Powered by Deep Web Technologies
Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Funding Opportunity Announcement State Energy Program (SEP) Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action  

NLE Websites -- All DOE Office Websites (Extended Search)

FINANCIAL ASSISTANCE FINANCIAL ASSISTANCE FUNDING OPPORTUNITY ANNOUNCEMENT U. S. Department of Energy National Energy Technology Laboratory State Energy Program (SEP) Strengthening Building Retrofit Markets and Stimulating Energy Efficiency Action DE-FOA-0000251 Announcement Type: Initial CFDA Number: 81.041 Issue Date: 04/09/2010 Application Due Date: 05/24/2010 11:59:59 PM Eastern Time 1 NOTE: REGISTRATION/SUBMISSION REQUIREMENTS Registration Requirements There are several one-time actions you must complete in order to submit an application in response to this Announcement (e.g., obtain a Dun and Bradstreet Data Universal Numbering System (DUNS) number, register with the Central Contractor Registration (CCR), and register with Grants.gov). Applicants who are not registered with CCR and Grants.gov, should allow at

2

U.S. District Court's Order of February 27, 2012, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.).  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COALITION, COALITION, INFORMATION NETWORK FOR RESPONSIBLE MINING, CENTER FOR NATIVE ECOSYSTEMS, CENTER FOR BIOLOGICAL DIVERSITY, and SHEEP MOUNTAIN ALLIANCE, Plaintiffs, v. OFFICE OF LEGACY MANAGEMENT, and UNITED STATES DEPARTMENT OF ENERGY, Defendants. ORDER GRANTING IN PART AND DENYING IN PART DEFENDANTS' MOTION FOR RECONSIDERATION This matter is before the Court on Defendants' Motion to Reopen and for Reconsideration of October 18, 2011 Order. (ECF No. 95.) Plaintiffs have filed a Response to the Motion (ECF No. 100), and Defendants have filed a Reply (ECF No. 101). The Court hereby REOPENS this action for the limited purpose of ruling on Defendants' Motion for Reconsideration. See D.C.COLO.LCivR 41.2. Having carefully considered the arguments presented, Defendants' Motion for Reconsideration is

3

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Energy Retrofit Guides to someone by E-mail Share Building Technologies Office: Advanced Energy Retrofit Guides on Facebook Tweet about Building Technologies Office: Advanced Energy Retrofit Guides on Twitter Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Google Bookmark Building Technologies Office: Advanced Energy Retrofit Guides on Delicious Rank Building Technologies Office: Advanced Energy Retrofit Guides on Digg Find More places to share Building Technologies Office: Advanced Energy Retrofit Guides on AddThis.com... About Take Action to Save Energy Activities 179d Tax Calculator Advanced Energy Design Guides Advanced Energy Retrofit Guides Building Energy Data Exchange Specification Buildings Performance Database Data Centers Energy Asset Score

4

A model for perceived coalition effectiveness: the relationship of coalition variables to predict cancer councils' organizational capacity to achieve effective community outcomes  

E-Print Network (OSTI)

Public Health has long led the fight against unjust health disparities within the United States. More and more health educators have had to rely on the social capital of underserved communities via Community Coalitions. Throughout this study, the significance and growth of coalitions and its importance within the field of Public Health was highlighted. The purpose of this study was to test the operational constructs within the Community Coalition Action Theory (CCAT), mainly the constructs of 1) stages of coalition development, 2) membership engagement, 3) leadership, 4) coalition structures & processes, as well as 5) perceived coalition ownership in explaining 6) perceived coalition capacity effectiveness (dependent variable). Results of this study revealed that perceived coalition capacity effectiveness was best predicted by stage of coalition development and perceived coalition ownership. This model accounted for 55.5% of the variance within this study when explaining the high impact participants achieved in regard to their perceived coalition capacity effectiveness.

Torrence, William Alvin

2005-12-01T23:59:59.000Z

5

NAP Coalition Response to DOE RFI: Addressing Policy and Logistical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAP Coalition Response to DOE RFI: Addressing Policy and Logistical NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation The NAP Coalition is a "Coalition of Coalitions" that has been formed for the purpose of implementing the National Action Plan released by FERC in cooperation with DOE in June of 2010. Organizations working together on NAP implementation in include EEI, APPA, NRECA, ASE, ACEEE, NASUCA, NARUC, NASEO, DRSG, DRCC and EDF. The NAP Coalition submits a response in this RFI only to question #14 in Section II of the RFI. NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation More Documents & Publications

6

NAP Coalition Response to DOE RFI: Addressing Policy and Logistical  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAP Coalition Response to DOE RFI: Addressing Policy and Logistical NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation The NAP Coalition is a "Coalition of Coalitions" that has been formed for the purpose of implementing the National Action Plan released by FERC in cooperation with DOE in June of 2010. Organizations working together on NAP implementation in include EEI, APPA, NRECA, ASE, ACEEE, NASUCA, NARUC, NASEO, DRSG, DRCC and EDF. The NAP Coalition submits a response in this RFI only to question #14 in Section II of the RFI. NAP Coalition Response to DOE RFI: Addressing Policy and Logistical Challenges to Smart Grid Implementation More Documents & Publications

7

Colorado Environmental Coalition v. Office of Legacy Management, Civil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado Environmental Coalition v. Office of Legacy Management, Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (October 18, 2011) Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (October 18, 2011) U.S. District Court's Order of October 18, 2011, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). The Court has issued the injunctive relief described on pages 51-52 of the Order. U.S. District Court's Order of October 18, 2011, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). More Documents & Publications Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (February 27, 2012)

8

Colorado Environmental Coalition v. Office of Legacy Management, Civil  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Colorado Environmental Coalition v. Office of Legacy Management, Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (February 27, 2012) Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (February 27, 2012) U.S. District Court's Order of February 27, 2012, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). U.S. District Court's Order of February 27, 2012, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.). More Documents & Publications Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (October 18, 2011) LG Electronics v. DOE - Defendants' Brief in Opposition to Plaintiff LG

9

Microsoft Word - NAP Coalition Response to DOE RFI DRAFT 10.11...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

efforts such as the Federal Energy Regulatory Commission's (FERC) National Action Plan on Demand Response? Response of the NAP Coalition: The National Action Plan (NAP) recognizes...

10

Clean Cities: Coalition Locations  

NLE Websites -- All DOE Office Websites (Extended Search)

Locations Locations Clean Cities coalitions are primarily located in major metropolitan areas throughout the United States. Select the dots on the map for information about individual coalitions. See also the list of coalitions by designation date. United States map showing Clean Cities Coalition locations. Philadelphia State of Delaware Capitol Clean Cities of Connecticut Connecticut Southwestern Area New Haven Norwich Red River Valley (Grand Forks, Winnipeg, Manitoba, Canada) Silicon Valley (San Jose) East Bay (Oakland) San Francisco Sacramento Granite State State of Vermont Northeast Ohio Clean Transportation (Cleveland) Detroit Clean Communities of Western New York (Buffalo) Central New York (Syracuse) Capital District (Albany) Empire Clean Cities State of Maryland Washington DC Metropolitan South Shore Western Riverside County Southern California Association of Governments (SCAG) Atlanta Alabama Denver Philadelphia State of Delaware Las Vegas Washington DC Metropolitan Massachusetts Clean Cities Lone Star Clean Fuels Alliance (Austin) Southeast Florida Chicago Land of Enchantment Wisconsin-Southeast Area Southern Colorado Clean Cities Coalition Long Beach Antelope Valley Utah Clean Cities State of Maryland Kentucky Clean Cities Partnership Coalition Rogue Valley State of West Virginia San Joaquin Valley San Francisco Columbia-Willamette St. Louis Central New York (Syracuse) Dallas/Ft. Worth Honolulu Central Arkansas Pittsburgh Southern California Association of Governments (SCAG) Los Angeles Coachella Valley Region Northern Colorado Central Oklahoma (Oklahoma City) Virginia Clean Cities Coalition San Diego Regional Clean Cities Coalition Greater Long Island Maine Clean Communities Tulsa Valley of the Sun (Phoenix) Western Riverside County New Jersey Genesee Region (Rochester) Western Washington Clean Cities (Seattle) Ocean State Connecticut Connecticut2 Kansas City Regional Coalition Greater Indiana Clean Cities Coalition Capital District (Albany) Tucson Central Florida Clean Cities Coalition Alamo Area (San Antonio) Greater Baton Rouge Clean Cities Coalition Triangle (Raleigh, Durham, Chapel Hill) Twin Cities Clean Fuels Ohio Yellowstone-Teton Clean Energy Coalition Greater Lansing Palmetto State Houston-Galveston Middle Tennessee East Tennessee Clean Fuels Coalition Centralina Clean Fuels Coalition State of Iowa Treasure Valley Central Coast Southeast Louisiana Clean Fuels Partnership Land of Sky Coalition

11

Clean Cities: Coalition Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts Clean Cities coordinators are the primary contacts for their coalitions. Coordinators work with local fleets to develop and implement strategic plans to reduce petroleum...

12

Clean Cities: Coalition Locations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Locations Locations Clean Cities coalitions are primarily located in major metropolitan areas throughout the United States. Select the dots on the map for information about individual coalitions. See also the list of coalitions by designation date. United States map showing Clean Cities Coalition locations. Philadelphia State of Delaware Capitol Clean Cities of Connecticut Connecticut Southwestern Area New Haven Norwich Red River Valley (Grand Forks, Winnipeg, Manitoba, Canada) Silicon Valley (San Jose) East Bay (Oakland) San Francisco Sacramento Granite State State of Vermont Northeast Ohio Clean Transportation (Cleveland) Detroit Clean Communities of Western New York (Buffalo) Central New York (Syracuse) Capital District (Albany) Empire Clean Cities State of Maryland Washington DC Metropolitan South Shore Western Riverside County Southern California Association of Governments (SCAG) Atlanta Alabama Denver Philadelphia State of Delaware Las Vegas Washington DC Metropolitan Massachusetts Clean Cities Lone Star Clean Fuels Alliance (Austin) Southeast Florida Chicago Land of Enchantment Wisconsin-Southeast Area Southern Colorado Clean Cities Coalition Long Beach Antelope Valley Utah Clean Cities State of Maryland Kentucky Clean Cities Partnership Coalition Rogue Valley State of West Virginia San Joaquin Valley San Francisco Columbia-Willamette St. Louis Central New York (Syracuse) Dallas/Ft. Worth Honolulu Central Arkansas Pittsburgh Southern California Association of Governments (SCAG) Los Angeles Coachella Valley Region Northern Colorado Central Oklahoma (Oklahoma City) Virginia Clean Cities Coalition San Diego Regional Clean Cities Coalition Greater Long Island Maine Clean Communities Tulsa Valley of the Sun (Phoenix) Western Riverside County New Jersey Genesee Region (Rochester) Western Washington Clean Cities (Seattle) Ocean State Connecticut Connecticut2 Kansas City Regional Coalition Greater Indiana Clean Cities Coalition Capital District (Albany) Tucson Central Florida Clean Cities Coalition Alamo Area (San Antonio) Greater Baton Rouge Clean Cities Coalition Triangle (Raleigh, Durham, Chapel Hill) Twin Cities Clean Fuels Ohio Yellowstone-Teton Clean Energy Coalition Greater Lansing Palmetto State Houston-Galveston Middle Tennessee East Tennessee Clean Fuels Coalition Centralina Clean Fuels Coalition State of Iowa Treasure Valley Central Coast Southeast Louisiana Clean Fuels Partnership Land of Sky Coalition

13

U.S. District Court's Order of October 18, 2011, in Colorado Environmental Coalition v. Office of Legacy Management, Civil Action No. 08-cv-01624 (D. Colo.).  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

COALITION; COALITION; INFORMATION NETWORK FOR RESPONSIBLE MINING; CENTER FOR NATIVE ECOSYSTEMS; CENTER FOR BIOLOGICAL DIVERSITY; and SHEEP MOUNTAIN ALLIANCE, Plaintiffs, v. OFFICE OF LEGACY MANAGEMENT; and UNITED STATES DEPARTMENT OF ENERGY, Defendants. OPINION AND ORDER This matter is before the Court on Plaintiffs' appeal seeking judicial review of (1) Defendants' decision in 2007 to expand the Uranium Lease Management Program ("ULMP") in southwestern Colorado; (2) Defendants' issuance of leases to uranium mining companies under the ULMP; and (3) Defendants' approvals of exploration or reclamation activities on certain lease tracts. The matter has been fully briefed (ECF No. 78, 82, 88), and Defendants have submitted the administrative record to the Court

14

Clean Cities: Clean Cities Coalition Reporting  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalition Reporting to someone by E-mail Share Clean Cities: Clean Cities Coalition Reporting on Facebook Tweet about Clean Cities: Clean Cities Coalition Reporting on Twitter...

15

US Ethanol Vehicle Coalition | Open Energy Information  

Open Energy Info (EERE)

Vehicle Coalition Jump to: navigation, search Name US Ethanol Vehicle Coalition Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is the...

16

Clean Cities: Coalition Contacts  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Contacts Contacts Clean Cities coordinators are the primary contacts for their coalitions. Coordinators work with local fleets to develop and implement strategic plans to reduce petroleum use in the cities and counties they serve. Clean Cities coordinators lead nearly 100 local coalitions in communities across the country. For national-level and regional-level contacts, see program contacts. Map of Clean Cities collation locations. Sort by State Sort by First Name Sort by Last Name Sort by Coalition Sort by Region Phone Contact Info Alabama Mark Bentley Alabama Clean Fuels Coalition Southeast 205-402-2755 Mark Bentley See Bio 200 Century Park S, Ste 112 Birmingham, AL 35226 Website Arizona Colleen Crowninshield Tucson Clean Cities South Central 520-792-1093 x426

17

Retrofit regenerator package  

SciTech Connect

Potential fuel savings by retrofitting gas turbines with regeneration units are discussed. Thomassen U.S. is making the retrofit available.

1983-03-01T23:59:59.000Z

18

Voluntary Participation Drives Oklahoma's Coalitions  

DOE Green Energy (OSTI)

Fact sheet describing the Oklahoma and Tulsa Clean Cities Coalitions and their commitment to the alternative fuel industry.

Not Available

2002-05-01T23:59:59.000Z

19

International Clean Energy Coalition  

Science Conference Proceedings (OSTI)

In 2003, the National Association of Regulatory Utility Commissioners (NARUC) and National Energy Technology Laboratories (NETL) collaboratively established the International Clean Energy Coalition (ICEC). The coalition consisting of energy policy-makers, technologists, and financial institutions was designed to assist developing countries in forming and supporting local approaches to greenhouse gas mitigation within the energy sector. ICEC's work focused on capacity building and clean energy deployment in countries that rely heavily on fossil-based electric generation. Under ICEC, the coalition formed a steering committee consisting of NARUC members and held a series of meetings to develop and manage the workplan and define successful outcomes for the projects. ICEC identified India as a target country for their work and completed a country assessment that helped ICEC build a framework for discussion with Indian energy decisionmakers including two follow-on in-country workshops. As of the conclusion of the project in 2010, ICEC had also conducted outreach activities conducted during United Nations Framework Convention on Climate Change (UNFCCC) Ninth Conference of Parties (COP 9) and COP 10. The broad goal of this project was to develop a coalition of decision-makers, technologists, and financial institutions to assist developing countries in implementing affordable, effective and resource appropriate technology and policy strategies to mitigate greenhouse gas emissions. Project goals were met through international forums, a country assessment, and in-country workshops. This project focused on countries that rely heavily on fossil-based electric generation.

Erin Skootsky; Matt Gardner; Bevan Flansburgh

2010-09-28T23:59:59.000Z

20

Clean Cities: Starting a Clean Cities Coalition  

NLE Websites -- All DOE Office Websites (Extended Search)

Coalitions Coalitions Printable Version Share this resource Send a link to Clean Cities: Starting a Clean Cities Coalition to someone by E-mail Share Clean Cities: Starting a Clean Cities Coalition on Facebook Tweet about Clean Cities: Starting a Clean Cities Coalition on Twitter Bookmark Clean Cities: Starting a Clean Cities Coalition on Google Bookmark Clean Cities: Starting a Clean Cities Coalition on Delicious Rank Clean Cities: Starting a Clean Cities Coalition on Digg Find More places to share Clean Cities: Starting a Clean Cities Coalition on AddThis.com... Locations Starting Coalitions Contacts Starting a Clean Cities Coalition Starting a Clean Cities coalition can be a great first step toward reducing petroleum use in your area. The U.S. Department of Energy (DOE) grants official Clean Cities designation to coalitions that exhibit

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Microsoft Word - NAP Coalition Response to DOE RFI DRAFT 10.11.01.docx  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAP Coalition Response to DOE RFI NAP Coalition Response to DOE RFI Addressing Policy and Logistical Challenges to Smart Grid Implementation November 1, 2010 The NAP Coalition is a "Coalition of Coalitions" that has been formed for the purpose of implementing the National Action Plan released by FERC in cooperation with DOE in June of 2010. Organizations working together on NAP implementation in include EEI, APPA, NRECA, ASE, ACEEE, NASUCA, NARUC, NASEO, DRSG, DRCC and EDF. The NAP Coalition submits a response in this RFI only to question #14 in Section II of the RFI. 14. How should insights about consumer decision-making be incorporated into federal-state collaborative efforts such as the Federal Energy Regulatory Commission's (FERC) National Action Plan

22

Fuzzy coalition formation among rational cooperative agents  

Science Conference Proceedings (OSTI)

Formation of coalitions in multi-agent systems (MAS) enables the development of efficient organizations. In the article, a model of fuzzy cooperative game with coalitions is described. It extends the model of the fuzzy coalition game with associated ...

Leonid B. Sheremetov; Jos C. Romero Corts

2003-06-01T23:59:59.000Z

23

Clean Cities Coalition Regions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regions Clean Cities Coalition Regions Nearly 100 Clean Cities coalitions work to reduce petroleum use in communities across the country. Led by Clean Cities coordinators,...

24

Clean Cities: Clean Cities Coalition Fundraising  

NLE Websites -- All DOE Office Websites (Extended Search)

Fundraising to someone by E-mail Share Clean Cities: Clean Cities Coalition Fundraising on Facebook Tweet about Clean Cities: Clean Cities Coalition Fundraising on Twitter Bookmark...

25

Clean Cities: Clean Cities Coalition Redesignation  

NLE Websites -- All DOE Office Websites (Extended Search)

Redesignation to someone by E-mail Share Clean Cities: Clean Cities Coalition Redesignation on Facebook Tweet about Clean Cities: Clean Cities Coalition Redesignation on Twitter...

26

Retrofit '79  

DOE Green Energy (OSTI)

In addition to a compilation of the talks presented, summaries are given of panel discussions on the commercialization of air gasifiers and on the research needs in this area. Suggestions made in response to a letter asking what government actions were needed to promote commercialization of air gasification are summarized. A directory is given of air biomass gasifiers in the US and Canada and their status (research, pilot scale, commercial, etc.). Separate abstracts were prepared for eight papers. (JSR)

None

1979-01-01T23:59:59.000Z

27

Building Technologies Office: Advanced Energy Retrofit Guides  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Guides Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) help building owners and managers as well as design and construction professionals plan, design, and implement energy efficiency upgrades in commercial buildings. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective retro-commissioning and retrofit measures identified by experts familiar with those unique opportunities and challenges. The guides present a broad range of proven practices that can help energy managers take specific actions at any stage of the retrofit process, resulting in energy savings for many years to come.

28

Illinois Coalition | Open Energy Information  

Open Energy Info (EERE)

Coalition Coalition Jump to: navigation, search Name Illinois Coalition Place Chicago, Illinois Zip IL 60601 Product Illiois Coalition is a non-profit educational-industrial complex working on H2 technology. Coordinates 41.88415°, -87.632409° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.88415,"lon":-87.632409,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

29

Searching for Optimal Coalition Structures  

E-Print Network (OSTI)

A key area of interest to multiagent researchers is theformation of groups by self-interested agents. Agents may want to "join hands " to take advantage of complementarycapabilities, resources, and expertise. From an individual agent's point of view the incentive for joining a coalition isto increase the payoff that it can receive. As such, the coalition formation process has received considerable attentionin the multiagent systems research [3, 6, 9, 11].

Ip Sen; Partha Sarathi; Duttadepartment Mathematical; Computer Sciences

2000-01-01T23:59:59.000Z

30

Clean Cities: Las Vegas Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Las Vegas Clean Cities Coalition Las Vegas Clean Cities Coalition The Las Vegas Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Las Vegas Clean Cities coalition Contact Information Ron Corbett 702-350-0025 info@lasvegascleancities.org Coalition Website Clean Cities Coordinator Ron Corbett Photo of Ron Corbett Ron Corbett is a Clean Cities coordinator for Las Vegas Clean Cities coalition. Las Vegas Clean Cities 1921 Night Shadow Ave Las Vegas, NV 89031 Search Coalitions Search for another coalition Enter ZIP Code or City, State Go Las Vegas Clean Cities coalition Statistics Population: 1,971,108 Area: 8,044 sq. mi. Boundaries: Clark County; City of Las Vegas Designated: October 18, 1993 Alternative Fueling Stations:

31

Clean Cities: East Tennessee Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tennessee Clean Fuels Coalition Tennessee Clean Fuels Coalition The East Tennessee Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. East Tennessee Clean Fuels coalition Contact Information Jonathan Overly 865-974-3625 jonathan@etcleanfuels.org Coalition Website Clean Cities Coordinator Jonathan Overly Photo of Jonathan Overly Jonathan Overly founded the East Tennessee Clean Fuels Coalition (ETCleanFuels) in 2002 and has managed it since its inception. He has spoken to thousands of people across east Tennessee including over 100 companies and organizations about partnering to expand alternative fuel use in the area. Many government and industry fleets are coalition members. Although biodiesel was an early lead fuel for the coalition, more recently

32

Clean Cities: Massachusetts Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Massachusetts Clean Cities Coalition Massachusetts Clean Cities Coalition The Massachusetts Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Massachusetts Clean Cities coalition Contact Information Stephen Russell 617-626-7325 or 617-797-5224 (cell) stephen.russell@state.ma.us Mike Manning 617-242-8755, X14 mm@avsglp.com Coalition Website Clean Cities Coordinators Coord Stephen Russell Coord Coord Mike Manning Coord Photo of Stephen Russell Stephen Russell became the co-coordinator of the Massachusetts Clean Cities coalition in September 2009. That same year, the coalition funded eight hybrid additions to a variety of light-, medium-, and heavy-duty trucks in both public and private fleets. In addition to his duties in the coalition,

33

Sustainable Energy Coalition | Open Energy Information  

Open Energy Info (EERE)

Sustainable Energy Coalition Sustainable Energy Coalition Jump to: navigation, search Name Sustainable Energy Coalition Place Washington DC, Washington, DC Zip 20006 Sector Efficiency, Renewable Energy Product Founded in 1992, the Coalition promotes increased federal support for energy efficiency and renewable energy technologies and reduced federal support for unsafe or polluting energy resources. References Sustainable Energy Coalition[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Sustainable Energy Coalition is a company located in Washington DC, Washington, DC . References ↑ "Sustainable Energy Coalition" Retrieved from "http://en.openei.org/w/index.php?title=Sustainable_Energy_Coalition&oldid=351912"

34

Clean Cities: Clean Cities-Georgia coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities-Georgia Coalition Clean Cities-Georgia Coalition The Clean Cities-Georgia coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Clean Cities-Georgia coalition Contact Information Don Francis 404-906-0656 don@cleancitiesatlanta.net Coalition Website Clean Cities Coordinator Don Francis Photo of Don Francis Although Don Francis became the coordinator for the Georgia Clean Cities coalition in April 2009, he is not new to the program. He attended the ceremony when Atlanta was designated as the first Clean Cities coalition in the nation at the Georgia Dome in 1993. Prior to being elected as the coalition's executive director, Francis served on the board of directors and as the treasurer from 2000 to 2005. He has 40 years of experience in

35

Clean Cities: Maine Clean Communities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maine Clean Communities Coalition Maine Clean Communities Coalition The Maine Clean Communities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Maine Clean Communities coalition Contact Information Steven Linnell 207-774-9891 slinnell@gpcog.org Coalition Website Clean Cities Coordinator Steven Linnell Photo of Steven Linnell Steven Linnell has been the coordinator of the statewide Maine Clean Communities coalition since its designation in 1997. The coalition's greatest achievement so far has been helping the Greater Portland METRO build the first fast-fill compressed natural gas (CNG) fueling infrastructure in the state, which currently serves 13 CNG transit buses and four CNG school buses. The coalition has also played a role in shaping

36

Advancing Residential Energy Retrofits  

Science Conference Proceedings (OSTI)

To advance the market penetration of residential retrofits, Oak Ridge National Laboratory (ORNL) and Southface Energy Institute (Southface) partnered to provide technical assistance on nine home energy retrofits in metropolitan Atlanta with simulated source energy savings of 30% to 50%. Retrofit measures included duct sealing, air infiltration reductions, attic sealing and roofline insulation, crawlspace sealing, HVAC and water heating equipment replacement, and lighting and appliance upgrades. This paper will present a summary of these measures and their associated impacts on important home performance metrics, such as air infiltration and duct leakage. The average estimated source energy savings for the homes is 33%, and the actual heating season average savings is 32%. Additionally, a case study describing expected and realized energy savings of completed retrofit measures of one of the homes is described in this paper.

Jackson, Roderick K [ORNL; Boudreaux, Philip R [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute

2012-01-01T23:59:59.000Z

37

Lighting Retrofit Study  

SciTech Connect

The Lighting Retrofit Study was an effort to determine the most cost-effective methods of retrofitting several configurations of lighting systems at Lawrence Berkeley Laboratory (LBL) and Lawrence Livermore National Laboratory (LLNL). We developed a test protocol to compare a variety of lighting technologies for their applicability in labs and offices and designed and constructed a novel lighting contrast potential meter to allow for comparison of lighting quality as well as quantity.

Kromer, S.; Morse, O.; Siminovitch, M.

1991-09-01T23:59:59.000Z

38

Clean Cities: New Haven Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Haven Clean Cities Coalition Haven Clean Cities Coalition The New Haven Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. New Haven Clean Cities coalition Contact Information Lee Grannis 203-627-3715 lgrannis@snet.net Brian McGrath 203-627-6874 soggy3@aol.com Coalition Website Clean Cities Coordinators Coord Lee Grannis Coord Coord Brian McGrath Coord Photo of Lee Grannis Lee Grannis started the New Haven Clean Cities coalition in 1995 and has served as the coalition's coordinator for the last 12 years. As part of his Clean Cities mission, Grannis has developed projects and obtained federal and matching funding for compressed natural gas, liquefied natural gas, light duty electric vehicles, electric transit, hydrogen

39

Clean Cities: Los Angeles Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Los Angeles Clean Cities Coalition Los Angeles Clean Cities Coalition The Los Angeles Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Los Angeles Clean Cities coalition Contact Information Wayne King 213-485-3936 wayne.king@lacity.org Coalition Website Clean Cities Coordinator Wayne King Photo of Wayne King Wayne King serves as the Los Angeles Clean Cities Coalition Coordinator and is employed as an Environmental Specialist with the City of Los Angeles. King has worked for the City since 2000. He began working with the Clean Cities Coalition around 2003 and was co-coordinator beginning in early 2009. In February 2010 he took on the role of Clean Cities Coordinator. His major job duties focus on mobile source air pollution reduction programs.

40

Clean Cities: Norwich Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Norwich Clean Cities Coalition Norwich Clean Cities Coalition The Norwich Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Norwich Clean Cities coalition Contact Information Pete Polubiatko 860-887-6964 pete@askncdc.com Coalition Website Clean Cities Coordinator Pete Polubiatko Photo of Pete Polubiatko Pete Polubiatko has been the coordinator of the Norwich Clean Cities coalition since 1995, when it was designated by the U.S. Department of Energy. In 1995, the Norwich City Council choose to have the municipally-owned utility manage the coalition and the role of coordinator became one of Pete's responsibilities as electric division manager. Polubiatko currently shares his time between construction management for

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Clean Cities: Honolulu Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Honolulu Clean Cities Coalition Honolulu Clean Cities Coalition The Honolulu Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Honolulu Clean Cities coalition Contact Information Robert Primiano 808-768-3500 rprimiano@honolulu.gov Margaret Larson 808-587-3813 margaret.s.larson@dbedt.hawaii.gov Coalition Website Clean Cities Coordinators Coord Robert Primiano Coord Coord Margaret Larson Coord Photo of Robert Primiano Robert Primiano has been the Clean Cities Coordinator for the Honolulu Clean Cities Coalition since 2001. Over the past eight years, Primiano has coordinated the coalition's participation in many educational and promotional events in Honolulu. He is an executive board member of the local APWA chapter and heads the fleet division for Honolulu's municipal

42

Clean Cities: Kentucky Clean Cities Partnership coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Kentucky Clean Cities Partnership Coalition Kentucky Clean Cities Partnership Coalition The Kentucky Clean Cities Partnership coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Kentucky Clean Cities Partnership coalition Contact Information Melissa M. Howell 502-452-9152 or 502-593-3846 mhowell@kentuckycleanfuels.org Coalition Website Clean Cities Coordinator Melissa M. Howell Photo of Melissa M. Howell Melissa Howell has served as the executive director of the Kentucky Clean Cities Partnership (KCCP) since 1993. The Kentucky Clean Fuels Coalition, a nonprofit organization, houses the Kentucky Clean Cities Partnership. The Clean Cities program in Kentucky is one of the original 20 coalitions designated in 1994. The 1999 Clean Cities National Conference was hosted in Louisville, and the

43

Clean Cities: Treasure Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Treasure Valley Clean Cities Coalition Treasure Valley Clean Cities Coalition The Treasure Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Treasure Valley Clean Cities coalition Contact Information Beth Baird 208-384-3984 bbaird@cityofboise.org Coalition Website Clean Cities Coordinator Beth Baird Photo of Beth Baird Beth Baird was involved in the development of the Treasure Valley Clean Cities coalition (TVCCC) and has been the coalition's coordinator since its designation in 2006. Baird has been employed at the city of Boise Public Works Department for 14 years. During that time, she developed the air quality program for the city of Boise. Most recently, she has taken on responsibilities for the Climate

44

Clean Cities: Ann Arbor Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ann Arbor Clean Cities Coalition Ann Arbor Clean Cities Coalition The Ann Arbor Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Ann Arbor Clean Cities coalition Contact Information Mark Rabinsky 734-585-5720, Ext. 24 mark@cec-mi.org Coalition Website Clean Cities Coordinator Mark Rabinsky Photo of Mark Rabinsky Mark Rabinsky is a project manager and Ann Arbor Clean Cities Coordinator for Clean Energy Coalition. He is working to develop a plug-in electric vehicle charging infrastructure community preparedness plan for the State of Michigan. Prior to joining the Clean Energy Coalition, Rabinsky was the director of sustainability at Jackson Community College (JCC) in Jackson, Mich. where he created a program of study in alternative energy, and oversaw the

45

Clean Cities: Palmetto State Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Palmetto State Clean Cities Coalition Palmetto State Clean Cities Coalition The Palmetto State Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Palmetto State Clean Cities coalition Contact Information Jennifer Taraskiewicz 803-737-8037 jtaraskiewicz@energy.sc.gov Coalition Website Clean Cities Coordinator Jennifer Taraskiewicz Photo of Jennifer Taraskiewicz Jennifer Taraskiewicz is the Clean Cities Coordinator for the Palmetto State Clean Fuels Coalition (PSCFC), an initiative of the South Carolina Energy Office. The PSCFC was a designated coalition of the U.S. Department of Energy Clean Cities program in 2004, recognizing the commitment of our stakeholders to building an alternative fuels market in South Carolina.

46

Clean Cities: Greater Indiana Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Indiana Clean Cities Coalition Indiana Clean Cities Coalition The Greater Indiana Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Greater Indiana Clean Cities coalition Contact Information Kellie L. Walsh 317-985-4380 kellie@greaterindiana.com Coalition Website Clean Cities Coordinator Kellie L. Walsh Photo of Kellie L. Walsh Kellie Walsh has been the executive director for the Greater Indiana Clean Cities Coalition since 2002. In that time, she has assisted coalition stakeholders in securing over $14 million in federal and state funds to implement alternative fuel projects in both the public and private sectors. Walsh has been recognized by Senator Richard G. Lugar and Indiana's Lt. Governor Becky Skillman for her work in alternative fuels, especially

47

Clean Cities: Granite State Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Granite State Clean Cities Coalition Granite State Clean Cities Coalition The Granite State Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Granite State Clean Cities coalition Contact Information Dolores Rebolledo 603-271-6751 dolores.rebolledo@des.nh.gov Coalition Website Clean Cities Coordinator Dolores Rebolledo Photo of Dolores Rebolledo Dolores Rebolledo joined the New Hampshire Department of Environmental Services (DES) as the Granite State Clean Cities coalition coordinator in 2009. The Granite State Clean Cities coalition is a collaboration of 85 public and private stakeholders from all regions of New Hampshire. Rebolledo has 14 years of experience in program management. Prior to joining DES, she was employed by MSB Services as a program consultant and

48

Clean Cities: Central Coast Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coast Clean Cities Coalition Coast Clean Cities Coalition The Central Coast Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Central Coast Clean Cities coalition Contact Information Melissa Guise 805-305-5491 mguise@co.slo.ca.us Coalition Website Clean Cities Coordinator Melissa Guise Photo of Melissa Guise Melissa Guise is the coordinator of the Central Coast Clean Cities Coalition (C5) and works as an air quality specialist for the San Luis Obispo County Air Pollution Control District in San Luis Obispo, California. Guise has been the coalition's coordinator since 2004. Guise has over 25 years of experience in the environmental field working in both the public and private sectors. For the past eight years, she has

49

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program Eligibility Commercial Savings For Appliances &...

50

Clean Cities: Chicago Area Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Chicago Area Clean Cities Coalition Chicago Area Clean Cities Coalition The Chicago Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Chicago Area Clean Cities coalition Contact Information Samantha Bingham 312-744-8096 samantha.bingham@cityofchicago.org Coalition Website Clean Cities Coordinator Samantha Bingham Photo of Samantha Bingham Samantha Bingham is an Environmental Policy Analysis for the City of Chicago and has served as the coordinator for the Chicago Clean Cities coalition since 2006. Samantha manages several of the city's air quality improvement programs, coordinates responses to grant solicitations, and through analytical support and subject-matter knowledge assists in developing city policies and ordinances. In her role as a Clean Cities

51

Clean Cities: Detroit Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Detroit Clean Cities Coalition Detroit Clean Cities Coalition The Detroit Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Detroit Clean Cities coalition Contact Information Aaron Champion 734-585-5720 x23 aaron@cec-mi.org Coalition Website Clean Cities Coordinator Aaron Champion Photo of Aaron Champion Aaron Champion is the Coordinator for Detroit Area Clean Cities and a Project Manager with Clean Energy Coalition, where he works on sustainable transportation solutions. Previously, he served as Programs Representative between the U.S. Department of Energy and the Oklahoma Department of Commerce, where he implemented and monitored more than 70 energy efficiency and alternative fuel vehicle projects. Additionally, Champion provided

52

Clean Cities: Central Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Florida Clean Cities Coalition Florida Clean Cities Coalition The Central Florida Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Central Florida Clean Cities coalition Contact Information Colleen Kettles 321-638-1004 ckettles@fsec.ucf.edu Coalition Website Clean Cities Coordinator Colleen Kettles Photo of Colleen Kettles Colleen Kettles is the Coordinator of the Central Florida Clean Cities Coalition at the Florida Solar Energy Center. In addition to her role as the coordinator, Kettles is engaged in alternative energy workforce development and training initiatives. She has worked in both the public and private nonprofit sectors and has more than 30 years of legal and policy research, program development and implementation in the field of solar

53

Clean Cities: Southern Colorado Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Colorado Clean Cities Coalition Colorado Clean Cities Coalition The Southern Colorado Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southern Colorado Clean Cities coalition Contact Information Nat Sobin 719-761-6782 nsobin@lungcolorado.org Coalition Website Clean Cities Coordinator Nat Sobin Photo of Nat Sobin Nathaniel (Nat) Sobin is a recent graduate of the University of Colorado at Boulder where he earned his PhD in engineering. His research emphasis relates to programmatic evaluation capacity of alternative fuels in the transportation sector. Sobin became the Coordinator of the Southern Colorado Clean Cities Coalition (SC4) in December of 2013. His research on alternative fuel deployment efforts has been funded by agencies such as the

54

Clean Cities: Twin Cities Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Twin Cities Clean Cities Coalition Twin Cities Clean Cities Coalition The Twin Cities Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Twin Cities Clean Cities coalition Contact Information Lisa Thurstin 651-223-9568 lisa.thurstin@lungmn.org Coalition Website Clean Cities Coordinator Lisa Thurstin Photo of Lisa Thurstin Lisa Thurstin has been the coordinator of the Twin Cities Clean Cities coalition since 2006. She is also the manager of Clean Fuel and Vehicle Technologies for the American Lung Association in Minnesota (ALAMN). For nine years, her duties have included management of ALAMN's biofuels activities through the Clean Air Choice consumer education program. Her responsibilities include coordinating events, designing educational and

55

Clean Cities: San Francisco Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Francisco Clean Cities Coalition Francisco Clean Cities Coalition The San Francisco Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. San Francisco Clean Cities coalition Contact Information Bill Zeller 415-355-3728 william.zeller@sfgov.org Coalition Website Clean Cities Coordinator Bill Zeller Photo of Bill Zeller Bill Zeller currently leads the San Francisco Clean Cities Coalition. Although he is new to the leadership position, he has worked with SFCCC for many years as an active stakeholder representing PG&E and as the Treasurer. He has worked in the clean transportation industry since the late 1980s, promoting natural gas and electric vehicles. He recently retired from PG&E after 28 years of service. He is now the manager of Clean Vehicle Programs

56

Clean Cities: Southeast Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Florida Clean Cities Coalition Florida Clean Cities Coalition The Southeast Florida Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southeast Florida Clean Cities coalition Contact Information Christine Heshmati 954-985-4416 cheshmati@sfrpc.com Coalition Website Clean Cities Coordinator Christine Heshmati Photo of Christine Heshmati In 2010, Christine Heshmati became the Florida Gold Coast Clean Cities Coalition Coordinator, merging her background in transportation planning with that of professionals in the field of alternative fuels in order to add depth this Region's mission and goals. Heshmati has 22 years of transportation planning experience in Florida. Her background includes intergovernmental coordination, short range

57

Clean Cities: Louisiana Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Clean Fuels Coalition Louisiana Clean Fuels Coalition The Louisiana Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Louisiana Clean Fuels coalition Contact Information Ann Vail Shaneyfelt 225-334-8083 ashaneyfelt@louisianacleanfuels.org Lauren Lambert-Tompkins 225-485-2522 llambert@louisianacleanfuels.org Coalition Website Clean Cities Coordinators Coord Ann Vail Shaneyfelt Coord Coord Lauren Lambert-Tompkins Coord Photo of Ann Vail Shaneyfelt Ann Vail Shaneyfelt has served as a marketing professional for over 10 years, joined the Louisiana Clean Fuels (LCF) coalition team in 2012 and was named coordinator in October, 2013. She has worked successfully across a variety of industries including oil and gas exploration, healthcare

58

Clean Cities: Iowa Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Iowa Clean Cities Coalition Iowa Clean Cities Coalition The Iowa Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Iowa Clean Cities coalition Contact Information Stephanie Weisenbach 515-725-3007 stephanie.weisenbach@iowa.gov Coalition Website Clean Cities Coordinator Stephanie Weisenbach Photo of Stephanie Weisenbach Stephanie Weisenbach is the Coordinator of the Iowa Clean Cities Coalition which is housed in the Iowa Economic Development Authority (IEDA) within state government. Stephanie worked at the IEDA and coordinated training and technical assistance for local governments, small businesses, and community and economic development leaders. Stephanie brings experience in grant writing and management, professional services contracting, communications,

59

Clean Cities: Northern Colorado Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Northern Colorado Clean Cities Coalition Northern Colorado Clean Cities Coalition The Northern Colorado Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Northern Colorado Clean Cities coalition Contact Information Sheble McConnellogue 970-302-0914 northcolo@cleancitiescolorado.org Maria Eisemann 970-988-2996 marianccc@comcast.net Coalition Website Clean Cities Coordinators Coord Sheble McConnellogue Coord Coord Maria Eisemann Coord Photo of Sheble McConnellogue Sheble McConnellogue was a Clean Cities Coordinator for NCCC when the coalition first began in 1996. Sheble has over two decades of experience in the field of community and environmental health education and environmental transportation planning. She earned a Master's degree in Urban and Regional Planning from CU at

60

Clean Cities: Empire Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Empire Clean Cities Coalition Empire Clean Cities Coalition The Empire Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Empire Clean Cities coalition Contact Information Christina Ficicchia 212-839-7728 christina@empirecleancities.org Coalition Website Clean Cities Coordinator Christina Ficicchia Photo of Christina Ficicchia Ms. Ficicchia is currently the Executive Director at Empire Clean Cities, acting as the Clean Cities Coalition Coordinator for the region. As the executive director, Ms. Ficicchia provides support and management related to the operations of the non-profit organization, develops strategies and programs that fulfill its mission, seeks out increased membership enrollment and funding and promotes the acceptance of alternative fuel

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Clean Cities: Coalitions in Order of Designation  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coalitions in Order of Designation Coalitions in Order of Designation Each Clean Cities coalition is listed below by its original name and the date it became an official coalition. See also the list of dedesignated coalitions below. Sort by Original Coalition Name Sort by Designation Date Sort by Designation Order Atlanta, GA September 8th, 1993 1 Denver, CO September 13th, 1993 2 Philadelphia, PA September 22nd, 1993 3 Delaware October 12th, 1993 4 Las Vegas, NV October 18th, 1993 5 Washington, DC October 21st, 1993 6 Boston, MA March 18th, 1994 7 Austin, TX April 18th, 1994 8 Florida Gold Coast (Miami) May 5th, 1994 9 Chicago, IL May 13th, 1994 10 Albuquerque, NM June 1st, 1994 11 Wisconsin Southeast Area June 29th, 1994 12 Colorado Springs, CO July 13th, 1994 13 Long Beach, CA August 31st, 1994

62

Clean Cities: Rogue Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Rogue Valley Clean Cities Coalition Rogue Valley Clean Cities Coalition The Rogue Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Rogue Valley Clean Cities coalition Contact Information Mike Quilty 541-621-4853 mikeq@roguevalleycleancities.org Coalition Website Clean Cities Coordinator Mike Quilty Mike Quilty served on the Rogue Valley Clean Cities Coalition (RVCCC) Board for three years prior to becoming RVCCC's Fleet Outreach Coordinator in late 2010. He was appointed RVCCC's Coordinator in March of 2013. Quilty is active in Oregon transportation policy issues. He is currently Chair of the Rogue Valley Metropolitan Planning Organization Policy Committee (2005 to Present), and is a member of the: Oregon Rail Leadership

63

Clean Cities: New Jersey Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Jersey Clean Cities Coalition Jersey Clean Cities Coalition The New Jersey Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. New Jersey Clean Cities coalition Contact Information Chuck Feinberg 973-886-1655 chuck.feinberg@gmail.com Coalition Website Clean Cities Coordinator Chuck Feinberg Photo of Chuck Feinberg Chuck Feinberg is founder and Chairman of the Board of the 501(c)3 nonprofit NJ Clean Cities Coalition (NJCCC), which promotes alternative fuels and advanced vehicles, fuel blends, fuel economy, hybrid vehicles, and idle reduction initiatives. Current projects include technology deployment to public and private fleets, including the use of compressed natural gas, propane, hydrogen, plug-in and hybrid electricity, and others.

