National Library of Energy BETA

Sample records for action plan jump

  1. Climate change action plan

    E-Print Network [OSTI]

    Delivery Climate change action plan 2009-2011 #12;2 | Climate change action plan ©istockphoto.com #12;Climate Change Action Plan Climate change action plan | 3 Contents Overview 4 Preface and Introduction 5 Climate change predictions for Scotland 6 The role of forestry 7 Protecting and managing

  2. ACTION PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach HomeA Better Anode Design to Improve4AJ01) (See Energy Level79AJ01) (NotAdvanced ABSTRACTSFor-1 ACTION

  3. Construction plans jump; operations skid in 1996

    SciTech Connect (OSTI)

    True, W.R.

    1997-08-04

    Federally regulated oil and gas pipelines turned in mixed performances in 1996, a review of annual reports filed with the US Federal Energy Regulatory Commission (FERC) shows. Plans for new pipeline construction, filed with both the FERC and Canadian regulatory bodies, increased during a 12-month period ending June 30, 1997. Natural-gas pipeline operating companies increased their operating revenues but saw their incomes fall; oil pipelines saw both revenues and incomes fall sharply as deliveries were flat. Major natural-gas pipelines slightly increased the amounts of gas they moved for a fee and decreased gas sold out of their systems. In 1996, liquids pipelines moved fewer barrels than a year earlier and reduced in all categories the miles of line operated. Each year in this exclusive report, Oil and Gas Journal tracks revenues and incomes earned from operations along with volumes moved, as submitted to the FERC by US regulated interstate pipeline companies. Data are presented on the following: pipeline revenues, incomes--1996; North American pipeline-construction costs; US pipeline costs--estimated vs. actual; North American compressor construction costs; US compressor costs--estimated vs. actual; Canadian pipeline-construction costs, actual; US interstate mileage; investment in liquids pipelines; 10 years of land-construction costs; top 10 interstate liquids lines; top 10 interstate gas lines; liquids pipeline companies; and gas pipeline companies.

  4. Climate Action Plan 2013 Update

    E-Print Network [OSTI]

    Rose, Michael R.

    UC Irvine Climate Action Plan 2013 Update #12;CLIMATE ACTION PLAN - 2013 UPDATE 1 TABLE OF CONTENTS CLIMATE PROTECTION GOALS...............................................................18 OPPORTUNITIES-2050 CLIMATE NEUTRALITY.........................................................29 MEDICALCENTER IMPLEMENTATION

  5. ES H action plan

    SciTech Connect (OSTI)

    Not Available

    1991-01-01

    This document contains planned actions to correct the deficiencies identified in the Pre-Tiger Team Self-Assessment (PTTSA), January 1991, of Sandia National Laboratories (SNL -- Albuquerque, New Mexico; Tonopah, Nevada; and Kauai, Hawaii). The Self-Assessment was conducted by a Self-Assessment Working Group consisting of 19 department managers, with support from Environment, Safety, and Health (ES H) professionals, from October through December 1990. Findings from other past audits, dating back to 1985, were reviewed and compared with the PTTSA findings to determine if additional findings, key findings, or root causes were warranted. The resulting ES H Action Plan and individual planned actions were prepared by the ES H Action Plan Project Group with assistance from the Program owners/authors during February and March 1991. The plan was reviewed by SNL Management in April 1991. This document serves as a planning instrument for the Laboratories to aid in the scoping and sizing of activities related to ES H compliance for the coming five years. It will be modified as required to ensure a workload/funding balance and to address the findings resulting from the Tiger Team assessment at SNL, Albuquerque. The process of producing this document has served well to prepare SNL, Albuquerque, for the coming task of producing the required post-Tiger Team action plan document. 8 tabs.

  6. Climate Action Plan 2009 Sustainability

    E-Print Network [OSTI]

    Capogna, Luca

    Climate Action Plan September 2009 Sustainability Council This plan outlines methods by which. This document is publicly available at http://sustainability.uark.edu. #12;2 University of Arkansas Climate....................................................................................................................................7 Climate Action Plan Committee

  7. Mitigation Action Plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    This Mitigation Action Plan (MAP) focuses on mitigation commitments stated in the Supplemental Environmental Impact Statement (SEIS) and the Record of Decision (ROD) for the Naval Petroleum Reserve No. 1 (NPR-1). Specific commitments and mitigation implementation actions are listed in Appendix A-Mitigation Actions, and form the central focus of this MAP. They will be updated as needed to allow for organizational, regulatory, or policy changes. It is the intent of DOE to comply with all applicable federal, state, and local environmental, safety, and health laws and regulations. Eighty-six specific commitments were identified in the SEIS and associated ROD which pertain to continued operation of NPR-1 with petroleum production at the Maximum Efficient Rate (MER). The mitigation measures proposed are expected to reduce impacts as much as feasible, however, as experience is gained in actual implementation of these measures, some changes may be warranted.

  8. Guam Energy Action Plan

    SciTech Connect (OSTI)

    Conrad, M. D.; Ness, J. E.

    2013-07-01

    Describes the four near-term strategies selected by the Guam Energy Task Force during action planning workshops conducted in March 2013, and outlines the steps being taken to implement those strategies. Each strategy addresses one of the energy sectors identified in the earlier Guam strategic energy plan as being an essential component of diversifying Guam's fuel sources and reducing fossil energy consumption 20% by 2020. The four energy strategies selected are: (1) expanding public outreach on energy efficiency and conservation, (2) establishing a demand-side management revolving loan program, (3) exploring waste-to-energy options, and (4) influencing the transportation sector via anti-idling legislation, vehicle registration fees, and electric vehicles.

  9. BIOMASS ACTION PLAN FOR SCOTLAND

    E-Print Network [OSTI]

    BIOMASS ACTION PLAN FOR SCOTLAND #12; #12;© Crown copyright 2007 ISBN: 978 0 7559 6506 9 Scottish% recyclable. #12;A BIOMASS ACTION PLAN FOR SCOTLAND #12;#12;1 CONTENTS FOREWORD 3 1. EXECUTIVE SUMMARY 5 2. INTRODUCTION 9 3. WIDER CONTEXT 13 4. SCOTLAND'S ROLE IN THE UK BIOMASS STRATEGY 17 5. BIOMASS HEATING 23 6

  10. RCRA corrective action: Work plans

    SciTech Connect (OSTI)

    Not Available

    1995-02-01

    This Information Brief describes the work plans that owners/operators may have to prepare in conjunction with the performance of corrective action for compliance with RCRA guidelines. In general, the more complicated the performance of corrective action appears from the remedial investigation and other analyses, the more likely it is that the regulator will impose work plan requirements. In any case, most owner/operators will prepare work plans in conjunction with the performance of corrective action processes as a matter of best engineering management practices.

  11. UCSF Sustainability Action Plan: Executive Summary

    E-Print Network [OSTI]

    Yamamoto, Keith

    UCSF Sustainability Action Plan: Executive Summary Issue Date: April 21, 2011 #12;UCSF Sustainability Action Plan Executive Summary April 21, 2011 Page 1 Table of Contents An Introduction to the Sustainability Action Plan

  12. 2010 Climate Action Plan Environmental

    E-Print Network [OSTI]

    Capecchi, Mario R.

    2010 Climate Action Plan Energy and Environmental Stewardship Initiative: Prepared by: The Office.........................................................................................................................17 4A. Curriculum, Education, and Research environmental stewardship and reduces our own carbon footprint on campus. Through the U's Office

  13. Environmental Management Headquarters Corrective Action Plan...

    Office of Environmental Management (EM)

    I Environmental Management Headquarters Corrective Action Plan - Radiological Release Phase I The purpose of this Corrective Action Plan (CAP) is to specify U.S. Department of...

  14. Climate Change Action Plan Report

    E-Print Network [OSTI]

    Hansen, Andrew J.

    Climate Change Action Plan Report Intermountain Region 2013 National Park Service Resource Stewardship and Science Landscape Conservation and Climate Change Division #12;About this Report Each National Park Service is responding to the challenge of climate change; and (2) raise awareness among NPS

  15. Texas Solar Collaboration Action Plan

    SciTech Connect (OSTI)

    Winland, Chris

    2013-02-14

    Texas Solar Collaboration Permitting and Interconenction Process Improvement Action Plan. San Antonio-specific; Investigate feasibility of using electronic signatures; Investigate feasibility of enabling other online permitting processes (e.g., commercial); Assess need for future document management and workflow/notification IT improvements; Update Information Bulletin 153 regarding City requirements and processes for PV; Educate contractors and public on CPS Energy’s new 2013 solar program processes; Continue to discuss “downtown grid” interconnection issues and identify potential solutions; Consider renaming Distributed Energy Resources (DER); and Continue to participate in collaborative actions.

  16. SEAB Climate Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    A presentation on the Climate Action Plan presented by Dr. Jonathan Pershing, Deputy Assistant Secretary for Climate Change at the U.S. Department of Energy. Climate Action Plan...

  17. Building Emergency Action Plan Facility Name: _____________________

    E-Print Network [OSTI]

    Powers, Robert

    Building Emergency Action Plan (Template) Facility Name: _____________________ Date Prepared .....................................................................................................................................................3 2. Building Description..................................................................................................................................3 3. Building Emergency Personnel

  18. University of California, San Diego Water Action Plan

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    University of California, San Diego Water Action Plan December 20, 2013 #12;i Table of Contents of the Water Action Plan Water Action Plan Committee Regional Scope of the Water Action Plan HISTORICAL PROGRESS IN WATER REDUCTION.......................................................... 5 Campus Irrigation

  19. Utilities Working with Industry: Action Plan

    SciTech Connect (OSTI)

    2010-06-25

    This action plan outlines joint ITP and utility activities that will help reach a national goal of reducing energy by 25 percent over then next 10 years.

  20. CLIMATE ACTION PLAN NOVEMBER 10, 2009

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    CLIMATE ACTION PLAN NOVEMBER 10, 2009 SANDY DEJOHN PHYSICAL FACILITIES DEPARTMENT #12;~ i ~ TABLE the American College and University Presidents Climate Commitment, I believe strongly in working to achieve its helped shape and develop the information contained in this Climate Action Plan: (Names listed

  1. The Climate Change Action Plan: Technical supplement

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This Technical Annex documents the assumptions and parameters used in developing the supporting analysis for the Climate Change Action Plan (the Plan) issued by President Clinton on October 19, 1993. The Annex is intended to meet the needs of independent energy and environmental analysts who wish to better understand the Plan, its analytical underpinnings, and the events that need to transpire for the emissions reductions called for in the Plan to be realized. The Plan documented in this Annex reflects the outcome of a wide-ranging effort by Government agencies and interested members of the public to develop and implement actions that can reduce net greenhouse gas emissions in the year 2000 to their aggregate 1990 level. Based on agency and public input, the Climate Change Mitigation Group, chaired by the White House Office on Environmental Policy, developed the Plan`s content. Many of the actions called for in the Plan are now underway, while others are in advanced planning pending congressional action on the fiscal year 1995 budget. The analysis supporting the Plan represents the results of an interagency effort. The US Department of Energy (DOE) was responsible for the integrated analysis of energy-related options, based on the analysis of individual energy-related options by DOE, the US Environmental Protection Agency (EPA), and the US Department of Transportation (DOT). EPA led in providing analysis for actions related to methane, hydrofluorocarbons, and perfluorocarbons. The US Department of Agriculture (USDA) led the analysis of carbon sequestration actions and cooperated with EPA in the analysis of actions to reduce nitrous oxide emissions.

  2. DIVERSITY ACTION PLAN CIVIL & ENVIRONMENTAL ENGINEERING

    E-Print Network [OSTI]

    DIVERSITY ACTION PLAN CIVIL & ENVIRONMENTAL ENGINEERING GRADUATE STUDENT REPORT PREPARED FOR: Civil & Environmental Engineering College of Engineering University of Washington Seattle, Washington of Engineering strategic goals, this report provides Civil and Environmental Engineering (CEE) with detailed

  3. DIVERSITY ACTION PLAN CIVIL & ENVIRONMENTAL ENGINEERING

    E-Print Network [OSTI]

    DIVERSITY ACTION PLAN CIVIL & ENVIRONMENTAL ENGINEERING UNDERGRADUATE STUDENT REPORT PREPARED FOR: Civil & Environmental Engineering College of Engineering University of Washington Seattle, Washington in Civil and Environmental Engineering (CEE). The purpose of the report is to facilitate the department

  4. Water Action Plan 2 UNIVERSITY OF CALIFORNIA, IRVINE

    E-Print Network [OSTI]

    Rose, Michael R.

    UC Irvine Water Action Plan 2013 #12;2 UNIVERSITY OF CALIFORNIA, IRVINE #12;WATER ACTION PLAN TABLE...........................................11 WATER USE.......................................................................13 MAIN..........................................14 RECYCLED WATER...........................................................14 STORMWATER

  5. United States and Japan Sign Joint Nuclear Energy Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy Cooperation United States and Japan Sign Joint Nuclear Energy Action Plan to Promote Nuclear Energy...

  6. 2012 National Energy Assurance Planning Conference After-Action...

    Energy Savers [EERE]

    2012 National Energy Assurance Planning Conference After-Action Report (August 2012) 2012 National Energy Assurance Planning Conference After-Action Report (August 2012) On June...

  7. Implementation Proposal for the National Action Plan on Demand...

    Energy Savers [EERE]

    Implementation Proposal for the National Action Plan on Demand Response - July 2011 Implementation Proposal for the National Action Plan on Demand Response - July 2011 Report to...

  8. Implement an Institutional Change Action Plan for Sustainability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Implement an Institutional Change Action Plan for Sustainability Implement an Institutional Change Action Plan for Sustainability Graphic showing 5 gears. They progress from...

  9. Develop an Institutional Change Action Plan for Sustainability...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Develop an Institutional Change Action Plan for Sustainability Develop an Institutional Change Action Plan for Sustainability Graphic showing 5 gears. They progress from Determine...

  10. One Year into President's Climate Action Plan, Finance Playing...

    Energy Savers [EERE]

    One Year into President's Climate Action Plan, Finance Playing an Important Role One Year into President's Climate Action Plan, Finance Playing an Important Role June 25, 2014 -...

  11. Environmental Management Los Alamos Field Corrective Action Plan...

    Energy Savers [EERE]

    Los Alamos Field Corrective Action Plan - Radiological Release Phase II Environmental Management Los Alamos Field Corrective Action Plan - Radiological Release Phase II On March...

  12. National Action Plan on Demand Response, June 2010 | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Regulatory Commission (FERC) is required to develop the National Action Plan on Demand Response (National Action Plan) as outlined in section 529 of the Energy...

  13. UC SAN DIEGO DROUGHT ACTION PLAN

    E-Print Network [OSTI]

    Gleeson, Joseph G.

    UC SAN DIEGO DROUGHT ACTION PLAN 2014 #12;Water at UC San Diego Background Report and Action Strategy for Drought The UC San Diego Campus The UC San Diego La Jolla campus (including Scripps Institution of Oceanography and the UC San Diego Medical Center ­ La Jolla) totals approximately 1,152 acres

  14. Criminal Justice and Criminology Action Plan Memorandum of Understanding Status of Action Items from Prior Action Plan

    E-Print Network [OSTI]

    Frantz, Kyle J.

    Criminal Justice and Criminology Action Plan Memorandum of Understanding Status of Action Items from Prior Action Plan · Produce a PhD proposal in Criminal Justice. Completed · Redesign the graduate of senior faculty with strong records of obtaining external funding should become a top priority." · "The

  15. Operating and Maintaining Energy Smart Schools Action Plan Template - All Action Plans

    SciTech Connect (OSTI)

    none,

    2009-07-01

    EnergySmart Schools action plan templates for benchmarking, lighting, HVAC, water heating, building envelope, transformer, plug loads, kitchen equipment, swimming pool, building automation system, other.

  16. Remedial action planning for Trench 1

    SciTech Connect (OSTI)

    Primrose, A.; Sproles, W.; Burmeister, M.; Wagner, R.; Law, J.; Greengard, T.

    1998-07-01

    The accelerated action to remove the depleted uranium chips and associated soils and wastes from Trench 1 at the Rocky Flats Environmental Technology Site (RFETS) will begin in June 1998. To ensure that the remedial action is conducted safely, a rigorous and disciplined planning process was followed that incorporates the principles of Integrated Safety Management and Enhanced Work Planning. Critical to the success of the planning was early involvement of project staff (salaried and hourly) and associated technical support groups and disciplines. Feedback was and will continue to be solicited, and lessons learned incorporated to ensure the safe remediation of this site.

  17. Seventh Northwest Conservation and Electric Power Plan ACTION PLAN

    E-Print Network [OSTI]

    and a time frame for completion of the action. RESOURCE STRATEGY Energy efficiency is the first priority resource in the Northwest Power Act. The Council's analysis for the Seventh Plan affirmed that energy .......................................................................................................................................2 Resource Strategy

  18. CLIMATE ACTION PLAN 2.0 University of Pennsylvania

    E-Print Network [OSTI]

    George, Edward I.

    CLIMATE ACTION PLAN 2.0 University of Pennsylvania #12;Published October 21, 2014 #12;TABLE 28 34 38 45 CLIMATE ACTION PLAN 2.0 #12;#12;5Penn Climate Action Plan 2.0 I am pleased to present the University of Pennsylvania's Climate Action Plan 2.0, our roadmap for environmental sustainability. Drawing

  19. Climate Action Plan | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal Technologies Place:Standards Jump to:CliffsClimate Action

  20. ICDF Complex Remedial Action Work Plan

    SciTech Connect (OSTI)

    W. M. Heileson

    2006-12-01

    This Remedial Action Work Plan provides the framework for operation of the Idaho Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) Disposal Facility Complex (ICDF). This facility includes (a) an engineered landfill that meets the substantial requirements of DOE Order 435.1, Resource Conservation and Recovery Act Subtitle C, Idaho Hazardous Waste Management Act, and Toxic Substances Control Act polychlorinated biphenyl landfill requirements; (b) centralized receiving, inspections, administration, storage/staging, and treatment facilities necessary for CERCLA investigation-derived, remedial, and removal waste at the Idaho National Laboratory (INL) prior to final disposition in the disposal facility or shipment off-Site; and (c) an evaporation pond that has been designated as a corrective action management unit. The ICDF Complex, including a buffer zone, will cover approximately 40 acres, with a landfill disposal capacity of approximately 510,000 yd3. The ICDF Complex is designed and authorized to accept INL CERCLA-generated wastes, and includes the necessary subsystems and support facilities to provide a complete waste management system. This Remedial Action Work Plan presents the operational approach and requirements for the various components that are part of the ICDF Complex. Summaries of the remedial action work elements are presented herein, with supporting information and documents provided as appendixes to this work plan that contain specific detail about the operation of the ICDF Complex. This document presents the planned operational process based upon an evaluation of the remedial action requirements set forth in the Operable Unit 3-13 Final Record of Decision.

  1. Action plan for the Tiger Team assessment report

    SciTech Connect (OSTI)

    Not Available

    1990-08-30

    This document contains responses and planned actions that address the findings of the Tiger Team Assessment of Brookhaven National Laboratory, June 1990. In addition, the document contains descriptions of the management and organizational structure to be used in conducting planned actions, root causes for the problems identified in the findings, responses, planned actions, schedules and milestones for completing planned actions, and, where known, costs associated with planned actions.

  2. Chicago Climate Action Plan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:Changing World TechnologiesChartsCapitalCSEBAction Plan

  3. FIRE Project Action Plan in Response to

    E-Print Network [OSTI]

    1 FIRE Project Action Plan in Response to Next Step Options Program Advisory Committee Report (PAC1) FIRE Mission: Finding F1-1: PAC-1 felt that the FIRE mission statement, "Attain, explore, understand states the scientific direction and objectives of the FIRE program, but that the mission statement does

  4. Housekeeping category corrective action unit work plan

    SciTech Connect (OSTI)

    1996-08-01

    The purpose of this Corrective Action Unit (CAU) Work Plan is to provide a strategy to be used by the US Department of Energy Nevada Operations Office (DOE/NV), the US Department of Defense (DoD) Defense Special Weapons Agency (DSWA) (formerly the Defense Nuclear Agency), and contractor personnel for conducting corrective actions at the Nevada Test Site (NTS) and Nevada off-site locations including the Tonopah Test Range (TTR), the Project Shoal Area, and the Central Nevada Test Area. This Work Plan applies to housekeeping category CAUs already listed in the Federal Facility Agreement and Consent Order (FFACO) Appendices (FFACO, 1996) as well as newly identified Corrective Action Sites (CASs) that will follow the housekeeping process.

  5. National Biofuels Action Plan, October 2008

    SciTech Connect (OSTI)

    none,

    2008-10-01

    To help industry achieve the aggressive national goals, Federal agencies will need to continue to enhance their collaboration. The Biomass Research and Development (R&D) Board was created by Congress in the Biomass Research and Development Act of 2000. The National Biofuels Action Plan outlines areas where interagency cooperation will help to evolve bio-based fuel production technologies from promising ideas to competitive solutions.

  6. EERE Announces Next Steps on President's Climate Action Plan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EERE Announces Next Steps on President's Climate Action Plan EERE Announces Next Steps on President's Climate Action Plan July 3, 2013 - 12:00pm Addthis Photo of President Obama...

  7. Planning in Action Formalisms based on DLs: First Results

    E-Print Network [OSTI]

    Baader, Franz

    Planning in Action Formalisms based on DLs: First Results Maja Milici´c Institut f¨ur Theoretische started work on inte- grating action formalisms with description logics (DLs), by investigating planning in the context of DLs. We prove that the plan existence problem is decidable for actions described in fragments

  8. Climate Action Plans and Long-Range Transportation

    E-Print Network [OSTI]

    Bertini, Robert L.

    Climate Action Plans and Long-Range Transportation Plans in the Pacific Northwest: A Review Climate Change and Impacts Mitigation versus Adaptation Impacts of Climate Change: Nation & the Pacific Northwest Climate Change Planning Efforts Transportation Sector Response - Survey Recommendations Continued

  9. FIRE Action Plan to Respond to Next Step Options

    E-Print Network [OSTI]

    1 FIRE Action Plan to Respond to Next Step Options Program Advisory Committee Report #2 July 3, 2001 The FIRE Action s are listed among the NSO-PAC2 recommendations. 1. Response to NSO PAC-1 Report Representatives of the FIRE project presented an action plan for how to respond to issues that had been raised

  10. Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbH JumpLLC JumpMissouri EthanolMitigation Action

  11. Virginia Tech Climate Action Commitment and Sustainability Plan

    E-Print Network [OSTI]

    0 Virginia Tech Climate Action Commitment and Sustainability Plan Energy & Sustainability Committee April 22, 2009 #12; 1 ACKNOWLEDGEMENTS VIRGINIA TECH CLIMATE ACTION COMMITMENT Manager, Information Technology James Torgersen Facilities Manager, Athletic Department Tom Tucker

  12. Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum...

    Office of Environmental Management (EM)

    Addendum Radiological Release Event Phase II Nuclear Waste Partnership (NWP) Corrective Action Plan Addendum Radiological Release Event Phase II On Friday, February 14, 2014 there...

  13. Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck...

    Office of Environmental Management (EM)

    - Truck Fire and Radiological Release Phase I Nuclear Waste Partnership (NWP) Corrective Action Plan - Truck Fire and Radiological Release Phase I Submittal of the Underground Salt...

  14. Climate Action Planning: A Review of Best Practices, Key Elements...

    Open Energy Info (EERE)

    Climate Action Planning: A Review of Best Practices, Key Elements, and Common Climate Strategies for Signatories to the American College & University Presidents' Climate Commitment...

  15. National Action Plan on Demand Response | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Working Group (FUPWG) Fall 2008 meeting-discusses the National Assessment of Demand Response study, the National Action Plan for Demand Response, and demand response as...

  16. National Action Plan Vision for 2025: A Framework for Change

    SciTech Connect (OSTI)

    National Action Plan for Energy Efficiency

    2008-11-01

    Establishes a goal of achieving all cost-effective energy efficiency by 2025 and presents 10 implementation goals as a framework for advancing the National Action Plan’s key policy recommendations.

  17. Develop an Institutional Change Action Plan for Sustainability...

    Broader source: Energy.gov (indexed) [DOE]

    showing 5 gears. They progress from Determine Goal to Identify Context-Rules, Roles and Tools to Develop Action Plan to Implement Plan to Measure and Evaluate. Institutional Change...

  18. Implement an Institutional Change Action Plan for Sustainability

    Broader source: Energy.gov [DOE]

    Writing a good action plan is one thing; implementing it is another. Institutional change principles and methods can be incorporated into action plans (program design), but on-the-ground implementation activities must also be conducted in a manner that is suitable to the organizational context and the people in the roles being targeted.

  19. K basins interim remedial action health and safety plan

    SciTech Connect (OSTI)

    DAY, P.T.

    1999-09-14

    The K Basins Interim Remedial Action Health and Safety Plan addresses the requirements of the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA), as they apply to the CERCLA work that will take place at the K East and K West Basins. The provisions of this plan become effective on the date the US Environmental Protection Agency issues the Record of Decision for the K Basins Interim Remedial Action, currently planned in late August 1999.

  20. OpenEI Community - Climate Action Plan

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformationOorja Protonics JumpHome

  1. EMERGENCY ACTION University of California Riverside Main Campus Emergency Action Plan (EAP)

    E-Print Network [OSTI]

    If possible to do so without endangering yourself, shut down all operations that could produce hazards if leftEMERGENCY ACTION PLAN (EAP) University of California Riverside Main Campus Emergency Action Plan emergencies that arise within the workplace as required by the California Code of Regulations (CCR) Title 8

  2. Smart Buildings: Business Case and Action Plan

    SciTech Connect (OSTI)

    Ehrlich, Paul; Diamond, Rick

    2009-04-01

    General Services Administration (GSA) has been a pioneer in using Smart Building technologies but it has yet to achieve the full benefits of an integrated, enterprise-wide Smart Building strategy. In July 2008, GSA developed an initial briefing memorandum that identified five actions for a Smart Buildings feasibility study: (1) Identify and cluster the major building systems under consideration for a Smart Buildings initiative; (2) Identify GSA priorities for these clusters; (3) Plan for future adoption of Smart Building strategies by identifying compatible hardware; (4) Develop a framework for implementing and testing Smart Building strategies and converged networks; and (5) Document relevant GSA and industry initiatives in this arena. Based on this briefing memorandum, PBS and FAS retained consultants from Lawrence Berkeley National Laboratory, Noblis, and the Building Intelligence Group to evaluate the potential for Smart Buildings within GSA, and to develop this report. The project has included extensive interviews with GSA staff (See Appendix A), a review of existing GSA standards and documents, and an examination of relevant GSA and industry initiatives. Based on interviews with GSA staff and a review of GSA standards and documents, the project team focused on four goals for evaluating how Smart Building technology can benefit GSA: (1) Achieve Energy Efficiency Mandates--Use Smart Building technology as a tool to meet EISA 2007 and EO 13423 goals for energy efficiency. (2) Enhance Property Management--Deploy enterprise tools for improved Operations and Maintenance (O&M) performance and verification. (3) Implement Network as the Fourth Utility--Utilize a converged broadband network to support Smart Building systems and provide GSA clients with connectivity for voice, data and video. (4) Enhance Safety and Security--Harmonize Physical Access Control Systems (PACS) with Smart Building Systems.

  3. Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada

    SciTech Connect (OSTI)

    Bechtel Nevada

    1998-08-31

    This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

  4. Bishop's University Energy Efficiency Action Plan

    E-Print Network [OSTI]

    global energy consumption by 14% relative to 2002-2003. By 2010 Action 6: Cost evaluation of investments% reduction in energy consumption (GJ / m²) for higher education buildings from 2002-2003 until 2010- 2011 ways to save energy March 2008 Action 3: Snapshot of current energy consumption. Send energy

  5. 2012 National Energy Assurance Planning Conference After-Action...

    Broader source: Energy.gov (indexed) [DOE]

    National Energy Assurance Planning Conference June 28-29, 2012 Gaylord Hotel and Convention Center, National Harbor, MD After-Action Report August 2012 Co-Sponsored by: U.S....

  6. MEDITERRANEAN ACTION PLAN MEDITERRANEAN COMMISSION FOR SUSTAINABLE DEVELOPMENT

    E-Print Network [OSTI]

    Zaferatos, Nicholas C.

    urbanisation and promoting sustainable urban development..............16 2.3. Promoting `quality' agricultureMEDITERRANEAN ACTION PLAN MEDITERRANEAN COMMISSION FOR SUSTAINABLE DEVELOPMENT MEDITERRANEAN STRATEGY FOR SUSTAINABLE DEVELOPMENT Draft (work in progress) UNEP/MAP Athens, 17 February 2005 #12

  7. Develop an Institutional Change Action Plan for Sustainability

    Broader source: Energy.gov [DOE]

    After establishing a goal and assessing the rules, roles, and tools, federal agencies can develop an action plan (select the strategies that will be implemented over time to achieve and maintain energy and sustainability goals).

  8. DEPARTMENT EMERGENCY ACTION PLAN Department Name: IAB Greenhouse

    E-Print Network [OSTI]

    DEPARTMENT EMERGENCY ACTION PLAN For Department Name: IAB Greenhouse Date DEAP Adopted: January 24 Greenhouse Building address: 911 Yukon Drive Building coordinator: Mark Wright Building coordinator telephone assembly locations Inside assembly location: Butrovich lobby Outside assembly location: IAB Greenhouse

  9. SPECIES PROFILE New Hampshire Wildlife Action PlanA-328

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-328 Federal Listing: Not listed State Listing roost sites, each within rock crevices in outcrops near the base of the Surry Mountain Lake dam

  10. National Action Plan for Energy Efficiency Report

    SciTech Connect (OSTI)

    National Action Plan for Energy Efficiency

    2006-07-01

    Summarizes recommendations, key barriers, and methods for energy efficiency in utility ratemaking as well as revenue requirements, resource planning processes, rate design, and program best practices.

  11. Climate Action Planning Tool | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal Technologies Place:Standards Jump to:CliffsClimate

  12. Uranium Mill Tailings Remedial Action Project surface project management plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials.

  13. University at Buffalo Climate Action Plan

    E-Print Network [OSTI]

    Krovi, Venkat

    ......................................................................................................... 3-26 3.5 Cumulative Reduction in UB's Carbon Footprint.......................................... 3)....................................................................... 1-5 2 UB's Greenhouse Gas Footprint..............................................2-1 2.1 Technical-9 2.4 The Impact of Campus Growth on UB's GHG Footprint.............................. 2-11 3 Actions

  14. SEAB Climate Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -Rob Roberts About UsWYOMING ROCKY MOUNTAINSEAB Climate Action

  15. Vietnam-Renewable Energy Action Plan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company) JumpGTZUtilityInformationRenewable Energy Action

  16. SPECIES PROFILE New Hampshire Wildlife Action Plan A-323

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action Plan A-323 Federal Listing: Not listed State Listing Silver-haired bats do not remain in New Hampshire during the winter (see Izor 1979 for discussion to their summer habitat in New Hampshire (or, more gener- ally, to northern states; Cryan and Veilleux in press

  17. SPECIES PROFILE New Hampshire Wildlife Action PlanA-534

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-534 Federal Listing: Not listed State Listing: Special Concern Global Rank: G5 State Rank: S3 Author: Carol R. Foss, New Hampshire Audubon Element 1 was listed as Threatened in New Hampshire between 1980 and 1986, was on the American Birds Blue List through

  18. SPECIES PROFILE New Hampshire Wildlife Action PlanA-184

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-184 Federal Listing: None State Listing 1989). Natu- ral vegetation commonly occurring in these New Hampshire sandy soils include white pine't occur in Vermont or Maine. New Hampshire's peripheral population of hognose snakes is state threatened

  19. SPECIES PROFILE New Hampshire Wildlife Action Plan A-553

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action Plan A-553 Federal Listing: Not listed State Listing: Not listed Global Rank: G4 State Rank: S2 Author: Carol R. Foss, New Hampshire Audubon Element 1: Distribution and Habitat 1.1 Habitat description Breeding habitat for the rusty blackbird in New Hampshire

  20. HABITAT PROFILE New Hampshire Wildlife Action Plan B-209

    E-Print Network [OSTI]

    New Hampshire, University of

    HABITAT PROFILE New Hampshire Wildlife Action Plan B-209 Associated Species: spruce grouse: Carol R. Foss Affiliation: New Hampshire Audubon Element 1: Distribution and Habitat 1.1 Habitat on mineral soils. In northern New Hampshire, these range from well or moderately well drained upland forests

  1. HABITAT PROFILE New Hampshire Wildlife Action PlanB-10

    E-Print Network [OSTI]

    New Hampshire, University of

    HABITAT PROFILE New Hampshire Wildlife Action PlanB-10 Associated Species: Timber rattlesnake. Foss, Audubon Society of New Hampshire Element 1: Distribution and Habitat 1.1 Habitat description Appalachian oak pine forest systems are found mostly below 900 ft elevation in southern New Hampshire south

  2. SPECIES PROFILE New Hampshire Wildlife Action PlanA-218

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-218 Federal Listing: None State Listing: None Global Rank: G5 State Rank: S3 Authors: Kim A. Tuttle and M. N. Marchand, New Hampshire Fish and Game grass- lands, pine barrens, blueberry barrens, and grassy hilltops (Klemens 1993, New Hampshire Reptile

  3. SPECIES PROFILE New Hampshire Wildlife Action Plan A-221

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action Plan A-221 Federal Listing: Not listed State Listing found in similar shallow-water habitats in southernNewHampshire(JenkinsandBabbitt2003). The spotted, and a Species of Special concern in Massachusetts and New Hampshire. Because their habitat overlaps

  4. SPECIES PROFILE New Hampshire Wildlife Action PlanA-580

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-580 Federal Listing: Not listed State Listing: Not listed Global Rank: G5 State Rank: S3 Author: Jillian R. Kelly, New Hampshire Fish and Game Element 1). In the winter, spruce grouse feed entirely on short conifer needles (Nature- Serve 2005). New Hampshire natural

  5. SPECIES PROFILE New Hampshire Wildlife Action PlanA-64

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-64 Federal Listing: Not listed State Listing, and Wisconsin (NatureServe 2004). New Hampshire and Maine represent the northernmost extent of the known to New Jersey are vulnerable to development. In New Hampshire, ringed boghaunter populations are limited

  6. SPECIES PROFILE New Hampshire Wildlife Action PlanA-276

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action PlanA-276 Federal Listing: Not listed State Listing Eastern red bats inhabit New Hampshire during the summer. Individuals migrate to southern states in the fall and return to New Hampshire and other northern states in the spring (Cryan and Veilleux in press

  7. SPECIES PROFILE New Hampshire Wildlife Action Plan A-523

    E-Print Network [OSTI]

    New Hampshire, University of

    SPECIES PROFILE New Hampshire Wildlife Action Plan A-523 Federal Listing: Not listed State Listing included peer-re- viewed literature, Breeding Bird Survey Database, New Hampshire's Breeding Bird Atlas, and expert consultation. 1.8 Extent and Quality of Data The annual breeding bird survey, New Hampshire

  8. Cape Fear River Basin Action Plan for Migratory Fish

    E-Print Network [OSTI]

    Cape Fear River Basin Action Plan for Migratory Fish C ape Fear Rive r Pa rt n er ship developed with a vision of a healthy Cape Fear River for fish and people. The partnership's mission is to restore and demonstrate the value of robust, productive, and self-sustaining stocks of migratory fish in the Cape Fear

  9. CLIMATE ACTION PLAN 2.0 University of Pennsylvania

    E-Print Network [OSTI]

    George, Edward I.

    in its ecological performance. In 2007, as the first Ivy League signatory to the American College a vision of environmental sustainability at Penn. In 2009, the launch of the Climate Action Plan set concrete goals and began the formal process of integrating sustainability into coursework, community

  10. FIRE Action Plan to Respond to Next Step Options

    E-Print Network [OSTI]

    .2: Progress in implementing the action plan is limited to date. Some significant progress was made the performance of FIRE under the ITER98(y,2) confinement scaling law. Small perturbations around the design point the community (specifically #12;2 chosen from among the participants of the recent UFA Burning Plasma Science

  11. Climate Action Plan 2010 2020 -adopted by the University Court of the

    E-Print Network [OSTI]

    Schnaufer, Achim

    Climate Action Plan 2010 ­ 2020 - adopted by the University Court of the University of Edinburgh 24 time? This Climate Action Plan is a work in progress. This version of the Plan takes the text Court to be implementation from January 2011. #12;The University of Edinburgh Climate Action Plan 2010 - 2020 Page 2 of 20

  12. Commonwealth of the Northern Mariana Islands Energy Action Plan

    SciTech Connect (OSTI)

    Conrad, M. D.; Ness, J. E.

