

  5. 98th LHCC meeting Agenda OPEN Session and CLOSED Session

    ScienceCinema (OSTI)

    None

    2011-10-06

    OPEN Session on Wednesday, 8 July at 9h00-11h00 in Main Auditorium, Live webcast, followed by CLOSED Session, Conference room 160-1-009 11h20-17h00. CLOSED Session continued on Thursday, 9 July at 9h00-12h30

  6. Mining Closed Strict Episodes Nikolaj Tatti and Boris Cule

    E-Print Network [OSTI]

    Antwerpen, Universiteit

    Mining Closed Strict Episodes Nikolaj Tatti and Boris Cule University of Antwerp Antwerp, Belgium of data mining. One popular choice of such patterns are episodes, patterns in sequential data describing subset relationship within it and use it efficiently. In order to mine closed episodes we define

  7. Secular effects on inflation from one-loop quantum gravity

    E-Print Network [OSTI]

    J. A. Cabrer; D. Espriu

    2007-10-03

    In this paper we revisit and extend a previous analysis where the possible relevance of quantum gravity effects in a cosmological setup was studied. The object of interest are non-local (logarithmic) terms generated in the effective action of gravity due to the exchange in loops of massless modes (such as photons or the gravitons themselves). We correct one mistake existing in the previous work and discuss the issue in a more general setting in different cosmological scenarios. We obtain the one-loop quantum-corrected evolution equations for the cosmological scale factor up to a given order in a derivative expansion in two particular cases: a matter dominated universe with vanishing cosmological constant, and in a de Sitter universe. We show that the quantum corrections, albeit tiny, may have a secular effect that eventually modifies the expansion rate. For a de Sitter universe they tend to slow down the rate of the expansion, while the effect seems to have the opposite sign in a matter dominated universe. To partly understand these effects we provide a complementary newtonian analysis.

  8. Environmental Impact on the Southeast Limb of the Cygnus Loop

    E-Print Network [OSTI]

    N. A. Levenson; James R. Graham

    2004-12-17

    We analyze observations from the Chandra X-ray Observatory of the southeast knot of the Cygnus Loop supernova remnant. In this region, the blast wave propagates through an inhomogeneous environment. Extrinsic differences and subsequent multiple projections along the line of sight rather than intrinsic shock variations, such as fluid instabilities, account for the apparent complexity of the images. Interactions between the supernova blast wave and density enhancements of a large interstellar cloud can produce the morphological and spectral characteristics. Most of the X-ray flux arises in such interactions, not in the diffuse interior of the supernova remnant. Additional observations at optical and radio wavelengths support this account of the existing interstellar medium and its role in shaping the Cygnus Loop, and they demonstrate that the southeast knot is not a small cloud that the blast wave has engulfed. These data are consistent with rapid equilibration of electron and ion temperatures behind the shock front, and the current blast wave velocity v_{bw} approx 330 km/s. Most of this area does not show strong evidence for non-equilibrium ionization conditions, which may be a consequence of the high densities of the bright emission regions.

  9. Black hole spectroscopy from Loop Quantum Gravity models

    E-Print Network [OSTI]

    Aurelien Barrau; Xiangyu Cao; Karim Noui; Alejandro Perez

    2015-04-21

    Using Monte Carlo simulations, we compute the integrated emission spectra of black holes in the framework of Loop Quantum Gravity (LQG). The black hole emission rates are governed by the entropy whose value, in recent holographic loop quantum gravity models, was shown to agree at leading order with the Bekenstein-Hawking entropy. Quantum corrections depend on the Barbero-Immirzi parameter $\\gamma$. Starting with black holes of initial horizon area $A \\sim 10^2$ in Planck units, we present the spectra for different values of $\\gamma$. Each spectrum clearly decomposes in two distinct parts: a continuous background which corresponds to the semi-classical stages of the evaporation and a series of discrete peaks which constitutes a signature of the deep quantum structure of the black hole. We show that $\\gamma$ has an effect on both parts that we analyze in details. Finally, we estimate the number of black holes and the instrumental resolution required to experimentally distinguish between the considered models.