64

Clean Cities: Pittsburgh Region Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Pittsburgh Region Clean Cities Coalition Pittsburgh Region Clean Cities Coalition The Pittsburgh Region Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Pittsburgh Region Clean Cities coalition Contact Information Richard Price 412-735-4114 rprice5705@aol.com Coalition Website Clean Cities Coordinator Richard Price Photo of Richard Price Rick Price is the Executive Director of the Pittsburgh Region Clean Cities and has been involved with the Pittsburgh Region Clean Cities for almost 15 years. He has served as coalition coordinator, president, and has been a member of the Board of Directors for 5 years. He is recently retired from the U.S. Department of Energy after 37 years of service. Rick was the

65

Clean Cities: Denver Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Denver Clean Cities Coalition Denver Clean Cities Coalition The Denver Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Denver Clean Cities coalition Contact Information Tyler Svitak 303-847-0281 tsvitak@lungcolorado.org Coalition Website Clean Cities Coordinator Tyler Svitak Photo of Tyler Svitak Tyler Svitak is a recent graduate of the University of Colorado, Denver, where he earned a BA in Geography with minors in political sciences and leadership studies. He became the Coordinator of Denver Metro Clean Cities Coalition in November, 2013, after serving as the Clean Cities Energy Coordinator managing DMCCC's role in Refuel Colorado. In this role he worked directly with fleet managers and local leadership to deploy

66

Clean Cities: Utah Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Utah Clean Cities Coalition Utah Clean Cities Coalition The Utah Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Utah Clean Cities coalition Contact Information Robin Erickson 435-634-4361 robin.erickson@utahcleancities.org Sophia Jackson 801-535-7736 sophia.jackson@utahcleancities.org Coalition Website Clean Cities Coordinators Coord Robin Erickson Coord Coord Sophia Jackson Coord Photo of Robin Erickson Robin Erickson has been the director of the Utah Clean Cities coalition since 2007. Serving as a staff of one and raising funds for a part-time college intern, she has been the primary rallying point for the organization: staffing committees, organizing events and training workshops, and preparing grants in partnership with stakeholders. Erickson

67

Clean Cities: Alabama Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alabama Clean Fuels Coalition Alabama Clean Fuels Coalition The Alabama Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Alabama Clean Fuels coalition Contact Information Mark Bentley 205-402-2755 mark@alabamacleanfuels.org Coalition Website Clean Cities Coordinator Mark Bentley Photo of Mark Bentley Mark Bentley has been the executive director of the Alabama Clean Fuels Coalition (ACFC) since August 2006. ACFC is a nonprofit, membership-based, organization that participates in the U. S. Department of Energy's Clean Cities program, which promotes the use of alternative fuels and alternative fuel vehicles throughout the United States. Bentley actively strives to lead efforts to build an alternative fuel industry in Alabama and leverages

68

Clean Cities: Antelope Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Antelope Valley Clean Cities Coalition Antelope Valley Clean Cities Coalition The Antelope Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Antelope Valley Clean Cities coalition Contact Information Curtis Martin 661-492-5916 visioncc@verizon.net Coalition Website Clean Cities Coordinator Curtis Martin Photo of Curtis Martin Curtis Martin has been the coordinator for the Antelope Valley Clean Cities coalition since 2008. In addition to his Clean Cities functions, he is also the alternative fuels manager for Robertson's Palmdale Honda in Palmdale, California. As the alternative fuels manager, he is responsible for the sales and marketing of the Civic GX to retail and fleet customers. Martin has been involved in alternative fuels for the past 12 years and has

69

Clean Cities: Long Beach Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Long Beach Clean Cities Coalition Long Beach Clean Cities Coalition The Long Beach Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Long Beach Clean Cities coalition Contact Information Jannet Malig 562-860-2451 x2912 jmalig@cerritos.edu Rick Longobart 714-647-3348 rlongobart@santa-ana.org Clean Cities Coordinators Coord Jannet Malig Coord Coord Rick Longobart Coord Jannet Malig is a Clean Cities coordinator for Long Beach Clean Cities coalition. Long Beach Clean Cities Cerritos College 11111 New Falcon Way Cerritos, CA 90703 Rick Longobart is a Clean Cities coordinator for Long Beach Clean Cities coalition. Long Beach Clean Cities Finance & Management Services Agency 215 S. Center Street, Bldg #J M-83

70

Clean Cities: Centralina Clean Fuels coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Centralina Clean Fuels Coalition Centralina Clean Fuels Coalition The Centralina Clean Fuels coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Centralina Clean Fuels coalition Contact Information Jason Wager 704-348-2707 jwager@centralina.org Sean Flaherty 704-688-6508 sflaherty@centralina.org Coalition Website Clean Cities Coordinators Coord Jason Wager Coord Coord Sean Flaherty Coord Photo of Jason Wager Jason Wager has been the coordinator of the Centralina Clean Fuels Coalition (CCFC) since 2000. Wager is Sustainability Program Manager at the Centralina Council of Governments, serving the nine-county Greater Charlotte, North Carolina region, where he has worked since 1996. Wager has a Master of Arts in Geography from the University of North

71

Passive retrofits for Navy housing  

DOE Green Energy (OSTI)

A project to assess and initiate passive solar energy retrofits to US Navy family housing is described. The current data base for Navy housing (ECOP), and its enhancement for passive solar purposes options proposed for Navy housing are explained. The analysis goals and methods to evaluate the retrofits are discussed. An educational package to explain the retrofits is described.

Hibbert, R.; Miles, C.; Jones, R.; Peck, C.; Anderson, J.; Jacobson, V.; Dale, A.M.

1985-01-01T23:59:59.000Z

72

Multifamily Ventilation Retrofit Strategies  

SciTech Connect

In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

Ueno, K.; Lstiburek, J.; Bergey, D.

2012-12-01T23:59:59.000Z

73

Clean Cities: Wisconsin Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Wisconsin Clean Cities coalition Contact Information Lorrie...

74

Clean Cities: Southeast Florida Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southeast Florida Clean Cities coalition Contact Information...

75

Clean Cities: Ann Arbor Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Prior to joining the Clean Energy Coalition, Rabinsky was the director of sustainability at Jackson Community College (JCC) in Jackson, Mich. where he created a program of...

76

Clean Cities: Clean Cities Coalition Reporting  

NLE Websites -- All DOE Office Websites (Extended Search)

Database Submit data about your coalition's accomplishments and activities. Icon of a dollar sign. Alternative Fuel Price Report Report alternative and conventional fuel prices...

77

The Varberg Coalition for Energy and Environment | Open Energy...  

Open Energy Info (EERE)

The Varberg Coalition for Energy and Environment Jump to: navigation, search Name The Varberg Coalition for Energy and Environment Place Varberg, Sweden Zip 43223 Product String...

78

Clean Cities: Valley of the Sun Clean Cities (Phoenix) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Valley of the Sun Clean Cities (Phoenix) Coalition The Valley of the Sun Clean Cities (Phoenix) coalition works with vehicle fleets, fuel providers, community leaders, and other...

79

Memorandum of American High-Performance Buildings Coalition DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 This...

80

Information sharing and security in dynamic coalitions  

Science Conference Proceedings (OSTI)

Today, information sharing is critical to almost every institution. There is no more critical need for information sharing than during an international crisis, when international coalitions dynamically form. In the event of a crisis, whether it is humanitarian ... Keywords: access control, distributed systems, dynamic coalitions, information security

Charles E. Phillips, Jr.; T.C. Ting; Steven A. Demurjian

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Progress in Residential Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

The Cutting Edge: Progress in Residential Retrofit The Cutting Edge: Progress in Residential Retrofit A geographic representation of saturations of ceiling fans based on data from the RASSes. White areas indicate a lack of data for that region. Many utilities survey their customers to learn more about the buildings and the occupants in their service areas. These surveys-usually called "residential appliance saturation surveys," or RASSes-ask for the number and types of appliances present, the number of people living in the home, and sometimes personal information. The RASSes are also used to collect information about the presence of conservation measures such as wall and ceiling insulation, weatherstripping, multipane windows, and water flow restrictors. Building Energy Analysis Group researchers Alan Meier and Brian Pon gathered RASSes

82

Clean Cities: Tucson Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tucson Clean Cities Coalition Tucson Clean Cities Coalition The Tucson Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Tucson Clean Cities coalition Contact Information Colleen Crowninshield 520-792-1093 x426 ccrowninshield@pagnet.org Coalition Website Clean Cities Coordinator Colleen Crowninshield Photo of Colleen Crowninshield Colleen Crowninshield has worked for Pima Association of Governments since 1994. In 2001, she assumed the Tucson Clean Cities responsibilities and became the full-time coordinator of the program. She also runs the Solar Partnership in Southern Arizona. Colleen has made many advances in the Tucson Clean Cities program. She opened the first compressed natural gas, E85, and biodiesel retail

83

Clean Cities: South Shore Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

South Shore Clean Cities Coalition South Shore Clean Cities Coalition The South Shore Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. South Shore Clean Cities coalition Contact Information Carl Lisek 219-644-3690 clisek@southshorecleancities.org Coalition Website Clean Cities Coordinator Carl Lisek Photo of Carl Lisek Carl Lisek is vice president of Legacy Environmental Services and is the executive director for South Shore Clean Cities (SSCC) of northern Indiana. Lisek's wife, Lorrie, serves as executive leadership for SSCC and is the executive director for Wisconsin Clean Cities. The couple has been with the Clean Cities program since 2006. Through local partnerships with business, industry, and state and local

84

Clean Cities: Middle Tennessee Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Middle Tennessee Clean Cities Coalition Middle Tennessee Clean Cities Coalition The Middle Tennessee Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Middle Tennessee Clean Cities coalition Contact Information Atha Comiskey 615-884-4908 mtcf@comcast.net Coalition Website Clean Cities Coordinator Atha Comiskey Photo of Atha Comiskey Atha Comiskey has been with Middle Tennessee Clean Fuels since June 2009. Her history with alternative fuel began in 2001 when the Comiskey¿s began their C & E Biodiesel Business as distributors of Green Fuels American Biodiesel Processors. Since June of 2009, Atha has been leading force behind Middle Tennessee Clean Fuels (MTCF), covering 40 middle Tennessee counties. Atha has

85

Clean Cities: Southern California Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

California Clean Cities Coalition California Clean Cities Coalition The Southern California Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southern California Clean Cities coalition Contact Information Matt Horton 213-236-1980 horton@scag.ca.gov Coalition Website Clean Cities Coordinator Matt Horton Photo of Matt Horton Matt serves as a SCAG Regional Officer at the Southern California Association of Governments (SCAG) covering Los Angeles and Orange County under Regional Services. Mr. Horton is a graduate of the California State University of Fullerton where he earned an MA degree in Political Science. He obtained a Bachelor's Degree from Azusa Pacific University with a major in Political Science as well.

86

Clean Cities: Virginia Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Virginia Clean Cities Coalition Virginia Clean Cities Coalition The Virginia Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Virginia Clean Cities coalition Contact Information Alleyn Harned 540-568-8896 aharned@vacleancities.org Ryan Cornett 540-568-5586 rcornett@vacleancities.org Coalition Website Clean Cities Coordinators Coord Alleyn Harned Coord Coord Ryan Cornett Coord Photo of Alleyn Harned Alleyn Harned joined Virginia Clean Cities in 2009 and serves as the program coordinator. Harned works from the Virginia Clean Cities partnership at James Madison University, in Harrisonburg, Virginia. Prior to Clean Cities, Harned served as Assistant Secretary of Commerce and Trade in Virginia. Virginia Clean Cities

87

Clean Cities: Wisconsin Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Wisconsin Clean Cities Coalition Wisconsin Clean Cities Coalition The Wisconsin Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Wisconsin Clean Cities coalition Contact Information Lorrie Lisek 414-221-4958 lorrie.lisek@wicleancities.org Coalition Website Clean Cities Coordinator Lorrie Lisek Photo of Lorrie Lisek Lorrie Lisek is the President and co-owner of Legacy Environmental Services, Inc., an environmental consulting firm specializing in quality of life and management of environmental, energy, transportation and construction projects and programs. Lisek was co-director for South Shore Clean Cities of Northern Indiana from 2005-2011. Her dedication to the Clean Cities' mission now extends north to Wisconsin where she has served

88

Clean Cities: Greater Lansing Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Lansing Clean Cities Coalition Lansing Clean Cities Coalition The Greater Lansing Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Greater Lansing Clean Cities coalition Contact Information Kristin Jobin 517-925-8649 ext. 12 kristin@michigancleancities.org Coalition Website Clean Cities Coordinator Kristin Jobin Photo of Kristin Jobin Kristin Jobin is the Communications and Project Coordinator at Kuntzsch Business Services, Inc. (KBS), a Grand Ledge, Michigan based consultancy where Greater Lansing Area Clean Cities (GLACC) is managed. KBS is focused on building, managing and implementing initiatives that drive prosperity in the state. At KBS, Kristin supports the administration of grant funded

89

Clean Cities: St. Louis Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

St. Louis Clean Cities Coalition St. Louis Clean Cities Coalition The St. Louis Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. St. Louis Clean Cities coalition Contact Information Kevin Herdler 314-397-5308 kevin@stlcleancities.org Coalition Website Clean Cities Coordinator Kevin Herdler Photo of Kevin Herdler Kevin Herdler has been involved with the Clean Cities program since its inception in 1993 and assisted in forming Atlanta's Clean Cities program in Georgia. In 1998, Herdler relocated to St. Louis and became involved with the St. Louis Regional Clean Cities program. In 2000, he was appointed the executive director. Herdler has been in the automotive field for 39 years and graduated technical school as a diesel technician. He is a veteran of the U.S. Air

90

Clean Cities: Tulsa Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Tulsa Clean Cities Coalition Tulsa Clean Cities Coalition The Tulsa Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Tulsa Clean Cities coalition Contact Information Adriane Jaynes (918) 579-9494 ajaynes@incog.org Eric Pollard 918-579-9434 epollard@incog.org Coalition Website Clean Cities Coordinators Coord Adriane Jaynes Coord Coord Eric Pollard Coord Photo of Adriane Jaynes Adriane Jaynes is the Co-Coordinator for Tulsa Area Clean Cities at Indian Nations Council of Governments (INCOG). Jaynes joined the Tulsa Area Clean Cities as Communications Specialist in March 2011 and has been Co-Coordinator since 2012. She has a Master's Degree in Social Work with an emphasis in Administration and Community Practice from the University of

91

Clean Cities: Sacramento Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Sacramento Clean Cities Coalition Sacramento Clean Cities Coalition The Sacramento Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Sacramento Clean Cities coalition Contact Information Keith Leech 916-808-5869 kleech@cityofsacramento.org Tim Taylor 916-874-4814 ttaylor@airquality.org Coalition Website Clean Cities Coordinators Coord Keith Leech Coord Coord Tim Taylor Coord Photo of Keith Leech Keith Leech has served as the Fleet Manager for the City of Sacramento since 2006. Over the past 28 years, he has held progressively responsible business administrative and operational management positions within the city of Sacramento's Public Works and General Services departments. He holds a Bachelors of Science degree from the California State University of

92

Clean Cities: Arkansas Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Arkansas Clean Cities Coalition Arkansas Clean Cities Coalition The Arkansas Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Arkansas Clean Cities coalition Contact Information Mitchell Simpson 501-682-1060 msimpson@arkansasedc.com Coalition Website Clean Cities Coordinator Mitchell Simpson Photo of Mitchell Simpson Mitchell Simpson is the Outreach and Training Manager at the Arkansas Energy Office (AEO), a division of the Arkansas Economic Development Commission and has been the Arkansas Clean Cities Coordinator since October, 2012. Mitchell focuses on energy efficiency programming such as the Centers of Excellence, Arkansas Energy Star Appliance Rebate Program, Small Cities and Counties Program, Energy Efficiency Arkansas, Track and Save Program, Clean

93

Clean Cities: North Dakota Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

North Dakota Clean Cities Coalition North Dakota Clean Cities Coalition The North Dakota Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. North Dakota Clean Cities coalition Contact Information Joey Roberson-Kitzman 701-223-5613 joey.roberson-kitzman@lungnd.org Ajaleigh Williams 204-986-7879 awilliams@winnipeg.ca Coalition Website Clean Cities Coordinators Coord Joey Roberson-Kitzman Coord Coord Ajaleigh Williams Coord Photo of Joey Roberson-Kitzman Joey Roberson-Kitzman began serving as coordinator for North Dakota Clean Cities in 2011. Hosted by the American Lung Association in North Dakota (ALAND), Joey's responsibilities include educating motorists and fleets about the air quality and health benefits of using cleaner alternatives to

94

Clean Cities: Ocean State Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Ocean State Clean Cities Coalition Ocean State Clean Cities Coalition The Ocean State Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Ocean State Clean Cities coalition Contact Information Wendy Lucht 401-874-2792 wlucht@uri.edu Coalition Website Clean Cities Coordinator Wendy Lucht Photo of Wendy Lucht Wendy Lucht has worked as the Ocean State Clean Cities coordinator at the University of Rhode Island (URI) since 2008 but has worked at URI since 1999. Lucht is working to make Rhode Island the first state certified by Project Get Ready, an initiative preparing cities and states for the arrival of plug-in hybrid electric vehicles (PHEV). As part of this effort, Lucht is serving as chair of the fleet-acquisition committee working on

95

Clean Cities: Greater Philadelphia Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Greater Philadelphia Clean Cities Coalition Greater Philadelphia Clean Cities Coalition The Greater Philadelphia Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Greater Philadelphia Clean Cities coalition Contact Information Tony Bandiero 215-990-8200 director@phillycleancities.org Coalition Website Clean Cities Coordinator Tony Bandiero Photo of Tony Bandiero Tony Bandiero has a diverse background, from marketing manager with a high-tech micro-electronic manufacturer to his alternative fuels business development management for a petroleum construction company. His interest in the Clean Cities program was sparked in Long Island, NY (GLICC) where his former company was headquartered. Through his committee work with GLICC

96

Clean Cities: Clean Fuels Ohio coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Fuels Ohio Coalition Clean Fuels Ohio Coalition The Clean Fuels Ohio coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Clean Fuels Ohio coalition Contact Information Sam Spofforth 614-884-7336 sam@cleanfuelsohio.org Andrew Conley 614-884-7336 andrew@cleanfuelsohio.org Coalition Website Clean Cities Coordinators Coord Sam Spofforth Coord Coord Andrew Conley Coord Photo of Sam Spofforth Sam Spofforth has served as Executive Director of Clean Fuels Ohio since the organization's founding in 2002. Under Spofforth's leadership, Clean Fuels Ohio has become the "go to" resource in Ohio for cleaner fuels, vehicles and energy-saving transportation technologies that reduce climate change, increase American energy security and strengthen Ohio's economy. He

97

Approaching the retrofitting market successfully  

SciTech Connect

As a relatively new market, passive solar retrofitting must continue to gain public confidence and acceptance. Homeowners need the assurance that their solar investment is in the hands of a designer/builder who can successfully execute the design and construction. Credibility, through reputation and track record, is a quality that potential clients look for. Acquiring solar retrofit contracts requires a creative marketing approach by a qualified contractor. Various approaches to retrofit contracts are addressed.

Walsh, V.

1981-01-01T23:59:59.000Z

98

Data Center Airflow Management Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

though this sometimes can be the best eco- nomic solution. Investing retrofit funds in passive components such as sealing leaks under the floor, repairing duct- work, replacing...

99

Evaluation of Retrofit Delivery Packages  

SciTech Connect

Residential energy retrofit activities are a critical component of efforts to increase energy efficiency in the U.S. building stock; however, retrofits account for a small percentage of aggregate energy savings at relatively high per unit costs. This report by Building America research team, Alliance for Residential Building Innovation (ARBI), describes barriers to widespread retrofits and evaluates opportunities to improve delivery of home retrofit measures by identifying economies of scale in marketing, energy assessments, and bulk purchasing through pilot programs in portions of Sonoma, Los Angeles, and San Joaquin Counties, CA. These targeted communities show potential and have revealed key strategies for program design, as outlined in the report.

Berman, M.; Smith, P.; Porse, E.

2013-07-01T23:59:59.000Z

100

Mutual Valuations Between Agents And Their Coalitions  

E-Print Network (OSTI)

Introduction The notions of norms, coalitions and agents raise a lot of interesting questions. What makes agents form coalitions? When are new agents in a MAS considered to be members in a coalition? And when does a coalition think it might be time for certain agents to leave? Can we design agents in such a way that they will continuously improve and strengthen the coalitions that they are part of? Does the size of the coalition matter? Not all of these questions will be treated here, but we will try to provide some thoughts on things such as the value of a coalition having a certain agent as a member, continuous degrees of membership, and whether cheating is possible in such models. The question of whether to cooperate or not is not new. People in the area of game theory, e.g. Lloyd Shapley discussed the matter of values and alternative costs in n-person games already in the fifties. 1 He argued that the value of a cooperating agent is directly associated with the alternative cost

Stefan J. Johansson

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Clean Cities: Capital District Clean Communities (Albany) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Capital District Clean Communities (Albany) Coalition Capital District Clean Communities (Albany) Coalition The Capital District Clean Communities (Albany) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Capital District Clean Communities (Albany) coalition Contact Information Jennifer Ceponis 518-458-2161 jceponis@cdtcmpo.org Coalition Website Clean Cities Coordinator Jennifer Ceponis Photo of Jennifer Ceponis Jennifer Ceponis has been the coordinator of Capital District Clean Communities Coalition since 2012. Ceponis is a Senior Transportation Planner at the Capital District Transportation Committee (CDTC), where she worked since 2008 on bicycle and pedestrian planning, transportation demand management programs and community planning. The Clean Communities Coalition

102

How Do We Retrofit the Tough Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Do We Retrofit the Tough Buildings? Do We Retrofit the Tough Buildings? Cape Cod Style and Masonry Ken Neuhauser, Building Science Corporation Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 2 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 3 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 4 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 5 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 6 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 7 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 8 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 9 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 10 Cape Cod Style Retrofitting the Tough Buildings 29 April 2013 11 Cape Cod Style - Knee Wall

103

Retrofit Air Preheat Economics  

E-Print Network (OSTI)

Retrofit air preheat systems are the most reliable and efficient means to effect significant energy conservation for large existing industrial furnaces. Units can be quickly installed without a lengthy shutdown, and the furnace efficiency can be increased to a range of 89% to 92%. The economic justification for the addition of this equipment is presented in new total investment curves and simple payout curves for a range of fuel cost. This will enable the owner to quickly determine the preliminary feasibility and conceptual requirements for his project before proceeding with more vigorous work.

Goolsbee, J. A.

1981-01-01T23:59:59.000Z

104

Retrofit Ventilation Strategies in Multifamily Buildings Webinar  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Foundation Retrofits Foundation Retrofits Building America Webinar November 30, 2011 Kohta Ueno Hybrid Foundation Retrofits 2 Background Hybrid Foundation Retrofits 3 Background  Space conditioning energy use for basements  Known moisture-safe solutions (previous research)  Persistent bulk water (leakage) issues  Retrofits of existing foundations  Especially uneven wall (rubble stone) foundations  "Hybrid" insulation and bulk water control assemblies Hybrid Foundation Retrofits 4 Foundations w. bulk water issues  Severe and rapid damage to interior insulation and finishes due to bulk water intrusion Hybrid Foundation Retrofits 5 Insulation Location Choices * Retrofits: interior insulation is often the only

105

Building Energy Retrofit Research: Multifamily Sector  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Retrofit Research: Multifamily Sector Title Building Energy Retrofit Research: Multifamily Sector Publication Type Report Year of Publication 1985 Authors Diamond,...

106

Clean Cities Coalition and Coordinator's Awards  

DOE Green Energy (OSTI)

U. S. DOE Clean Cities Program has awarded its Coalition awards for 2002, and the awards will be presented at the Clean Cities Conference in May 2002. This fact sheets describe the winners and their contributions.

Not Available

2002-05-01T23:59:59.000Z

107

Clean Cities Coalition and Coordinator Awards 2003  

DOE Green Energy (OSTI)

This fact sheet recognizes the 2003 Clean Cities Coalition and Coordinator awards winners and their outstanding efforts to promote alternative fuels and alternative fuel vehicles. The recipients will receive their awards at the Clean Cities Conference in Palm Springs, CA.

Not Available

2003-06-01T23:59:59.000Z

108

Evaluating High Efficiency Motor Retrofit  

E-Print Network (OSTI)

In the petrochemical and refining Industries, and most manufacturing plants, the reliable operation of AC motors always has been crucial to the continuous operation of the process. Now, the cost of operating these motors has also become a significant factor. Engineers Involved In motor specification can help lower plant operating costs and reduce electrical energy consumption dramatically by a relatively simple technique: retrofit of existing, standard-efficiency motors with new, high efficiency models. This article demonstrates strong reasons for motor retrofit, and explains step-by step how process and manufacturing engineering personnel can fully evaluate a retrofit decision.

Evans, T. A.

1984-01-01T23:59:59.000Z

109

Retrofit Existing Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Existing Buildings Retrofit Existing Buildings Retrofit Existing Buildings Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. The Building Technologies Office provides resources that allow planners, designers, and owners to focus on energy-use goals from the first planning

110

Advancing Residential Retrofits in Atlanta  

SciTech Connect

This report will summarize the home energy improvements performed in the Atlanta, GA area. In total, nine homes were retrofitted with eight of the homes having predicted source energy savings of approximately 30% or greater based on simulated energy consumption.

Jackson, Roderick K [ORNL; Kim, Eyu-Jin [Southface Energy Institute; Roberts, Sydney [Southface Energy Institute; Stephenson, Robert [Southface Energy Institute

2012-07-01T23:59:59.000Z

111

Closed-cycle Retrofit Study  

Science Conference Proceedings (OSTI)

EPRI is investigating implications of a potential U.S. Environmental Protection Agency (EPA) Clean Water Act 316(b) rulemaking that would establish "Best Technology Available" (BTA) based on closed-cycle cooling retrofits for facilities with once-through cooling. This report focuses on estimated costs associated with closed-cycle cooling system retrofits that include: 1) capital costs, 2) energy required to operate the closed-cycle system, 3) heat rate penalty, and 4) extended downtime required to retrof...

2011-01-31T23:59:59.000Z

112

National Ethanol Vehicle Coalition NEVC | Open Energy Information  

Open Energy Info (EERE)

Ethanol Vehicle Coalition NEVC Ethanol Vehicle Coalition NEVC Jump to: navigation, search Name National Ethanol Vehicle Coalition (NEVC) Place Jefferson City, Missouri Zip 65109 Product The National Ethanol Vehicle Coalition is a non-profit membership organisation serving as a primary advocacy group promoting the use of 85% ethanol in the US as a form of alternative transportation fuel. References National Ethanol Vehicle Coalition (NEVC)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. National Ethanol Vehicle Coalition (NEVC) is a company located in Jefferson City, Missouri . References ↑ "National Ethanol Vehicle Coalition (NEVC)" Retrieved from "http://en.openei.org/w/index.php?title=National_Ethanol_Vehicle_Coalition_NEVC&oldid=349065

113

Clean Cities: Valley of the Sun Clean Cities (Phoenix) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Valley of the Sun Clean Cities (Phoenix) Coalition Valley of the Sun Clean Cities (Phoenix) Coalition The Valley of the Sun Clean Cities (Phoenix) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Valley of the Sun Clean Cities (Phoenix) coalition Contact Information Bill Sheaffer 480-314-0360 bill@cleanairaz.org Brianna Graf 480-884-1623 brianna@cleanairaz.org Coalition Website Clean Cities Coordinators Coord Bill Sheaffer Coord Coord Brianna Graf Coord Photo of Bill Sheaffer Bill Sheaffer began serving as coordinator of the Valley of the Sun Clean Cities coalition in 2002 and now serves as the executive director of this all-volunteer coalition. The coalition has been actively involved with the state legislature as well as the key agencies, municipalities, and

114

New Jersey Landlord, Tenants See Benefits of Retrofits | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Jersey Landlord, Tenants See Benefits of Retrofits New Jersey Landlord, Tenants See Benefits of Retrofits New Jersey Landlord, Tenants See Benefits of Retrofits April 9, 2010 - 2:32pm Addthis Joshua DeLung Some might think that only single-family homes are being weatherized across America, but eligible renters in Newark, N.J., are taking advantage of the increases in savings, safety and comfort that come with weatherization. Sunny Uberio is the owner of Realty Management Systems LLC in Newark, N.J., where he had his three apartment buildings evaluated for their energy efficiency and found that the older heating and cooling systems and other measures were insufficient when it came to saving energy. La Casa de Don Pedro, a local community action agency, was able to help Sunny by weatherizing the buildings.

115

Maryland Abuzz with Retrofit Converts | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Abuzz with Retrofit Converts Abuzz with Retrofit Converts Maryland Abuzz with Retrofit Converts January 7, 2010 - 2:06pm Addthis Joshua DeLung Tim Kenny got a college degree in fisheries biology, but his real passion lies in something he's spent the last 20 years doing - helping American families in Maryland, Pennsylvania and Washington, D.C. He makes his living in the clean energy economy by finding ways people can save money on their energy bills and make their homes cleaner, safer and more comfortable. About four years ago, he started Housewarmers, a business that performs energy audits and weatherization work on the homes of everyday clientele. Tim also helps community action agencies complete weatherization work as a contractor through a separate nonprofit business, C&O Conservation, for

116

New Jersey Landlord, Tenants See Benefits of Retrofits | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Jersey Landlord, Tenants See Benefits of Retrofits Jersey Landlord, Tenants See Benefits of Retrofits New Jersey Landlord, Tenants See Benefits of Retrofits April 9, 2010 - 2:32pm Addthis Joshua DeLung Some might think that only single-family homes are being weatherized across America, but eligible renters in Newark, N.J., are taking advantage of the increases in savings, safety and comfort that come with weatherization. Sunny Uberio is the owner of Realty Management Systems LLC in Newark, N.J., where he had his three apartment buildings evaluated for their energy efficiency and found that the older heating and cooling systems and other measures were insufficient when it came to saving energy. La Casa de Don Pedro, a local community action agency, was able to help Sunny by weatherizing the buildings. "Through their program, I was able to get new boilers installed, new

117

Coalition for Rainforest Nations (CfRN) | Open Energy Information  

Open Energy Info (EERE)

integrate social, economic and scientific rationales to achieve environmental sustainability." Mission "The Coalition for Rainforest Nations seeks to underpin lasting...

118

Earth Day Coalition | Open Energy Information  

Open Energy Info (EERE)

Day Coalition Day Coalition Jump to: navigation, search Name Earth Day Coalition Address 3606 Bridge Avenue, Suite 4 Place Cleveland, Ohio Zip 44113 Coordinates 41.4829135°, -81.7117416° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.4829135,"lon":-81.7117416,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

119

Indoor environment quality and energy retrofits in low-income...  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor environment quality and energy retrofits in low-income apartments: retrofit selection protocol Title Indoor environment quality and energy retrofits in low-income...

120

Coalition Cooperation Defines Roadmap for E85 and Biodiesel  

DOE Green Energy (OSTI)

This Clean Cities success story relates how Colorado's Colorado Biofuels Coalition was formed and provides guidance on forming other such coalitions. This Colorado's coalition sucessfully increase the number of fueling stations providing biofuels and has goals to the number even more. Plans also include assisting with financing infrastructure, making alternative fuels available to more fleets, and educating about E85 and biodiesel use.

Not Available

2007-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Deep Residential Retrofits in East Tennessee  

SciTech Connect

Executive Summary Oak Ridge National Laboratory (ORNL) is furthering residential energy retrofit research in the mixed-humid climate of East Tennessee by selecting 10 homes and guiding the homeowners in the energy retrofit process. The homeowners pay for the retrofits, and ORNL advises which retrofits to complete and collects post-retrofit data. This effort is in accordance with the Department of Energy s Building America program research goal of demonstrating market-ready energy retrofit packages that reduce home energy use by 30 50%. Through this research, ORNL researchers hope to understand why homeowners decide to partake in energy retrofits, the payback of home energy retrofits, and which retrofit packages most economically reduce energy use. Homeowner interviews help the researchers understand the homeowners experience. Information gathered during the interviews will aid in extending market penetration of home energy retrofits by helping researchers and the retrofit industry understand what drives homeowners in making positive decisions regarding these retrofits. This report summarizes the selection process, the pre-retrofit condition, the recommended retrofits, the actual cost of the retrofits (when available), and an estimated energy savings of the retrofit package using EnergyGauge . Of the 10 households selected to participate in the study, only five completed the recommended retrofits, three completed at least one but no more than three of the recommended retrofits, and two households did not complete any of the recommended retrofits. In the case of the two homes that did none of the recommended work, the pre-retrofit condition of the homes and the recommended retrofits are reported. The five homes that completed the recommended retrofits are monitored for energy consumption of the whole house, appliances, space conditioning equipment, water heater, and most of the other circuits with miscellaneous electric loads (MELs) and lighting. Thermal comfort is also monitored, with temperature and humidity measured in all conditioned zones, attics, crawlspaces, and unconditioned basements. In some homes, heat flux transducers are installed on the basement walls to help determine the insulating qualities of the technologies and practices. EnergyGauge is used to estimate the pre-retrofit and post-retrofit home energy rating system (HERS) index and reduction in energy consumption and energy bill. In a follow-up report, data from the installed sensors will be presented and analyzed as well as a comparison of the post-retrofit energy consumption of the home to the EnergyGauge model of the post-retrofit home. Table ES1 shows the retrofits that were completed at the eight households where some or all of the recommended retrofits were completed. Home aliases are used to keep the homeowners anonymous. Some key findings of this study thus far are listed as follows. Some homeowners (50%) are not willing to spend the money to reach 30 50% energy savings. Quality of retrofit work is significantly variable among contractors which impact the potential energy savings of the retrofit. Challenges exist in defining house volume and floor area. Of the five homes that completed all the recommended retrofits, energy bill savings was not the main driver for energy retrofits. In no case were the retrofits cost neutral given a 15 year loan at 7% interest for the retrofit costs.

Boudreaux, Philip R [ORNL; Hendrick, Timothy P [ORNL; Christian, Jeffrey E [ORNL; Jackson, Roderick K [ORNL

2012-04-01T23:59:59.000Z

122

Clean Cities: Southeast Louisiana Clean Fuels Partnership coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Louisiana Clean Fuels Partnership Coalition Louisiana Clean Fuels Partnership Coalition The Southeast Louisiana Clean Fuels Partnership coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Southeast Louisiana Clean Fuels Partnership coalition Contact Information Rebecca Otte 504-483-8513 slcfp@norpc.org Coalition Website Clean Cities Coordinator Rebecca Otte Photo of Rebecca Otte Rebecca Otte is the Environmental Programs Coordinator at the Regional Planning Commission (RPC) which includes five parishes (counties) in southeast Louisiana: Orleans, Jefferson, Plaquemines, St. Bernard and St. Tammany. Otte has served as the coordinator for the Southeast Louisiana Clean Fuel Partnership since 2007. In addition, she manages the Brownfield

123

Massachusetts Hydrogen Coalition | Open Energy Information  

Open Energy Info (EERE)

Massachusetts Hydrogen Coalition Massachusetts Hydrogen Coalition Jump to: navigation, search Logo: Massachusetts Hydrogen Coalition Name Massachusetts Hydrogen Coalition Address 100 Cummings Center Place Beverly, Massachusetts Zip 01915 Region Greater Boston Area Website http://www.massh2.org/ Notes Membership based non-profit, focused on expanding hydrogen, fuel cell and related industries in Massachusetts Coordinates 42.559013°, -70.8870313° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.559013,"lon":-70.8870313,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

124

Biodiesel Coalition of Texas | Open Energy Information  

Open Energy Info (EERE)

Biodiesel Coalition of Texas Biodiesel Coalition of Texas Jump to: navigation, search Logo: Biodiesel Coalition of Texas Name Biodiesel Coalition of Texas Address 100 Congress Avenue Place Austin, Texas Zip 78701 Region Texas Area Website http://www.biodieselcoalitiono Notes Non-profit corporation created by biodiesel pioneers and industry leaders to ensure that biodiesel receives favorable treatment by state regulatory agencies and the Texas Legislature Coordinates 30.264043°, -97.744762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.264043,"lon":-97.744762,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

125

Clean Cities: Coachella Valley Region Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Coachella Valley Region Clean Cities Coalition Coachella Valley Region Clean Cities Coalition The Coachella Valley Region Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Coachella Valley Region Clean Cities coalition Contact Information Richard Cromwell III 760-329-6462 rcromwell@cromwellandassociates.com Georgia Seivright 760-340-1575 georgias@c3vr.org Coalition Website Clean Cities Coordinators Coord Richard Cromwell III Coord Coord Georgia Seivright Coord Photo of Richard Cromwell III Clean fuels consultant Richard Cromwell III is a founding member of the Coachella Valley Region Clean Cities coalition. When the Coachella Valley Region coalition was founded, on Earth Day in 1996, Cromwell was the general manager and CEO of SunLine Transit Agency, the lead agency for the

126

Clean Cities: Western Washington Clean Cities (Seattle) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Washington Clean Cities (Seattle) Coalition Washington Clean Cities (Seattle) Coalition The Western Washington Clean Cities (Seattle) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Western Washington Clean Cities (Seattle) coalition Contact Information Stephanie Meyn 206-689-4055 stephaniem@pscleanair.org Coalition Website Clean Cities Coordinator Stephanie Meyn Photo of Stephanie Meyn Stephanie Meyn is the coordinator for the Western Washington Clean Cities coalition based in Seattle. Since joining the coalition in 2008, she has successfully secured $15 million from the Department of Energy to support a suite of alternative fuel and advanced technology projects. These projects include a pilot test of biomethane in tour buses, the purchase of

127

EMCS Retrofit Analysis - Interim Report  

SciTech Connect

This report presents the interim results of analyses carried out in the Phillip Burton Federal Building in San Francisco from 1996 to 1998. The building is the site of a major demonstration of the BACnet communication protocol. The energy management and control systems (EMCS) in the building were retrofitted with BACnet compatible controllers in order to integrate certain existing systems on one common network. In this respect, the project has been a success. Interoperability of control equipment from different manufacturers has been demonstrated in a real world environment. Besides demonstrating interoperability, the retrofits carried out in the building were also intended to enhance control strategies and capabilities, and to produce energy savings. This report presents analyses of the energy usage of HVAC systems in the building, control performance, and the reaction of the building operators. The report does not present an evaluation of the performance capabilities of the BACnet protocol. A monitoring system was installed in the building that parallels many of the EMCS sensors and data were archived over a three-year period. The authors defined pre-retrofit and post-retrofit periods and analyzed the corresponding data to establish the changes in building performance resulting from the retrofit activities. The authors also used whole-building energy simulation (DOE-2) as a tool for evaluating the effect of the retrofit changes. The results of the simulation were compared with the monitored data. Changes in operator behavior were assessed qualitatively with questionnaires. The report summarizes the findings of the analyses and makes several recommendations as to how to achieve better performance. They maintain that the full potential of the EMCS and associated systems is not being realized. The reasons for this are discussed along with possible ways of addressing this problem. They also describe a number of new technologies that could benefit systems of the type found in the Philip Burton Federal Building.

