National Library of Energy BETA

Sample records for actinide shock physics

  1. Joint Actinide Shock Physics Experimental Research | National...

    National Nuclear Security Administration (NNSA)

    Joint Actinide Shock Physics Experimental Research The JASPER gas gun at the Nevada ... For more information visit JASPER's webpage. Jasper Gun Related Topics Maintaining the ...

  2. Joint Actinide Shock Physics Experimental Research - JASPER

    ScienceCinema (OSTI)

    None

    2015-01-09

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  3. Joint Actinide Shock Physics Experimental Research - JASPER

    SciTech Connect (OSTI)

    2014-10-31

    Commonly known as JASPER the Joint Actinide Shock Physics Experimental Research facility is a two stage light gas gun used to study the behavior of plutonium and other materials under high pressures, temperatures, and strain rates.

  4. Joint Actinide Shock Physics Experimental Research | National Nuclear

    National Nuclear Security Administration (NNSA)

    Security Administration | (NNSA) Joint Actinide Shock Physics Experimental Research The JASPER gas gun at the Nevada National Security Site is used to fire a projectile at a plutonium target. The shock wave produced by the impact passes through the plutonium, and diagnostic equipment measures the properties of the shocked plutonium. Shock physics experiments such as this are critical to maintaining the safety and security of the nation's stockpile in the absence of underground nuclear

  5. Actinides-1981

    SciTech Connect (OSTI)

    Not Available

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  6. Actinide Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Actinide Chemistry Actinide chemistry serves a critical role in addressing global threats Project Description At Los Alamos, scientists are using actinide analytical chemistry to ...

  7. Actinide Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Actinide Chemistry Actinide Chemistry Research into alternative forms of energy, especially energy security, is one of the major national security imperatives of this century. Get Expertise David Gallimore Actinide Analytical Chemistry Email Rebecca Chamberlin Actinide Analytical Chemistry Email Josh Smith Chemistry Communications Email Along with the lanthanides, they are often called "the f-elements" because they have valence electrons in the f shell. Actinide chemistry serves a

  8. A survey of numerical methods for shock physics applications

    SciTech Connect (OSTI)

    Hertel, E.S. Jr.

    1997-10-01

    Hydrocodes or more accurately, shock physics analysis packages, have been widely used in the US Department of Energy (DOE) laboratories and elsewhere around the world for over 30 years. Initial applications included weapons effects studies where the pressure levels were high enough to disregard the material strength, hence the term hydrocode. Over the last 30 years, Sandia has worked extensively to develop and apply advanced hydrocodes to armor/anti-armor interactions, warhead design, high explosive initiation, and nuclear weapon safety issues. The needs of the DOE have changed over the last 30 years, especially over the last decade. A much stronger emphasis is currently placed on the details of material deformation and high explosive initiation phenomena. The hydrocodes of 30 years ago have now evolved into sophisticated analysis tools that can replace testing in some situations and complement it in all situations. A brief history of the development of hydrocodes in the US will be given. The author also discusses and compares the four principal methods in use today for the solution of the conservation equations of mass, momentum, and energy for shock physics applications. The techniques discussed are the Eulerian methods currently employed by the Sandia multi-dimensional shock physics analysis package known as CTH; the element based Lagrangian method currently used by codes like DYNA; the element free Lagrangian method (also known as smooth particle hydrodynamics) used by codes like the Los Alamos code SPHINX; and the Arbitrary Lagrangian Eulerian methods used by codes like the Lawrence Livermore code CALE or the Sandia code ALEGRA.

  9. Shock and Detonation Physics at Los Alamos National Laboratory

    SciTech Connect (OSTI)

    Robbins, David L; Dattelbaum, Dana M; Sheffield, Steve A

    2012-08-22

    WX-9 serves the Laboratory and the Nation by delivering quality technical results, serving customers that include the Nuclear Weapons Program (DOE/NNSA), the Department of Defense, the Department of Homeland Security and other government agencies. The scientific expertise of the group encompasses equations-of-state, shock compression science, phase transformations, detonation physics including explosives initiation, detonation propagation, and reaction rates, spectroscopic methods and velocimetry, and detonation and equation-of-state theory. We are also internationally-recognized in ultra-fast laser shock methods and associated diagnostics, and are active in the area of ultra-sensitive explosives detection. The facility capital enabling the group to fulfill its missions include a number of laser systems, both for laser-driven shocks, and spectroscopic analysis, high pressure gas-driven guns and powder guns for high velocity plate impact experiments, explosively-driven techniques, static high pressure devices including diamond anvil cells and dilatometers coupled with spectroscopic probes, and machine shops and target fabrication facilities.

  10. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  11. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  12. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  13. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  14. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  15. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Print Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in

  16. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Covalent Bonding in Actinide Sandwich Molecules Covalent Bonding in Actinide Sandwich Molecules Print Wednesday, 28 May 2014 00:00 Glenn Seaborg was one of the first scientists to recognize that differences in the degree of covalent bonding in lanthanide and actinide compounds could have profound consequences for their unique chemical reactivity and physical properties. Now, researchers working at ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic

  17. AN INTEGRAL REACTOR PHYSICS EXPERIMENT TO INFER ACTINIDE CAPTURE CROSS-SECTIONS FROM THORIUM TO CALIFORNIUM WITH ACCELERATOR MASS SPECTROMETRY

    SciTech Connect (OSTI)

    G. Youinou; M. Salvatores; M. Paul; R. Pardo; G. Palmiotti; F. Kondev; G. Imel

    2010-04-01

    The principle of the proposed experiment is to irradiate very pure actinide samples in the Advanced Test Reactor (ATR) at INL and, after a given time, determine the amount of the different transmutation products. The determination of the nuclide densities before and after neutron irradiation will allow inference of effective neutron capture cross-sections. This approach has been used in the past and the novelty of this experiment is that the atom densities of the different transmutation products will be determined using the Accelerator Mass Spectroscopy (AMS) technique at the ATLAS facility located at ANL. It is currently planned to irradiate the following isotopes: 232Th, 235U, 236U, 238U, 237Np, 238Pu, 239Pu, 240Pu, 241Pu, 242Pu, 241Am, 243Am and 248Cm.