  10. Testing Loop Quantum Gravity and Electromagnetic Dark Energy in Superconductors

    E-Print Network [OSTI]

    Clovis Jacinto de Matos

    2009-08-06

    In 1989 Cabrera and Tate reported an anomalous excess of mass of the Cooper pairs in rotating thin Niobium rings. So far, this experimental result never received a proper theoretical explanation in the context of superconductor's physics. In the present work we argue that what Cabrera and Tate interpreted as an anomalous excess of mass can also be associated with a deviation from the classical gravitomagnetic Larmor theorem due to the presence of dark energy in the superconductor, as well as with the discrete structure of the area of the superconducting Niobium ring as predicted by Loop Quantum Gravity. From Cabrera and Tate measurements we deduce that the quantization of spacetime in superconducting circular rings occurs at the Planck-Einstein scale $l_{PE} = (\\hbar G/c^3 \\Lambda)^{1/4}\\sim 3.77\\times 10 ^{-5} m$, instead of the Planck scale $l_{P} =(\\hbar G / c^3)^{1/2}=1.61 \\times 10 ^{-35} m$, with an Immirzi parameter which depends on the specific critical temperature of the superconducting material and on the area of the ring. The stephan-Boltzmann law for quantized areas delimited by superconducting rings is predicted, and an experimental concept based on the electromagnetic black-body radiation emitted by this surfaces, is proposed to test loop quantum gravity and electromagnetic dark energy in superconductors.

  11. Chandra Observations of the Northeastern Rim of the Cygnus Loop

    E-Print Network [OSTI]

    Katsuda, Satoru; Kimura, Masashi; Mori, Koji

    2008-01-01

    We present results from spatially resolved spectral analyses of the northeastern (NE) rim of the Cygnus Loop supernova remnant (SNR) based on two Chandra observations. One pointing includes northern outermost abundance-enhanced regions discovered by recent Suzaku observations, while the other pointing is located on regions with "normal" abundances in the NE rim of the Cygnus Loop. The superior spatial resolving power of Chandra allows us to reveal that the abundance-enhanced region is concentrated in an about 200"-thickness region behind the shock front. We confirm absolute metal abundances (i.e., relative to H) as well as abundance ratios between metals are consistent with those of the solar values within a factor of about 2. Also, we find that the emission measure in the region gradually decreases toward the shock front. These features are in contrast with those of the ejecta fragments around the Vela SNR, which leads us to believe that the abundance enhancements are not likely due to metal-rich ejecta. We ...

  12. 12 loops and triple wrapping in ABJM theory from integrability

    E-Print Network [OSTI]

    Anselmetti, Lorenzo; Cavaglià, Andrea; Tateo, Roberto

    2015-01-01

    Adapting a method recently proposed by C. Marboe and D. Volin for ${\\cal N}$=4 super-Yang-Mills, we develop an algorithm for a systematic weak coupling expansion for anomalous dimensions of operators in the $sl(2)$-like sector of planar $\\mathcal{N}$=6 super-Chern-Simons. The method relies on the Quantum Spectral Curve formulation of the problem and the expansion is written in terms of the interpolating function $h(\\lambda)$, with coefficients expressible as combinations of Euler-Zagier sums with alternating signs. We present explicit results up to 12 loops (six nontrivial orders) for various twist L=1 and L=2 operators, corresponding to triple and double wrapping terms, respectively, which are beyond the reach of the Asymptotic Bethe Ansatz as well as L\\"uscher's corrections. The algorithm works for generic values of L and S and in principle can be used to compute arbitrary orders of the weak coupling expansion. For the simplest operator with L=1 and spin S=1, the 12-loop computation matches very well with t...