Diamond, R.C.; Salsbury, T.I.; Bell, G.C.; Huang, Y.J.; Sezgen, A.O.; Mazzucchi, R.; Romberger, J.

1999-03-01T23:59:59.000Z

128

PSNH - Small Business Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Retrofit Program PSNH - Small Business Retrofit Program Eligibility Commercial Savings For Other Construction Commercial Heating & Cooling Commercial Weatherization...

129

Exterior Insulation and Overclad Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Exterior Insulation & Overclad Exterior Insulation & Overclad Retrofits Residential Energy Efficiency Stakeholder Meeting March 2, 2012 - Austin, TX Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 2  Incredible practical experience:  New construction - nearly a century  Retrofit applications - many decades Exterior Insulation Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 3 1980s ON - a "weird" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 4 1990s ON - a "good" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 5 2000s ON - a "typical" builder Residential Energy Efficiency Stakeholder Meeting March 2, 2012 | Austin, TX 6

130

Strategy Guideline: Mitigation of Retrofit Risk Factors  

SciTech Connect

The Alliance for Residential Building Innovation (ARBI) is currently developing strategies designed to promote and achieve increased energy savings and promote upgrades in the residential retrofit sector. These strategies are targeted to retrofit program managers, retrofit contractors, policy makers, academic researchers, and non-governmental organizations. This report focuses on four key areas to promote home energy upgrades: fostering accurate energy savings projections; understanding consumer perceptions for energy savings; measuring energy savings, and ensuring quality control for retrofit installations.

Berman, M.; Smith, P.; Porse, E.

2012-12-01T23:59:59.000Z

131

Coalition for Rainforest Nations Feed | Open Energy Information  

Open Energy Info (EERE)

Feed Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ) Global Village Energy Partnership (GVEP) Information for Development Program (infoDev)

132

Retrofit Existing Buildings | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Existing Buildings Retrofit Existing Buildings Retrofit Existing Buildings Photo of the Denver skyline with Wells Fargo Center building in the center of the image and the Rocky Mountains in the background. Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge. The Building Technologies Office provides resources that allow planners,

133

Monitoring conservative retrofits in single family buildings  

SciTech Connect

This study has provided detailed before-and-after information on the ambient and comfort conditions in nine single family buildings, and on the energy consumption of those buildings, for one or more energy conservation retrofits. The data were recorded in such a manner that as well as being able to determine the savings from the retrofits and the influence these retrofits have on the comfort conditions of the residence, the effects of the retrofits on time-of-day usage are also determinable. The following are included in appendices: a table of participant's names, site addresses and retrofit; significant dates and appropriate comments; a day of data and an annotated data set; pre-retrofit and post-retrofit audit data sheets; and usage history.

Richardson, C.S.

1992-12-06T23:59:59.000Z

134

The Wind Coalition | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » The Wind Coalition Jump to: navigation, search Logo: The Wind Coalition Name The Wind Coalition Address 100 Congress Avenue Place Austin, Texas Zip 78701 Region Texas Area Website http://www.windcoalition.org/ Notes Non-profit association designed to promote the development of wind energy as a clean, reliable, affordable and infinite resource at the regulatory and legislative levels withing ERCOT and SPP Coordinates 30.264043°, -97.744762° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.264043,"lon":-97.744762,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

135

Clean Cities: Land of Enchantment Clean Cities (New Mexico) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Land of Enchantment Clean Cities (New Mexico) Coalition Land of Enchantment Clean Cities (New Mexico) Coalition The Land of Enchantment Clean Cities (New Mexico) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Land of Enchantment Clean Cities (New Mexico) coalition Contact Information Frank Burcham 505-856-8585 loecleancities1@comcast.net Coalition Website Clean Cities Coordinator Frank Burcham Photo of Frank Burcham Frank Burcham was a founding member of New Mexico's Land of Enchantment Clean Cities coalition in 1994. Since then, he has served on the board of directors, and in 2003, he became the state coordinator and executive director. Burcham has 30 years of energy experience and background. His expertise spans utility operation, renewable and alternative energy research and

136

Clean Cities: Dallas-Fort Worth Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Dallas-Fort Worth Clean Cities Coalition Dallas-Fort Worth Clean Cities Coalition The Dallas-Fort Worth Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Dallas-Fort Worth Clean Cities coalition Contact Information Pamela Burns 817-704-2510 pburns@nctcog.org Coalition Website Clean Cities Coordinator Pamela Burns Photo of Pamela Burns Pamela Burns has been a co-coordinator of the Dallas-Ft. Worth Clean Cities coalition since 2007. She is also a communications coordinator with the North Central Texas Council of Governments, the Metropolitan Planning Organization (MPO) for the Dallas-Ft. Worth (DFW) area. The MPO serves the region by developing transportation plans and programs that address the transportation needs of the rapidly growing metropolitan area. Burns works

137

Clean Cities: State of Vermont Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State of Vermont Clean Cities Coalition State of Vermont Clean Cities Coalition The State of Vermont Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. State of Vermont Clean Cities coalition Contact Information Michelle McCutcheon-Schour 802-656-9864 mmschour.uvm@gmail.com Coalition Website Clean Cities Coordinator Michelle McCutcheon-Schour Photo of Michelle McCutcheon-Schour Michelle McCutcheon-Schour is the Coordinator for the State of Vermont Clean Cities which is hosted by the University of Vermont Transportation Research Center (TRC). McCutcheon-Schour served as an intern for the coalition in the summer of 2011 through the Clean Cities University Workforce Development Program, has been working at the TRC since then and

138

Clean Cities: San Joaquin Valley Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Joaquin Valley Clean Cities Coalition Joaquin Valley Clean Cities Coalition The San Joaquin Valley Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. San Joaquin Valley Clean Cities coalition Contact Information Linda Urata 661-342-8262 iwantcleanair@aim.com Spencer Schluter 661-599-9454 scschluter@gmail.com Coalition Website Clean Cities Coordinators Coord Linda Urata Coord Coord Spencer Schluter Coord Photo of Linda Urata In 2000, Linda Urata became the coordinator of the San Joaquin Valley Clean Cities coalition. Urata works at Kern Council of Governments in Bakersfield, California. There, she coordinates the Kern Energy Watch program, which is a local government and utility company partnership effort

139

Clean Cities: Silicon Valley Clean Cities (San Jose) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Silicon Valley Clean Cities (San Jose) Coalition Silicon Valley Clean Cities (San Jose) Coalition The Silicon Valley Clean Cities (San Jose) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Silicon Valley Clean Cities (San Jose) coalition Contact Information Margo Sidener 408-998-5865 margo@lungsrus.org Patricia Tind 408-998-5865 patricia@lungsrus.org Coalition Website Clean Cities Coordinators Coord Margo Sidener Coord Coord Patricia Tind Coord Photo of Margo Sidener Margo Sidener has been the coordinator of the Silicon Valley (San Jose) Clean Cities coalition since 2006. She also serves as the president and CEO of Breathe California of the Bay Area, the "Local Clean Air and Healthy Lungs Leader," a nonprofit grassroots organization founded in 1911 to fight

140

Clean Cities: Alamo Area Clean Cities (San Antonio) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alamo Area Clean Cities (San Antonio) Coalition Alamo Area Clean Cities (San Antonio) Coalition The Alamo Area Clean Cities (San Antonio) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Alamo Area Clean Cities (San Antonio) coalition Contact Information Yliana Flores 210-918-1299 yflores@aacog.com Coalition Website Clean Cities Coordinator Yliana Flores Photo of Yliana Flores Yliana Flores is the interim coordinator for the Alamo Area Clean Cities Coalition in San Antonio, TX where she works to develop events and partnerships that align with the goals of Clean Cities. Yliana joined Alamo Area Clean Cities in 2010 as an intern through Public Allies, a 10-month long AmeriCorps program designed to strengthen communities through

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Clean Cities: Northeast Ohio Clean Transportation (Cleveland) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Northeast Ohio Clean Transportation (Cleveland) Coalition Northeast Ohio Clean Transportation (Cleveland) Coalition The Northeast Ohio Clean Transportation (Cleveland) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Northeast Ohio Clean Transportation (Cleveland) coalition Contact Information Elaine Barnes 216-281-6468 x223 ebarnes@earthdaycoalition.org Coalition Website Clean Cities Coordinator Elaine Barnes Elaine Barnes joined Earth Day Coalition (EDC) as the Northeast Ohio Clean Transportation Director early in 2012. As the region¿s Clean Cities coordinator, Barnes will work to develop a robust stakeholder community and program initiatives; support, market and expand our area clean fleets; collaborate with local agencies and organizations to promote a diversified

142

Clean Cities: Genesee Region Clean Communities (Rochester) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Genesee Region Clean Communities (Rochester) Coalition Genesee Region Clean Communities (Rochester) Coalition The Genesee Region Clean Communities (Rochester) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Genesee Region Clean Communities (Rochester) coalition Contact Information David Keefe 585-301-2433 dkeefe@grcc.us Coalition Website Clean Cities Coordinator David Keefe Photo of David Keefe David Keefe has served as the coordinator for the Genesee Region (Rochester) Clean Cities (GRCC) coalition since July 2007. GRCC is dedicated to promoting alternative fuels and vehicles in the Rochester, New York metro region. He has served on the GRCC board of directors since 1996 and has served as the board's president. Keefe has worked as a consultant in preparing alternative fuel vehicle

143

Clean Cities: State of West Virginia Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State of West Virginia Clean Cities Coalition State of West Virginia Clean Cities Coalition The State of West Virginia Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. State of West Virginia Clean Cities coalition Contact Information Kelly Bragg 800-982-3386 x2004 or 304-558-2234 x2004 kelly.a.bragg@wv.gov Casey Randolph 800-982-3386 casey.e.randolph@wv.gov Coalition Website Clean Cities Coordinators Coord Kelly Bragg Coord Coord Casey Randolph Coord Photo of Kelly Bragg Kelly Bragg has been the coordinator of the State of West Virginia Clean Cities coalition and an energy development specialist for the West Virginia Division of Energy since 2006. She works to improve energy efficiency and the use of renewable energy technologies in West Virginia. Her recent focus

144

Clean Cities: San Diego Regional Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diego Regional Clean Cities Coalition Diego Regional Clean Cities Coalition The San Diego Regional Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. San Diego Regional Clean Cities coalition Contact Information Mike Ferry 858-244-7287 mike.ferry@energycenter.org Kevin Wood 858-244-7295 kevin.wood@energycenter.org Coalition Website Clean Cities Coordinators Coord Mike Ferry Coord Coord Kevin Wood Coord Photo of Mike Ferry Mike Ferry is the Transportation Programs Manager at the California Center for Sustainable Energy (CCSE), a nonprofit organization located in San Diego, CA, and is the coordinator of the San Diego Regional Clean Cities Coalition, San Diego's Clean Cities organization. In these roles, Mike

145

Clean Cities: Clean Communities of Central New York (Syracuse) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Communities of Central New York (Syracuse) Coalition Clean Communities of Central New York (Syracuse) Coalition The Clean Communities of Central New York (Syracuse) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Clean Communities of Central New York (Syracuse) coalition Contact Information Barry Carr 315-278-2061 bcarr@cc-cny.com Amy DeJohn 315-447-8179 adejohn@cc-cny.com Coalition Website Clean Cities Coordinators Coord Barry Carr Coord Coord Amy DeJohn Coord Photo of Barry Carr Barry Carr assumed the leadership of Clean Communities of Central New York (CC/CNY) in 2008. CC/CNY was formed in 1995 and was operated for many years by Joe Barry, who currently continues with the coalition as Coordinator Emeritus. CC/CNY, in partnership with the other upstate New York

146

Clean Cities: Western Riverside County Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Riverside County Clean Cities Coalition Riverside County Clean Cities Coalition The Western Riverside County Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Western Riverside County Clean Cities coalition Contact Information Jennifer DiCiano 951-955-8587 diciano@wrcog.cog.ca.us Coalition Website Clean Cities Coordinator Jennifer DiCiano Photo of Jennifer DiCiano Jennifer DiCiano, coordinator for the Western Riverside County Clean Cities Coalition, has been with Western Riverside Council of Governments (WRCOG) since 2007. Ms. DiCiano has more than 20 years' experience in local government implementing various environmental programs including; Indoor Air Quality, Solid Waste Reduction, Reduction of Petroleum Usage and

147

Clean Cities: East Bay Clean Cities (Oakland) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Bay Clean Cities (Oakland) Coalition Bay Clean Cities (Oakland) Coalition The East Bay Clean Cities (Oakland) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. East Bay Clean Cities (Oakland) coalition Contact Information Richard Battersby 530-752-9666 rebattersby@ucdavis.edu Chris Ferrara 925-459-8062 caf3@pge.com Coalition Website Clean Cities Coordinators Coord Richard Battersby Coord Coord Chris Ferrara Coord Photo of Richard Battersby Richard Battersby is director of fleet services at the University of California, Davis and has been Coordinator of the East Bay (Oakland) Clean Cities coalition since 2003. Battersby has over 25 years of experience in the fleet industry and has written and participated in numerous local, state, and federal grant-funded

148

Clean Cities: Yellowstone-Teton Clean Energy coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Yellowstone-Teton Clean Energy Coalition Yellowstone-Teton Clean Energy Coalition The Yellowstone-Teton Clean Energy coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Yellowstone-Teton Clean Energy coalition Contact Information Phillip Cameron 307-413-1971 phil@ytcleanenergy.org Coalition Website Clean Cities Coordinator Phillip Cameron Photo of Phillip Cameron Phillip Cameron became the coordinator of the Yellowstone-Teton Clean Energy Coalition in November 2009. He brings a diverse professional experience to this position with strong background in environmental outreach and education, grant writing, community service, and resource management. He has experience in both board and staff positions with a variety of regional and local non-profit environmental organizations.

149

Clean Cities: Greater Long Island Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Greater Long Island Clean Cities Coalition Greater Long Island Clean Cities Coalition The Greater Long Island Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Greater Long Island Clean Cities coalition Contact Information Rita D. Ebert 631-504-5771 rebert@gliccc.org Coalition Website Clean Cities Coordinator Rita D. Ebert Photo of Rita D. Ebert Rita D. Ebert is the key staff member of the Greater Long Island Clean Cities Coalition since 2007, where she is the Program Coordinator. She administers all contractual and reporting duties for approximately $10 million dollars in federal Congestion Mitigation Air Quality (CMAQ) funding and close to $15 million dollars in DOE's Clean Cities American Recovery Reinvestment Act funding. As coordinator of one of the nation's largest

150

Clean Cities: Connecticut Southwestern Area Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Connecticut Southwestern Area Clean Cities Coalition Connecticut Southwestern Area Clean Cities Coalition The Connecticut Southwestern Area Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Connecticut Southwestern Area Clean Cities coalition Contact Information Ed Boman 203-256-3010 eboman@town.fairfield.ct.us Clean Cities Coordinator Ed Boman Photo of Ed Boman Ed Boman has been a stakeholder of the Connecticut Southwestern Area Clean Cities coalition since 1995. In that time, he was the coordinator of energy alternatives, and the coalition received state and federal funding to install compressed natural gas stations in four municipalities and to buy over 40 vehicles. In 2009, he successfully partnered with three other

151

Clean Cities: East Bay Clean Cities (Oakland) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Battersby Richard Battersby is director of fleet services at the University of California, Davis and has been Coordinator of the East Bay (Oakland) Clean Cities coalition...

152

Clean Cities: Western Riverside County Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Western Riverside County Clean Cities coalition Contact...

153

Cogeneration as a retrofit strategy  

SciTech Connect

The paper describes the retrofitting of cogeneration in industrial plants. The paper describes a cost analysis, feasibility analysis, prime movers, induction generation, developing load profile, and options and research. The prime movers discussed include gas turbines, back-pressure turbines, condensing turbines, extraction turbines, and single-stage turbines. A case history of an institutional-industrial application illustrates the feasibility and benefits of a cogeneration system.

Meckler, M. [Meckler Group, Los Angeles, CA (United States)

1996-06-01T23:59:59.000Z

154

Wind Turbine Retrofits: An Overview and Economic Analysis of Onshore Retrofit Options Available for Wind Turbines  

Science Conference Proceedings (OSTI)

This report provides an overview of some of the most promising retrofits available to turbine owners today. The retrofits discussed are those offered by original turbine manufacturers and by third parties; the retrofits deal with rotor blades, pitch and yaw systems, gearboxes and other drive train components, electrical generators, power converters, controls, sensors and monitoring equipment, and others.From the many retrofits discussed, six that showed material near-term potential were ...

2013-11-19T23:59:59.000Z

155

Residential Deep Energy Retrofits: Monitoring and Performance...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Retrofits are residential remodeling projects, which attempt to drastically reduce energy usage and environmental impact, as well as increase occupant comfort and improve...

156

Golden Valley Electric Association - Commercial Lighting Retrofit...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program (Alaska) This is the approved revision of this page, as well...

157

OTEC- Commercial Lighting Retrofit Rebate Program  

Energy.gov (U.S. Department of Energy (DOE))

The Oregon Trail Electric Consumers Cooperative (OTEC) offers a commercial lighting retrofit program that provides rebates for commercial businesses that change existing lighting to more energy...

158

Building Energy Model Development for Retrofit Homes  

SciTech Connect

Based on previous research conducted by Pacific Northwest National Laboratory and Florida Solar Energy Center providing technical assistance to implement 22 deep energy retrofits across the nation, 6 homes were selected in Florida and Texas for detailed post-retrofit energy modeling to assess realized energy savings (Chandra et al, 2012). However, assessing realized savings can be difficult for some homes where pre-retrofit occupancy and energy performance are unknown. Initially, savings had been estimated using a HERS Index comparison for these homes. However, this does not account for confounding factors such as occupancy and weather. This research addresses a method to more reliably assess energy savings achieved in deep energy retrofits for which pre-retrofit utility bills or occupancy information in not available. A metered home, Riverdale, was selected as a test case for development of a modeling procedure to account occupancy and weather factors, potentially creating more accurate estimates of energy savings. This true up procedure was developed using Energy Gauge USA software and post-retrofit homeowner information and utility bills. The 12 step process adjusts the post-retrofit modeling results to correlate with post-retrofit utility bills and known occupancy information. The trued post retrofit model is then used to estimate pre-retrofit energy consumption by changing the building efficiency characteristics to reflect the pre-retrofit condition, but keeping all weather and occupancy-related factors the same. This creates a pre-retrofit model that is more comparable to the post-retrofit energy use profile and can improve energy savings estimates. For this test case, a home for which pre- and post- retrofit utility bills were available was selected for comparison and assessment of the accuracy of the true up procedure. Based on the current method, this procedure is quite time intensive. However, streamlined processing spreadsheets or incorporation into existing software tools would improve the efficiency of the process. Retrofit activity appears to be gaining market share, and this would be a potentially valuable capability with relevance to marketing, program management, and retrofit success metrics.

Chasar, David; McIlvaine, Janet; Blanchard, Jeremy; Widder, Sarah H.; Baechler, Michael C.

2012-09-30T23:59:59.000Z

159

Climate Coalitions in an IntegratedAssessment Model  

Science Conference Proceedings (OSTI)

An analytically tractable approximation of a numerical model is used to investigate coalition formation between nine major world regions with regard to their policies for greenhouse gas emission reduction. Full cooperation is not individually rational. ... Keywords: LQ games, climate change, coalition formation, optimal emission control

Richard S. J. Tol

2001-10-01T23:59:59.000Z

160

California Green Stimulus Coalition Hon. Elaine M. Howle  

E-Print Network (OSTI)

California Green Stimulus Coalition Hon. Elaine M. Howle State Auditor 555 Capitol Mall, Suite 300 Sacramento, CA 95814 December 23, 2009 Dear Ms. Howle, The California Green Stimulus Coalition respectfully writes regarding your report evaluating the preparedness of the California Energy Commission (CEC

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Agent-Based Coalition Formation in Disaster Response Applications  

E-Print Network (OSTI)

Agent-Based Coalition Formation in Disaster Response Applications Ladislau B¨ol¨oni, Senior Member-based coalition formation ap- proach for disaster response applications. We assume that agents are operating 1. INTRODUCTION Efficient disaster response requires participants to form teams and coordinate

Bölöni, Ladislau L

162

Clean Cities: Houston-Galveston Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Houston-Galveston Clean Cities Coalition Houston-Galveston Clean Cities Coalition The Houston-Galveston Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Houston-Galveston Clean Cities coalition Contact Information Allison Carr 832-681-2583 allison.carr@h-gac.com Coalition Website Clean Cities Coordinator Allison Carr Photo of Allison Carr Allison Carr is an Air Quality Planner with the Houston-Galveston Area Council (H-GAC) - the Metropolitan Planning Organization in the Houston region. She has worked with H-GAC since 2010 and has served as Clean Cities Coordinator since 2011. Carr actively supports multiple Air Quality programs that have a common goal of reducing pollutant emissions and improving regional air quality. In particular, she has been involved in

163

Memorandum of American High-Performance Buildings Coalition DOE Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Memorandum of American High-Performance Buildings Coalition DOE Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 Memorandum of American High-Performance Buildings Coalition DOE Meeting August 19, 2013 This memorandum is intended to provide a summary of a meeting between the American HighPerformance Buildings Coalition (AHBPC), a coalition of industry organizations committed to promoting performance-based energy efficiency and sustainable building standards developed through true, consensus-bases processes, and the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) that took place on Monday, August 19, 2013. Memorandum of AHPBC DOE Meeting_8_19_2013_FINAL_SIGNED More Documents & Publications Federal Leadership in High Performance and Sustainable Buildings Memorandum

164

Clean Cities: Lone Star Clean Fuels Alliance (Central Texas) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Lone Star Clean Fuels Alliance (Central Texas) Coalition Lone Star Clean Fuels Alliance (Central Texas) Coalition The Lone Star Clean Fuels Alliance (Central Texas) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Lone Star Clean Fuels Alliance (Central Texas) coalition Contact Information Stacy Neef 512-773-8794 stacy.neef@lonestarcfa.org Coalition Website Clean Cities Coordinator Stacy Neef Photo of Stacy Neef Stacy Neef has served as the coordinator for Lone Star Clean Fuels Alliance (Austin) (LSCFA) promoting and advancing the use of alternative fuel and vehicles for fleets in central Texas since 2000. The central Texas region includes Bastrop, Caldwell, Hays, Travis, Williamson Counties; Fort Hood and City of Temple, Texas. LSCFA works closely with other Texas Clean

165

Clean Cities: State of Delaware Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State of Delaware Clean Cities Coalition State of Delaware Clean Cities Coalition The State of Delaware Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. State of Delaware Clean Cities coalition Contact Information Morgan Ellis 302-739-9053 morgan.ellis@state.de.us Clean Cities Coordinator Morgan Ellis Photo of Morgan Ellis Morgan Ellis has been with the Delaware Division of Energy and Climate for three years and became the Clean Cities coordinator in 2013. Her roles and responsibilities include representing the State of Delaware on the Transportation Climate Initiative, the Regional Greenhouse Gas Initiative, as well as working on climate related policies for the State of Delaware. Ellis worked with Delaware's Clean Cities Coalition on implementing the

166

Clean Cities: Central Oklahoma Clean Cities (Oklahoma City) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Central Oklahoma Clean Cities (Oklahoma City) Coalition Central Oklahoma Clean Cities (Oklahoma City) Coalition The Central Oklahoma Clean Cities (Oklahoma City) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Central Oklahoma Clean Cities (Oklahoma City) coalition Contact Information Yvonne Anderson 405-234-2264 yanderson@acogok.org Coalition Website Clean Cities Coordinator Yvonne Anderson Photo of Yvonne Anderson Yvonne Anderson has served as the Central Oklahoma Clean Cities Coordinator since October 1998. She is a Special Programs Officer at the Association of Central Oklahoma Governments (ACOG), a regional council of governments, where in addition to her Clean Cities functions she also manages ACOG's Public Fleet Conversion Grants Program and serves on the agency's Air

167

Clean Cities: Clean Communities of Western New York (Buffalo) coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Communities of Western New York (Buffalo) Coalition Clean Communities of Western New York (Buffalo) Coalition The Clean Communities of Western New York (Buffalo) coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Clean Communities of Western New York (Buffalo) coalition Contact Information Craig Jackson 716-362-9543 cjackson@ccofwny.org Coalition Website Clean Cities Coordinator Craig Jackson Photo of Craig Jackson Craig Jackson has been the Coordinator of Clean Communities of WNY since Nov. 2012. Jackson's role as coordinator is to assure that local partnerships are built to reduce petroleum use in transportation. Mr. Jackson has worked in the rotating equipment industry servicing the Oil & Gas, Power Generation and Air Separation markets for over 6 years. Jackson

168

Clean Cities: State of Maryland Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

State of Maryland Clean Cities Coalition State of Maryland Clean Cities Coalition The State of Maryland Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. State of Maryland Clean Cities coalition Contact Information Chris Rice 410-260-7207 crice@energy.state.md.us Coalition Website Clean Cities Coordinator Chris Rice Photo of Chris Rice Christopher Rice manages the Transportation and Clean Cities programs for the Maryland Energy Administration. He's currently working with the Maryland Public Service Commission on the regulatory treatment of electric vehicle re-charging stations. He is also working with the Maryland Department of Transportation to establish the Maryland Electric Vehicle Council and the implementation of the Electric Vehicle Excise Tax Credit

169

Clean Cities: Capitol Clean Cities of Connecticut coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Capitol Clean Cities of Connecticut Coalition Capitol Clean Cities of Connecticut Coalition The Capitol Clean Cities of Connecticut coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Capitol Clean Cities of Connecticut coalition Contact Information Craig Peters 800-255-2631 craig.peters@manchesterhonda.com David Levine 860-653-7744 dave@ct.necoxmail.com Coalition Website Clean Cities Coordinators Coord Craig Peters Coord Coord David Levine Coord Photo of Craig Peters Craig Peters became involved with Capitol Clean Cities of Connecticut in 1999 and was elected coordinator/treasurer in 2005 due to his commitment to working with public and private entities to reduce dependency on imported oil. Peters' responsibilities as coordinator are to offer education and outreach

170

Clean Cities: Greater Washington Region Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Washington Region Clean Cities Coalition Washington Region Clean Cities Coalition The Greater Washington Region Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Greater Washington Region Clean Cities coalition Contact Information Ron Flowers 202-671-1580 ronflowers@gwrccc.org Coalition Website Clean Cities Coordinator Ron Flowers Photo of Ron Flowers Ronald S. "Ron" Flowers, now retired, most recently served as the Director of the Office of Labor-Management Programs (OLMP), under the Executive Office of the Mayor of the District of Columbia (DC) Government. Flowers' senior management experience spans more than 35 years in the public and private sectors, and includes serving as the Fleet Administrator for the DC

171

Clean Cities: Columbia-Willamette Clean Cities coalition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Columbia-Willamette Clean Cities Coalition Columbia-Willamette Clean Cities Coalition The Columbia-Willamette Clean Cities coalition works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Columbia-Willamette Clean Cities coalition Contact Information Rick Wallace 503-378-3265 rick.wallace@state.or.us Julie Peacock 503-373-2125 julie.peacock@state.or.us Coalition Website Clean Cities Coordinators Coord Rick Wallace Coord Coord Julie Peacock Coord Photo of Rick Wallace Rick Wallace is a Senior Policy Analyst at the Oregon Department of Energy in the Energy Policy Division and serves as the agency expert on alternative fuels, infrastructure and vehicles in the transportation sector. Rick also serves as coordinator of the Columbia Willamette Clean

172

A systems approach to retrofitting residential HVAC systems  

E-Print Network (OSTI)

Retrofit Guide for Military Family Housing: Energy-EfficientPractices Guide includes references to DOEs Home Energyguide the user to specific retrofit packages that maximize retrofit energy

McWilliams, J.A.; Walker, I.S.

2004-01-01T23:59:59.000Z

173

Pages that link to "CPS Energy - Small Business Lighting Retrofit...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Pages that link to "CPS Energy - Small Business Lighting Retrofit Program (Texas)" CPS Energy - Small Business Lighting Retrofit Program...

174

Changes related to "CPS Energy - Small Business Lighting Retrofit...  

Open Energy Info (EERE)

on Facebook icon Twitter icon Changes related to "CPS Energy - Small Business Lighting Retrofit Program (Texas)" CPS Energy - Small Business Lighting Retrofit Program...

175

EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining Existing Buildings EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining Existing Buildings An...

176

Street and Parking Facility Lighting Retrofit Financial Analysis...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Street and Parking Facility Lighting Retrofit Financial Analysis Tool Webinar Street and Parking Facility Lighting Retrofit Financial Analysis Tool Webinar August 22, 2013 1:00PM...

177

Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Insulation Retrofit of Mass Masonry Wall Assembliesessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such...

178

Retrofitting  

NLE Websites -- All DOE Office Websites (Extended Search)

communication skills and learn ways to explain the weatherization process to the homeowner. House as a System Trainees will understand the concept of weatherization, common...

179

Clean Cities Designation Guide: A Resource for Developing, Implementing, and Sustaining Your Clean Cities Coalition  

DOE Green Energy (OSTI)

Document serves as an instruction manual for developing, implementing, and running a Clean Cities coalition.

Not Available

2008-04-01T23:59:59.000Z

180

Advanced Energy Retrofit Guides | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Guides Retrofit Guides Advanced Energy Retrofit Guides Photo of the cover of the Advanced Energy Retrofit Guide for Healthcare Facilities. The Advanced Energy Retrofit Guides (AERGs) were created to help decision makers plan, design, and implement energy improvement projects in their facilities. With energy managers in mind, they present practical guidance for kick-starting the process and maintaining momentum throughout the project life cycle. These guides are primarily reference documents, allowing energy managers to consult the particular sections that address the most pertinent topics.. Useful resources are also cited throughout the guides for further information. Each AERG is tailored specifically to the needs of a specific building type, with an emphasis on the most effective

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Residential Retrofit Program Design Guide  

NLE Websites -- All DOE Office Websites (Extended Search)

Technical Assistance Program Technical Assistance Program Residential Retrofit Program Design Guide May 2011 This work has been performed by the Vermont Energy Investment Corporation (VEIC) and Energy Futures Group (EFG), under the Contract No. 4200000341 with Oak Ridge National Laboratory which is managed by UT-Battelle, LLC under Contract with the US Department of Energy No. DE-AC05-00OR22725. This document was prepared in collaboration with a partnership of companies under this contract. The partnership is led by the Vermont Energy Investment Corporation (VEIC), and includes the following companies: American Council for an Energy Efficient Economy (ACEEE), Energy Futures Group (EFG), Midwest Energy Efficiency Alliance (MEEA), Northwest Energy Efficiency Alliance (NEEA), Northeast Energy Efficiency Partnership (NEEP), Natural

182

Retrofitting Doors on Open Refrigerated Cases  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofitting Doors on Open Retrofitting Doors on Open Refrigerated Cases William Goetzler Navigant Consulting, Inc. wgoetzler@navigant.com (781) 270-8351 April 4, 2013 BBA Refrigeration Project Team Images courtesy of REMIS AMERICA, LLC. 2 | Building Technologies Office eere.energy.gov Technology Overview Image from Investigation of Energy- Efficient Supermarket Display Cases. 2004, Oak Ridge National Laboratory. Background and Motivation * Adding doors to open cases (retrofits) greatly reduces cold air loss - 50-80% load reduction - Load reduction = system energy savings

183

Retrofitting CO{sub 2} capture  

SciTech Connect

Retrofitting existing fossil-fueled plants with the first available carbon dioxide capture technologies could play an important role in paving the way for development of lower-cost, reliable carbon capture and storage systems. EPRI research is helping utilities better understand the engineering challenges and economic consequences. Studies are being conducted on retrofitting five different plants with advanced amine PCC technologies. Other studies include: process optimization studies; valuing operating flexibility; CO{sub 2} capture for CTCC plants; and assessing the impact of climate policy on retrofitting investment.

Weisel, J.

2009-07-01T23:59:59.000Z

184

Clean Cities Coalition and Coordinator's Awards  

SciTech Connect

U. S. DOE Clean Cities Program has awarded its Coalition awards for 2002, and the awards will be presented at the Clean Cities Conference in May 2002. This fact sheets describe the winners and their contributions.

2002-05-01T23:59:59.000Z

185

Proven Performance of Seven Cold Climate Deep Retrofit Homes  

SciTech Connect

Seven test homes located in Massachusetts are examined within this report. The retrofit strategies of each home are presented along with a comparison of the pre- and post-retrofit airtightness achieved by the group. Pre- and post-retrofit utility bills were collected; energy models were used to estimate pre-retrofit energy use when bills were unavailable.

Osser, R.; Neuhauser, K.; Ueno, K.

2012-06-01T23:59:59.000Z

186

Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel Alternative Fuel Vehicle Retrofit Emissions Inspection Process to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Google Bookmark Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Delicious Rank Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on Digg Find More places to share Alternative Fuels Data Center: Alternative Fuel Vehicle Retrofit Emissions Inspection Process on AddThis.com...

187

A Methodology for Identifying Retrofit Energy Savings in Commercial Buildings  

E-Print Network (OSTI)

Measured energy savings resulting from energy conservation retrofits in commercial buildings can be used to verify the success of the retrofits, determine the payment schedule for the retrofits, and guide the selection of future retrofits. This paper presents a structured methodology, developed for buildings in the Texas LoanSTAR program, for measuring retrofit savings in commercial buildings. This methodology identifies the pre-retrofit construction and post-retrofit periods, normalizes energy consumption data, and quantifies the uncertainty associated with the measured savings. A case study from the Texas LoanSTAR program is presented as an example.

Kissock, K.; Reddy, A.; Claridge, D.

1992-05-01T23:59:59.000Z

188

Columbia-Willamette, Oregon/Washington award winning coalition (Clean Cities award winning coalition alternative fuel information series fact sheet)  

DOE Green Energy (OSTI)

In November 1994, the Portland Clean Cities Coalition became the 28th Clean City. And Number 28 took off and quickly picked up speed. By the end of 1999, the group had grown so much that it sought re-designation under a new name, the Columbia-Willamette Clean Cities Coalition, to better reflect the much larger geographical area it had come to represent. The coalition now represents two states, encompassing much of southwest Washington and most of Oregon. Several municipal agencies, along with many private companies, are participating in Vancouver, Washington; and in Portland, Eugene, and Salem, Oregon. With this geographical expansion came an increase in stakeholders, and in 1999 the coalition added a record number of 65 stakeholders, including three local transit districts, two utility districts, three cities, two counties, five alternative fuel original equipment manufacturers (OEMs), and numerous other local businesses.

Howard, R.

2000-04-27T23:59:59.000Z

189

Cost-effective Lighting Retrofits: Lessons Learned  

E-Print Network (OSTI)

Facility managers and energy engineers contemplating a lighting retrofit are confronted with a confusing array of product and system options. This paper presents my experience in trial and final installations. Also presented is a commonsense approach to calculating savings.

Fisher, M. D.

1994-01-01T23:59:59.000Z

190

Florida house aglow with lighting retrofit  

SciTech Connect

In a residential lighting retrofit, how much energy can be saved with current technology? The Florida Solar Energy Center decided to find out by retrofitting every lamp in a Miami home. Most lighting studies focus on average lighting energy use or on how much energy can be saved by retrofitting large numbers of homes. However, the Florida Solar Energy Center (FSEC) was interested in finding out how much lighting energy we could save in a single house. One house with high utility bills and extensive interior lighting was picked, throughly monitored, and retrofitted every light possible. The study also helped determine what sort of monitoring is most useful, and how residents respond to efficient lighting. 1 fig., 2 tabs.

Parker, D.; Schrum, L.

1997-01-01T23:59:59.000Z

191

NETL: Carbon Absorber Retrofit Equipment (CARE)  

NLE Websites -- All DOE Office Websites (Extended Search)

Emissions Control Carbon Absorber Retrofit Equipment (CARE) Project No.: DE-FE0007528 Spray Jet Array for Neustream-C Nozzle Technology Spray Jet Array for Neustream-C Nozzle...

192

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance; Grocery Stores (Revised) (Book)  

SciTech Connect

The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders successfully plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited in these guides. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. Grocery stores were selected as one of the highest priority sectors, because they represent one of the most energy-intensive market segments.

Hendron, B.

2013-07-01T23:59:59.000Z

193

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)  

SciTech Connect

The U.S. Department of Energy developed the K-12 Advanced Energy Retrofit Guide to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. We emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluation of the most promising retrofit measure for each building type. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings.

Not Available

2013-02-01T23:59:59.000Z

194

Post-Retrofit Residential Assessments  

SciTech Connect

This study examined a range of factors influencing energy consumption in households that had participated in residential energy-efficiency upgrades. The study was funded by a grant from the U.S. Department of Energys Pacific Northwest National Laboratory and was conducted by faculty and staff of Portland State University Center for Urban Studies and Department of Economics. This work was made possible through the assistance and support of the Energy Trust of Oregon (ETO), whose residential energy-efficiency programs provided the population from which the sample cases were drawn. All households in the study had participated in the ETO Home Performance with Energy Star (HPwES) program. A number of these had concurrently pursued measures through other ETO programs. Post-retrofit energy outcomes are rarely investigated on a house-by-house basis. Rather, aggregate changes are ordinarily the focus of program impact evaluations, with deviation from aggregate expectations chalked up to measurement error, the vagaries of weather and idiosyncrasies of occupants. However, understanding how homes perform post-retrofit on an individual basis can give important insights to increase energy savings at the participant and the programmatic level. Taking a more disaggregated approach, this study analyzed energy consumption data from before and after the retrofit activity and made comparisons with engineering estimates for the upgrades, to identify households that performed differently from what may have been expected based on the estimates. A statistical analysis using hierarchal linear models, which accounted for weather variations, was performed looking separately at gas and electrical use during the periods before and after upgrades took place. A more straightforward comparison of billing data for 12-month periods before and after the intervention was also performed, yielding the majority of the cases examined. The later approach allowed total energy use and costs to be assessed but did not account for weather variation. From this statistical analysis, 18 study participants were selected and interviewed. The participants completed an in-home interview covering a range of topics, including changes in occupancy and additional changes to the homes that may have affected energy use. The goal of the interviews was to identify factors that may have contributed to unusual energy performance. These factors were identified by their frequency of occurrence in outperforming or underperforming homes, or simply by identifying factors that had the largest impact on overall savings. The motivations and levels of satisfaction with the outcomes of the upgrades were covered in detail, as well as extensive discussions of behaviors pertaining to thermal control, lighting, water, and appliance use. Most of cases studied achieved substantial energy savings, although it was more common for the projected savings to be greater than the demonstrated savings. Two factors that played a very large role in savings variation were 1) changes in occupancy and 2) fenestration improvements outside of the incentive programs. Motivation for pursuing the upgrades (e.g., environmental sustainability vs. comfort or cost savings) did not seem to play any role in achieving savings. Participants generally were more concerned with maintaining aesthetics through lighting than comfort through heating or cooling. They also seemed more likely to turn the lights off when leaving a room than to turn the heat off when leaving the home.

Lancaster, Ross; lutzenhiser, Loren; Moezzi, Mithra; Widder, Sarah H.; Chandra, Subrato; Baechler, Michael C.

2012-04-30T23:59:59.000Z

195

Main Generator Excitation System Upgrade/Retrofit  

Science Conference Proceedings (OSTI)

Upgrading or replacing even a portion of the excitation system of a generator can provide increased reliability and availability while simultaneously decreasing operational and maintenance costs. However, the upgrade or retrofit of an excitation system is a major cost involving some degree of implementation, installation, or performance risk. This report provides lessons learned, experiences, practices and solutions from plants that have installed excitation system retrofits and upgrades. This informatio...