  18. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, N.N.; Watkin, J.G.

    1992-03-24

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  19. Actinide metal processing

    DOE Patents [OSTI]

    Sauer, Nancy N.; Watkin, John G.

    1992-01-01

    A process of converting an actinide metal such as thorium, uranium, or plnium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is provided together with a low temperature process of preparing an actinide oxide nitrate such as uranyl nitrte. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage.

  20. Plasma physical parameters along coronal-mass-ejection-driven shocks. I. Ultraviolet and white-light observations

    SciTech Connect (OSTI)

    Bemporad, A.; Susino, R.; Lapenta, G.

    2014-04-01

    In this work, UV and white-light (WL) coronagraphic data are combined to derive the full set of plasma physical parameters along the front of a shock driven by a coronal mass ejection. Pre-shock plasma density, shock compression ratio, speed, and inclination angle are estimated from WL data, while pre-shock plasma temperature and outflow velocity are derived from UV data. The Rankine-Hugoniot (RH) equations for the general case of an oblique shock are then applied at three points along the front located between 2.2 and 2.6 R {sub ☉} at the shock nose and at the two flanks. Stronger field deflection (by ∼46°), plasma compression (factor ∼2.7), and heating (factor ∼12) occur at the nose, while heating at the flanks is more moderate (factor 1.5-3.0). Starting from a pre-shock corona where protons and electrons have about the same temperature (T{sub p} ∼ T{sub e} ∼ 1.5 × 10{sup 6} K), temperature increases derived with RH equations could better represent the proton heating (by dissipation across the shock), while the temperature increase implied by adiabatic compression (factor ∼2 at the nose, ∼1.2-1.5 at the flanks) could be more representative of electron heating: the transit of the shock causes a decoupling between electron and proton temperatures. Derived magnetic field vector rotations imply a draping of field lines around the expanding flux rope. The shock turns out to be super-critical (sub-critical) at the nose (at the flanks), where derived post-shock plasma parameters can be very well approximated with those derived by assuming a parallel (perpendicular) shock.

  1. Actinide Analytical Chemistry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AAC Actinide Analytical Chemistry We do analyses that range from assay of the major and ... Group Office (505) 667-4087 The Actinide Analytical Chemistry (C-AAC) Group at Los Alamos ...

  2. Actinide-ion sensor

    SciTech Connect (OSTI)

    Li, Shelly X; Jue, Jan-fong; Herbst, Ronald Scott; Herrmann, Steven Douglas

    2015-01-13

    An apparatus for the real-time, in-situ monitoring of actinide-ion concentrations. A working electrolyte is positioned within the interior of a container. The working electrolyte is separated from a reference electrolyte by a separator. A working electrode is at least partially in contact with the working electrolyte. A reference electrode is at least partially in contact with the reference electrolyte. A voltmeter is electrically connected to the working electrode and the reference electrode. The working electrolyte comprises an actinide-ion of interest. The separator is ionically conductive to the actinide-ion of interest. The separator comprises an actinide, Zr, and Nb. Preferably, the actinide of the separator is Am or Np, more preferably Pu. In one embodiment, the actinide of the separator is the actinide of interest. In another embodiment, the separator further comprises P and O.

  3. CTH: A software family for multi-dimensional shock physics analysis

    SciTech Connect (OSTI)

    Hertel, E.S. Jr.; Bell, R.L.; Elrick, M.G.; Farnsworth, A.V.; Kerley, G.I.; McGlaun, J.M.; Petney, S.V.; Silling, S.A.; Taylor, P.A.; Yarrington, L.

    1992-12-31

    CTH is a family of codes developed at Sandia National Laboratories for modeling complex multi-dimensional, multi-material problems that are characterized by large deformations and/or strong shocks. A two-step, second-order accurate Eulerian solution algorithm is used to solve the mass, momentum, and energy conservation equations. CTH includes models for material strength, fracture, porous materials, and high explosive detonation and initiation. Viscoplastic or rate-dependent models of material strength have been added recently. The formulations of Johnson-Cook, Zerilli-Armstrong, and Steinberg-Guinan-Lund are standard options within CTH. These models rely on using an internal state variable to account for the history dependence of material response. The implementation of internal state variable models will be discussed and several sample calculations will be presented. Comparison with experimental data will be made among the various material strength models. The advancements made in modelling material response have significantly improved the ability of CTH to model complex large-deformation, plastic-flow dominated phenomena. Detonation of energetic material under shock loading conditions has been of great interest. A recently developed model of reactive burn for high explosives (HE) has been added to CTH. This model along with newly developed tabular equations-of-state for the HE reaction by-products has been compared to one- and two-dimensional explosive detonation experiments. These comparisons indicate excellent agreement of CTH predictions with experimental results. The new reactive burn model coupled with the advances in equation-of-state modeling make it possible to predict multi-dimensional burn phenomena without modifying the model parameters for different dimensionality. Examples of the features of CTH will be given. The emphasis in simulations shown will be in comparison with well characterized experiments covering key phenomena of shock physics.