    2013-07-01

    This document describes the three near-term energy strategies selected by the CNMI Energy Task Force during action planning workshops conducted in March 2013, and outlines the steps being taken to implement those strategies. The three energy strategies selected by the task force are (1) designing a demand-side management program focusing on utility, residential and commercial sectors, (2) developing an outreach and education plan focused on energy conservation in government agencies and businesses, including workplace rules, and (3) exploring waste-to-energy options. The task force also discussed several other medium- and long-term energy strategies that could be explored at a future date.

  13. EA-1617: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,DepartmentFinal EnvironmentalFinalMitigation Action Plan

  14. EIS-0380: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5 PeerRecordRecordStatementDepartmentMitigation Action Plan

  15. EIS-0409: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5Department oftoStatementMitigation Action Plan EIS-0409:

  16. Mitigation Action Plans (MAP) and Related Documents | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuelsof EnergyApril 2014 |Department ofMayMissionMitigation Action Plans (MAP) and

  17. U.S and Russia Develop Action Plan to Enhance Global and Bilateral...

    Office of Environmental Management (EM)

    S and Russia Develop Action Plan to Enhance Global and Bilateral Nuclear Energy Cooperation U.S and Russia Develop Action Plan to Enhance Global and Bilateral Nuclear Energy...

  18. Workshop on the preparation of climate change action plans. Workshop summary

    SciTech Connect (OSTI)

    1999-05-24

    Over 130 participants from more than 27 countries shared experiences of developing and transition countries in preparation and development of their climate change national action plans. International experts guided countries in preparation of their climate change national action plans.

  19. Corrective Action Plan for Corrective Action Unit 562: Waste Systems, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-04-30

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 562, Waste Systems, in accordance with the Federal Facility Agreement and Consent Order (1996; as amended March 2010). CAU 562 consists of 13 Corrective Action Sites (CASs) located in Areas 2, 23, and 25 of the Nevada National Security Site. Site characterization activities were performed in 2009 and 2010, and the results are presented in Appendix A of the Corrective Action Decision Document for CAU 562. The scope of work required to implement the recommended closure alternatives is summarized. (1) CAS 02-26-11, Lead Shot, will be clean closed by removing shot. (2) CAS 02-44-02, Paint Spills and French Drain, will be clean closed by removing paint and contaminated soil. As a best management practice (BMP), asbestos tile will be removed. (3) CAS 02-59-01, Septic System, will be clean closed by removing septic tank contents. As a BMP, the septic tank will be removed. (4) CAS 02-60-01, Concrete Drain, contains no contaminants of concern (COCs) above action levels. No further action is required; however, as a BMP, the concrete drain will be removed. (5) CAS 02-60-02, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. As a BMP, the drain grates and drain pipe will be removed. (6) CAS 02-60-03, Steam Cleaning Drain, will be clean closed by removing contaminated soil. As a BMP, the steam cleaning sump grate and outfall pipe will be removed. (7) CAS 02-60-04, French Drain, was clean closed. Corrective actions were completed during corrective action investigation activities. (8) CAS 02-60-05, French Drain, will be clean closed by removing contaminated soil. (9) CAS 02-60-06, French Drain, contains no COCs above action levels. No further action is required. (10) CAS 02-60-07, French Drain, requires no further action. The french drain identified in historical documentation was not located during corrective action investigation activities. (11) CAS 23-60-01, Mud Trap Drain and Outfall, will be clean closed by removing sediment from the mud trap. As a BMP, the mud trap and outfall pipe will be removed. (12) CAS 23-99-06, Grease Trap, will be clean closed by removing sediment from the grease trap and backfilling the grease trap with grout. (13) CAS 25-60-04, Building 3123 Outfalls, will be clean closed by removing contaminated soil and the sludge-containing outfall pipe.

  20. Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada

    SciTech Connect (OSTI)

    K. Campbell

    2000-04-01

    This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

  1. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    SciTech Connect (OSTI)

    Not Available

    1994-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  2. Quality Assurance Plan, N springs expedited response action

    SciTech Connect (OSTI)

    Jackson, G.J.

    1994-07-01

    This document is the Quality Assurance Plan (QAP) to be followed during the definitive design, construction, and operational phases for activities associated with the N Springs Expedited Response Action (ERA) for the 100-NR-2 Operable Unit (OU). Westinghouse Hanford Company (WHC) will comply with the US Department of Energy (DOE) Order 5700.6C, Quality Assurance (DOE 1989), and the US Environmental Protection Agency (EPA), EPA/530-SW-86-031, Technical Guidance Document: Construction Quality Assurance for Hazardous Waste Land Disposal Facilities (EPA 1986).

  3. Indonesia National Action Plan Addressing Climate Change | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder at 8, 13 (Vt. WaterInformation National Action Plan

  4. EIS-0380: Mitigation Action Plan Annual Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to5USC787 Rhode2 Mitigation Action Plan Annual Report

  5. EIS-0380: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to5USC787 Rhode2 Mitigation Action Plan Annual

  6. Truck fire Corrective Action Plan submitted to Carlsbad Field Office

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With WIPP UPDATE: April 15, 2014 Truck fire Corrective Action Plan

  7. Hanford Action Tracking System release planning support documents

    SciTech Connect (OSTI)

    Keasling, R.

    1995-05-05

    This document contains impacts, plans, resource requirements, schedules, and documents to ensure the conduct of activities for the operation of the Hanford Action Tracking System (HATS). Each discrete topic in this document applies to a specific area of management and team interaction. These formally establish the planning, resources, documentation, and training responsibilities for the system management team. This document is composed of four appendices. These include the following: (1) organization impacts and implementation plan--expected organizational impacts resulting from setting up the new support system for the HATS, the plan to address each of these impacts and other system implementation requirements; (2) training and information requirements--training and information needed to use and operate the HATS; (3) operation/maintenance resources--resources required to maintain and operate the HATS once the system becomes operations; (4) training package--HATS implementation training needs, includes a training procedure, the environment for training users (tools and materials required for the facility, trainer, and trainee); schedule, and handout materials and forms to be completed at the time of training.

  8. North Slope (Wahluke Slope) expedited response action cleanup plan

    SciTech Connect (OSTI)

    Not Available

    1994-02-01

    The purpose of this action is to mitigate any threat to public health and the environment from hazards on the North Slope and meet the expedited response action (ERA) objective of cleanup to a degree requiring no further action. The ERA may be the final remediation of the 100-I-3 Operable Unit. A No Action record of decision (ROD) may be issued after remediation completion. The US Department of Energy (DOE) currently owns or administers approximately 140 mi{sup 2} (about 90,000 acres) of land north and east of the Columbia River (referred to as the North Slope) that is part of the Hanford Site. The North Slope, also commonly known as the Wahluke Slope, was not used for plutonium production or support facilities; it was used for military air defense of the Hanford Site and vicinity. The North Slope contained seven antiaircraft gun emplacements and three Nike-Ajax missile positions. These military positions were vacated in 1960--1961 as the defense requirements at Hanford changed. They were demolished in 1974. Prior to government control in 1943, the North Slope was homesteaded. Since the initiation of this ERA in the summer of 1992, DOE signed the modified Hanford Federal Agreement and Consent Order (Tri-Party Agreement) with the Washington Department of Ecology (Ecology) and the US Environmental Protection Agency (EPA), in which a milestone was set to complete remediation activities and a draft closeout report by October 1994. Remediation activities will make the North Slope area available for future non-DOE uses. Thirty-nine sites have undergone limited characterization to determine if significant environmental hazards exist. This plan documents the results of that characterization and evaluates the potential remediation alternatives.

  9. Remedial Action Work Plan Amchitka Island Mud Pit Closures

    SciTech Connect (OSTI)

    DOE/NV

    2001-04-05

    This remedial action work plan presents the project organization and construction procedures developed for the performance of the remedial actions at U.S. Department of Energy (DOE's) sites on Amchitka Island, Alaska. During the late1960s and early 1970s, the U.S. Department of Defense and the U.S. Atomic Energy Commission (the predecessor agency to DOE) used Amchitka Island as a site for underground nuclear tests. A total of nine sites on the Island were considered for nuclear testing; however, tests were only conducted at three sites (i.e., Long Shot in 1965, Milrow in 1969, and Cannikin in 1971). In addition to these three sites, large diameter emplacement holes were drilled in two other locations (Sites D and F) and an exploratory hole was in a third location (Site E). It was estimated that approximately 195 acres were disturbed by drilling or preparation for drilling in conjunction with these activities. The disturbed areas include access roads, spoil-disposal areas, mud pits which have impacted the environment, and an underground storage tank at the hot mix plant which was used to support asphalt-paving operations on the island. The remedial action objective for Amchitka Island is to eliminate human and ecological exposure to contaminants by capping drilling mud pits, removing the tank contents, and closing the tank in place. The remedial actions will meet State of Alaska regulations, U.S. Fish and Wildlife Service refuge management goals, address stakeholder concerns, and address the cultural beliefs and practices of the native people. The U.S. Department of Energy, Nevada Operations Office will conduct work on Amchitka Island under the authority of the Comprehensive Emergency Response, Compensation, and Liability Act. Field activities are scheduled to take place May through September 2001. The results of these activities will be presented in a subsequent Closure Report.

  10. Sixth Northwest Conservation and Electric Power Plan Sixth Power Plan Action Plan

    E-Print Network [OSTI]

    activities. CONSERVATION Energy efficiency is the first priority resource in the Northwest Power Act. The Council's analysis for the Sixth Power Plan strongly affirmed that energy efficiency improvements provide planning requirements, state and utility programs, and the Northwest Energy Efficiency Taskforce

  11. NW Energy Coalition, 7th Plan Energy Efficiency Action Item Recommendations July 8, 2015

    E-Print Network [OSTI]

    NW Energy Coalition, 7th Plan Energy Efficiency Action Item Recommendations July 8, 2015 1 NW Energy Coalition Recommendations for Energy Efficiency Action Items in the Northwest Power and Conservation Council's 7th Power Plan July 8, 2015 The NW Energy Coalition (Coalition

  12. An Architecture of a Multi-Agent System for SCADA -dealing with uncertainty, plans and actions

    E-Print Network [OSTI]

    Liu, Weiru

    An Architecture of a Multi-Agent System for SCADA - dealing with uncertainty, plans and actions.loughlin@ecit.qub.ac.uk Keywords: Autonomous Agents, Multi-agent Systems, Sensors, SCADA, Uncertainty, Plans, Actions, Fusion in traditional SCADA systems deployed in critical environments such as electrical power generation, transmission

  13. Promoting policy development and an EU Action Plan for the Woody Energy Crops Sector

    E-Print Network [OSTI]

    Promoting policy development and an EU Action Plan for the Woody Energy Crops Sector Kevin Lindegaard, Crops for Energy Ltd #12;What are short rotation plantations (SRPs)? · Woody crops grown at close, Germany, Poland, Belgium Industry Public bodies Research Institutions Joint Action Plan Common Strategies

  14. Process safety management and interim or remedial action plans

    SciTech Connect (OSTI)

    Boss, M.J.; Henney, D.A.; Heitzman, V.K. [HWS Consulting Group, Inc., Omaha, NE (United States); Day, D.W. [Army Corps of Engineers, Omaha, NE (United States)

    1996-12-31

    Remedial Actions, including Interim Remedial Activities, often require the use of treatment facilities or stabilization techniques using on-site chemical processes. As such, the 29 CFR 1910.119 Process Safety Management (PSM) of Highly Hazardous Chemicals (PSM Standard) and the USEPA regulations for Risk Management Planning require that these chemicals and their attendant potential hazards be identified. A Hazard and Operation (HAZOP) study, Failure Mode and Effect Analysis (FMEA), Fault Tree Analysis, or equivalent graphic presentation of processes must be completed. These studies form a segment of the Process Hazard Analysis (PHA). HAZOP addresses each system and each element of a system that could deviate from normal operations and thus cause a hazard. A full assessment of each process is produced by looking at the hazards, consequences, causes and personnel protection needed. Many variables must be considered when choosing the appropriate PHA technique including the size of the plant, the number of processes, the types of processes, and the types of chemicals used. A mixture of these techniques may be required to adequately transmit information about the process being evaluated.

  15. Site Maintenance Plan: Part 2, Site Maintenance Action Plan for FY 1994

    SciTech Connect (OSTI)

    Fisk, E.L.

    1994-06-01

    This Fiscal Year (FY) 1994 Site Maintenance Action Plan (SMAP) is Part II of the Site Maintenance Plan, and has been written by Westinghouse Hanford Company (WHC) to outline the requirements stated in DOE Order 4330.4B, Maintenance Management Program, Chapter 1, Paragraph 3.3.1. The SMAP provides an annual status of maintenance initiatives completed and planned, a summary of performance indicators, a summary of maintenance backlog, a listing of real property and capital equipment maintenance cost estimates that were used to create the FY 1996 infrastructure and maintenance budget input, and a listing of proposed line item and general plant projects. Additionally, assumptions for various Site programs are listed to bring the Site Maintenance Plan into focus with overall Site activities. The primary mission at Hanford is to clean up the Site. In this cleanup process WHC will provide scientific and technological expertise to meet global needs, and partnership with stakeholders in the region to develop regional economic diversification. Other missions at the Hanford Site include energy research and development, and waste management and disposal activities. Their primary mission has a 30-year projected life span and will direct the shutting down and cleanup of defense production facilities and the Fast Flux Test Facility. This long-term mission requires continuous maintenance and in many instances, replacement of existing basic infrastructure, support facilities, and utilities. Without adequate maintenance and capital funding these infrastructure, support facilities, and utilities will continue to deteriorate causing an increase in backlogged work.

  16. Brazil-Mitigation Action Plans and Scenarios (MAPS) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC JumpBiossence JumpJersey Logo:BraxenergyInformation Mitigation

  17. US State Climate Action Plans | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin Film SolarTown(LECBP)BioGen LLC Jump to:NealState Climate

  18. Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource History View New Pages RecentMithun Jump

  19. Corrective Action Investigation Plan for Corrective Action Unit 573: Alpha Contaminated Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-05-01

    Corrective Action Unit (CAU) 573 is located in Area 5 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 573 is a grouping of sites where there has been a suspected release of contamination associated with non-nuclear experiments and nuclear testing. This document describes the planned investigation of CAU 573, which comprises the following corrective action sites (CASs): • 05-23-02, GMX Alpha Contaminated Area • 05-45-01, Atmospheric Test Site - Hamilton These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives.

  20. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada: Revision 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-04-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach for collecting the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Area 12 on the NTS, CAU 552 consists of two Corrective Action Sites (CASs): 12-06-04, Muckpile; 12-23-05, Ponds. Corrective Action Site 12-06-04 in Area 12 consists of the G-Tunnel muckpile, which is the result of tunneling activities. Corrective Action Site 12-23-05 consists of three dry ponds adjacent to the muckpile. The toe of the muckpile extends into one of the ponds creating an overlap of two CASs. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technic ally viable corrective actions. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  1. Corrective Action Investigation Plan for Corrective Action Unit 562: Waste Systems Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2009-04-01

    Corrective Action Unit 562 is located in Areas 2, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 562 is comprised of the 13 corrective action sites (CASs) listed below: • 02-26-11, Lead Shot • 02-44-02, Paint Spills and French Drain • 02-59-01, Septic System • 02-60-01, Concrete Drain • 02-60-02, French Drain • 02-60-03, Steam Cleaning Drain • 02-60-04, French Drain • 02-60-05, French Drain • 02-60-06, French Drain • 02-60-07, French Drain • 23-60-01, Mud Trap Drain and Outfall • 23-99-06, Grease Trap • 25-60-04, Building 3123 Outfalls These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on December 11, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 562. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 562 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Perform field screening. • Collect and submit environmental samples for laboratory analysis to determine the nature and extent of any contamination released by each CAS. • Collect samples of source material to determine the potential for a release. • Collect samples of potential remediation wastes. • Collect quality control samples. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended February 2008). Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval of the plan.

  2. Alternatives/action plan report for outfall 17

    SciTech Connect (OSTI)

    1994-11-01

    This Document contains information pertaining to alternatives/action associated with controlling ammonia entering through outfall 17. This document identifies the location of contaminate source, the ammonia concentration levels entering East Fork Poplar Creek, and the action taken to reduce/eliminate the toxicity problem.

  3. Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-05-08

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  4. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 447: Project Shoal Area, Subsurface, Nevada, Rev. No.: 3 with Errata Sheet

    SciTech Connect (OSTI)

    Tim Echelard

    2006-03-01

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for Corrective Action Unit (CAU) 447, Project Shoal Area (PSA)-Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Corrective Action Unit 447 is located in the Sand Springs Mountains in Churchill County, Nevada, approximately 48 kilometers (30 miles) southeast of Fallon, Nevada. The CADD/CAP combines the decision document (CADD) with the Corrective Action Plan (CAP) and provides or references the specific information necessary to recommend corrective actions for CAU 447, as provided in the FFACO. Corrective Action Unit 447 consists of two corrective action sites (CASs): CAS 57-49-01, Emplacement Shaft, and CAS 57-57-001, Cavity. The emplacement shaft (CAS-57-49-01) was backfilled and plugged in 1996 and will not be evaluated further. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at PSA. To achieve this, the following tasks were required: (1) Develop corrective action objectives. (2) Identify corrective action alternative screening criteria. (3) Develop corrective action alternatives. (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria. (5) Recommend a preferred corrective action alternative for the subsurface at PSA. The original Corrective Action Investigation Plan (CAIP) for the PSA was approved in September 1996 and described a plan to drill and test four characterization wells, followed by flow and transport modeling (DOE/NV, 1996). The resultant drilling is described in a data report (DOE/NV, 1998e) and the data analysis and modeling in an interim modeling report (Pohll et al., 1998). After considering the results of the modeling effort, the U.S. Department of Energy (DOE) determined that the degree of uncertainty in transport predictions for PSA remained unacceptably large. As a result, a second CAIP was developed by DOE and approved by the Nevada Division of Environmental Protection (NDEP) in December 1998 (DOE/NV, 1998a). This plan prescribed a rigorous analysis of uncertainty in the Shoal model and quantification of methods of reducing uncertainty through data collection. This analysis is termed a Data Decision Analysis (Pohll et al., 1999a) and formed the basis for a second major characterization effort at PSA (Pohll et al., 1999b). The details for this second field effort are presented in an Addendum to the CAIP, which was approved by NDEP in April 1999 (DOE/NV, 1999a). Four additional characterization wells were drilled at PSA during summer and fall of 1999; details of the drilling and well installation are in IT Corporation (2000), with testing reported in Mihevc et al. (2000). A key component of the second field program was a tracer test between two of the new wells (Carroll et al., 2000; Reimus et al., 2003). Based on the potential exposure pathways, two corrective action objectives were identified for CAU 447: Prevent or mitigate exposure to groundwater contaminants of concern at concentrations exceeding regulatory maximum contaminant levels or risk-based levels; and Reduce the risk to human health and the environment to the extent practicable. Based on the review of existing data, the results of the modeling, future use, and current operations at PSA, the following alternatives have been developed for consideration at CAU 447: Alternative 1--No Further Action; Alternative 2--Proof-of-Concept and Monitoring with Institutional Controls; and Alternative 3--Contaminant Control. The corrective action alternatives were evaluated based on the approach outlined in the ''Focused Evaluation of Selected Remedial Alternatives for the Underground Test Area'' (DOE/NV, 1998b). Each alternative was assessed against nine evaluation criteria. These criteria include overall protection of human health and the environment;

  5. University of North Carolina Wilmington Transforming Ideas into Action: A Strategic Plan

    E-Print Network [OSTI]

    Olszewski Jr., Edward A.

    University of North Carolina Wilmington Transforming Ideas into Action: A Strategic Plan Mission by the UNC Board of Governors on November 13, 2009 Strategic Vision The faculty, staff, administration

  6. 2008 CHP Baseline Assessment and Action Plan for the Hawaii Market

    Broader source: Energy.gov [DOE]

    Report providing an updated baseline assessment and action plan for combined heat and power (CHP) in Hawaii and to identify the hurdles that prevent the expanded use of CHP systems.

  7. UCSF Emergency Action Plan Template Campus Emergency Preparedness Program www.police.ucsf.edu

    E-Print Network [OSTI]

    Derisi, Joseph

    specific to their individual locations. Your Emergency Action Plan should address preparedness measures for a variety of emergency situations, e.g., medical emergencies, citywide disasters; power outages, hazardous

  8. 2008 CHP Baseline Assessment and Action Plan for the California Market

    Office of Energy Efficiency and Renewable Energy (EERE)

    Report providing an updated baseline assessment and action plan for combined heat and power (CHP) in California and to identify the hurdles that prevent the expanded use of CHP system

  9. Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy"

    E-Print Network [OSTI]

    , according to the Annual Energy Outlook [EIA Scale Matters: An Action Plan for Realizing Sector-Wide "Zero-Energy" Performance Goals in Commercial Buildings S. Selkowitz, J. Granderson, P. Haves, P. Mathew Environmental Energy Technologies

  10. Root Cause Analysis (RCA) & Corrective Action Plan (CAP) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    development, and use of management reserve and contingency. Identification of Best Risk Management Practices and Analysis of DOE Risk Management Plans, Summary Report, July...

  11. USDA & DOE Release National Biofuels Action Plan | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    plan detailing the collaborative efforts of Federal agencies to accelerate the development of a sustainable biofuels industry. "Federal leadership can provide the vision...

  12. Stage 4: Prioritizing and Planning for Actions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing CapacityVectren) Jump to:SpillDavid,Energy InformationStage 1:Stage

  13. Lessons Learned: Creating the Chicago Climate Action Plan | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: EnergyLebanonTexas: Energy Resources JumpInformation Lessons

  14. Chile-Mitigation Action Plans and Scenarios (MAPS) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLCLtd Jump to:Changing WorldCalifornia: Energy ResourcesIAEA

  15. Argentina-Mitigation Action Plans and Scenarios (MAPS) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to: navigation,Summaries |Arete Corporation

  16. Bangladesh Climate Change Strategy and Action Plan | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustriaBiofuelsOpen Energy Information

  17. City of Aspen Climate Action Plan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIRChurch Point, Louisiana:Alpha, MinnesotaUtilities) JumpCity

  18. Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. L. Gustafason

    2001-02-01

    This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential.

  19. Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    DOE/NV Operations Office

    1999-05-01

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and criteria for conducting site investigation activities at CAU 232, Area 25 Sewage Lagoons. Corrective Action Unit 232 consists of CAS 25-03-01, Sewage Lagoon, located in Area 25 of the Nevada Test Site (NTS). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Area 25 Sewage Lagoons (Figure 1-2) (IT, 1999b) are located approximately 0.3 mi south of the Test Cell 'C' (TCC) Facility and were used for the discharge of sanitary effluent from the TCC facility. For purposes of this discussion, this site will be referred to as either CAU 232 or the sewage lagoons.

  20. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment

    SciTech Connect (OSTI)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted to Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 2, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root cause of the findings identified during the assessment. This report is concerned with reactors safety and health findings, responses, and planned actions. Specific areas include: organization and administration; quality verification; operations; maintenance; training and certification; auxiliary systems; emergency preparedness; technical support; nuclear criticality safety; security/safety interface; experimental activities; site/facility safety review; radiological protection; personnel protection; fire protection; management findings, responses, and planned actions; self-assessment findings, responses, and planned actions; and summary of planned actions, schedules, and costs.

  1. Emergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    -492-6025. For Non-Emergency Fire and Natural Gas Questions call the CU Fire Marshall @ 303-492-4042. AdditionalEmergency Action Plan For incidents involving hazardous materials, fires, explosions, or natural gas leaks, the following actions should be taken: 1) Life Safety First 2) Evacuate Immediate Area 3

  2. National climate change action plans: Interim report for developing and transition countries

    SciTech Connect (OSTI)

    Benioff, R.; Ness, E.; Hirst, J.

    1997-10-01

    Under its Support for National Action Plans (SNAP) initiative, the U.S. Country Studies Program is providing financial and technical assistance to 18 countries for the development of climate change action plans. Although most of the countries have not yet completed their plans, the important lessons learned thus far are valuable and should be shared with other countries and international institutions that have an interest in the process of action plan development. This interim report describes the experience of 11 countries that are the furthest along in their planning activity and who have offered to share their results to date with the larger community of interested nations. These action plans delineate specific mitigation and adaptation measures that the countries will implement and integrate into their ongoing development programs. This report focuses on the measures the countries have selected and the methods they used to prepare their action plans. This executive summary presents key lessons and common themes using a structure similar to that used in the individual country chapters.

  3. Corrective action investigation plan for Corrective Action Unit 340, Pesticide Release Sites, Nevada Test Site, Nye County, Nevada

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    This Correction Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. As required by the FFACO (1996), this document provides or references all of the specific information for planning investigation activities associated with three Corrective Action Sites (CASs) located at the Nevada Test Site (NTS). These CASs are collectively known as Corrective Action Unit (CAU) 340, Pesticide Release Sites. According to the FFACO, CASs are sites that may require corrective action(s) and may include solid waste management units or individual disposal or release sites. These sites are CAS 23-21-01, Area 23 Quonset Hut 800 (Q800) Pesticide Release Ditch; CAS 23-18-03, Area 23 Skid Huts Pesticide Storage; and CAS 15-18-02, Area 15 Quonset Hut 15-11 Pesticide Storage (Q15-11). The purpose of this CAIP for CAU 340 is to direct and guide the investigation for the evaluation of the nature and extent of pesticides, herbicides, and other contaminants of potential concern (COPCs) that were stored, mixed, and/or disposed of at each of the CASs.

  4. Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2005-12-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action alternatives.

  5. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2004-05-03

    The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

  6. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment

    SciTech Connect (OSTI)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted at Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 22, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root causes of the findings identified during the assessment. The action plan has benefited from a complete review by various offices at DOE Headquarters as well as review by the Tiger Team that conducted the assessment to ensure that the described actions are responsive to the observed problems.

  7. Removal Action Plan for the Accelerated Retrieval Project for a Described Area within Pit 4

    SciTech Connect (OSTI)

    A. M. Tyson

    2006-08-01

    This Removal Action Plan documents the plan for implementation of the Comprehensive Environmental Response, Compenstion, and Liability Act non-time-critical removal action to be performed by the Accelerated Retrieval Project. The focus of the action is the limited excavation and retrieval of selected waste streams from a designated portion of the Radioactive Waste Management Complex Subsurface Disposal Area that are contaminated with volatile organic compounds, isotopes of uranium, or transuranic radionuclides. The selected retrieval area is approximately 0.2 ha (1/2 acre) and is located in the eastern portion of Pit 4. The proposed project is referred to as the Accelerated Retrieval Project. This Removal Action Plan details the major work elements, operations approach, and schedule, and summarizes the environmental, safety and health, and waste management considerations associated with the project.

  8. EA-1628: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,DepartmentFinal EnvironmentalFinalMitigation Action8:

  9. EIS-0472: Mitigation Action Plan | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLC to5USC787 Rhode2Conduct PublicDOE'sMitigation Action

  10. EA-1595: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based| Department8,Department of2E:\BILLS\H6.PP91:Finding6:Mitigation Action

  11. EA-1870: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of Energy 8: DOE Notice ofFinal70: DraftMitigation Action

  12. EA-1913: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of Energy 8: DOEFinding of NoDraftFinalMitigation Action

  13. EIS-0026: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5 Peer ReviewUse of HeAgenda EEREEEREEISMitigation Action

  14. EIS-0323: Mitigation Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|Department of5 PeerRecord of3:2:-SA-01:Department ofof19:Mitigation Action

  15. Answer Set Planning under Action Costs ? Thomas Eiter 1 , Wolfgang Faber 1 , Nicola Leone 2 , Gerald Pfeifer 1 , and Axel Polleres 1

    E-Print Network [OSTI]

    Faber, Wolfgang

    Answer Set Planning under Action Costs ? Thomas Eiter 1 , Wolfgang Faber 1 , Nicola Leone 2 the declarative planning language K by action costs and optimal plans that minimize overall action costs (cheapest plans). As shown, this novel language allows for expressing some nontrivial plan­ ning tasks

  16. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    DOE /NV

    1999-01-28

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a).

  17. Hanford Waste Vitrification Systems Risk Assessment action plan

    SciTech Connect (OSTI)

    Miller, W.C.

    1990-11-01

    Recent events in the Hanford waste storage tanks and delays in the startup of US Department of Energy vitrification plans suggest that the schedule for waste vitrification activities at the Hanford Site should be reexamined. As a result, a Hanford Waste Vitrification Systems Risk Assessment will be performed to identify significant risks associated with the vitrification of Hanford high-level and transuranic wastes. This document defines the purpose, scope, plan of execution, responsibilities, reporting requirements, and preliminary schedule and cost estimate to complete this assessment. The study will identify and evaluate uncertainties, quantify potential consequences from these uncertainties, and identify the risks to successful completion of the Hanford vitrification mission. Waste characterization, retrieval, pretreatment, and vitrification will be addressed. Uncertainties associated with the vitrification of double-shell and single-shell tank wastes and cesium and strontium capsules, as well as a limited assessment of the grouting of low-level wastes, will be defined. Technical, regulatory (safety and environmental), and programmatic (cost and schedule) uncertainties will be defined. Recommendations for mitigating strategies and assessments of technical alternatives will be made to reduce substantial risks. 2 refs., 1 fig., 1 tab.

  18. Corrective Action Plan for Corrective Action Unit 271: Areas 25, 26, and 27 Septic Systems, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    R. B. Jackson

    2003-05-01

    The Areas 25, 26 and 27 Septic Systems are in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 271. This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for CAU 271. CAU 271 is located on the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada, and consists of the following 15 Corrective Action Sites (CAS): CAS 25-04-1, Septic System; CAS 25-04-03, Septic System; CAS25-04-04, Septic System; CAS 25-04-08, Septic System; CAS 25-04-09, Septic System; CAS 25-04-10, Septic System; CAS 25-04-11, Septic System; CAS 26-03-01, Contaminated Water Reservoir; CAS 26-04-1, Septic System; CAS 26-04-02, Septic System; CAS 26-05-01, Radioactive Leachfield; CAS-26-05-03, Septic System; CAS 26-05-04, Septic System; CAS 26-05-05, Septic System; and CAS 27-05-02, Leachfield.

  19. Corrective Action Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    D. S. Tobiason

    2000-06-01

    The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 22 Weather Station Fuel Storage. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during February 1999. Soil samples were collected using a direct-push method. Soil samples were collected at 0.6-m (2-ft) intervals from the surface to 1.8 m (6 ft) below ground surface. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE, 1999b). Soil sample results indicated that two locations in the bermed area contain total petroleum hydrocarbons (TPH) as diesel at concentrations of 124 milligrams per kilogram (mg/kg) and 377 mg/kg. This exceeds the Nevada Division of Environmental Protection (NDEP) regulatory action level for TPH of 100 mg/kg (Nevada Administrative Code, 1996). The TPH-impacted soil will be removed and disposed as part of the corrective action.

  20. Phase II -- Photovoltaics for Utility Scale Applications (PVUSA): Safety and health action plan

    SciTech Connect (OSTI)

    Berg, K.

    1994-09-01

    To establish guidelines for the implementation and administration of an injury and illness prevention program for PVUSA and to assign specific responsibilities for the execution of the program. To provide a basic Safety and Health Action Plan (hereinafter referred to as Plan) that assists management, supervision, and project personnel in the recognition, evaluation, and control of hazardous activities and/or conditions within their respective areas of responsibility.

  1. Renewable energy plan of action for American Samoa

    SciTech Connect (OSTI)

    Shupe, J.W. . Pacific Site Office); Stevens, J.W. )

    1990-11-01

    American Samoa has no indigenous fossil fuels and is almost totally dependent for energy on seaborne petroleum. However, the seven Pacific Islands located at 14 degrees south latitude that constitute American Samoa have a wide variety of renewable resources with the potential for substituting for imported oil. Included as possible renewable energy conversion technologies are solar thermal, photovoltaics, wind, geothermal, ocean thermal, and waste-to-energy recovery. This report evaluates the potential of each of these renewable energy alternatives and establishes recommended priorities for their development in American Samoa. Rough cost estimates are also included. Although renewable energy planning is highly site specific, information in this report should find some general application to other tropical insular areas.

  2. Coal without carbon: an investment plan for federal action

    SciTech Connect (OSTI)

    Pettus, A.; Tatsutani, M. (eds.)

    2009-09-15

    This study examines several technologies for CCS that are not currently receiving adequate development support but that could - in the right policy environment - provide the kind of significant cost reductions (and significant improvements in efficiency) that could greatly accelerate broad, economically attractive CCS deployment. Clean Air Task Force selected these technology areas (though not the technologies themselves) and solicited reports from experts in each field to explore how these technologies might fit into a broader CCS deployment strategy. Each expert was asked to develop a research, development, and demonstration (RD&D) 'road map' that could efficiently move each technology from the laboratory into the commercial mainstream. Because the chapter authors are either technical experts or commercial players and are not, for the most part, energy policy experts, subsequent work will translate their RD&D recommendations into actionable policy proposals. The heart of this report consists of four chapters on advanced coal and CCS technologies: underground coal gasification (UCG), written by Julio Friedmann at Lawrence Livermore National Laboratory; Next generation coal gasification (surface-based gasification) led by Eric Redman at Summit Power Group; Advanced technologies for post-combustion capture (PCC) of CO{sub 2}, led by Howard Herzog at Massachusetts Institute of Technology; and RD&D to speed commercialization of geological CO{sub 2} sequestration (GCS), led by Julio Friedmann. 12 refs., 5 figs., 2 tabs.

  3. Energy Security, Innovation & Sustainability Initiative Prioritize.A 100-Day Energy Action Plan

    E-Print Network [OSTI]

    Energy Security, Innovation & Sustainability Initiative Prioritize.A 100-Day Energy Action Plan recognizes that energy will be a defining challenge for the new Administration--for economic competitiveness, national security and long-term environmental sus- tainability. Energy price and supply volatility impact

  4. Action plan for response to abnormal conditions in Hanford Site radioactive waste tanks containing ferrocyanide

    SciTech Connect (OSTI)

    Cash, R.J.; Thurman, J.M.

    1991-12-01

    This document defines the responses that shall be implemented when anomalies in temperature measurements or flammable gas contents are observed in single-shell waste tanks containing ferrocyanide. This plan identifies (1) the criteria and specification limits required for ensuring that the tanks are maintained in a safe condition, (2) the responsible organizations, and (3) the response actions to prevent or mitigate temperature excursions.

  5. Response to the UC Davis Academic Senate's Executive Council Request for an Action Plan

    E-Print Network [OSTI]

    California at Davis, University of

    Response to the UC Davis Academic Senate's Executive Council Request for an Action Plan January 18 ........................................12 II.10 Reynoso C-3: UCOP should review Police Officers Bill of Rights....................................................................................................13 Section III: Kroll Report Recommendations III.1 Kroll 8.1: UC Davis Leadership Team

  6. Response to the UC Davis Academic Senate's Executive Council Request for an Action Plan

    E-Print Network [OSTI]

    California at Davis, University of

    Response to the UC Davis Academic Senate's Executive Council Request for an Action Plan May 1, 2013: UC Davis Police department should strive to be a model of policing...........14 II.8 Reynoso C-1 ........................................15 II.10 Reynoso C-3: UCOP should review Police Officers Bill of Rights

  7. Updated Response to the UC Davis Academic Senate's Executive Council Request for an Action Plan

    E-Print Network [OSTI]

    California at Davis, University of

    Updated Response to the UC Davis Academic Senate's Executive Council Request for an Action Plan ........................................22 II.10 Reynoso C-3: UCOP should review Police Officers Bill of Rights...................................................................................................................................22 Section III: Kroll Report Recommendations III.1 Kroll 8.1: UC Davis Leadership Team

  8. Response to the UC Davis Academic Senate's Executive Council Request for an Action Plan

    E-Print Network [OSTI]

    California at Davis, University of

    Response to the UC Davis Academic Senate's Executive Council Request for an Action Plan June 1 ........................................15 II.10 Reynoso C-3: UCOP should review Police Officers Bill of Rights...................................................................................................................................16 Section III: Kroll Report Recommendations III.1 Kroll 8.1: UC Davis Leadership Team

  9. National Action Plan for Energy Efficiency Vision for 2025: A Framework for Change

    Broader source: Energy.gov [DOE]

    This presentation, given through the DOE's Technical Assitance Program (TAP), addresses the National Action Plan for Energy Efficiency. This webinar is part of a 7-part series created for 5 states (Kentucky, Mississippi, Texas, Puerto Rico, and Alaska) with a cooperative agreement and funding under the State Energy Program with DOE.