2005-11-07T23:59:59.000Z

196

Evaluation of passive solar retrofit options  

DOE Green Energy (OSTI)

An evaluation framework has been developed which allows for the assessment of the role of passive solar retrofit in the nationwide reduction of conventional fuel use. Three types of analysis are proposed within this framework: the physical/technical capability of the present housing stock to incorporate passive solar retrofit; the economic feasibility of the application of retrofit designs; and the actual market potential or acceptance of these alternative retrofit options. Each type of analysis has specific data requirements and a series of evaluation procedures to help establish estimates of the potential for passive solar retrofit in the present housing stock. The data requirements with their respective sources and evaluation procedures for the first two types of analysis-physical/technical setting and economic feasibility, are examined. A distinction is drawn between community specific case studies and more generalized national assessments. Information derived from these three types of analysis, whether case specific or national in scope, can then be used in an evaluation of potential economic impacts. The establishment of regional economic benefits and costs werve as a measure of the merit or attractiveness of the implementation of a passive solar retrofit program.

Ben-David, S.; Kirchemen, C.; Martin, S.; Noll, S.; Roach, F.

1980-01-01T23:59:59.000Z

197

Retrofit Savings for Brazos County  

E-Print Network (OSTI)

This report presents the energy and dollar savings for the period May 2000 - April 2001 for 10 of the Brazos County facilities that have been retrofit. The electricity use saved was 555,170 kWh and the demand was 1062 kW, which is equivalent to a $31,743 dollars savings, $24,650 from electricity use and $7,093 from the electric demand. These savings represent a 60.8% of the audit-estimated savings and a 93.7% of the audit-estimated savings if just the positive one were taken in account. The savings have improved somewhat from the previous report that included the billing periods for January to August 1999. The savings for the earlier period were 48.0% of the audit-estimated savings that means compared with 60.8% for the current period. In general has been an improvement in the energy saving in most of the facilities. The cases where are observed negative savings are the Minimum Security Jail, where is known that the area was increased significantly, the Arena Hall, where the modeling can be normalized due to kind of use of this facility, and the Road and bridges Shop, which looks to be operated more time in this period.

Baltazar-Cervantes, J. C.; Shao, X.; Claridge, D. E.

2001-01-01T23:59:59.000Z

198

Measuring retrofit savings in commercial buildings with pre-retrofit utility billing data and post-retrofit sub-metered data  

E-Print Network (OSTI)

Methodologies to measure energy and dollar savings resulting from energy conserving retrofits in commercial buildings when both pre-retrofit and post-retrofit monitored data are available at an hourly or daily level have already been developed by several researchers. However there are many occasions when hourly or daily energy consumption data are available only for the post-retrofit period. This thesis presents a methodology for measuring retrofit savings on such occasions by establishing a pre-retrofit baseline model of energy consumption based on pre-retrofit monthly utility billing data and sub-metered daily or hourly post-retrofit data. The procedure consists of two basic parts. The first part normalizes energy use for temperature dependency using post-retrofit sub-metered hourly data, the second part accounts for scheduling effects and develops a pre-retrofit baseline model using pre-retrofit utility bills. In this way, the method explicitly accounts for both scheduling and weather effects in developing a baseline for pre-retrofit energy consumption. The methodology is first tested with data from a LoanSTAR site where both pre- and post-retrofit data are available. It is then illustrated with two other LoanSTAR sites where only post-retrofit sub-metered data and pre-retrofit monthly utility billing data are available. This thesis also employs the direct utility bill comparison method to measure retrofit savings, and extends it to include a simple temperature comparison and compares results on a monthly and annual basis with the method developed herein.

Liu, Yue

1993-01-01T23:59:59.000Z

199

Ready to Retrofit: The Process of Project Team Selection, Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Ready to Retrofit: The Process of Project Team Selection, Building Ready to Retrofit: The Process of Project Team Selection, Building Benchmarking, and Financing Commercial Building Energy Retrofit Projects Title Ready to Retrofit: The Process of Project Team Selection, Building Benchmarking, and Financing Commercial Building Energy Retrofit Projects Publication Type Report LBNL Report Number LBNL-5893E Year of Publication 2012 Authors Sanders, Mark D., Kristen Parrish, and Paul A. Mathew Publisher LBNL Abstract This guide provides an introduction and overview to the retrofit process and then dives deeper into the key activities that an owner can influence most in the retrofit process: (1) Selecting Your Project Team, (2) Benchmarking Your Building, and (3) Financing Your Energy Efficiency Projects* Building Energy Retrofit Overview will provide you a simple explanation of the retrofit process, the project stages and the players involved.

200

Alternative Fuels Data Center: School Bus Retrofit Reimbursement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Retrofit School Bus Retrofit Reimbursement to someone by E-mail Share Alternative Fuels Data Center: School Bus Retrofit Reimbursement on Facebook Tweet about Alternative Fuels Data Center: School Bus Retrofit Reimbursement on Twitter Bookmark Alternative Fuels Data Center: School Bus Retrofit Reimbursement on Google Bookmark Alternative Fuels Data Center: School Bus Retrofit Reimbursement on Delicious Rank Alternative Fuels Data Center: School Bus Retrofit Reimbursement on Digg Find More places to share Alternative Fuels Data Center: School Bus Retrofit Reimbursement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Retrofit Reimbursement The Illinois Department of Education will reimburse any qualifying school

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Alternative Fuels Data Center: School Bus Retrofit Grant Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

School Bus Retrofit School Bus Retrofit Grant Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Retrofit Grant Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Retrofit Grant Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Retrofit Grant Program on Google Bookmark Alternative Fuels Data Center: School Bus Retrofit Grant Program on Delicious Rank Alternative Fuels Data Center: School Bus Retrofit Grant Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Retrofit Grant Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Retrofit Grant Program The Ohio Environmental Protection Agency (EPA) administers the Clean Diesel

202

Alternative Fuels Data Center: School Bus Retrofit Program  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Retrofit Retrofit Program to someone by E-mail Share Alternative Fuels Data Center: School Bus Retrofit Program on Facebook Tweet about Alternative Fuels Data Center: School Bus Retrofit Program on Twitter Bookmark Alternative Fuels Data Center: School Bus Retrofit Program on Google Bookmark Alternative Fuels Data Center: School Bus Retrofit Program on Delicious Rank Alternative Fuels Data Center: School Bus Retrofit Program on Digg Find More places to share Alternative Fuels Data Center: School Bus Retrofit Program on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type School Bus Retrofit Program The goals of the Connecticut Clean School Bus Program are to: 1) establish grants for municipalities and local and regional school boards to reimburse

203

San Diego Regional Clean Fuels Coalition | Open Energy Information  

Open Energy Info (EERE)

Fuels Coalition Fuels Coalition Jump to: navigation, search Name San Diego Regional Clean Fuels Coalition Place San Diego, California Zip 92123 Region Southern CA Area Notes Network of more than 80 volunteer, community-based coalitions, which develop public/private partnerships to work together as a coalition Website http://www.sdcleanfuels.org/ Coordinates 32.8102534°, -117.1323579° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.8102534,"lon":-117.1323579,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

204

Cold climate foundation insulation retrofit performance  

SciTech Connect

The effectiveness of foundation insulation retrofits in 15 Minnesota houses was evaluated using a before-after experimental method. Nine houses received interior retrofits; six, exterior retrofits. Foundation air leaks were sealed before the preretrofit heating season to control for inadvertent sealing during retrofit. Basement heating supply and return registers were closed in most houses for the 21-month monitoring period, and for all houses the basement was an uncontrolled zone without a thermostat. Homeowners recorded gas and electricity meter readings and furnace and water heater on-times weekly. A load vs. outdoor temperature was used to evaluate changes in energy use. The average whole-house energy savings for the interior and exterior cases were 92 and 24 therm per year, or 7.9% (range - 0.6% to 17.8%) and 3.0% (range -2.9% to 8.3%), respectively. Minimum payback periods for the interior and exterior cases were 12 and 37 years, respectively. For all houses the basement temperature increased between the pre- and post-retrofit periods, and all homeowners reported increased comfort in their basements. Average measured savings were about one-third of those predicted. The results show that the application of insulation in an uncontrolled zone produces highly variable results and has the principal effect of increasing the temperature and comfort of the basement rather than producing cost-effective whole-house energy savings.

Robinson, D.A. (Robinson Technical Services, St. Paul, MN (US)); Goldberg, L.F.; Shen, L.S. (Univ. of Minnesota, Minneapolis, MN (US)); Nelson, G.D. (Energy Conservatory, Minneapolis, MN (US)); Hewett, M.J. (Center for Energy and the Urban Environment, Minneapolis, MN (US)); Noble, M.T. (Natural Resources Corp., Minneapolis, MN (US))

1990-01-01T23:59:59.000Z

205

Ocean Renewable Energy Coalition OREC | Open Energy Information  

Open Energy Info (EERE)

Energy Coalition OREC Energy Coalition OREC Jump to: navigation, search Name Ocean Renewable Energy Coalition (OREC) Place Potomac, Maryland Zip 20859 Sector Ocean Product US trade association founded to promote energy technologies from ocean resources. Coordinates 39.017653°, -77.208337° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.017653,"lon":-77.208337,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

206

Coalition of World Energy Ministers Commit to Improvements in Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Coalition of World Energy Ministers Commit to Improvements in Coalition of World Energy Ministers Commit to Improvements in Energy Efficiency, Renewable Energy, Energy Access Coalition of World Energy Ministers Commit to Improvements in Energy Efficiency, Renewable Energy, Energy Access April 26, 2012 - 5:15am Addthis LONDON, 26 April 2012 - Leaders from the 23-government Clean Energy Ministerial (CEM) and the UN Secretary-General's Sustainable Energy for All initiative (SE4All) today outlined specific commitments by participating countries and private sector leaders which will promote improved energy efficiency, renewable energy technologies, and increased energy access around the world. The commitments build on two years of work by the Clean Energy Ministerial and support the goal of sustainable energy for all by 2030, the primary

207

Clean cities: Award winning coalition -- Paso del Norte  

DOE Green Energy (OSTI)

Designated the 41st Clean Cities coalition in November 1995, the Paso del Norte Clean Cities Coalition (PDNCCC) is the first in the country to gain international participation. Spanning the US-Mexico border; the coalition includes stakeholders from El Paso, Texas; Ciudad Juarez, Mexico; and Las Cruces, New Mexico. PDNCCC developed a comprehensive plan to jump-start its program place, alternative fuel vehicles (AFVs) on the road, and eliminate barriers inhibiting alternative fuel market growth. PDNCC raised more than $2.3 million for alternative fuel activities and clean air initiatives in less than 26 months. In 1998, the US Department of Energy (DOE) recognized that PDNCCC accomplishment with its Rainmaker Award for leveraging the most funds from outside sources. PDNCCC is proud of its efforts to drive the alternative fuels and AFV market in the El Paso/Juarez region.

O'Connor, K.

1999-10-25T23:59:59.000Z

208

Financing Residential Retrofits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing Residential Retrofits Financing Residential Retrofits Financing Residential Retrofits June 25, 2010 - 3:32pm Addthis Rancho Cucamonga, east of Los Angeles, received a $1.6 million Energy Efficiency and Conservation Block grant from the U.S. Department of Energy last year, using money authorized by the American Recovery and Reinvestment Act. Among the city's many uses of the Recovery Act funds are two different programs intended to encourage more energy efficient homes. One, the Home Improvement Loan Program, targets low-income residents who'd like to make major repairs or improvements in their homes. The other is the Energy Efficiency Reimbursement Program, open to any city resident who purchases and installs an energy efficient appliance. "I think we wanted to have the biggest impact we could and assist the

209

Financing Residential Retrofits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Financing Residential Retrofits Financing Residential Retrofits Financing Residential Retrofits June 25, 2010 - 3:32pm Addthis Rancho Cucamonga, east of Los Angeles, received a $1.6 million Energy Efficiency and Conservation Block grant from the U.S. Department of Energy last year, using money authorized by the American Recovery and Reinvestment Act. Among the city's many uses of the Recovery Act funds are two different programs intended to encourage more energy efficient homes. One, the Home Improvement Loan Program, targets low-income residents who'd like to make major repairs or improvements in their homes. The other is the Energy Efficiency Reimbursement Program, open to any city resident who purchases and installs an energy efficient appliance. "I think we wanted to have the biggest impact we could and assist the

210

Greenbuilt Retrofit Test House Final Report  

NLE Websites -- All DOE Office Websites (Extended Search)

Greenbuilt Retrofit Test House Greenbuilt Retrofit Test House Final Report B. Sparn, K. Hudon, L. Earle, C. Booten, and P. C. Tabares-Velasco National Renewable Energy Laboratory G. Barker and C. E. Hancock Mountain Energy Partnership Technical Report NREL/TP-5500-54009 October 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Greenbuilt Retrofit Test House Final Report B. Sparn, K. Hudon, L. Earle, C. Booten, and P. C. Tabares-Velasco National Renewable Energy Laboratory G. Barker and C. E. Hancock

211

Retrofit Legislation at the Urban Level  

NLE Websites -- All DOE Office Websites (Extended Search)

Retrofit Legislation at the Urban Level Retrofit Legislation at the Urban Level In March, the city of Berkeley, California, passed new legislation that should serve as a model for local policies intended to keep energy dollars within the community while protecting the environment. The Commercial Energy Conservation Ordinance (CECO) is based on a similar ordinance that has been law since 1989 in San Francisco, Berkeley's neighbor across the Bay. San Francisco is currently the only other city in the world to have this type of legislation. As part of the Berkeley Municipal Code, CECO requires commercial buildings to undergo energy conservation retrofits when they are sold or substantially renovated. CECO was designed with the participation of LBL's Kristin Heinemeier, who also works with the Berkeley

212

An Exploration of Wall Retrofit Best Practices  

SciTech Connect

A series of experiments were performed to examine wall retrofit options including replacing the cladding, adding insulation under the cladding, and multiple sealing methods that can be used when installing replacement windows in well-built or loosely-built rough openings. These experiments included thermal measurements in a hot box and air-leakage measurements. The retrofit claddings considered included wood-lap siding, vinyl siding, and vinyl siding with an integrated and formed foam insulation. Retrofit insulations included expanded and extruded polystyrene and foil-faced polyisocyanurate in various thicknesses. Air sealing methods for replacement windows included traditional caulking, exterior trim variations, loose-fill fiberglass, low-expansion foam, self-expanding foam inserts, and specialty tape. Results were applied to a model to estimate whole-house energy impacts for multiple climates.

Stovall, Therese K [ORNL; Petrie, Thomas [ORNL; Kosny, Jan [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Hulvey, Kimberly D [ORNL

2007-01-01T23:59:59.000Z

213

Behavior scoring model for coalition loyalty programs by using summary variables of transaction data  

Science Conference Proceedings (OSTI)

OKCashbag (OCB), the largest coalition loyalty program in Korea, offers a number of benefits such as sharing customer data with participating firms and cross-selling. There is great value in utilizing information pertaining to coalition loyal patrons. ... Keywords: Big data, Coalition loyalty program, Dimension reduction, OKCashbag

Moo Yeob Lee; Ann Sung Lee; So Young Sohn

2013-04-01T23:59:59.000Z

214

Result of recent weatherization retrofit projects  

Science Conference Proceedings (OSTI)

Pacific Gas and Electric (PG and E) and the Bonneville Power Administration (BPA) have conducted studies in their respective service areas in order to evaluate the cost-effectiveness of certain conservation retrofits. Twenty houses in Walnut Creek, California, underwent an infiltration reduction program, similar to house doctoring. Ten of these houses also received additional contractor-installed measures. BPA retrofitted 18 houses at its Midway substation in central Washington. Retrofits made to the houses included: attic and crawlspace insulation, foundation sill caulking, storm windows and doors, increased attic ventilation, and infiltration reduction. Energy consumption and weather data were monitored before and after each set of retrofits in both projects. Leakage measurements were made by researchers from the Energy Efficient Buildings Program using blower door fan pressurization, thereby allowing calculation of heating season infiltration rates. An energy use model correlating energy consumption with outside temperature was developed in order to determine improvements to the thermal conductance of the building envelope as a result of the retrofits. Energy savings were calculated based on the results of the energy use model. As a check on these findings, the Computerized Instrumented Residential Audit (CIRA) load calculation program developed at Lawrence Berkeley Laboratory provided a theoretical estimate of the savings resulting from the retrofits. At Midway, storm windows and doors were found to save the most energy. Because the Midway houses were not very leaky at the beginning of the experiment, the infiltration reduction procedures were less effective than expected. In the Walnut Creek project, the infiltration reduction procedures did decrease the leakiness of the test houses, but the effect upon energy savings was not great.

Dickinson, J.B.; Lipschutz, R.D.; O'Regan, B.; Wagner, B.S.

1982-07-01T23:59:59.000Z

215

COMMENTS OF THE DEMAND RESPONSE AND SMART GRID COALITION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 1 COMMENTS OF THE DEMAND RESPONSE AND SMART GRID COALITION Department of Energy Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy July 12, 2010 The Demand Response and Smart Grid Coalition (DRSG) 1 , the trade association for companies that provide products and services in the areas of demand response and smart grid technologies, respectfully submits its comments to the Department of Energy's Request for Information "Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy."

216

Analysis of institutional mechanisms affecting residential and commercial buildings retrofit  

SciTech Connect

Barriers to energy conservation in the residential and commercial sectors influence (1) the willingness of building occupants to modify their energy usage habits, and (2) the willingness of building owners/occupants to upgrade the thermal characteristics of the structures within which they live or work and the appliances which they use. The barriers that influence the willingness of building owners/occupants to modify the thermal efficiency characteristics of building structures and heating/cooling systems are discussed. This focus is further narrowed to include only those barriers that impede modifications to existing buildings, i.e., energy conservation retrofit activity. Eight barriers selected for their suitability for Federal action in the residential and commercial sectors and examined are: fuel pricing policies that in the short term do not provide enough incentive to invest in energy conservation; high finance cost; inability to evaluate contractor performance; inability to evaluate retrofit products; lack of well-integrated or one-stop marketing systems (referred to as lack of delivery systems); lack of precise or customized information; lack of sociological/psychological incentives; and use of the first-cost decision criterion (expanded to include short-term payback criterion for the commercial sector). The impacts of these barriers on energy conservation are separately assessed for the residential and commercial sectors.

1980-09-01T23:59:59.000Z

217

Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Diesel Retrofit Clean Diesel Retrofit and Idle Reduction Grants to someone by E-mail Share Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Facebook Tweet about Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Twitter Bookmark Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Google Bookmark Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Delicious Rank Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on Digg Find More places to share Alternative Fuels Data Center: Clean Diesel Retrofit and Idle Reduction Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

218

Advanced Energy Retrofit Guide Office Buildings  

SciTech Connect

The Advanced Energy Retrofit Guide for Office Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Wang, Weimin; Zhang, Jian; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-27T23:59:59.000Z

219

Advanced Energy Retrofit Guide Retail Buildings  

Science Conference Proceedings (OSTI)

The Advanced Energy Retrofit Guide for Retail Buildings is a component of the Department of Energys Advanced Energy Retrofit Guides for Existing Buildings series. The aim of the guides is to facilitate a rapid escalation in the number of energy efficiency projects in existing buildings and to enhance the quality and depth of those projects. By presenting general project planning guidance as well as financial payback metrics for the most common energy efficiency measures, these guides provide a practical roadmap to effectively planning and implementing performance improvements for existing buildings.

Liu, Guopeng; Liu, Bing; Zhang, Jian; Wang, Weimin; Athalye, Rahul A.; Moser, Dave; Crowe, Eliot; Bengtson, Nick; Effinger, Mark; Webster, Lia; Hatten, Mike

2011-09-19T23:59:59.000Z

220

Retrofiting survivability of military vehicles  

SciTech Connect

In Iraq the terrain was such that vehicles could be distributed horizontally, which reduced the effectiveness of mines. In the mountainous terrain of Pakistan and Afghanistan vehicles are forced to use the few, passable roads, which are dirt and easily seeded with plentiful, cheap, intelligent mines. It is desirable to reduce the losses to such mines, preferably by retrofit means that do not greatly increase weight or cost or reduce maneuverability. V-bottom vehicles - A known approach to reducing vulnerability is the Buffalo, a large vehicle developed by South Africa to address mine warfare. It has large tires, high axles, and a reinforced, v-shaped bottom that deflects the blast from explosions below. It is developed and tested in combat, but is expensive and has reduced off-road mobility. The domestic MRAP has similar cost and mobility issue. The addition of v-shaped blast deflectors to vehicles such as Humvees could act much as the deflector on a Buffalo, but a Humvee is closer to the ground, so the explosive's expansion would be reduced. The deflector would also reduce a Humvee's clearance for rough terrain, and a deflector of adequate thickness to address the blast by itself could further increase cost and reduce mobility. Reactive armor is developed and has proven effective against shaped and explosive charges from side or top attack. It detects their approach, detonates, and defeats them by interfering with jet formation. If the threat was a shaped charge from below, they would be a logical choice. But the bulk of the damage to Humvees appears to be from the blast from high explosive mines for which the colliding shock from reactive armor could increase that from the explosive. Porous materials such as sand can strongly attenuate the kinetic energy and pressure of a strong shock. Figure 1 shows the kinetic energy (KE), momentum (Mu), velocity (u), and mass (M) of a spherically expanding shock as functions of radius for a material with a porosity of 0.5. Over the range from 0.5 to 4.5 cm the shock KE is attenuated by a factor of {approx}70, while its momentum is changed little. The shock and particle velocity falls by a factor of 200 while the mass increases by a factor of 730. In the limit of very porous media u {approx} 1/M, so KE {approx} 1/M, which falls by a factor of {approx}600, while momentum Mu does not change at all. Figure 2 shows the KE, Mu, u, and M for a material with a porosity of 1.05, for which the KE changes little. In the limit of media of very low porosity, u {approx} 1/{radical}M, so KE is constant while Mu {approx} {radical}M, which increases by a factor of 15. Thus, if the goal is to reduce the peak pressure from strong explosions below, very porous materials, which strongly reduce pressure but do not increase momentum, are preferred to non-porous materials, which amplify momentum but do not decrease pressure. These predictions are in qualitative accord with the results of experiments at Los Alamos in which projectiles from high velocity, large caliber cannons were stopped by one to two sandbags. The studies were performed primarily to determine the effectiveness of sand in stopping fragments of various sizes, but could be extended to study sand's effectiveness in attenuating blast pressure. It would also be useful to test the above predictions on the effectiveness of media with higher porosity. Water barriers have been discussed but not deployed in previous retrofit survivability studies for overseas embassies. They would detect the flash from the mine detonation below, trigger a thin layer of explosive above a layer of water, and drive water droplets into the approaching blast wave. The blast loses energy in evaporating the droplets and loses momentum in slowing them. Under favorable conditions that could attenuate the pressure in the blast enough to prevent the penetration or disruption of the vehicle. However, such barriers would depend on prompt and reliable detonation detection and water droplet dispersal, which have not been tested. There is a large literature on the theoretical effec

Canavan, Gregory H [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

NREL Job Task Analysis: Retrofit Installer Technician (Revised)  

SciTech Connect

A summary of job task analyses for the position of retrofit installer technician when conducting weatherization work on a residence.

Kurnik, C.; Woodley, C.

2012-04-01T23:59:59.000Z

222

Industrial HVAC Air-to-Air Energy Recovery Retrofit Economics  

E-Print Network (OSTI)

Retrofitting air-to-air energy recovery equipment is relatively simply to design and easy to install. Additionally, HVAC energy recovery is almost risk free when compared to process retrofit. Life cycle cost analysis is the best way to illustrate the economic attractiveness of retrofitting HVAC industrial energy recovery equipment.

Graham, E. L.

1980-01-01T23:59:59.000Z

223

Frequency Monitoring and Simulation Analysis for Historical Structures Being Retrofitted  

Science Conference Proceedings (OSTI)

Many historical structures now need to be retrofitted to meet the requirements of fast developing cities. To ensure the safety of a historical masonry building during its retrofitting, natural frequency of the structure was measured through ambient vibrating ... Keywords: Historical masonry building, Retrofit, Monitoring, Simulation

Chao Wang, Bin Peng, Peng Wang

2013-01-01T23:59:59.000Z

224

A Research Program for Promising Retrofit Technologies  

E-Print Network (OSTI)

-fired power plants. A coal plant flue gas is more difficult to handle because of the pollutants it contains-fitting of Coal-Fired Power Plants for Carbon Capture Howard Herzog March 23, 2009 #12;1. Background. It is a difficult enough task on new coal-fired plants, but even a greater challenge for retro-fitting existing

225

Greenbuilt Retrofit Test House Final Report  

SciTech Connect

The Greenbuilt house, is an all-electric, 1980's era home in the eastern Sacramento suburb of Fair Oaks that was retrofit by Greenbuilt Construction as part of Sacramento Municipal Utility District's (SMUD) Energy Efficient Remodel Demonstration (EERD) Program. The project was a joint effort between the design-build team at Greenbuilt Construction, led by Jim Bayless, SMUD and their project manager Mike Keesee, and the National Renewable Energy Laboratory (NREL). The goal of the Energy Efficient Remodel Demonstration program is to work with local builders to renovate homes with cost-effective energy efficient retrofit measures. The homes remodeled under the EERD program are intended to showcase energy efficient retrofit options for homeowners and other builders. The Greenbuilt house is one of five EERD projects that NREL has supported. NREL's main role in these projects is to provide energy analysis and to monitor the home's performance after the retrofit to verify that the energy consumption is in line with the modeling predictions. NREL also performed detailed monitoring on the more innovative equipment included in these remodels, such as an add-on heat pump water heater.

Sparn, B.; Hudon, K.; Earle, L.; Booten, C.; Tabares-Velasco, P. C.; Barker, G.; Hancock, C. E.

2012-10-01T23:59:59.000Z

226

National Grid Deep Energy Retrofit Pilot  

Science Conference Proceedings (OSTI)

Through discussion of five case studies (test homes), this project evaluates strategies to elevate the performance of existing homes to a level commensurate with best-in-class implementation of high-performance new construction homes. The test homes featured in this research activity participated in Deep Energy Retrofit (DER) Pilot Program sponsored by the electric and gas utility National Grid in Massachusetts and Rhode Island. Building enclosure retrofit strategies are evaluated for impact on durability and indoor air quality in addition to energy performance. Evaluation of strategies is structured around the critical control functions of water, airflow, vapor flow, and thermal control. The aim of the research project is to develop guidance that could serve as a foundation for wider adoption of high performance, 'deep' retrofit work. The project will identify risk factors endemic to advanced retrofit in the context of the general building type, configuration and vintage encountered in the National Grid DER Pilot. Results for the test homes are based on observation and performance testing of recently completed projects. Additional observation would be needed to fully gauge long-term energy performance, durability, and occupant comfort.

Neuhauser, K.

2012-03-01T23:59:59.000Z

227

Puget Sound Clean Cities Coalition | Open Energy Information  

Open Energy Info (EERE)

Coalition Coalition Jump to: navigation, search Logo: Puget Sound Clean Cities Coalition Name Puget Sound Clean Cities Coalition Address 1904 Third Avenue Place Seattle, Washington Zip 98101 Region Pacific Northwest Area Website http://www.pugetsoundcleanciti Notes Public/private partnership that works to advance environmental and public health, energy security and economic development Coordinates 47.6117208°, -122.3396565° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":47.6117208,"lon":-122.3396565,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

228

Distributed Coalition Formation Games for Secure Wireless Transmission  

Science Conference Proceedings (OSTI)

Cooperation among wireless nodes has been recently proposed for improving the physical layer (PHY) security of wireless transmission in the presence of multiple eavesdroppers. While existing PHY security literature answered the question "what are the ... Keywords: coalitional games, game theory, physical layer security, secure communication

Walid Saad; Zhu Han; Tamer Ba?ar; Mrouane Debbah; Are Hjrungnes

2011-04-01T23:59:59.000Z

229

Consumers' Search Cost and Emerging Structure of Web Sites Coalitions  

E-Print Network (OSTI)

as the impact of the model's assumptions in terms of heterogeneity of the agents, rationality and search process it enters the market and this search cost decreases linearly with its age reaching the value of ci endConsumers' Search Cost and Emerging Structure of Web Sites Coalitions: a Multi-agent Based

Paris-Sud XI, Université de

230

Homeowner Best Practices Guide for Residential Retrofits  

SciTech Connect

This best practices guide for HV AC system retrofits is aimed at homeowners who want guidance on upgrading their heating, cooling and ventilation (HVAC) systems and integrating these upgrades with other changes to their home. It has been developed around the idea of having packages of changes to the building HV AC system and building envelope that are climate and house construction dependent. These packages include materials procedures and equipment, and are designed to remove some of the guesswork when selecting a builder, contractor, or installer. The packages are not meant to be taken as rigid requirements - instead they are systems engineered guidelines that form the basis for energy efficient retrofits. Similar approaches have been taken previously for new construction, where a systems engineering approach has been used to develop extremely energy-efficient homes that are comfortable safe and durable, and often cost less than standard construction. This approach is best epitomized by the Building America program, whose partners have built thousands of residences throughout the U.S. using these principles. The differences between retrofitting and new construction tend to limit the changes one can make to a building, so these packages rely on relatively simple and non-intrusive technologies and techniques. The retrofits also focus on changes to a building that will give many years of service to the occupants. Another key aspect of these best practices is that we need to know how a house is working so that we know what parts have the potential for improvement. To do this we have put together a set of simple tests that a homeowner can perform on their own together with checklists and questionnaires. The measured test results, observations and homeowner answers to questions are used to direct us towards the best retrofits applicable to each individual house. The retrofits will depend on the current condition of the building envelope and HV AC system, the local climate, the construction methods used for the house, and the presence of existing energy saving systems and/or materials. This is just like a doctor referring a patient for blood tests or x-rays before actually performing surgery. This way the doctor can be sure that he does the right thing. To take this analogy further - we can borrow from the medical profession and say that the first thought when retrofitting a house is to do no harm, i.e., do not make changes that could make the house worse to live in.

Walker, Iain S.

2005-09-01T23:59:59.000Z

231

RECIPIENT:Chesterfield County PROJECT TITLE: EECBG Lighting Retrofit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chesterfield County Chesterfield County PROJECT TITLE: EECBG Lighting Retrofit Page 1 of2 STATE: VA Funding Opportunity Announcement Number Procurement Instrument Number NEPA Control Number CID Number DE-FOA-0000013 DE-EE0000874 GFO-0000874-001 0 Based 011 my review of the information concerning the proposed action, as NEPA Compliance Officer (authorized under DOE Order 451.1A), I have made the following determination: CX, EA, EIS APPENDIX AND NUMBER: Description: A9 Information gathering (including, but not limited to, literature surveys, inventories, audits), data analysis (including computer modeling), document preparation (such as conceptual design or feasibility studies, analytical energy supply and demand studies), and dissemination (including, but not limited to, document mailings, publication, and distribution;

232

Clean Cities: Land of Sky Clean Vehicles coalition (Western North Carolina)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Land of Sky Clean Vehicles Coalition (Western North Carolina) Land of Sky Clean Vehicles Coalition (Western North Carolina) The Land of Sky Clean Vehicles coalition (Western North Carolina) works with vehicle fleets, fuel providers, community leaders, and other stakeholders to reduce petroleum use in transportation. Land of Sky Clean Vehicles coalition (Western North Carolina) Contact Information Bill Eaker 828-251-6622 x142 bill@landofsky.org Coalition Website Clean Cities Coordinator Bill Eaker Photo of Bill Eaker Bill Eaker established the Land of Sky Clean Vehicles Coalition, serving the Western North Carolina region, in 2004 and has served as the coalition's coordinator since then. Eaker has over 31 years of experience in environmental, land use, and growth management planning at the local, regional, and state scales. He has worked at Land of Sky Regional Council

233

Puget Sound Energy - Commercial Retrofit Energy Efficiency Grant Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Puget Sound Energy - Commercial Retrofit Energy Efficiency Grant Puget Sound Energy - Commercial Retrofit Energy Efficiency Grant Program Puget Sound Energy - Commercial Retrofit Energy Efficiency Grant Program < Back Eligibility Commercial Fed. Government Industrial Local Government Nonprofit State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Other Heat Pumps Appliances & Electronics Commercial Lighting Lighting Program Info State District of Columbia Program Type Utility Grant Program Rebate Amount Up to 70% of installed cost of qualifying retrofit projects or up to 50% of qualifying lighting upgrades. Provider Puget Sound Energy PSE can provide a custom retrofit grant for any energy-efficiency project

234

Solid-State Lighting: Retrofit Financial Analysis Tool  

NLE Websites -- All DOE Office Websites (Extended Search)

Market-Based Programs Printable Version Share this resource Send a link to Solid-State Lighting: Retrofit Financial Analysis Tool to someone by E-mail Share Solid-State Lighting: Retrofit Financial Analysis Tool on Facebook Tweet about Solid-State Lighting: Retrofit Financial Analysis Tool on Twitter Bookmark Solid-State Lighting: Retrofit Financial Analysis Tool on Google Bookmark Solid-State Lighting: Retrofit Financial Analysis Tool on Delicious Rank Solid-State Lighting: Retrofit Financial Analysis Tool on Digg Find More places to share Solid-State Lighting: Retrofit Financial Analysis Tool on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations Municipal Consortium About the Consortium FAQs

235

Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Diesel Vehicle Diesel Vehicle Retrofit and Improvement Grants to someone by E-mail Share Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Facebook Tweet about Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Twitter Bookmark Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Google Bookmark Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Delicious Rank Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on Digg Find More places to share Alternative Fuels Data Center: Diesel Vehicle Retrofit and Improvement Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

236

Retrofit Energy Savings Estimation Model | Open Energy Information  

Open Energy Info (EERE)

Retrofit Energy Savings Estimation Model Retrofit Energy Savings Estimation Model Jump to: navigation, search Tool Summary Name: Retrofit Energy Savings Estimation Model Agency/Company /Organization: Lawrence Berkeley National Laboratory Sector: Energy Focus Area: Buildings Topics: Resource assessment Resource Type: Software/modeling tools User Interface: Desktop Application Website: btech.lbl.gov/tools/resem/resem.htm Cost: Free Language: English References: Retrofit Energy Savings Estimation Model[1] Logo: Retrofit Energy Savings Estimation Model RESEM, the Retrofit Energy Savings Estimation Model, is a PC-based tool designed to allow Department of Energy (DOE) Institutional Conservation Program (ICP) staff and participants to reliably determine the energy savings directly caused by ICP-supported retrofit measures implemented in a

237

Monitoring conservative retrofits in single family buildings. Final technical report  

SciTech Connect

This study has provided detailed before-and-after information on the ambient and comfort conditions in nine single family buildings, and on the energy consumption of those buildings, for one or more energy conservation retrofits. The data were recorded in such a manner that as well as being able to determine the savings from the retrofits and the influence these retrofits have on the comfort conditions of the residence, the effects of the retrofits on time-of-day usage are also determinable. The following are included in appendices: a table of participant`s names, site addresses and retrofit; significant dates and appropriate comments; a day of data and an annotated data set; pre-retrofit and post-retrofit audit data sheets; and usage history.

Richardson, C.S.

1992-12-06T23:59:59.000Z

238

Bayesian Analysis of Savings from Retrofit Projects  

SciTech Connect

Estimates of savings from retrofit projects depend on statistical models, but because of the complicated analysis required to determine the uncertainty of the estimates, savings uncertainty is not often considered. Numerous simplified methods have been proposed to determine savings uncertainty, but in all but the simplest cases, these methods provide approximate results only. The objective of this paper is to show that Bayesian inference provides a consistent framework for estimating savings and savings uncertainty in retrofit projects. We review the mathematical background of Bayesian inference and Bayesian regression, and present two examples of estimating savings and savings uncertainty in retrofit projects. The first is a simple case where both baseline and post-retrofit monthly natural gas use can be modeled as a linear function of monthly heating degree days. The Efficiency Valuation Organization (EVO 2007) defines two methods of determining savings in such cases: reporting period savings, which is an estimate of the savings during the post-retrofit period; and normalized savings, which is an estimate of the savings that would be obtained during a typical year at the project site. For reporting period savings, classical statistical analysis provides exact analytic results for both savings and savings uncertainty in this case. We use Bayesian analysis to calculate reporting period savings and savings uncertainty and show that the results are identical to the analytical results. For normalized savings, the literature contains no exact expression for the uncertainty of normalized savings; we use Bayesian inference to calculate this quantity for the first time, and compare it with the result of an approximate formula that has been proposed. The second example concerns a problem where the baseline data exhibit nonlinearity and serial autocorrelation, both of which are common in real-world retrofit projects. No analytical solutions exist to determine savings or savings uncertainty in this situation, but several simplified formulas have been proposed. We model the data using a 5-parameter model with first-order autoregressive errors, and use Bayesian inference to develop distributions for the model parameters and for the reporting period savings, which allows us to determine the savings uncertainty. We find the energy savings to be about 5% lower than the result obtained by ignoring the autocorrelation. In addition, the Bayesian analysis finds the savings uncertainty to be narrower than the approximate uncertainty calculated using the simplified formula. These results show that Bayesian inference can be used to determine savings and savings uncertainty for a wide variety of real-world problems.

Im, Piljae [ORNL

2012-01-01T23:59:59.000Z

239

Application of Pinch Technology in Refinery Retrofits  

E-Print Network (OSTI)

This paper reviews the application of pinch technology in the identification of the most attractive retrofit prospects in typical refineries. In the first part of the paper, methodology is described to identify attractive inter-unit heat integration opportunities as well as attractive process-utility system integration (co-generation). An example of an atmospheric pipestill-alkylation unit integration evaluation is given using both composite stream and Grand composite stream methods. In the second part of the paper, the application of pinch technology in a typical intra-unit heat integration problem is given. It is explained how inefficiencies in an APS crude preheat train are identified, and a typical small retrofit project is described.

Thomas, W. R.; Siegell, J. H.; Sideropoulos, T.; Robertson, J. L.; Papoulias, S. A.

1987-09-01T23:59:59.000Z

240

Comparison of Home Retrofit Programs in Wisconsin  

SciTech Connect

To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patterns of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results -- program cost and energy savings -- to help understand the overall strengths and weaknesses or challenges of each model.

Cunningham, K.; Hannigan, E.

2013-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Comparison of Home Retrofit Programs in Wisconsin  

SciTech Connect

To explore ways to reduce customer barriers and increase home retrofit completions, several different existing home retrofit models have been implemented in the state of Wisconsin. This study compared these programs' performance in terms of savings per home and program cost per home to assess the relative cost-effectiveness of each program design. However, given the many variations in these different programs, it is difficult to establish a fair comparison based on only a small number of metrics. Therefore, the overall purpose of the study is to document these programs' performance in a case study approach to look at general patterns of these metrics and other variables within the context of each program. This information can be used by energy efficiency program administrators and implementers to inform home retrofit program design. Six different program designs offered in Wisconsin for single-family energy efficiency improvements were included in the study. For each program, the research team provided information about the programs' approach and goals, characteristics, achievements and performance. The program models were then compared with performance results -- program cost and energy savings -- to help understand the overall strengths and weaknesses or challenges of each model.

Cunningham, K.; Hannigan, E.

2013-03-01T23:59:59.000Z

242

Experience with 113 Retrofit Insulation Surveys  

E-Print Network (OSTI)

We have surveyed 113 plants for thirteen clients. The results of 21 recent surveys at today's average fuel price, show an average project scope generation of $151,000 while saving about 5MMBTU/hour with a 72% DCF rate of return. The size of the retrofit project generated, or scope, is of course sensitive to the fuel price. This is an important consideration because of the variability of fuel price. A study of the effect of fuel price on project scope generation and on return has been made using sophisticated computer programs designed for this purpose. These results indicate that scope generation may vary from $50,000 for $3.00 fuel up to $80,000 for $6.00 fuel. When this happens, the project return will increase from 100% up to 165% per year. The main problem that we have found with retrofit insulation surveys is the processing of detail in existing plants. The solution is the preparation or selection of the right system for approaching the problem utilizing computer programs. The time required to generate systematic approaches to insulation surveys and the generation of retrofit projects are sizable. The continued heat losses while studying the project are also significant. Thus, the heat losses suffered while deciding how to insulate can be sufficient to pay for an insulation survey.

Webber, W. O.

1985-05-01T23:59:59.000Z

243

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

244

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cities Coalitions Charge Up Plug-In Electric Vehicles Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

245

Building Technologies Office: Renovate and Retrofit Commercial Buildings  

NLE Websites -- All DOE Office Websites (Extended Search)

Renovate and Retrofit Commercial Buildings for Energy Efficiency Renovate and Retrofit Commercial Buildings for Energy Efficiency Photo of the Denver skyline with Wells Fargo Center building in the center of the image and the Rocky Mountains in the background. A local law firm upgraded one floor of their offices in the Wells Fargo Center (center) in Denver as part of Commercial Building Partnerships. Renovation, retrofit and refurbishment of existing buildings represent an opportunity to upgrade the energy performance of commercial building assets for their ongoing life. Often retrofit involves modifications to existing commercial buildings that may improve energy efficiency or decrease energy demand. In addition, retrofits are often used as opportune time to install distributed generation to a building. Energy efficiency retrofits can reduce the operational costs, particularly in older buildings, as well as help to attract tenants and gain a market edge.