  4. Actinide extraction methods

    DOE Patents [OSTI]

    Peterman, Dean R [Idaho Falls, ID; Klaehn, John R [Idaho Falls, ID; Harrup, Mason K [Idaho Falls, ID; Tillotson, Richard D [Moore, ID; Law, Jack D [Pocatello, ID

    2010-09-21

    Methods of separating actinides from lanthanides are disclosed. A regio-specific/stereo-specific dithiophosphinic acid having organic moieties is provided in an organic solvent that is then contacted with an acidic medium containing an actinide and a lanthanide. The method can extend to separating actinides from one another. Actinides are extracted as a complex with the dithiophosphinic acid. Separation compositions include an aqueous phase, an organic phase, dithiophosphinic acid, and at least one actinide. The compositions may include additional actinides and/or lanthanides. A method of producing a dithiophosphinic acid comprising at least two organic moieties selected from aromatics and alkyls, each moiety having at least one functional group is also disclosed. A source of sulfur is reacted with a halophosphine. An ammonium salt of the dithiophosphinic acid product is precipitated out of the reaction mixture. The precipitated salt is dissolved in ether. The ether is removed to yield the dithiophosphinic acid.

  5. Actinide Research Quarterly

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARQ A publication of the Glenn T. Seaborg Institute for Transactinium Science. Latest Issue:August 2015 ARQ past issues covers All Issues » submit Actinide Research Quarterly (ARQ) ARQ is a publication of the Glenn T. Seaborg Institute for Transactinium Science, a part of the LANL National Security Education Center. The Actinide Research Quarterly reports on research in actinide science in areas such as process chemistry, metallurgy, surface and separation sciences, atomic and molecular

  6. Actinide recovery process

    DOE Patents [OSTI]

    Muscatello, Anthony C. (Arvada, CO); Navratil, James D. (Arvada, CO); Saba, Mark T. (Arvada, CO)

    1987-07-28

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrenedivinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like.

  7. Method for preparing actinide nitrides

    DOE Patents [OSTI]

    Bryan, G.H.; Cleveland, J.M.; Heiple, C.R.

    1975-12-01

    Actinide nitrides, and particularly plutonium and uranium nitrides, are prepared by reacting an ammonia solution of an actinide compound with an ammonia solution of a reactant or reductant metal, to form finely divided actinide nitride precipitate which may then be appropriately separated from the solution. The actinide nitride precipitate is particularly suitable for forming nuclear fuels.

  8. Thermochemistry of the actinides

    SciTech Connect (OSTI)

    Kleinschmidt, P.D.

    1993-10-01

    The measurement of equilibria by Knudsen effusion techniques and the enthalpy of formation of the actinide atoms is briefly discussed. Thermochemical data on the sublimation of the actinide fluorides is used to calculate the enthalpies of formation and entropies of the gaseous species. Estimates are made for enthalpies and entropies of the tetrafluorides and trifluorides for those systems where data is not available. The pressure of important species in the tetrafluoride sublimation processes is calculated based on this thermochemical data.

  9. Actinide recovery process

    DOE Patents [OSTI]

    Muscatello, A.C.; Navratil, J.D.; Saba, M.T.

    1985-06-13

    Process for the removal of plutonium polymer and ionic actinides from aqueous solutions by absorption onto a solid extractant loaded on a solid inert support such as polystyrene-divinylbenzene. The absorbed actinides can then be recovered by incineration, by stripping with organic solvents, or by acid digestion. Preferred solid extractants are trioctylphosphine oxide and octylphenyl-N,N-diisobutylcarbamoylmethylphosphine oxide and the like. 2 tabs.

  10. PRODUCTION OF ACTINIDE METAL

    DOE Patents [OSTI]

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  11. Nonaqueous actinide hydride dissolution and production of actinide $beta$- diketonates

    DOE Patents [OSTI]

    Crisler, L.R.

    1975-11-11

    Actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a hydride of the actinide material in a mixture of carbon tetrachloride and methanol. (auth)

  12. Analyses in Support of Z-Pinch IFE and Actinide Transmutation...

    Office of Scientific and Technical Information (OSTI)

    29 ENERGY PLANNING, POLICY AND ECONOMY; 22 GENERAL STUDIES OF NUCLEAR REACTORS; 70 PLASMA PHYSICS AND FUSION TECHNOLOGY; ACTINIDES; DESIGN; DOCUMENTATION; ELECTRIC ...

  13. SOLVENT FOR EXTRACTING ACTINIDE SALTS

    DOE Patents [OSTI]

    Kaplan, L.

    1959-10-27

    BS>A mixture of hexone and 2-hexylpyridine can be used for the selective extraction of actinide values.

  14. Microbial Transformations of Actinides and Other Radionuclides

    SciTech Connect (OSTI)

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  15. Actinide halide complexes

    DOE Patents [OSTI]

    Avens, L.R.; Zwick, B.D.; Sattelberger, A.P.; Clark, D.L.; Watkin, J.G.

    1992-11-24

    A compound is described of the formula MX[sub n]L[sub m] wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands. A compound of the formula MX[sub n] wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds are described including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant.