  13. The four-loop six-gluon NMHV ratio function

    E-Print Network [OSTI]

    Dixon, Lance J; McLeod, Andrew J

    2015-01-01

    We use the hexagon function bootstrap to compute the ratio function which characterizes the next-to-maximally-helicity-violating (NMHV) six-point amplitude in planar $\\mathcal{N} = 4$ super-Yang-Mills theory at four loops. A powerful constraint comes from dual superconformal invariance, in the form of a $\\bar{Q}$ differential equation, which heavily constrains the first derivatives of the transcendental functions entering the ratio function. At four loops, it leaves only a 34-parameter space of functions. Constraints from the collinear limits, and from the multi-Regge limit at the leading-logarithmic (LL) and next-to-leading-logarithmic (NLL) order, suffice to fix these parameters and obtain a unique result. We test the result against multi-Regge predictions at NNLL and N$^3$LL, and against predictions from the operator product expansion involving one and two flux-tube excitations; all cross-checks are satisfied. We study the analytical and numerical behavior of the parity-even and parity-odd parts on various...

  14. {open_quotes}Rosshelf{close_quotes} company and development of the Arctic Shelf of Russia

    SciTech Connect (OSTI)

    Velikhov, E.P.

    1994-09-01

    The Russian {open_quotes}Rosshelf{close_quotes} company for developing the shelf is the nucleus of a new branch of industry for developing oil and gas fields on shelves of Russia, primarily in the Arctic. {open_quotes}Rosshelf{close_quotes}, created on the basis of leading naval defence enterprises, Russia`s largest geological and mining enterprises, and territorial organizations managing the northern regions of Russia, obtained a license in March 1993 for the right to use the natural resources of Europe`s largest Shtokman gas-condensate field and Prirazlomnoe oil field in the Barents Sea and thus has all the conditions and possibilities for the successful organization of oil and gas production on the continental shelf of Russia. The goals of {open_quotes}Rosshelf{close_quotes} are: the production of oil and gas equipment at converted defence enterprises, including under foreign license and for export; the development of oil and gas fields on the continental shelf of Russia; the creation of new prospective technologies for offshore oil and gas production under conditions of the Russian and mainly the arctic shelf. {open_quotes}Rosshelf{close_quotes} should develop the Pechora Sea fields, mainly the Prirazlomnoe oil field with its relatively small depth and distance from the shore. It is planned to develop Europe`s largest Shtokman field at a distance of 600 km from the shore in the course of 10-12 years with expenditures of about $6 billion. The use of defence technologies underlying the activities of {open_quotes}Rosshelf{close_quotes} gives the company a real change to reach the world level of offshore oil- and gas-production technology. Broad cooperation with foreign companies, mainly in the area of engineering, finances, ecology, and safety, planned also for this. Calculations show that already the priority projects of {open_quotes}Rosshelf{close_quotes} will provide 250,000-300,000 highly skilled jobs at Russian defence enterprises.

  15. Loop quantum gravity, twistors, and some perspectives on the problem of time

    E-Print Network [OSTI]

    Simone Speziale

    2014-04-16

    I give a brief introduction to the relation between loop quantum gravity and twistor theory, and comment on some perspectives on the problem of time.

  16. Two-point functions for SU(3) Polyakov Loops near T_c

    E-Print Network [OSTI]

    Adrian Dumitru; Robert D. Pisarski

    2002-04-23

    We discuss the behavior of two point functions for Polyakov loops in a SU(3) gauge theory about the critical temperature, T_c. From a Z(3) model, in mean field theory we obtain a prediction for the ratio of masses at T_c, extracted from correlation functions for the imaginary and real parts of the Polyakov loop. This ratio is m_i/m_r = 3 if the potential only includes terms up to quartic order in the Polyakov loop; its value changes as pentic and hexatic interactions become important. The Polyakov Loop Model then predicts how m_i/m_r changes above T_c.