246

Residential Retrofits in the Southeast: A Performance Update  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Retrofits in Residential Retrofits in the Southeast: A Performance Update Roderick K. Jackson Ph.D Oak Ridge National Laboratory for Building America Stakeholder Meeting 3/1/2012 2 Managed by UT-Battelle for the U.S. Department of Energy Project Goals 1. Can we retrofit existing homes to achieve energy savings of more than 30% 2. Can we cost effectively retrofit existing homes to achieve energy savings of more than 30% 3. Will homeowners pay for retrofits that achieve energy savings of more than 30% 4. Will reality (i.e. utility bills) match the projected energy savings * In the event any of the answers to questions 1-4 is NO, what are obstacles to YES 3 Managed by UT-Battelle for the U.S. Department of Energy Project Overview Nine homes received retrofits with projected source energy

247

Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) | Open  

Open Energy Info (EERE)

Media, Inc. (Du Pont) (Building America Retrofit Alliance) Media, Inc. (Du Pont) (Building America Retrofit Alliance) Jump to: navigation, search Name Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) Place Wilmington, DE Website http://www.prweb.com/releases/ References Building America Retrofit Alliance Press Release[1] BMI Website[2] DuPont Website[3] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Incubator Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! Building Media, Inc. (Du Pont) (Building America Retrofit Alliance) is a company located in Wilmington, DE. References ↑ "Building America Retrofit Alliance Press Release" ↑ "BMI Website"

248

Salt Lake Clean Cities Coalition: Outstanding coalition director: Beverly Miller (Clean Cities alternative fuel information series fact sheet)  

DOE Green Energy (OSTI)

The Salt Lake metropolitan area faces some interesting economic and environmental challenges. It ranks eighth in the nation in population growth, so managing its increasing numbers without spoiling the beauty of its high mountain valley may seem to be a contradiction in goals. In addition, the 2002 Winter Olympics will attract almost 2 million visitors during February, when Salt Lake's unusual topography encourages its highest levels of air pollution. The Clean Cities Coalition is working with the Salt Lake Olympic Organizing Committee to find clean vehicles to transport visitors to and from the various Olympic venues. A major goal of the Coalition is to keep as many AFVs as possible in Utah after the Olympics.

Woodward, S.

2000-04-26T23:59:59.000Z

249

Effective method for MHD retrofit of power plants  

DOE Green Energy (OSTI)

Retrofitting existing power plants with an open-cycle MHD system has been re-examined in light of recent developments in the heat and seed recovery technology area. A new retrofit cycle configuration has been developed which provides for a direct gas-gas coupling; also, the MHD topping cycle can be decoupled from the existing plant for either separate or joint operation. As an example, the MHD retrofit concept has been applied to Illinois Power Company's Vermilion Station No. 1, a coal-fired power plant presently in operation. Substantial increases in efficiency have been demonstrated and the economic validity of the MHD retrofit approach has been established.

Berry, G.F.; Dennis, C.B.; Johnson, T.R.; Minkov, V.

1981-10-01T23:59:59.000Z

250

Cedarville School District Retrofit of Heating and Cooling Systems...  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on...

251

City of Los Angeles - Green Building Retrofit Requirement | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Green Building Retrofit Requirement Green Building Retrofit Requirement City of Los Angeles - Green Building Retrofit Requirement < Back Eligibility Local Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Manufacturing Buying & Making Electricity Solar Water Heating Program Info State California Program Type Energy Standards for Public Buildings Provider Los Angeles Department of Water and Power In April 2009, Los Angeles enacted [clkrep.lacity.org/onlinedocs/2006/06-1963_ord_180633.pdf Ordinance 180636], known as the Green Building Retrofit Ordinance. This ordinance was later amended by Ordinance 182259. The law requires all city-owned

252

CPS Energy - Small Business Lighting Retrofit Program (Texas...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon CPS Energy - Small Business Lighting Retrofit Program (Texas) This is the approved revision of this page, as well as being...

253

SEF of Central Eastern Pennsylvania Small Business Lighting Retrofit...  

Open Energy Info (EERE)

Facebook icon Twitter icon SEF of Central Eastern Pennsylvania Small Business Lighting Retrofit (PPL Territory) (Pennsylvania) This is the approved revision of this page,...

254

Columbia River PUD - Commercial Lighting Retrofit Program (Oregon...  

Open Energy Info (EERE)

Share this page on Facebook icon Twitter icon Columbia River PUD - Commercial Lighting Retrofit Program (Oregon) This is the approved revision of this page, as well as...

255

Business Case for Energy Efficient Building Retrofit and Renovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SmartMarket Report Produced with support from Energy Efficient Business Case for Energy Efficient Building Retrofit and Renovation Funding provided by U.S. Department of Energy...

256

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy...  

NLE Websites -- All DOE Office Websites (Extended Search)

BUILDING TECHNOLOGIES PROGRAM Advanced Energy Retrofit Guide Practical Ways to Improve Energy Performance Grocery Stores In collaboration with: Prepared by: National Renewable...

257

Residential photovoltaic worth : an assessment of retrofit vs. new construction  

E-Print Network (OSTI)

This paper characterizes the basic differences between photovoltaic retrofit and new construction applications. It quantifies the tradeoffs forced by rooftop area constraints, special array mounting costs, maintenance ...

Dinwoodie, Thomas L.

1982-01-01T23:59:59.000Z

258

Retrofit of Existing Residential Building: a Case Study  

E-Print Network (OSTI)

There are about 42 billion square meters of existing buildings in China. The energy efficiency of existing buildings directly relates to the energy consumption of the building sector. The retrofit of existing residential building began in the 1990s in Heilongjiang. The Sino-Canada demonstration project and Sino-France demonstration project of retrofitting existing residential buildings were carried out in 1997 and 2004, respectively. The retrofit method and energy conservation potential of the envelope and heating system of northern existing buildings are analyzed in this paper, combining the experiences of retrofitting existing residential buildings in Heilongjiang. The software was compiled to aid the design of the envelope retrofit in Heilongjiang and to analyze the working situation in existing residential building heating systems. The imbalance of the indoor temperature and the quantity of heating loss from opening the window in different retrofit projects are presented. The emphasis on energy efficiency retrofit of the envelope of existing residential buildings should be placed on the wall in northern region. It is possible to reduce about 50 percent of energy consumption of buildings by insulating the wall. The external insulation is suitable for retrofitting existing buildings, and the moisture transfer should be considered at the same time. To insure actual reduction in energy consumption, the heating system should be retrofitted when the envelope is insulated.

Zhao, L.; Xu, W.; Li, L.; Gao, G.

2006-01-01T23:59:59.000Z

259

Deep Energy Retrofits-Eleven California Case Studies Brennan...  

NLE Websites -- All DOE Office Websites (Extended Search)

Deep Energy Retrofits-Eleven California Case Studies Brennan Less, Jeremy Fisher and Iain Walker Environmental Energy Technologies Division October 2012 LBNL-6166E Disclaimer This...

260

NETL: CCPI - TOXECON Retrofit for Mercury and Multi-Pollutant...  

NLE Websites -- All DOE Office Websites (Extended Search)

2004) Environmental Reports TOXECON Retrofit for Mercury and Multi-Pollutant Control, Environmental Assessment PDF-847KB (Sept 2003) PAPERS AND PRESENTATIONS Concrete...

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Microsoft Word - CCS_PC_retrofit_r10.docx  

NLE Websites -- All DOE Office Websites (Extended Search)

OF THE COSTS OF RETROFITTING WITH CO 2 CAPTURE TECHNOLOGY DOENETL-402102309 January 4, 2011 NETL Contact: Christopher Nichols Office of Strategic Energy Analysis and Planning...

262

Comments of the Demand Response and Smart Grid Coalition on DOE...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy...

263

RETROFIT RAMP-UP SELECTED PROJECTS* Austin, Texas ($10 Million): The Austin Climate Protection Retrofit Program will accelerate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

RETROFIT RAMP-UP SELECTED PROJECTS* RETROFIT RAMP-UP SELECTED PROJECTS* Austin, Texas ($10 Million): The Austin Climate Protection Retrofit Program will accelerate energy and water efficiency and integrated renewable energy improvements in private and commercial properties in the City of Austin and Austin Energy's service territory. The project will focus on alternative financing options for property owners, including new financing mechanisms, interest rate buy downs, and on-bill repayment. Boulder County, Colorado ($25 Million): Boulder County is partnering with the city of Denver, Garfield County, the Governor's Energy Office, Xcel Energy and others to launch the Colorado Retrofit Ramp-Up Program that will stimulate economic growth and investment in

264

Retrofits for Improved Heat Rate and Availability: Circulating Water Heat Recovery Retrofits  

Science Conference Proceedings (OSTI)

Circulating water heat recovery is a means of directly increasing the thermal efficiency of a power plant. If only fuel savings are considered, the economic benefit is often only marginal. However, when increased megawatt output and heat-rate improvements are included in the economic analysis, such retrofits can be attractive, with break-even fuel costs sometimes approaching $1/million Btu.

1990-11-20T23:59:59.000Z

265

Energy Efficient Retrofits and Green Building Practices  

E-Print Network (OSTI)

According to the recent survey more and more concern being expressed throughout the Middle East regions that the power generation companies are suffering with shortage of power during the peek hours and consequently unable to meet the power demand. Moreover, the increase in demand is also causing rise in pollution levels. Therefore, the subject of energy efficient retrofits and green building practices is becoming increasingly important. Based on the latest walkthrough energy audit it is proven that 65% of electricity is consumed by Air Conditioning System resulting average energy consumption by 250kWh/year/sqmeter of a residential complex.

Rahman, M.

2010-01-01T23:59:59.000Z

266

Measure Guideline: Hybrid Foundation Insulation Retrofits  

Science Conference Proceedings (OSTI)

This measure guideline provides recommendations for designs and variations for retrofit hybrid assemblies in improving interior foundation insulation and water management of basements. Variations include closed cell spray foam (ccSPF) with membrane waterproofing or air gap membrane drainage layers, rigid board foam insulation at flat walls (cast concrete or CMU block), a 'partial drainage' detail making use of the bulk water drainage that occurs through the field of a rubble stone wall, and non-drained spray foam assemblies (including slab insulation).

Ueno, K.; Lstiburek, J.

2012-05-01T23:59:59.000Z

267

Closing Gaps in Modeling Multifamily Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Building America Technical Update Meeting Denver, Colorado April 30, 2013 Jordan Dentz, The Levy Partnership., Inc. Closing Gaps in Modeling Multifamily Retrofits Advanced Residential Integrated Energy Solutions Overview * Multifamily modeling inputs (BA House Simulation Protocols) * Important multifamily measures * Other MF gaps Vital to meet 50% goals and therefore important to include in Building America's multifamily modeling capabilities Model Inputs * Heating set point * Cooling set point * Behavior assumptions 3 Heating Set Point - Central Systems * House simulation protocol assumes 71°F * Overheating is common * Approach: adjust modeled heating set point - how much? * Average heating season indoor temperature was 76°F in a sample of 18 buildings (ARIES 2013a)

268

Home Energy Article: A Systems Approach to Retrofitting Residential HVAC Systems  

E-Print Network (OSTI)

to Retrofitting a Residential HVAC System, Lawrence Berkeleyducts. New downsized ducts and HVAC equipment. The ducts areto Retrofitting Residential HVAC Systems J.A. McWilliams and

McWilliams, Jennifer A.; Walker, Iain S.

2005-01-01T23:59:59.000Z

269

Retrofitting analysis of integrated bio-refineries  

E-Print Network (OSTI)

A bio-refinery is a processing facility that produces liquid transportation fuels and/or value-added chemicals and other products. Because of the dwindling resources and escalating prices of fossil fuels, there are emerging situations in which the economic performance of fossil-based facilities can be enhanced by retrofitting and incorporation of bio-mass feedstocks. These systems can be regarded as bio-refineries or integrated fossilbio- refineries. This work presents a retrofitting analysis to integrated bio-refineries. Focus is given to the problem of process modification to an existing plant by considering capacity expansion and material substitution with biomass feedstocks. Process integration studies were conducted to determine cost-effective strategies for enhancing production and for incorporating biomass into the process. Energy and mass integration approaches were used to induce synergism and to reduce cost by exchanging heat, material utilities, and by sharing equipment. Cost-benefit analysis was used to guide the decision-making process and to compare various production routes. Ethanol production from two routes was used as a case study to illustrate the applicability of the proposed approach and the results were bio-refinery has become more attractive then fossil-refinery.

Cormier, Benjamin R.

2005-12-01T23:59:59.000Z

270

Clean Cities Award Winning Coalition: Salt Lake City  

DOE Green Energy (OSTI)

Since its designation as a national Clean City in 1994, Salt Lake Clean Cities has put more than 2,600 alternative fuel vehicles (AFVs) on community streets. The 82 business, nonprofit, and government agencies that comprise the coalition are all dedicated to cleaning the air by reducing vehicle exhaust. Salt Lake Clean Cities has the third largest compressed natural gas and propane-refueling infrastructure in the country, with 98 locations available. They sponsor an annual ''Spring Soiree'' to increase public awareness about the program and educate the public about the benefits of alternative fuel and AFVs.

ICF Kaiser

1999-05-20T23:59:59.000Z

271

NYSEG (Electric) - Small Business Lighting Retrofit Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NYSEG (Electric) - Small Business Lighting Retrofit Program NYSEG (Electric) - Small Business Lighting Retrofit Program NYSEG (Electric) - Small Business Lighting Retrofit Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source System Benefits Charge State New York Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Lighting Retrofit: 70% of cost Provider RG&E and NYSEG NYSEG offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy assessment and then receive a 70% discount on the installed cost of recommended lighting measures. Eligible lighting measures include the retrofitting of fluorescent fixtures,

272

Tillamook County PUD - Dairy Lighting Retrofit Rebate Program | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Tillamook County PUD - Dairy Lighting Retrofit Rebate Program Tillamook County PUD - Dairy Lighting Retrofit Rebate Program Tillamook County PUD - Dairy Lighting Retrofit Rebate Program < Back Eligibility Agricultural Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info State Oregon Program Type Utility Rebate Program Provider Tillamook County PUD Tillamook PUD offers the Dairy Lighting Retrofit Program for its agricultural members to save energy on lighting in eligible barns/facilities. Tillamook PUD completes a lighting audit of the facility to calculate the energy savings and rebate amount. Incentives are provided for the replacement of existing mercury vapor, incandescent, and T12 fluorescent fixtures with new ORION AG9000 3-lamp T8 fluorescent fixtures. This rebate is available for retrofits only, new construction is not

273

Retrofit Ramp-Up Selected Projects* | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Ramp-Up Selected Projects* Retrofit Ramp-Up Selected Projects* Retrofit Ramp-Up Selected Projects* Brief descriptions of retrofit ramp projects throughout the nation including: Austin, Texas; Boulder County, Colorado;Camden, New Jersey;Chicago;Cincinnati,Ohio;Greensboro, North Carolina;Indianapolis, Indiana;Kansas City, Missouri;Los Angeles County, California;Lowell, Massachusetts;State of Maine;State of Maryland;State of Michigan;State of Missouri;Omaha, Nebraska;State of New Hampshire;New York State Research and Development Authority;Philadelphia, Pennsylvania;Phoenix, Arizona;Portland, Oregon;San Antonio, Texas;Seattle, Washington;Southeast Energy Efficiency Alliance;Toledo-Lucas County Port Authority, Ohio;Wisconsin Energy Conservation Corporation Retrofit Ramp-Up Selected Projects*

274

DEEP RESIDENTIAL RETROFITS - USING LESS AND LIVING BETTER  

NLE Websites -- All DOE Office Websites (Extended Search)

DEEP RESIDENTIAL RETROFITS - USING LESS AND LIVING BETTER DEEP RESIDENTIAL RETROFITS - USING LESS AND LIVING BETTER Speaker(s): Iain Walker Date: December 11, 2009 - 12:00pm Location: 90-3122 (This is a repeat of the Nov. 18 ME EET Seminar on campus) There are currently thousands of federal, state and utility programs starting up throughout he nation to retrofit existing homes. Most of these programs have moderate savings goals on the order of 20%, but to really make an impact and make the nations housing stock sustainable we need savings of 70% or more. This requires fundamental changes in the way we think about retrofits. We need better diagnostics to determine how houses perform - both before and after retrofitting, we need better ways of simulating home performance so we can make better decisions about what to do to a home to

275

Coalition for Rainforest Nations (CfRN) | Open Energy Information  

Open Energy Info (EERE)

(CfRN) (CfRN) Jump to: navigation, search Logo: Coalition for Rainforest Nations Name Coalition for Rainforest Nations Address 370 Lexington Avenue, 26th Floor Place New York, New York Zip 10017 Region Northeast - NY NJ CT PA Area Phone number 646-448-6870 Website http://www.rainforestcoalition Coordinates 40.75077°, -73.9766217° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.75077,"lon":-73.9766217,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

276

Retrofitting the Southeast: The Cool Energy House  

Science Conference Proceedings (OSTI)

The Consortium for Advanced Residential Buildings has provided the technical engineering and building science support for a highly visible demonstration home in connection with the National Association of Home Builders' International Builders Show. The two previous projects, the Las Vegas net-zero ReVISION House and the 2011 VISION and ReVISION Houses in Orlando, met goals for energy efficiency, cost effectiveness, and information dissemination through multiple web-based venues. This project, which was unveiled at the 2012 International Builders Show in Orlando on February 9, is the deep energy retrofit Cool Energy House (CEH). The CEH began as a mid-1990s two-story traditional specification house of about 4,000 ft2 in the upscale Orlando suburb of Windermere.

Zoeller, W.; Shapiro, C.; Vijayakumar, G.; Puttagunta, S.

2013-02-01T23:59:59.000Z

277

A Methodology to Measure Retrofit Energy Savings in Commercial Buildings  

E-Print Network (OSTI)

Measured energy savings promote and sustain energy conservation retrofits by verifying the success of retrofits, determining pay-back schedules, guiding the selection of future retrofits and identifying opportunities for further savings. This dissertation develops a methodology to measure retrofit energy savings and the uncertainty of the savings in commercial buildings. The functional forms of empirical models of cooling and heating energy use in commercial buildings are derived from an engineering analysis of constant-air-volume and variable-air-volume HVAC systems. One, two, three and four parameter, temperature-dependent regression models are proposed to model baseline energy use. Retrofit savings are measured as the difference between the baseline energy use project by the models and the measured post-retrofit energy use. A hybrid ordinary least squares/autoregressive method is developed to determine the uncertainty of the predicated energy use and savings. The annual predictive ability of models based on pre-retrofit data sets of less than a full year is investigated. The energy delivery efficiency is introduced to measure the efficiency of air-side systems at meeting the net building load. A preliminary investigation of the use of artificial neural network models to measure savings is presented. The methodology is demonstrated on case study examples using software specifically developed for the analysis of commercial building energy use.

Kissock, John Kelly

2008-01-16T23:59:59.000Z

278

Public Sector New Construction and Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program Public Sector New Construction and Retrofit Program < Back Eligibility Fed. Government Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Cooling Construction Design & Remodeling Appliances & Electronics Ventilation Heat Pumps Commercial Lighting Lighting Manufacturing Insulation Water Heating Windows, Doors, & Skylights Maximum Rebate Bonus maximum: $100,000 All incentives: $2.50/sq. ft. (base plus bonus), $300,000, 75% of project costs, and 100% of incremental costs Program Info Funding Source Illinois Energy Efficiency Portfolio Standard (EEPS) surcharge for Ameren,

279

NIPSCO - Existing Facility Retrofit Rebate Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NIPSCO - Existing Facility Retrofit Rebate Program NIPSCO - Existing Facility Retrofit Rebate Program NIPSCO - Existing Facility Retrofit Rebate Program < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Tribal Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Home Weatherization Construction Commercial Weatherization Design & Remodeling Manufacturing Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Contact NIPSCO $500,000 per project per year $1,000,000 per applicant per year Program Info Expiration Date 12/31/2013 State Indiana Program Type Utility Rebate Program Rebate Amount Other Projects: $0.09/kWh in electricity reductions Energize Indiana Rebates: Varies widely Provider

280

MassSAVE (Electric) - Residential Retrofit Programs | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Programs Retrofit Programs MassSAVE (Electric) - Residential Retrofit Programs < Back Eligibility Low-Income Residential Multi-Family Residential Residential Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Other Sealing Your Home Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate Weatherization: $2000 Program Info Expiration Date 12/31/2012 State Massachusetts Program Type Utility Rebate Program Rebate Amount Weatherization: 75% Heat Pump Water Heater: $1,000 Income Eligible Customers: free home energy consultation Mulitifamily Incentives: comprehensive energy analysis, lighting upgrades, insulation, air sealing and other energy saving measures.

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Preliminary Screening for Project Feasibility and Applications for Geothermal Heat Pump Retrofit Projects  

Energy.gov (U.S. Department of Energy (DOE))

Fact sheet describes guidance on determining the feasibility of geothermal heat pump retrofit projects.

282

Golden Valley Electric Association - Commercial Lighting Retrofit Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Lighting Retrofit Commercial Lighting Retrofit Rebate Program Golden Valley Electric Association - Commercial Lighting Retrofit Rebate Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Maximum Rebate $20,000 per project Program Info State Alaska Program Type Utility Rebate Program Rebate Amount Up to $1,000/kW or 50% of the project cost Provider Golden Valley Electric Association BusBusiness $ense is a Golden Valley Electric Association (GVEA) program designed to increase the efficiency with which energy is used on GVEA's system. It provides rebates of up to $20,000 to existing facilities receiving the commercial rate who reduce their lighting loads through energy efficient lighting retrofit projects. Facilities on GVEA's

283

Lighting Retrofit Improving Visibility, Saving Energy | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Retrofit Improving Visibility, Saving Energy Lighting Retrofit Improving Visibility, Saving Energy Lighting Retrofit Improving Visibility, Saving Energy August 27, 2010 - 10:05am Addthis New LED lighting fixtures (right) emit a whiter light than existing high-pressure sodium cobra head streetlights (left) and don't spill light onto nearby houses. | Photos courtesy of the City of Muscatine New LED lighting fixtures (right) emit a whiter light than existing high-pressure sodium cobra head streetlights (left) and don't spill light onto nearby houses. | Photos courtesy of the City of Muscatine Kevin Craft In the small Midwestern town of Muscatine, Iowa-known as the "The Pearl Button Capital of the World" for the millions of pearl buttons produced there in the early 1900s-a lighting retrofit project will bring a new

284

Residential Deep Energy Retrofits: Monitoring and Performance of 10  

NLE Websites -- All DOE Office Websites (Extended Search)

Residential Deep Energy Retrofits: Monitoring and Performance of 10 Residential Deep Energy Retrofits: Monitoring and Performance of 10 California Case Study Homes Speaker(s): Brennan Less Jeremy Fisher Date: August 16, 2011 - 12:00pm Location: 90-3075 Deep Energy Retrofits are residential remodeling projects, which attempt to drastically reduce energy usage and environmental impact, as well as increase occupant comfort and improve indoor air quality. With energy reduction targets ranging from 50% to 90%, these projects use similar strategies to those typically deployed in a net-zero energy home. Most Deep Retrofits include insulation upgrades, window replacement, air sealing, HVAC replacement, renewable energy technologies, and new appliances and lighting. No building system or component is overlooked. 10 of these exciting projects are being monitored in California by the Energy

285

Charlotte Green Supply Chain: Residential Retrofitting | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charlotte Green Supply Chain: Residential Retrofitting Charlotte Green Supply Chain: Residential Retrofitting Charlotte Green Supply Chain: Residential Retrofitting July 30, 2010 - 10:50am Addthis Joshua DeLung What does this mean for me? Weatherizing your home could immediately save you 30% on your home energy bills. Charlotte, N.C. resident Ron Martin heard he could save some money by having his home retrofitted, making small - but important - changes to increase energy efficiency. The ideal was intriguing. Martin called local retrofitter Energy Tight in May to come perform an energy audit on his home. The company performed a blower door test and checked his duct work, attic and crawlspace for areas where energy might be leaking out. "They used an infrared camera to show me places in the walls where there

286

Lighting Retrofits Saving Energy, Helping Local Companies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Retrofits Saving Energy, Helping Local Companies Lighting Retrofits Saving Energy, Helping Local Companies Lighting Retrofits Saving Energy, Helping Local Companies August 9, 2010 - 1:00pm Addthis LEDs such as this are expected to save Altoona, Pa. thousands in energy costs. | File photo LEDs such as this are expected to save Altoona, Pa. thousands in energy costs. | File photo It's easy to measure the effects of a lighting retrofit project in a city like Altoona, Pa., where 169 new LED units are expected to save $4,078 in energy costs annually. But there are also other benefits to such energy efficiency initiatives, which can be seen in the local companies that make the projects possible. "The American Recovery and Reinvestment Act has helped our customers make the decision to move forward with energy related projects," says Paul

287

The retrofitting of existing buildings for seismic criteria  

E-Print Network (OSTI)

This thesis describes the process for retrofitting a building for seismic criteria. It explains the need for a new, performance-based design code to provide a range of acceptable building behavior. It then outlines the ...

Besing, Christa, 1978-

2004-01-01T23:59:59.000Z

288

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired...  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal Direct Chemical Looping Retrofit for Pulverized Coal-Fired Power Plants with In-Situ CO 2 Capture Background Pulverized coal (PC)-fired power plants provide nearly 50% of...

289

Applications of sustainable technology to retrofits in urban areas  

E-Print Network (OSTI)

Energy Losses from old buildings comprise a significant percentage of the total residential energy consumption in the United States. Retrofitting buildings for conservation can greatly decrease the present energy demand ...

Taylor, Paki (Paki A.), 1974-

2001-01-01T23:59:59.000Z

290

Financing Energy Efficiency Retrofits in Oakland (A Roundtable...  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Energy Efficiency Retrofits in Oakland (A Roundtable Discussion) Speaker(s): Emily Kirsch Justin Butler Date: July 15, 2008 - 12:00pm Location: 90-3122 Seminar HostPoint...

291

Continuous Commissioning: A Valuable Partner to Retrofit Projects  

E-Print Network (OSTI)

Continuous Commissioning (CC) or HVAC system optimization is not only a valuable stand-alone energy saving measure for commercial buildings, but it is also an important escort solution to retrofit projects. Energy retrofit projects typically achieve projected savings. But in cases where savings goals are not being met, optimizing HVAC system performance can be the difference in an underachieving versus a successful project. This paper presents a real-world study of pairing a CC project with an energy retrofit in a 107,000 square foot hospital building. Applying the CC strategy to an underperforming retrofit, projected energy savings were achieved and even increased. Additionally, by increasing supply air capacity, patients, staff and visitors now enjoy improved comfort conditions. This paper also explores the working relationship between an ESCO and a university research laboratory, whose combined efforts led to this remarkable turn around.

Turner, W. D.; Banks, K.; Athar, A.; Yazdani, B.; Zhu, Y.; Culp, C.

2001-01-01T23:59:59.000Z

292

Street and Parking Facility Lighting Retrofit Financial Analysis Tool Webinar  

Energy.gov (U.S. Department of Energy (DOE))

DOE will present a live webinar titled "Using the Street and Parking Facility Lighting Retrofit Financial Analysis Tool" on Thursday, August 22, from 1:00 p.m. to 2:00 p.m. Eastern Daylight Time....

293

Variable Speed Fan Retrofits for Computer Room Air Conditioners  

NLE Websites -- All DOE Office Websites (Extended Search)

Variable-Speed Fan Retrofits for Computer-Room Air Conditioners Prepared for the U.S. Department of Energy Federal Energy Management Program Technology Case Study Bulletin By...

294

DOE Webinar - Residential Geothermal Heat Pump Retrofits (Presentation)  

DOE Green Energy (OSTI)

This presentation was given December 14, 2010, as part of DOE's Webinar series. The presentation discusses geothermal heat pump retrofits, technology options, and an overview of geothermal energy and geothermal heat pumps.

Anderson, E. R.

2010-12-14T23:59:59.000Z

295

Method for Determining Optimal Residential Energy Efficiency Retrofit Packages  

SciTech Connect

Businesses, government agencies, consumers, policy makers, and utilities currently have limited access to occupant-, building-, and location-specific recommendations for optimal energy retrofit packages, as defined by estimated costs and energy savings. This report describes an analysis method for determining optimal residential energy efficiency retrofit packages and, as an illustrative example, applies the analysis method to a 1960s-era home in eight U.S. cities covering a range of International Energy Conservation Code (IECC) climate regions. The method uses an optimization scheme that considers average energy use (determined from building energy simulations) and equivalent annual cost to recommend optimal retrofit packages specific to the building, occupants, and location. Energy savings and incremental costs are calculated relative to a minimum upgrade reference scenario, which accounts for efficiency upgrades that would occur in the absence of a retrofit because of equipment wear-out and replacement with current minimum standards.

Polly, B.; Gestwick, M.; Bianchi, M.; Anderson, R.; Horowitz, S.; Christensen, C.; Judkoff, R.

2011-04-01T23:59:59.000Z

296

Retrofitting the Streetlights in Boise, Idaho | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofitting the Streetlights in Boise, Idaho Retrofitting the Streetlights in Boise, Idaho Retrofitting the Streetlights in Boise, Idaho Addthis Description Boise, Idaho is using an energy efficiency grant to retrofit hundreds of streetlights throughout the downtown area with energy-efficient LED bulbs, which will save money and improve safety and local quality of life. Speakers Clay Young, LeAnn Oliver, David Bieter, Neal Oldemeyer Duration 3:05 Topic Tax Credits, Rebates, Savings Clean Cities Commercial Lighting Credit Energy Department Video Boise is an old pioneer town. It's fairly isolated and it has, you know, kind of a pioneering spirit still about it. People are very independent, very outdoorsy. It's a smallish metropolitan area but it's kind of a hip metropolitan area. It's a very, very neat place to

297

Lighting Retrofits Saving Energy, Helping Local Companies | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lighting Retrofits Saving Energy, Helping Local Companies Lighting Retrofits Saving Energy, Helping Local Companies Lighting Retrofits Saving Energy, Helping Local Companies August 9, 2010 - 1:00pm Addthis LEDs such as this are expected to save Altoona, Pa. thousands in energy costs. | File photo LEDs such as this are expected to save Altoona, Pa. thousands in energy costs. | File photo It's easy to measure the effects of a lighting retrofit project in a city like Altoona, Pa., where 169 new LED units are expected to save $4,078 in energy costs annually. But there are also other benefits to such energy efficiency initiatives, which can be seen in the local companies that make the projects possible. "The American Recovery and Reinvestment Act has helped our customers make the decision to move forward with energy related projects," says Paul

298

Indoor environmental quality benefits of apartment energy retrofits  

NLE Websites -- All DOE Office Websites (Extended Search)

Indoor environmental quality benefits of apartment energy retrofits Indoor environmental quality benefits of apartment energy retrofits Title Indoor environmental quality benefits of apartment energy retrofits Publication Type Journal Article LBNL Report Number LBNL-6373E Year of Publication 2013 Authors Noris, Federico, Gary Adamkiewicz, William W. Delp, Toshifumi Hotchi, Marion L. Russell, Brett C. Singer, Michael Spears, Kimberly Vermeer, and William J. Fisk Journal Building Environment Volume 68 Pagination 170-178 Date Published 10/2013 Keywords Apartments; Energy; Indoor environmental quality; Retrofit; Selection Abstract Sixteen apartments serving low-income populations in three buildings were retrofit with the goal of simultaneously reducing energy consumption and improving indoor environmental quality (IEQ). Retrofit measures varied among apartments and included, among others, envelope sealing, installation of continuous mechanical ventilation systems, upgrading bathroom fans and range hoods, attic insulation, replacement of heating and cooling systems, and adding wall-mounted particle air cleaners. IEQ parameters were measured, generally for two one-week periods before and after the retrofits. The measurements indicate an overall improvement in IEQ conditions after the retrofits. Comfort conditions, bathroom humidity, and concentrations of carbon dioxide, acetaldehyde, volatile organic compounds, and particles generally improved. Formaldehyde and nitrogen dioxide levels decreased in the building with the highest concentrations, were unchanged in a second building, and increased in a third building. IEQ parameters other than particles improved more in apartments with continuous mechanical ventilation systems installed. In general, but not consistently, larger percent increases in air exchange rates were associated with larger percent decreases in indoor levels of the pollutants that primarily come from indoor sources.

299

Retrofit of a Multifamily Mass Masonry Building in New England  

SciTech Connect

Merrimack Valley Habitat for Humanity (MVHfH) has partnered with Building Science Corporation to provide high performance affordable housing for 10 families in the retrofit of an existing brick building (a former convent) into condominiums. The research performed for this project provides information regarding advanced retrofit packages for multi-family masonry buildings in Cold climates. In particular, this project demonstrates safe, durable, and cost-effective solutions that will potentially benefit millions of multi-family brick buildings throughout the East Coast and Midwest (Cold climates). The retrofit packages provide insight on the opportunities for and constraints on retrofitting multifamily buildings with ambitious energy performance goals but a limited budget. The condominium conversion project will contribute to several areas of research on enclosures, space conditioning, and water heating. Enclosure items include insulation of mass masonry building on the interior, airtightness of these types of retrofits, multi-unit building compartmentalization, window selection, and roof insulation strategies. Mechanical system items include combined hydronic and space heating systems with hydronic distribution in small (low load) units, and ventilation system retrofits for multifamily buildings.

Ueno, K.; Kerrigan, P.; Wytrykowska, H.; Van Straaten, R.

2013-08-01T23:59:59.000Z

300

Wyandotte Neighborhood Stabilization Program: Retrofit of Two Homes  

SciTech Connect

The Wyandotte NSP2 project aims to build 20 new houses and retrofit 20 existing houses in Wyandotte, MI. This report will detail the retrofit of 2 existing houses in the program. Wyandotte is part of a Michigan State Housing Development Authority-led consortium that is funded by HUD under the NSP2 program. The City of Wyandotte has also been awarded DOE EE&CBG funds that are being used to develop a district GSHP system to service the project. This draft report examines the energy efficiency recommendations for retrofit construction at these homes. The report will be of interest to anyone planning an affordable, high performance retrofit of an existing home in a Cold Climate zone. Information from this report will also be useful to retrofit or weatherization program staff as some of the proposed retrofit solutions will apply to a wide range of projects. Preliminary results from the first complete house suggest that the technology package employed (which includes spray foam insulation and insulating sheathing) does meet the specific whole house water, air, and thermal control requirements, as well as, the project's affordability goals. Monitoring of the GSHP system has been recommended and analysis of this information is not yet available.

Lukachko, A.; Grin, A.; Bergey, D.

2013-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Comments of the Demand Response and Smart Grid Coalition on DOE's  

NLE Websites -- All DOE Office Websites (Extended Search)

the Demand Response and Smart Grid Coalition on DOE's the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy Comments of the Demand Response and Smart Grid Coalition on DOE's Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy The Demand Response and Smart Grid Coalition (DRSG), the trade association for companies that provide products and services in the areas of demand response and smart grid technologies, respectfully submits its comments to the Department of Energy's Request for Information "Implementing the National Broadband Plan by Empowering Consumers and the Smart Grid: Data Access, Third Party Use, and Privacy."

302

The Social Coalition Character of the Democratic and Republican Precinct Cadres in Detroit, 1956-1984  

E-Print Network (OSTI)

Jones, Bryan D. et al. 1986 Detroit, an American city. TheThe Party Coalitions in Detroit in 1956: The Socio-Economicof Party Cadres in Detroit, 1956. Social Characteristics

Eldersveld, Samuel J.

1986-01-01T23:59:59.000Z

303

Clean Cities Coalition Awards: Clean Cities Alternative Fuel Information Series Fact Sheet  

DOE Green Energy (OSTI)

A fact sheet that introduces the winners of the 2001 Clean Cities coalition awards, including the Empire, Movers and Shakers, Gold Star, Few Good Fleets and Madison Avenue awards.

LaRocque, T.

2001-05-23T23:59:59.000Z

304

Pilot Residential Deep Energy Retrofits and the PNNL Lab Homes  

SciTech Connect

This report summarizes research investigating the technical and economic feasibility of several pilot deep energy retrofits, or retrofits that save 30% to 50% or more on a whole-house basis while increasing comfort, durability, combustion safety, and indoor air quality. The work is being conducted for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. As part of the overall program, Pacific Northwest National Laboratory (PNNL) researchers are collecting and analyzing a comprehensive dataset that describes pre- and post-retrofit energy consumption, retrofit measure cost, health and comfort impacts, and other pertinent information for each home participating in the study. The research and data collection protocol includes recruitment of candidate residences, a thorough test-in audit, home energy modeling, and generation of retrofit measure recommendations, implementation of the measures, test-out, and continued evaluation. On some homes, more detailed data will be collected to disaggregate energy-consumption information. This multi-year effort began in October 2010. To date, the PNNL team has performed test-in audits on 51 homes in the marine, cold, and hot-humid climate zones, and completed 3 retrofits in Texas, 10 in Florida, and 2 in the Pacific Northwest. Two of the retrofits are anticipated to save 50% or more in energy bills and the others - savings are in the 30% to 40% range. Fourteen other retrofits are under way in the three climate zones. Metering equipment has been installed in seven of these retrofits - three in Texas, three in Florida, and one in the Pacific Northwest. This report is an interim update, providing information on the research protocol and status of the PNNL deep energy retrofit project as of December, 2011. The report also presents key findings and lessons learned, based on the body of work to date. In addition, the report summarizes the status of the PNNL Lab Homes that are new manufactured homes procured with minimal energy-efficiency specifications typical of existing homes in the region, and sited on the PNNL campus. The Lab Homes serve as a flexible test facility (the first of its kind in the Pacific Northwest) to rapidly evaluate energy-efficient and grid-smart technologies that are applicable to residential construction.

Widder, Sarah H.; Chandra, Subrato; Parker, Graham B.; Sande, Susan; Blanchard, Jeremy; Stroer, Dennis; McIlvaine, Janet; Chasar, David; Beal, David; Sutherland, Karen

2012-01-01T23:59:59.000Z

305

Short-Term Test Results: Multifamily Home Energy Efficiency Retrofit  

SciTech Connect

Multifamily deep energy retrofits (DERs) represent great potential for energy savings, while also providing valuable insights on research-generated efficiency measures, cost-effectiveness metrics, and risk factor strategies for the multifamily housing industry. The Bay Ridge project is comprised of a base scope retrofit with a goal of achieving 30% savings (relative to pre-retrofit), and a DER scope with a goal of 50% savings (relative to pre-retrofit). The base scope has been applied to the entire complex, except for one 12-unit building which underwent the DER scope. Findings from the implementation, commissioning, and short-term testing at Bay Ridge include air infiltration reductions of greater than 60% in the DER building; a hybrid heat pump system with a Savings to Investment Ratio (SIR) > 1 (relative to a high efficiency furnace) which also provides the resident with added incentive for energy savings; and duct leakage reductions of > 60% using an aerosolized duct sealing approach. Despite being a moderate rehab instead of a gut rehab, the Bay Ridge DER is currently projected to achieve energy savings ? 50% compared to pre-retrofit, and the short-term testing supports this estimate.

Lyons, J.

2013-01-01T23:59:59.000Z

306

Predicted vs. Actual Energy Savings of Retrofitted House  

E-Print Network (OSTI)

This paper reports the results of actual energy savings and the predicted energy savings of retrofitted one-story house located in Dhahran, Saudi Arabia. The process started with modeling the house prior to retrofitting and after retrofitting. The monthly metered energy consumption is acquired from the electric company archives for seven years prior to retrofitting and recording the actual monthly energy consumption of the post retrofitting. The house model is established on DOE 2.1. Actual monthly energy consumption is used to calibrate and fine-tuning the model until the gap between actual and predicted consumption was narrowed. Then the Energy Conservation Measures (ECMs) are entered into the modeled house according to the changes in thermo-physical properties of the envelope and the changes in schedules and number of users. In order to account for those differences, electrical consumption attributed to A/C in summer was isolated and compared. The study followed the International Performance Measurement & Verification Protocol (IPMVP) in assessing the impact of energy conservation measures on actual, metered, building energy consumption. The study aimed to show the predicted savings by the simulated building model and the actual utility bills' analysis in air conditioning consumption and peak at monthly load due to building envelope.

Al-Mofeez, I.