  16. Actinide halide complexes

    DOE Patents [OSTI]

    Avens, Larry R.; Zwick, Bill D.; Sattelberger, Alfred P.; Clark, David L.; Watkin, John G.

    1992-01-01

    A compound of the formula MX.sub.n L.sub.m wherein M is a metal atom selected from the group consisting of thorium, plutonium, neptunium or americium, X is a halide atom, n is an integer selected from the group of three or four, L is a coordinating ligand selected from the group consisting of aprotic Lewis bases having an oxygen-, nitrogen-, sulfur-, or phosphorus-donor, and m is an integer selected from the group of three or four for monodentate ligands or is the integer two for bidentate ligands, where the sum of n+m equals seven or eight for monodentate ligands or five or six for bidentate ligands, a compound of the formula MX.sub.n wherein M, X, and n are as previously defined, and a process of preparing such actinide metal compounds including admixing the actinide metal in an aprotic Lewis base as a coordinating solvent in the presence of a halogen-containing oxidant, are provided.

  17. DOE - NNSA/NFO -- National Security Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JASPER NNSANFO Language Options U.S. DOENNSA - Nevada Field Office Joint Actinide Shock Physics Experimental Research (JASPER) Photo of JASPER The Joint Actinide Shock Physics ...

  18. MANTA. An Integral Reactor Physics Experiment to Infer the Neutron Capture Cross Sections of Actinides and Fission Products in Fast and Epithermal Spectra

    SciTech Connect (OSTI)

    Youinou, Gilles Jean-Michel

    2015-10-01

    neutron irradiation allows to infer energy-integrated neutron cross sections, i.e. ∫₀σ(E)φ(E)dE, where φ(E) is the neutron flux “seen” by the sample. This approach, which is usually defined and led by reactor physicists, is referred to as integral and is the object of this report. These two sources of information, i.e. differential and integral, are complementary and are used by the nuclear physicists in charge of producing the evaluated nuclear data files used by the nuclear community (ENDF, JEFF…). The generation of accurate nuclear data files requires an iterative process involving reactor physicists and nuclear data evaluators. This experimental program has been funded by the ATR National Scientific User Facility (ATR-NSUF) and by the DOE Office of Science in the framework of the Recovery Act. It has been given the name MANTRA for Measurement of Actinides Neutron TRAnsmutation.

  19. Actinide Burning in CANDU Reactors

    SciTech Connect (OSTI)

    Hyland, B.; Dyck, G.R.

    2007-07-01

    Actinide burning in CANDU reactors has been studied as a method of reducing the actinide content of spent nuclear fuel from light water reactors, and thereby decreasing the associated long term decay heat load. In this work simulations were performed of actinides mixed with natural uranium to form a mixed oxide (MOX) fuel, and also mixed with silicon carbide to form an inert matrix (IMF) fuel. Both of these fuels were taken to a higher burnup than has previously been studied. The total transuranic element destruction calculated was 40% for the MOX fuel and 71% for the IMF. (authors)

  20. Environmental research on actinide elements

    SciTech Connect (OSTI)

    Pinder, J.E. III; Alberts, J.J.; McLeod, K.W.; Schreckhise, R.G.

    1987-08-01

    The papers synthesize the results of research sponsored by DOE's Office of Health and Environmental Research on the behavior of transuranic and actinide elements in the environment. Separate abstracts have been prepared for the 21 individual papers. (ACR)

  1. Laser Detection of Actinides and Other Elements | U.S. DOE Office of

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science (SC) Laser Detection of Actinides and Other Elements Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 09.01.15 Laser Detection of Actinides and Other Elements

  2. 33rd Actinide Separations Conference

    SciTech Connect (OSTI)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  3. Actinide Thermodynamics at Elevated Temperatures

    SciTech Connect (OSTI)

    Friese, Judah I.; Rao, Linfeng; Xia, Yuanxian; Bachelor, Paula P.; Tian, Guoxin

    2007-11-16

    The postclosure chemical environment in the proposed Yucca Mountain repository is expected to experience elevated temperatures. Predicting migration of actinides is possible if sufficient, reliable thermodynamic data on hydrolysis and complexation are available for these temperatures. Data are scarce and scattered for 25 degrees C, and nonexistent for elevated temperatures. This collaborative project between LBNL and PNNL collects thermodynamic data at elevated temperatures on actinide complexes with inorganic ligands that may be present in Yucca Mountain. The ligands include hydroxide, fluoride, sulfate, phosphate and carbonate. Thermodynamic parameters of complexation, including stability constants, enthalpy, entropy and heat capacity of complexation, are measured with a variety of techniques including solvent extraction, potentiometry, spectrophotometry and calorimetry

  4. SOLUBILIZATION OF ACTINIDE METAL-CONTAINING SLAG

    DOE Patents [OSTI]

    Hopkins, H.H. Jr.

    1959-08-01

    This patent relates to solubilization of the actinide rare earths valves contained in the slag materials resulting from the reduction of actinide salts, such as plutonium tetrafluoride. According to the invention the slag is subjected to a high temperature chloridizing roast, preferably from the reduction of actinide salts, such as plutonium tetrafluoride. According to the invention the slag is subjected to a high temperature chloridizing roast, preferably at about 700 deg C with gaseous hydrogen chloride, until the actinides within the slag are substantially convented to the chlorides. The resultant chlorinated actinides are then leached from the cooled roasted mass by treating with aqueous 0.01 M nitric acid.