  17. Thomas L. Shaw, President LOOP LLC Before Public Meeting on the...

    Broader source: Energy.gov (indexed) [DOE]

    the Gulf Coast, primarily Corpus Christi, Texas. LOOP also receives crude oil through pipelines from the Mars and Thunder Horse offshore production platforms. These production...

  18. Statistical evidence for the existence of Alfvénic turbulence in solar coronal loops

    SciTech Connect (OSTI)

    Liu, Jiajia [Earth and Space Science School, University of Science and Technology of China, No. 96, JinZhai Road, Hefei (China); McIntosh, Scott W.; Bethge, Christian [High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307 (United States); De Moortel, Ineke; Threlfall, James, E-mail: ljj128@mail.ustc.edu.cn [School of Mathematics and Statistics, University of St Andrews, St Andrews, Fife KY16 9SS (United Kingdom)

    2014-12-10

    Recent observations have demonstrated that waves capable of carrying large amounts of energy are ubiquitous throughout the solar corona. However, the question of how this wave energy is dissipated (on which timescales and length scales) and released into the plasma remains largely unanswered. Both analytic and numerical models have previously shown that Alfvénic turbulence may play a key role not only in the generation of the fast solar wind, but in the heating of coronal loops. In an effort to bridge the gap between theory and observations, we expand on a recent study by analyzing 37 clearly isolated coronal loops using data from the Coronal Multi-channel Polarimeter instrument. We observe Alfvénic perturbations with phase speeds which range from 250 to 750 km s{sup –1} and periods from 140 to 270 s for the chosen loops. While excesses of high-frequency wave power are observed near the apex of some loops (tentatively supporting the onset of Alfvénic turbulence), we show that this excess depends on loop length and the wavelength of the observed oscillations. In deriving a proportional relationship between the loop length/wavelength ratio and the enhanced wave power at the loop apex, and from the analysis of the line widths associated with these loops, our findings are supportive of the existence of Alfvénic turbulence in coronal loops.

  19. Canonical Transformations and Loop Formulation of SU(N) Lattice Gauge Theories

    E-Print Network [OSTI]

    Manu Mathur; T. P. Sreeraj

    2015-09-14

    We construct canonical transformations to reformulate SU(N) Kogut-Susskind lattice gauge theory in terms of a set of fundamental loop & string flux operators along with their canonically conjugate loop & string electric fields. We show that as a consequence of SU(N) Gauss laws all SU(N) string degrees of freedom become cyclic and decouple from the physical Hilbert space ${\\cal H}^p$. The canonical relations between the initial SU(N) link operators and the final SU(N) loop & string operators over the entire lattice are worked out in a self consistent manner. The Kogut-Susskind Hamiltonian rewritten in terms of the fundamental physical loop operators has global SU(N) invariance. There are no gauge fields. We further show that the $(1/g^2)$ magnetic field terms on plaquettes create and annihilate the fundamental plaquette loop fluxes while the $(g^2)$ electric field terms describe all their interactions. In the weak coupling ($g^2 \\rightarrow 0$) continuum limit the SU(N) loop dynamics is described by SU(N) spin Hamiltonian with nearest neighbour interactions. In the simplest SU(2) case, where the canonical transformations map the SU(2) loop Hilbert space into the Hilbert spaces of hydrogen atoms, we analyze the special role of the hydrogen atom dynamical symmetry group $SO(4,2)$ in the loop dynamics and the spectrum. A simple tensor network ansatz in the SU(2) gauge invariant hydrogen atom loop basis is discussed.

  20. PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7...

    Office of Scientific and Technical Information (OSTI)

    PLASMOID EJECTIONS AND LOOP CONTRACTIONS IN AN ERUPTIVE M7.7 SOLAR FLARE: EVIDENCE OF PARTICLE ACCELERATION AND HEATING IN MAGNETIC RECONNECTION OUTFLOWS Citation Details...