  10. Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2002-06-01

    This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are inactive or abandoned. However, some leachfields may still receive liquids from runoff during storm events. Results from the 2000-2001 site characterization activities conducted by International Technology (IT) Corporation, Las Vegas Office are documented in the Corrective Action Investigation Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. This document is located in Appendix A of the Corrective Action Decision Document for CAU 262. Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. (DOE/NV, 2001).

  11. Remedial action plan for the inactive Uranium Processing Site at Naturita, Colorado. Remedial action plan: Attachment 2, Geology report, Attachment 3, Ground water hydrology report: Working draft

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section}7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  12. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-10-01

    CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 • 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

  13. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 547: Miscellaneous Contaminated Waste Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2011-09-01

    The purpose of this CADD/CAP is to present the corrective action alternatives (CAAs) evaluated for CAU 547, provide justification for selection of the recommended alternative, and describe the plan for implementing the selected alternative. Corrective Action Unit 547 consists of the following three corrective action sites (CASs): (1) CAS 02-37-02, Gas Sampling Assembly; (2) CAS 03-99-19, Gas Sampling Assembly; and(3) CAS 09-99-06, Gas Sampling Assembly. The gas sampling assemblies consist of inactive process piping, equipment, and instrumentation that were left in place after completion of underground safety experiments. The purpose of these safety experiments was to confirm that a nuclear explosion would not occur in the case of an accidental detonation of the high-explosive component of the device. The gas sampling assemblies allowed for the direct sampling of the gases and particulates produced by the safety experiments. Corrective Action Site 02-37-02 is located in Area 2 of the Nevada National Security Site (NNSS) and is associated with the Mullet safety experiment conducted in emplacement borehole U2ag on October 17, 1963. Corrective Action Site 03-99-19 is located in Area 3 of the NNSS and is associated with the Tejon safety experiment conducted in emplacement borehole U3cg on May 17, 1963. Corrective Action Site 09-99-06 is located in Area 9 of the NNSS and is associated with the Player safety experiment conducted in emplacement borehole U9cc on August 27, 1964. The CAU 547 CASs were investigated in accordance with the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 547. Existing radiological survey data and historical knowledge of the CASs were sufficient to meet the DQOs and evaluate CAAs without additional investigation. As a result, further investigation of the CAU 547 CASs was not required. The following CAAs were identified for the gas sampling assemblies: (1) clean closure, (2) closure in place, (3) modified closure in place, (4) no further action (with administrative controls), and (5) no further action. Based on the CAAs evaluation, the recommended corrective action for the three CASs in CAU 547 is closure in place. This corrective action will involve construction of a soil cover on top of the gas sampling assembly components and establishment of use restrictions at each site. The closure in place alternative was selected as the best and most appropriate corrective action for the CASs at CAU 547 based on the following factors: (1) Provides long-term protection of human health and the environment; (2) Minimizes short-term risk to site workers in implementing corrective action; (3) Is easily implemented using existing technology; (4) Complies with regulatory requirements; (5) Fulfills FFACO requirements for site closure; (6) Does not generate transuranic waste requiring offsite disposal; (7) Is consistent with anticipated future land use of the areas (i.e., testing and support activities); and (8) Is consistent with other NNSS site closures where contamination was left in place.

  14. Corrective Action Investigation Plan for Corrective Action Unit 550: Smoky Contamination Area Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Grant Evenson

    2012-05-01

    Corrective Action Unit (CAU) 550 is located in Areas 7, 8, and 10 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 550, Smoky Contamination Area, comprises 19 corrective action sites (CASs). Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plumes, it was determined that some of the CAS releases are co-located and will be investigated as study groups. This document describes the planned investigation of the following CASs (by study group): (1) Study Group 1, Atmospheric Test - CAS 08-23-04, Atmospheric Test Site T-2C; (2) Study Group 2, Safety Experiments - CAS 08-23-03, Atmospheric Test Site T-8B - CAS 08-23-06, Atmospheric Test Site T-8A - CAS 08-23-07, Atmospheric Test Site T-8C; (3) Study Group 3, Washes - Potential stormwater migration of contaminants from CASs; (4) Study Group 4, Debris - CAS 08-01-01, Storage Tank - CAS 08-22-05, Drum - CAS 08-22-07, Drum - CAS 08-22-08, Drums (3) - CAS 08-22-09, Drum - CAS 08-24-03, Battery - CAS 08-24-04, Battery - CAS 08-24-07, Batteries (3) - CAS 08-24-08, Batteries (3) - CAS 08-26-01, Lead Bricks (200) - CAS 10-22-17, Buckets (3) - CAS 10-22-18, Gas Block/Drum - CAS 10-22-19, Drum; Stains - CAS 10-22-20, Drum - CAS 10-24-10, Battery. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 31, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 550. The potential contamination sources associated with the study groups are from nuclear testing activities conducted at CAU 550. The DQO process resulted in an assumption that the total effective dose (TED) within the default contamination boundary of CAU 550 exceeds the final action level and requires corrective action. The presence and nature of contamination outside the default contamination boundary at CAU 550 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based final action level. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each group of CASs.

  15. Uranium Mill Tailings Remedial Action (UMTRA) Surface Project: Project plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1993-08-11

    The Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA) [Public Law (PL) 95-604, 42 United States Code (USC) 7901], hereinafter referred to as the ``Act,`` authorizes the US Department of Energy (DOE) to stabilize and control surface tailings and ground water contamination. To fulfill this mission, the DOE has established two projects under the Uranium Mill Tailings Remedial Action (UMTRA) Project Office. The Ground Water Project was established in April 1991 as a major project and a separate project plan will be prepared for that portion of the mission. This project plan covers the UMTRA Surface Project, a major system acquisition (MSA).

  16. Operable Unit 3: Proposed Plan/Environmental Assessment for interim remedial action

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This document presents a Proposed Plan and an Environmental Assessment for an interim remedial action to be undertaken by the US Department of Energy (DOE) within Operable Unit 3 (OU3) at the Fernald Environmental Management Project (FEMP). This proposed plan provides site background information, describes the remedial alternatives being considered, presents a comparative evaluation of the alternatives and a rationnale for the identification of DOE`s preferred alternative, evaluates the potential environmental and public health effects associated with the alternatives, and outlines the public`s role in helping DOE and the EPA to make the final decision on a remedy.

  17. Clean energy for development investment framework: the World Bank Group action plan

    SciTech Connect (OSTI)

    2007-03-06

    In September 2005 the Development Committee requested the World Bank to develop an Investment Framework for Clean Energy and Development - in the context of the Gleneagles Communique on Climate Change, Clean Energy and Sustainable Development which was issued in July 2005. This Action Plan provides an update of work undertaken to date as well as actions planned by the World Bank Group (WBG) in support of the Clean Energy for Development Investment Framework (CEIF). The Action Plan relies on partnerships, including with the International Financial Institutions (IFIs) and the private sector. While it concentrates on maximizing and extending existing instruments, it provides for continued dialogue with governments and the private sector on new approaches to accelerate the transition to a low carbon economy. In addition to increased investments, the private sector has an important role to play in closing the investment gap in many countries. Projects such as Bujagali (Uganda), Nam Theun II (Laos) and China and India Thermal Power Plant Rehabilitation projects are examples of how partnerships with the private sector can work, both on financing but also on enhancing the overall regulatory framework for enhanced partnerships. The report was prepared for the 15 April 2007 Development Committee meeting, a joint committee of the Board of Governors of the World Bank and the International Monetary Fund on the transfer of real resources to developing countries. 3 figs., 3 tabs., 5 annexes.

  18. Planning Through Stochastic Local Search and Temporal Action Graphs in LPG

    E-Print Network [OSTI]

    Gerevini, A; Serina, I; 10.1613/jair.1183

    2011-01-01

    We present some techniques for planning in domains specified with the recent standard language PDDL2.1, supporting 'durative actions' and numerical quantities. These techniques are implemented in LPG, a domain-independent planner that took part in the 3rd International Planning Competition (IPC). LPG is an incremental, any time system producing multi-criteria quality plans. The core of the system is based on a stochastic local search method and on a graph-based representation called 'Temporal Action Graphs' (TA-graphs). This paper focuses on temporal planning, introducing TA-graphs and proposing some techniques to guide the search in LPG using this representation. The experimental results of the 3rd IPC, as well as further results presented in this paper, show that our techniques can be very effective. Often LPG outperforms all other fully-automated planners of the 3rd IPC in terms of speed to derive a solution, or quality of the solutions that can be produced.

  19. Emergency Action Plan [This template has been developed for you to use to create your own area

    E-Print Network [OSTI]

    Liu, Taosheng

    [LOCATION] Emergency Action Plan [DATE] [This template has been developed for you to use to create ............................................................................................................................... 5 A. Shelter Locations have been designated for the building .................................................................................................................................................... 5 C. Hazardous Material Incident

  20. DOE and FERC Jointly Submit Implementation Proposal for The National Action Plan on Demand Response to Congress

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy and the Federal Energy Regulatory Commission (FERC) jointly submitted to Congress a required “Implementation Proposal for The National Action Plan on Demand Response.”

  1. Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 98: Frenchman Flat, Nevada National Security Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    Irene Farnham and Sam Marutzky

    2011-07-01

    This CADD/CAP follows the Corrective Action Investigation (CAI) stage, which results in development of a set of contaminant boundary forecasts produced from groundwater flow and contaminant transport modeling of the Frenchman Flat CAU. The Frenchman Flat CAU is located in the southeastern portion of the NNSS and comprises 10 underground nuclear tests. The tests were conducted between 1965 and 1971 and resulted in the release of radionuclides in the subsurface in the vicinity of the test cavities. Two important aspects of the corrective action process are presented within this CADD/CAP. The CADD portion describes the results of the Frenchman Flat CAU data-collection and modeling activities completed during the CAI stage. The corrective action objectives and the actions recommended to meet the objectives are also described. The CAP portion describes the corrective action implementation plan. The CAP begins with the presentation of CAU regulatory boundary objectives and initial use restriction boundaries that are identified and negotiated by NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The CAP also presents the model evaluation process designed to build confidence that the flow and contaminant transport modeling results can be used for the regulatory decisions required for CAU closure. The first two stages of the strategy have been completed for the Frenchman Flat CAU. A value of information analysis and a CAIP were developed during the CAIP stage. During the CAI stage, a CAIP addendum was developed, and the activities proposed in the CAIP and addendum were completed. These activities included hydrogeologic investigation of the underground testing areas, aquifer testing, isotopic and geochemistry-based investigations, and integrated geophysical investigations. After these investigations, a groundwater flow and contaminant transport model was developed to forecast contaminant boundaries that enclose areas potentially exceeding the Safe Drinking Water Act radiological standards at any time within 1,000 years. An external peer review of the groundwater flow and contaminant transport model was completed, and the model was accepted by NDEP to allow advancement to the CADD/CAP stage. The CADD/CAP stage focuses on model evaluation to ensure that existing models provide adequate guidance for the regulatory decisions regarding monitoring and institutional controls. Data-collection activities are identified and implemented to address key uncertainties in the flow and contaminant transport models. During the CR stage, final use restriction boundaries and CAU regulatory boundaries are negotiated and established; a long-term closure monitoring program is developed and implemented; and the approaches and policies for institutional controls are initiated. The model evaluation process described in this plan consists of an iterative series of five steps designed to build confidence in the site conceptual model and model forecasts. These steps are designed to identify data-collection activities (Step 1), document the data-collection activities in the 0CADD/CAP (Step 2), and perform the activities (Step 3). The new data are then assessed; the model is refined, if necessary; the modeling results are evaluated; and a model evaluation report is prepared (Step 4). The assessments are made by the modeling team and presented to the pre-emptive review committee. The decision is made by the modeling team with the assistance of the pre-emptive review committee and concurrence of NNSA/NSO to continue data and model assessment/refinement, recommend additional data collection, or recommend advancing to the CR stage. A recommendation to advance to the CR stage is based on whether the model is considered to be sufficiently reliable for designing a monitoring system and developing effective institutional controls. The decision to advance to the CR stage or to return to step 1 of the process is then made by NDEP (Step 5).

  2. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment. Volume 2, Revision 5

    SciTech Connect (OSTI)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted to Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 2, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root cause of the findings identified during the assessment. This report is concerned with reactors safety and health findings, responses, and planned actions. Specific areas include: organization and administration; quality verification; operations; maintenance; training and certification; auxiliary systems; emergency preparedness; technical support; nuclear criticality safety; security/safety interface; experimental activities; site/facility safety review; radiological protection; personnel protection; fire protection; management findings, responses, and planned actions; self-assessment findings, responses, and planned actions; and summary of planned actions, schedules, and costs.

  3. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  4. Tactical Action Plan: Powering the Energy Frontier (An Appendix to the Strategic Roadmap 2024)

    SciTech Connect (OSTI)

    2014-01-01

    The Tactical Action Plan identifies and describes the Western-wide tasks and activities, existing and new, needed to fully achieve the goals in Strategic Roadmap 2024. Each activity in the TAP chart is briefly described in this document and also linked to the Critical Pathway it supports. As the TAP is a list of specific strategies and actions susceptible to changing environments and needs, the TAP will be updated more frequently as Western progresses towards its goals. The TAP is organized into seven Strategic Target Areas that serve as Western’s priorities and areas of focus for the next two to three years. These Target Areas are: Power and Transmission Related Services; Energy Infrastructure; Partnership and Innovation; Asset Management; Safety and Security; Communication; and Human Capital Management and Organization Structure. Target Areas are also used to create the agency’s annual performance targets, which measure progress and implementation of the TAP, and the status of which will be reported regularly.

  5. Corrective Action Investigation Plan for Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nevada (Revision 1)

    SciTech Connect (OSTI)

    USDOE/NV

    1999-07-01

    This Corrective Action Investigation Plan (CAIP) has been developed for Frenchman Flat Corrective Action Unit (CAU) 98. The Frenchman Flat CAU is located along the eastern border of the Nevada Test Site (NTS) and includes portions of Areas 5 and 11. The Frenchman Flat CAU constitutes one of several areas of the Nevada Test Site used for underground nuclear testing in the past. The nuclear tests resulted in groundwater contamination in the vicinity as well as downgradient of the underground test areas. The CAIP describes the Corrective Action Investigation (CAI) to be conducted at the Frenchman Flat CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The Frenchman Flat CAI will be conducted by the Underground Test Area (UGTA) Project which is a part of the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Environmental Restoration Project. The CAIP is a requirement of the Federal Facility Agreement and Consent Order (FFACO) (1996 ) agreed to by the U.S. Department of Energy (DOE), the Nevada Division of Environmental Protection (NDEP), and the U.S. Department of Defense (DoD). Based on the general definition of a CAI from Section IV.14 of the FFACO, the purpose of the CAI is ''...to gather data sufficient to characterize the nature, extent, and rate of migration or potential rate of migration from releases or discharges of pollutants or contaminants and/or potential releases or discharges from corrective action units identified at the facilities...'' (FFACO, 1996). However, for the Underground Test Area (UGTA) CAUs, ''...the objective of the CAI process is to define boundaries around each UGTA CAU that establish areas that contain water that may be unsafe for domestic and municipal use.'', as stated in Appendix VI of the FFACO (1996). According to the UGTA strategy (Appendix VI of the FFACO), the CAI of a given CAU starts with the evaluation of the existing data. New data collection activities are generally contingent upon the results of the modeling and may or may not be part of the CAI. Such is the case for the Frenchman Flat CAU. The current scope of the Frenchman Flat CAI includes the development and use of a three-dimensional (3-D), numerical, CAU-scale groundwater flow and contaminant transport model to predict the location of the contaminant boundary. The CAU model will be developed and used to predict the location of the contaminant boundary. The scope of this CAI does not currently include any characterization activities; however, such activities will be conducted if the CAU model results indicate that further characterization information is needed to develop a sufficiently reliable CAU model. Two areas of importance to the CAU model are the model area and the investigation area. The CAU-model area will be selected to encompass the Frenchman Flat CAU and the region located immediately downgradient where contamination may migrate. The extent of the CAU-model area is dependent on the extent of contamination and is uncertain at this point. The extent of the investigation area is not expected to increase during the CAI.

  6. Corrective Action Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    2013-04-30

    This Corrective Action Plan has been prepared for Corrective Action Unit (CAU) 366, Area 11 Plutonium Valley Dispersion Sites, in accordance with the Federal Facility Agreement and Consent Order (FFACO, 1996 as amended). CAU 366 consists of the following six Corrective Action Sites (CASs) located in Area 11 of the Nevada National Security Site: · CAS 11-08-01, Contaminated Waste Dump #1 · CAS 11-08-02, Contaminated Waste Dump #2 · CAS 11-23-01, Radioactively Contaminated Area A · CAS 11-23-02, Radioactively Contaminated Area B · CAS 11-23-03, Radioactively Contaminated Area C · CAS 11-23-04, Radioactively Contaminated Area D Site characterization activities were performed in 2011 and 2012, and the results are presented in Appendix A of the Corrective Action Decision Document (CADD) for CAU 366 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2012a). The following closure alternatives were recommended in the CADD: · No further action for CAS 11-23-01 · Closure in place for CASs 11-08-01, 11-08-02, 11-23-02, 11-23-03, and 11-23-04 The scope of work required to implement the recommended closure alternatives includes the following: · Non-engineered soil covers approximately 3 feet thick will be constructed at CAS 11-08-01 over contaminated waste dump (CWD) #1 and at CAS 11-08-02 over CWD #2. · FFACO use restrictions (URs) will be implemented for the areas where the total effective dose (TED) exceeds the final action level (FAL) of 25 millirems per Occasional Use Area year (mrem/OU-yr). The FAL is based on an assumption that the future use of the site includes occasional work activities and that workers will not be assigned to the area on a regular basis. A site worker under this scenario is assumed to be on site for a maximum of 80 hours per year for 5 years. The FFACO UR boundaries will encompass the areas where a worker would be exposed to 25 millirems of radioactivity per year if they are present for 80 hours per year. These boundaries will be defined as follows: – It is assumed that radiological contaminants are present at CAS 11-08-01 and CAS 11-08-02 within CWDs #1 and #2 at levels exceeding the FAL. Therefore, UR boundaries will be established around the perimeters of the soil covers that will be constructed at CWD #1 and CWD #2. A geophysical survey revealed buried metallic debris outside the fence and adjacent to CWD #1. Therefore, the UR boundary for CWD #1 will be expanded to include the mound containing buried material. – It is assumed that radiological contaminants are present at CAS 11-23-02, CAS 11-23-03, and CAS 11-23-04, within the three High Contamination Area (HCA) boundaries associated with the 11b, 11c, and 11d test areas at levels exceeding the FAL. Therefore, the UR boundaries will be established around the perimeters of the HCAs. The TED at an area of soil impacted by radiological debris outside the fence and adjacent to the 11c test area HCA exceeds the FAL of 25 mrem/OU-yr. Because the radiological impact from the debris at this location is visible on the aerial flyover radiological survey, all other areas within this isopleth of the flyover survey are conservatively also assumed to exceed the FAL. Therefore, the UR boundaries for the 11b, 11c, and 11d test areas will be expanded to include the areas within this isopleth. · The FFACO URs will all be located within the large Contamination Area (CA) that encompasses Plutonium Valley. Because access to the CA is limited and entry into the CA for post-closure inspections and maintenance would be impractical, UR warning signs will be posted along the existing CA fence. In accordance with the Soils Risk-Based Corrective Action Evaluation Process (NNSA/NSO, 2012b), an administrative UR will be implemented as a best management practice for the areas where the TED exceeds 25 millirems per Industrial Area year. This limit is based on continuous industrial use of the site and addresses exposure to industrial workers who would regularly be assigned to the work area for an entire career (250 days

  7. Removal action work plan for the YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-03-01

    The US Department of Energy is conducting environmental restoration activities at the Y-12 Plant in Oak Ridge, Tennessee. As part of these efforts, a removal action is planned for the former YS-860 Firing Ranges as described in the Action Memorandum for the project. This removal action work plan (RmAWP) is focused on the former YS-860 Firing Ranges, located outside the primary fenceline at the eastern end of the plant. This RmAWP defines the technical approach, procedures, and requirements for the removal of lead-contaminated soil and site restoration of the former YS-860 Firing Ranges at the Y-12 Plant. This RmAWP describes excavation, verification/confirmatory sampling, and reporting requirements for the project. Lower tier plans associated with the RmAWP, which are submitted as separate stand-alone documents, include a field sampling and analysis plan, a health and safety plan, a quality assurance project plan, a waste management plan, a data management implementation plan, and a best management practices plan. A site evaluation of the YS-86O Firing Ranges conducted in 1996 by Lockheed Martin Energy Systems, Inc., determined that elevated lead levels were present in the Firing Ranges target berm soils. The results of this sampling event form the basis for the removal action recommendation as described in the Action Memorandum for this project. This RmAWP contains a brief history and description of the Former YS-860 Firing Ranges Project, along with the current project schedule and milestones. This RmAWP also provides an overview of the technical requirements of the project, including a summary of the approach for the removal activities. Finally, the RmAWP identifies the regulatory requirements and the appropriate removal action responses to address applicable or relevant and appropriate requirements to achieve the project goals of substantially reducing the risk to human health and the environment.

  8. Oak Ridge National Laboratory Corrective Action Plan in response to Tiger Team assessment. Volume 1, Revision 5

    SciTech Connect (OSTI)

    Kuliasha, Michael A.

    1991-08-23

    This report presents a complete response to the Tiger Team assessment that was conducted at Oak Ridge National Laboratory (ORNL) and at the US Department of Energy (DOE) Oak Ridge Operations Office (ORO) from October 22, 1990, through November 30, 1990. The action plans have undergone both a discipline review and a cross-cutting review with respect to root cause. In addition, the action plans have been integrated with initiatives being pursued across Martin Marietta Energy Systems, Inc., in response to Tiger Team findings at other DOE facilities operated by Energy Systems. The root cause section is complete and describes how ORNL intends to address the root causes of the findings identified during the assessment. The action plan has benefited from a complete review by various offices at DOE Headquarters as well as review by the Tiger Team that conducted the assessment to ensure that the described actions are responsive to the observed problems.

  9. Corrective action investigation plan for Central Nevada Test Area, CAU No. 417

    SciTech Connect (OSTI)

    NONE

    1997-04-01

    This Corrective Action Investigation Plan (CAIP) is part of a US Department of Energy (DOE)-funded environmental investigation of the Central Nevada Test Area (CNTA). This CAIP addresses the surface investigation and characterization of 15 identified Corrective Action Sites (CASs). In addition, several other areas of the CNTA project area have surface expressions that may warrant investigation. These suspect areas will be characterized, if necessary, in subsequent CAIPs or addendums to this CAIP prepared to address these sites. This CAIP addresses only the 15 identified CASs as shown in Table 2-1 that are associated with the drilling and construction of a number of testing wells designed as part of an underground nuclear testing program. The purpose of the wells at the time of construction was to provide subsurface access for the emplacement, testing, and post detonation evaluations of underground nuclear devices. If contamination is found at any of the 15-surface CASs, the extent of contamination will be determined in order to develop an appropriate corrective action.

  10. Corrective Action Investigation Plan for Corrective Action Unit 568: Area 3 Plutonium Dispersion Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-01-01

    CAU 568 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 568, which comprises the following corrective action sites (CASs): • 03-23-17, S-3I Contamination Area • 03-23-19, T-3U Contamination Area • 03-23-20, Otero Contamination Area • 03-23-22, Platypus Contamination Area • 03-23-23, San Juan Contamination Area • 03-23-26, Shrew/Wolverine Contamination Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report.

  11. Corrective Action Investigation Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    David Strand

    2006-06-01

    Corrective Action Unit 166 is located in Areas 2, 3, 5, and 18 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit (CAU) 166 is comprised of the seven Corrective Action Sites (CASs) listed below: (1) 02-42-01, Cond. Release Storage Yd - North; (2) 02-42-02, Cond. Release Storage Yd - South; (3) 02-99-10, D-38 Storage Area; (4) 03-42-01, Conditional Release Storage Yard; (5) 05-19-02, Contaminated Soil and Drum; (6) 18-01-01, Aboveground Storage Tank; and (7) 18-99-03, Wax Piles/Oil Stain. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on February 28, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 166. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 166 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Perform field screening. (4) Collect and submit environmental samples for laboratory analysis to determine if contaminants of concern are present. (5) If contaminants of concern are present, collect additional step-out samples to define the extent of the contamination. (6) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection, and field work will commence following approval.

  12. Addendum to the Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada (Rev. 0, November 2000)

    SciTech Connect (OSTI)

    DOE /NV

    2000-11-03

    This addendum to the Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to determine the extent of contamination existing at Corrective Action Unit (CAU) 321. This addendum was required when the extent of contamination exceeded the estimate in the original Corrective Action Decision Document (CADD). Located in Area 22 on the Nevada Test Site, Corrective Action Unit 321, Weather Station Fuel Storage, consists of Corrective Action Site 22-99-05, Fuel Storage Area, was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility. This facility was operational from 1951 to 1958 and dismantled after 1958. Based on site history and earlier investigation activities at CAU 321, the contaminant of potential concern (COPC) was previously identified as total petroleum hydrocarbons (diesel-range organics). The scope of this corrective action investigation for the Fuel Storage Area will include the selection of biased sample locations to determine the vertical and lateral extent of contamination, collection of soil samples using rotary sonic drilling techniques, and the utilization of field-screening methods to accurately determine the extent of COPC contamination. The results of this field investigation will support a defensible evaluation of corrective action alternatives and be included in the revised CADD.

  13. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah: Appendices C--E. Final report

    SciTech Connect (OSTI)

    NONE

    1993-02-01

    This document provides appendices C, D, and E this Remedial Action Plan (RAP) which is a revision of the original Mexican Hat Remedial Action Plan and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. Appendix C provide the Radiological Support Plan, Appendix D provides the Site Characterization, and Appendix E provides the Water Resources Protection Strategy.

  14. Corrective Action Investigation Plan for Corrective Action Unit 374: Area 20 Schooner Unit Crater Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2010-02-01

    Corrective Action Unit 374 is located in Areas 18 and 20 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 374 comprises the five corrective action sites (CASs) listed below: • 18-22-05, Drum • 18-22-06, Drums (20) • 18-22-08, Drum • 18-23-01, Danny Boy Contamination Area • 20-45-03, U-20u Crater (Schooner) These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on October 20, 2009, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 374.

  15. Record of Technical Change No.1 for ``Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada''

    SciTech Connect (OSTI)

    DOE /NV

    1999-02-16

    This Record of Technical Change provides updates to the technical information provided in ''Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada,'' Revision 0. The change specified is in Table 3-1 on page 11. The total lead analyte should specify a Minimum Reporting Limit for soil of 1.0 mg/kg instead of 0.3 mg/kg. The EMAX laboratory cannot meet the 0.3 mg/kg limit.

  16. Corrective Action Investigation Plan for Corrective Action Unit 365: Baneberry Contamination Area, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2010-12-01

    Corrective Action Unit 365 comprises one corrective action site (CAS), CAS 08-23-02, U-8d Contamination Area. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for the CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The site will be investigated based on the data quality objectives (DQOs) developed on July 6, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for the Baneberry site. The primary release associated with Corrective Action Unit 365 was radiological contamination from the Baneberry nuclear test. Baneberry was an underground weapons-related test that vented significant quantities of radioactive gases from a fissure located in close proximity to ground zero. A crater formed shortly after detonation, which stemmed part of the flow from the fissure. The scope of this investigation includes surface and shallow subsurface (less than 15 feet below ground surface) soils. Radionuclides from the Baneberry test with the potential to impact groundwater are included within the Underground Test Area Subproject. Investigations and corrective actions associated with the Underground Test Area Subproject include the radiological inventory resulting from the Baneberry test.

  17. Dambreak flood analyses and emergency action plan: West branch and main stem of the Penobscot River

    SciTech Connect (OSTI)

    Wingert, R. [Northrop, Devine, & Tarbell, Inc., Portland, ME (United States); Paul, W. [Great Northern Paper Co., Millinocket, ME (United States)

    1995-12-31

    In 1994, Great Northern Paper (GNP) updated the Emergency Action Plan (EAP) for their hydro system on the Penobscot River in northern Maine. The EAP update incorporated results of dam failure analyses conducted to determine the extent of flooding resulting from the postulated failure of GNP dams under Probable Maximum Flood (PMF) conditions with the implementation of current operation and emergency response procedures. GNP hydro operators, in consultation with public safety agencies, reorganized and modified the EAP to make it easier to use by the actual planholders, thus improving its overall effectiveness. A key for the effectiveness of the EAP update was the development of new notification maps using the ARC/INFO Geographic Information System (GIS).

  18. Environmental Management Los Alamos Field Corrective Action Plan- Radiological Release Phase II

    Broader source: Energy.gov [DOE]

    On March 22, 2015, the Department of Energy established an Environmental Management Los Alamos Field Office (EM-LA) responsible for management of the environmental restoration and the legacy waste management programs at LANL. The NA-LA continues with the responsibility for the management of LANL's national security mission and the enduring waste management program (newly generated waste). As a result of this delineation in responsibilities, this corrective action plan was prepared collaboratively between NA-LA and EM-LA Field Offices, with joint responsibility for addressing the Judgement of Needs (JONs) identified in the Accident Investigation Board Accident Investigation Report, Phase 2 Radiological Release Event at the Waste Isolation Pilot Plant, February 14, 2014, dated April 2015.

  19. Corrective Action Investigation Plan for Corrective Action Unit 190: Contaminated Waste Sites Nevada Test Site, Nevada, Rev. No.: 0

    SciTech Connect (OSTI)

    Wickline, Alfred

    2006-12-01

    Corrective Action Unit (CAU) 190 is located in Areas 11 and 14 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 190 is comprised of the four Corrective Action Sites (CASs) listed below: (1) 11-02-01, Underground Centrifuge; (2) 11-02-02, Drain Lines and Outfall; (3) 11-59-01, Tweezer Facility Septic System; and (4) 14-23-01, LTU-6 Test Area. These sites are being investigated because existing information is insufficient on the nature and extent of potential contamination to evaluate and recommend corrective action alternatives. Additional information will be obtained before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS by conducting a corrective action investigation (CAI). The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on August 24, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture, and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 190. The scope of the CAU 190 CAI includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling; (2) Conduct radiological and geophysical surveys; (3) Perform field screening; (4) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present; (5) If COCs are present, collect additional step-out samples to define the lateral and vertical extent of the contamination; (6) Collect samples of source material, if present, to determine the potential for a release; (7) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes; and (8) Collect quality control samples. This Corrective Action Investigation Document (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) agreed to by the State of Nevada, U.S. Department of Energy, and U.S. Department of Defense. Under the FFACO, this CAIP will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval.

  20. Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-09-01

    Corrective Action Unit (CAU) 105 is located in Area 2 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 105 is a geographical grouping of sites where there has been a suspected release of contamination associated with atmospheric nuclear testing. This document describes the planned investigation of CAU 105, which comprises the following corrective action sites (CASs): • 02-23-04, Atmospheric Test Site - Whitney • 02-23-05, Atmospheric Test Site T-2A • 02-23-06, Atmospheric Test Site T-2B • 02-23-08, Atmospheric Test Site T-2 • 02-23-09, Atmospheric Test Site - Turk These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 105. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with all CAU 105 CASs are from atmospheric nuclear testing activities. The presence and nature of contamination at CAU 105 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted after the plan is approved.

  1. New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    Nelson, L. O.

    2007-06-12

    This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

  2. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix A of Attachment 3, Calculations: Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    This report consists primarily of calculations for ground water flow and hydraulic conductivity as part of the Remedial Action Plan and Site Design for Stabilization program.

  3. Corrective Action Investigation Plan for Corrective Action Unit 567: Miscellaneous Soil Sites, Nevada National Security Site, Nevada, with ROTC 1 Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick K.

    2013-07-01

    Corrective Action Unit (CAU) 567 is located in Areas 1, 3, 5, 20, and 25 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 567 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 567, which comprises the following corrective action sites (CASs): • 01-23-03, Atmospheric Test Site T-1 • 03-23-25, Seaweed E Contamination Area • 05-23-07, A5b RMA • 20-23-08, Colby Mud Spill • 25-23-23, J-11 Soil RMA These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on May 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 567. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 567 releases are nuclear test operations and other NNSS operations. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary at Atmospheric Test Site T-1 exceeds the final action level (FAL) and requires corrective action. The presence and nature of contamination outside the default contamination boundary at Atmospheric Test Site T-1 and all other CAU 567 CASs will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based FAL. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  4. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. No.: 1 with ROTC 1 and 2

    SciTech Connect (OSTI)

    David A. Strand

    2005-01-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 552 is comprised of the one Corrective Action Site which is 12-23-05, Ponds. One additional CAS, 12-06-04, Muckpile (G-Tunnel Muckpile), was removed from this CAU when it was determined that the muckpile is an active site. A modification to the FFACO to remove CAS 12-06-04 was approved by the Nevada Division of Environmental Protection (NDEP) on December 16, 2004. The G-Tunnel ponds were first identified in the 1991 Reynolds Electrical & Engineering Co., Inc. document entitled, ''Nevada Test Site Inventory of Inactive and Abandoned Facilities and Waste Sites'' (REECo, 1991). Corrective Action Unit 552 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Therefore, additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating and selecting the corrective action alternatives for the site. The CAI will include field inspections, radiological surveys, and sampling of appropriate media. Data will also be obtained to support investigation-derived waste (IDW) disposal and potential future waste management decisions.

  5. The Rhetoric of “Japanese with English Abilities”: Analyzing the Discourse of English Curriculum Reform and Its Problems with the Mext's ‘Action Plan’ 

    E-Print Network [OSTI]

    Watanabe, Ken

    2013-12-03

    instruction (i.e., JET program, and Assistant Language Teachers [ALTs]). Finally, I would provide the implications for Action Plan’s impact on educational practice by assessing student’s learning achievement and target benchmarks set for students...