2010-01-01T23:59:59.000Z

307

MassSAVE (Gas) - Commercial Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

MassSAVE (Gas) - Commercial Retrofit Program MassSAVE (Gas) - Commercial Retrofit Program MassSAVE (Gas) - Commercial Retrofit Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Other Manufacturing Commercial Weatherization Appliances & Electronics Water Heating Maximum Rebate Projects over $25,000 or involve 5 or more equipment units, customers should contact their utility Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Warm Air Furnaces with Electronic Commutated Motor (ECM): $500-$800 Condensed Unit Heaters: $7500 Condensing Boilers: $1,000 - $10,000 Infrared Heaters: $750 Condensing Water Heater: $500 On-Demand Tankless Water Heater: $500 - $800

308

A Path to Successful Energy Retrofits: Early Collaboration Through  

NLE Websites -- All DOE Office Websites (Extended Search)

Through Through Integrated Project Delivery Teams Title A Path to Successful Energy Retrofits: Early Collaboration Through Integrated Project Delivery Teams Publication Type Report Refereed Designation Refereed LBNL Report Number LBNL-6130E Year of Publication 2012 Authors Parrish, Kristen Date Published 10/2012 Publisher Lawrence Berkeley National Laboratory Abstract This document guides you through a process for the early design phases of retrofit projects to help you mitigate frustrations commonly experienced by building owners and designers. It outlines the value of forming an integrated project delivery team and developing a communication and information-sharing infrastructure that fosters collaboration. This guide does not present a complete process for designing an energy retrofit for a building. Instead, it focuses on the early design phase tasks related to developing and selecting energy efficiency measures (EEMs) that benefit from collaboration, and highlights the resulting advantages.

309

Home Retrofits Save Money, Add Value | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Retrofits Save Money, Add Value Home Retrofits Save Money, Add Value Home Retrofits Save Money, Add Value February 22, 2010 - 11:40am Addthis Joshua DeLung What are the key facts? Tanya $41,000 in home upgrades were possible through the Energy Independence Program. Tanya to pay back the money through installments on her property taxes. After she did the upgrades, Tanya's energy bills are now down 50 percent. As the real estate business rebounds, homebuilders are seeing some growth because of a new nationwide awareness of energy efficiency and the money it can save homeowners. Tanya Narath, of Santa Rosa, Calif., was already taking advantage of renewable energy and green building techniques - her home has had solar panels on its roof for years, and solar tubes draw in natural light to brighten even the darkest spaces of the home. But then Tanya had an energy

310

Financing Energy Efficiency Retrofits in Oakland (A Roundtable Discussion)  

NLE Websites -- All DOE Office Websites (Extended Search)

Financing Energy Efficiency Retrofits in Oakland (A Roundtable Discussion) Financing Energy Efficiency Retrofits in Oakland (A Roundtable Discussion) Speaker(s): Emily Kirsch Justin Butler Date: July 15, 2008 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Galen Barbose James Lutz Cities around the country are developing large-scale programs to retrofit portions of their housing stock, seizing the 'low-hanging fruit' of energy efficiency. As buildings account for roughly 40% of energy consumption in the U.S., such efforts can substantially reduce carbon-based energy use while providing jobs and growing the local green economy. The main barriers to this work are the necessary upfront capital, the risk of losing investment if properties are sold before savings are realized, and the issue of "split incentives" in rented housing units. In order for Oakland

311

Home Retrofits Save Money, Add Value | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Retrofits Save Money, Add Value Home Retrofits Save Money, Add Value Home Retrofits Save Money, Add Value February 22, 2010 - 11:40am Addthis Joshua DeLung What are the key facts? Tanya $41,000 in home upgrades were possible through the Energy Independence Program. Tanya to pay back the money through installments on her property taxes. After she did the upgrades, Tanya's energy bills are now down 50 percent. As the real estate business rebounds, homebuilders are seeing some growth because of a new nationwide awareness of energy efficiency and the money it can save homeowners. Tanya Narath, of Santa Rosa, Calif., was already taking advantage of renewable energy and green building techniques - her home has had solar panels on its roof for years, and solar tubes draw in natural light to brighten even the darkest spaces of the home. But then Tanya had an energy

312

Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program Idaho Power - Easy Upgrades for Simple Retrofits Rebate Program < Back Eligibility Commercial Industrial Savings Category Home Weatherization Commercial Weatherization Heating & Cooling Commercial Heating & Cooling Cooling Appliances & Electronics Construction Design & Remodeling Manufacturing Sealing Your Home Windows, Doors, & Skylights Ventilation Heat Pumps Commercial Lighting Lighting Insulation Maximum Rebate Up to 100,000 per site per year. Program Info Funding Source Conservation Program Funding Charge State Oregon Program Type Utility Rebate Program Rebate Amount A/C or Heat Pumps: $25-$100/ton Economizer Control Addition: $75/ton Air-Side Economizer Repair: $250 Evaporative Coolers: $100-$300/ton

313

Cincinnati Canvassing Spreads Retrofitting Message | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cincinnati Canvassing Spreads Retrofitting Message Cincinnati Canvassing Spreads Retrofitting Message Cincinnati Canvassing Spreads Retrofitting Message May 28, 2010 - 3:07pm Addthis A volunteer canvasses the Mt. Washington neighborhood to spread awareness about home energy audits in the area. | Photo Courtesy GCEA A volunteer canvasses the Mt. Washington neighborhood to spread awareness about home energy audits in the area. | Photo Courtesy GCEA Lindsay Gsell What are the key facts? With help from the Greater Cincinnati Energy Alliance (GCEA), this resident was able to get his home energy audited for only $50, saving approximately $300 from the average audit cost. Stuart Schaefer's home sits on a quaint, tree-lined street in Wyoming, Ohio. Although he's always enjoyed the neighborhood and his house in the

314

Window Company Booming from Retrofits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Company Booming from Retrofits Window Company Booming from Retrofits Window Company Booming from Retrofits October 30, 2009 - 12:09pm Addthis Joshua DeLung Don't try telling John Haddon's family that Friday the 13th is unlucky. They have more reason to believe in divine intervention than luck. After buying Accu-Weld Feb. 13, 2009 - a windows and doors company that laid off 70 employees in 2008 - the business is doing great, thanks to the family's commitment to energy efficiency and the Recovery Act, signed into law just four days later. John didn't know much about the Recovery Act then, but now he's convinced the stimulus has dramatically improved profits. "The Recovery Act coming on board shortly after we purchased the company has been a boost to our business and window makers in general," John says

315

Baltimore Boy's Asthma Improved Through Retrofit | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Baltimore Boy's Asthma Improved Through Retrofit Baltimore Boy's Asthma Improved Through Retrofit Baltimore Boy's Asthma Improved Through Retrofit October 31, 2009 - 11:32am Addthis Joshua DeLung What does this mean for me? The Baltimore Green and Healthy Homes Initiative program, made possible with Recovery Act dollars, provides comprehensive health, safety, and energy efficiency upgrades to low-income families around the city. Lekquan Young rushed her 8-month-old son to the hospital when she noticed his chest looked sunken as he breathed. The doctor told her that her baby son had asthma. Today, her son is 8 years old and has suffered frequent asthma attacks at home. "There was mold within the home and the air quality wasn't good," says Lekquan, a single mom living in Baltimore, Md. The roof over the

316

Energy SmartPARKS Retrofitting Parks, Landmarks | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks Energy SmartPARKS Retrofitting Parks, Landmarks March 19, 2010 - 3:45pm Addthis Joshua DeLung Energy SmartPARKS is a program formed through collaboration between the U.S. Departments of Energy and the Interior to help the National Park Service make America's parks and landmarks more energy-efficient. Several examples are already in place, including one just down the street from Energy's Washington, D.C., home - that example is the prominent Washington Monument, towering up 555 feet from the heart of our nation's capital. An advanced new lighting system for the Washington Monument greatly improves the monument's lighting, and it also decreases the energy used to light the obelisk while increasing security in the area. Through the

317

SMUD - PV Residential Retrofit Buy-Down | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PV Residential Retrofit Buy-Down PV Residential Retrofit Buy-Down SMUD - PV Residential Retrofit Buy-Down < Back Eligibility Residential Savings Category Solar Buying & Making Electricity Maximum Rebate No maximum limit Program Info State California Program Type Utility Rebate Program Rebate Amount $0.20/watt AC. Incentive is adjusted based on expected performance. The incentive can be paid directly to the customer or to the installer. Provider Sacramento Municipal Utility District SMUD offers an incentive of $0.20 per watt (W) AC to residential customers who install grid-connected photovoltaic (PV) systems. Customers do not have to contract directly with SMUD-approved contractors for the purchase and installation of the system, however this is recommended. All systems must be permitted and installed by B, C-10, or C-46 contractors. The incentive

318

Window Company Booming from Retrofits | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Window Company Booming from Retrofits Window Company Booming from Retrofits Window Company Booming from Retrofits October 30, 2009 - 12:09pm Addthis Joshua DeLung Don't try telling John Haddon's family that Friday the 13th is unlucky. They have more reason to believe in divine intervention than luck. After buying Accu-Weld Feb. 13, 2009 - a windows and doors company that laid off 70 employees in 2008 - the business is doing great, thanks to the family's commitment to energy efficiency and the Recovery Act, signed into law just four days later. John didn't know much about the Recovery Act then, but now he's convinced the stimulus has dramatically improved profits. "The Recovery Act coming on board shortly after we purchased the company has been a boost to our business and window makers in general," John says

319

Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Philadelphia Gas Works - Commercial and Industrial EnergySense Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) Philadelphia Gas Works - Commercial and Industrial EnergySense Retrofit Program (Pennsylvania) < Back Eligibility Commercial Industrial Multi-Family Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Sealing Your Home Construction Design & Remodeling Windows, Doors, & Skylights Ventilation Manufacturing Insulation Appliances & Electronics Water Heating Maximum Rebate $75,000 Program Info Expiration Date 8/31/2015 State Pennsylvania Program Type Utility Rebate Program Rebate Amount Varies Widely Philadelphia Gas Works' (PGW) Commercial and Industrial Retrofit Incentive Program is part of EnergySense, PGW's portfolio of energy efficiency

320

New York State passive solar design and retrofit competition  

SciTech Connect

Many homeowners are faced with the problem of reducing their home energy bills. Solar and energy conservation retrofitting is a potential solution for the home energy problem, capable of significantly reducing heating, cooling, and domestic hot water energy bills. The technique used by 12 homeowners and their designers to adapt and integrate various solar and energy conservation features into 12 different projects is discussed. A variety of innovative solutions were utilized in this project and the integration of those ideas into the buildings being retrofitted is discussed. Integration of sunspaces, increased south glazing, solar domestic hot water, storage systems, air distribution systems, insulation systems, etc., is discusssed. All 12 of these designs are award winning projects submitted in response to an ERDA competitive solar retrofit announcement.

Niles, J.E.; Barron, J.J.; Cole, W.J.

1981-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY  

SciTech Connect

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

2001-06-30T23:59:59.000Z

322

Energy impacts of attic duct retrofits in Sacramento houses  

Science Conference Proceedings (OSTI)

Inefficiencies in air distribution systems have been identified as a major source of energy loss in US sunbelt homes. Research indicates that approximately 30--40% of the thermal energy delivered to the ducts passing through unconditioned spaces is lost through air leakage and conduction through the duct walls. Field experiments over the past several years have well documented the expected levels of air leakage and the extent to which that leakage can be reduced by retrofit. Energy savings have been documented to a more limited extent, based upon a few field studies and simulation model results. Simulations have also indicated energy loss through ducts during the off cycle caused by thermosiphon-induced flows, however this effect had not been confirmed experimentally. A field study has been initiated to separately measure the impacts of combined duct leak sealing and insulation retrofits, and to optimize a retrofit protocol for utility DSM programs. This paper describes preliminary results from 6 winter and 5 summer season houses. These retrofits cut overall duct leakage area approximately 64%, which translated to a reduction in envelope ELA of approximately 14%. Wrapping ducts and plenums with R-6 insulation translated to a reduction in average flow-weighted conduction losses of 33%. These experiments also confirmed the appropriateness of using duct ELA and operating pressures to estimate leakage flows for the population, but indicated significant variations between these estimates and measured flows on a house by house basis. In addition, these experiments provided a confirmation of the predicted thermosiphon flows, both under winter and summer conditions. Finally, average material costs were approximately 20% of the total retrofit costs, and estimates of labor required for retrofits based upon these experiments were: 0.04 person-hrs/cm{sup 2} of duct sealed and 0.21 person-hrs/m{sup 2} of duct insulated.

Jump, D.; Modera, M. [Lawrence Berkeley Lab., CA (United States). Energy and Environment Div.

1994-08-01T23:59:59.000Z

323

Grupe Homes Enters the Whole-House Retrofit Market  

Science Conference Proceedings (OSTI)

This article for HomeEnergy Magazine, a trade magazine on energy efficient home construction, retrofitting, remodeling, and research, describes retrofit projects by Grupe Homes of Sacramento, California, a production builder who has worked with DOE's Building America program on energy-efficient home demonstration projects. In this project, The article is a case study of Grupe's decision to enter the energy efficient remodeling market when new home sales lagged due to the economic slowdown starting in late 2007. The article also describes an energy-efficient retrofit of of a 22-year-old, 3-bedroom home in Californias Central Valley done in 2009 by Grupe. The home is Grupe's first retrofit and was done according to the criteria of Home Performance with ENERGY STAR, a national program from the EPA and DOE that promotes a comprehensive, whole-house approach to making energy-efficiency improvements. Grupe's staff were trained through the California Building Performance Contractors Association and passed the Building Performance Institute test to learn how to conduct extensive energy audits of existing houses as well to perform the energy efficient retrofits. In the retrofit home, they did extensive air sealing, replaced and added insulation, and replaced inefficient HVAC equipment and leaky can lights. They cut air leakage from 2478 to 1115 cfm 50, a 55% reduction. A Building America case study on this project was distributed at the EEBA (Energy and Environmental Building Alliance) Annual Conference in Denver, Colorado, Sept 28-30, 2009. The Home Energy article was published in the March/April 2010 issue.

Hefty, Marye G.; Gilbride, Theresa L.

2010-03-01T23:59:59.000Z

324

Advanced Energy Retrofit Guide: Practical Ways to Improve Energy Performance, K-12 Schools (Book)  

SciTech Connect

The U.S. Department of Energy developed the Advanced Energy Retrofit Guides (AERGs) to provide specific methodologies, information, and guidance to help energy managers and other stakeholders plan and execute energy efficiency improvements. Detailed technical discussion is fairly limited. Instead, we emphasize actionable information, practical methodologies, diverse case studies, and unbiased evaluations of the most promising retrofit energy efficiency measures for each building type. A series of AERGs is under development, addressing key segments of the commercial building stock. K-12 schools were selected as one of the highest priority building sectors, because schools affect the lives of most Americans. They also represent approximately 8% of the energy use and 10% of the floor area in commercial buildings nationwide. U.S. K-12 school districts spend more than $8 billion each year on energy - more than they spend on computers and textbooks combined. Most occupy older buildings that often have poor operational performance - more than 30% of schools were built before 1960. The average age of a school is about 42 years - which is nearly the expected serviceable lifespan of the building. K-12 schools offer unique opportunities for deep, cost-effective energy efficiency improvements, and this guide provides convenient and practical guidance for exploiting these opportunities in the context of public, private, and parochial schools.

Not Available

2013-12-01T23:59:59.000Z

325

Development of whole-building energy performance models as benchmarks for retrofit projects  

Science Conference Proceedings (OSTI)

This paper presents a systematic development process of whole-building energy models as performance benchmarks for retrofit projects. Statistical regression-based models and computational performance models are being used for retrofit projects in industry ...

Omer Tugrul Karaguzel; Khee Poh Lam

2011-12-01T23:59:59.000Z

326

Calculating Energy and Demand Retrofit Savings for Stroman High School: Interim Report  

E-Print Network (OSTI)

As part of the LoanSTAR program, Stroman High School in Victoria Texas underwent two retrofits: a) an absorption chiller was changed to an electric vapor compression chiller, and b) an EMCS system was installed after about 5 months in the post retrofit period. Moreover, retrofit savings calculation was complex since pre-retrofit data consisted only of monthly utility data while hourly monitored data are available for the post-retrofit period. The retrofit savings in electricity and gas were computed by two different approaches: Unnormalized Utility Bill Comparison and Weather and Schedule Normalized Utility Bill Comparison Using Post-Retrofit Daily Models. (For purpose of simplicity, in this report, we will refer them as Level-0 and Level-1, respectively.) This report describes these approaches and discusses how well the retrofit savings predicted by both approaches compare with each other. It also describes the procedure for determining demand savings.

Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

327

Housing Stock Characterization Study: An Innovative Approach to Measuring Retrofit Impact  

Science Conference Proceedings (OSTI)

A residential energy efficiency retrofit loan program depends on a self-sustaining finance option and optimized retrofit measures that recoup their unsubsidized costs through energy bill savings alone within the useful life of the retrofit. A first step in evaluating retrofit options is to measure and verify their energy savings. This report evaluates Orlando Utilities Commission (OUC) residential energy-efficiency demand side management (DSM) programs to assess their relative energy and economic performance.

Jones, P.; Taylor, N.; Kipp, J.

2012-09-01T23:59:59.000Z

328

Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants  

E-Print Network (OSTI)

1 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power Plants by Sarah Bashadi and Policy Program #12;2 #12;3 Using Auxiliary Gas Power for CCS Energy Needs in Retrofitted Coal Power-combustion capture retrofits are expected to a near-term option for mitigating CO2 emissions from existing coal

329

Expert Meeting Report: Retrofit Implementation - A Neighborhood at a Time  

Science Conference Proceedings (OSTI)

This report provides information about a Building America expert meeting hosted by research team Consortium for Advanced Residential Buildings on October 25, 2011, in New York City. The meeting discussed several community residential retrofit projects underway across the United States, and included representatives from utilities, energy program implementation firms, affordable housing agencies, and the financing industry.

Griffiths, D.

2012-04-01T23:59:59.000Z

330

Retrofitting Power Plants to Provide District Heating and Cooling  

Science Conference Proceedings (OSTI)

Case studies at five utilities documented consumer and utility benefits of retrofitting fossil steam and combined-cycle plants to provide thermal energy for district heating and cooling (DHC) for nearby loads. This cogeneration strategy helps utilities boost revenues and plant energy utilization efficiencies. It can also revitalize communities by providing inexpensive electricity and thermal energy while reducing emissions.

1997-03-27T23:59:59.000Z

331

ARRA Proposed Award: The Affordable Multifamily Retrofit Initiative (the Initiative)  

E-Print Network (OSTI)

but not limited to: attic, wall and floor insulation; building envelope sealing; duct sealing and repair; Energy,993,029 Leverage Funding: $6,120,000 Retrofit Target: 26 Multifamily Buildings / 1600 Multifamily Units; radiant barriers; EnergyStar window replacement; domestic hot water replacement, insulation

332

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

333

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

334

Agent-based coalition formation in disaster response applications Ladislau Boloni, Majid Ali Khan and Damla Turgut  

E-Print Network (OSTI)

Agent-based coalition formation in disaster response applications Ladislau B¨ol¨oni, Majid Ali Khan present an agent-based coalition formation approach for disaster response applications. We assume. 1 Introduction Efficient disaster response requires participants to form teams and coordinate

Bölöni, Ladislau L

335

Effects of diesel particle filter retrofits and accelerated fleet turnover  

NLE Websites -- All DOE Office Websites (Extended Search)

Effects of diesel particle filter retrofits and accelerated fleet turnover Effects of diesel particle filter retrofits and accelerated fleet turnover on drayage truck emissions at the port of Oakland Title Effects of diesel particle filter retrofits and accelerated fleet turnover on drayage truck emissions at the port of Oakland Publication Type Journal Article Year of Publication 2011 Authors Dallmann, Timothy R., Robert A. Harley, and Thomas W. Kirchstetter Journal Environmental Science & Technology Volume 45 Issue 24 Pagination 10773-10779 Abstract Heavy-duty diesel drayage trucks have a disproportionate impact on the air quality of communities surrounding major freight-handling facilities. In an attempt to mitigate this impact, the state of California has mandated new emission control requirements for drayage trucks accessing ports and rail yards in the state beginning in 2010. This control rule prompted an accelerated diesel particle filter (DPF) retrofit and truck replacement program at the Port of Oakland. The impact of this program was evaluated by measuring emission factor distributions for diesel trucks operating at the Port of Oakland prior to and following the implementation of the emission control rule. Emission factors for black carbon (BC) and oxides of nitrogen (NOx) were quantified in terms of grams of pollutant emitted per kilogram of fuel burned using a carbon balance method. Concentrations of these species along with carbon dioxide were measured in the exhaust plumes of individual diesel trucks as they drove by en route to the Port. A comparison of emissions measured before and after the implementation of the truck retrofit/replacement rule shows a 54 ± 11% reduction in the fleet-average BC emission factor, accompanied by a shift to a more highly skewed emission factor distribution. Although only particulate matter mass reductions were required in the first year of the program, a significant reduction in the fleet-average NOx emission factor (41 ± 5%) was observed, most likely due to the replacement of older trucks with new ones.

336

Creating a framework for the successful implementation of energy retrofit projects: a detailed case study of energy retrofits in Atlanta's Chastain Park .  

E-Print Network (OSTI)

??This paper seeks to develop a framework for the successful implementation of energy retrofit projects in all settings, including those with the non-traditional structure and (more)

Pope, Bryan Christopher

2012-01-01T23:59:59.000Z

337

Calculating Energy and Demand Retrofit Savings for Victoria High School: Interim Report  

E-Print Network (OSTI)

As part of the LoanSTAR program, Victoria High School in Victoria, Texas underwent two retrofits: a) an absorption chiller was changed to an electric vapor compression chiller, and b) an EMCS system was installed after about 5 months in the post retrofit period. Moreover, retrofit savings calculation was complex since pre-retrofit data consisted of only monthly utility data while hourly monitored data are available for the post-retrofit period. This report describes the method in which we have performed retrofit energy and demand savings in Victoria High School. A previous report described the procedure adopted when no pre-retrofit data are available. We have only used Unnormalized Utility Bills Comparison ,or the Level-0 approach to determine electricity (energy and demand) and gas energy savings for VHS.

Liu, Y.; Reddy, T. A.; Katipamula, S.; Claridge, D. E.

1992-01-01T23:59:59.000Z

338

Mitigation Action Implementation Network (MAIN) Feed | Open Energy  

Open Energy Info (EERE)

Mitigation Action Implementation Network (MAIN) Feed Mitigation Action Implementation Network (MAIN) Feed Jump to: navigation, search Home | About | Inventory | Partnerships | Capacity Building | Webinars | Reports | Events | News | List Serve CLEAN Member Feeds Center for Environment and National Security at Scripps Centro de Energías Renovables (CER) The Children's Investment Fund Foundation (CIFF) Climate and Development Knowledge Network (CDKN) Climate Technology Initiative (CTI) ClimateWorks Foundation Coalition for Rainforest Nations (CfRN) Ecofys Energy Research Centre of the Netherlands (ECN) Energy Sector Management Assistance Program of the World Bank (ESMAP) Environment and Development Action in the Third World (ENDA-TM) German Aerospace Center (DLR) German Agency for International Cooperation (GIZ)

339

Decentralised stable coalition formation among energy consumers in the smart grid (demonstration)  

Science Conference Proceedings (OSTI)

The vision of the Smart Grid includes demand-side peak shaving strategies, such as real-time pricing or profile's based tariffs, to encourage consumption such that the peaks on demand are flattened. Up to date, most works along this line focused on optimising ... Keywords: decentralised coalition formation, energy, smart grid, stability

Filippo Bistaffa; Alessandro Farinelli; Meritxell Vinyals; Alex Rogers

2012-06-01T23:59:59.000Z

340

Using coalitions of wind generators and electric vehicles for effective energy market participation  

Science Conference Proceedings (OSTI)

Wind power is becoming a significant source of electricity in many countries. However, the inherent uncertainty of wind generators does not allow them to participate in the forward electricity markets. In this paper, we foster a tighter integration of ... Keywords: coalition formation, energy and emissions, organisations

Matteo Vasirani; Sascha Ossowski; Ramachandra Kota; Renato L. G. Cavalcante; Nicholas R. Jennings

2011-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

A Role-Based Trust Model for Peer-to-Peer Communities and Dynamic Coalitions  

Science Conference Proceedings (OSTI)

Although P2P systems are usually used for informationexchange between peers, they have either protectedpeers' anonymity, or required transacting peers to trusteach other implicitly. Both these approaches arevulnerable to attacks by malicious peers who ... Keywords: Communities, Dynamic Coalitions, Peer-to-Peer, Trust

Mujtaba Khambatti; Partha Dasgupta; Kyung Dong Ryu

2004-04-01T23:59:59.000Z

342

MassSAVE (Electric) - Commercial Retrofit Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » MassSAVE (Electric) - Commercial Retrofit Program MassSAVE (Electric) - Commercial Retrofit Program < Back Eligibility Commercial Construction Industrial Installer/Contractor Institutional Local Government Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Construction Heat Pumps Heating Appliances & Electronics Commercial Lighting Lighting Maximum Rebate 50% of cost of upgraded equipment, or an amount that buys down the cost of the project to a 1.5 year simple payback. Program Info Start Date 1/1/2011 State Massachusetts Program Type Utility Rebate Program Rebate Amount Fluorescent Systems: $10-$50/fixture High and Low Bay Fluorescents: Up to $100/fixture LED Interior: $15-$50/fixture

343

Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report Shows Philadelphia-area Building Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs Energy Innovation Hub Report Shows Philadelphia-area Building Retrofits Could Support 23,500 Jobs November 10, 2011 - 10:36am Addthis This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency Buildings Hub is one of the U.S. Department of Energy’s research centers called Energy Innovation Hubs. | Photo courtesy of EEB Hub This is the Greater Philadelphia Innovation Cluster located at the Philadelphia Navy Yard, which has 270 buildings that consortium members can use to conduct energy efficiency experiments. The Energy Efficiency

344

New Jersey SmartStart Buildings - New Construction and Retrofits |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » New Jersey SmartStart Buildings - New Construction and Retrofits New Jersey SmartStart Buildings - New Construction and Retrofits < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Nonprofit Schools State Government Savings Category Heating & Cooling Commercial Heating & Cooling Heating Cooling Manufacturing Other Construction Heat Pumps Appliances & Electronics Commercial Lighting Lighting Water Heating Maximum Rebate General: incentives may be limited to $500,000 per utility account per year. Custom Measures: limited to lesser of $0.16/kWh or $1.60/therm saved annually; 50% of total costs; or buydown to a 1-year payback period Program Info Funding Source New Jersey Societal Benefits Charge (public benefits fund)

345

Gas Technology Institute (Partnership for Advanced Residential Retrofit) |  

Open Energy Info (EERE)

Technology Institute (Partnership for Advanced Residential Retrofit) Technology Institute (Partnership for Advanced Residential Retrofit) Jump to: navigation, search Name Gas Technology Institute Place Des Plaines, IL Website http://www.gastechnology.org/ Coordinates 42.0333623°, -87.8833991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0333623,"lon":-87.8833991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

Expert Meeting Report: Retrofit Implementation - A Neighborhood at a Time  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Retrofit Implementation - Retrofit Implementation - A Neighborhood at a Time Dianne Griffiths Consortium for Advanced Residential Buildings (CARB) April 2012 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, subcontractors, or affiliated partners makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply

347

High Energy-Efficiency Retrofits to Baltimore's Row Homes  

SciTech Connect

The purpose of the research project is to develop high-perfommnce, energy-eflicient retrofits of existing row homes in Baltimore, Maryland. These efficiency enhancements are to optimize building envelope improvements, mechanical equipment improvements and operational improvements to the highest cost-effective level. Furthermore, this project is to investigate and demonstrate the impact of high-performance energy-efficiency retrofit improvements on row homes in the Historic East area of Baltimore. Three homes awaiting renovation are planned to receive building envelope, mechanical system, and electrical system improvements that will improve their energy petiormance. An incremental additional cost ceiling of $4000 for the energy eftlciency improvements, beyond those normally installed, has been set by the project.

Chalk, J.; Johnson, A.L.; Lipscomb, L.; Wendt, R.

1999-04-19T23:59:59.000Z

348

National Benefits of a Closed-Cycle Cooling Retrofit Requirement  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has investigated the implications of a potential U.S. Environmental Protection Agency (EPA) Clean Water Act 316(b) rulemaking if it establishes closed-cycle cooling retrofits for facilities with once-through cooling as best technology available (BTA) for fish protection. This report provides the results of a study to estimate the benefits of reducing impingement and entrainment mortality that would be achieved should EPA designate closed-cycle cooling as BTA.

2011-08-16T23:59:59.000Z

349

Next Step Toward Widespread Residential Deep Energy Retrofits  

SciTech Connect

The complexity of deep energy retrofits warrants additional training to successfully manage multiple improvements that will change whole house air, heat, and moisture flow dynamics. The home performance contracting industry has responded to these challenges by aggregating skilled labor for assessment of and implementation under one umbrella. Two emerging business models are profiled that seek to resolve many of the challenges, weaknesses, opportunities, and threats described for the conventional business models.

McIlvaine, J.; Saunders, S.; Bordelon, E.; Baden, S.; Elam, L.; Martin, E.

2013-07-01T23:59:59.000Z

350

Commissioning of the Fresno, California, Retrofit Unoccupied Test House  

SciTech Connect

Commissioning of instrumentation and limited short-term testing have been completed on a retrofit unoccupied test house in Fresno, California. This house is intended to be used as a laboratory in which several different methods of space conditioning distribution will be evaluated. This report provides background on the project, including specifications of the house and models used in its development, along with models to be evaluated through its operation.

Stecher, D.; Imm, C.

2013-06-01T23:59:59.000Z

351

Energy Efficient Crawlspace Foundation Retrofit: Mixed Humid Climate  

Science Conference Proceedings (OSTI)

Residential quality management systems have most often been designed for new home construction. To address quality in existing homes in the form of Scopes of Work (SOW), the NAHB Research Center began with a new construction scope of work and applied it to an existing home project. This document is intended to outline the steps of translating a new home construction SOW to SOW for retrofit.

Del Bianco, M.; Wiehagen, J.; Wood, A.

2013-01-01T23:59:59.000Z

352

Assessment of Retrofit Energy Savings Device (RESD) Technologies -- Phase II  

Science Conference Proceedings (OSTI)

This report describes and documents the energy savings, energy efficiency, and limited power quality and performance assessment of six retrofit energy-saving devices that the Electric Power Research Institute (EPRI) tested. These devices include lighting controls, electric motor controls, and one residential home energy saver. These devices were selected based on industry interest and for informational purposes for customers. Most of the testing was conducted at EPRIs Knoxville laboratory ...

2013-08-21T23:59:59.000Z

353

Cast Metals Coalition Technology Transfer and Program Management Final Report  

Science Conference Proceedings (OSTI)

The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people. Without collaboration, new technologies enabling energy efficiencies and environment-friendly improvements are slow to develop, and have trouble obtaining a broad application. The CMC team was able to effectively and efficiently transfer the results of DOE's metalcasting R&D projects to industry by utilizing and delivering the numerous communication vehicles identified in the proposal. The three metalcasting technical associations achieved significant technology transition results under this program. In addition to reaching over 23,000 people per year through Modern Casting and 28,000 through Engineered Casting Solutions, AFS had 84 national publications and reached over 1,200 people annually through Cast Metals Institute (CMI) education courses. NADCA's education department reached over 1,000 people each year through their courses, in addition to reaching over 6,000 people annually through Die Casting Engineer, and publishing 58 papers. The SFSA also published 99 research papers and reached over 1,000 people annually through their member newsletters. In addition to these communication vehicles, the CMC team conducted numerous technical committee meetings, project reviews, and onsite visits. All of these efforts to distribute the latest metalcasting technologies contributed to the successful deployment of DOE's R&D projects into industry. The DOE/CMC partnership demonstrated significant success in the identification and review of relevant and easy-to-implement metalcasting energy-saving processes and technologies so that the results are quickly implemented and become general practice. The results achieved in this program demonstrate that sustained technology transfer efforts are a critical step in the deployment of R&D projects to industry.

Gwyn, Mike

2009-03-31T23:59:59.000Z

354

Field Assessment of Energy Audit Tools for Retrofit Programs  

SciTech Connect

This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home's asset performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Home rating systems can help motivate homeowners in several ways. Ratings can clearly communicate a home's achievable energy efficiency potential, provide a quantitative assessment of energy savings after retrofits are completed, and show homeowners how they rate compared to their neighbors, thus creating an incentive to conform to a social standard. An important consideration is how rating tools for the retrofit market will integrate with existing home energy service programs. For residential programs that target energy savings only, home visits should be focused on key efficiency measures for that home. In order to gain wide adoption, a rating tool must be easily integrated into the field process, demonstrate consistency and reasonable accuracy to earn the trust of home energy technicians, and have a low monetary cost and time hurdle for homeowners. Along with the Home Energy Score, this project also evaluated the energy modeling performance of SIMPLE and REM/Rate.

Edwards, J.; Bohac, D.; Nelson, C.; Smith, I.

2013-07-01T23:59:59.000Z

355

The RFF Home Energy Audit and Retrofit Survey...............................................................  

E-Print Network (OSTI)

Commercial and residential buildings are responsible for 42 percent of all U.S. energy consumption and 41 percent of U.S. CO2 emissions. Engineering studies identify several investments in new enegy-efficiency equipment or building retrofits that would more than pay for themselves in terms of lower future energy costs, but homeowners and businesses generally do not have good information about how to take advantage of these opportunities. Energy auditors make up a growing industry of professionals who evaluate building energy use and provide this information to building owners. This paper reports the results of a survey of nearly 500 home energy auditors and contractors that Resources for the Future conducted in summer 2011. The survey asked about the characteristics of these businesses and the services they provide, the degree to which homeowners follow up on their recommendations, and the respondents opinions on barriers to home energy retrofits and the role for government. Findings from the survey suggest that the audit industry only partially is filling the information gap. Not enough homeowners know about or understand audits, and the follow-through on recommendations once they do have audits is incomplete. But the survey findings suggest that low energy prices and the high cost of retrofits may be more responsible for these outcomes than failures of information.

Karen Palmer; Margaret Walls; Hal Gordon; Todd Gerarden

2011-01-01T23:59:59.000Z

356

Forrestal Building Lighting Retrofit Second Live Test Demonstration (LTD)  

SciTech Connect

This report describes and summarizes the Forrestal Building Lighting Retrofit Live Test demonstration (LTD) performed by Pacific Northwest Laboratory (PNL) in Room 5E-080 of the DOE Forrestal Building in Washington, D.C. The purpose of the LTD was to evaluate proposed lighting retrofits for compliance with the requirements laid out in the request for proposal (RFP) for the Shared Energy Savings (SES) Lighting Retrofit Project for the Forrestal Building, Washington, D.C. Testing was conducted from March 9 through March 18, 1992, and again on August 3 through August 6, 1992. Four contractors were initially tested in March. Then, two contractors were retested in August due to changes in the rebate schedule for electronic ballasts being offered by the Potomac Electric Power Company (PEPCO), the utility servicing the Forrestal Building. The two contractors tested in March were retested with different ballasts, tubes, and reflectors. The results from these new tests are reported here and compared with those from the earlier tests.

Halverson, M.A.; Schmelzer, J.R.; Parker, G.B.

1993-02-01T23:59:59.000Z

357

Field Assessment of Energy Audit Tools for Retrofit Programs  

SciTech Connect

This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home's asset performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Home rating systems can help motivate homeowners in several ways. Ratings can clearly communicate a home's achievable energy efficiency potential, provide a quantitative assessment of energy savings after retrofits are completed, and show homeowners how they rate compared to their neighbors, thus creating an incentive to conform to a social standard. An important consideration is how rating tools for the retrofit market will integrate with existing home energy service programs. For residential programs that target energy savings only, home visits should be focused on key efficiency measures for that home. In order to gain wide adoption, a rating tool must be easily integrated into the field process, demonstrate consistency and reasonable accuracy to earn the trust of home energy technicians, and have a low monetary cost and time hurdle for homeowners. Along with the Home Energy Score, this project also evaluated the energy modeling performance of SIMPLE and REM/Rate.

Edwards, J.; Bohac, D.; Nelson, C.; Smith, I.

2013-07-01T23:59:59.000Z

358

The evaluation of retrofit measures in a tall residential building  

SciTech Connect

As part of a joint demonstration effort involving the US Department of Energy (DOE), the US Department of Housing and Urban Development (HUD), Boston Edison Company (BECo), and the Chelsea Housing Authority, Oak Ridge National Laboratory (ORNL) participated in the evaluation of energy and demand saving retrofits for a tall residential building located in Boston. The thirteen story all-electric building underwent window, lighting, and control renovations in December, 1992. annual energy consumption was reduced by 15% and peak demand fell by 17%. Hourly should building consumption data were available for the comparison of pre- and post- conditions and for calibration of a DOE-2.1D simulation model. The analysis found the window retrofit accounted for 90% of total energy savings and 95% of average demand savings, due to reductions in both conduction and infiltration. Benefits from lighting retrofits were low in cooling months and negligible in winter months due to the increase in the demand for electric resistance heating which was proportional to the reduction in lighting capacity. Finally, the simulation model verified that heating system controls had not been used as intended, and that the utility rate structure would not allow cost savings from the original control strategy. These results and other interesting lessons learned are presented.

Abraham, M.M.; McLain, H.A.

1995-07-01T23:59:59.000Z

359

Combining Energy Efficiency Building Retrofits and Onsite Generation: An  

NLE Websites -- All DOE Office Websites (Extended Search)

Combining Energy Efficiency Building Retrofits and Onsite Generation: An Combining Energy Efficiency Building Retrofits and Onsite Generation: An Emerging Business Model from the ESCO Industry Title Combining Energy Efficiency Building Retrofits and Onsite Generation: An Emerging Business Model from the ESCO Industry Publication Type Conference Paper Year of Publication 2011 Authors Satchwell, Andrew, Peter H. Larsen, and Charles A. Goldman Conference Name 2011 ACEEE Summer Study on Energy Efficiency in Industry Date Published 2011 Publisher ACEEE Conference Location Niagara Falls, New York Abstract The U.S. energy service company (ESCO) industry is an example of a private-sector business model where energy efficiency savings are delivered to customers primarily through the use of performance-based contracts. Despite the onset of a severe economic recession, we estimate that the U.S. ESCO industry grew about 7% per year from 2006 to 2008 with annual revenues of about $4.1 billion in 2008. About 75% of industry revenues are directly related to the installation of energy efficiency measures at existing buildings in the institutional, commercial, and industrial sectors.

360

An Experimental and Analytical Evaluation of Wall And Window Retrofit Configurations: Supporting the Residential Retrofit Best Practices Guide  

SciTech Connect

A Retrofit Best Practices Guide was developed to encourage homeowners to consider energy conservation issues whenever they modify their siding or windows. In support of this guide, an experimental program was implemented to measure the performance of a number of possible wall siding and window retrofit configurations. Both thermal and air-leakage measurements were made for a 2.4 x 2.4 m (8 x 8 ft) wall section with and without a 0.9 x 1.2 m (3 x 4 ft) window. The windows tested were previously well-characterized at a dedicated window test facility. A computer model was also used to provide information for the Best Practices Guide. The experimental data for walls and windows were used in conjunction with this model to estimate the total annual energy savings for several typical houses in a number of different locations.

Stovall, Therese K [ORNL; Petrie, Thomas [ORNL; Kosny, Jan [ORNL; Childs, Phillip W [ORNL; Atchley, Jerald Allen [ORNL; Hulvey, Kimberly D [ORNL

2007-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Clean Energy Works Portland: A Model For Retrofit Projects | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Energy Works Portland: A Model For Retrofit Projects Clean Energy Works Portland: A Model For Retrofit Projects Clean Energy Works Portland: A Model For Retrofit Projects June 4, 2010 - 4:34pm Addthis Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy What does this mean for me? Clean Energy Works Portland (CEWP) seeks to cut energy costs for residents, create green jobs and slash greenhouse gases by retrofitting 500 homes in the Portland area by this fall. A program developed by the city of Portland, Ore., is proving to be a model of public and private collaboration for large-scale home retrofit projects throughout the country. Clean Energy Works Portland (CEWP) seeks to cut energy costs for residents, create green jobs and slash greenhouse gases by retrofitting 500 homes in

362

High-Efficiency Retrofit Lessons for Retail from a SuperTarget: Preprint  

SciTech Connect

The National Renewable Energy Laboratory partnered with Target under the Commercial Building Program to design and implement a retrofit of a SuperTarget in Thornton, CO. The result was a retrofit design that predicted 37% energy savings over ASHRAE Standard 90.1-2004, and 29% compared to existing (pre-retrofit) store consumption. The largest savings came from energy efficient lighting, energy efficient cooling systems, improved refrigeration, and better control of plug loads.

Langner, R.; Deru, M.; Hirsch, A.; Williams, S.

2013-02-01T23:59:59.000Z

363

Retrofit NOx Controls for Coal-Fired Utility Boilers - 2000 Update  

Science Conference Proceedings (OSTI)

During the last four years (1996-2000), NOx control retrofits increased significantly in response to further tightening of NOx regulations. Approximately one hundred complete burner retrofits of wall- and T-fired boilers were implemented during this period, bringing the total burner retrofits to 357. Also, 32 burner component modification BCM) projects were implemented. Other control options included combustion optimization in more than two hundred boilers, thirteen reburns, five selective non-catalytic ...