  1. Geek-Up[08.27.10] -- Geothermal Stores, Graphene Loops, Nozzle...

    Broader source: Energy.gov (indexed) [DOE]

    at Oak Ridge National Laboratory (ORNL) have discovered how loops develop in graphene - an electrically conductive high-strength low-weight material (think of it as an...

  2. ISSCC 2006 / SESSION 16 / MEMS AND SENSORS / 16.1 16.1 A 4.5mW Closed-Loop Micro-Gravity

    E-Print Network [OSTI]

    Ayazi, Farrokh

    .01·cm) 120µm-thick silicon-on-insulator (SOI) substrate with extra seismic mass and small capacitive seismic mass on the backside of the sensor. In contrast to previously reported micro- accelerometers. Since the seismic mass is very large (10's of milli-gram) and the accelerom- eter is very compliant

  3. IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 12, DECEMBER 2006 2983 A 4.5-mW Closed-Loop Micro-Gravity

    E-Print Network [OSTI]

    Ayazi, Farrokh

    of a lateral capacitive micro- gravity silicon-on-insulator (SOI) accelerometer is presented. The interface accelerometer. The movement of the seismic proof mass causes the inter-electrode capacitors to change

  4. IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 10, NO. 6, NOVEMBER 2002 759 Closed-Loop Compensation of Kinematic Error in

    E-Print Network [OSTI]

    . These include compact design with low weight, high gear reduction with almost zero backlash, and high torque, regulation, tracking. I. INTRODUCTION HARMONIC drives are special flexible gear transmission systems flexspline) is a thin-walled hollow cup made up of alloy steel. External gear teeth are machined at the open

  5. Closing a quantum feedback loop inside a cryostat: Autonomous state-preparation and long-time memory of a superconducting qubit

    E-Print Network [OSTI]

    Christian Kraglund Andersen; Joseph Kerckhoff; Konrad W. Lehnert; Benjamin J. Chapman; Klaus Mølmer

    2015-08-31

    We propose to use a cryogenic nonlinear resonator for the projective readout, classical memory, and feedback for a superconducting qubit. This approach sidesteps many of the inefficiencies inherent in two-way communication between temperature stages in typical systems with room temperature controllers, and avoids increasing the cryogenic heat load. This controller may find a broad range of uses in multi-qubit systems, but here we analyze two specific demonstrative cases in single qubit-control. In the first case, the nonlinear controller is used to initialize the qubit in a definite eigenstate. And in the second case, the qubit's state is read into the controller's classical memory, where it is stored for an indefinite period of time, and then used to reinstate the measured state after the qubit has decayed. We analyze the properties of this system and we show simulations of the time evolution for the full system dynamics.

  6. Unsupervised home use of overnight closed-loop system over 3 to 4 weeks – Pooled analysis of randomized controlled studies in adults and adolescents with type 1 diabetes

    E-Print Network [OSTI]

    Thabit, Hood; Elleri, Daniela; Leelarathna, Lalantha; Allen, Janet M.; Lubina-Solomon, Alexandra; Stadler, Marietta; Walkinshaw, Emma; Iqbal, Ahmed; Choudhary, Pratik; Wilinska, Malgorzata E.; Barnard, Katharine D.; Heller, Simon R.; Amiel, Stephanie A.; Evans, Mark L.; Dunger, David B.; Hovorka, Roman

    2015-01-09

    to indicate sta- tistical significance. Outcomes were calculated using GStat software (version 2.0, University of Cambridge) and statistical analyses were conducted using spss (version 21). Results Baseline Characteristics A total of 24 adults and 16... occurred on average once every five nights. More than 60% of interruptions were attributable to disruptions to the pump wireless connectivity or loss of sensor glucose availabil- ity. Participants’ positive and negative experiences and quality of life may...