  6. Corrective Action Investigation Plan for Corrective Action Unit 541: Small Boy Nevada National Security Site and Nevada Test and Training Range, Nevada with ROTC 1

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-09-01

    Corrective Action Unit (CAU) 541 is co-located on the boundary of Area 5 of the Nevada National Security Site and Range 65C of the Nevada Test and Training Range, approximately 65 miles northwest of Las Vegas, Nevada. CAU 541 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 541, which comprises the following corrective action sites (CASs): • 05-23-04, Atmospheric Tests (6) - BFa Site • 05-45-03, Atmospheric Test Site - Small Boy These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on April 1, 2014, by representatives of the Nevada Division of Environmental Protection; U.S. Air Force; and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 541. The site investigation process also will be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CASs 05-23-04 and 05-45-03 are from nuclear testing activities conducted at the Atmospheric Tests (6) - BFa Site and Atmospheric Test Site - Small Boy sites. The presence and nature of contamination at CAU 541 will be evaluated based on information collected from field investigations. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  7. Corrective Action Investigation Plan for Corrective Action Unit 571: Area 9 Yucca Flat Plutonium Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Bailey, Bernadine; Matthews, Patrick

    2013-07-01

    CAU 571 is a grouping of sites where there has been a suspected release of contamination associated with nuclear testing. This document describes the planned investigation of CAU 571, which comprises the following corrective action sites (CASs): • 09-23-03, Atmospheric Test Site S-9F • 09-23-04, Atmospheric Test Site T9-C • 09-23-12, Atmospheric Test Site S-9E • 09-23-13, Atmospheric Test Site T-9D • 09-45-01, Windrows Crater These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the investigation report. The sites will be investigated based on the data quality objectives (DQOs) developed on March 6, 2013, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (now the Nevada Field Office). The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 571. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with CAU 571 CASs are from nuclear testing activities. The DQO process resulted in an assumption that total effective dose (TED) within a default contamination boundary exceeds the final action level (FAL) and requires corrective action. The presence and nature of contamination outside the default contamination boundaries at CAU 571 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the TED at sample locations to the dose-based FAL. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Chemical contamination will be evaluated by comparing soil sample results to the FAL. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  8. Corrective Action Investigation Plan for Corrective Action Unit 224: Decon Pad and Septic Systems Nevada Test Site, Nevada, Rev. No.: 0, with ROTC 1 and 2

    SciTech Connect (OSTI)

    David A. Strand

    2004-04-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 224: Decon Pad and Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 224 is comprised of the nine Corrective Action Sites (CASs) listed below: 02-04-01, Septic Tank (Buried); 03-05-01, Leachfield; 05-04-01, Septic Tanks (4)/Discharge Area; 06-03-01, Sewage Lagoons (3); 06-05-01, Leachfield; 06-17-04, Decon Pad and Wastewater Catch; 06-23-01, Decon Pad Discharge Piping; 11-04-01, Sewage Lagoon; and 23-05-02, Leachfield. Corrective Action Sites 06-05-01, 06-23-01, and 23-05-02 were identified in the 1991 Reynolds Electrical & Engineering Co., Inc. (REECo) inventory (1991). The remaining sites were identified during review of various historical documents. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating and selecting a corrective action alternative for each CAS. The CAI will include field inspections, radiological and geological surveys, and sample collection. Data will also be obtained to support investigation-derived waste (IDW) disposal and potential future waste management decisions.

  9. Solving Stochastic Planning Problems With Large State and Action Spaces Thomas Dean, Robert Givan, and Kee-Eung Kim

    E-Print Network [OSTI]

    Dean, Thomas

    Solving Stochastic Planning Problems With Large State and Action Spaces Thomas Dean, Robert Givan, and Kee-Eung Kim Thomas Dean and Kee-Eung Kim Robert Givan Department of Computer Science Department of parameters, e.g., the location of a robot or the status of a piece of equipment. Factored representations

  10. DOE responses to CDH October 1993 comments on the Remedical Action Plan for the Naturita, Colorado, Umtra Site

    SciTech Connect (OSTI)

    NONE

    1996-10-01

    This document includes the October 1993 comments provided by the Colorado Department of Health (CDH) on the Department of Energy (DOE) Preliminary Final Remedial Action Plan for the Naturita, Colorado, UMTRA Site. DOE`s responses are included after each CDH comment.

  11. Emergency Action Plan and Annexes 2014 Rutgers, The State University of New Jersey emergency.rutgers.edu 19 of 39

    E-Print Network [OSTI]

    Neimark, Alexander V.

    Emergency Action Plan and Annexes © 2014 Rutgers, The State University of New Jersey emergency windows and out from under the heavy suspended light fixtures. Identify what equipment you should shut down if time permits. Make sure latches on cabinets, process tanks, storage tanks and closets

  12. Action plan for response to abnormal conditions in Hanford Site radioactive waste tanks containing ferrocyanide. Revision 1

    SciTech Connect (OSTI)

    Cash, R.J.; Thurman, J.M.

    1991-12-01

    This document defines the responses that shall be implemented when anomalies in temperature measurements or flammable gas contents are observed in single-shell waste tanks containing ferrocyanide. This plan identifies (1) the criteria and specification limits required for ensuring that the tanks are maintained in a safe condition, (2) the responsible organizations, and (3) the response actions to prevent or mitigate temperature excursions.

  13. Action plan for response to abnormal conditions in Hanford Site radioactive waste tanks containing ferrocyanide. Revision 2

    SciTech Connect (OSTI)

    Fowler, K.D.

    1994-06-01

    This action plan describes the administrative controls, monitoring frequencies, monitoring criteria, and reporting requirements that have been implemented for the Ferrocyanide Watch List tanks. In addition, corrective actions have been outlined where a response to an abnormal condition in a Ferrocyanide Watch List tank is warranted. Such responses may be due to changes in tank temperatures or pressures; flammable or toxic vapor concentrations, or airborne radiation levels. Additionally, this plan identifies source documents that detail the following: the criteria and specification limits required for ensuring that Ferrocyanide Watch List tanks are maintained in a SAFE or CONDITIONALLY SAFE state; response actions for prevention or mitigation of the consequences of an abnormal condition; and organizational responsibilities for ensuring that ferrocyanide tanks are maintained in a SAFE or CONDITIONALLY SAFE state and for responding to abnormal conditions.

  14. Yakima Tributary Access and Habitat Program : Action Plan Final Report 2002.

    SciTech Connect (OSTI)

    Myra, David (South Central Washington Resource Conservation and Development Council, Ellensburg, WA); Ready, Carol A. (Kittitas County Water Purveyors, Ellensburg, WA)

    2003-04-01

    This report covers activities conducted by the Yakima Tributary Access and Habitat Program under Bonneville Power Administration (BPA) grant project No. 2002-025-00 for fiscal year 2002. The Yakima Tributary Access and Habitat Program (YTAHP, Program) was organized to restore salmonid passage to Yakima tributaries that historically supported salmonids and improve habitat in areas where access is restored. Specifically, this program is designed to (a) screen unscreened diversion structures to prevent fish entrainment into artificial waterways; (b) provide for fish passage at man-made barriers, such as diversion dams, culverts, siphons and bridges; and (c) provide information and assistance to landowners interested in to contributing to the improvement of water quality, water reliability and stream habitat. The YTAHP developed from a number of groups actively engaged in watershed management, and/or habitat restoration within the Yakima River Basin. These groups include the Washington State Fish and Wildlife (WDFW), Kittitas County Conservation District (KCCD), North Yakima Conservation District (NYCD), Kittitas County Water Purveyors (KCWP), and Ahtanum Irrigation District (AID). The US Bureau of Reclamation (Reclamation) and Yakama Nation (YN) both participated in the development of the objectives of YTAHP. Other entities that will be involved during permitting or project review may include the YN, the federal Natural Resources Conservation Service (NRCS), the US Fish and Wildlife Service (USFWS), the National Marine Fisheries Service (NMFS), and US Army Corps of Engineers (COE). Achievements of YTAHP with BPA Action Plan funding during FY 2002 were to: (1) Establish contracts with RC&D and YTAHP participants. (2) Determine contract mechanism for MWH engineering services. (3) Provide engineering designs and services for 11 early action projects, including inverted siphons, pump and gravity diversion screening, diversion metering, rock weirs for improved fish passage, headgates and fishways. These designs were used to submit for project implementation funding through the WA Salmon Recovery Funding Board. (4) Complete 6 early action projects on Ahtanum Creek--One gravity diversion was replaced with a pump and pump end screen and 5 pump end screens were installed. (5) Conduct two topographic surveys--For the City of Yakima on the Fruitvale diversion for the North Yakima Conservation District to support the installation of a pumping plant which would eliminate the need to divert directly from the Naches River and build the gravel berm each year during low flows. For the Taylor Ditch system for the North Yakima Conservation District to support as feasibility of opening the ditch for habitat and at the same time maintaining irrigation deliveries. (6) Procure materials for use in future YTAHP projects, including siphon pipe, delivery pipe, rock, screens, and water meters. These materials will act as match and support the completion of these subsequent YTAHP projects. Overall, with broad agency support and Action Plan funding through BPA, the YTAHP has achieved substantial enhancements that support aquatic species and which will leverage subsequent work through engineering designs and materials. The program was also able to establish the personnel and equipment support for beginning the stream assessment process on tributaries in Yakima and Kittitas Counties. Completion of this year's effort has provided significant inroads to working on the private lands in two counties which will be vital to future efforts by YTAHP and others to protect and enhance Yakima River Basin habitat.

  15. HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2

    SciTech Connect (OSTI)

    KIRK WINTERHOLLER

    2008-02-25

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

  16. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    Mark Krauss

    2010-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action site (CAS) located in Area 25 of the Nevada Test Site: • 25-41-03, EMAD Facility This plan provides the methodology for field activities needed to gather the necessary information for closing CAS 25-41-03. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 114 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for CAS 25-41-03. It is anticipated that the results of the field investigation and implementation of corrective actions will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The CAS will be investigated based on the data quality objectives (DQOs) developed on April 30, 2009, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAS 25-41-03. The following text summarizes the SAFER activities that will support the closure of CAU 114: • Perform site preparation activities (e.g., utilities clearances, radiological surveys). • Collect samples of materials to determine whether potential source material (PSM) is present that may cause the future release of a contaminant of concern to environmental media. • If no PSMs are present at the CAS, establish no further action as the corrective action. • If a PSM is present at the CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed and disposed of as waste, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. • Confirm the selected closure option is sufficient to protect human health and the environment.

  17. Corrective Action Investigation Plan for Corrective Action Unit 545: Dumps, Waste Disposal Sites, and Buried Radioactive Materials Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-06-01

    Corrective Action Unit 545, Dumps, Waste Disposal Sites, and Buried Radioactive Materials, consists of seven inactive sites located in the Yucca Flat area and one inactive site in the Pahute Mesa area. The eight CAU 545 sites consist of craters used for mud disposal, surface or buried waste disposed within craters or potential crater areas, and sites where surface or buried waste was disposed. The CAU 545 sites were used to support nuclear testing conducted in the Yucca Flat area during the 1950s through the early 1990s, and in Area 20 in the mid-1970s. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval.

  18. Property:GRR/ActionableEntity | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,Property EditMimeType JumpFuturePlansActionableEntity Jump to:

  19. Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1 and 2

    SciTech Connect (OSTI)

    David A. Strand

    2004-05-01

    This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S Department of Defense (DoD). Corrective Action Unit 543 is located in Area 6 and Area 15 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Seven corrective action sites (CASs) comprise CAU 543 and are listed below: (1) 06-07-01, Decon Pad; (2) 15-01-03, Aboveground Storage Tank; (3) 15-04-01, Septic Tank; (4) 15-05-01, Leachfield; (5) 15-08-01, Liquid Manure Tank; (6) 15-23-01, Underground Radioactive Material Area; and (7) 15-23-03, Contaminated Sump, Piping. Corrective Action Site 06-07-01, Decon Pad, is located in Area 6 and consists of the Area 6 Decontamination Facility and its components that are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency (EPA) Farm and are related to waste disposal activities at the EPA Farm. The EPA Farm was a fully-functional dairy associated with animal experiments conducted at the on-site laboratory. The corrective action investigation (CAI) will include field inspections, video-mole surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions. The CASs within CAU 543 are being investigated because hazardous and/or radioactive constituents may be present at concentrations that could potentially pose a threat to human health and the environment. The seven CASs in CAU 543 primarily consist of sanitary and process waste collection, storage, and distribution systems (e.g., storage tanks, sumps, and piping). Existing information on the nature and extent of potential contamination at these sites is insufficient to evaluate and recommend corrective action alternatives for the CASs. Therefore, additional information will be obtained by conducting a CAI prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS.

  20. Corrective Action Investigation Plan for Corrective Action Unit 34: Area 3 Contaminated Waste Site, Nevada Test Site, Nevada (Rev. 0, March 2001)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2001-03-27

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 34 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 34 consists of four Corrective Action Sites (CASs). The CAU is located within the Area 3 Compound at the Nevada Test Site (NTS) in the vicinity of the Mud Plant Facility in Yucca Valley. Historically, CAS 03-09-07, Mud Pit, was used for disposal of excess mud from washing drilling equipment from 1968 to 1974, at which time it began to be used for excess mud disposal (currently inactive); CAS 03-44-01, Chromium Contamination Spill, was used to store additives used in the formulation of drilling mud from the early 1960s to the mid-1990s; CAS 03-47-02, Area 3 Mud Plant Pond, was used as a freshwater storage reservoir for the mud plant as well as supplied water for a number of activities including the mixing of mud, the rinsing and cleaning of tanks, and various washdowns from the 1960s through 1990s; and CAS 03-09-06, Mud Disposal Crater, was created in 1962 by an underground nuclear detonation (i.e., Chinchilla test) and was used to mix and store mud, dispose of receiving waste from the mud plant floor drains and excess drilling mud, and clean/flush mix tanks through the mid-1990s. Based on site history, the scope of this plan is to identify potentially contaminated ground soil at each of the four CASs and determine the quantity, nature, and extent of contaminants of potential concern (COPCs). The investigation will include systematic and biased surface and subsurface soil and mud sampling using hand-auguring and direct-push techniques; visual, video, and/or electromagnetic surveys of pipes; field screening for volatile organic compounds (VOCs) and alpha/beta-emitting radionuclides; and laboratory analysis to characterize any investigation-derived waste for disposal both on site at NTS and at off-site locations. Historical information provided by former NTS employees indicates that COPCs include VOCs, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, gamma-emitting radionuclides, isotopic plutonium, and strontium-90. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  1. Corrective Action Investigation Plan for Corrective Action Unit 570: Area 9 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2012-08-01

    CAU 570 comprises the following six corrective action sites (CASs): • 02-23-07, Atmospheric Test Site - Tesla • 09-23-10, Atmospheric Test Site T-9 • 09-23-11, Atmospheric Test Site S-9G • 09-23-14, Atmospheric Test Site - Rushmore • 09-23-15, Eagle Contamination Area • 09-99-01, Atmospheric Test Site B-9A These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 570. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The presence and nature of contamination at CAU 570 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed near the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  2. Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada, Rev. 1

    SciTech Connect (OSTI)

    Robert F. Boehlecke

    2005-01-01

    Corrective Action Unit 552 is being investigated because man-made radionuclides and chemical contaminants may be present in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. The CAI will be conducted following the data quality objectives (DQOs) developed by representatives of the Nevada Division of Environmental Protection (NDEP) and the DOE National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The DQOs are used to identify the type, amount, and quality of data needed to define the nature and extent of contamination and identify and evaluate the most appropriate corrective action alternatives for CAU 552. The primary problem statement for the investigation is: ''Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for CAS 12-23-05.'' To address this problem statement, the resolution of the following two decision statements is required: (1) The Decision I statement is: ''Is a contaminant present within the CAU at a concentration that could pose an unacceptable risk to human health and the environment?'' Any site-related contaminant detected at a concentration exceeding the corresponding preliminary action level (PAL), as defined in Section A.1.4.2, will be considered a contaminant of concern (COC). A COC is defined as a site-related constituent that exceeds the screening criteria (PAL). The presence of a contaminant within each CAS is defined as the analytical detection of a COC. (2) The Decision II statement is: ''Determine the extent of contamination identified above PALs.'' This decision will be achieved by the collection of data that are adequate to define the extent of COCs. Decision II samples are used to determine the lateral and vertical extent of the contamination as well as the likelihood of COCs to migrate outside of the site boundaries. The migration pattern can be derived from the Decision II samples, since the analytical results of those samples will show how far the contamination has travelled in the time period since activities at the site ended. Most of the data necessary to resolve the decisions will be generated from the analysis of environmental samples collected during the CAI for CAU 552. The general purpose of the investigation is to: (1) Identify the presence and nature of COCs. (2) Determine the vertical and lateral extent of identified COCs. (3) Ensure sufficient data is collected to support the selection of a corrective action compliant with all NDEP, ''Resource Conservation and Recovery Act (RCRA), Toxic Substance Control Act (TSCA)'', and DOE requirements. In addition, data will be obtained to support (IDW) disposal and potential future waste management decisions.

  3. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Slick Rock, Colorado: Remedial Action Selection Report. Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    This proposed remedial action plan incorporates the results of detailed investigation of geologic, geomorphic, and seismic conditions at the proposed disposal site. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/waterborne materials to a permanent repository at the proposed Burro Canyon disposal cell. The proposed disposal site will be geomorphically stable. Seismic design parameters were developed for the geotechnical analyses of the proposed cell. Cell stability was analyzed to ensure long-term performance of the disposal cell in meeting design standards, including slope stability, settlement, and liquefaction potential. The proposed cell cover and erosion protection features were also analyzed and designed to protect the RRM (residual radioactive materials) against surface water and wind erosion. The location of the proposed cell precludes the need for permanent drainage or interceptor ditches. Rock to be used on the cell top-, side-, and toeslopes was sized to withstand probable maximum precipitation events.

  4. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix D. Final report

    SciTech Connect (OSTI)

    NONE

    1988-07-01

    This appendix is an assessment of the present conditions of the inactive uranium mill site near Mexican Hat, Utah. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan. Plan is to characterize the conditions at the mill and tailings site so that the Remedial Action Contractor may complete final designs of the remedial action.

  5. Corrective Action Investigation Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada (with Record of Technical Change No.1)

    SciTech Connect (OSTI)

    U.S. Department of Energy, Nevada Operations Office

    2000-06-09

    This Corrective Action Investigation Plan (CAIP) contains the U.S. Department of Energy, Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 490 under the Federal Facility Agreement and Consent Order. Corrective Active Unit 490 consists of four Corrective Action Sites (CASs): 03-56-001-03BA, Fire Training Area (FTA); RG-56-001-RGBA, Station 44 Burn Area; 03-58-001-03FN, Sandia Service Yard; and 09-54-001-09L2, Gun Propellant Burn Area. These CASs are located at the Tonopah Test Range near Areas 3 and 9. Historically, the FTA was used for training exercises where tires and wood were ignited with diesel fuel. Records indicate that water and carbon dioxide were the only extinguishing agents used during these training exercises. The Station 44 Burn Area was used for fire training exercises and consisted of two wooden structures. The two burn areas (ignition of tires, wood, and wooden structures with diesel fuel and water) were limited to the building footprints (10 ft by 10 ft each). The Sandia Service Yard was used for storage (i.e., wood, tires, metal, electronic and office equipment, construction debris, and drums of oil/grease) from approximately 1979 to 1993. The Gun Propellant Burn Area was used from the 1960s to 1980s to burn excess artillery gun propellant, solid-fuel rocket motors, black powder, and deteriorated explosives; additionally, the area was used for the disposal of experimental explosive items. Based on site history, the focus of the field investigation activities will be to: (1) determine the presence of contaminants of potential concern (COPCs) at each CAS, (2) determine if any COPCs exceed field-screening levels and/or preliminary action levels, and (3) determine the nature and extent of contamination with enough certainty to support selection of corrective action alternatives for each CAS. The scope of this CAIP is to resolve the question of whether or not potentially hazardous wastes were generated at three of the four CASs within CAU 490, and whether or not potentially hazardous and radioactive wastes were generated at the fourth CAS in CAU 490 (CAS 09-54-001-09L2). Suspected CAS-specific COPCs include volatile organic compounds, semivolatile organic compounds, total petroleum hydrocarbons, polychlorinated biphenyls, pesticides, explosives, and uranium and plutonium isotopes. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  6. Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    The Bear Creek Valley Floodplain Hot Spot Removal Action Project Plan, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee (Y/ER-301) was prepared (1) to safely, cost-effectively, and efficiently evaluate the environmental impact of solid material in the two debris areas in the context of industrial land uses (as defined in the Bear Creek Valley Feasibility Study) to support the Engineering Evaluation/Cost Assessment and (2) to evaluate, define, and implement the actions to mitigate these impacts. This work was performed under Work Breakdown Structure 1.x.01.20.01.08.

  7. Peru-Mitigation Action Plans and Scenarios (MAPS) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC Jump to:3Perrysburg, Ohio: EnergyOpen

  8. President Obama presents new Climate Action Plan | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhonoSolar andPresident Obama presents new

  9. South Africa-Mitigation Action Plans and Scenarios (MAPS) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSolo Energy JumpSoshin ElectricInformation

  10. Corrective Action Decision Document/Corrective Action Plan for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2010-11-22

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada National Security Site (NNSS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NNSS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the potential CAAs, Closure in Place with Administrative Controls is the preferred CAA for the 92-Acre Area. Closure activities will include the following: (1) Constructing an engineered evapotranspiration cover over the 92-Acre Area; (2) Installing use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; (3) Establishing vegetation on the cover; (4) Implementing a UR; and (5) Implementing post-closure inspections and monitoring. The Closure in Place with Administrative Controls alternative meets all requirements for the technical components evaluated, fulfills all applicable federal and state regulations for closure of the site, and will minimize potential future exposure pathways to the buried waste at the site.

  11. Corrective Action Decision Document/Corrective Action Plan for the 92-Acre Area and Corrective Action Unit 111: Area 5 WMD Retired Mixed Waste Pits, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2009-07-31

    This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the 92-Acre Area, the southeast quadrant of the Radioactive Waste Management Site, located in Area 5 of the Nevada Test Site (NTS). The 92-Acre Area includes Corrective Action Unit (CAU) 111, 'Area 5 WMD Retired Mixed Waste Pits.' Data Quality Objectives (DQOs) were developed for the 92-Acre Area, which includes CAU 111. The result of the DQO process was that the 92-Acre Area is sufficiently characterized to provide the input data necessary to evaluate corrective action alternatives (CAAs) without the collection of additional data. The DQOs are included as Appendix A of this document. This CADD/CAP identifies and provides the rationale for the recommended CAA for the 92-Acre Area, provides the plan for implementing the CAA, and details the post-closure plan. When approved, this CADD/CAP will supersede the existing Pit 3 (P03) Closure Plan, which was developed in accordance with Title 40 Code of Federal Regulations (CFR) Part 265, 'Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities.' This document will also serve as the Closure Plan and the Post-Closure Plan, which are required by 40 CFR 265, for the 92-Acre Area. After closure activities are complete, a request for the modification of the Resource Conservation and Recovery Act Permit that governs waste management activities at the NTS will be submitted to the Nevada Division of Environmental Protection to incorporate the requirements for post-closure monitoring. Four CAAs, ranging from No Further Action to Clean Closure, were evaluated for the 92-Acre Area. The CAAs were evaluated on technical merit focusing on performance, reliability, feasibility, safety, and cost. Based on the evaluation of the data used to develop the conceptual site model; a review of past, current, and future operations at the site; and the detailed and comparative analysis of the potential CAAs, Closure in Place with Administrative Controls is the preferred CAA for the 92-Acre Area. Closure activities will include the following: (1) Constructing an engineered evapotranspiration cover over the 92-Acre Area; (2) Installing use restriction (UR) warning signs, concrete monuments, and subsidence survey monuments; (3) Establishing vegetation on the cover; (4) Implementing a UR; and (5) Implementing post-closure inspections and monitoring. The Closure in Place with Administrative Controls alternative meets all requirements for the technical components evaluated, fulfills all applicable federal and state regulations for closure of the site, and will minimize potential future exposure pathways to the buried waste at the site.

  12. GLOBAL MONITORING OF URANIUM HEXIFLORIDE CYLINDERS NEXT STEPS IN DEVELOPMENT OF AN ACTION PLAN

    SciTech Connect (OSTI)

    Hanks, D.

    2010-06-09

    Over 40 industrial facilities world-wide use standardized uranium hexafluoride (UF{sub 6}) cylinders for transport, storage and in-process receiving in support of uranium conversion, enrichment and fuel fabrication processes. UF{sub 6} is processed and stored in the cylinders, with over 50,000 tU of UF{sub 6} transported each year in these International Organization for Standardization (ISO) qualified containers. Although each cylinder is manufactured to an ISO standard that calls for a nameplate with the manufacturer's identification number (ID) and the owner's serial number engraved on it, these can be quite small and difficult to read. Recognizing that each facility seems to use a different ID, a cylinder can have several different numbers recorded on it by means of metal plates, sticky labels, paint or even marker pen as it travels among facilities around the world. The idea of monitoring movements of UF{sub 6} cylinders throughout the global uranium fuel cycle has become a significant issue among industrial and safeguarding stakeholders. Global monitoring would provide the locations, movements, and uses of cylinders in commercial nuclear transport around the world, improving the efficiency of industrial operations while increasing the assurance that growing nuclear commerce does not result in the loss or misuse of cylinders. It should be noted that a unique ID (UID) attached to a cylinder in a verifiable manner is necessary for safeguarding needs and ensuring positive ID, but not sufficient for an effective global monitoring system. Modern technologies for tracking and inventory control can pair the UID with sensors and secure data storage for content information and complete continuity of knowledge over the cylinder. This paper will describe how the next steps in development of an action plan for employing a global UF{sub 6} cylinder monitoring network could be cultivated using four primary UID functions - identification, tracking, controlling, and accounting.

  13. Corrective Action Investigation Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada, Revision No. 1 (9/2001)

    SciTech Connect (OSTI)

    NNSA /NV

    2000-07-20

    This corrective action investigation plan contains the U.S. Department of Energy, Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 262 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 262 consists of nine Corrective Action Sites (CASs): Underground Storage Tank (25-02-06), Septic Systems A and B (25-04-06), Septic System (25-04-07), Leachfield (25-05-03), Leachfield (25-05-05), Leachfield (25-05-06), Radioactive Leachfield (25-05-08), Leachfield (25-05-12), and Dry Well (25-51-01). Situated in Area 25 at the Nevada Test Site (NTS), sites addressed by CAU 262 are located at the Reactor-Maintenance, Assembly, and Disassembly (R-MAD); Test Cell C; and Engine-Maintenance, Assembly, and Disassembly (E-MAD) facilities. The R-MAD, Test Cell C, and E-MAD facilities supported nuclear rocket reactor and engine testing as part of the Nuclear Rocket Development Station. The activities associated with the testing program were conducted between 1958 and 1973. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern (COPCs) for the site include oil/diesel-range total petroleum hydrocarbons, volatile organic compounds, semivolatile organic compounds, polychlorinated biphenyls, Resource Conservation and Recovery Act metals, and gamma-emitting radionuclides, isotopic uranium, isotopic plutonium, strontium-90, and tritium. The scope of the corrective action field investigation at the CAU will include the inspection of portions of the collection systems, sampling the contents of collection system features in situ of leachfield logging materials, surface soil sampling, collection of samples of soil underlying the base of inlet and outfall ends of septic tanks and outfall ends of diversion structures and distribution boxes, collection of soil samples from biased or a combination of biased and random locations within the boundaries of the leachfields, collection of soil samples at stepout locations (where needed) to further define lateral and vertical extent of contamination, conduction of discrete field screening, and logging of soil borings and collection of geotechnical samples to assess soil characteristics. Historical information indicates that significant quantities of radioactive material were produced during the rocket engine testing program, some of which was disposed of in radioactive waste disposal systems (posted leachfields) at each of these locations. Process and sanitary effluents were generated and disposed of in other leachfields. The results of this field investigation will be used to develop and evaluate corrective action alternatives for these CASs.

  14. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial action selection report, Attachment 2, Geology report: Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), Public Law 95-604. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this document and the rest of the RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, become Appendix B of the cooperative agreement between the DOE and the State of Colorado.

  15. Field Sampling Plan for the Operable Units 6-05 and 10-04 Remedial Action, Phase IV

    SciTech Connect (OSTI)

    R. Wells

    2006-11-14

    This Field Sampling Plan outlines the collection and analysis of samples in support of Phase IV of the Waste Area Group 10, Operable Units 6-05 and 10-04 remedial action. Phase IV addresses the remedial actions to areas with the potential for unexploded ordnance at the Idaho National Laboratory Site. These areas include portions of the Naval Proving Ground, the Arco High-Altitude Bombing Range, and the Twin Buttes Bombing Range. The remedial action consists of removal and disposal of ordnance by high-order detonation, followed by sampling to determine the extent, if any, of soil that might have been contaminated by the detonation activities associated with the disposal of ordnance during the Phase IV activities and explosives during the Phase II activities.

  16. Mitigation Action Plan: Lease of Parcel ED-1 of the Oak Ridge Reservation by the East Tennessee Economic Council

    SciTech Connect (OSTI)

    1996-04-01

    In April 1996, the U.S. Department of Energy (DOE) completed an environmental assessment (EA) (DOE/EA-1113) for the proposed lease of 957-16 acres (Parcel ED-1) of the Oak Ridge (Tennessee) Reservation (ORR) by the East Tennessee Economic Council (ETEC) for industrial development. DOE plans to issue a Finding of No Significant Impact (FONSI) for the proposed action, conditional upon the implementation of mitigation and monitoring to protect environmental resources. According to DOE`s National Environmental Policy Act (NEPA) regulations (10 CFR 1021.322), a FONSI shall include {open_quotes}any commitments to mitigations that are essential to render the impacts of the proposed action not significant, beyond those mitigations that are integral elements of the proposed action, and a reference to the Mitigation Action Plan prepared under 10 CTR 1021.331{close_quotes}. Terms of the lease offer DOE the option of terminating the lease with ETEC should the lessee and/or sublessees fail to implement the mitigation defined in the FONSI.

  17. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 574: Neptune, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2011-08-31

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for closure of Corrective Action Unit (CAU) 574, Neptune. CAU 574 is included in the Federal Facility Agreement and Consent Order (FFACO) (1996 [as amended March 2010]) and consists of the following two Corrective Action Sites (CASs) located in Area 12 of the Nevada National Security Site: (1) CAS 12-23-10, U12c.03 Crater (Neptune); (2) CAS 12-45-01, U12e.05 Crater (Blanca). This plan provides the methodology for the field activities that will be performed to gather the necessary information for closure of the two CASs. There is sufficient information and process knowledge regarding the expected nature and extent of potential contaminants to recommend closure of CAU 574 using the SAFER process. Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, field screening, analytical results, the results of the data quality objective (DQO) process (Section 3.0), and an evaluation of corrective action alternatives (Appendix B), closure in place with administrative controls is the expected closure strategy for CAU 574. Additional information will be obtained by conducting a field investigation to verify and support the expected closure strategy and provide a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  18. Fast Planning through Greedy Action Graphs \\Lambda Alfonso Gerevini and Ivan Serina

    E-Print Network [OSTI]

    Gerevini, Alfonso E.

    in a system called GPG, which can be used for both plan­generation and plan­adaptation tasks. Experimental results show that GPG can efficiently solve problems that are very hard for current planners based

  19. Worldwide Energy Efficiency Action through Capacity Building...

    Open Energy Info (EERE)

    Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and...

  20. New Pump and Treat Facility Remedial Action Work Plan for Test Area North (TAN) Final Groundwater Remediation, Operable Unit 1-07B

    SciTech Connect (OSTI)

    L. O. Nelson

    2003-09-01

    This operations and maintenance plan supports the New Pump and Treat Facility (NPTF) remedial action work plan and identifies the approach and requirements for the operations and maintenance activities specific to the final medical zone treatment remedy. The NPTF provides the treatment system necessary to remediate the medical zone portion of the OU 1-07B contaminated groundwater plume. Design and construction of the New Pump and Treat Facility is addressed in the NPTF remedial action work plan. The scope of this operation and maintenance plan includes facility operations and maintenance, remedy five-year reviews, and the final operations and maintenance report for the NPTF.

  1. Streamlined Approach for (SAFER) Plan for Corrective Action Unit 566: E-MAD Compound, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2010-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 566, EMAD Compound, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 566 comprises the following corrective action site (CAS) located in Area 25 of the Nevada Test Site: • 25-99-20, EMAD Compound This plan provides the methodology for field activities needed to gather the necessary information for closing CAS 25-99-20. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 566 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action. It is anticipated that the results of the field investigation and implementation of a corrective action of clean closure will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The data quality objective (DQO) strategy for CAU 566 was developed at a meeting on April 30, 2009, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for CAU 566. The following text summarizes the SAFER activities that will support the closure of CAU 566: • Perform site preparation activities (e.g., utilities clearances, radiological surveys). • Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. • Collect samples of materials to determine whether potential source material (PSM) is present that may cause the future release of a COC to environmental media. • If no COCs or PSMs are present at a CAS, establish no further action as the corrective action. • If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. • If a COC or PSM is present at a CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. • Confirm the selected closure option is sufficient to protect human health and the environment.

  2. Status Update on Action 2a: Implementation Handbook for Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by James Winter, NA-00-10. DOE Handbook: Implementing Activity-Level Work Planning & Control at Nuclear Facilities. Project Justification Statement submitted 1-29-13, with focus upon improved implementation of WP&C and activity-level work. Provides the background, project plan, and key elements of a new DOE handbook on implementing activity-level work planning and control at DOE nuclear facilities.

  3. U.S and Russia Develop Action Plan to Enhance Global and Bilateral...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that will provide a framework for further bilateral cooperation in the development of nuclear energy technology and deployment. The plan was completed and signed by both...

  4. Hydraulic jumps on an incline

    E-Print Network [OSTI]

    Jean-Luc Thiffeault; Andrew Belmonte

    2010-09-01

    When a fluid jet strikes an inclined solid surface at normal incidence, gravity creates a flow pattern with a thick outer rim resembling a parabola and reminiscent of a hydraulic jump. There appears to be little theory or experiments describing simple aspects of this phenomenon, such as the maximum rise height of the fluid above the impact point, and its dependence on jet velocity and inclination angle. We address this with experiments, and present a simple theory based on horizontal hydraulic jumps which accounts for the rise height and its scaling, though without describing the shape of the parabolic envelope.

  5. Vietnam-Integrated Action Plan to Reduce Vehicle Emissions | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, NewArkansas:Standards JumpUSA(EC-LEDS) | Open EnergyIISD

  6. Ecuador-Quito City Climate Change Action Plan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH Jump to:Providence, RhodeEchols County,EUEcomedNorthin Developing

  7. Kenya-Action Plan for National Climate Change Response Strategy | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro JumpHuariKeewatin Public UtilitiesTennessee)Energy

  8. Study of Long-Term Transport Action Plan for ASEAN | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfinMarket StudiesStrategic EnergyStresni Burza S

  9. Climate Action Planning: A Review of Best Practices, Key Elements, and

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:NewMinnesota: EnergyVirginia: Energy Resources

  10. Climate Information for Development Needs: An Action Plan for Africa | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:NewMinnesota: EnergyVirginia:ForestryFundsEnergy

  11. Remedial action plan and site design for stabilization of the inactive uranium mill tailings sites at Rifle, Colorado. Volume 2, Appendices D and E: Final report

    SciTech Connect (OSTI)

    Not Available

    1992-02-01

    This appendix assesses the present conditions and data gathered about the two inactive uranium mill tailings sites near Rifle, Colorado, and the designated disposal site six miles north of Rifle in the area of Estes Gulch. It consolidates available engineering, radiological, geotechnical, hydrological, meteorological, and other information pertinent to the design of the Remedial Action Plan (RAP). The data characterize conditions at the mill, tailings, and disposal site so that the Remedial Action Contractor (RAC) may complete final designs for the remedial actions.

  12. Viscous Hydraulic Jumps Submitted by

    E-Print Network [OSTI]

    Bush, John W.M.

    Viscous Hydraulic Jumps Submitted by Jeffrey M. Aristoff, Jeffrey D. Leblanc, Annette E. Hosoi, and John W. M. Bush, Massachusetts Institute of Technology We examine the form of the viscous hydraulic of height 2­10 mm. Elegaard et al.1 first demonstrated that the axial symme- try of the viscous hydraulic

  13. Semi-conditional planners for efficient planning under uncertainty with macro-actions

    E-Print Network [OSTI]

    He, Ruijie

    2010-01-01

    Planning in large, partially observable domains is challenging, especially when good performance requires considering situations far in the future. Existing planners typically construct a policy by performing fully conditional ...

  14. Uranium Mill Tailings Remedial Action Project, Surface Project Management Plan. Revision 1

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    Title I of the Uranium Mill Tailings Radiation Control Act (UMTRCA) authorizes the US Department of Energy (DOE) to undertake remedial action at 24 designated inactive uranium processing sites and associated vicinity properties (VP) containing uranium mill tailings and related residual radioactive materials. The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project is to minimize or eliminate radiation health hazards to the public and the environment at the 24 sites and related VPs. This document describes the management organization, system, and methods used to manage the design, construction, and other activities required to clean up the designated sites and associated VPs, in accordance with the UMTRCA.