2000-12-15T23:59:59.000Z

364

Chamberlain Heights Redevelopment: A Large Scale, Cold Climate Study of Affordable Housing Retrofits  

SciTech Connect

The City of Meriden Housing Authority (MHA) collaborated with affordable housing developer Jonathon Rose Companies (JRC) to complete a gut renovation of 124 residential units in the Chamberlain Heights retrofit project. The affordable housing community is made up of 36 buildings in duplex and quad configurations located on 22 acres within two miles of downtown Meriden, CT. The final post-retrofit analysis showed 40-45% source energy savings over the existing pre-retrofit conditions.

Donnelly, K.; Mahle, M.

2012-03-01T23:59:59.000Z

365

Case study field evaluation of a systems approach to retrofitting a residential HVAC system  

E-Print Network (OSTI)

Practices for Residential HVAC Systems. Boston, MA. Jump,techniques for measuring HVAC grille air flows". ASHRAEPractices Guide for Residential HVAC Retrofits. LBNL 53592.

Walker, Iain S.; McWiliams, Jennifer A.; Konopacki, Steven J.

2003-01-01T23:59:59.000Z

366

Energy Efficiency Retrofits for U.S. Housing: Removing the Bottlenecks  

E-Print Network (OSTI)

Both Retrofit alternatives and Energy savings based onthe productivity of alternative energy-saving investmentsowners to evaluate alternative energy-saving investment

Bardhan, Ashok; Jaffee, Dwight; Kroll, Cynthia; Wallace, Nancy

2013-01-01T23:59:59.000Z

367

Energy Efficiency Retrofits for U.S. Housing: Removing the Bottlenecks  

E-Print Network (OSTI)

Both Retrofit alternatives and Energy savings based onowners to evaluate alternative energy-saving investmentthe productivity of alternative energy-saving investments

Bardhan, Ashok; Jaffee, Dwight; Kroll, Cynthia; Wallace, Nancy

2013-01-01T23:59:59.000Z

368

Short-Term Test Results: Transitional Housing Energy Efficiency Retrofit in the Hot-Humid Climate  

SciTech Connect

This project evaluates the renovation of a 5,800 ft2, multi-use facility located in St. Petersburg, on the west coast of central Florida, in the hot humid climate. An optimal package of retrofit measures was designed to deliver 30-40% annual energy cost savings for this building with annual utility bills exceeding $16,000 and high base load consumption. Researchers projected energy cost savings for potential retrofit measures based on pre-retrofit findings and disaggregated, weather normalized utility bills as a basis for simulation true-up. A cost-benefit analysis was conducted for the seven retrofit measures implemented; adding attic insulation and sealing soffits, tinting windows, improving whole building air-tightness, upgrading heating and cooling systems and retrofitting the air distribution system, replacing water heating systems, retrofitting lighting, and replacing laundry equipment. The projected energy cost savings for the full retrofit package based on a post-retrofit audit is 35%. The building's architectural characteristics, vintage, and residential and commercial uses presented challenges for both economic projections and retrofit measure construction.

Sutherland, K.; Martin, E.

2013-02-01T23:59:59.000Z

369

Retrofitting existing commercial buildings in the desert southwest to be energy efficient.  

E-Print Network (OSTI)

??This research proposes recommendations specific to the desert southwest for retrofitting existing commercial buildings. A dry, arid region such as Las Vegas, Nevada must contend (more)

Wilkins, Andrea Lee

2010-01-01T23:59:59.000Z

370

Short-Term Test Results: Transitional Housing Energy Efficiency Retrofit in the Hot-Humid Climate  

SciTech Connect

This project evaluates the renovation of a 5,800 ft2, multi-use facility located in St. Petersburg, on the west coast of central Florida, in the hot humid climate. An optimal package of retrofit measures was designed to deliver 30-40% annual energy cost savings for this building with annual utility bills exceeding $16,000 and high base load consumption. Researchers projected energy cost savings for potential retrofit measures based on pre-retrofit findings and disaggregated, weather normalized utility bills as a basis for simulation true-up. A cost-benefit analysis was conducted for the seven retrofit measures implemented; adding attic insulation and sealing soffits, tinting windows, improving whole building air-tightness, upgrading heating and cooling systems and retrofitting the air distribution system, replacing water heating systems, retrofitting lighting, and replacing laundry equipment. The projected energy cost savings for the full retrofit package based on a post-retrofit audit is 35%. The building's architectural characteristics, vintage, and residential and commercial uses presented challenges for both economic projections and retrofit measure construction.

Sutherland, K.; Martin, E.

2013-02-01T23:59:59.000Z

371

Recommended criteria for retrofit materials and products eligible for tax credit. Final report  

SciTech Connect

Criteria are recommended for materials and products considered eligible for proposed tax credit for retrofitting one and two family residences to conserve energy. The materials considered include insulation and vapor barriers, storm windows and doors, caulking and weatherstripping, and clock thermostats. A list of these retrofit materials was compiled by generic type and recommendations made on their installation. In addition to recommended criteria for materials and products eligible for tax credit, desired levels of performance for the retrofit materials are presented as a guide to homeowners to achieve maximum benefits in energy conservation through retrofitting.

Rossiter, W.J. Jr.; Mathey, Robert G.

1977-04-01T23:59:59.000Z

372

Pre-Retrofit Lighting Study at the University of Texas at Arlington, Texas  

E-Print Network (OSTI)

As a part of the Energy Cost Reduction Measure (ECRM) retrofit program, funded by LoanSTAR, the U.T. Arlington site was granted a $2 million loan to implement an energy-saving lighting retrofit in 20 classroom buildings on the campus. The original Audit Report for the site, completed in 1991, recommended a lighting retrofit that included delamping, relamping with high efficiency lamps, the installation of high efficiency electronic ballasts, and the installation of specular reflectors. However, if the retrofit could be implemented without the use of specular reflectors, then a considerable amount of investment capital would be saved.

Houcek, J. K.; Claridge, D. E.; Haberl, J. S.

1993-01-01T23:59:59.000Z

373

Hotel Cedes 7 months' savings for total lighting retrofit  

SciTech Connect

In an unusual shared-savings agreement, the Hilton Florida Center at Orlando, where a retrofit program was begun two years ago, will give up all savings from a lighting retrofit program for seven months, avoiding upfront costs of equipment purchase, and will then become sole owner of the equipment and beneficiary of the savings. The four-month-old program has improved the lighting and cut electricity costs $2000 to $2500 per month, which would have been a six-month payback. Contracts for two other hotels are expected where retrofitting has begun. Retrofit details are given.

Warrock, A.M.

1983-07-11T23:59:59.000Z

374

Cedarville School District Retrofit of Heating and Cooling Systems with  

Open Energy Info (EERE)

School District Retrofit of Heating and Cooling Systems with School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Cedarville School District Retrofit of Heating and Cooling Systems with Geothermal Heat Pumps and Ground Source Water Loops Project Type / Topic 1 Recovery Act - Geothermal Technologies Program: Ground Source Heat Pumps Project Type / Topic 2 Topic Area 1: Technology Demonstration Projects Project Description - Improve the indoor air quality and lower the cost of cooling and heating the buildings that make up the campus of Cedarville High School, Middle School and Elementary School. - Provide jobs, and reduce requirements of funds for the capital budget of the School District, and thus give relief to taxpayers in this rural region during a period of economic recession. - The new Heat Pumps will be targeted to perform at very high efficiency with EER (energy efficiency ratios) of 22+/-. System capacity is planned at 610 tons. - Remove unusable antiquated existing equipment and systems from the campus heating and cooling system, but utilize ductwork, piping, etc. where feasible. The campus is served by antiquated air conditioning units combined with natural gas, and with very poor EER estimated at 6+/-. - Monitor for 3 years the performance of the new systems compared to benchmarks from the existing system, and provide data to the public to promote adoption of Geothermal technology. - The Geothermal installation contractor is able to provide financing for a significant portion of project funding with payments that fall within the energy savings resulting from the new high efficiency heating and cooling systems.

375

The Institutional Conservation Program: A Funding Option for Energy Retrofits  

E-Print Network (OSTI)

The Institutional Conservation Program (ICP) provides matching grants to K-12 schools, colleges/universities, and hospitals for energy-related retrofit studies and the implementation of capital projects identified, analyzed, and recommended by these studies. Although grant dollars for the program are still appropriated at the federal level, Petroleum Violation Escrow (PVE) monies returned to the states now provide the largest source of ICP funds for most states. The program is administered at the federal level by the Department of Energy and at the state level in Texas by the Governor's Energy Management Center. The purpose of the ICP is to assist eligible institutions in reducing energy consumption and its attendant costs. More specifically, the program gives an institution the financial incentive to hire a professional engineer to identify and analyze the most attractive package of energy retrofits for a given building. Matching financial assistance is then available for implementing part or all of the recommended measures. Typical projects funded through the program include computerized energy management systems, lighting system change-outs, boiler modifications, and HVAC change-outs and modifications. Funded projects must have a payback of 2-10 years and must be installed in buildings completed and occupied before April 20, 1977. All applications submitted for funding consideration are subject to a programmatic and technical review. Applications compete for available monies according to specific criteria set for Technical Assistance Grants (study grants) and Energy Conservation Measures Grants (retrofit implementation grants). Since 1979 ten ICP funding cycles have been held in Texas, and a program cycle funded by PVE dollars returned to the state is currently in progress. An eleventh funding cycle, using federally appropriated dollars, and a second "oil overcharge" cycle are anticipated for FY 89.

Roberts, M.

1988-01-01T23:59:59.000Z

376

Method for Determining Optimal Residential Energy Efficiency Retrofit Packages  

NLE Websites -- All DOE Office Websites (Extended Search)

Method for Determining Method for Determining Optimal Residential Energy Efficiency Retrofit Packages B. Polly, M. Gestwick, M. Bianchi, R. Anderson, S. Horowitz, C. Christensen, and R. Judkoff National Renewable Energy Laboratory April 2011 ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process,

377

Business Case for Energy Efficient Building Retrofit and Renovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SmartMarket Report SmartMarket Report Produced with support from Energy Efficient Business Case for Energy Efficient Building Retrofit and Renovation Funding provided by U.S. Department of Energy through the Pacific Northwest National Laboratory McGraw-Hill Construction President Keith Fox Vice President, Product Development Kathryn E. Cassino McGraw-Hill Construction Research & Analytics/Alliances Vice President, Industry Insights & Alliances Harvey M. Bernstein, F. ASCE, LEED AP Senior Director, Research & Analytics Burleigh Morton Director, Partnerships & Alliances John Gudgel Director, Green Content & Research Communications Michele A. Russo, LEED AP Business Case for Energy Effi cient Building Retrofi

378

Results from Development of Model Specifications for Multifamily Energy Retrofits  

SciTech Connect

Specifications, modeled after CSI MasterFormat, provide the trade contractors and builders with requirements and recommendations on specific building materials, components and industry practices that comply with the expectations and intent of the requirements within the various funding programs associated with a project. The goal is to create a greater level of consistency in execution of energy efficiency retrofits measures across the multiple regions a developer may work. IBACOS and Mercy Housing developed sample model specifications based on a common building construction type that Mercy Housing encounters.

Brozyna, K.

2012-08-01T23:59:59.000Z

379

Newporter Apartments: Deep Energy Retrofit Short-Term Results  

SciTech Connect

This project demonstrates a path to meet the goal of the Building America program to reduce home energy use by 30% in multi-family buildings. The project demonstrates cost effective energy savings targets as well as improved comfort and indoor environmental quality (IEQ) associated with deep energy retrofits by a large public housing authority as part of a larger rehabilitation effort. The project focuses on a typical 1960's vintage low-rise multi-family apartment community (120 units in three buildings).

Gordon, A.; Howard, L.; Kunkle, R.; Lubliner, M.; Auer, D.; Clegg, Z.

2012-12-01T23:59:59.000Z

380

An Overview of the Building Energy Retrofit Research Program  

E-Print Network (OSTI)

A relatively new program of the U.S. Department of Energy has been established to focus on the technical, financial, and behavioral barriers to improving the energy efficiency of existing buildings through retrofit. The program is organized by the three building sectors (single-family, multi-family, and commercial) and is implemented with expertise from four national laboratories, Princeton University, and the Alliance to Save Energy in cooperation with a large number of state, utility, and local agencies. This paper summarizes the objectives, approach, and accomplishments of the program.

Mixon, W. R.

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

AMERICAN ELECTRIC POWER'S CONESVILLE POWER PLANT UNIT NO.5 CO2 CAPTURE RETROFIT STUDY  

SciTech Connect

ALSTOM Power Inc.'s Power Plant Laboratories (ALSTOM) has teamed with American Electric Power (AEP), ABB Lummus Global Inc. (ABB), the US Department of Energy National Energy Technology Laboratory (DOE NETL), and the Ohio Coal Development Office (OCDO) to conduct a comprehensive study evaluating the technical feasibility and economics of alternate CO{sub 2} capture and sequestration technologies applied to an existing US coal-fired electric generation power plant. The motivation for this study was to provide input to potential US electric utility actions concerning GHG emissions reduction. If the US decides to reduce CO{sub 2} emissions, action would need to be taken to address existing power plants. Although fuel switching from coal to natural gas may be one scenario, it will not necessarily be a sufficient measure and some form of CO{sub 2} capture for use or disposal may also be required. The output of this CO{sub 2} capture study will enhance the public's understanding of control options and influence decisions and actions by government, regulators, and power plant owners in considering the costs of reducing greenhouse gas CO{sub 2} emissions. The total work breakdown structure is encompassed within three major reports, namely: (1) Literature Survey, (2) AEP's Conesville Unit No.5 Retrofit Study, and (3) Bench-Scale Testing and CFD Evaluation. The report on the literature survey results was issued earlier by Bozzuto, et al. (2000). Reports entitled ''AEP's Conesville Unit No.5 Retrofit Study'' and ''Bench-Scale Testing and CFD Evaluation'' are provided as companion volumes, denoted Volumes I and II, respectively, of the final report. The work performed, results obtained, and conclusions and recommendations derived therefrom are summarized.

Carl R. Bozzuto; Nsakala ya Nsakala; Gregory N. Liljedahl; Mark Palkes; John L. Marion

2001-06-30T23:59:59.000Z

382

Retrofitting Vegas: Implementing Energy Efficiency in Two Las Vegas Test Homes  

SciTech Connect

In 2009, the state of Nevada received nearly forty million dollars in Neighborhood Stabilization Funds from the Department of Housing and Urban Development. The purpose of this funding was to stabilize communities that have suffered from foreclosures and abandonment. In an effort to provide guidance to local officials and maximize how effectively this NSP funding is utilized in retrofitting homes, CARB provided design specifications, energy modeling, and technical support for the Building America Retrofit Alliance (BARA) team and its local partners - Better Building Performance, Nevada Energy Star Partners Green Alliance, and Home Free Nevada - for two retrofit test homes. One home was to demonstrate a modest retrofit and the other a deep energy retrofit. Through this project, CARB has provided two robust solution packages for retrofitting homes built in this region between the 1980s and early 1990s without substantially inconveniencing the occupants. The two test homes, the Carmen and Sierra Hills, demonstrate how cost-effectively energy efficient upgrades can be implemented in the hot, dry climate of the Southwest. In addition, the homes were used as an educational experience for home performance professionals, building trades, remodelers, and the general public. In-field trainings on air-sealing, HVAC upgrades, and insulating were provided to local contractors during the retrofit and BARA documented these retrofits through a series of video presentations, beginning with a site survey and concluding with the finished remodel and test out.

Puttagunta, S.

2013-04-01T23:59:59.000Z

383

An Evaluation of Energy-Saving Retrofits from the Texas LoanSTAR Program  

E-Print Network (OSTI)

This report discusses the LoanSTAR retrofit savings through December 1993 with an emphasis on the Constant Volume to Variable Air Volume air-handler retrofits. The report also summarizes several key findings about the LoanSTAR program which has 70 sites monitored as of December 1993.

Haberl, J. S.; Claridge, D. E.; Heneghan, T.; Sieggreen, R.; Sims, J.

1996-01-01T23:59:59.000Z

384

Retrofit NOx Control Guidelines for Gas- and Oil-Fired Boilers Version 2.0  

Science Conference Proceedings (OSTI)

This document reviews and summarizes NOx control technologies to help utility engineering and operating staff evaluate and select appropriate retrofit strategies for natural gas- and oil-fired boilers. In addition to general discussions of the various technologies, the document includes an accompanying database on diskette with detailed information on 239 NOx retrofits.

1997-08-19T23:59:59.000Z

385

MIT Energy Initiative Symposium | March 23, 2009 1 Retrofitting of Coal-Fired  

E-Print Network (OSTI)

MIT Energy Initiative Symposium | March 23, 2009 1 Retrofitting of Coal-Fired Power Plants for CO2 of Coal-Fired Power Plants for CO2 Emissions Mitigation The MIT Energy Initiative (MITEI) sponsored a symposium on the retrofitting of coal-fired power plants to capture CO2 emissions. This report summarizes

Williams, Brian C.

386

Sonoma House: Monitoring of the First U.S. Passive House Retrofit  

Science Conference Proceedings (OSTI)

The Sonoma Deep Retrofit is a single-story deep retrofit project in the marine climate of Sonoma, California. The design was guided by Passive House principles which promote the use of very high levels of wall, ceiling, and floor insulation along with tight envelope construction to maintain a comfortable indoor environment with little or no need for conventional heating or cooling.

German, A.; Weitzel, B.; Backman, C.; Hoeschele, M.; Dakin, B.

2012-12-01T23:59:59.000Z

387

Expert Meeting Report: Interior Insulation Retrofit of Mass Masonry Wall Assemblies  

Science Conference Proceedings (OSTI)

The Building Science Consortium held an Expert Meeting on Interior Insulation Retrofit of Mass Masonry Wall Assemblies on July 30, 2011 at the Westford Regency Hotel in Westford, MA. This report outlines the extensive information that was presented on assessment of risk factors for premature building deterioration due to interior insulation retrofits, and methods to reduce such risks.

Ueno, K.; Van Straaten, R.

2012-02-01T23:59:59.000Z

388

Final Report: Retrofit Aeration System (RAS) for Francis Turbine  

DOE Green Energy (OSTI)

Osage Plant and Bagnell Dam impounds the Osage River forming the Lake of the Ozarks in Missouri. Since it is nearly 100 feet deep, the lake stratifies during the summer months causing low DO water to be discharged into the Osage river below the dam. To supplement DO, the turbines are vented during the low DO season. AmerenUE is continually researching new methods of DO enhancement. New turbines, manufactured by American Hydro Corporation, were installed in Units 3 & 5 during the spring of 2002. Additional vent capacity and new nosecones were included in the new turbine design. The retrofit aeration system is an attempt to further enhance the DO in the tailrace by installation of additional venting capability on Unit 6 (not upgraded with new turbine) and refining design on special nosecones which will be mounted on both Unit 3 (upgraded turbine) and Unit 6. Baseline DO testing for Units 3 & 6 was conducted mid August, 2002. This data wascompared to further tests planned for the summer of 2003 and 2004 after installation of the retrofit aeration system.

Alan Sullivan; DOE Project Officer Keith Bennett

2006-08-01T23:59:59.000Z

389

Image Recognition System for Automated Lighting Retrofit Assessment  

E-Print Network (OSTI)

Buildings are responsible for approximately 40% of all US energy use and carbon emissions. Lighting technologies continue to evolve, leading to potential energy savings through retrofits of lighting systems. Building lighting systems is typically the first item evaluated by commercial and industrial energy auditors. This paper presents the first phase of a project to develop unmanned aerial and ground vehicles capable of conducting autonomous energy audits of commercial buildings. The paper presents a prototype system that can enumerate and classify the lighting in a building using an optical camera, accelerometer, spectrometer, and distance sensor. As the aerial vehicle navigates throughout a room, the prototype system captures images and collects frequency data of lighting. The system employs image recognition techniques to quantify lighting in each room. Using the unique frequency spectrum of each lighting type, the prototype system classifies the different types of lighting with the spectrometer. An accompanying software program then analyzes the quantity and type of lighting to recommend economical alternatives, or lighting retrofits.

Venable, K.; Bhatia, D.; Coverick, R.; Gutierrez, C.; Knight, J.; McGarry, D.; McGee, K.; Smith, Z.; Terrill, T. J.; Vanderford, B.; Weiser, R.; Wightman, K.; Rasmussen, B. P.

2013-01-01T23:59:59.000Z

390

An Overview of the Building Energy Retrofit Research Program  

E-Print Network (OSTI)

This research update presents the status of a U.S. Department of Energy program that addresses the technical, financial, and behavioral barriers to improving the energy efficiency of existing buildings. The program is implemented with expertise from four national laboratories, Princeton University, and the Alliance to Save Energy in cooperation with a large number of state, utility, and local agencies. The remaining potential for energy savings from cost effective retrofit measures in existing buildings is impressive, but a variety of barriers have been identified that reduce conservation investment. One significant barrier that the program can address is the large uncertainty about savings. Average savings for a large sample of retrofit hones is generally lower than expected, and savings in individual buildings varies unpredictably from negative to very high positive values. Our approach has been to provide reliable information on the performance and cost effectiveness of energy conserving technologies and practices. Field performance monitoring is in progress in each building sector and development of diagnostic techniques and monitoring protocols is in progress.

Mixon, W. R.

1988-01-01T23:59:59.000Z

391

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit  

Open Energy Info (EERE)

Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Jump to: navigation, search Name Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Agency/Company /Organization European Climate Foundation Sector Energy Focus Area Energy Efficiency, Buildings, - Building Energy Efficiency Topics Co-benefits assessment, Background analysis Resource Type Publications Website http://3csep.ceu.hu/sites/defa Country Hungary UN Region Eastern Europe References Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme[1] Hungary-Employment Impacts of a Large-Scale Deep Building Retrofit Programme Screenshot "The goal of the present research was to gauge the net employment impacts of a largescale deep building energy-efficiency renovation programme in

392

RG&E (Electric) - Small Business Lighting Retrofit Program | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Small Business Lighting Retrofit Program Small Business Lighting Retrofit Program RG&E (Electric) - Small Business Lighting Retrofit Program < Back Eligibility Commercial Savings Category Appliances & Electronics Commercial Lighting Lighting Program Info Funding Source System Benefits Charge State New York Program Type Utility Rebate Program Rebate Amount Energy Assessment: Free Lighting Retrofit: 70% of cost Provider RG&E and NYSEG RG&E offers a lighting incentive program designed to serve small business customers with a demand of 100 kilowatts (kW) or less. These small business customers may schedule a free energy assessment and then receive a 70% discount on the installed cost of recommended lighting measures. Eligible lighting measures include the retrofitting of fluorescent fixtures,

393

Measuring Energy-Saving Retrofits: Experiences from the LoanSTAR Program  

E-Print Network (OSTI)

In 1988 the Governor's Energy Management Center of Texas received approval from the U.S. Department of Energy to establish a $98.6 million state-wide retrofit demonstration revolving loan program to fund energy-conserving retrofits in state, public school, and local government buildings. As part of this program, a first-of-its-kind, statewide Monitoring and Analysis Program (MAP) was established to verify energy and dollar savings of the retrofits, reduce energy costs by identifying operational and maintenance improvements, improve retrofit selection in future rounds of the LoanSTAR program, and initiate a data base of energy use in institutional and commercial buildings located in Texas. This report discusses the LoanSTAR MAP with an emphasis on the process of acquiring and analyzing data to measure savings from energy conservation retrofits when budgets are a constraint.

Claridge, D. E.; Heffington, W. M.; O'Neal, D. L.; Turner, W. D.; Haberl, J. S.; Reddy, T. A.

2005-09-27T23:59:59.000Z

394

Recommended criteria for retrofit materials and products eligible for tax credit. Final report  

SciTech Connect

The Federal Energy Administration requested the National Bureau of Standards to develop criteria for retrofitting for possible use by the Internal Revenue Service in implementing the Presidential initiative authorizing tax credit to homeowners. Criteria are recommended for materials and products considered eligible for proposed tax credit for retrofitting one and two family residences to conserve energy. The materials considered include insulation and vapor barriers, storm windows and doors, caulking and weatherstripping, and clock thermostats. A list of these retrofit materials is compiled by generic type and recommendations made on their installation. In addition to recommended criteria for materials and products eligible for tax credit, desired levels of performance for the retrofit materials are presented as a guide to homeowners to achieve maximum benefits in energy conservation through retrofitting. (GRA)

Rossiter, W.J. Jr.; Mathey, R.G.

1975-11-01T23:59:59.000Z

395

Effectiveness of a solar action campaign  

SciTech Connect

This paper discusses the effectiveness of a Solar Action Campaign implemented to facilitate the commercialization of Solar Energy in a large metropolitan area. The campaign was developed by the staff of the Crosby Gardens Environmental Library. Crosby Gardens is an urban environmental and cultural park. The Solar Action Campaign in Toledo, Ohio, included the coordination of a variety of activities and events designed to stimulate consumer awareness of the Solar Energy applications in the area. Activities included coordinating two workshops, production of media tools, a sunshine awards banquet, and an intensive media campaign. The Solar Week in Toledo provided the stimulus for coalitions to be built, intensive information exchange, and most importantly - media coverage.

Tucker, M.

1981-01-01T23:59:59.000Z

396

Measured energy savings and economics of retrofitting existing single- family homes: An update of the BECA-B database  

SciTech Connect

These appendices are the companion volume to report number LBL--28147 Vol.1, with the same title. The summary data tables include physical characteristics, energy consumption, savings, and the retrofit measures installed and their costs for each retrofit project. Each existing single family residential building'' retrofit project in the BECA-B database is described. 99 refs. (BM)

Cohen, S.D.; Goldman, C.A.; Harris, J.P.

1991-02-01T23:59:59.000Z

397

Variable Speed Fan Retrofits for Computer Room Air Conditioners  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Variable-Speed Fan Variable-Speed Fan Retrofits for Computer-Room Air Conditioners Prepared for the U.S. Department of Energy Federal Energy Management Program Technology Case Study Bulletin By Lawrence Berkeley National Laboratory Steve Greenberg September 2013 2 Contacts Steve Greenberg Lawrence Berkeley National Laboratory One Cyclotron Road, 90R3111 Berkeley, California 94720 (510) 486-6971 segreenberg@lbl.gov For more information on FEMP, please contact: Will Lintner, P.E., CEM Federal Energy Management Program U.S. Department of Energy 1000 Independence Ave. S.W. Washington, D. C. 20585-0121 (202) 586-3120 william.lintner@ee.doe.gov 3 Acknowledgements EPRI: Dennis Symanski, Brian Fortenbery Synapsense: Garret Smith, Patricia Nealon Vigilent: Corinne Vita

398

Hammer Award Honors a Federal Building's Energy-Efficient Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

4 4 Hammer Award Honors a Federal Building's Energy-Efficient Retrofit Figure 1: Each floor of the 21-story Phillip Burton Federal Office Building in San Francisco is more than 60,000 square feet. The lighting controls testbed occupies the third, fourth and fifth floors. Vice President Al Gore's National Performance Review has given a Hammer Award to a team of private and public entities, including several Center researchers. The team is working to turn San Francisco's Federal Building at 450 Golden Gate Avenue into a showcase of energy-efficient technologies that could cut the federal government's annual energy bill by a billion dollars. The Hammer Award recognizes teams of federal, state, and local employees and private citizens who have made government more efficient and

399

Advanced Rooftop Control (ARC) Retrofit: Field-Test Results  

Science Conference Proceedings (OSTI)

The multi-year research study was initiated to find solutions to improve packaged equipment operating efficiency in the field. Pacific Northwest National Laboratory (PNNL), with funding from the U.S. Department of Energys (DOEs) Building Technologies Office (BTO) and Bonneville Power Administration (BPA) conducted this research, development and demonstration (RD&D) study. Packaged equipment with constant speed supply fans is designed to provide ventilation at the design rate at all times when the fan is operating as required by building code. Although there are a number of hours during the day when a building may not be fully occupied or the need for ventilation is lower than designed, the ventilation rate cannot be adjusted easily with a constant speed fan. Therefore, modulating the supply fan in conjunction with demand controlled ventilation (DCV) will not only reduce the coil energy but also reduce the fan energy. The objective of this multi-year research, development and demonstration project was to determine the magnitude of energy savings achievable by retrofitting existing packaged rooftop air conditioners with advanced control strategies not ordinarily used for packaged units. First, through detailed simulation analysis, it was shown that significant energy (between 24% and 35%) and cost savings (38%) from fan, cooling and heating energy consumption could be realized when packaged air conditioning units with gas furnaces are retrofitted with advanced control packages (combining multi-speed fan control, integrated economizer controls and DCV). The simulation analysis also showed significant savings for heat pumps (between 20% and 60%). The simulation analysis was followed by an extensive field test of a retrofittable advanced rooftop unit (RTU) controller.

Wang, Weimin; Katipamula, Srinivas; Ngo, Hung; Underhill, Ronald M.; Taasevigen, Danny J.; Lutes, Robert G.

2013-07-31T23:59:59.000Z

400

Retrofit of CO2 Capture of Natural Gas Combined Cycle Power Plants  

Science Conference Proceedings (OSTI)

A significant target for control of CO2 emission would be stationary power plants as they are large sources and relatively easy to control. Most of the focus of studies has been on new plants Only a few have looked at retrofits of the existing plants and those have mainly concentrated on coal-fired systems. However, there are a large number of existing gas-fired combined cycle plant in existence and understanding whether retrofit of these plants is realistic is important. This study considers retrofit of...

2005-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Test Methods and Protocols for Environmental and Safety Hazards Associated with Home Energy Retrofits  

SciTech Connect

A number of health hazards and hazards to the durability of homes may be associated with energy retrofitting and home renovation projects. Among the hazards associated with energy retrofit work, exposure to radon is thought to cause more than 15,000 deaths per year in the U.S., while carbon monoxide poisoning results in about 20,000 injuries and 450 deaths per year. Testing procedures have been developed for identifying and quantifying hazards during retrofitting. These procedures commonly include a battery of tests to screen combustion appliances for safe operation, including worst case depressurization measurement, backdrafting (spillage) under depressurized or normal conditions, and carbon monoxide production.

Cautley, D.; Viner, J.; Lord, M.; Pearce, M.

2012-12-01T23:59:59.000Z

402

Standard Measurement and Verification Plan for Lighting Retrofit Projects for Buildings and Building Sites  

SciTech Connect

This document provides a framework for standard measurement and verification (M&V) of lighting retrofit and replacement projects. It was developed to provide site owners, contractors, and other involved organizations with the essential elements of a robust M&V plan for lighting projects. It includes details on all aspects of effectively measuring light levels of existing and post-retrofit projects, conducting power measurement, and developing cost-effectiveness analysis. This framework M&V plan also enables consistent comparison among similar lighting projects, and may be used to develop M&V plans for non--lighting-technology retrofits and new installations.

Richman, Eric E.

2012-10-31T23:59:59.000Z

403

Effects of moisture on debonding in FRP-retrofitted concrete systems  

E-Print Network (OSTI)

FRP (fiber reinforced polymer) retrofit systems for reinforced concrete (RC) structures have been widely used in the past 10 years, and numerous studies on its short-term debonding behavior have been conducted extensively. ...

Tuakta, Chakrapan, 1980-

2011-01-01T23:59:59.000Z

404

DOE to Fund up to $454 Million for Retrofit Ramp-Ups in Energy Efficiency |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Fund up to $454 Million for Retrofit Ramp-Ups in Energy to Fund up to $454 Million for Retrofit Ramp-Ups in Energy Efficiency DOE to Fund up to $454 Million for Retrofit Ramp-Ups in Energy Efficiency September 14, 2009 - 12:00am Addthis WASHINGTON, DC - U.S. Secretary of Energy Steven Chu today announced a new $450 million program designed to catalyze a nationwide energy upgrade that experts estimate could save $100 million annually in utility bills for households and businesses. The Recovery Act's "Retrofit Ramp-Up" program will pioneer innovative models for rolling out energy efficiency to hundreds of thousands of homes and businesses in a variety of communities. Much like past roll-outs for cable TV or the Internet, DOE intends to create models that, when undertaken nationally, will save consumers billions of dollars on their utility bills and make the huge

405

Lighting retrofit monitoring for the Federal sector-strategies and results at the DOE Forrestal Building  

SciTech Connect

Pacific Northwest Laboratory (PNL), the US Department of Energy (DOE) Federal Energy Management Program (FEMP), and Potomac Electric Power Company (PEPCO) have been conducting short-term monitoring studies at the Forrestal Building, headquarters of the DOE, since 1990. These studies were an integral part of the Shared Energy Savings (SES) lighting retrofit project completed in 1993. The overall goal of the project was to reduce electricity consumption at the Forrestal Building. One objective of the project was to use the building as a model for other federal SES lighting retrofit efforts. A complete short-term monitoring strategy in support of the SES project was developed. The strategy included baseline measurements of electrical consumption, performance measurements of proposed retrofits, and post-retrofit measurements of electricity consumption. Measurements included power consumption, power harmonics, and lighting levels. The results show a 56% reduction in electrical power consumed for lighting, as well as improved power quality and increased lighting levels.

Halverson, M.A.; Schmelzer, J.R.; Keller, J.M.; Stoops, J.L.; Chvala, W.D.

1994-08-01T23:59:59.000Z

406

The live test demonstration (LTD) of lighting retrofit technologies at the DOE Forrestal Building  

SciTech Connect

DOE`s Forrestal Building in Washington, DC, has successfully awarded a performance-based shared energy savings contract for retrofit of office and hallway lighting systems. The winning contractor estimates that the retrofit (and associated occupancy sensors) will lead to savings of up to 62% of the power currently used for lighting, with an estimated annual cost savings of $340,000. The retrofit will also increase lighting levels to required levels, while reducing total harmonic distortion on the lighting circuits. The performance-based shared energy savings approach to lighting retrofits will result in a guaranteed contract to maintain lighting levels and savings for the next seven years. Over the life of the contract, the shared energy savings approach will provide $1 million each for DOE and the contractor.

Halverson, M.A.; Schmelzer, J.R. [Pacific Northwest Lab., Richland, WA (United States); Harris, L.G. [USDOE, Washington, DC (United States)

1993-08-01T23:59:59.000Z

407

Using auxiliary gas power for CCS energy needs in retrofitted coal power plants  

E-Print Network (OSTI)

Post-combustion capture retrofits are expected to a near-term option for mitigating CO 2 emissions from existing coal-fired power plants. Much of the literature proposes using power from the existing coal plant and thermal ...

Bashadi, Sarah (Sarah Omer)

2010-01-01T23:59:59.000Z

408

Assessing methods for predicting retrofit energy savings in buildings : case study of a Norwegian school  

E-Print Network (OSTI)

This work investigates methods for predicting retrofit energy savings in existing Norwegian buildings. A case study is performed on a 30 year old primary school in Trondheim, Norway. The energy consumption in the school ...

Ricker, Elizabeth, S.M. (Elizabeth Ann). Massachusetts Institute of Technology

2008-01-01T23:59:59.000Z

409

Full-Scale Demonstration of Low-NOx Cell Burner Retrofit: A...  

NLE Websites -- All DOE Office Websites (Extended Search)

in the United States. A 1994 estimate using a nominal 600-MWe unit gave an estimated capital cost for an LNCB retrofit of 9kW. Assuming uncontrolled NO x emissions of 1.20...

410

Cost Savings and Energy Reduction: Bi-Level Lighting Retrofits in Multifamily Buildings  

E-Print Network (OSTI)

Community Environmental Center implements Bi- Level Lighting fixtures as a component of cost-effective multifamily retrofits. These systems achieve substantial energy savings by automatically reducing lighting levels when common areas are unoccupied. Because there is a lack of empirical evidence documenting the performance of these systems, this paper uses electric consumption data collected from buildings before and after retrofits were performed, and analyzes the cost and consumption savings achieved through installation of Bi-Level Lighting systems. The results of this report demonstrate that common areas that are currently not making use of Bi-Level lighting systems would achieve significant financial and environmental benefits from Bi-Level focused retrofits. This project concludes that building codes should be updated to reflect improvements in Bi-Level Lighting technologies, and that government-sponsored energy efficiency programs should explicitly encourage or mandate Bi-Level Lighting installation components of subsidized retrofit projects.

Ackley, J.

2010-01-01T23:59:59.000Z

411

Standard Measurement & Verification Plan for Lighting Equipment Retrofit or Replacement Projects  

Science Conference Proceedings (OSTI)

This document provides a framework for a standard Measurement and Verification (M&V) plan for lighting projects. It was developed to support cost-effective retrofits (partial and complete replacements) of lighting systems and is intended to provide a foundation for an M&V plan for a lighting retrofit utilizing a "best practice" approach, and to provide guidance to site owners, contractors, and other involved organizations on what is essential for a robust M&V plan for lighting projects. This document provides examples of appropriate elements of an M&V plan, including the calculation of expected energy savings. The standard M&V plan, as provided, also allows for consistent comparison with other similar lighting projects. Although intended for lighting retrofit applications, M&V plans developed per this framework document may also be used for other non-lighting technology retrofits and new installations.

Richman, Eric E.

2009-11-04T23:59:59.000Z

412

National Residential Efficiency Measures Database Aimed at Reducing Risk for Residential Retrofit Industry (Fact Sheet)  

DOE Green Energy (OSTI)

This technical highlight describes NREL research to develop a publicly available database of energy retrofit measures containing performance characteristics and cost estimates for nearly 3,000 measures. Researchers at the U.S. Department of Energy (DOE) National Renewable Energy Laboratory (NREL) have developed the National Residential Efficiency Measures Database, a public database that characterizes the performance and costs of common residential energy efficiency measures. The data are available for use in software programs that evaluate cost-effective retrofit measures to improve the energy efficiency of residential buildings. The database provides a single, consistent source of current data for DOE and private-sector energy audit and simulation software tools and the retrofit industry. The database will reduce risk for residential retrofit industry stakeholders by providing a central, publicly vetted source of up-to-date information.

Not Available

2012-01-01T23:59:59.000Z

413

Vulnerability assessment of medieval civic towers as a tool for retrofitting design  

Science Conference Proceedings (OSTI)

The seismic vulnerability of an ancient civic bell-tower is studied. Rather than seeing it as an intermediate stage toward a risk analysis, the assessment of vulnerability is here pursued for the purpose of optimizing the retrofit design. The vulnerability curves are drawn by carrying out a single time history analysis of a model calibrated on the basis of experimental data. From the results of this analysis, the medians of three selected performance parameters are estimated, and they are used to compute, for each of them, the probability of exceeding or attaining the three corresponding levels of light, moderate and severe damage. The same numerical model is then used to incorporate the effects of several retrofitting solutions and to re-estimate the associated vulnerability curves. The ultimate goal is to provide a numerical tool able to drive the optimization process of a retrofit design by the comparison of the vulnerability estimates associated with the different retrofitting solutions.

Casciati, Sara [ASTRA Department, University of Catania, Siracusa (Italy); Faravelli, Lucia [Department of Structural Mechanics, University of Pavia, Pavia, Pavia (Italy)

2008-07-08T23:59:59.000Z

414

Multifamily Retrofit Project Manager Job/Task Analysis and Report: September 2013  

SciTech Connect

The development of job/task analyses (JTAs) is one of three components of the Guidelines for Home Energy Professionals project and will allow industry to develop training resources, quality assurance protocols, accredited training programs, and professional certifications. The Multifamily Retrofit Project Manager JTA identifies and catalogs all of the tasks performed by multifamily retrofit project managers, as well as the knowledge, skills, and abilities (KSAs) needed to perform the identified tasks.

Owens, C. M.

2013-09-01T23:59:59.000Z

415

Clean Water Act Section 316(b) Closed-Cycle Cooling Retrofit Research Program Results Summary  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has investigated the implications of a potential U.S. Environmental Protection Agency (EPA) Clean Water Act 316(b) rulemaking if it establishes closed-cycle cooling retrofits for facilities with once-through cooling as "best technology available" (BTA) for fish protection. This report provides a summary of the results of five studies that comprise EPRI's Closed-Cycle Cooling Retrofit Research Program. These studies evaluated the cost, both financial and econom...

2011-08-15T23:59:59.000Z

416

Evaluation of a Multifamily Retrofit in Climate Zone 5, Boulder, Colorado (Fact Sheet)  

SciTech Connect

In 2009, a 37-unit apartment complex located in Boulder, Colorado, underwent an energy retrofit to comply with Boulder SmartRegs Ordinance, a mandate that requires all rental properties to meet certain energy efficiency standards by 2018. The Consortium of Advanced Residential Buildings (CARB), a U.S. Department of Energy Building America team, worked with city planners and building owners to evaluate this program and recently completed a case study evaluating the effectiveness of a collection of retrofit measures.

Metzger, C.; Arena, L.; Williamson, J.