  7. Intelligent Control of Closed-Loop Sedation in Simulated ICU Patients Brett L. Moore, Eric D. Sinzinger, Todd M. Quasny, and Larry D. Pyeatt

    E-Print Network [OSTI]

    Pyeatt, Larry

    to anesthesia control with favorable results (Hu, Lovejoy, & Shafer 1994). Background Target Controlled Infusion; the system then dispenses the drug at a combination of bo- lus and maintenance infusion rates to achieve and main- tain the desired level. The TCI system selects an infusion rate based on a precomputed drug

  8. A digital wireless system for closed-loop inhibition of nociceptive signals This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    Peng2 and J-C Chiao3,4 1 Department of Electronic Science and Technology, Huazhong University of Science and Technology, Wuhan, People's Republic of China 2 Department of Psychology, The University stimuli (brush, pressure and pinch) applied in the hind paw. The identified nociceptive signals were used

  9. Biodegradation of paint stripper solvents in a modified gas lift loop bioreactor

    SciTech Connect (OSTI)

    Vanderberg-Twary, L.; Steenhoudt, K.; Travis, B.J.; Hanners, J.L.; Foreman, T.M.; Brainard, J.R.

    1997-07-05

    Paint stripping wastes generated during the decontamination and decommissioning of former nuclear facilities contain paint stripping organics (dichloromethane, 2-propanol, and methanol) and bulk materials containing paint pigments. It is desirable to degrade the organic residues as part of an integrated chemical-biological treatment system. The authors have developed a modified gas lift loop bioreactor employing a defined consortium of Thodococcus rhodochrous strain OFS and Hyphomicrobium sp. DM-2 that degrades paint stripper organics. Mass transfer coefficients and kinetic constants for biodegradation in the system were determined. It was found that transfer of organic substrates from surrogate waste into the air and further into the liquid medium in the bioreactor were rapid processes, occurring within minutes. Monod kinetics was employed to model the biodegradation of paint stripping organics. Analysis of the bioreactor process was accomplished with BIOLAB, a mathematical code that simulates coupled mass transfer and biodegradation processes. This code was used to fit experimental data to monod kinetics and to determine kinetic parameters. The BIOLAB code was also employed to compare activities in the bioreactor of individual microbial cultures to the activities of combined cultures in the bioreactor. This code is of benefit for further optimization and scale-up of the bioreactor for treatment of paint stripping and other volatile organic wastes in bulk materials.

  10. A method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations

    E-Print Network [OSTI]

    Zhou, Quanlin

    the fraction of total pore space available for CO2 storage, limited by heterogeneity, buoyancy effectsA method for quick assessment of CO2 storage capacity in closed and semi-closed saline formations, USA 1. Introduction Geological carbon dioxide (CO2) sequestration in deep forma- tions (e.g., saline

  11. Posterior Wall Capture and Femoral Artery Stenosis Following Use of StarClose Closing Device: Diagnosis and Therapy

    SciTech Connect (OSTI)

    Stefanczyk, Ludomir [Medical University of Lodz, First Department of Radiology and Diagnostic Imaging (Poland)] [Medical University of Lodz, First Department of Radiology and Diagnostic Imaging (Poland); Elgalal, Marcin T., E-mail: telgalal@yahoo.co.uk [Medical University of Lodz, Second Department of Radiology and Diagnostic Imaging (Poland); Szubert, Wojciech; Grzelak, Piotr [Medical University of Lodz, First Department of Radiology and Diagnostic Imaging (Poland)] [Medical University of Lodz, First Department of Radiology and Diagnostic Imaging (Poland); Szopinski, Piotr [Institute of Haematology and Transfusion Medicine, Department of Vascular Surgery (Poland)] [Institute of Haematology and Transfusion Medicine, Department of Vascular Surgery (Poland); Majos, Agata [Medical University of Lodz, Second Department of Radiology and Diagnostic Imaging (Poland)] [Medical University of Lodz, Second Department of Radiology and Diagnostic Imaging (Poland)

    2013-10-15

    A case of femoral artery obstruction following application of a StarClose type arterial puncture closing device (APCD) is presented. Ultrasonographic and angiographic imaging of this complication was obtained. The posterior wall of the vessel was accidentally caught in the anchoring element of the nitinol clip. This complication was successfully resolved by endovascular treatment and the implantation of a stent.