  15. Planning for Action Research: Looking at Practice through a Different Lens

    SciTech Connect (OSTI)

    Hahn, Heidi A. [Los Alamos National Laboratory

    2012-08-03

    It has been my experience that behavioral science practitioners, including myself, often 'back into' action research. That is, we start out doing a process improvement or intervention and discover something along the way - generalizable knowledge - that seems worthwhile to share with our community of practice. What if, instead of looking at these projects from the point of view of practitioners, we looked at them as research from the outset? Would that change the outcome or generate additional knowledge? This paper compares and contrasts process improvement and action research methods, and illustrates how use of a research 'lens' can enhance behavioral science interventions and the knowledge that may result from them.

  16. Corrective Action Investigation Plan for Corrective Action Unit 99: Rainier Mesa/Shoshone Mountain, Nevada Test Site, Nevada with Errata and ROTC 1, Rev. No. 0

    SciTech Connect (OSTI)

    John McCord; Marutzky, Sam

    2004-12-01

    This Corrective Action Investigation Plan (CAIP) was developed for Corrective Action Unit (CAU) 99, Rainier Mesa/Shoshone Mountain. The CAIP is a requirement of the ''Federal Facility Agreement and Consent Order'' (FFACO) agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD) (FFACO, 1996). The FFACO addresses environmental restoration activities at U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) facilities and sites including the underground testing area(s) of the Nevada Test Site (NTS). This CAIP describes the investigation activities currently planned for the Rainier Mesa/Shoshone Mountain CAU. These activities are consistent with the current Underground Test Area (UGTA) Project strategy described in Section 3.0 of Appendix VI, Revision No. 1 (December 7, 2000) of the FFACO (1996) and summarized in Section 2.1.2 of this plan. The Rainier Mesa/Shoshone Mountain CAU extends over several areas of the NTS (Figure 1-1) and includes former underground nuclear testing locations in Areas 12 and 16. The area referred to as ''Rainier Mesa'' includes the geographical area of Rainier Mesa proper and the contiguous Aqueduct Mesa. Figure 1-2 shows the locations of the tests (within tunnel complexes) conducted at Rainier Mesa. Shoshone Mountain is located approximately 20 kilometers (km) south of Rainier Mesa, but is included within the same CAU due to similarities in their geologic setting and in the nature and types of nuclear tests conducted. Figure 1-3 shows the locations of the tests conducted at Shoshone Mountain. The Rainier Mesa/Shoshone Mountain CAU falls within the larger-scale Rainier Mesa/Shoshone Mountain Investigation Area, which also includes the northwest section of the Yucca Flat CAU as shown in Figure 1-1. Rainier Mesa and Shoshone Mountain lie adjacent to the Timber Mountain Caldera Complex and are composed of volcanic rocks that erupted from the caldera as well as from more distant sources. This has resulted in a layered volcanic stratigraphy composed of thick deposits of welded and nonwelded ash-flow tuff and lava flows. These deposits are proximal to the source caldera and are interstratified with the more distal facies of fallout tephra and bedded reworked tuff from more distant sources. In each area, a similar volcanic sequence was deposited upon Paleozoic carbonate and siliciclastic rocks that are disrupted by various thrust faults, normal faults, and strike-slip faults. In both Rainier Mesa (km) to the southwest, and Tippipah Spring, 4 km to the north, and the tunnel complex is dry. Particle-tracking simulations performed during the value of information analysis (VOIA) (SNJV, 2004b) indicate that most of the regional groundwater that underlies the test locations at Rainier Mesa and Shoshone Mountain eventually follows similar and parallel paths and ultimately discharges in Death Valley and the Amargosa Desert. Particle-tracking simulations conducted for the regional groundwater flow and risk assessment indicated that contamination from Rainier Mesa and Shoshone Mountain were unlikely to leave the NTS during the 1,000-year period of interest (DOE/NV, 1997a). It is anticipated that CAU-scale modeling will modify these results somewhat, but it is not expected to radically alter the outcome of these previous particle-tracking simulations within the 1,000-year period of interest. The Rainier Mesa/Shoshone Mountain CAIP describes the corrective action investigation (CAI) to be conducted at the Rainier Mesa/Shoshone Mountain CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The CAI will be conducted by the UGTA Project, which is part of the NNSA/NSO Environmental Restoration Project (ERP). The purpose and scope of the CAI are presented in this section, followed by a summary of the entire document.

  17. Action Item Review and Status

    Office of Environmental Management (EM)

    Waste Corporate Board Action Items Action Item Resolution Action Item Strategic Planning Initiative Optimization Study Resolution Presentation by S. Schneider (HLW System...

  18. Action-Space Partitioning for Planning Natalia H. Gardiol, Leslie Pack Kaelbling

    E-Print Network [OSTI]

    Kaelbling, Leslie Pack

    helicopters and two aircraft carriers in which the goal is to fly each of the helicopters onto a carrier, but in which we don't care which helicopters are on which carriers. We'll just consider a single action schema fly(h,c) that moves a helicopter from the ground to a carrier. Figure 1(a) shows a portion

  19. HWMA/RCRA Closure Plan for the Basin Facility Basin Water Treatment System - Voluntary Consent Order NEW-CPP-016 Action Plan

    SciTech Connect (OSTI)

    Evans, S. K.

    2007-11-07

    This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan for the Basin Water Treatment System located in the Basin Facility (CPP-603), Idaho Nuclear Technology and Engineering Center (INTEC), Idaho National Laboratory Site, was developed to meet future milestones established under the Voluntary Consent Order. The system to be closed includes units and associated ancillary equipment included in the Voluntary Consent Order NEW-CPP-016 Action Plan and Voluntary Consent Order SITE-TANK-005 Tank Systems INTEC-077 and INTEC-078 that were determined to have managed hazardous waste. The Basin Water Treatment System will be closed in accordance with the requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act, as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, to achieve "clean closure" of the tank system. This closure plan presents the closure performance standards and methods of achieving those standards for the Basin Water Treatment Systems.

  20. Remedial Design/Remedial Action Work Plan for Operable Units 6-05 and 10-04, Phase III

    SciTech Connect (OSTI)

    R. P. Wells

    2006-09-19

    The remedial design/remedial action for Operable Unit 6-05 (Waste Area Group 6) and Operable Unit 10-04 (Waste Area Group 10) - collectively called Operable Unit 10-04 has been divided into four phases. Phase I consists of developing and implementing institutional controls at Operable Unit 10-04 sites and developing and implementing Idaho National Laboratory-wide plans for both institutional controls and ecological monitoring. Phase II will remediate sites contaminated with trinitrotoluene and Royal Demolition Explosive. Phase III will remediate lead contamination at a gun range, and Phase IV will remediate hazards from unexploded ordnance. This Phase III remedial Design/Remedial Action Work Plan addresses the remediation of lead-contaminated soils found at the Security Training Facility (STF)-02 Gun Range located at the Idaho National Laboratory. Remediation of the STF-02 Gun Range will include excavating contaminated soils; physically separating copper and lead for recycling; returning separated soils below the remediation goal to the site; stabilizing contaminated soils, as required, and disposing of the separated soils that exceed the remediation goal; encapsulating and disposing of creosote-contaminated railroad ties and power poles; removing and disposing of the wooden building and asphalt pads found at the STF-02 Gun Range; sampling and analyzing soil to determine the excavation requirements; and when the remediation goals have been met, backfilling and contouring excavated areas and revegetating the affected area.

  1. Sampling and analysis plan for the Bear Creek Valley Boneyard/Burnyard Accelerated Action Project, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    In the Bear Creek Valley Watershed Remedial Investigation, the Boneyard/Burnyard was identified as the source of the largest releases of uranium into groundwater and surface water in Bear Creek Valley. The proposed action for remediation of this site is selective excavation and removal of source material and capping of the remainder of the site. The schedule for this action has been accelerated so that this is the first remedial action planned to be implemented in the Bear Creek Valley Record of Decision. Additional data needs to support design of the remedial action were identified at a data quality objectives meeting held for this project. Sampling at the Boneyard/Burnyard will be conducted through the use of a phased approach. Initial or primary samples will be used to make in-the-field decisions about where to locate follow-up or secondary samples. On the basis of the results of surface water, soil, and groundwater analysis, up to six test pits will be dug. The test pits will be used to provide detailed descriptions of source materials and bulk samples. This document sets forth the requirements and procedures to protect the personnel involved in this project. This document also contains the health and safety plan, quality assurance project plan, waste management plan, data management plan, implementation plan, and best management practices plan for this project as appendices.

  2. U.S. Department of Energy Corrective Action Plan for Environmental Management Headquarters

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCEDInstallers/ContractorsPhotovoltaicsStateof Energy| DepartmentFuel DepartmentCorrective Action

  3. Planning as Propositional CSP: from Walksat to Local Search Techniques for Action Graphs

    E-Print Network [OSTI]

    Gerevini, Alfonso E.

    techniques are implemented in a planner called LPG using various types of heuristics based on a parametrized evaluated using Lagrange multipliers. LPG's basic heuristic was inspired by Walksat, which in Kautz and Selman's Blackbox can be used to solve the SAT-encoding of a planning graph. An advantage of LPG

  4. I U.S. Department of Energy Corrective Action Plan for Environmental...

    Office of Environmental Management (EM)

    rslts of J.lN27-10 Extent of Cond io n R eview Open C AP Items Report Open Item s racl-lng R pcrt Produce Integra ted Asm t chedt.Jo Produce Int Asrnt Plan Perform tntegralo d...

  5. LEDSGP/Transportation Toolkit/Key Actions/Prioritize and Plan | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformation Actions(Redirected from TransportationInformation

  6. Park Profiler/Jump Analyzer Practical method for determining terrain park jump performance

    E-Print Network [OSTI]

    . Terrain Park jump safety as a rider/resort partnership II. USTPC criteria: Quantifying best practices in terrain park jump design III. "Park Profiler" - practical tool to measure TP jump IV. "Jump Analyzer of flying ... but, as Icarus leaned the hard way, there are risks. #12;Terrain Park Jump Safety Terrain park

  7. Addendum to Revision 1 of the Corrective Action Investigation Plan for Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nevada (Addendum Revision No. 1)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2001-06-06

    This document is submitted as an addendum to the Corrective Action Investigation Plan (CAIP) for Corrective Action Unit (CAU) 98: Frenchman Flat, Nevada Test Site (NTS), Nevada. The addendum was prepared to propose work activities in response to comments resulting from the U.S. Department of Energy's (DOE's) review of the draft Frenchman Flat CAU model of groundwater flow and contaminant transport completed in April 1999. The reviewers included an external panel of experts and the Nevada Division of Environmental Protection. As a result of the review, additional work scope, including new data-collection and modeling activities, has been identified for the Frenchman Flat CAU. The proposed work scope described in this addendum will be conducted in accordance with the revised Underground Test Area strategy contained in the December 2000 amendment to the Federal Facility Agreement and Consent Order. The Frenchman Flat CAU model is a group of interdependent models designed to predict the extent of contamination in groundwater due to the underground nuclear tests conducted within this CAU. At the time of the DOE review, the CAU model consisted of a CAU groundwater flow and transport model comprised of two major components: a groundwater flow model and a recharge model. The CAU groundwater flow model is supported by a hydrostratigraphic model and a recharge model, whereas the CAU transport model is supported by a source-term model. As part of the modeling activities proposed in this addendum, two new major components may be added to the Frenchman Flat CAU model: a total-system model and two local groundwater flow and transport models. The reviewers identified several issues relating to insufficiency of data and inadequacy of the modeling process that should be addressed to provide additional confidence in the modeling results with respect to the potential for contaminant migration to the Lower Carbonate Aquifer. The proposed additional work scope includes new data-collection activities, development and use of local-scale models of the two underground nuclear testing areas, and potential revisions of draft CAU groundwater flow and transport models. Upon completion of this work, an evaluation will be made by DOE to ensure that all issues have been resolved.

  8. Streamlined approach for environmental restoration plan for corrective action unit 430, buried depleted uranium artillery round No. 1, Tonopah test range

    SciTech Connect (OSTI)

    NONE

    1996-09-01

    This plan addresses actions necessary for the restoration and closure of Corrective Action Unit (CAU) No. 430, Buried Depleted Uranium (DU) Artillery Round No. 1 (Corrective Action Site No. TA-55-003-0960), a buried and unexploded W-79 Joint Test Assembly (JTA) artillery test projectile with high explosives (HE), at the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Tonopah Test Range (TTR) in south-central Nevada. It describes activities that will occur at the site as well as the steps that will be taken to gather adequate data to obtain a notice of completion from Nevada Division of Environmental Protection (NDEP). This plan was prepared under the Streamlined Approach for Environmental Restoration (SAFER) concept, and it will be implemented in accordance with the Federal Facility Agreement and Consent Order (FFACO) and the Resource Conservation and Recovery Act (RCRA) Industrial Sites Quality Assurance Project Plan.

  9. US Department of Energy Uranium Mill Tailings Remedial Action ground water Project. Revision 1, Version 1: Final project plan

    SciTech Connect (OSTI)

    Not Available

    1993-12-21

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA processing sites. The compliance strategy for the processing sites must satisfy requirements of the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1988). This scope of work will entail the following activities, on a site-specific basis: Development of a compliance strategy based upon modification of the UMTRA Surface Project remedial action plans (RAP) or development of Ground Water Project RAPs with NRC and state or tribal concurrence on the RAP; implementation of the RAP to include establishment of institutional controls, where appropriate; institution of long-term verification monitoring for transfer to a separate DOE program on or before the Project end date; and preparation of completion reports and final licensing on those sites that will be completed prior to the Project end date.

  10. INL SITEWIDE INSTITUTIONAL CONTROLS, AND OPERATIONS AND MAINTENANCE PLAN FOR CERCLA RESPONSE ACTIONS

    SciTech Connect (OSTI)

    JOLLEY, WENDELL L

    2008-02-05

    On November 9, 2002, the U.S. Environmental Protection Agency, the U.S. Department of Energy, and the Idaho Department of Environmental Quality approved the 'Record of Decision Experimental Breeder Reactor-I/Boiling Water Reactor Experiment Area and Miscellaneous Sites', which required a Site-wide institutional controls plan for the then Idaho National Engineering and Environmental Laboratory (now known as the Idaho National Laboratory). This document, first issued in June 2004, fulfilled that requirement. This revision identifies and consolidates the institutional controls and operations and maintenance requirements into a single document.

  11. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-09-30

    This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

  12. Field sampling and analysis plan for the removal action at the former YS-860 Firing Ranges, Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    1998-03-01

    The former YS-860 Firing Ranges are located at the eastern end of the Oak Ridge Y-12 Plant outside the primary facility fence line and west of Scarboro Road within the Upper East Fork Poplar Creek watershed in Oak Ridge, Tennessee. A decision has been made by the US Department of Energy to conduct a removal action of lead-contaminated soils at this site as part of early source actions within the Upper East Fork Poplar Creek watershed. This non-time critical removal action of bullets and lead-contaminated soil from the YS-860 Firing Ranges is being conducted as a Comprehensive Environmental Response, Compensation, and Liability Act of 1980 action. These actions are consistent with the Oak Ridge Reservation Environmental Restoration Program. The removal action will focus on the excavation of bullets and lead-contaminated soil from the shooting range berms, transportation of the material to a permitted treatment facility for disposal, demolition and land filling of a concrete trench and asphalt pathways at the site, and grading and revegetating of the entire site. This report is the field sampling and analysis plan for the removal action at the former YS-860 Firing Ranges. The field sampling and analysis plan addresses environmental sampling for lead after the removal of lead-contaminated soil from the target berm area. The objective of this sampling plan is to obtain sufficient analytical data to confirm that the removal action excavation has successfully reduced lead levels in soil to below the action level of 1,400 micrograms/g.

  13. Numerical Study of a Turbulent Hydraulic Jump

    E-Print Network [OSTI]

    Zhao, Qun

    Numerical Study of a Turbulent Hydraulic Jump Qun Zhao, Shubhra Misra, Ib. A. Svendsen and James T of a Turbulent Hydraulic Jump ­ p.1/14 #12;Objective Our ultimate goal is to study the breaking waves. Numerical Study of a Turbulent Hydraulic Jump ­ p.2/14 #12;A moving bore Qiantang Bore China (Courtesy of Dr J

  14. RIDGE JUMP PROCESS IN ICELAND Sebastian GARCIA

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 RIDGE JUMP PROCESS IN ICELAND Sebastian GARCIA Freie Universität Berlin ­ Department of Geologie, sgarcia@zedat.fu-berlin.de Abstract Eastward ridge jumps bring the volcanic zones of Iceland back pulses triggers these ridge jumps. One of them is occurring in Southern Iceland, whereas the exact

  15. Proposed plan for remedial action at the quarry residuals operable unit of the Weldon Spring Site

    SciTech Connect (OSTI)

    NONE

    1998-03-01

    This proposed plan addresses the management of contamination present in various components of the quarry residuals operable unit (QROU) of the Weldon Spring site, which is located in St. Charles County, Missouri. The QROU consists of (1) residual waste at the quarry proper; (2) the Femme Osage Slough, Little Femme Osage Creek, and Femme Osage Creek; and (3) quarry groundwater located primarily north of the slough. Potential impacts to the St. Charles County well field downgradient of the quarry area are also being addressed as part of the evaluations for this operable unit. Remedial activities for the QROU will be conducted by the US Department of Energy (DOE) in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), as amended. As part of the remedial investigation/feasibility study (RI/FS) process required for the QROU under CERCLA, three major evaluation documents have been prepared to support cleanup decisions for this operable unit.

  16. Corrective Action Investigation Plan for Corrective Action Unit 527: Horn Silver Mine, Nevada Test Site, Nevada: Revision 1 (Including Records of Technical Change No.1, 2, 3, and 4)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office

    2002-12-06

    This Corrective Action Investigation Plan contains the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 527, Horn Silver Mine, Nevada Test Site, Nevada, under the Federal Facility Agreement and Consent Order. Corrective Action Unit 527 consists of one Corrective Action Site (CAS): 26-20-01, Contaminated Waste Dump No.1. The site is located in an abandoned mine site in Area 26 (which is the most arid part of the NTS) approximately 65 miles northwest of Las Vegas. Historical documents may refer to this site as CAU 168, CWD-1, the Wingfield mine (or shaft), and the Wahmonie mine (or shaft). Historical documentation indicates that between 1959 and the 1970s, nonliquid classified material and unclassified waste was placed in the Horn Silver Mine's shaft. Some of the waste is known to be radioactive. Documentation indicates that the waste is present from 150 feet to the bottom of the mine (500 ft below ground surface). This CAU is being investigated because hazardous constituents migrating from materials and/or wastes disposed of in the Horn Silver Mine may pose a threat to human health and the environment as well as to assess the potential impacts associated with any potential releases from the waste. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  17. U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date.

  18. Mitigation action plan sale of Naval Petroleum Reserve No. 1 (Elk Hills) Kern County, California

    SciTech Connect (OSTI)

    NONE

    1998-01-01

    Naval Petroleum Reserve No. 1 (NPR-1, also called {open_quotes}Elk Hills{close_quotes}), a Federally-owned oil and gas production field in Kern County, California, was created by an Executive Order issued by President Taft on September 2, 1912. He signed another Executive Order on December 13, 1912, to establish Naval Petroleum Reserve No. 2 (NPR-2), located immediately south of NPR-1 and containing portions of the town of Taft, California. NPR-1 was not developed until the 1973-74 oil embargo demonstrated the nation`s vulnerability to oil supply interruptions. Following the embargo, Congress passed the Naval Petroleum Reserves Production Act of 1976 which directed that the reserve be explored and developed to its fall economic potential at the {open_quotes}maximum efficient rate{close_quotes} (MER) of production. Since Elk Hills began full production in 1976, it has functioned as a commercial operation, with total revenues to the Federal government through FY 1996 of $16.4 billion, compared to total exploration, development and production costs of $3.1 billion. In February 1996, Title 34 of the National Defense Authorization Act for Fiscal Year 1996 (P.L. 104-106), referred to as the Elk Hills Sales Statute, directed the Secretary of Energy to sell NPR-1 by February 10, 1998.The Secretary was also directed to study options for enhancing the value of the other Naval Petroleum and Oil Shale Reserve properties such as NPR-2, located adjacent to NPR-1 in Kern County- Naval Petroleum Reserve No. 3 (NPR-3) located in Natrona County, Wyoming; Naval Oil Shale Reserves No. 1 and No. 3 (NOSR-1 and NOSR-3) located in Garfield County, Colorado; and Naval Oil Shale Reserve No. 2 (NOSR-2) located in Uintah and Carbon Counties, Utah. The purpose of these actions was to remove the Federal government from the inherently non-Federal function of operating commercial oil fields while making sure that the public would obtain the maximum value from the reserves.

  19. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 124: Storage Tanks, Nevada Test Site, Nevada (Draft), Revision 0

    SciTech Connect (OSTI)

    Alfred Wickline

    2007-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses closure for Corrective Action Unit (CAU) 124, Areas 8, 15, and 16 Storage Tanks, identified in the Federal Facility Agreement and Consent Order. Corrective Action Unit 124 consists of five Corrective Action Sites (CASs) located in Areas 8, 15, and 16 of the Nevada Test Site as follows: • 08-02-01, Underground Storage Tank • 15-02-01, Irrigation Piping • 16-02-03, Underground Storage Tank • 16-02-04, Fuel Oil Piping • 16-99-04, Fuel Line (Buried) and UST This plan provides the methodology of field activities necessary to gather information to close each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 124 using the SAFER process.

  20. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 113: Reactor Maintenance, Assembly, and Disassembly Building Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    J. L. Smith

    2001-01-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the action necessary for the closure in place of Corrective Action Unit (CAU) 113 Area 25 Reactor Maintenance, Assembly, and Disassembly Facility (R-MAD). CAU 113 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (NDEP, 1996). The CAU is located in Area 25 of the Nevada Test Site (NTS) and consists of Corrective Action Site (CAS) 25-04-01, R-MAD Facility (Figures 1-2). This plan provides the methodology for closure in place of CAU 113. The site contains radiologically impacted and hazardous material. Based on preassessment field work, there is sufficient process knowledge to close in place CAU 113 using the SAFER process. At a future date when funding becomes available, the R-MAD Building (25-3110) will be demolished and inaccessible radiologic waste will be properly disposed in the Area 3 Radiological Waste Management Site (RWMS).

  1. Integrating spatial support tools into strategic planning-SEA of the GMS North-South Economic Corridor Strategy and Action Plan

    SciTech Connect (OSTI)

    Ramachandran, Pavit; Linde, Lothar

    2011-11-15

    The GMS countries, supported by the Asian Development Bank, have adopted a holistic, multidimensional approach to strengthen infrastructural linkages and facilitate cross border trade through (i) the establishment of a trans-boundary road connecting two economic nodes across marginalised areas, followed by 2) facilitation of environmentally and socially sound investments in these newly connected areas as a means to develop livelihoods. The North-South Economic Corridor is currently in its second phase of development, with investment opportunities to be laid out in the NSEC Strategy and Action Plan (SAP). It targets the ecologically and culturally sensitive border area between PR China's Yunnan Province, Northern Lao PDR, and Thailand. A trans-boundary, cross-sectoral Strategic Environmental Assessment was conducted to support the respective governments in assessing potential environmental and social impacts, developing alternatives and mitigation options, and feeding the findings back into the SAP writing process. Given the spatial dimension of corridor development-both with regard to opportunities and risks-particular emphasis was put in the application of spatial modelling tools to help geographically locate and quantify impacts as a means to guide interventions and set priorities.

  2. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Appendix E. Final report

    SciTech Connect (OSTI)

    NONE

    1988-07-01

    This document provides Appendix E of the Remedial Action Plan (RAP) presented in 1988 for the stabilization of the inactive uranium mill tailings at the Mexican Hat, Utah site. The RAP was developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. The RAP has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action.

  3. Industrial Sites Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (including Record of Technical Change Nos. 1, 2, 3, and 4)

    SciTech Connect (OSTI)

    DOE/NV

    1998-12-18

    This Leachfield Corrective Action Units (CAUs) Work Plan has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the U.S. Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the U.S. Department of Defense (FFACO, 1996). Under the FFACO, a work plan is an optional planning document that provides information for a CAU or group of CAUs where significant commonality exists. A work plan may be developed that can be referenced by leachfield Corrective Action Investigation Plans (CAIPs) to eliminate redundant CAU documentation. This Work Plan includes FFACO-required management, technical, quality assurance (QA), health and safety, public involvement, field sampling, and waste management documentation common to several CAUs with similar site histories and characteristics, namely the leachfield systems at the Nevada Test Site (NTS) and the Tonopah Test Range (TT R). For each CAU, a CAIP will be prepared to present detailed, site-specific information regarding contaminants of potential concern (COPCs), sampling locations, and investigation methods.

  4. Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites, Nevada National Security Site, Nevada

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-07-01

    Corrective Action Unit 106 comprises the four corrective action sites (CASs) listed below: • 05-20-02, Evaporation Pond • 05-23-05, Atmospheric Test Site - Able • 05-45-04, 306 GZ Rad Contaminated Area • 05-45-05, 307 GZ Rad Contaminated Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 19, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 106. The presence and nature of contamination at CAU 106 will be evaluated based on information collected from a field investigation. The CAU includes land areas impacted by the release of radionuclides from groundwater pumping during the Radionuclide Migration study program (CAS 05-20-02), a weapons-related airdrop test (CAS 05-23-05), and unknown support activities at two sites (CAS 05-45-04 and CAS 05-45-05). The presence and nature of contamination from surface-deposited radiological contamination from CAS 05-23-05, Atmospheric Test Site - Able, and other types of releases (such as migration and excavation as well as any potential releases discovered during the investigation) from the remaining three CASs will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 106 includes the following activities: • Conduct radiological surveys. • Collect and submit environmental samples for laboratory analysis to determine internal dose rates and the presence of contaminants of concern. • If contaminants of concern are present, collect additional samples to define the extent of the contamination and determine the area where the total effective dose at the site exceeds final action levels (i.e., corrective action boundary). • Collect samples of investigation-derived waste, as needed, for waste management purposes.

  5. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 408: Bomblet Target Area Tonopah Test Range (TTR), Nevada, Revision 1

    SciTech Connect (OSTI)

    Mark Krauss

    2010-03-01

    This Streamlined Approach for Environmental Restoration Plan addresses the actions needed to achieve closure of Corrective Action Unit (CAU) 408, Bomblet Target Area (TTR). Corrective Action Unit 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. Corrective Action Unit 408 comprises Corrective Action Site TA-55-002-TAB2, Bomblet Target Areas. Clean closure of CAU 408 will be accomplished by removal of munitions and explosives of concern within seven target areas and potential disposal pits. The target areas were used to perform submunitions related tests for the U.S. Department of Energy (DOE). The scope of CAU 408 is limited to submunitions released from DOE activities. However, it is recognized that the presence of other types of unexploded ordnance and munitions may be present within the target areas due to the activities of other government organizations. The CAU 408 closure activities consist of: • Clearing bomblet target areas within the study area. • Identifying and remediating disposal pits. • Collecting verification samples. • Performing radiological screening of soil. • Removing soil containing contaminants at concentrations above the action levels. Based on existing information, contaminants of potential concern at CAU 408 include unexploded submunitions, explosives, Resource Conservation Recovery Act metals, and depleted uranium. Contaminants are not expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results.

  6. Corrective Action Investigation Plan for Corrective Action Unit 97: Yucca Flat/Climax Mine, Nevada National Security Site, Nevada with ROTCs 1, 2, and 3 (Revision 0, September 2000)

    SciTech Connect (OSTI)

    Andrews, Robert; Marutzky, Sam

    2000-09-01

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's) approach to collect the data necessary to evaluate Corrective Action Alternatives (CAAs) appropriate for the closure of Corrective Action Unit (CAU) 97 under the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 97, collectively known as the Yucca Flat/Climax Mine CAU, consists of 720 Corrective Action Sites (CASs). The Yucca Flat/Climax Mine CAU extends over several areas of the NTS and constitutes one of several areas used for underground nuclear testing in the past. The nuclear tests resulted in groundwater contamination in the vicinity as well as downgradient of the underground test areas. Based on site history, the Yucca Flat underground nuclear tests were conducted in alluvial, volcanic, and carbonate rocks; whereas, the Climax Mine tests were conducted in an igneous intrusion located in northern Yucca Flat. Particle-tracking simulations performed during the regional evaluation indicate that the local Climax Mine groundwater flow system merges into the much larger Yucca Flat groundwater flow systems during the 1,000-year time period of interest. Addressing these two areas jointly and simultaneously investigating them as a combined CAU has been determined the best way to proceed with corrective action investigation (CAI) activities. The purpose and scope of the CAI includes characterization activities and model development conducted in five major sequential steps designed to be consistent with FFACO Underground Test Area Project's strategy to predict the location of the contaminant boundary, develop and implement a corrective action, and close each CAU. The results of this field investigation will support a defensible evaluation of CAAs in the subsequent corrective action decision document.

  7. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 575: Area 15 Miscellaneous Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-12-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 575, Area 15 Miscellaneous Sites, identified in the Federal Facility Agreement and Consent Order (FFACO). CAU 575 comprises the following four corrective action sites (CASs) located in Area 15 of the Nevada National Security Site: • 15-19-02, Waste Burial Pit • 15-30-01, Surface Features at Borehole Sites • 15-64-01, Decontamination Area • 15-99-03, Aggregate Plant This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 575 using the SAFER process. Additional information will be obtained by conducting a field investigation to document and verify the adequacy of existing information, to affirm the predicted corrective action decisions, and to provide sufficient data to implement the corrective actions. This will be presented in a closure report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval.

  8. Remedial Action Plan and final design for stabilization of the inactive uranium mill tailings at Green River, Utah. Volume 1, Text, Appendices A, B, and C: Final report

    SciTech Connect (OSTI)

    Matthews, M.L. [USDOE Albuquerque Operations Office, NM (United States). Uranium Mill Tailings Remedial Action Project Office; Alkema, K. [Utah Dept. of Health, Salt Lake City, UT (United States). Environmental Health Div.

    1991-03-01

    This Remedial Action Plan (RAP) has been developed to serve a threefold purpose. It presents the series of activities that are proposed by the US Department of Energy (DOE) to accomplish long-term stabilization and control of radioactive materials at the inactive uranium processing site located near Green River, Utah. It provides a characterization of the present conditions of the site. It also serves to document the concurrence of the state of Utah and the US Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by the DOE and the state of Utah, and concurrence by the NRC, becomes Appendix 8 of the Cooperative Agreement.

  9. Corrective Action Investigation Plan for Corrective Action Unit 106: Areas 5, 11 Frenchman Flat Atmospheric Sites, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2010-04-01

    Corrective Action Unit (CAU) 106 is located in Area 5 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 106 comprises the five corrective action sites (CASs) listed below: •05-23-02, GMX Alpha Contaminated Area •05-23-05, Atmospheric Test Site - Able •05-45-01, Atmospheric Test Site - Hamilton •05-45-04, 306 GZ Rad Contaminated Area •05-45-05, 307 GZ Rad Contaminated Area These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 19, 2010, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 106. The presence and nature of contamination at CAU 106 will be evaluated based on information collected from a field investigation. The CAU includes land areas impacted by the release of radionuclides from a weapons-effect tower test (CAS 05-45-01), a weapons-related airdrop test (CAS 05-23-05), “equation of state” experiments (CAS 05-23-02), and unknown support activities at two sites (CAS 05-45-04 and CAS 05-45-05). Surface-deposited radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample plot locations to the dose-based final action level. The TED will be calculated as the total of separate estimates of internal and external doses. Results from the analysis of soil samples collected from sample plots will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample plot will be used to measure external radiological dose. The presence and nature of contamination from other types of releases (such as migration and excavation as well as any potential releases discovered during the investigation) will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 106 includes the following activities: •Conduct radiological surveys. •Collect and submit environmental samples for laboratory analysis to determine internal dose rates and the presence of contaminants of concern. •If contaminants of concern are present, collect additional samples to define the extent of the contamination and determine the area where TED at the site exceeds final action levels (i.e., corrective action boundary). •Collect samples of investigation-derived waste, as needed, for waste management purposes.

  10. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    K. B. Campbell

    2001-11-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the activities necessary to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites. CAU 398, located in Area 25 of the Nevada Test Site, is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996), and consists of the following 13 Corrective Action Sites (CASs) (Figure 1): (1) CAS 25-44-01 , a fuel spill on soil that covers a concrete pad. The origins and use of the spill material are unknown, but the spill is suspected to be railroad bedding material. (2) CAS 25-44-02, a spill of liquid to the soil from leaking drums. (3) CAS 25-44-03, a spill of oil from two leaking drums onto a concrete pad and surrounding soil. (4) CAS 25-44-04, a spill from two tanks containing sulfuric acid and sodium hydroxide used for a water demineralization process. (5) CAS 25-25-02, a fuel or oil spill from leaking drums that were removed in 1992. (6) CAS 25-25-03, an oil spill adjacent to a tipped-over drum. The source of the drum is not listed, although it is noted that the drum was removed in 1991. (7) CAS 25-25-04, an area on the north side of the Engine-Maintenance, Assembly, and Disassembly (E-MAD) facility, where oils and cooling fluids from metal machining operations were poured directly onto the ground. (8) CAS 25-25-05, an area of oil and/or hydraulic fluid spills beneath the heavy equipment once stored there. (9) CAS 25-25-06, an area of diesel fuel staining beneath two generators that have since been removed. (10) CAS 25-25-07, an area of hydraulic oil spills associated with a tunnel-boring machine abandoned inside X-Tunnel. (11) CAS 25-25-08, an area of hydraulic fluid spills associated with a tunnel-boring machine abandoned inside Y-Tunnel. (12) CAS 25-25-16, a diesel fuel spill from an above-ground storage tank located near Building 3320 at Engine Test Stand-1 (ETS-1) that was removed in 1998. (13) CAS 25-25-17, a hydraulic oil spill associated with the historical operations of a vacuum pump oil recovery system at the E-MAD facility.

  11. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Remedial Action Selection Report, Appendix B of Attachment 2: Geology report, Final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the US Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the US Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the US Environmental Protection Agency (EPA). Included in the RAP is this Remedial Action Selection Report (RAS), which describes the proposed remedial action for the Naturita site. An extensive amount of data and supporting information has been generated and evaluated for this remedial action. These data and supporting information are not incorporated into this single document but are included or referenced in the supporting documents. The RAP consists of this RAS and four supporting documents or attachments. This Attachment 2, Geology Report describes the details of geologic, geomorphic, and seismic conditions at the Dry Flats disposal site.

  12. Mitigation Action Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    using the most direct route and construct water crossings during periods of low flow conditions to the extent practicable. Use crossing sites that have low, stable banks, a...

  13. Action Plan Submissions

    Office of Environmental Management (EM)

    cause cracking in tritium containment vessels. * Tritium embrittlement phenomena is an aging phenomena and understood to be an enhanced form of hydrogen embrittement that results...

  14. Mitigation Action Plan

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMission Mission Missionof Energy PonemanMissouriMitchell

  15. Action Plan - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAbout AwardedAcronyms This is a quick guide|ARQ

  16. Workforce Diversity Action Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubictheThepresented in the7WorkerWorkforce Diversity

  17. Mitigation Action Plan

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy6-09.docAERMOD-PRIME, Units 4, 1,

  18. WREP Mitigation Action Plan

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE. regulators consumer advocates5-4: Quality

  19. MITIGATION ACTION PLAN

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTech ConnectFuture3,LastMICKEYofRe

  20. Corrective Action Investigation Plan for Corrective Action Unit 569: Area 3 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews; Christy Sloop

    2012-02-01

    Corrective Action Unit (CAU) 569 is located in Area 3 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 569 comprises the nine numbered corrective action sites (CASs) and one newly identified site listed below: (1) 03-23-09, T-3 Contamination Area (hereafter referred to as Annie, Franklin, George, and Moth); (2) 03-23-10, T-3A Contamination Area (hereafter referred to as Harry and Hornet); (3) 03-23-11, T-3B Contamination Area (hereafter referred to as Fizeau); (4) 03-23-12, T-3S Contamination Area (hereafter referred to as Rio Arriba); (5) 03-23-13, T-3T Contamination Area (hereafter referred to as Catron); (6) 03-23-14, T-3V Contamination Area (hereafter referred to as Humboldt); (7) 03-23-15, S-3G Contamination Area (hereafter referred to as Coulomb-B); (8) 03-23-16, S-3H Contamination Area (hereafter referred to as Coulomb-A); (9) 03-23-21, Pike Contamination Area (hereafter referred to as Pike); and (10) Waste Consolidation Site 3A. Because CAU 569 is a complicated site containing many types of releases, it was agreed during the data quality objectives (DQO) process that these sites will be grouped. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each study group. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the DQOs developed on September 26, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 569. The presence and nature of contamination at CAU 569 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. A field investigation will be performed to define any areas where TED exceeds the FAL and to determine whether contaminants of concern are present at the site from other potential releases. The presence and nature of contamination from other types of releases (e.g., excavation, migration, and any potential releases discovered during the investigation) will be evaluated using soil samples collected from biased locations indicating the highest levels of contamination. Appendix A provides a detailed discussion of the DQO methodology and the objectives specific to each study group.