  5. Separations of actinides, lanthanides and other metals

    DOE Patents [OSTI]

    Smith, Barbara F.; Jarvinen, Gordon D.; Ensor, Dale D.

    1995-01-01

    An organic extracting solution comprised of a bis(acylpyrazolone or a substituted bis(acylpyrazolone) and an extraction method useful for separating certain elements of the actinide series of the periodic table having a valence of four from one other, and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also from one or more of the substances in a group consisting of hexavalent actinides, trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals and also useful for separating hexavalent actinides from one or more of the substances in a group consisting of trivalent actinides, trivalent lanthanides, trivalent iron, trivalent aluminum, divalent metals, and monovalent metals.

  6. Process for recovering actinide values

    DOE Patents [OSTI]

    Horwitz, E. Philip; Mason, George W.

    1980-01-01

    A process for rendering actinide values recoverable from sodium carbonate scrub waste solutions containing these and other values along with organic compounds resulting from the radiolytic and hydrolytic degradation of neutral organophosphorous extractants such as tri-n butyl phosphate (TBP) and dihexyl-N,N-diethyl carbamylmethylene phosphonate (DHDECAMP) which have been used in the reprocessing of irradiated nuclear reactor fuels. The scrub waste solution is preferably made acidic with mineral acid, to form a feed solution which is then contacted with a water-immiscible, highly polar organic extractant which selectively extracts the degradation products from the feed solution. The feed solution can then be processed to recover the actinides for storage or recycled back into the high-level waste process stream. The extractant is recycled after stripping the degradation products with a neutral sodium carbonate solution.

  7. Covalent Bonding in Actinide Sandwich Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ALS Beamline 11.0.2 have found evidence for unexpected bonding interactions in two organometallic actinide "sandwich" complexes that have been lightning rods in discussions of...

  8. Ceramic composition for immobilization of actinides

    DOE Patents [OSTI]

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Jostsons, Adam; Allender, Jeffrey S.; Rankin, David Thomas

    2000-01-01

    Disclosed is a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile.

  9. Computational Actinide Chemistry: Reliable Predictions and New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Actinide Chemistry: Reliable Predictions and New Concepts PI Name: David ... 100 Million Year: 2014 Research Domain: Chemistry The project will obtain some of the ...

  10. Processing and Disposition of Special Actinide Target Materials...

    Office of Scientific and Technical Information (OSTI)

    Disposition of Special Actinide Target Materials Citation Details In-Document Search Title: Processing and Disposition of Special Actinide Target Materials Authors: Robinson, ...

  11. Analysis of large soil samples for actinides

    DOE Patents [OSTI]

    Maxwell, III; Sherrod L.

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  12. Prompt fission neutron spectra of actinides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Capote, R.; Chen, Y. -J.; Hambsch, F. -J.; Kornilov, N. V.; Lestone, J. P.; Litaize, O.; Morillon, B.; Neudecker, D.; Oberstedt, S.; Ohsawa, T.; et al

    2016-01-06

    Here, the energy spectrum of prompt neutrons emitted in fission (PFNS) plays a very important role in nuclear science and technology. A Coordinated Research Project (CRP) "Evaluation of Prompt Fission Neutron Spectra of Actinides" was established by the IAEA Nuclear Data Section in 2009, with the major goal to produce new PFNS evaluations with uncertainties for actinide nuclei.

  13. Separation of actinides from lanthanides

    DOE Patents [OSTI]

    Smith, B.F.; Jarvinen, G.D.; Ryan, R.R.

    1988-03-31

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form is described. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4- dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  14. Separation of actinides from lanthanides

    DOE Patents [OSTI]

    Smith, Barbara F.; Jarvinen, Gordon D.; Ryan, Robert R.

    1989-01-01

    An organic extracting solution and an extraction method useful for separating elements of the actinide series of the periodic table from elements of the lanthanide series, where both are in trivalent form. The extracting solution consists of a primary ligand and a secondary ligand, preferably in an organic solvent. The primary ligand is a substituted monothio-1,3-dicarbonyl, which includes a substituted 4-acyl-2-pyrazolin-5-thione, such as 4-benzoyl-2,4-dihydro-5-methyl-2-phenyl-3H-pyrazol-3-thione (BMPPT). The secondary ligand is a substituted phosphine oxide, such as trioctylphosphine oxide (TOPO).

  15. Factors influencing the transport of actinides in the groundwater environment. Final report

    SciTech Connect (OSTI)

    Sheppard, J.C.; Kittrick, J.A.

    1983-07-31

    This report summarizes investigations of factors that significantly influence the transport of actinide cations in the groundwater environment. Briefly, measurements of diffusion coefficients for Am(III), Cm(III), and Np(V) in moist US soils indicated that diffusion is negligible compared to mass transport in flowing groundwater. Diffusion coefficients do, however, indicate that, in the absence of flowing water, actinide elements will migrate only a few centimeters in a thousand years. The remaining investigations were devoted to the determination of distribution ratios (K/sub d/s) for representative US soils, factors influencing them, and chemical and physical processes related to transport of actinides in groundwaters. The computer code GARD was modified to include complex formation to test the importance of humic acid complexing on the rate of transport of actinides in groundwaters. Use of the formation constant and a range of humic acid, even at rather low concentrations of 10/sup -5/ to 10/sup -6/ molar, significantly increases the actinide transport rate in a flowing aquifer. These computer calculations show that any strong complexing agent will have a similar effect on actinide transport in the groundwater environment. 32 references, 9 figures.