  12. MAGNETIC FIELD TOPOLOGY AND THE THERMAL STRUCTURE OF THE CORONA OVER SOLAR ACTIVE REGIONS

    SciTech Connect (OSTI)

    Schrijver, Carolus J.; DeRosa, Marc L.; Title, Alan M., E-mail: schryver@lmsal.co [Lockheed Martin Advanced Technology Center, Palo Alto, CA 94304 (United States)

    2010-08-20

    Solar extreme ultraviolet (EUV) images of quiescent active-region coronae are characterized by ensembles of bright 1-2 MK loops that fan out from select locations. We investigate the conditions associated with the formation of these persistent, relatively cool, loop fans within and surrounding the otherwise 3-5 MK coronal environment by combining EUV observations of active regions made with TRACE with global source-surface potential-field models based on the full-sphere photospheric field from the assimilation of magnetograms that are obtained by the Michelson Doppler Imager (MDI) on SOHO. We find that in the selected active regions with largely potential-field configurations these fans are associated with (quasi-)separatrix layers (QSLs) within the strong-field regions of magnetic plage. Based on the empirical evidence, we argue that persistent active-region cool-loop fans are primarily related to the pronounced change in connectivity across a QSL to widely separated clusters of magnetic flux, and confirm earlier work that suggested that neither a change in loop length nor in base field strengths across such topological features are of prime importance to the formation of the cool-loop fans. We discuss the hypothesis that a change in the distribution of coronal heating with height may be involved in the phenomenon of relatively cool coronal loop fans in quiescent active regions.

  13. Open Loop Optimal Control of Base Station Activation for Green Networks

    E-Print Network [OSTI]

    their battery life. In our current work, we derive optimal policies to con- serve energy in two scenarios. 1, Veeraruna Kavitha1,2 and Eitan Altman1 1 INRIA, Sophia-Antipolis, France, 2 Universite d'Avignon, Avignon, France Abstract--In recent years there has been an increasing aware- ness that the deployment as well

  14. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation

    E-Print Network [OSTI]

    Liu, Xiaole Shirley

    Liub,c , Myles Browna,b , and Philip W. Kantoffa,1 a Department of Medical Oncology, Dana-Farber Cancer, MA 02215 Edited by Owen N. Witte, Howard Hughes Medical Institute, University of California, Los

  15. Filament Activation in Response to Magnetic Flux Emergence and Cancellation in Filament Channels

    E-Print Network [OSTI]

    Li, Ting; Ji, Haisheng

    2015-01-01

    We make a comparative analysis for two filaments that showed quite different activation in response to the flux emergence within the filament channels. The observations from the Solar Dynamics Observatory (SDO) and Global Oscillation Network Group (GONG) are carried out to analyze the two filaments on 2013 August 17-20 and September 29. The first event showed that the main body of the filament was separated into two parts when an active region (AR) emerged with a maximum magnetic flux of about 6.4*10^21 Mx underlying the filament. The close neighborhood and common direction of the bright threads in the filament and the open AR fan loops suggest similar magnetic connectivity of these two flux systems. The equilibrium of the filament was not destroyed within 3 days after the start of the emergence of the AR. To our knowledge, similar observations have never been reported before. In the second event, the emerging flux occurred nearby a barb of the filament with a maximum magnetic flux of 4.2*10^20 Mx, about one ...