  1. Corrective Action Investigation Plan for Corrective Action Unit 366: Area 11 Plutonium Valley Dispersion Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-09-01

    Corrective Action Unit 366 comprises the six corrective action sites (CASs) listed below: (1) 11-08-01, Contaminated Waste Dump No.1; (2) 11-08-02, Contaminated Waste Dump No.2; (3) 11-23-01, Radioactively Contaminated Area A; (4) 11-23-02, Radioactively Contaminated Area B; (5) 11-23-03, Radioactively Contaminated Area C; and (6) 11-23-04, Radioactively Contaminated Area D. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed July 6, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 366. The presence and nature of contamination at CAU 366 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) at sample locations to the dose-based final action level (FAL). The TED will be calculated by summing the estimates of internal and external dose. Results from the analysis of soil samples collected from sample plots will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at each sample location will be used to measure external radiological dose. Based on historical documentation of the releases associated with the nuclear tests, it was determined that CASs 11-23-02, 11-23-03, and 11-23-04 will be investigated as one release site. The three test areas associated with these CASs are in close proximity; the devices tested were all composed of plutonium and enriched uranium; and the ground zeroes are all posted high contamination areas (HCAs). Because the device tested at CAS 11-23-01 was composed primarily of enriched uranium and the ground zero is not a posted HCA, the CAS will be investigated as a separate release. The DQO process also resulted in an assumption that TED within the HCAs and contaminated waste dumps exceeds the FAL and requires corrective action. A field investigation will be performed to define where TED exceeds the FAL and to determine whether other contaminants of concern are present at the site associated with other activities that took place at the site or from spills or waste discovered during the investigation. The presence and nature of contamination from other types of releases (such as migration and any potential releases discovered during the investigation) will be evaluated using soil samples collected from the locations most likely containing contamination, if present. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  2. Remedial Action Plan for the codisposal and stabilization of the Monument Valley and Mexican Hat uranium mill tailings at Mexican Hat, Utah

    SciTech Connect (OSTI)

    NONE

    1993-02-01

    This document is a revision of the original Mexiacan Hat Remedial Action Plan (RAP) and RAP Modification submitted in July 1988 and January 1989, respectively, along with updated design documents. This RAP has been developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Section 2.0 presents the EPA standards, including a discussion of their objectives. Section 3. 0 summarizes the present site characteristics and provides a definition of site-specific problems. Section 4.0 is the site design for the proposed action. Section 5.0 presents the water resources protection strategy. Section 6.0 summarizes the plan for ensuring health and safety protection for the surrounding community and the on- site workers. Section 7.0 lists the responsibilities of the project participants. Section 8.0 describes the features of the long-term surveillance and maintenance plan.

  3. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Text, Appendices A--C. Final report

    SciTech Connect (OSTI)

    NONE

    1988-07-01

    This Remedial Action Plan (RAP) has been developed to serve a two- fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents. Appendices A,B, and C are provided as part of this document. Appendix A presents regulatory compliance issues, Appendix B provides details of the engineering design, and Appendix C presents the radiological support plan.

  4. Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada, Revision 0. UPDATED WITH RECORD OF TECHNICAL CHANGE No.1

    SciTech Connect (OSTI)

    U.S. DOE /NV

    1999-02-08

    This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (DOE/NV, 1996a). The Fuel Storage Area was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a).

  5. Corrective Action Investigation Plan for Corrective Action Unit 165: Areas 25 and 26 Dry Well and Washdown Areas, Nevada Test Site, Nevada (including Record of Technical Change Nos. 1, 2, and 3) (January 2002, Rev. 0)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office (NNSA/NV)

    2002-01-09

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 165 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 165 consists of eight Corrective Action Sites (CASs): CAS 25-20-01, Lab Drain Dry Well; CAS 25-51-02, Dry Well; CAS 25-59-01, Septic System; CAS 26-59-01, Septic System; CAS 25-07-06, Train Decontamination Area; CAS 25-07-07, Vehicle Washdown; CAS 26-07-01, Vehicle Washdown Station; and CAS 25-47-01, Reservoir and French Drain. All eight CASs are located in the Nevada Test Site, Nevada. Six of these CASs are located in Area 25 facilities and two CASs are located in Area 26 facilities. The eight CASs at CAU 165 consist of dry wells, septic systems, decontamination pads, and a reservoir. The six CASs in Area 25 are associated with the Nuclear Rocket Development Station that operated from 1958 to 1973. The two CASs in Area 26 are associated with facilities constructed for Project Pluto, a series of nuclear reactor tests conducted between 1961 to 1964 to develop a nuclear-powered ramjet engine. Based on site history, the scope of this plan will be a two-phased approach to investigate the possible presence of hazardous and/or radioactive constituents at concentrations that could potentially pose a threat to human health and the environment. The Phase I analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. If laboratory data obtained from the Phase I investigation indicates the presence of contaminants of concern, the process will continue with a Phase II investigation to define the extent of contamination. Based on the results of Phase I sampling, the analytical program for Phase II investigation may be reduced. The results of this field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

  6. Bubble visualization in a simulated hydraulic jump

    E-Print Network [OSTI]

    Witt, Adam; Shen, Lian

    2013-01-01

    This is a fluid dynamics video of two- and three-dimensional computational fluid dynamics simulations carried out at St. Anthony Falls Laboratory. A transient hydraulic jump is simulated using OpenFOAM, an open source numerical solver. A Volume of Fluid numerical method is employed with a realizable k-epsilon turbulence model. The goal of this research is to model the void fraction and bubble size in a transient hydraulic jump. This fluid dynamics video depicts the air entrainment characteristics and bubble behavior within a hydraulic jump of Froude number 4.82.

  7. Corrective Action Investigation Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-08-01

    CAU 104 comprises the 15 CASs listed below: (1) 07-23-03, Atmospheric Test Site T-7C; (2) 07-23-04, Atmospheric Test Site T7-1; (3) 07-23-05, Atmospheric Test Site; (4) 07-23-06, Atmospheric Test Site T7-5a; (5) 07-23-07, Atmospheric Test Site - Dog (T-S); (6) 07-23-08, Atmospheric Test Site - Baker (T-S); (7) 07-23-09, Atmospheric Test Site - Charlie (T-S); (8) 07-23-10, Atmospheric Test Site - Dixie; (9) 07-23-11, Atmospheric Test Site - Dixie; (10) 07-23-12, Atmospheric Test Site - Charlie (Bus); (11) 07-23-13, Atmospheric Test Site - Baker (Buster); (12) 07-23-14, Atmospheric Test Site - Ruth; (13) 07-23-15, Atmospheric Test Site T7-4; (14) 07-23-16, Atmospheric Test Site B7-b; (15) 07-23-17, Atmospheric Test Site - Climax These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 28, 2011, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 104. The releases at CAU 104 consist of surface-deposited radionuclides from 30 atmospheric nuclear tests. The presence and nature of contamination at CAU 104 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose (TED) to the dose-based final action level (FAL). The presence of TED exceeding the FAL is considered a radiological contaminant of concern (COC). Anything identified as a COC will require corrective action. The TED will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters will be used to measure external radiological dose. Based on process knowledge of the releases associated with the nuclear tests and radiological survey information about the location and shape of the resulting contamination plume, it was determined that the releases from the nuclear tests are co-located and will be investigated concurrently. A field investigation will be performed to define areas where TED exceeds the FAL and to determine whether other COCs are present at the site. The investigation will also collect information to determine the presence and nature of contamination associated with migration and excavation, as well as any potential releases discovered during the investigation. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS.

  8. JUMP DIFFUSION OPTION WITH TRANSACTION COSTS

    E-Print Network [OSTI]

    Mocioalca, Oana

    JUMP DIFFUSION OPTION WITH TRANSACTION COSTS "non-systematic" risk, inclusive of transaction costs. We compute the total transac- tion costs and the turnover for different options, transaction costs, and revision intervals

  9. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 118: Area 27 Super Kukla Facility, Nevada Test Site, Nevada, Rev. No.: 1

    SciTech Connect (OSTI)

    David Strand

    2006-09-01

    This Streamlined Approach for Environmental Restoration (SAFER) plan addresses closure for Corrective Action Unit (CAU) 118, Area 27 Super Kukla Facility, identified in the ''Federal Facility Agreement and Consent Order''. Corrective Action Unit 118 consists of one Corrective Action Site (CAS), 27-41-01, located in Area 27 of the Nevada Test Site. Corrective Action Site 27-41-01 consists of the following four structures: (1) Building 5400A, Reactor High Bay; (2) Building 5400, Reactor Building and access tunnel; (3) Building 5410, Mechanical Building; and (4) Wooden Shed, a.k.a. ''Brock House''. This plan provides the methodology for field activities needed to gather the necessary information for closing the CAS. There is sufficient information and process knowledge from historical documentation and site confirmation data collected in 2005 and 2006 to recommend closure of CAU 118 using the SAFER process. The Data Quality Objective process developed for this CAU identified the following expected closure option: closure in place with use restrictions. This expected closure option was selected based on available information including contaminants of potential concern, future land use, and assumed risks. There are two decisions that need to be answered for closure. Decision I is to determine the nature of contaminants of concern in environmental media or potential source material that could impact human health or the environment. Decision II is to determine whether or not sufficient information has been obtained to confirm that closure objectives were met. This decision includes determining whether the extent of any contamination remaining on site has been defined, and whether actions have been taken to eliminate exposure pathways.

  10. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 114: Area 25 EMAD Facility Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Burmeister

    2009-08-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 114, Area 25 EMAD Facility, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 114 comprises the following corrective action sites (CASs) located in Area 25 of the Nevada Test Site: • 25-41-03, EMAD Facility • 25-99-20, EMAD Facility Exterior Releases This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 114 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. It is anticipated that the results of the field investigation and implementation of a corrective action of clean closure will support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2009, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 114. The following text summarizes the SAFER activities that will support the closure of CAU 114: • Perform site preparation activities (e.g., utilities clearances, radiological surveys). • Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. • Collect samples of materials to determine whether potential source material (PSM) is present that may cause the future release of a COC to environmental media. • If no COCs or PSMs are present at a CAS, establish no further action as the corrective action. • If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. • If a COC or PSM is present at a CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. • Confirm the selected closure option is sufficient to protect human health and the environment.

  11. Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada Test Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    NSTec Environmental Restoration

    2008-12-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. The Test Cell C (TCC) Facility is located in Area 25 of the Nevada Test Site (NTS) approximately 25 miles northwest of Mercury, Nevada (Figure 1). CAU 116 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) of 1996 (as amended February 2008) and consists of two Corrective Action Sites (CASs): (1) CAS 25-23-20, Nuclear Furnace Piping; and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 is described in the FFACO as the TCC Facility but actually includes Building 3210 and attached concrete shield wall only. CAU 116 will be closed by demolishing Building 3210, the attached concrete shield wall, and the nuclear furnace piping. In addition, as a best management practice (BMP), Building 3211 (moveable shed) will be demolished due to its close proximity to Building 3210. This will aid in demolition and disposal operations. Radiological surveys will be performed on the demolition debris to determine the proper disposal pathway. As much of the demolition debris as space allows will be placed into the Building 3210 basement structure. After filling to capacity with demolition debris, the basement structure will be mounded or capped and closed with administrative controls. Prior to beginning demolition activities and according to an approved Sampling and Analysis Plan (SAP), representative sampling of surface areas that are known, suspected, or have the potential to contain hazardous constituents such as lead or polychlorinated biphenyls (PCBs) will be performed throughout all buildings and structures. Sections 2.3.2, 4.2.2.2, 4.2.2.3, 4.3, and 6.2.6.1 address the methodologies employed that assure the solid debris placed in the basement structure will not contain contaminants of concern (COCs) above hazardous waste levels. The anticipated post-closure-posting requirements for the mounded/capped basement structure, as well as for the entire CAU, are addressed in Section 4.2.10. The site contains radiologically impacted surfaces and hazardous materials. Based on review of the historical information for CAU 116 and recent site inspections, there is sufficient process knowledge to close CAU 116 using the SAFER process. CAUs that may be closed using the SAFER process have conceptual corrective actions that are clearly identified. Consequently, corrective action alternatives can be chosen prior to completing a corrective action investigation, given anticipated investigation results. The SAFER process combines elements of the data quality objective (DQO) process and the observational approach to plan and conduct closure activities. The DQOs are used to identify the problem and define the type and quality of data needed to complete the investigation phase of the SAFER process. The purpose of the investigation phase is to verify the adequacy of existing information used to determine the chosen corrective action. The observational approach provides a framework for managing uncertainty during the planning and decision-making phases of the project. The SAFER process allows for technical decisions to be made based on information gathered during site visits, interviews, meetings, research, and a consensus of opinion by the decontamination and decommissioning (D&D) team members. Any uncertainties are addressed by documented assumptions that are verified by sampling and analysis, data evaluation, onsite observations, and contingency plans, as necessary. Closure activities may proceed simultaneously with site characterization as sufficient data are gathered to confirm or disprove the assumptions made during selection of the corrective action. If, at any time during the closure process, new information is discovered that indicates that closure activities should be revised, closure activities will be reevaluated as appropriate. Based on a detailed review of historical documentation, there is sufficient process know

  12. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 539: Area 25 and Area 26 Railroad Tracks, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2010-06-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 539, Areas 25 and 26 Railroad Tracks, as identified in the Federal Facility Agreement and Consent Order (FFACO). A modification to the FFACOwas approved in May 2010 to transfer the two Railroad Tracks corrective action sites (CASs) from CAU 114 into CAU539. The two CASs are located in Areas 25 and 26 of the Nevada Test Site: • 25-99-21, Area 25 Railroad Tracks • 26-99-05, Area 26 Railroad Tracks This plan provides the methodology for field activities needed to gather the necessary information for closing the two CASs. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of the CAU 539 Railroad Tracks CASs using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation should support a defensible recommendation that no further corrective action is necessary. If it is determined that complete clean closure cannot be accomplished during the SAFER, then a hold point will have been reached and the Nevada Division of Environmental Protection (NDEP) will be consulted to determine whether the remaining contamination will be closed under the alternative corrective action of closure in place with use restrictions. This will be presented in a closure report that will be prepared and submitted to the NDEP for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on December 14, 2009, by representatives of U.S.Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Navarro Nevada Environmental Services, LLC (NNES); and National Security Technologies, LLC. The DQO process has been used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each Railroad Tracks CAS in CAU 539. The following text summarizes the SAFER activities that will support the closure of CAU 539: • Perform site preparation activities (e.g., utilities clearances, radiological surveys). • Collect in situ dose measurements. • Collect environmental samples from designated target populations (e.g., lead bricks) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. • If no COCs are present at a CAS, establish no further action as the corrective action. • If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. If a COC is present at a CAS, NNES will consult NDEP to determine the path forward, then either: • Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or • Establish closure in place as the corrective action and implement the appropriate use restrictions.

  13. The hydraulic jump as a white hole

    E-Print Network [OSTI]

    G. E. Volovik

    2005-10-21

    In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the white hole. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.

  14. The hydraulic jump as a white whole

    E-Print Network [OSTI]

    Volovik, G E

    2005-01-01

    In the geometry of the circular hydraulic jump, the velocity of the liquid in the interior region exceeds the speed of capillary-gravity waves (ripplons), whose spectrum is `relativistic' in the shallow water limit. The velocity flow is radial and outward, and thus the relativistic ripplons cannot propagating into the interior region. In terms of the effective 2+1 dimensional Painleve-Gullstrand metric appropriate for the propagating ripplons, the interior region imitates the `white-hole'. The hydraulic jump represents the physical singularity at the white-hole horizon. The instability of the vacuum in the ergoregion inside the circular hydraulic jump and its observation in recent experiments on superfluid 4He by E. Rolley, C. Guthmann, M.S. Pettersen and C. Chevallier in physics/0508200 are discussed.

  15. A Model For Polygonal Hydraulic Jumps

    E-Print Network [OSTI]

    Martens, Erik A; Bohr, Tomas

    2011-01-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard et al., based on the known flow structure for the type II hydraulic jumps with a "roller" (separation eddy) near the free surface in the jump region. The model consists of mass conservation and radial force balance between hydrostatic pressure and viscous stresses on the roller surface. In addition, we consider the azimuthal force balance, primarily between pressure and viscosity, but also including non-hydrostatic pressure contributions from surface tension in light of recent observations by Bush et al. The model can be analyzed by linearization around the circular state, resulting in a parameter relationship for nearly circular polygonal states. A truncated, but fully nonlinear version of the model can be solved analytically. This simpler model gives rise to polygonal shapes that are very similar to those observed in experiments, even though surface tension is neglected, and the condition for the existence of a pol...

  16. Plan

    National Nuclear Security Administration (NNSA)

    Information P.O. Box 62 Oak Ridge, TN 37831-0062 (423) 576-8401 DOENV-11432-244 Nevada Test Site Routine Radiological Environmental Monitoring Plan December 1998 Work Performed...

  17. Learning Macro-Actions Genetically from Plans M.A. Hakim Newton, John Levine, Maria Fox, Derek Long

    E-Print Network [OSTI]

    Qu, Rong

    (Fast Forward) (Hoffmann & Nebel 2001) and LPG (Local search for Planning Graphs) (Gerevini & Serina graphplan algorithm. LPG, on the other hand, is stochastic in nature and uses a heuristic inspired

  18. Proposed plan for remedial action for the Groundwater Operable Unit at the Chemical Plant Area of the Weldon Spring Site, Weldon Spring, Missouri

    SciTech Connect (OSTI)

    NONE

    1999-08-10

    This Proposed Plan addresses the remediation of groundwater contamination at the chemical plant area of the Weldon Spring site in Weldon Spring, Missouri. The site is located approximately 48 km (30 mi) west of St. Louis in St. Charles County . Remedial activities at the site will be conducted in accordance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). The U.S. Department of Energy (DOE), in conjunction with the U.S. Department of the Army (DA), conducted a joint remedial investigation/feasibility study (RI/FS) to allow for a comprehensive evaluation of groundwater conditions at the Weldon Spring chemical plant area and the Weldon Spring ordnance works area, which is an Army site adjacent to the chemical plant area. Consistent with DOE policy, National Environmental Policy Act (NEPA) values have been incorporated into the CERCLA process. That is, the analysis conducted and presented in the RVFS reports included an evaluation of environmental impacts that is comparable to that performed under NEPA. This Proposed Plan summarizes information about chemical plant area groundwater that is presented in the following documents: (1) The Remedial Investigation (RI), which presents information on the nature and extent of contamination; (2) The Baseline Risk Assessment (BRA), which evaluates impacts to human health and the environment that could occur if no cleanup action of the groundwater were taken (DOE and DA 1997a); and (3) The Feasibility Study (FS) and the Supplemental FS, which develop and evaluate remedial action alternatives for groundwater remediation.

  19. COP 18 Side Event: Advancing Collaborative Action for Low Emissions...

    Open Energy Info (EERE)

    COP 18 Side Event: Advancing Collaborative Action for Low Emissions Development Jump to: navigation, search Low Emission Development Strategies Global Partnership Advancing...

  20. Catalyzing Cooperative Action for Low Emissions Development Side...

    Open Energy Info (EERE)

    Catalyzing Cooperative Action for Low Emissions Development Side Event in Bonn Jump to: navigation, search Low Emission Development Strategies Global Partnership Advancing...

  1. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 415: Project 57 No. 1 Plutonium Dispersion (NTTR), Nevada, Revision 0

    SciTech Connect (OSTI)

    Matthews, Patrick; Burmeister, Mark

    2014-04-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 415, Project 57 No. 1 Plutonium Dispersion (NTTR). CAU 415 is located on Range 4808A of the Nevada Test and Training Range (NTTR) and consists of one corrective action site: NAFR-23-02, Pu Contaminated Soil. The CAU 415 site consists of the atmospheric release of radiological contaminants to surface soil from the Project 57 safety experiment conducted in 1957. The safety experiment released plutonium (Pu), uranium (U), and americium (Am) to the surface soil over an area of approximately 1.9 square miles. This area is currently fenced and posted as a radiological contamination area. Vehicles and debris contaminated by the experiment were subsequently buried in a disposal trench within the surface-contaminated, fenced area and are assumed to have released radiological contamination to subsurface soils. Potential source materials in the form of pole-mounted electrical transformers were also identified at the site and will be removed as part of closure activities.

  2. Windward Community College Strategic Plan

    E-Print Network [OSTI]

    i Windward Community College Strategic Plan Action Outcomes November 2008 #12;ii ©2008 Windward. The Strategic Planning Committee...............................................................................3 B. The Strategic Plan

  3. INTERIOR WETLANDS PROGRAM STRATEGIC PLAN

    E-Print Network [OSTI]

    #12;INTERIOR WETLANDS PROGRAM STRATEGIC PLAN 1993 -1997 July 1993 FRASER RIVER ACTION PLAN CANADA'S GREEN PLAN ENVIRONMENT CANADA DUCKS UNLIMITED CANADA GOVERNMENT OF BRITISH COLUMBIA #12;Table

  4. Environmental Management Los Alamos Field Office Corrective Action...

    Energy Savers [EERE]

    Field Office Corrective Action Plan - Radiological Release Phase II Environmental Management Los Alamos Field Office Corrective Action Plan - Radiological Release Phase II On...

  5. Remedial action plan for the inactive uranium processing site at Naturita, Colorado. Remedial action selection report: Attachment 2, geology report; Attachment 3, ground water hydrology report; Attachment 4, supplemental information

    SciTech Connect (OSTI)

    1998-03-01

    The uranium processing site near Naturita, Colorado, is one of 24 inactive uranium mill sites designated to be cleaned up by the U.S. Department of Energy (DOE) under the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA), 42 USC {section} 7901 et seq. Part of the UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). This RAP serves two purposes. First, it describes the activities that are proposed by the DOE to accomplish remediation and long-term stabilization and control of the radioactive materials at the inactive uranium processing site near Naturita, Colorado. Second, this RAP, upon concurrence and execution by the DOE, the state of Colorado, and the NRC, becomes Appendix B of the cooperative agreement between the DOE and the state of Colorado.

  6. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 465: Hydronuclear Nevada National Security Site, Nevada, with ROTC 1, Revision 0

    SciTech Connect (OSTI)

    Patrick Matthews

    2011-11-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 465, Hydronuclear, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 465 comprises the following four corrective action sites (CASs) located in Areas 6 and 27 of the Nevada National Security Site: (1) 00-23-01, Hydronuclear Experiment; (2) 00-23-02, Hydronuclear Experiment; (3) 00-23-03, Hydronuclear Experiment; (4) 06-99-01, Hydronuclear. The sites will be investigated based on the data quality objectives (DQOs) developed on July 6, 2011, by representatives of the Nevada Division of Environmental Protection (NDEP) and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 465. For CAU 465, two potential release components have been identified. The subsurface release component includes potential releases of radiological and nonradiological contaminants from the subsurface hydronuclear experiments and disposal boreholes. The surface release component consists of other potential releases of radiological and nonradiological contaminants to surface soils that may have occurred during the pre- and post-test activities. This plan provides the methodology for collection of the necessary information for closing each CAS component. There is sufficient information and process knowledge from historical documentation, contaminant characteristics, existing regional and site groundwater models, and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 465 using the SAFER process. For potential subsurface releases, flow and transport models will be developed to integrate existing data into a conservative description of contaminant migration in the unsaturated zone from the hydronuclear experiments and disposal boreholes. For the potential surface releases, additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS component. It is anticipated that results of the flow and transport models, the field investigation, and implementation of the corrective action of closure in place will support a defensible recommendation that no further corrective action is necessary. This will be presented in a closure report that will be prepared and submitted to NDEP for review and approval. The following text summarizes the SAFER activities that will support the closure of CAU 465: (1) Perform site preparation activities (e.g., utilities clearances, and radiological and visual surveys). (2) Move or remove and dispose of debris at various CASs, as required. (3) Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern as necessary to supplement existing information. (4) Evaluate and analyze existing data to develop conservative flow and transport models to simulate the potential for contaminant migration from the hydronuclear experiments and disposal boreholes to the water table within 1,000 years. (5) Confirm the preferred closure option (closure in place with use restrictions) is sufficient to protect human health and the environment.

  7. Hydraulic/Shock-Jumps in Protoplanetary Disks

    E-Print Network [OSTI]

    A. C. Boley; R. H. Durisen

    2006-03-10

    In this paper, we describe the nonlinear outcome of spiral shocks in protoplanetary disks. Spiral shocks, for most protoplanetary disk conditions, create a loss of vertical force balance in the post-shock region and result in rapid expansion of the gas perpendicular to the disk midplane. This expansion has characteristics similar to hydraulic jumps, which occur in incompressible fluids. We present a theory to describe the behavior of these hybrids between shocks and hydraulic jumps (shock bores) and then compare the theory to three-dimensional hydrodynamics simulations. We discuss the fully three-dimensional shock structures that shock bores produce and discuss possible consequences for disk mixing, turbulence, and evolution of solids.

  8. Does the side jump effect exist?

    E-Print Network [OSTI]

    Sushkov, O P; Mori, M; Maekawa, S

    2012-01-01

    The side-jump effect is a manifestation of the spin orbit interaction in electron scattering from an atom/ion/impurity. The effect has a broad interest because of its conceptual importance for generic spin-orbital physics, in particular the effect is widely discussed in spintronics. We reexamine the effect accounting for the exact nonperturbative electron wave function inside the atomic core. We find that value of the effect is much smaller than estimates accepted in literature. The reduction factor is 1/Z^2, where Z is the nucleus charge of the atom/impurity. This implies that the side-jump effect is practically irrelevant for spintronics, the skew scattering and/or the intrinsic mechanism always dominate the anomalous Hall and spin Hall effects.

  9. UMTRA Project remedial action planning and disposal cell design to comply with the proposed EPA (Environmental Protection Agency) standards (40 CFR Part 192)

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project involves stabilizing 24 inactive uranium mill tailings piles in 10 states. Remedial work must meet standards established by the US Environmental Protection Agency (EPA). Remedial action must be designed and constructed to prevent dispersion of the tailings and other contaminated materials, and must prevent the inadvertent use of the tailings by man. This report is prepared primarily for distribution to parties involved in the UMTRA Project, including the US Nuclear Regulatory Commission (NRC), and states and tribes. It is intended to record the work done by the DOE since publication of the proposed EPA groundwater protection standards, and to show how the DOE has attempted to respond and react in a positive way to the new requirements that result from the proposed standards. This report discusses the groundwater compliance strategies now being defined and implemented by the DOE, and details the changes in disposal cell designs that result from studies to evaluate ways to facilitate compliance with the proposed EPA groundwater protection standards. This report also serves to record the technical advances, planning, and progress made on the UMTRA Project since the appearance of the proposed EPA groundwater protection standards. The report serves to establish, document, and disseminate technical approaches and engineering and groundwater information to people who may be interested or involved in similar or related projects. 24 refs., 27 figs., 8 tabs.

  10. Myanmar-Sub National Planning for Climate Change (cities, states...

    Open Energy Info (EERE)

    Myanmar-Sub National Planning for Climate Change (cities, states, districts) Jump to: navigation, search Name Myanmar-Sub National Planning for Climate Change (cities, states,...

  11. Vietnam-Sub National Planning for Climate Change (cities, states...

    Open Energy Info (EERE)

    Vietnam-Sub National Planning for Climate Change (cities, states, districts) Jump to: navigation, search Name Vietnam-Sub National Planning for Climate Change (cities, states,...

  12. Cambodia-Sub National Planning for Climate Change (cities, states...

    Open Energy Info (EERE)

    Cambodia-Sub National Planning for Climate Change (cities, states, districts) Jump to: navigation, search Name Cambodia-Sub National Planning for Climate Change (cities, states,...

  13. Indonesia-Sub National Planning for Climate Change (cities, states...

    Open Energy Info (EERE)

    Indonesia-Sub National Planning for Climate Change (cities, states, districts) Jump to: navigation, search Name Indonesia-Sub National Planning for Climate Change (cities, states,...

  14. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailings Site at Lowman, Idaho

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The DOE proposes to achieve compliance with the proposed EPA groundwater protection standards (Subparts A and B of 40 CFR 192) by meeting the EPA maximum concentration limits (MCLs) or background concentrations for designated hazardous constituents in groundwater in the uppermost aquifer (alluvium/weathered granodiorite) at the point of compliance (POC) at the Lowman disposal site near Lowman, Idaho. The proposed remedial action in conjunction with existing hydrogeological conditions at the Lowman site will ensure sufficient protection of human health and the environment. The DOE has concluded that the EPA groundwater protection standards will be met at the POC because, with the exception of antimony, none of the hazardous constituents that exceed laboratory method detection limits within the radioactive sand pore fluids were above the proposed concentration limits. The DOE has demonstrated that antimony will meet the proposed concentration limits at the POC through attenuation in subsoils beneath the disposal cell and by dilution in groundwater underflow. The Lowman processing site is in compliance with Subpart B of 40 CFR 192 because statistical analyses of groundwater samples indicate no groundwater contamination.

  15. Jump-Diffusion Risk-Sensitive Asset Management II: Jump-Diffusion Factor Model

    E-Print Network [OSTI]

    Davis, Mark

    2011-01-01

    In this article we extend earlier work on the jump-diffusion risk-sensitive asset management problem [SIAM J. Fin. Math. (2011) 22-54] by allowing jumps in both the factor process and the asset prices, as well as stochastic volatility and investment constraints. In this case, the HJB equation is a partial integro-differential equation (PIDE). By combining viscosity solutions with a change of notation, a policy improvement argument and classical results on parabolic PDEs we prove that the HJB PIDE admits a unique smooth solution. A verification theorem concludes the resolution of this problem.

  16. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 544: Cellars, Mud Pits, and Oil Spills, Nevada Test Site, Nevada, Revision 0

    SciTech Connect (OSTI)

    Mark Krauss

    2010-07-01

    This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 544, Cellars, Mud Pits, and Oil Spills, identified in the Federal Facility Agreement and Consent Order (FFACO). Corrective Action Unit 544 comprises the following 20 corrective action sites (CASs) located in Areas 2, 7, 9, 10, 12, 19, and 20 of the Nevada Test Site (NTS): • 02-37-08, Cellar & Mud Pit • 02-37-09, Cellar & Mud Pit • 07-09-01, Mud Pit • 09-09-46, U-9itsx20 PS #1A Mud Pit • 10-09-01, Mud Pit • 12-09-03, Mud Pit • 19-09-01, Mud Pits (2) • 19-09-03, Mud Pit • 19-09-04, Mud Pit • 19-25-01, Oil Spill • 19-99-06, Waste Spill • 20-09-01, Mud Pits (2) • 20-09-02, Mud Pit • 20-09-03, Mud Pit • 20-09-04, Mud Pits (2) • 20-09-06, Mud Pit • 20-09-07, Mud Pit • 20-09-10, Mud Pit • 20-25-04, Oil Spills • 20-25-05, Oil Spills This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 544 using the SAFER process. Using the approach approved for previous mud pit investigations (CAUs 530–535), 14 mud pits have been identified that • are either a single mud pit or a system of mud pits, • are not located in a radiologically posted area, and • have no evident biasing factors based on visual inspections. These 14 mud pits are recommended for no further action (NFA), and further field investigations will not be conducted. For the sites that do not meet the previously approved closure criteria, additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation for closure of the remaining CASs in CAU 544. This will be presented in a closure report (CR) that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) developed on April 27, 2010, by representatives of NDEP and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 544. The DQO process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels (FALs) leading to an NFA declaration, (2) characterization of the nature and extent of contamination leading to closure in place with use restrictions, (3) clean closure by remediation and verification, (4) closure in place with use restrictions with no investigation if CASs are in crater areas that have been determined to be unsafe to enter, or (5) NFA if the mud pit CAS meets the criteria established during the CAUs 530–535 SAFER investigation. The following summarizes the SAFER activities that will support the closure of CAU 544: • Perform visual inspection of all CASs. • Perform site preparation activities (e.g., utilities clearances, construction of temporary site exclusion zones). • Removal of easily managed, nonhazardous, and nonradioactive debris, including vegetation (e.g., tumbleweeds), at various CASs that interfere with sampling, if required to inspect soil surface or collect soil sample. • Collect environmental samples from designated target populations (e.g., mud pits, cellars, stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. • If no COCs are present at a CAS, establish NFA as the corrective action. • If COCs exist, collect environmental samples f

  17. Electrowetting study of jumping droplets on hydrophobic surfaces

    E-Print Network [OSTI]

    Tio, Evelyn

    2014-01-01

    Recent studies have shown that jumping-droplet-enhanced condensation has higher heat transfer than state-of-the-art dropwise condensing surfaces by -30-40%. Jumping-droplet condensation occurs due to the conversion of ...

  18. STRATEGIC PLAN PREAMBLE:...................................................................................... 6

    E-Print Network [OSTI]

    2014­2019 STRATEGIC PLAN #12; 2 CONTENTS PREAMBLE.......................................... 29 THE STRATEGIC PLANNING PROCESS............................................. 30 Topic Committees................................................................ 32 OLD DOMINION UNIVERSITY STRATEGIC PLAN 2014-2019 GOALS, OBJECTIVES AND ACTION ITEMS

  19. Formerly Utilized MED/AEC Sites Remedial Action Program. Project management plan for the decontamination of Jones Laboratory, Ryerson Physical Laboratory, and Eckhart Hall, the University of Chicago, Chicago, Illinois

    SciTech Connect (OSTI)

    Flynn, K.F.; Smith, W.H.; Wynveen, R.A.

    1984-01-01

    The Department of Energy (DOE) has in place a plan for the decontamination and decommissioning of contaminated sites that had been formerly utilized by the Manhattan Engineering District (MED) and/or the Atomic Energy Commission. This plan is referred to as the Formerly Utilized Sites Remedial Action Program (FUSRAP). Among these sites are Jones Laboratory, Ryerson Physical Laboratory and Eckhart Hall of The University of Chicago at Chicago, Illinois. This document represents the Project Management Plan for the decontamination of these facilities. 13 references, 3 figures, 1 table.

  20. Remedial action plan for the inactive uranium processing site at Naturita, Colorado. DOE responses to comments from U.S. Nuclear Regulatory Commission and Colorado Department of Public Health and Environment

    SciTech Connect (OSTI)

    NONE

    1998-11-16

    This report contains responses by the US Department of Energy to comments from the US Nuclear Regulatory Commission and the Colorado Department of Public Health and Environment on the Naturita remedial action plan. This was done in an attempt to clarify information. The site is an inactive uranium processing site at Naturita, Colorado.

  1. Viscous Undular Hydraulic Jumps of Moderate Reynolds number

    E-Print Network [OSTI]

    Shyamasundar, R.K.

    Viscous Undular Hydraulic Jumps of Moderate Reynolds number Ratul Dasgupta I will present some results on undular hydraulic jumps occurring in a two bores (in rivers), where the interface remains horizontal, the moderate Reynolds hydraulic jump shows a linear increase in height due to viscosity

  2. Lift-off dynamics in a simple jumping robot

    E-Print Network [OSTI]

    Jeffrey Aguilar; Alex Lesov; Kurt Wiesenfeld; Daniel I. Goldman

    2012-08-30

    We study vertical jumping in a simple robot comprising an actuated mass-spring arrangement. The actuator frequency and phase are systematically varied to find optimal performance. Optimal jumps occur above and below (but not at) the robot's resonant frequency $f_0$. Two distinct jumping modes emerge: a simple jump which is optimal above $f_0$ is achievable with a squat maneuver, and a peculiar stutter jump which is optimal below $f_0$ is generated with a counter-movement. A simple dynamical model reveals how optimal lift-off results from non-resonant transient dynamics.