  16. Actinide ion sensor for pyroprocess monitoring

    DOE Patents [OSTI]

    Jue, Jan-fong; Li, Shelly X.

    2014-06-03

    An apparatus for real-time, in-situ monitoring of actinide ion concentrations which comprises a working electrode, a reference electrode, a container, a working electrolyte, a separator, a reference electrolyte, and a voltmeter. The container holds the working electrolyte. The voltmeter is electrically connected to the working electrode and the reference electrode and measures the voltage between those electrodes. The working electrode contacts the working electrolyte. The working electrolyte comprises an actinide ion of interest. The reference electrode contacts the reference electrolyte. The reference electrolyte is separated from the working electrolyte by the separator. The separator contacts both the working electrolyte and the reference electrolyte. The separator is ionically conductive to the actinide ion of interest. The reference electrolyte comprises a known concentration of the actinide ion of interest. The separator comprises a beta double prime alumina exchanged with the actinide ion of interest.

  17. Experimental studies of actinides in molten salts

    SciTech Connect (OSTI)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  18. Titrimetric determination of hydrazine in actinide solutions

    SciTech Connect (OSTI)

    Polyakov, O.N.; Baranov, S.M.; Zubarev, V.G.

    1988-01-01

    A simple rapid method is proposed for the determination of hydrazine and its derivatives in actinide solutions. The potentiometric titration of acid combined with the hydrazine, using a standard NaOH solution, is carried out in a stirred aqueous acetone medium. Ammonium oxalate is added to the solution being titrated to prevent hydrolysis of the actinides. The content of hydrazine and/or its derivatives is equivalent to the amount of acid found. The method is recommended for the determination of hydrazine and its derivatives at concentration of 0.005 M and above in actinide solutions. The rms error of the measurements is 0.07.

  19. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  20. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    SciTech Connect (OSTI)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  1. Overview of actinide chemistry in the WIPP

    SciTech Connect (OSTI)

    Borkowski, Marian; Lucchini, Jean - Francois; Richmann, Michael K; Reed, Donald T; Khaing, Hnin; Swanson, Juliet

    2009-01-01

    The year 2009 celebrates 10 years of safe operations at the Waste Isolation Pilot Plant (WIPP), the only nuclear waste repository designated to dispose defense-related transuranic (TRU) waste in the United States. Many elements contributed to the success of this one-of-the-kind facility. One of the most important of these is the chemistry of the actinides under WIPP repository conditions. A reliable understanding of the potential release of actinides from the site to the accessible environment is important to the WIPP performance assessment (PA). The environmental chemistry of the major actinides disposed at the WIPP continues to be investigated as part of the ongoing recertification efforts of the WIPP project. This presentation provides an overview of the actinide chemistry for the WIPP repository conditions. The WIPP is a salt-based repository; therefore, the inflow of brine into the repository is minimized, due to the natural tendency of excavated salt to re-seal. Reducing anoxic conditions are expected in WIPP because of microbial activity and metal corrosion processes that consume the oxygen initially present. Should brine be introduced through an intrusion scenario, these same processes will re-establish reducing conditions. In the case of an intrusion scenario involving brine, the solubilization of actinides in brine is considered as a potential source of release to the accessible environment. The following key factors establish the concentrations of dissolved actinides under subsurface conditions: (1) Redox chemistry - The solubility of reduced actinides (III and IV oxidation states) is known to be significantly lower than the oxidized forms (V and/or VI oxidation states). In this context, the reducing conditions in the WIPP and the strong coupling of the chemistry for reduced metals and microbiological processes with actinides are important. (2) Complexation - For the anoxic, reducing and mildly basic brine systems in the WIPP, the most important

  2. BWR Assembly Optimization for Minor Actinide Recycling

    SciTech Connect (OSTI)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  3. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect (OSTI)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  4. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    DOE Patents [OSTI]

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  5. Appendix SOTERM: Actinide Chemistry Source Term

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SOTERM-2014 Actinide Chemistry Source Term United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Appendix SOTERM-2014 Actinide Chemistry Source Term Table of Contents SOTERM-1.0 Introduction SOTERM-2.0 Expected WIPP Repository Conditions, Chemistry, and Processes SOTERM-2.1 Ambient Geochemical Conditions SOTERM-2.2 Repository Conditions SOTERM-2.2.1 Repository Pressure SOTERM-2.2.2 Repository

  6. Rapid determination of actinides in seawater samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.

    2014-03-09

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti+3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used tomore » separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1–2 weeks and provide chemical yields of ~30–60 %. This new sample preparation method can be performed in 4–8 h with tracer yields of ~85–95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort.« less

  7. Finite Mach number spherical shock wave, application to shock ignition

    SciTech Connect (OSTI)

    Vallet, A.; Ribeyre, X.; Tikhonchuk, V.

    2013-08-15

    A converging and diverging spherical shock wave with a finite initial Mach number M{sub s0} is described by using a perturbative approach over a small parameter M{sub s}{sup ?2}. The zeroth order solution is the Guderley's self-similar solution. The first order correction to this solution accounts for the effects of the shock strength. Whereas it was constant in the Guderley's asymptotic solution, the amplification factor of the finite amplitude shock ?(t)?dU{sub s}/dR{sub s} now varies in time. The coefficients present in its series form are iteratively calculated so that the solution does not undergo any singular behavior apart from the position of the shock. The analytical form of the corrected solution in the vicinity of singular points provides a better physical understanding of the finite shock Mach number effects. The correction affects mainly the flow density and the pressure after the shock rebound. In application to the shock ignition scheme, it is shown that the ignition criterion is modified by more than 20% if the fuel pressure prior to the final shock is taken into account. A good agreement is obtained with hydrodynamic simulations using a Lagrangian code.