2013-11-01T23:59:59.000Z

417

Group Home Energy Efficiency Retrofit for 30% Energy Savings: Washington, D.C. (Fact Sheet)  

SciTech Connect

Energy efficiency retrofits (EERs) face many challenges on the path to scalability. Limited budgets, cost effectiveness, risk factors, and accessibility impact the type and the extent of measures that can be implemented feasibly to achieve energy savings goals. Group home retrofits can face additional challenges than those in single family homes - such as reduced access (occupant-in-place restrictions) and lack of incentives for occupant behavioral change. This project studies the specification, implementation, and energy savings from an EER in a group home, with an energy savings goal of 30%. This short term test report chronicles the retrofit measures specified, their projected cost-effectiveness using building energy simulations, and the short term test results that were used to characterize pre-retrofit and post-retrofit conditions. Additionally, the final report for the project will include analysis of pre- and post-retrofit performance data on whole building energy use, and an assessment of the energy impact of occupant interface with the building (i.e., window operation). Ultimately, the study's results will be used to identify cost effective EER measures that can be implemented in group homes, given constraints that are characteristic of these buildings. Results will also point towards opportunities for future energy savings.

Not Available

2013-11-01T23:59:59.000Z

418

Highly Efficient Small Form Factor LED Retrofit Lamp  

SciTech Connect

This report summarizes work to develop a high efficiency LED-based MR16 lamp downlight at OSRAM SYLVANIA under US Department of Energy contract DE-EE0000611. A new multichip LED package, electronic driver, and reflector optic were developed for these lamps. At steady-state, the lamp luminous flux was 409 lumens (lm), luminous efficacy of 87 lumens per watt (LPW), CRI (Ra) of 87, and R9 of 85 at a correlated color temperature (CCT) of 3285K. The LED alone achieved 120 lumens per watt efficacy and 600 lumen flux output at 25 C. The driver had 90% electrical conversion efficiency while maintaining excellent power quality with power factor >0.90 at a power of only 5 watts. Compared to similar existing MR16 lamps using LED sources, these lamps had much higher efficacy and color quality. The objective of this work was to demonstrate a LED-based MR16 retrofit lamp for replacement of 35W halogen MR16 lamps having (1) luminous flux of 500 lumens, (2) luminous efficacy of 100 lumens per watt, (3) beam angle less than 40{sup o} and center beam candlepower of at least 1000 candelas, and (4) excellent color quality.

Steven Allen; Fred Palmer; Ming Li

2011-09-11T23:59:59.000Z

419

Wind-Power Development in Germany and the U.S.: Multiple Streams, Advocacy Coalitions, and Turning Points  

E-Print Network (OSTI)

Wind-Power Development in Germany and the U.S.: Multiple Streams, Advocacy Coalitions, and Turning). Of the various forms of renewable energy, wind-generated electricity has a unique set of advantages, which make especially large. Wind power produces relatively low levels of environmental damage over its life cycle (like

Qiu, Weigang

420

Design Intern: New York, NY Global Green USA's Coalition for Resource Recovery is an industry working group dedicated to generating  

E-Print Network (OSTI)

, and locally recover wasted food to power the city with green energy. For more information visit thecorr working group dedicated to generating business value through turning waste into assets. The Coalition identifies and promotes effective waste diversion technologies and programs through conducting pilot programs

Colorado at Boulder, University of

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Retrofitting an automotive air conditioner with HFC-134a, additive, and mineral oil. Final report, October 1992-May 1994  

Science Conference Proceedings (OSTI)

The paper gives results of an evaluation of a lubricant additive developed for use in retrofitting motor vehicle air conditioners. The additive was designed to enable HFC-134a to be used as a retrofit refrigerant with the existing mineral oil in CFC-12 systems. The goal of the project was to provide preliminary feasibility testing of the additive. The cooling effect of the test system retrofitted with HFC-134a and the oil additive was nearly the same as that of the original system with CFC 12 refrigerant. If lubricant additives prove to be successful, miscible lubricants may not be needed for retrofitting some automotive systems. The retrofitting procedure might be simplified and the cost to consumers might be reduced. It has not been determined if retrofitting systems with HFC-134a and oil additives is feasible for a wider range of operating conditions and types of equipment, including the applicability of orifice tube/suction accumulator systems.

Jetter, J.J.; Delafield, F.R.

1994-05-01T23:59:59.000Z

422

Clean Cities Designation Guide: A Resource for Developing, Implementing, and Sustaining Your Clean Cities Coalition  

NLE Websites -- All DOE Office Websites (Extended Search)

Designation Guide Designation Guide A Resource for Developing, Implementing, and Sustaining Your Clean Cities Coalition DOE/GO-102008-2608 April 2008 For more information contact: EERE Information Center 1-877-EERE-INF (1-877-337-3463) www.eere.energy.gov Note: This guide is currently under revision. Please use for planning purposes only. Disclaimer This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned

423

Air Leakage of US Homes: Regression Analysis and Improvements from Retrofit  

NLE Websites -- All DOE Office Websites (Extended Search)

Leakage of US Homes: Regression Analysis and Improvements from Retrofit Leakage of US Homes: Regression Analysis and Improvements from Retrofit Title Air Leakage of US Homes: Regression Analysis and Improvements from Retrofit Publication Type Report LBNL Report Number LBNL-5966E Year of Publication 2012 Authors Chan, Wanyu R., Jeffrey Joh, and Max H. Sherman Date Published 08/2012 Keywords air infiltration, blower door, fan pressurization measurements, retrofit, weatherization Abstract LBNL Residential Diagnostics Database (ResDB) contains blower door measurements and other diagnostic test results of homes in United States. Of these, approximately 134,000 single-family detached homes have sufficient information for the analysis of air leakage in relation to a number of housing characteristics. We performed regression analysis to consider the correlation between normalized leakage and a number of explanatory variables: IECC climate zone, floor area, height, year built, foundation type, duct location, and other characteristics. The regression model explains 68% of the observed variability in normalized leakage. ResDB also contains the before and after retrofit air leakage measurements of approximately 23,000 homes that participated in weatherization assistant programs (WAPs) or residential energy efficiency programs. The two types of programs achieve rather similar reductions in normalized leakage: 30% for WAPs and 20% for other energy programs.

424

Bay Ridge Gardens - Mixed-Humid Affordable Multifamily Housing Deep Energy Retrofit  

SciTech Connect

Under this project, Newport Partners (as part of the BA-PIRC research team) evaluated the installation, measured performance, and cost-effectiveness of efficiency upgrade measures for a tenant-in-place DER at the Bay Ridge multifamily (MF) development in Annapolis, Maryland. The design and construction phase of the Bay Ridge project was completed in August 2012. This report summarizes system commissioning, short-term test results, utility bill data analysis, and analysis of real-time data collected over a one-year period after the retrofit was complete. The Bay Ridge project is comprised of a 'base scope' retrofit which was estimated to achieve a 30%+ savings (relative to pre-retrofit) on 186 apartments, and a 'DER scope' which was estimated to achieve 50% savings (relative to pre-retrofit) on a 12-unit building. The base scope was applied to the entire apartment complex, except for one 12-unit building which underwent the DER scope. A wide range of efficiency measures was applied to pursue this savings target for the DER building, including improvements/replacements of mechanical equipment and distribution systems, appliances, lighting and lighting controls, the building envelope, hot water conservation measures, and resident education. The results of this research build upon the current body of knowledge of multifamily retrofits. Towards this end, the research team has collected and generated data on the selection of measures, their estimated performance, their measured performance, and risk factors and their impact on potential measures.

Lyons, J.; Moore, M.; Thompson, M.

2013-08-01T23:59:59.000Z

425

Measuring energy-saving retrofits: Experiences from the Texas LoanSTAR program  

SciTech Connect

In 1988 the Governor`s Energy Management Center of Texas received approval from the US Department of Energy to establish a $98.6 million state-wide retrofit demonstration revolving loan program to fund energy-conserving retrofits in state, public school, and local government buildings. As part of this program, a first-of-its-kind, statewide Monitoring and Analysis Program (MAP) was established to verify energy and dollar savings of the retrofits, reduce energy costs by identifying operational and maintenance improvements, improve retrofit selection in future rounds of the LoanSTAR program, and initiate a data base of energy use in institutional and commercial buildings located in Texas. This report discusses the LoanSTAR MAP with an emphasis on the process of acquiring and analyzing data to measure savings from energy conservation retrofits when budgets are a constraint. This report includes a discussion of the program structure, basic measurement techniques, data archiving and handling, data reporting and analysis, and includes selected examples from LoanSTAR agencies. A summary of the program results for the first two years of monitoring is also included.

Haberl, J.S.; Reddy, T.A.; Claridge, D.E.; Turner, W.D.; O`Neal, D.L.; Heffington, W.M. [Texas A and M Univ., College Station, TX (United States). Energy Systems Lab.] [Texas A and M Univ., College Station, TX (United States). Energy Systems Lab.

1996-02-01T23:59:59.000Z

426

Research on Commercial Patterns of China Existing Building Energy Retrofit Based on Energy Management Contract  

E-Print Network (OSTI)

Existing building energy retrofit is one of the keys of building energy efficiency in China. According to experience in developed countries, implementation of energy management contract (EMC) is crucial to promote existing building energy retrofit, which means that the reduction of energy expenditure is used to pay the retrofit cost. The EMC program has a short payback period, high interior return rate and remarkable energy savings. This paper present the specialties and difficulties of existing building energy conservation in China and the development, service items and commercial patterns of EMC. We discuss the main methods and ways that EMC is applied to existing building energy retrofit at the original stage of building energy efficiency by analyzing the difference of EMC and other traditional energy efficiency patterns. Based on the analysis of three commercial patterns of EMC including guaranteed savings contract, shared savings contract and chauffage contract, we propose that the guaranteed savings contract is the main development direction of building energy efficiency service in China. At the same time, new financing methods and energy-saving measurement and verification standards should be established to ensure that EMC plays an important role in the process of existing building energy retrofit in China.

Han, Z.; Liu, C.; Sun, J.

2006-01-01T23:59:59.000Z

427

NETL: CCPI - TOXECON Retrofit for Mercury and Multi-Pollutant Control on  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Control Devices - Multi-Pollutant Control Technologies Environmental Control Devices - Multi-Pollutant Control Technologies TOXECON Retrofit for Mercury and Multi-Pollutant Control on Three 90 MW Coal-Fired Boilers - Project Brief [PDF-63KB] Wisconsin Electric Power Company, Marquette, Michigan PROJECT FACT SHEET TOXECON Retrofit for Mercury and Multi-Pollutant Control on Three 90 MW Coal-Fired Boilers [PDF-761KB] (May 2011) PROGRAM PUBLICATIONS Final Report TOXECON Retrofit for Mercury and Multi-Pollutant Control on Three 90 MW Coal-Fired Boilers Final Report [PDF-113MB] (Apr 2004 - Sept 2009) Quarterly Progress Reports January - March 2009 [PDF-970KB] (Apr 2009) October -December 2008 [PDF-3MB] (Jan 2009) July - September 2008 [PDF-630KB] (Oct 2008) April - June 2008 [PDF-1.5MB] (July 2008) January - March 2008 [PDF-610KB] (Apr 2008)

428

EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining Existing Buildings  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EnergySmart Schools EnergySmart Schools EnergySmart Schools Tips: Retrofitting, Operating, and Maintaining Existing Buildings Quick wins and long-term facility management strategies that pay for themselves and result in energy savings Typical School Energy Use Distribution (varies by climate zone) 30% Lighting Cooling Space Heating Water Heating Other 23% 30% 10% 7% Combining preventative operations and maintenance (O&M) with strategic retrofitting of building systems improves a school's energy performance. For schools with limited resources and experience, "quick wins" in O&M and retrofitting provide a valuable starting point to energy management. As a next step, strategically prioritizing long- and short-term measures produces overall returns on investment. Please refer to the

429

Study of Multifamily Energy Retrofit Using Flexible Multizone Building Simulation Model  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study of Multifamily Study of Multifamily Energy Retrofit using Flexible, Multizone Building Simulation Model Piljae Im, Ph.D. Mini Malhotra, Ph.D. R&D Staff Oak Ridge National Laboratory Presented at Building America Technical Update Meeting April 29-30, 2013 Outline * Multifamily Energy Audit Tool - Background - Needs for MF Audit Tool - Existing MF Tools - Modeling Approach - Development Status * Case Study - Background - Pre/Post Retrofit Building characteristics - Whole Building Energy Analysis * Summary Managed by UT-Battelle for the U.S. Department of Energy Study of Multifamily Energy Retrofit using Flexible, Multizone Building Simulation Model 2 Background * New MF Building Energy Audit Tool sponsored by U.S. DOE * Collaboration of ORNL and LBNL * National web-based

430

Strategy Guideline: Energy Retrofits for Low-Rise Multifamily Buildings in Cold Climates  

SciTech Connect

This Strategy Guideline explains the benefits of evaluating and identifying energy efficiency retrofit measures that could be made during renovation and maintenance of multifamily buildings. It focuses on low-rise multifamily structures (three or fewer stories) in a cold climate. These benefits lie primarily in reduced energy use, lower operating and maintenance costs, improved durability of the structure, and increased occupant comfort. This guideline focuses on retrofit measures for roof repair or replacement, exterior wall repair or gut rehab, and eating system maintenance. All buildings are assumed to have a flat ceiling and a trussed roof, wood- or steel-framed exterior walls, and one or more single or staged boilers. Estimated energy savings realized from the retrofits will vary, depending on the size and condition of the building, the extent of efficiency improvements, the efficiency of the heating equipment, the cost and type of fuel, and the climate location.

Frozyna, K.; Badger, L.

2013-04-01T23:59:59.000Z

431

Retrofit Audits and Cost Estimates: A Look at Quality and Consistency  

Science Conference Proceedings (OSTI)

Retrofit NYC Block by Block is an outreach program targeting owners of one- to four-family homes, the most common building type in New York City, with more than 600,000 structures citywide. Administered by the Pratt Center for Community Development and implemented by four nonprofit, community based organizations, Block by Block connects residents, businesses, and religious and civic organizations in predominantly low- and moderate-income neighborhoods with one or more of a half-dozen public and private financial incentive programs that facilitate energy-efficiency retrofits. This research project sought to evaluate the approach, effectiveness, and the energy use reductions accomplished by the Retrofit NYC: Block by Block program.

Eisenberg, L.; Shapiro, C.; Fleischer, W.

2012-10-01T23:59:59.000Z

432

Full-scale demonstration Low-NO sub x Cell trademark Burner retrofit  

Science Conference Proceedings (OSTI)

The overall objectives of the full-Scale Low-NOx Cell{trademark} Burner (LNCB{trademark}) Retrofit project is to demonstrate the cost-effective reduction of NOx generated by a large, base-loaded (70% capacity factor or greater), coal-fired utility boiler. Specific objectives include: (1) At least 50% NOx reduction over standard two-nozzle cell burners, without degradation of boiler performance or life; (2) acquire and evaluate emission and boiler performance data before and after the retrofit to determine NOx reduction and impact on overall boiler performance; (3) demonstrate that the LNCB{trademark} retrofits are the most cost-effective alternative to emerging, or commercially-available NOx control technology for units equipped with cell burners. The focus of this demonstration is to determine maximum NOx reduction capabilities without adversely impacting plant performance, operation and maintenance.

Not Available

1992-03-18T23:59:59.000Z

433

Energy and Cost Savings of Retro-Commissioning and Retrofit Measures for Large Office Buildings  

Science Conference Proceedings (OSTI)

This paper evaluates the energy and cost savings of seven retro-commissioning measures and 29 retrofit measures applicable to most large office buildings. The baseline model is for a hypothetical building with characteristics of large office buildings constructed before 1980. Each retro-commissioning measure is evaluated against the original baseline in terms of its potential of energy and cost savings while each retrofit measure is evaluated against the commissioned building. All measures are evaluated in five locations (Miami, Las Vegas, Seattle, Chicago and Duluth) to understand the impact of weather conditions on energy and cost savings. The results show that implementation of the seven operation and maintenance measures as part of a retro-commissioning process can yield an average of about 22% of energy use reduction and 14% of energy cost reduction. Widening zone temperature deadband, lowering VAV terminal minimum air flow set points and lighting upgrades are effective retrofit measures to be considered.

Wang, Weimin; Zhang, Jian; Moser, Dave; Liu, Guopeng; Athalye, Rahul A.; Liu, Bing

2012-08-03T23:59:59.000Z

434

Technique for tracking the effect of weatherization retrofits on low-income housing  

SciTech Connect

This report presents a technique for analyzing the effect of energy saving retrofits installed in low-income housing under a nationwide weatherization demonstration program. A tracking technique, based on the calculated balance-point temperature of each home prior to the weatherization, was developed to estimate the would-be fuel consumption over a period of time if the house had not been weatherized. The savings in fuel consumption for a home can be determined from the difference between the actual usage after retrofit and the calculated usage if it were not retrofitted. Besides the overall reduction, the saving in energy usage during different time periods while the house is being weatherized can be visualized from the graphical representation of the tracking technique.

Chang, Y.L.; Grot, R.A.

1983-04-01T23:59:59.000Z

435

NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NASA Ames Saves Energy and Reduces Project Costs NASA Ames Saves Energy and Reduces Project Costs with Non-Invasive Retrofit Technologies The Wireless Pneumatic Thermostat Enables Energy Efficiency Strategies, Ongoing Commissioning and Improved Operational Control Harry Sim CEO Cypress Envirosystems harry.sim@cypressenvirosystems.com www.cypressenvirosystems.com NASA Ames Reduced Project Cost by Over 80% with Non-Invasive Retrofit Technologies * Legacy Pneumatic Thermostats  Waste energy  High maintenance costs  Uncomfortable occupants  No visibility * Project Scope  14 buildings  1,370 pneumatic thermostats  Integration with campus BAS  Diagnostics for ongoing commissioning * Traditional DDC Retrofit  Cost over $4.1 million  Asbestos exposure/abatement  Occupants significantly disrupted

436

Selecting effective fluorescent lamp and ballast for retrofit in the continental United States. Final report  

SciTech Connect

Electrical lighting is a major contributor to daytime peak energy demand, accounting for about 30 percent of total electricity consumption in most Army facilities. Some of this energy may be wasted because many existing lighting systems at Army Installations use outmoded technologies. While recent technology has improved the energy efficiency of all lighting systems, fluorescent lighting-the most widely used interior building lighting-has shown the greatest efficiency gains. Retrofits using high-efficiency fluorescent lamps and ballasts can yield significant operating cost savings. High-efficiency fluorescent lighting systems are widely available, but current information on their performance characteristics is highly technical and not easily accessible to Army facility managers considering retrofit options. This report provides a single, accessible source that summarizes fluorescent lamp and ballast performance characteristics and outlines selection procedures. Fluorescent lamp, Retrofit, Ballast, Lighting. Energy conservation.

Taylor, W.R.

1993-08-01T23:59:59.000Z

437

Diesel plant retrofitting options to enhance decentralized electricity supply in Indonesia  

Science Conference Proceedings (OSTI)

Over the last 20 years, the government of Indonesia has undertaken an extensive program to provide electricity to the population of that country. The electrification of rural areas has been partially achieved through the use of isolated diesel systems, which account for about 20% of the country`s generated electricity. Due to many factors related to inefficient power production with diesels, the National Renewable Energy Laboratory, in conjunction with PLN, the Indonesian national utility, Community Power Corporation, and Idaho Power Company, analyzed options for retrofitting existing diesel power systems. This study considered the use of different combinations of advanced diesel control, the addition of wind generators, photovoltaics and batteries to reduce the systems of overall cost and fuel consumption. This analysis resulted in a general methodology for retrofitting diesel power systems. This paper discusses five different retrofitting options to improve the performance of diesel power systems. The systems considered in the Indonesian analysis are cited as examples for the options discussed.

Baring-Gould, E.I.; Barley, C.D.; Drouilhet, S. [and others

1997-09-01T23:59:59.000Z

438

On Target: A Complicated and Successful Energy Retrofit Program  

E-Print Network (OSTI)

The Lone Star Gas Corporate headquarters, in Dallas, Texas, consists of a five building, 355,000 square foot office complex with buildings ranging in age from 14 - 60 years old between 20,000 - 100,000 square feet (SF), and with multiple HVAC systems served by two central plants. The company was facing the inevitable increase in electric utility costs knowing that two reactors at a new construction nuclear power plant would be coming on line over during the next five years. By taking a proactive stance, a six month detailed energy audit commenced after a thorough internal energy analysis was conducted. The result of the audit was a multi-year $1.7 million retrofit project encompassing nearly 20 major items would be implemented over three years. Total energy and cost avoidance savings were calculated to yield a simple pay back of 1.5 years and a cash pay out of 3.5 years. Total energy reductions of 32% were achieved and the predicted economics realized. The various projects involved the application of nearly 18,000 square feet of window tinting, a total facility relamping and efficiency improvement project, installation of more efficient filtration systems, installation of control valves on the chillwater system, installation of a building automation system, installation of a plate heat exchanger for hydronic free-cooling, isolation of after-hours and 24-hour cooling loads on a separate loop, isolation and conversion of 24-hour steam requirements to reduce excess boiler capacity and run time, improvement of return air systems, the replacement and increase of cooling tower capacity, implement a preventive maintenance program, and improved operating procedures that focused on demand side management without thermal storage. The combined results of these single projects enabled the facility to remove and not replace 25% of the physical plant cooling equipment (one single-effect steam absorber) upon reaching the end of its expected life. Project costs and avoided savings were tracked monthly throughout the three year period. Additional energy and cost avoidance tracking for two more years was completed. In five years, a positive cash flow of more than $550,00 is only 9% less than the original projection. Improved employee comfort and enhanced space conditions have returned significant benefits to the work force of nearly one thousand people occupying this facility.

Kimball, M. A.

1996-01-01T23:59:59.000Z

439

Action Items  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ACTION ITEMS ACTION ITEMS Presentation to the DOE High Level Waste Corporate Board July 29, 2009 Kurt Gerdes Office of Waste Processing DOE-EM Office of Engineering & Technology 2 ACTION ITEMS Action Item Status * Approve Performance Assessment Community of Practice Charter * Charter approved 13 July 2009 by majority vote of Board (balloting conducted by e- mail). * Report on first Performance Assessment Community of Practice meeting * Meeting held on 13-14 July 2009. Report by David Kosson, PhD, Vanderbilt University and CRESP * Update of Tank Waste Corporate Board Charter to include changes resulting from changes in Office of Environmental Management * In progress (pending completion of any reorganization) * Update of Performance Assessment Community of Practice Charter to include

440

Persistence of energy savings of lighting retrofit technologies at the Forrestal Building  

SciTech Connect

In 1989, the Forrestal Building, headquarters for the U.S. Department of Energy, was chosen for a major lighting retrofit project. The project replaced the aging fighting system newer, energy-efficient fixtures. Pacific Northwest Laboratory conducted a three-part monitoring study at the Forrestal Building to (1) characterize building energy use, (2) empirically measure savings realized by the lighting retrofit, and (3) determine the persistence of energy savings. This report summarizes the findings from the third and final monitoring phase. Two data loggers were left installed at the Forrestal Building and data were collected for a 12-month period after the lighting retrofit was completed. An analysis-of-variance test indicated that the mean monthly lighting demand is increasing. A regression analysis performed on the data indicated that the mean monthly lighting demand for workdays is increasing at a rate of 0.3652{+-}0.1101 kW/mo. The nonworkday demand is increasing at a rate of 0.3408{+-}0.1027 kW/mo. During the same period, workday mean monthly plug load demand increased 0.0912{+-}0.0275 kW/mo., while nonworkday plug loads decreased slightly. The gradual increase, though significant, is reduced when compared to the 56% savings recorded after the lighting retrofit. The increase is attributed to a combination of occupants returning to original (pre-retrofit poor) behavior and a small set of occupancy sensors being defeated by building occupants. Degradation of lighting fixtures from {open_quotes}burn-in time{close_quotes} was ruled out because all burn-in time is expected in the first few months and the increasing trend persists over the 11 months of this study. Because the lighting demand was still increasing at the end of the study, without further data collection, it was not possible to determine when the increase would level out. Therefore, the true energy savings from the lighting retrofit remain unknown.

Chvala, W.D. Jr.; Wahlstrom, R.R.; Halverson, M.A.

1995-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "action coalition retrofit" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The evaluation of a 4000-home geothermal heat pump retrofit at Fort Polk, Louisiana: Final Report  

SciTech Connect

This report documents an independent evaluation of an energy retrofit of 4,003 family housing units at Fort Polk, Louisiana, under an energy savings performance contract (ESPC). Replacement of the heating, cooling, and water heating systems in these housing units with geothermal heat pumps (GHPs) anchored the retrofit; low-flow shower heads and compact fluorescent lighting were also installed, as well as attic insulation where needed. Statistically valid findings indicate that the project will save 25.8 million kWh, or 32.5% of the pre-retrofit whole-community electrical consumption, and 100% of the whole-community natural gas previously used for space conditioning and water heating (260,000 therms) in a typical meteorological year. At the end-use level, the GHPs were found to save about 42% of the pre-retrofit electrical consumption for heating, cooling, and water heating in housing units that were all-electric in the pre-retrofit period. This report also demonstrates an improved method of predicting energy savings. Using an engineering model calibrated to pre-retrofit energy use data collected in the field, the method predicted actual energy savings on one of the electric feeders at Fort Polk with a very high degree of accuracy. The accuracy of this model was in turn dependent on data-calibrated models of the geothermal heat pump and ground heat exchanger that are described in this report. In addition this report documents the status of vertical borehole ground heat exchanger (BHEx) design methods at the time this project was designed, and demonstrates methods of using data collected from operating GHP systems to benchmark BHEx design methods against a detailed engineering model calibrated to date. The authors also discuss the ESPC`s structure and implementation and how the experience gained here can contribute to the success of future ESPCs.

Hughes, P.J.; Shonder, J.A.

1998-03-01T23:59:59.000Z

442

The USDOE Forrestal Building Lighting Retrofit: Preliminary Analysis of Electricity Savings  

E-Print Network (OSTI)

In September of 1993 a 36,832 fixture lighting retrofit was completed at the United States Department of Energy Forrestal complex in Washington, D.C. This retrofit represents DOE's largest project to date that utilizes a Shared Energy Savings (SES) agreement as authorized under Public Law 99-272. As DOE's first major SES contract, it was important that every aspect of this project serve as the cornerstone of DOE's Federal Relighting Initiative, including the careful measurement of the electricity and thermal energy savings.

Haberl, J. S.; Bou-Saada, T. E.; Vajda, E. J.; Shincovich, M.; D'Angelo III, L.; Harris, L.

1994-01-01T23:59:59.000Z

443

Identification and evaluation of data sources for the commercial buildings retrofit market  

SciTech Connect

The objectives of this study are to identify data sources that provide information on current and future levels of commercial buildings retrofit activity in the US, and to evaluate the coverage these data sources provide the commercial retrofit industry. Data sources evaluated include reports, magazines, computerized data bases, and surveys. Relevant data sources were identified through a literature review and by telephone and mail contacts with building industry experts and trade associations. A brief summary of each of the data sources is provided and recommendations are made for gathering additional data to supplement the existing data source.

Smith, S.A.; Johnson, D.R.

1986-10-01T23:59:59.000Z

444

Tiger Teams Provide Coalitions Technical and Market Assistance. Clean Cities Alternative Fuel Information Series, Tiger Teams Technical Assistance Fact Sheet.  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Clean Cities Technical Assistance Teams (Tiger Teams) Clean Cities Technical Assistance Teams (Tiger Teams) were formed in 2001 to work directly with Clean Cities coordinators, stakeholders, and partners to tackle difficult technical and market challenges that might otherwise stall alternative fuel vehicle (AFV) implementation projects. The Tiger Team project, managed by the National Renewable Energy Laboratory (NREL), was established by the U.S. Department of Energy (DOE) to provide technical expertise to the 80 Clean Cities coalitions operating across the country. The Tiger Teams provide assistance when coalitions encounter barriers that challenge local resources. Tiger Team specialists contracted by NREL have expertise in compressed natural gas (CNG) fueling station design and implementation; natural gas, propane, and biofuel

445

Cold Climate Foundation Retrofit Energy Savings: The Simulated Energy and Experimental Hygrothermal Performance of Cold Climate Foundation Wall Insulation Retrofit Measures -- Phase I, Energy Simulation  

SciTech Connect

A split simulation whole building energy/3-dimensional earth contact model (termed the BUFETS/EnergyPlus Model or BEM) capable of modeling the full range of foundation systems found in the target retrofit housing stock has been extensively tested. These foundation systems that include abovegrade foundation walls, diabatic floors or slabs as well as lookout or walkout walls, currently cannot be modeled within BEopt.

Goldberg, L. F.; Steigauf, B.

2013-04-01T23:59:59.000Z

446

A Summary of EPRI's Pulverized Coal (PC) and Circulating Fluidized Bed (CFB) Post Combustion CO2 Capture Retrofit Studies: The Five North American Retrofit Cases  

Science Conference Proceedings (OSTI)

This report examines the feasibility of retrofitting post-combustion capture (PCC) technology to existing pulverized coal (PC) and/or circulating fluidized bed (CFB) power plants, for five different host participant sites. The knowledge gained from previous CoalFleet ultra-supercritical PCC design studiesdescribed in the Electric Power Research Institute (EPRI) report An Engineering and Economic Assessment of Post-Combustion CO2 Capture for 1100 F Ultra-Supercritical Pulverized ...

2012-12-31T23:59:59.000Z

447

Evaluation of DOE's Partnership in Low-Income Residential Retrofit (PILIRR) Program  

Science Conference Proceedings (OSTI)

In July 1986, the US Department of Energy (DOE) awarded competitive grants to five states to conduct pilot projects to establish partnerships and use resource leveraging to stimulate support for low-income residential energy retrofits. The projects were conducted under DOE's Partnerships in Low-Income Residential Retrofit (PILIRR) Program. These projects have been monitored and analyzed through a concurrent process evaluation conducted by the Pacific Northwest Laboratory (PNL). This study reports the findings of that evaluation. The overriding goal of the PILIRR Program was to determine whether the states could stimulate support for low-income residential energy improvements from non-federal sources. The goal for the process evaluation was to conduct an assessment of the processes used by the states and the extent to which they successfully established partnerships and leveraged resources. Five states were selected to participate in the program: Florida, Iowa, Kentucky, Oklahoma and Washington. Each state proposed a different approach to promote non-federal support for low-income residential weatherization. Three of the five states--Florida, Iowa, and Washington--established partnerships that led to retrofits during the monitoring period (October 1986--October 1988). Kentucky established its partnership during the monitoring period, but did not accomplish its retrofits until after monitoring was complete. Oklahoma completed development of its marketing program and had begun marketing efforts by the end of the monitoring period. 16 refs., 7 figs., 1 tab.

Callaway, J.W.; Lee, A.D.

1989-05-01T23:59:59.000Z

448

Sustainable wall construction and exterior insulation retrofit technology process and structure  

DOE Patents (OSTI)

A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

Vohra, Arun (Bethesda, MD)

2000-01-01T23:59:59.000Z

449

Preliminary guidelines for condition assessment of buildings being considered for solar retrofit  

DOE Green Energy (OSTI)

The report contains a general description of methods currently available for condition assessment of the structural; heating, ventilating, and air conditioning (HVAC); electrical; and plumbing systems of an existing building, in order to determine the feasibility of rehabilitation for solar retrofit.

Lerchen, F.H.; Pielert, J.H.; Chen, P.T.

1981-07-01T23:59:59.000Z

450

Low-cost passive solar-retrofit options for mobile homes  

DOE Green Energy (OSTI)

Passive solar heating and cooling retrofit options can significantly reduce the energy consumption of new and existing mobile homes. The initial efforts of the Solar Energy Research Institute to explore the solar potential for the existing stock of mobile homes and those in the production stage are described.

Brant, S.; Holtz, M.; Tasker, M.

1981-03-01T23:59:59.000Z

451

Demonstration Development Project: Large-Scale Post-Combustion CO2 Capture Retrofit Demonstration Project Review  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) has reviewed proposed demonstration sites for retrofitting post-combustion CO2 capture onto an existing coal-fired plant. This report discusses and reviews this set of demonstration projects to provide background information and the rationale for EPRI to pursue being involved in one or more of these projects.

2010-12-17T23:59:59.000Z

452

Advanced Energy Retrofit Guide (AERG): Practical Ways to Improve Energy Performance; Healthcare Facilities (Book)  

SciTech Connect

The Advanced Energy Retrofit Guide for Healthcare Facilities is part of a series of retrofit guides commissioned by the U.S. Department of Energy. By presenting general project planning guidance as well as detailed descriptions and financial payback metrics for the most important and relevant energy efficiency measures (EEMs), the guides provide a practical roadmap for effectively planning and implementing performance improvements in existing buildings. The Advanced Energy Retrofit Guides (AERGs) are intended to address key segments of the U.S. commercial building stock: retail stores, office buildings, K-12 schools, grocery stores, and healthcare facilities. The guides' general project planning considerations are applicable nationwide; the energy and cost savings estimates for recommended EEMs were developed based on energy simulations and cost estimates for an example hospital tailored to five distinct climate regions. These results can be extrapolated to other U.S. climate zones. Analysis is presented for individual EEMs, and for packages of recommended EEMs for two project types: existing building commissioning projects that apply low-cost and no-cost measures, and whole-building retrofits involving more capital-intensive measures.

Hendron, R.; Leach, M.; Bonnema, E.; Shekhar, D.; Pless, S.

2013-09-01T23:59:59.000Z

453

Byggmeister Test Home: Cold Climate Multifamily Masonry Building Condition Assessment and Retrofit Analysis  

SciTech Connect

This report describes a retrofit project undertaken by Building Science Corporation and partner Byggmeister on a multifamily brick row house located in Jamaica Plain, MA. This project studied the row house to determine the right combination of energy efficiency measures that are feasible, affordable, and suitable for this type of construction and acceptable to homeowners.

Wytrykowska, H.; Ueno, K.; Van Straaten, R.

2012-09-01T23:59:59.000Z

454

Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control  

E-Print Network (OSTI)

Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control David Gabriel* and Marc A. Deshusses Department of Chemical and Environmental Engineering, University required much larger reactor volumes than chemical scrubbers. We converted an existing full-scale chem

455

Retrofitted feedwater heat storage for steam electric power stations peaking power engineering study. Final report  

DOE Green Energy (OSTI)

The technical and economic feasibility of retrofitting existing nuclear or fossil-fueled steam power plants with feedwater thermal energy storage (TES) systems for peaking power applications was investigated. A major objective of the study was to determine if retrofitted thermal energy storage (RTES) systems could result in significant fuel savings in oil- and gas-fired peaking plants. From this study it was concluded that RTES require high capital expenditure, excessive plant downtime for installation (16 mo for fossil-fuel; 24 mo for nuclear), that retrofitting 17,000 MWe of coal and nuclear plants would result in only about 2 percent annual savings in oil consumed by the U.S. utility industry in 1974, and that the technical questions which remain could best be answered by retrofitting a relatively new reliable plant as a test facility. The utility industry is receptive to the TES concept but not to the RTES concept. It is recommended that no further effort be expended on RTES, that TES studies should concentrate on coal and nuclear plants, and that a TES Proof-of-Concept Facility should be designed and constructed. (LCL)

None

1976-10-01T23:59:59.000Z

456

Development of Cost Effective Oxy-Combustion Retrofitting for Coal-Fired Boilers  

Science Conference Proceedings (OSTI)

The overall objective of this project is to further develop the oxy-combustion technology for commercial retrofit in existing wall-fired and Cyclone boilers by 2012. To meet this goal, a research project was conducted that included pilot-scale testing and a full-scale engineering and economic analysis.

Hamid Farzan

2010-12-31T23:59:59.000Z

457

Metering and Monitoring Approaches for Verifying Energy Savings from Energy Conservation Retrofits: Experiences from the Field  

E-Print Network (OSTI)

This paper describes instrumentation approaches used in the verification of energy savings from industrial and large institutional energy conservation retrofits. Techniques for monitoring electricity, natural gas and thermal energy flows are presented. Insights gained from the actual in-field installation of monitoring equipment are shared and lessons learned are provided.

McBride, J. R.; Bohmer, C. J.; Lippman, R. H.

1995-04-01T23:59:59.000Z

458

A Bin Method for Calculating Energy Conservation Retrofit Savings in Commercial Buildings  

E-Print Network (OSTI)

The calculation of measured energy savings from energy conservation retrofits is an important step in the verification of the success of a retrofit (Claridge et al. 1992). Several methods for calculating the savings from energy conservation retrofits to HVAC systems in the LoanSTAR program have been proposed, including linear and change-point linear empirical models and calibrated simulation models. Simple least squares linear regression is easiest to use and understand, but is incapable of describing non-linear temperature dependencies of a building's energy use. Change-point linear models are more complex than the simple linear regression and cover a broader range of buildings. However, there are some buildings for which change-point linear models do not fit the data adequately. This paper presents a first look at an hourly bin method for calculating energy savings from energy conservation retrofits to HVAC systems based on hourly whole-building electricity, sub-metered motor control center use and thermal energy measurements. A general procedure for determining the appropriate number of bins is described and the bin method is applied to data from several agencies participating in the LoanSTAR program. Results are compared to existing savings calculation procedures for two buildings.

Thamilseran, S.; Haberl, J. S.

1994-01-01T23:59:59.000Z

459

FLASTAR: Measured Savings of a Comprehensive Energy Retrofit in a Florida Elementary School  

E-Print Network (OSTI)

This paper describes the final results for the pilot demonstration of the Florida Public Building Loan Concept. This loan program was intended to provide low cost funds to eligible public entities for upgrade of building energy systems. The site was an elementary school in Central Florida which served as the pilot project to demonstrate energy savings in public buildings similar to that achieved by the Texas LOANSTAR program (Verdict et.al., 1990). Termed FLASTAR (Florida Alliance for Saving Taxes and Resources), the study entailed the comprehensive metering of a test site to demonstrate energy savings potential. Over twenty channels of weather and submetered energy data have been collected since April 12.1995. Annual billed energy consumption for the 41.000 square foot facility was approximately 775,000 kWh (60 kBtu/ft^2) or $55,200 in the base year (1994). During the summer of 1995, replacement of aging chillers resulted in 30% reduction to cooling energy use. The second retrofit was occupancy sensor controls for classroom and office lighting which were installed in December 1995. However, post retrofit data showed that metered lighting energy use actually increased after the occupancy sensors were installed. Our data, and that of other projects. suggests that the occupancy sensor retrofit may have increased lighting on-times. Previously school personnel practiced responsible manual switching. but then came to depend on automatic control after the retrofit. The final project retrofit saw an energy management system (EMS) added in the summer of 1996. The system provided direct digital control @DC) of the school chiller, air handlers and packaged direct expansion (DX) roof-top cooling systems. The EMS equipment reduced chiller energy use by a further 16% and air handling and DX system energy consumption by 30%. The project retrofits were found to reduce overall school energy use by approximately 15% or 120.000 kWh per year. The annual energy savings totaled $4,600 at current energy prices, although the retrofits did not significantly impact facility peak load.

Sherwin, J. R.; Parker, D. S.

1998-01-01T23:59:59.000Z

460

Actual and Estimated Energy Savings Comparison for Deep Energy Retrofits in the Pacific Northwest  

Science Conference Proceedings (OSTI)

Seven homes from the Pacific Northwest were selected to evaluate the differences between estimated and actual energy savings achieved from deep energy retrofits. The energy savings resulting from these retrofits were estimated, using energy modeling software, to save at least 30% on a whole-house basis. The modeled pre-retrofit energy use was trued against monthly utility bills. After the retrofits were completed, each of the homes was extensively monitored, with the exception of one home which was monitored pre-retrofit. This work is being conducted by Pacific Northwest National Laboratory (PNNL) for the U.S. Department of Energy Building Technologies Program as part of the Building America Program. This work found many discrepancies between actual and estimated energy savings and identified the potential causes for the discrepancies. The differences between actual energy use and modeled energy use also suggest improvements to improve model accuracy. The difference between monthly whole-house actual and estimated energy savings ranged from 75% more energy saved than predicted by the model to 16% less energy saved for all the monitored homes. Similarly, the annual energy savings difference was between 36% and -14%, which was estimated based on existing monitored savings because an entire year of data is not available. Thus, on average, for all six monitored homes the actual energy use is consistently less than estimates, indicating home owners are saving more energy than estimated. The average estimated savings for the eight month monitoring period is 43%, compared to an estimated savings average of 31%. Though this average difference is only 12%, the range of inaccuracies found for specific end-uses is far greater and are the values used to directly estimate energy savings from specific retrofits. Specifically, the monthly post-retrofit energy use differences for specific end-uses (i.e., heating, cooling, hot water, appliances, etc.) ranged from 131% under-predicted to 77% over-predicted by the model with respect to monitored energy use. Many of the discrepancies were associated with occupant behavior which influences energy use, dramatically in some cases, actual versus modeled weather differences, modeling input limitations, and complex homes that are difficult to model. The discrepancy betw