  3. Integration of Biodiversity into National Forestry Planning:...

    Open Energy Info (EERE)

    of Biodiversity into National Forestry Planning: An Annotated Bibliography of Web-Based Resources, Methods, Experiences, and Case Studies Jump to: navigation, search...

  4. Mainstreaming Climate Change Adaptation into Development Planning...

    Open Energy Info (EERE)

    Mainstreaming Climate Change Adaptation into Development Planning: A Guide for Practitioners Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Mainstreaming Climate Change...

  5. Modification No. 2 to the remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Green River, Utah: Final

    SciTech Connect (OSTI)

    NONE

    1996-11-01

    Portions of the final Remedial Action Plan (RAP) for the Green River site, Volumes 1 and 2, Appendix B of the Cooperative Agreement No. DE-FC04-81AL16257, March 1991 (DOE, 1991) have been modified. The changes to the RAP are designated as RAP Modification No. 2. These changes have been placed in a three-ring binder that will supplement the original RAP (DOE, 1991), and include the following: addendum to the Executive Summary; Section 3.5 (Ground Water part of the Site Characterization Summary); Section 4.0 (Site Design); Section5.0 (Water Resources Protection Strategy Summary); Appendix D.5 (Ground Water Hydrology); and Appendix E (Ground Water Protection Strategy). In addition to these revisions, there have been editorial changes that clarify the text, but do not change the meaning. Also, certain sections of the document, which are included in the submittal for ease of review and continuity, have been updated to reflect the final ground water protection standards and the current UMTRA Project format and content of RAPs.

  6. Corrective Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Community, Environment Environmental Protection Obeying Environmental Laws Individual Permit Corrective Action Individual Permit: Corrective Action Certifications If...

  7. Optimal Control of Standing Jump Movements Michael W. Koch, Sigrid Leyendecker

    E-Print Network [OSTI]

    Leyendecker, Sigrid

    Optimal Control of Standing Jump Movements Michael W. Koch, Sigrid Leyendecker Chair of Applied standing jumping movements, in particular, standing high jumps and standing long jumps are considered. The exemplary investigated jumps are restricted to standing jump movements. Historically, the standing high jump

  8. ORS 522.135 Permit Time Limit for Action, Grounds for Issuance...

    Open Energy Info (EERE)

    Time Limit for Action, Grounds for Issuance, Conditions, and Fees for Geothermal Resources Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document-...

  9. ACTION PLAN leading the way...

    E-Print Network [OSTI]

    footprint. The large 5,300 KW solar plant is owned by a third party. While the environmental benefits for in the long term of the CAP. Two megawatt solar array at Chrisman Field One of the Largest Solar Plants-cash funding coming from CSU and no escalation in current utility rates. Other financing mechanisms

  10. ACTION PLAN POLITECNICO DI TORINO

    E-Print Network [OSTI]

    Ceragioli, Francesca

    has adopted the Code of Ethics Information Technology Area and Communication, Events & External information and training courses which have been developed #12;5 2. Ethical principles IDENTIFIED PROBLEM of Ethics within the University, as well as informing the external stakeholders of the fact

  11. Wesleyan University Climate Action Plan

    E-Print Network [OSTI]

    Royer, Dana

    with energy production to 1990 levels by 2010, to 10% below 1990 levels by 2020, and a 75-85% reduction description of the Director of Environmental Health and Safety. Student members from the Environmental

  12. CLEMSON UNIVERSITY Sustainability Action Plan

    E-Print Network [OSTI]

    Stuart, Steven J.

    .......................................................................... 27 Reduced demand: Building energy efficiency ......................................................................... 25 Reduced demand: Energy system efficiency ........................................................................ 28 Reduced demand: Transportation energy efficiency

  13. Sustainability Action Plan Campus Operations

    E-Print Network [OSTI]

    Victoria, University of

    -making and Sustainability Resources 5. Buildings and Renovations 6. Grounds, Food and Urban Agriculture 7. Waste Management ..................................................................................... 5.7 Waste

  14. Information basis for developing comprehensive waste management system-US-Japan joint nuclear energy action plan waste management working group phase I report.

    SciTech Connect (OSTI)

    Nutt, M.; Nuclear Engineering Division

    2010-05-25

    The activity of Phase I of the Waste Management Working Group under the United States - Japan Joint Nuclear Energy Action Plan started in 2007. The US-Japan JNEAP is a bilateral collaborative framework to support the global implementation of safe, secure, and sustainable, nuclear fuel cycles (referred to in this document as fuel cycles). The Waste Management Working Group was established by strong interest of both parties, which arise from the recognition that development and optimization of waste management and disposal system(s) are central issues of the present and future nuclear fuel cycles. This report summarizes the activity of the Waste Management Working Group that focused on consolidation of the existing technical basis between the U.S. and Japan and the joint development of a plan for future collaborative activities. Firstly, the political/regulatory frameworks related to nuclear fuel cycles in both countries were reviewed. The various advanced fuel cycle scenarios that have been considered in both countries were then surveyed and summarized. The working group established the working reference scenario for the future cooperative activity that corresponds to a fuel cycle scenario being considered both in Japan and the U.S. This working scenario involves transitioning from a once-through fuel cycle utilizing light water reactors to a one-pass uranium-plutonium fuel recycle in light water reactors to a combination of light water reactors and fast reactors with plutonium, uranium, and minor actinide recycle, ultimately concluding with multiple recycle passes primarily using fast reactors. Considering the scenario, current and future expected waste streams, treatment and inventory were discussed, and the relevant information was summarized. Second, the waste management/disposal system optimization was discussed. Repository system concepts were reviewed, repository design concepts for the various classifications of nuclear waste were summarized, and the factors to consider in repository design and optimization were then discussed. Japan is considering various alternatives and options for the geologic disposal facility and the framework for future analysis of repository concepts was discussed. Regarding the advanced waste and storage form development, waste form technologies developed in both countries were surveyed and compared. Potential collaboration areas and activities were next identified. Disposal system optimization processes and techniques were reviewed, and factors to consider in future repository design optimization activities were also discussed. Then the potential collaboration areas and activities related to the optimization problem were extracted.

  15. Sampling and analysis plan for the gunite and associated tanks interim remedial action, wall coring and scraping at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    NONE

    1998-02-01

    This Sampling and Analysis Plan documents the procedures for collecting and analyzing wall core and wall scraping samples from the Gunite and Associated Tanks. These activities are being conducted to support the Comprehensive Environmental Response, Compensation, and Liability Act at the gunite and associated tanks interim remedial action at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The sampling and analysis activities will be performed in concert with sludge retrieval and sluicing of the tanks. Wall scraping and/or wall core samples will be collected from each quadrant in each tank by using a scraping sampler and/or a coring drill deployed by the Houdini robot vehicle. Each sample will be labeled, transported to the Radioactive Materials Analytical Laboratory, and analyzed for physical and radiological characteristics, including total activity, gross alpha, gross beta, radioactive strontium and cesium, and other alpha- and gamma-emitting radionuclides. The data quality objectives process, based on US Environmental Protection Agency guidance, was applied to identify the objectives of this sampling and analysis. The results of the analysis will be used to (1) validate predictions of a strontium concrete diffusion model, (2) estimate the amount of radioactivity remaining in the tank shells, (3) provide information to correlate with measurements taken by the Gunite Tank Isotope Mapping Probe and the Characterization End Effector, and (4) estimate the performance of the wall cleaning system. This revision eliminates wall-scraping samples from all tanks, except Tank W-3. The Tank W-3 experience indicated that the wall scrapper does not collect sufficient material for analysis.

  16. ISSN 1745-9648 Gasoline Prices Jump Up on Mondays

    E-Print Network [OSTI]

    Feigon, Brooke

    ISSN 1745-9648 Gasoline Prices Jump Up on Mondays: an Outcome of Aggressive Competition? by Øystein Research Council is gratefully acknowledged. #12;Gasoline prices jump up on Mondays: An outcome, 2008 Abstract This paper examines Norwegian gasoline pump prices using daily station

  17. Hamilton-Jacobi equations with jumps: asymptotic stability

    E-Print Network [OSTI]

    Amir Mahmood; Saima Parveen

    2009-09-05

    The asymptotic stability of a global solution satisfying Hamilton-Jacobi equations with jumps will be analyzed in dependence on the strong dissipativity of the jump control function and using orbits of the differentiable flows to describe the corresponding characteristic system.

  18. A Low Carbon Development Guide for Local Government Actions in China

    E-Print Network [OSTI]

    Zhou, Nan

    2013-01-01

    Commission. Energy Action Plan 2008 Update (2008). http://CA Energy Efficiency Strategic Plan January 2011 Update (

  19. Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 357: Mud Pits and Waste Dump, Nevada Test Site, Nevada: Revision 0, Including Record of Technical Change No. 1

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    2003-06-25

    This Streamlined Approach for Environmental Restoration (SAFER) plan was prepared as a characterization and closure report for Corrective Action Unit (CAU) 357, Mud Pits and Waste Dump, in accordance with the Federal Facility Agreement and Consent Order. The CAU consists of 14 Corrective Action Sites (CASs) located in Areas 1, 4, 7, 8, 10, and 25 of the Nevada Test Site (NTS). All of the CASs are found within Yucca Flat except CAS 25-15-01 (Waste Dump). Corrective Action Site 25-15-01 is found in Area 25 in Jackass Flat. Of the 14 CASs in CAU 357, 11 are mud pits, suspected mud pits, or mud processing-related sites, which are by-products of drilling activities in support of the underground nuclear weapons testing done on the NTS. Of the remaining CASs, one CAS is a waste dump, one CAS contains scattered lead bricks, and one CAS has a building associated with Project 31.2. All 14 of the CASs are inactive and abandoned. Clean closure with no further action of CAU 357 will be completed if no contaminants are detected above preliminary action levels. A closure report will be prepared and submitted to the Nevada Division of Environmental Protection for review and approval upon completion of the field activities. Record of Technical Change No. 1 is dated 3/2004.

  20. Dynamic Latent Plan Models

    E-Print Network [OSTI]

    Choudhury, Charisma F.

    Planning is an integral part of many behavioural aspects related to transportation: residential relocation, activity and travel scheduling, route choice, etc. People make plans and then select actions to execute those ...

  1. A Temporal Planning System for Time-Optimal Planning

    E-Print Network [OSTI]

    Garrido, Antonio

    the utility of our system for dealing with temporal planning problems. Key words: planning, temporal planningA Temporal Planning System for Time-Optimal Planning Antonio Garrido, Eva Onaindía and Federico with temporality on actions presents an important challenge to AI planning. Unlike Graphplan-based planners which

  2. Bureau of Land Management - Techniques for Documenting a No Action...

    Open Energy Info (EERE)

    Bureau of Land Management - Techniques for Documenting a No Action Alternative in an EA Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Bureau of Land...

  3. Comment and response document for the final remedial action plan site design for stabilization of the Inactive Uranium Mill Tailings Sites at Slick Rock, Colorado

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    This document consists of comments and responses; the reviewers are the U.S. Nuclear Regulatory Commission (NRC), Colorado Dept. of Public Health and Environment, and the remedial action contractor (RAC).

  4. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    E-Print Network [OSTI]

    Miljkovic, Nenad

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured ...

  5. Spontaneous azimuthal breakout and instability at the circular hydraulic jump

    E-Print Network [OSTI]

    Ray, Arnab K; Basu, Abhik; Bhattacharjee, Jayanta K

    2015-01-01

    We consider a shallow, two-dimensional flow of a liquid in which the radial and the azimuthal dynamics are coupled to each other. The steady and radial background flow of this system creates an axially symmetric circular hydraulic jump. On this background we apply time-dependent perturbations of the matter flow rate and the azimuthal flow velocity, with the latter strongly localized at the hydraulic jump. The perturbed variables depend spatially on both the radial and azimuthal coordinates. Linearization of the perturbations gives a coupled system of wave equations. The characteristic equations extracted from these wave equations show that under a marginally stable condition a spontaneous breaking of axial symmetry occurs at the position of the hydraulic jump. Departure from the marginal stability shows further that a linear instability develops in the azimuthal direction, resulting in an azimuthal transport of liquid at the hydraulic jump. The time for the growth of azimuthal instability is scaled by viscosi...

  6. Gravity-free hydraulic jumps and metal femtocups

    E-Print Network [OSTI]

    Rama Govindarajan; Manikandan Mathur; Ratul DasGupta; N. R. Selvi; Neena Susan John; G. U. Kulkarni

    2006-10-03

    Hydraulic jumps created by gravity are seen every day in the kitchen sink. We show that at small scales a circular hydraulic jump can be created in the absence of gravity, by surface tension. The theory is motivated by our experimental finding of a height discontinuity in spreading submicron molten metal droplets created by pulsed-laser ablation. By careful control of initial conditions, we show that this leads to solid femtolitre cups of gold, silver, copper, niobium and tin.

  7. Chemical Potential Jump during Evaporation of a Quantum Bose Gas

    E-Print Network [OSTI]

    E. A. Bedrikova; A. V. Latyshev

    2013-01-07

    The dependence of the chemical potential jump coefficient on the evaporation coefficient is analyzed for the case in which the evaporating component is a Bose gas. The concentration of the evaporating component is assumed to be much lower than the concentration of the carrier gas. The expression for the chemical potential jump is derived from the analytic solution of the problem for the case in which the collision frequency of molecules of the evaporating component is constant.

  8. Modification to the Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Mexican Hat, Utah: Volume 1, Text, Attachments 1--6. Final report

    SciTech Connect (OSTI)

    NONE

    1989-01-01

    This document provides the modifications to the 1988 Remedial Action Plan (RAP) of the contaminated materials at the Monument Valley, Arizona, and Mexican Hat, Utah. The text detailing the modifications and attachments 1 through 6 are provided with this document. The RAP was developed to serve a two-fold purpose. It presents the activities proposed by the Department of Energy (DOE) to accomplish long-term stabilization and control of the residual radioactive materials (RRM) from Monument Valley, Arizona, and Mexican Hat, Utah, at the Mexican Hat disposal site. It also serves to document the concurrence of both the Navajo Nation and the Nuclear Regulatory Commission (NRC) in the remedial action. This agreement, upon execution by DOE and the Navajo Nation and concurrence by the NRC, becomes Appendix B of the Cooperative Agreement. This document has been structured to provide a comprehensive understanding of the remedial action proposed for the Monument Valley and Mexican Hat sites. It includes specific design and construction requirements for the remedial action. Pertinent information and data are included with reference given to the supporting documents.

  9. Best Practices in Non-Motorized Transport Planning, Implementation...

    Open Energy Info (EERE)

    Best Practices in Non-Motorized Transport Planning, Implementation and Maintenance Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Best Practices in Non-Motorized...

  10. International Assistance for Low-Emission Development Planning...

    Open Energy Info (EERE)

    Assistance for Low-Emission Development Planning: CLEAN Inventory of Activities and Tools-Preliminary Trends Jump to: navigation, search International Assistance for...

  11. Indonesia-Strengthening Planning Capacity for Low Carbon Growth...

    Open Energy Info (EERE)

    in Developing Asia Jump to: navigation, search Name Indonesia-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...

  12. Philippines-Strengthening Planning Capacity for Low Carbon Growth...

    Open Energy Info (EERE)

    in Developing Asia Jump to: navigation, search Name Philippines-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...

  13. Vietnam-Strengthening Planning Capacity for Low Carbon Growth...

    Open Energy Info (EERE)

    Growth in Developing Asia Jump to: navigation, search Name Vietnam-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...

  14. Strengthening Planning Capacity for Low Carbon Growth in Developing...

    Open Energy Info (EERE)

    Asia - Thailand Jump to: navigation, search Name Thailand-Strengthening Planning Capacity for Low Carbon Growth in Developing Asia AgencyCompany Organization Asian...

  15. Nevada Department of Wildlife Energy Planning and Conservation...

    Open Energy Info (EERE)

    Nevada Department of Wildlife Energy Planning and Conservation Fund Website Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Nevada Department of...

  16. Community Energy Planning A Resource Guide for Remote Communities...

    Open Energy Info (EERE)

    Communities in Canada Jump to: navigation, search Name Community Energy Planning A Resource Guide for Remote Communities in Canada AgencyCompany Organization Natural Resources...

  17. Saint Kitts and Nevis-Regional Implementation Plan for CARICOM...

    Open Energy Info (EERE)

    Saint Kitts and Nevis-Regional Implementation Plan for CARICOM's Climate Change Resilience Framework Jump to: navigation, search Name Saint Kitts and Nevis-Regional Implementation...

  18. Oregon Guidelines for Stormwater Management Plans for Removal...

    Open Energy Info (EERE)

    Oregon Guidelines for Stormwater Management Plans for RemovalFill Permit Applications Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory...

  19. BLM - Approved Resource Management Plan Amendments/Record of...

    Open Energy Info (EERE)

    BLM - Approved Resource Management Plan AmendmentsRecord of Decision for Solar Energy Development in Six Southwestern States Jump to: navigation, search OpenEI Reference...

  20. Status Update on Action 2c: Criteria Review and Approach Document (CRAD) for Performing Assessments of Activity-level Work Planning and Control

    Broader source: Energy.gov [DOE]

    Slide Presentation by Bradley K. Davy, Director, Office of Worker Safety and Health Assistance, HS. Criteria Review and Approach Document (CRAD) for Performing Assessments of Activity- Level Work Planning and Control. DOE CRAD Development Approach.

  1. Metropolitan Transportation Plan Fiscal Year 2010 - 2035 

    E-Print Network [OSTI]

    Corpus Christi Metropolitan Planning Organization

    2009-12-03

    .................................................................................................................... 23 Urban Action Plan ........................................................................................................................... 24 Table 1 - Functional Systems in Urbanized Areas... ........................................................................... 28 Critical Incident Planning ................................................................................................................ 29 CHAPTER 5 PUBLIC TRANSPORTATION...

  2. Strategic Planning Thursday Commons Update

    E-Print Network [OSTI]

    Minnesota, University of

    Strategic Planning Thursday Commons Update October 2, 2014 #12;Real-Time Strategic Planning · Model for non-profit strategic planning · Tools and process to develop strategies and action plans in a short, Fieldstone Alliance, p. 31 #12;UMC's Strategic Planning www.umcrookston.edu/stratplan · Since the April

  3. Non-Markovian Quantum Jump with Generalized Lindblad Master Equation

    E-Print Network [OSTI]

    X. L. Huang; H. Y. Sun; X. X. Yi

    2008-10-14

    The Monte Carlo wave function method or the quantum trajectory/jump approach is a powerful tool to study dissipative dynamics governed by the Markovian master equation, in particular for high-dimensional systems and when it is difficult to simulate directly. In this paper, we extend this method to the non-Markovian case described by the generalized Lindblad master equation. Two examples to illustrate the method are presented and discussed. The results show that the method can correctly reproduce the dissipative dynamics for the system. The difference between this method and the traditional Markovian jump approach and the computational efficiency of this method are also discussed.

  4. ICDF Complex Remedial Action Report

    SciTech Connect (OSTI)

    W. M. Heileson

    2007-09-26

    This Idaho CERCLA Disposal Facility (ICDF) Remedial Action Report has been prepared in accordance with the requirements of Section 6.2 of the INEEL CERCLA Disposal Facility Remedial Action Work Plan. The agency prefinal inspection of the ICDF Staging, Storage, Sizing, and Treatment Facility (SSSTF) was completed in June of 2005. Accordingly, this report has been developed to describe the construction activities completed at the ICDF along with a description of any modifications to the design originally approved for the facility. In addition, this report provides a summary of the major documents prepared for the design and construction of the ICDF, a discussion of relevant requirements and remedial action objectives, the total costs associated with the development and operation of the facility to date, and identification of necessary changes to the Agency-approved INEEL CERCLA Disposal Facility Remedial Action Work Plan and the ICDF Complex Operations and Maintenance Plan.

  5. 8 Management Plan Introduction

    E-Print Network [OSTI]

    312 8 Management Plan Introduction The management plan integrates the vision for the Lower Mid and populations which form the bulk of the management plan is derived from that input. The scope of the management and inventory are designed and may be used to guide restoration and management actions by many parties under

  6. SHORT COMMUNICATION Dynamical analysis of winter terrain park jumps

    E-Print Network [OSTI]

    of this work is to show how a dynamical analysis can assess impact injury risks and inform safer terrain park frequently pose a hazard to patrons and may represent a significant liability risk to winter resorts. By performing a simple dynamic analysis of terrain park jumps, the relative risk to impact injuries for any

  7. Peak-Jumping Frequent Itemset Mining Nele Dexters1

    E-Print Network [OSTI]

    Van Gucht, Dirk

    Peak-Jumping Frequent Itemset Mining Algorithms Nele Dexters1 , Paul W. Purdom2 , and Dirk Van Gucht2 1 Departement Wiskunde-Informatica, Universiteit Antwerpen, Belgium, nele.dexters@ua.ac.be, 2. We analyze algorithms that, under the right circumstances, permit efficient mining for frequent

  8. Integrating Timeliner and autonomous planning

    E-Print Network [OSTI]

    Swanton, Daniel Reed

    2006-01-01

    Timeliner is used to automate tasks in a target system. Timeliner is capable of automating complex sequences of actions, but the desired actions must be planned out and understood in advance by human script-writers. This ...

  9. Remedial action plan and site design for stabilization of the inactive uranium mill tailings site at Falls City, Texas. Remedial action selection report, attachment 2, geology report; attachment 3, groundwater hydrology report; and attachment 4, water resources protection strategy. Final report

    SciTech Connect (OSTI)

    1992-09-01

    The uranium processing site near Falls City, Texas, was one of 24 inactive uranium mill sites designated to be remediated by the U.S. Department of Energy (DOE) under Title I of the Uranium Mill Tailings Radiation Control Act of 1978 (UMTRCA). The UMTRCA requires that the U.S. Nuclear Regulatory Commission (NRC) concur with the DOE`s remedial action plan (RAP) and certify that the remedial action conducted at the site complies with the standards promulgated by the U.S. Environmental Protection Agency (EPA). The RAP, which includes this summary remedial action selection report (RAS), serves a two-fold purpose. First, it describes the activities proposed by the DOE to accomplish long-term stabilization and control of the residual radioactive materials at the inactive uranium processing site near Falls City, Texas. Second, this document and the remainder of the RAP, upon concurrence and execution by the DOE, the State of Texas, and the NRC, becomes Appendix B of the Cooperative Agreement between the DOE and the State of Texas.

  10. Corrective Action Investigation Plan for Corrective Action Unit 168: Areas 25 and 26 Contaminated Materials and Waste Dumps, Nevada Test Site, Nevada (Rev. 0) includes Record of Technical Change No. 1 (dated 8/28/2002), Record of Technical Change No. 2 (dated 9/23/2002), and Record of Technical Change No. 3 (dated 6/2/2004)

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada

    2001-11-21

    This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Operations Office's approach to collect data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit 168 under the Federal Facility Agreement and Consent Order. Corrective Action Unit 168 consists of a group of twelve relatively diverse Corrective Action Sites (CASs 25-16-01, Construction Waste Pile; 25-16-03, MX Construction Landfill; 25-19-02, Waste Disposal Site; 25-23-02, Radioactive Storage RR Cars; 25-23-18, Radioactive Material Storage; 25-34-01, NRDS Contaminated Bunker; 25-34-02, NRDS Contaminated Bunker; CAS 25-23-13, ETL - Lab Radioactive Contamination; 25-99-16, USW G3; 26-08-01, Waste Dump/Burn Pit; 26-17-01, Pluto Waste Holding Area; 26-19-02, Contaminated Waste Dump No.2). These CASs vary in terms of the sources and nature of potential contamination. The CASs are located and/or associated wit h the following Nevada Test Site (NTS) facilities within three areas. The first eight CASs were in operation between 1958 to 1984 in Area 25 include the Engine Maintenance, Assembly, and Disassembly Facility; the Missile Experiment Salvage Yard; the Reactor Maintenance, Assembly, and Disassembly Facility; the Radioactive Materials Storage Facility; and the Treatment Test Facility Building at Test Cell A. Secondly, the three CASs located in Area 26 include the Project Pluto testing area that operated from 1961 to 1964. Lastly, the Underground Southern Nevada Well (USW) G3 (CAS 25-99-16), a groundwater monitoring well located west of the NTS on the ridgeline of Yucca Mountain, was in operation during the 1980s. Based on site history and existing characterization data obtained to support the data quality objectives process, contaminants of potential concern (COPCs) for CAU 168 are primarily radionuclide; however, the COPCs for several CASs were not defined. To address COPC uncertainty, the analytical program for most CASs will include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons, polychlorinated biphenyls, and radionuclides. Upon reviewing historical data and current site conditions, it has been determined that no further characterization is required at USW G3 (CAS 25-99-16) to select the appropriate corrective action. A cesium-137 source was encased in cement within the vadous zone during the drilling of the well (CAS 25-99-16). A corrective action of closure in place with a land-use restriction for drilling near USW G3 is appropriate. This corrective action will be documented in the Corrective Action Decision Document (CADD) for CAU 168. The results of the remaining field investigation will support a defensible evaluation of corrective action alternatives for the other CASs within CAU 168 in this CADD.

  11. Remedial Action Plan and site design for stabilization of the inactive uranium mill tailings site at Gunnison, Colorado. Attachment 5, Supplemental radiological data: Final report

    SciTech Connect (OSTI)

    Not Available

    1992-10-01

    Diffusion coefficients for radon gas in earthen materials are required to design suitable radon-barrier covers for uranium tailings impoundments and other materials that emit radon gas. Many early measurements of radon diffusion coefficients relied on the differences in steady-state radon fluxes measured from radon source before and after installation of a cover layer of the material being tested. More recent measurements have utilized the small-sample transient (SST) technique for greater control on moistures and densities of the test soils, greater measurement precision, and reduced testing time and costs. Several of the project sites for the US Department of Energy`s Uranium Mill Tailings Remedial Action (UMTRA) Program contain radiologically contaminated subsurface material composed predominantly of cobbles, gravels andsands. Since remedial action designs require radon diffusion coefficients for the source materials as well as the cover materials, these cobbly and gravelly materials also must be tested. This report contains the following information: a description of the test materials used and the methods developed to conduct the SST radon diffusion measurements on cobbly soils; the protocol for conducting radon diffusion tests oncobbly soils; the results of measurements on the test samples; and modifications to the FITS computer code for analyzing the time-dependent radon diffusion data.

  12. Planning Water Use in California

    E-Print Network [OSTI]

    Eisenstein, William; Kondolf, G. Mathias

    2008-01-01

    the University of Maryland Water Policy Collaborative, 2006.FURTH ER READ ING California Department of Water Resources.California Water Plan Update 2005: A Framework for Action.

  13. Encoding Planning Constraints into Partial Order Planning Domains M. Baioletti, S. Marcugini, A. Milani

    E-Print Network [OSTI]

    Baioletti, Marco

    plans), actions duration, plan cost or plan utility (e.g. obtain a solution that verify a min­ imumEncoding Planning Constraints into Partial Order Planning Domains M. Baioletti, S. Marcugini, A the representation of a constrained planning problem through the generation of an equi­ valent unconstrained planning

  14. Heat release by controlled continuous-time Markov jump processes

    E-Print Network [OSTI]

    Paolo Muratore-Ginanneschi; Carlos Mejía-Monasterio; Luca Peliti

    2012-12-17

    We derive the equations governing the protocols minimizing the heat released by a continuous-time Markov jump process on a one-dimensional countable state space during a transition between assigned initial and final probability distributions in a finite time horizon. In particular, we identify the hypotheses on the transition rates under which the optimal control strategy and the probability distribution of the Markov jump problem obey a system of differential equations of Hamilton-Bellman-Jacobi-type. As the state-space mesh tends to zero, these equations converge to those satisfied by the diffusion process minimizing the heat released in the Langevin formulation of the same problem. We also show that in full analogy with the continuum case, heat minimization is equivalent to entropy production minimization. Thus, our results may be interpreted as a refined version of the second law of thermodynamics.

  15. Insider Models with Finite Utility in Markets with Jumps

    SciTech Connect (OSTI)

    Kohatsu-Higa, Arturo; Yamazato, Makoto

    2011-10-15

    In this article we consider, under a Levy process model for the stock price, the utility optimization problem for an insider agent whose additional information is the final price of the stock blurred with an additional independent noise which vanishes as the final time approaches. Our main interest is establishing conditions under which the utility of the insider is finite. Mathematically, the problem entails the study of a 'progressive' enlargement of filtration with respect to random measures. We study the jump structure of the process which leads to the conclusion that in most cases the utility of the insider is finite and his optimal portfolio is bounded. This can be explained financially by the high risks involved in models with jumps.

  16. Analysis and Improvements of Fringe Jump Corrections by Electronics on the JET Tokamak FIR Interferometer

    E-Print Network [OSTI]

    Analysis and Improvements of Fringe Jump Corrections by Electronics on the JET Tokamak FIR Interferometer

  17. Fast MCMC sampling for Markov jump processes and extensions

    E-Print Network [OSTI]

    Bach, Francis

    Fast MCMC sampling for Markov jump processes and extensions Vinayak Rao and Yee Whye Teh Rao-backward, Baum-Welch. V Rao and Y W Teh (Mar 2013) Fast MCMC for MJPs 2 / 41 #12;Continuous-Time Hidden Markov state i V Rao and Y W Teh (Mar 2013) Fast MCMC for MJPs 3 / 41 #12;Predator-Prey (Lotka-Volterra) Model

  18. Office for Aboriginal Peoples ABORIGINAL STRATEGIC PLAN

    E-Print Network [OSTI]

    Kavanagh, Karen L.

    Office for Aboriginal Peoples ABORIGINAL STRATEGIC PLAN 2013-2018 #12;TABLE OF CONTENTS Statement .............................................................................. 3 The Ten Pillars of the Aboriginal Strategic Plan ............................................ 4 The Aboriginal Strategic Plan: Goals, Action Items, Timelines, and Leads

  19. Jumping-Droplet-Enhanced Condensation on Scalable Superhydrophobic Nanostructured Surfaces

    SciTech Connect (OSTI)

    Miljkovic, N; Enright, R; Nam, Y; Lopez, K; Dou, N; Sack, J; Wang, E

    2012-01-01

    When droplets coalesce on a superhydrophobic nanostructured surface, the resulting droplet can jump from the surface due to the release of excess surface energy. If designed properly, these superhydrophobic nanostructured surfaces can not only allow for easy droplet removal at micrometric length scales during condensation but also promise to enhance heat transfer performance. However, the rationale for the design of an ideal nanostructured surface as well as heat transfer experiments demonstrating the advantage of this jumping behavior are lacking. Here, we show that silanized copper oxide surfaces created via a simple fabrication method can achieve highly efficient jumping-droplet condensation heat transfer. We experimentally demonstrated a 25% higher overall heat flux and 30% higher condensation heat transfer coefficient compared to state-of-the-art hydrophobic condensing surfaces at low supersaturations (<1.12). This work not only shows significant condensation heat transfer enhancement but also promises a low cost and scalable approach to increase efficiency for applications such as atmospheric water harvesting and dehumidification. Furthermore, the results offer insights and an avenue to achieve high flux superhydrophobic condensation.

  20. Renewable Energy Action Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b <RefurbishedDevelopment RED 2002 Jump to:Action

  1. Remedial action plan and site design for stabilization of the inactive Uranium Mill Tailings Site at Lowman, Idaho. Attachment 4, Water resources protection strategy: Final report

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The DOE proposes to achieve compliance with the proposed EPA groundwater protection standards (Subparts A and B of 40 CFR 192) by meeting the EPA maximum concentration limits (MCLs) or background concentrations for designated hazardous constituents in groundwater in the uppermost aquifer (alluvium/weathered granodiorite) at the point of compliance (POC) at the Lowman disposal site near Lowman, Idaho. The proposed remedial action in conjunction with existing hydrogeological conditions at the Lowman site will ensure sufficient protection of human health and the environment. The DOE has concluded that the EPA groundwater protection standards will be met at the POC because, with the exception of antimony, none of the hazardous constituents that exceed laboratory method detection limits within the radioactive sand pore fluids were above the proposed concentration limits. The DOE has demonstrated that antimony will meet the proposed concentration limits at the POC through attenuation in subsoils beneath the disposal cell and by dilution in groundwater underflow. The Lowman processing site is in compliance with Subpart B of 40 CFR 192 because statistical analyses of groundwater samples indicate no groundwater contamination.

  2. Portsmouth Proposed Plan for the Site-wide Waste Disposition...

    Energy Savers [EERE]

    developed for consideration. This Proposed Plan describes the required no-action alternative (Alternative 1) and two action alternatives, the first which considers a...

  3. Remedial Action Plan and Site design for stabilization of the inactive Uranium Mill Tailings sites at Slick Rock, Colorado: Revision 1. Remedial action selection report, Attachment 2, geology report, Attachment 3, ground water hydrology report, Attachment 4, water resources protection strategy. Final

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    The Slick Rock uranium mill tailings sites are located near the small community of Slick Rock, in San Miguel County, Colorado. There are two designated Uranium Mill Tailings Remedial Action (UMTRA) Project sites at Slick Rock: the Union Carbide site and the North Continent site. Both sites are adjacent to the Dolores River. The sites contain former mill building concrete foundations, tailings piles, demolition debris, and areas contaminated by windblown and waterborne radioactive materials. The total estimated volume of contaminated materials is approximately 621,000 cubic yards (475,000 cubic meters). In addition to the contamination at the two processing site areas, 13 vicinity properties were contaminated. Contamination associated with the UC and NC sites has leached into ground water. Pursuant to the requirements of the Uranium Mill Tailings Radiation Control Act (UMTRCA) (42 USC {section}7901 et seq.), the proposed remedial action plan (RAP) will satisfy the final US Environmental Protection Agency (EPA) standards in 40 CFR Part 192 (60 FR 2854) for cleanup, stabilization, and control of the residual radioactive material (RRM) (tailings and other contaminated materials) at the disposal site at Burro Canyon. The requirements for control of the RRM (Subpart A) will be satisfied by the construction of an engineered disposal cell. The proposed remedial action will consist of relocating the uranium mill tailings, contaminated vicinity property materials, demolition debris, and windblown/weaterborne materials to a permanent repository at the Burro Canyon disposal site. The site is approximately 5 road mi (8 km) northeast of the mill sites on land recently transferred to the DOE by the Bureau of Land Management.

  4. Property:NEPA Proposed Action | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report Url Jump to: navigation, search PropertyProposed Action Jump

  5. CDKN-CARICOM-Trinidad and Tobago-A Regional Implementation Plan...

    Open Energy Info (EERE)

    CDKN-CARICOM-Trinidad and Tobago-A Regional Implementation Plan for CARICOM's Regional Climate Change Resilience Framework Redirect page Jump to: navigation, search REDIRECT...

  6. Jump Steady Resort Space Heating Low Temperature Geothermal Facility | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy ResourcesOrder atHills,New York: EnergyUnlimitedEnergy Information Jump

  7. Old hydrofracture facility tanks contents removal action operations plan at the Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 1: Text. Volume 2: Checklists and work instructions

    SciTech Connect (OSTI)

    1998-05-01

    This Operations Plan summarizes the operating activities for transferring contents of five low-level (radioactive) liquid waste storage tanks associated with the Old Hydrofracture Facility (OHF) to the Melton Valley Storage Tanks (MVST) for secure storage. The transfer will be accomplished through sluicing and pumping operations which are designed to pump the slurry in a closed circuit system using a sluicing nozzle to resuspend the sludge. Once resuspended, the slurry will be transferred to the MVST. The report documenting the material transfer will be prepared after transfer of the tank materials has been completed. The OBF tanks contain approximately 52,600 gal (199,000 L) of low-level radioactive waste consisting of both sludge and supernatant. This material is residual from the now-abandoned grout injection operations conducted from 1964 to 1980. Total curie content is approximately 30,000 Ci. A sluicing and pumping system has been specifically designed for the OHF tanks contents transfer operations. This system is remotely operated and incorporates a sluicing nozzle and arm (Borehole Miner) originally designed for use in the mining industry. The Borehole Miner is an in-tank device designed to deliver a high pressure jet spray via an extendable nozzle. In addition to removing the waste from the tanks, the use of this equipment will demonstrate applicability for additional underground storage tank cleaning throughout the U.S. Department of Energy complex. Additional components of the complete sluicing and pumping system consist of a high pressure pumping system for transfer to the MVST, a low pressure pumping system for transfer to the recycle tank, a ventilation system for providing negative pressure on tanks, and instrumentation and control systems for remote operation and monitoring.