  8. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Group (PDG) Organizations American Institute of Physics (AIP) American Physical Society (APS) Institute of Physics (IOP) SPIE - International society for optics and photonics Top...

  9. Nonaqueous method for dissolving lanthanide and actinide metals

    DOE Patents [OSTI]

    Crisler, L.R.

    1975-11-11

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol.

  10. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOE Patents [OSTI]

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  11. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    DOE Patents [OSTI]

    Miller, Steven M.

    1988-01-01

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  12. RECOVERY OF ACTINIDES FROM AQUEOUS NITRIC ACID SOLUTIONS

    DOE Patents [OSTI]

    Ader, M.

    1963-11-19

    A process of recovering actinides is presented. Tetravalent actinides are extracted from rare earths in an aqueous nitric acid solution with a ketone and back-extracted from the ketone into an aqueous medium. The aqueous actinide solution thus obtained, prior to concentration by boiling, is sparged with steam to reduce its ketone to a maximum content of 3 grams per liter. (AEC)

  13. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that

  14. Rapid determination of actinides in asphalt samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organicsmore » present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.« less

  15. Rapid determination of actinides in asphalt samples

    SciTech Connect (OSTI)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.

    2014-01-12

    A new rapid method for the determination of actinides in asphalt samples has been developed that can be used in emergency response situations or for routine analysis If a radiological dispersive device (RDD), Improvised Nuclear Device (IND) or a nuclear accident such as the accident at the Fukushima Nuclear Power Plant in March, 2011 occurs, there will be an urgent need for rapid analyses of many different environmental matrices, including asphalt materials, to support dose mitigation and environmental clean up. The new method for the determination of actinides in asphalt utilizes a rapid furnace step to destroy bitumen and organics present in the asphalt and sodium hydroxide fusion to digest the remaining sample. Sample preconcentration steps are used to collect the actinides and a new stacked TRU Resin + DGA Resin column method is employed to separate the actinide isotopes in the asphalt samples. The TRU Resin plus DGA Resin separation approach, which allows sequential separation of plutonium, uranium, americium and curium isotopes in asphalt samples, can be applied to soil samples as well.

  16. Actinide Targets for Neutron Cross Section Measurements

    SciTech Connect (OSTI)

    John D. Baker; Christopher A. McGrath

    2006-10-01

    The Advanced Fuel Cycle Initiative (AFCI) and the Generation IV Reactor Initiative have demonstrated a lack of detailed neutron cross-sections for certain "minor" actinides, those other than the most common (235U, 238U, and 239Pu). For some closed-fuel-cycle reactor designs more than 50% of reactivity will, at some point, be derived from "minor" actinides that currently have poorly known or in some cases not measured (n,?) and (n,f) cross sections. A program of measurements under AFCI has begun to correct this. One of the initial hurdles has been to produce well-characterized, highly isotopically enriched, and chemically pure actinide targets on thin backings. Using a combination of resurrected techniques and new developments, we have made a series of targets including highly enriched 239Pu, 240Pu, and 242Pu. Thus far, we have electrodeposited these actinide targets. In the future, we plan to study reductive distillation to achieve homogeneous, adherent targets on thin metal foils and polymer backings. As we move forward, separated isotopes become scarcer, and safety concerns become greater. The chemical purification and electodeposition techniques will be described.

  17. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Print Because a large proportion of ALS experiments are "physics" experiments, it's useful to separate them into two categories - one focused on Materials/Condensed Matter, and this one, with a dual focus on AMO (atomic, molecular, and optical) physics and accelerator physics. Light sources such as the ALS have opened up research frontiers that may hold the answers to fundamental questions about structure and dynamics in AMO physics. The advanced spectroscopies that have been

  18. Methyltrihydroborate complexes of the lanthanides and actinides

    SciTech Connect (OSTI)

    Shinomoto, R.S.

    1984-11-01

    Reaction of MC1/sub 4/ (M = Zr, Hf, U, Th, Np) with LiBH/sub 3/CH/sub 3/ in chlorobenzene produces volatile, hexane-soluble M(BH/sub 3/CH/sub 3/)/sub 4/. Crystal structures are monomeric, tetrahedral species. Lewis base adducts prepared include U(BH/sub 3/CH/sub 3/)/sub 4/.THT, Th(BH/sub 3/CH/sub 3/)/sub 4/.L (L = THF (tetrahydrofuran), THT (tetrahydrothiophene), SMe/sub 2/, OMe/sub 2/), U(BH/sub 3/CH/sub 3/)/sub 4/.2L (L = THF, pyridine, NH/sub 3/), Th(BH/sub 3/CH/sub 3/)/sub 4/.2L (L = THF, THT, py, NH/sub 3/), M(BH/sub 3/CH/sub 3/)/sub 4/.L-L (M = U, Th; L-L = dme (1,2-dimethoxyethane), bmte (bis(1,2-methylthio)ethane), tmed (N,N,N',N'-tetramethylethylenediamine), dmpe (1,2-dimethylphosphinoethane)) and Th(BH/sub 3/CH/sub 3/)/sub 4/.1/2 OEt/sub 2/. Reaction of MC1/sub 3/ (M = Ho, Yb, Lu) with LiBH/sub 3/CH/sub 3/ in diethyl ether produces volatile, toluene-soluble M(BH/sub 3/CH/sub 3/)/sub 3/.OEt/sub 2/. Other Lewis base adducts prepared from M(BH/sub 3/CH/sub 3/)/sub 3/.OEt/sub 2/ include Ho(BH/sub 3/CH/sub 3/)/sub 3/.L (L = THT, THF, py), Ho(BH/sub 3/CH/sub 3/)/sub 3/.2L (L = THT, THF, py), Ho(BH/sub 3/CH/sub 3/)/sub 3/.tmed, Ho(BH/sub 3/CH/sub 3/)/sub 3/.3/2 L-L (L-L = dmpe, bmte), Yb(BH/sub 3/CH/sub 3/)/sub 3/.3/2 dmpe, Yb(BH/sub 3/Ch/sub 3/).L (L = THF, dme), Yb(BH/sub 3/CH/sub 3/)/sub 3/.2THF, and Lu(BH/sub 3/CH/sub 3/)/sub 3/.THF. By structural criteria, the bonding in actinide and lanthanide methyltrihydroborate complexes is primarily ionic in character even though they display covalent-like physical properties. Spectroscopic measurements indicate that there is some degree of covalent bonding in U(BH/sub 3/CH/sub 3/)/sub 4/.