  16. Superbounce and Loop Quantum Cosmology Ekpyrosis from Modified Gravity

    E-Print Network [OSTI]

    V. K. Oikonomou

    2015-04-07

    As is known, in modified cosmological theories of gravity many of the cosmologies which could not be generated by standard Einstein gravity, can be consistently described by $F(R)$ theories. Using known reconstruction techniques, we investigate which $F(R)$ theories can lead to a Hubble parameter describing two types of cosmological bounces, the superbounce model, related to supergravity and non-supersymmetric models of contracting ekpyrosis and also the Loop Quantum Cosmology modified ekpyrotic model. Since our method is an approximate method, we investigate the problem at large and small curvatures. As we evince, both models yield power law reconstructed $F(R)$ gravities, with the most interesting new feature being that both lead to accelerating cosmologies, in the large curvature approximation. The mathematical properties of the some Friedmann-Robertson-Walker spacetimes $M$, that describe superbounce-like cosmologies are also pointed out, with regards to the group of curvature collineations $CC(M)$.

  17. Optical vortex driven charge current loop and optomagnetism in fullerenes

    E-Print Network [OSTI]

    Wätzel, Jonas; Schäffer, Alexander; Berakdar, Jamal

    2016-01-01

    Endohedral molecular magnets, e.g. as realized in fullerenes containing $\\rm DySc_{2}N$, are promising candidates for molecular electronics and quantum information processing. For their functionalization an ultrafast local magnetization control is essential. Using full ab-initio quantum chemistry calculations we predict the emergence of charge current loops in fullerenes with an associated orbital magnetic moment upon irradiation with weak light vortex pulses that transfer orbital angular momentum. The generated current is controllable by the frequency, the vortex topological charge, and the intensity of the light. Numerical and analytical results show that an ultraviolet vortex femtosecond pulse with an intensity $\\sim10^{13}$ W/cm$^2$ generates non-invasively nA unidirectional surface current with an associated magnetic field of hundreds $\\mu$T at the center of the fullerene.

  18. Path Integral and Effective Hamiltonian in Loop Quantum Cosmology

    E-Print Network [OSTI]

    Haiyun Huang; Yongge Ma; Li Qin

    2011-06-27

    We study the path integral formulation of Friedmann universe filled with a massless scalar field in loop quantum cosmology. All the isotropic models of $k=0,+1,-1$ are considered. To construct the path integrals in the timeless framework, a multiple group-averaging approach is proposed. Meanwhile, since the transition amplitude in the deparameterized framework can be expressed in terms of group-averaging, the path integrals can be formulated for both deparameterized and timeless frameworks. Their relation is clarified. It turns out that the effective Hamiltonian derived from the path integral in deparameterized framework is equivalent to the effective Hamiltonian constraint derived from the path integral in timeless framework, since they lead to same equations of motion. Moreover, the effective Hamiltonian constraints of above models derived in canonical theory are confirmed by the path integral formulation.

  19. NLO evolution of 3-quark Wilson loop operator

    SciTech Connect (OSTI)

    Balitsky, I. [Old Dominion Univ., Norfolk, VA (United States) Dept. of Physics; Grabovsky, A. V. [Russian Academy of Sciences (RAS), Novosibirsk (Russian Federation). Budker Inst. of Nuclear Physics (BINP)

    2015-01-01

    It is well known that high-energy scattering of a meson from some hadronic target can be described by the interaction of that target with a color dipole formed by two Wilson lines corresponding to fast quark-antiquark pair. Moreover, the energy dependence of the scattering amplitude is governed by the evolution equation of this color dipole with respect to rapidity. Similarly, the energy dependence of scattering of a baryon can be described in terms of evolution of a three-Wilson-lines operator with respect to the rapidity of the Wilson lines. We calculate the evolution of the 3-quark Wilson loop operator in the next-to-leading order (NLO) and present a quasi-conformal evolution equation for a composite 3-Wilson-lines operator. We also obtain the linearized version of that evolution equation describing the amplitude of the odderon exchange at high energies.

  20. Hanford Tank Farms Waste Certification Flow Loop Test Plan

    SciTech Connect (OSTI)

    Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

    2010-01-01

    A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described