  8. Computing the Rates of Measurement-Induced Quantum Jumps

    E-Print Network [OSTI]

    Michel Bauer; Denis Bernard; Antoine Tilloy

    2015-06-08

    Small quantum systems can now be continuously monitored experimentally which allows for the reconstruction of quantum trajectories. A peculiar feature of these trajectories is the emergence of jumps between the eigenstates of the observable which is measured. Using the Stochastic Master Equation (SME) formalism for continuous quantum measurements, we show that the density matrix of a system indeed shows a jumpy behavior when it is subjected to a tight measurement (even if the noise in the SME is Gaussian). We are able to compute the jump rates analytically for any system evolution, i.e. any Lindbladian, and we illustrate how our general recipe can be applied to two simple examples. We then discuss the mathematical, foundational and practical applications of our results. The analysis we present is based on a study of the strong noise limit of a class of stochastic differential equations (the SME) and as such the method may be applicable to other physical situations in which a strong noise limit plays a role.

  9. Revegetation Plan for Areas of the Fitzner-Eberhardt Arid Lands Ecology Reserve Affected by Decommissioning of Buildings and Infrastructure and Debris Clean-up Actions

    SciTech Connect (OSTI)

    Downs, Janelle L.; Durham, Robin E.; Larson, Kyle B.

    2011-01-01

    The U.S. Department of Energy (DOE), Richland Operations Office is working to remove a number of facilities on the Fitzner Eberhardt Arid Lands Ecology Reserve (ALE), which is part of the Hanford Reach National Monument. Decommissioning and removal of buildings and debris on ALE will leave bare soils and excavated areas that need to be revegetated to prevent erosion and weed invasion. Four main areas within ALE are affected by these activities (DOE 2009;DOE/EA-1660F): 1) facilities along the ridgeline of Rattlesnake Mountain, 2) the former Nike missile base and ALE HQ laboratory buildings, 3) the aquatic research laboratory at Rattlesnake Springs area, and 4) a number of small sites across ALE where various types of debris remain from previous uses. This revegetation plan addresses the revegetation and restoration of those land areas disturbed by decommissioning and removal of buildings, facilities and associated infrastructure or debris removal. The primary objective of the revegetation efforts on ALE is to establish native vegetation at each of the sites that will enhance and accelerate the recovery of the native plant community that naturally persists at that location. Revegetation is intended to meet the direction specified by the Environmental Assessment (DOE 2009; DOE/EA-1660F) and by Stipulation C.7 of the Memorandum of Agreement (MOA) for the Rattlesnake Mountain Combined Community Communication Facility and InfrastructureCleanup on the Fitzner/Eberhardt Arid Lands Ecology Reserve, Hanford Site, Richland Washington(DOE 2009; Appendix B). Pacific Northwest National Laboratory (PNNL) under contract with CH2M Hill Plateau Remediation Company (CPRC) and in consultation with the tribes and DOE-RL developed a site-specific strategy for each of the revegetation units identified within this document. The strategy and implementation approach for each revegetation unit identifies an appropriate native species mix and outlines the necessary site preparation activities and specific methods for seeding and planting at each area. evegetation work is scheduled to commence during the first quarter of FY 2011 to minimize the amount of time that sites are unvegetated and more susceptible to invasion by non-native weedy annual species.

  10. Making Things Clearer: Exaggeration, Jumping the Gun, and The Venus Syndrome

    E-Print Network [OSTI]

    Hansen, James E.

    1 Making Things Clearer: Exaggeration, Jumping the Gun, and The Venus Syndrome 15 April 2013 James. Jumping the Gun It has been said that I reach conclusions before the evidence warrants them. Two examples

  11. Precautionary Measures for Credit Risk Management in Jump Models

    E-Print Network [OSTI]

    Egami, Masahiko

    2011-01-01

    Sustaining efficiency and stability by properly controlling the equity to asset ratio is one of the most important and difficult challenges in bank management. Due to unexpected and abrupt decline of asset values, a bank must closely monitor its net worth as well as market conditions, and one of its important concerns is when to raise more capital so as not to violate capital adequacy requirements. In this paper, we model the tradeoff between avoiding costs of delay and premature capital raising, and solve the corresponding optimal stopping problem. In order to model defaults in a bank's loan/credit business portfolios, we represent its net worth by Levy processes, and solve explicitly for the double exponential jump diffusion process and for a general spectrally negative Levy process.

  12. Markov Jump Processes Approximating a Non-Symmetric Generalized Diffusion

    SciTech Connect (OSTI)

    Limic, Nedzad

    2011-08-15

    Consider a non-symmetric generalized diffusion X( Dot-Operator ) in Double-Struck-Capital-R {sup d} determined by the differential operator A(x) = -{Sigma}{sub ij} {partial_derivative}{sub i}a{sub ij}(x){partial_derivative}{sub j} + {Sigma}{sub i} b{sub i}(x){partial_derivative}{sub i}. In this paper the diffusion process is approximated by Markov jump processes X{sub n}( Dot-Operator ), in homogeneous and isotropic grids G{sub n} Subset-Of Double-Struck-Capital-R {sup d}, which converge in distribution in the Skorokhod space D([0,{infinity}), Double-Struck-Capital-R {sup d}) to the diffusion X( Dot-Operator ). The generators of X{sub n}( Dot-Operator ) are constructed explicitly. Due to the homogeneity and isotropy of grids, the proposed method for d{>=}3 can be applied to processes for which the diffusion tensor {l_brace}a{sub ij}(x){r_brace}{sub 11}{sup dd} fulfills an additional condition. The proposed construction offers a simple method for simulation of sample paths of non-symmetric generalized diffusion. Simulations are carried out in terms of jump processes X{sub n}( Dot-Operator ). For piece-wise constant functions a{sub ij} on Double-Struck-Capital-R {sup d} and piece-wise continuous functions a{sub ij} on Double-Struck-Capital-R {sup 2} the construction and principal algorithm are described enabling an easy implementation into a computer code.

  13. NUMERICAL STUDY OF A TURBULENT HYDRAULIC JUMP Qun Zhao 1 Shubhra K. Misra1

    E-Print Network [OSTI]

    Zhao, Qun

    . Hydraulic jumps are commonly used as energy dissipators and they have been studied intensively by hydraulicNUMERICAL STUDY OF A TURBULENT HYDRAULIC JUMP Qun Zhao 1 Shubhra K. Misra1 Ib A. Svendsen 1 (Member of a turbulent hydraulic jump. The numerical model is based on RIPPLE (Kothe et al., 1994) with two turbulence

  14. Jump Flooding in GPU with Applications to Voronoi Diagram and Distance Transform Guodong Rong

    E-Print Network [OSTI]

    Tan, Tiow Seng

    Jump Flooding in GPU with Applications to Voronoi Diagram and Distance Transform Guodong Rong Tiow of the jump flooding algorithm is shown in the other six pictures, with the rightmost being the computed Voronoi diagram. Abstract This paper studies jump flooding as an algorithmic paradigm in the general

  15. Edit: Study -APP Save | Exit | Hide/Show Errors | Print... | Jump To

    E-Print Network [OSTI]

    Biederman, Irving

    Edit: Study - APP Save | Exit | Hide/Show Errors | Print... | Jump To: 01. Project Guidance Save | Exit | Hide/Show Errors | Print... | Jump To: 01. Project IdentificationStarDev/ResourceAdministration/Project/ProjectEditor?Project=com... 1 #12;Edit: Study - APP- Save | Exit | Hide/Show Errors | Print... | Jump To: 02. Study

  16. CLOSURE REPORT FOR CORRECTIVE ACTION UNIT 214: BUNKERS AND STORAGE AREAS NEVADA TEST SITE, NEVADA

    SciTech Connect (OSTI)

    2006-09-01

    The purpose of this Closure Report is to document that the closure of CAU 214 complied with the Nevada Division of Environmental Protection-approved Corrective Action Plan closure requirements. The closure activities specified in the Corrective Action Plan were based on the approved corrective action alternatives presented in the CAU 214 Corrective Action Decision Document.

  17. Corrective Action

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAuditsClusterInformationContractCorporate Culture | NationalCorrective Action

  18. Mesquite Solar Plan - build out next to existing FF plants Solar...

    Open Energy Info (EERE)

    Mesquite Solar Plan - build out next to existing FF plants Solar Power Plant Jump to: navigation, search Name Mesquite Solar Plan - build out next to existing FF plants Solar Power...

  19. GIZ Sourcebook Module 2a: Land Use Planning and Urban Transport...

    Open Energy Info (EERE)

    GIZ Sourcebook Module 2a: Land Use Planning and Urban Transport (Espaol) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ Sourcebook Module 2a: Land Use Planning...

  20. Thailand-National Energy Efficiency Plan and Evidence-based Mitigation...

    Open Energy Info (EERE)

    Thailand-National Energy Efficiency Plan and Evidence-based Mitigation Strategy Jump to: navigation, search Name GIZ-Thailand-National energy efficiency plan as a core element for...

  1. Quantum Jump from Singularity to Outside of Black Hole

    E-Print Network [OSTI]

    Dündar, Furkan Semih

    2015-01-01

    Considering the role of black hole singularity in quantum evolution, a resolution to the firewall paradox is presented. It is emphasized that if an observer has the singularity as a part of his spacetime, then the semi-classical evolution would be non-unitary as viewed by him. Specifically, a free-falling observer inside the black hole would have a Hilbert space with non-unitary evolution; a quantum jump for particles encountering the singularity to outside of the horizon as part of late radiations in black hole evaporation. Accordingly, we elaborate the first postulate of black hole complementarity: freely falling observers who pass through the event horizon would have non-unitarity evolutions. The non-unitary evolution is such that it does not have physically measurable effects for them. Besides, no information would be lost in singularity. Taking the modified picture into account, the firewall paradox {can be} resolved, respecting No Drama. A by-product of our modification is that roughly half of the mass ...

  2. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01

    monitor and manage the energy usage and maintenance issuesprogram can further reduce energy usage based on ongoingand verification of energy usage with a goal of continuous

  3. University of Vermont 2010 Climate Action Plan

    E-Print Network [OSTI]

    Bierman, Paul

    : Reach net zero electricity 2020: Reach net zero heating, cooling and fleet 2025: Address all remaining alternative · Climate commitment requires finding ways to reduce to net zero emissions 8 0 10,000 20,000 30 and switching to primarily renewable energy · Also means buying carbon credits or other ways to compensate

  4. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01

    smart building layers that build upon it, and requires the greatest investment. Systems integration provides the bridge

  5. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01

    100 standards and typical building automation systems. A keycontrol system and building automation systems for HVACan integrated network for Building Automation System (BAS)

  6. Corrective Action Plan for Environmenta' Management Headquarters

    Office of Environmental Management (EM)

    for Environmenta' Management Headquarters Phase 2: Radiological Release Event at the Waste Isolation Pilot Plant on February 14 2014 Washington, DC 20585 August 2015 Corrective...

  7. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01

    Labor Category  Energy  Operations  Total (per square foot) costs Strategy  Energy  Operations  Total (per square foot) Combined energy and operations benefits  $ per square foot 

  8. 2014 Action Plan for Retention and

    E-Print Network [OSTI]

    Thomas, Andrew

    colleges, the Division of Lifelong Learning, the Division of Student Life, and Office of Institutional-Levitz. Foundational assumptions · This report is focused on undergraduate students. Initiatives aimed at improving representative from: Division of Student Life Associate Deans Division of Lifelong Learning Department

  9. Environmental Management Headquarters Corrective Action Plan...

    Energy Savers [EERE]

    (HQ) issues identified in the Accident Investigation Report for the Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant (WIPP) February 5, 2014. The report...

  10. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01

    Fiber]  Switch Floor 1 GSA Smart Buildings Report April 8,No. DE-AC02-05CH11231. GSA Smart Buildings Report April 8,Kupritz Steve Selkowitz GSA Smart Buildings Report April 8,

  11. Virginia Commonwealth University (VCU) Climate Action Plan

    E-Print Network [OSTI]

    Hammack, Richard

    divided into three categories: (i) Demand Side Management a. behavior change (as it applies to energy management, and sustainable development. VCU will further establish key performance indicators for raising

  12. Virginia Commonwealth University Climate Action Plan

    E-Print Network [OSTI]

    Hammack, Richard

    categories: (i) Demand Side Management a. behavior change (as it applies to energy, water, waste, recycling to the interdependence of humans and the environment, environmental management, and sustainable development. VCU

  13. Virginia Commonwealth University Climate Action Plan

    E-Print Network [OSTI]

    Hammack, Richard

    .................................................................................................21 3.3.2 Renewable Energy ..................................................................................7 2. Base Case

  14. Action Plan Georgia Health Policy Center

    E-Print Network [OSTI]

    Frantz, Kyle J.

    as a center of excellence for its work in rural communities and health system technical assistance. Based, applied research, evaluation, and technical assistance for local communities, governmental agencies approaches to community-based health improvement. The Center was also encouraged to develop methods to engage

  15. UW Climate Action Plan Team Structure

    E-Print Network [OSTI]

    Doty, Sharon Lafferty

    , FacilitiesUW Tacoma Ruth Johnston, Strategy Management Steve Ashurst, UW Technology Tad Anderson, Atmospheric (CoLeaders) Ashley Rumble, Student Bridget Mason, Environmental Studies, Tacoma Christina Heinlen, Project Support, SM Jim Gawel, Environmental Sciences, Tacoma Katherine Hoffman, Kevin Laverty, Business

  16. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01

    etc. ) o Review national energy aggregation program (EUAS) oo Review national energy aggregation program (EU-AS) o

  17. 7th Plan's Resource Strategy Action Items

    E-Print Network [OSTI]

    #12;Draft Resource Strategy - Seven Principal Elements Acquire Cost-Effective Efficiency 1400 a-region energy and capacity generating resource development Regional reserve sharing could reduce cost Deferral Cost in Calculation of Cost-Effectiveness of Energy Efficiency Evaluate cost

  18. Environmental Management Headquarters Corrective Action Plan...

    Energy Savers [EERE]

    Report for the Phase 2: Radiological Release Event at the Waste Isolation Pilot Plant (WIPP) on February 14, 2014. The report identified 24 Conclusions and 40 Judgments of Need...

  19. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01

    Processes and training BAS upgrades to open standards, where appropriate IP connectivity for all control systems Controls optimization (

  20. City of Boulder- Climate Action Plan Fund

    Broader source: Energy.gov [DOE]

    Xcel Energy collects the tax for the city through its monthly customer utility billing. (Voluntary purchases of utility-provided wind power are exempt from the tax.) The tax rate, expiring March...

  1. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01

    Switch Floor 1 GSA Smart Buildings Report April 8, 2009 PageDE-AC02-05CH11231. GSA Smart Buildings Report April 8, 2009Steve Selkowitz GSA Smart Buildings Report April 8, 2009

  2. Smart Buildings: Business Case and Action Plan

    E-Print Network [OSTI]

    Ehrlich, Paul

    2009-01-01

    Switch Floor 1 GSA Smart Buildings Report April 8, 2009 Pageinto the revised P100 and Smart Building Design GuideIssue revised P100 and Smart Building Design Guide High

  3. CLIMATE ACTION PLAN Executive Summary 1

    E-Print Network [OSTI]

    Dai, Yang

    Sources 27 2.1 Modify Cogeneration Plants 27 2.2 Build Renewable Electricity 27 2.3 Geothermal Heating Management System 38 5.6 Expand the Waste Minimization Program 38 5.7 Construction Debris 39 5.8 Purchasing. Daley has made a commitment to enhance the environment and make Chicago the most environmentally

  4. Climate Action Plan Washington State University

    E-Print Network [OSTI]

    construction and operation, including geothermal heating and cooling, natural day lighting, natural habitat of electric power and energy systems. Researchers in the College of Engineering and Architecture are working environment that fosters the conservation of natural resources, supports and enhances social responsibility

  5. Fraser River Action Plan Bibliography 1998

    E-Print Network [OSTI]

    , physical environment, contamination, water quality, natural resources, and biota. For the geographic Contamination keywords Water quality keywords Natural Resources keywords Biota keywords General keywords #12 and terrestrial biota, the quality of their environments, and the effects that human activities have on them

  6. Strategic Roadmap 2024 and Tactical Action Plan

    SciTech Connect (OSTI)

    2014-05-14

    This chart defines the CRITICAL PATHWAYS described in the Strategic Roadmap and the breakdown of the STRATEGIC TARGET AREAS, providing WORK SCOPE ESTIMATES for each heading.

  7. Environmental Management Headquarters Corrective Action Plan - Radiological

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing FacilityJanuary 20,membership

  8. Environmental Management Headquarters Corrective Action Plan - Radiological

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLfor InnovativeProcessing FacilityJanuary 20,membershipRelease Phase II |

  9. Corrective Action Plan for Environmenta' Management Headquarters

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p aDepartmentEnergy comparingDeepDecemberCornstalks

  10. Hiring Reform Memoranda and Action Plan

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,ExecutiveFinancingR Walls - Building America Topathe Risk along the0585

  11. National Action Plan on Demand Response

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties -Department of EnergyNEW1forEnergyatEnergy 6 3 9 12 6 3 9

  12. Climate Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:I DueBETOoffor use withCleanupCompact, FL | Department

  13. President's Climate Action Plan | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report Appendices | Department of EnergyDepartment ofAssist

  14. 300 Area Process Trenches Groundwater Monitoring Plan

    SciTech Connect (OSTI)

    Lindberg, Jonathan W.; Chou, Charissa J.

    2001-08-13

    This document is a proposed groundwater monitoring plan for the 300 Area process trenches to comply with RCRA final status, corrective action groundwater monitoring.

  15. EMERGENCY ACTION DATE OF LAST REVISION: 12 July 2013

    E-Print Network [OSTI]

    Stuart, Steven J.

    EMERGENCY ACTION PLAN DATE OF LAST REVISION: 12 July 2013 #12;REVISION RECORD original issue #12;CAC-C EMERGENCY ACTION PLAN 8/6/13-4:13 PM page 3 C O N T E N T S 1.0 PURPOSE................................................................................ 4 2.0 REPORTING EMERGENCIES.................................................. 4 3.0 BUILDING

  16. Property:FuturePlans | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to: navigation,Property EditMimeType JumpFuturePlans Jump to: navigation,

  17. Development of a plan to implement enhanced geothermal system...

    Open Energy Info (EERE)

    Development of a plan to implement enhanced geothermal system (EGS) in the animas valley, New Mexico Jump to: navigation, search OpenEI Reference LibraryAdd to library Report:...

  18. Corrective Action Decision Document/Closure Report for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites, Nevada National Security Site, Nevada, Revision 1

    SciTech Connect (OSTI)

    Matthews, Patrick

    2014-01-01

    The purpose of this Corrective Action Decision Document/Closure Report is to provide justification and documentation supporting the recommendation that no further corrective action is needed for CAU 105 based on the implementation of the corrective actions. Corrective action investigation (CAI) activities were performed from October 22, 2012, through May 23, 2013, as set forth in the Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites; and in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices.

  19. Sustainable NREL - Site Sustainability Plan FY 2015 (Management Publication)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    NREL's Site Sustainability Plan FY 2015 reports on sustainability plans for the lab for the year 2015 based on Executive Order Goals and provides the status on planned actions cited in the FY 2014 report.

  20. Register now at career.ucla.edu/JumpStart The JumpStart Series is a fee-based program open to currently registered UCLA students.

    E-Print Network [OSTI]

    Ferguson, Thomas S.

    . Blogs Winter 2015 Internship Search Wednesday, January 7, 4-7pm Engineering / Technology / Consulting-7pm Graduate Student JumpStart Engineering and Technology Thursday, Oct 16, 4-7pm #12;

  1. Take the Energy Action Challenge

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    Students will work in pairs or small groups to apply knowledge of energy-wise habits to evaluate energy use in their homes and schools and make recommendations for improved efficiency. They will use an energy audit tool to collect data on their home and school energy habits and present an action plan to their class. Further communication at the school and district level is encouraged.

  2. Microsoft Word - 20130823-PR-32-13-Draft-plan-from-Federal-agencies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    plan from Federal agencies details specific actions over next five years to benefit fish Portland, Ore. - Federal agencies and their partners outlined today specific actions...

  3. Budget & Planning Strategic Plan

    E-Print Network [OSTI]

    Harms, Kyle E.

    Budget & Planning Strategic Plan Strategic Goal 1: Maintain a suitably staffed, effective the budget and planning needs of the institution. Strategic Goal 5: Identify ways in which B&P information and training opportunities to remain at the forefront of national trends Strategic Goal 2: Continue to meet

  4. Management Plan Management Plan

    E-Print Network [OSTI]

    Management Plan Management Plan "Management and restoration programs for native salmonids have communities" J. Lichatowich et al. 1998. A Conceptual Foundation for the Management of Native Salmonids in the Deschutes River. The Management Plan consists of five elements described in the Council's program: 1

  5. Closure Report for Corrective Action Unit 322: Areas 1 and 3 Release Sites and Injection Wells, Nevada Test Site, Nevada

    SciTech Connect (OSTI)

    U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

    2006-06-01

    The purpose of this closure report is to document that the closure of CAU 322 complied with the Nevada Department of Environmental Protection-approved Corrective Action Plan closure requirements. The closure activities specified in the Corrective Action Plan were based on the approved corrective action alternatives presented in the CAU 322 Corrective Action Decision Document.

  6. Request for Salary Action Requesting action

    E-Print Network [OSTI]

    Arnold, Jonathan

    Request for Salary Action Requesting action: Above "annual entry maximum" Mid-year increase Promotional salary increase exception Counter offer Salary supplement Other Jan. 28 2015 Tracking number Date

  7. Modelling the "Pop" in Winter Terrain Park Jumps J. A. McNeil

    E-Print Network [OSTI]

    at ski resorts have found that jumping generally poses a signif- icantly greater risk of spine and head found that jumping generally (whether in a terrain park or not) poses a significantly greater risk of the feature." The authors have since identified experimental errors in this work and an erratum has been

  8. Abductive Planning with Sensing Matthew Stone

    E-Print Network [OSTI]

    Stone, Matthew

    . Traditional theories of action and knowledge (Moore, 1985; Morgenstern, 1987; Davis, 1994) suggest that search. For example, suppose an agent plans to look up Bill in the phone book, then call him. From the agent's point, the plan must include a characterization that indirectly describes this action, like dialing Bill's phone

  9. Rainforest Action Network RAN | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎ |RENERCOEnergyRadiumRailAction Network

  10. Climate Protection Action Fund | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company) Jump to:NewMinnesota:Protection Action Fund (Redirected from

  11. COP Strategic Plan 2012 Approved by Strategic Planning Retreat Participants March 6, 2012

    E-Print Network [OSTI]

    Capecchi, Mario R.

    COP Strategic Plan 2012 Approved by Strategic Planning Retreat Participants March 6, 2012 Approved Vote: 45 yes, 0 no #12;University of Utah College of Pharmacy Strategic Plan 2012 Page 2 College of Pharmacy Strategic Action Plan Mission The University of Utah College

  12. Public affairs plan

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Public Affairs Plan is to establish goals for the Fiscal Year 1995 UMTRA public affairs program and identify specific activities to be conducted during the year. It also describes the roles of various agencies involved in the conduct of the public affairs program and defines the functions of the Technical Assistance Contractor (TAC) Public Affairs Department. It integrates and replaces the Public Participation Plan (DOE/AL/62350-47D) and Public Information Plan (DOE/AL/623590-71). The plan describes the US Department of Energy`s (DOE) plans to keep stakeholders and other members of the public informed about project policies, plans, and activities, and provide opportunities for stakeholders and interested segments of the public to participate in project decision-making processes. The plan applies to the UMTRA Project Office; the DOE Albuquerque Operations Office, Office of Intergovernmental and External Affairs (OIEA); the UMTRA TAC; the UMTRA Remedial Action Contractor (RAC); and other cooperating agencies.

  13. Philippines-The Mitigation Action Implementation Network (MAIN) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorthInformationPersuPlan (LCP) JumpEnergy

  14. Information Shocks, Liquidity Shocks, Jumps, and Price Discovery: Evidence from the U.S. Treasury Market

    E-Print Network [OSTI]

    Jiang, George J.

    In this paper, we identify jumps in U.S. Treasury-bond (T-bond) prices and investigate what causes such unexpected large price changes. In particular, we examine the relative importance of macroeconomic news announcements ...

  15. LETTER doi:10.1038/nature13436 Tracking photon jumps with repeated quantum

    E-Print Network [OSTI]

    Devoret, Michel H.

    LETTER doi:10.1038/nature13436 Tracking photon jumps with repeated quantum non-demolition parity measurements L. Sun1 {, A. Petrenko1 , Z. Leghtas1 , B. Vlastakis1 , G. Kirchmair1 {, K. M. Sliwa1 , A. Narla1

  16. Public affairs plan

    SciTech Connect (OSTI)

    NONE

    1995-09-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Public Affairs Plan is to establish goals for the fiscal year (FY) 1996 UMTRA Project public affairs program and to identify specific activities to be conducted during the year. It describes the roles of various agencies involved in the public affairs program and defines the functions of the UMTRA Project Technical Assistance Contractor (TAC) Public Affairs Department. It replaces the FY 1995 Public Affairs Plan (DOE/AL/62350-154). The plan also describes the US Department of Energy`s (DOE) plans to keep stakeholders and other members of the public informed about UMTRA Project policies, plans, and activities, and provide opportunities for stakeholders and interested segments of the public to participate in UMTRA Project decision-making processes. The plan applies to the UMTRA Project Team; the DOE Grand Junction Projects Office (GJPO); the DOE Albuquerque Operations Office, Office of Public Affairs (OPA); the TAC; the UMTRA Project Remedial Action Contractor (RAC); and other cooperating agencies.

  17. UW-Milwaukee Strategic Planning Core Team

    E-Print Network [OSTI]

    Saldin, Dilano

    UW-Milwaukee Strategic Planning Core Team Minutes Tuesday, December 18, 2012 Regents Room, Chapman" because there will be further wordsmithing when governance groups weigh in later. 3. Strategic Planning Schematic (attached) Strategic planning and action time line was disseminated to team Explained

  18. STRATEGIC PLAN Providing Australians with environmental

    E-Print Network [OSTI]

    Greenslade, Diana

    STRATEGIC PLAN 2010-2015 Providing Australians with environmental intelligence for safety to improve. The foundation of this Strategic Plan is maintaining our commitment to meeting our current, accounts, data-sets and standards. This Strategic Plan provides a long-term direction and action agenda

  19. Carbon Management Plan 1. Executive summary 5

    E-Print Network [OSTI]

    Haase, Markus

    Carbon Management Plan June 2011 #12;2 #12;3 CONTENTS 1. Executive summary 5 2. Introduction 15 3. Background and context 16 4. Carbon management strategy 18 5. Carbon emissions baseline and projections 22 6. Past actions and achievements 30 7. Carbon Management Plan implementation 33 8. Carbon Management Plan

  20. HURRICANE PREPAREDNESS PLAN NATIONAL MARINE FISHERIES SERVICE

    E-Print Network [OSTI]

    1 HURRICANE PREPAREDNESS PLAN NATIONAL MARINE FISHERIES SERVICE SOUTHEAST FISHERIES SCIENCE CENTER in the event of an evacuation. June 2015 #12;2 HURRICANE PREPAREDNESS PLAN - GALVESTON LABORATORY I. GENERAL INFORMATION A. Purpose This plan identifies actions to be carried out during various phases of the hurricane

  1. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Appendix B of Attachment 3: Groundwater hydrology report, Attachment 4: Water resources protection strategy, Final

    SciTech Connect (OSTI)

    Not Available

    1994-03-01

    Attachment 3 Groundwater Hydrology Report describes the hydrogeology, water quality, and water resources at the processing site and Dry Flats disposal site. The Hydrological Services calculations contained in Appendix A of Attachment 3, are presented in a separate report. Attachment 4 Water Resources Protection Strategy describes how the remedial action will be in compliance with the proposed EPA groundwater standards.

  2. Bow-wave-like hydraulic jump and horseshoe vortex around an obstacle in a supercritical open channel flow

    E-Print Network [OSTI]

    Boyer, Edmond

    Bow-wave-like hydraulic jump and horseshoe vortex around an obstacle in a supercritical open the obstacle, two main flow structures are observed: i a hydraulic jump in the near-surface region and ii turbulent regime , the detachment length of the hydraulic jump exceeds the one of the horseshoe vortex

  3. 2014 Joint Action Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Joint Action Workshop is an annual event for joint action agencies and their members to meet informally and discuss emerging policy, regulatory, and power supply issues, and other topics...

  4. 2014 Headquarters Facilities Master Security Plan- Chapter 15, Outprocessing

    Broader source: Energy.gov [DOE]

    2014 Headquarters Facilities Master Security Plan - Chapter 15, Outprocessing Describes DOE Headquarters procedures for completing required security actions by departing employees and contractors.

  5. The Gauged Unparticle Action

    E-Print Network [OSTI]

    A. Lewis Licht

    2008-06-24

    We show that the unparticle action that is made gauge invariant by the inclusion of an open Wilson line factor can be transformed into the integral-differential operator action that avoids the use of the Wilson line factor. The two forms of the action should therefore give the same Feynman diagrams. We also show that it is relatively easy to construct Feynman diagrams using the operator action.

  6. Mexico-IAEA Energy Planning | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to: navigation,Mereg GmbH Jump to:EC-LEDS in theIAEA Energy Planning Jump

  7. PlanET Biogastechnik GmbH | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg,Energy LLC JumpPhono Solar JumpMaunaPionics CoPlanET

  8. Jamaica-IAEA Energy Planning | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EAInvervar Hydro Jump to: navigation,JumpIAEA Energy Planning Jump to:

  9. Remedial action plan and site design for stabilization of the inactive uranium processing site at Naturita, Colorado. Attachment 3, Groundwater hydrology report, Attachment 4, Water resources protection strategy: Preliminary final

    SciTech Connect (OSTI)

    Not Available

    1993-08-01

    The US Environmental Protection Agency (EPA) has established health and environmental protection regulations to correct and prevent groundwater contamination resulting from processing activities at inactive uranium milling sites (40 CFR 192). The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 designated responsibility to the US Department of Energy (DOE) for assessing the inactive uranium milling sites. The DOE has determined that each assessment shall include information on site characterization, a description of the proposed action, and a summary of the water resources protection strategy that describes how the proposed action will comply with the EPA groundwater protection standards. To achieve compliance with the proposed US Environmental Protection Agency (EPA) groundwater protection standards, the US Department of Energy (DOE) proposes that supplemental standards be applied at the Dry Flats disposal site because of Class III (limited use) groundwater in the uppermost aquifer (the basal sandstone of the Cretaceous Burro Canyon Formation) based on low yield. The proposed remedial action will ensure protection of human health and the environment.

  10. Regional Public Coordination Transportation Plan Texoma Region #22 

    E-Print Network [OSTI]

    Texoma Council of Governments

    2006-12-01

    .......................................................................................................... 6 Regional Geography and Demographics..................................................................................... 6 Regional Agencies Responsible for Transportation Planning.................................................. 6 Descriptions... of the Region?s Public Transportation Providers................................................. 7 Coordinated Transportation Plan..................................................................................................... 8 Coordination Actions...

  11. Cost-Optimal Planning using Weighted MaxSAT Nathan Robinson

    E-Print Network [OSTI]

    Gretton, Charles

    -benefit plan- ning in fixed-horizon problems. In this setting actions have costs and goal utilities canCost-Optimal Planning using Weighted MaxSAT Nathan Robinson , Charles Gretton , Duc-Nghia Pham the problem of computing optimal plans for propositional planning problems with action costs. In the spirit

  12. Guam Strategic Energy Plan

    SciTech Connect (OSTI)

    Conrad, M. D.

    2013-07-01

    Describes various energy strategies available to Guam to meet the territory's goal of diversifying fuel sources and reducing fossil energy consumption 20% by 2020.The information presented in this strategic energy plan will be used by the Guam Energy Task Force to develop an energy action plan. Available energy strategies include policy changes, education and outreach, reducing energy consumption at federal facilities, and expanding the use of a range of energy technologies, including buildings energy efficiency and conservation, renewable electricity production, and alternative transportation. The strategies are categorized based on the time required to implement them.

  13. Plutonium Vulnerability Management Plan

    SciTech Connect (OSTI)

    1995-03-01

    This Plutonium Vulnerability Management Plan describes the Department of Energy`s response to the vulnerabilities identified in the Plutonium Working Group Report which are a result of the cessation of nuclear weapons production. The responses contained in this document are only part of an overall, coordinated approach designed to enable the Department to accelerate conversion of all nuclear materials, including plutonium, to forms suitable for safe, interim storage. The overall actions being taken are discussed in detail in the Department`s Implementation Plan in response to the Defense Nuclear Facilities Safety Board (DNFSB) Recommendation 94-1. This is included as Attachment B.

  14. Task Plans

    Office of Environmental Management (EM)

    Task Plans This page contains links to a tentative listing of active and closed TEC Task Plans. Final status of these task plans will be determined after the July 2000 TEC meeting....

  15. Highly Effective Actions

    E-Print Network [OSTI]

    John H. Schwarz

    2013-11-22

    It is conjectured that the world-volume action of a probe D3-brane in an $AdS_5 \\times S^5$ background of type IIB superstring theory, with one unit of flux, can be reinterpreted as the exact effective action (or highly effective action) for U(2), ${\\cal N} = 4$ super Yang-Mills theory on the Coulomb branch. An analogous conjecture for $U(2)_k \\times U(2)_{-k} $ ABJM theory is also presented. The main evidence supporting these conjectures is that the brane actions have all of the expected symmetries and dualities. Highly effective actions have general coordinate invariance, even though they describe nongravitational theories.

  16. Corrective Action Decision Document for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Sites, Nevada with ROTC 1, Errata Sheet, Revision 0, January 2007

    SciTech Connect (OSTI)

    Grant Evenson

    2007-01-01

    The purpose of this CADD is to identify and provide the rationale for the recommendation of a corrective action alternative (CAA) for the seven CASs within CAU 139. Corrective action investigation activities were performed from June 26 through September 27, 2006, as set forth in the CAU 139 Corrective Action Investigation Plan (CAIP).

  17. Hawaii State Plan | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainableGlynnMassachusetts:Ohio:Website JumpPolluted RunoffPlan Jump to:

  18. Sample Plan of Development | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk,Sage Resources Jump to:Ohio:Project JumpSambhav EnergyPlan of

  19. Land Use Planning Handbook | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona: Energy Resources JumpColorado:New York: EnergyEnergy JumpPlanning

  20. Revisiting the emission from relativistic blast waves in a density-jump medium

    SciTech Connect (OSTI)

    Geng, J. J.; Huang, Y. F.; Dai, Z. G. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Wu, X. F. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China); Li, Liang, E-mail: hyf@nju.edu.cn, E-mail: dzg@nju.edu.cn, E-mail: xfwu@pmo.ac.cn [Department of Physics, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden)

    2014-09-01

    Re-brightening bumps are frequently observed in gamma-ray burst afterglows. Many scenarios have been proposed to interpret the origin of these bumps, of which a blast wave encountering a density-jump in the circumburst environment has been questioned by recent works. We develop a set of differential equations to calculate the relativistic outflow encountering the density-jump by extending the work of Huang et al. This approach is a semi-analytic method and is very convenient. Our results show that late high-amplitude bumps cannot be produced under common conditions, rather only a short plateau may emerge even when the encounter occurs at an early time (<10{sup 4} s). In general, our results disfavor the density-jump origin for those observed bumps, which is consistent with the conclusion drawn from full hydrodynamics studies. The bumps thus should be caused by other scenarios.