  19. Independent Activity Report, Nevada National Security Site- July 2011

    Broader source: Energy.gov [DOE]

    NNSS Operational Readiness Review of the Joint Actinide Shock Physics Experimental Research Facility [HIAR-NNSS-2011-07-28

  20. Synthesis of actinide nitrides, phosphides, sulfides and oxides

    DOE Patents [OSTI]

    Van Der Sluys, William G.; Burns, Carol J.; Smith, David C.

    1992-01-01

    A process of preparing an actinide compound of the formula An.sub.x Z.sub.y wherein An is an actinide metal atom selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, x is selected from the group consisting of one, two or three, Z is a main group element atom selected from the group consisting of nitrogen, phosphorus, oxygen and sulfur and y is selected from the group consisting of one, two, three or four, by admixing an actinide organometallic precursor wherein said actinide is selected from the group consisting of thorium, uranium, plutonium, neptunium, and americium, a suitable solvent and a protic Lewis base selected from the group consisting of ammonia, phosphine, hydrogen sulfide and water, at temperatures and for time sufficient to form an intermediate actinide complex, heating said intermediate actinide complex at temperatures and for time sufficient to form the actinide compound, and a process of depositing a thin film of such an actinide compound, e.g., uranium mononitride, by subliming an actinide organometallic precursor, e.g., a uranium amide precursor, in the presence of an effectgive amount of a protic Lewis base, e.g., ammonia, within a reactor at temperatures and for time sufficient to form a thin film of the actinide compound, are disclosed.

  1. Physics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Physics Our science answers questions about the nature of the universe and delivers solutions for national security concerns. Contact Us Division Leader David Meyerhofer Deputy Division Leader Scott Wilburn Division Office (505) 667-4117 For more than 70 years-from the Manhattan Project to today-Physics Division researchers have been performing groundbreaking fundamental and applied research. For more than 70 years-from the Manhattan Project to today-Physics Division researchers have

  2. Remote shock sensing and notification system

    DOE Patents [OSTI]

    Muralidharan, Govindarajan [Knoxville, TN; Britton, Charles L [Alcoa, TN; Pearce, James [Lenoir City, TN; Jagadish, Usha [Knoxville, TN; Sikka, Vinod K [Oak Ridge, TN

    2010-11-02

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interface circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitter with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  3. Remote shock sensing and notification system

    DOE Patents [OSTI]

    Muralidharan, Govindarajan; Britton, Charles L.; Pearce, James; Jagadish, Usha; Sikka, Vinod K.

    2008-11-11

    A low-power shock sensing system includes at least one shock sensor physically coupled to a chemical storage tank to be monitored for impacts, and an RF transmitter which is in a low-power idle state in the absence of a triggering signal. The system includes interference circuitry including or activated by the shock sensor, wherein an output of the interface circuitry is coupled to an input of the RF transmitter. The interface circuitry triggers the RF transmitting with the triggering signal to transmit an alarm message to at least one remote location when the sensor senses a shock greater than a predetermined threshold. In one embodiment the shock sensor is a shock switch which provides an open and a closed state, the open state being a low power idle state.

  4. Separation of Californium from other Actinides

    DOE Patents [OSTI]

    Mailen, J C; Ferris, L M

    1973-09-25

    A method is provided for separating californium from a fused fluoride composition containing californium and at least one element selected from the group consisting of plutonium, americium, curium, uranium, thorium, and protactinium which comprises contacting said fluoride composition with a liquid bismuth phase containing sufficient lithium or thorium to effect transfer of said actinides to the bismuth phase and then contacting the liquid bismuth phase with molten LiCl to effect selective transfer of californium to the chloride phase.

  5. In vitro removal of actinide (IV) ions

    DOE Patents [OSTI]

    Weitl, Frederick L.; Raymond, Kenneth N.

    1982-01-01

    A compound of the formula: ##STR1## wherein X is hydrogen or a conventional electron-withdrawing group, particularly --SO.sub.3 H or a salt thereof; n is 2, 3, or 4; m is 2, 3, or 4; and p is 2 or 3. The present compounds are useful as specific sequestering agents for actinide (IV) ions. Also described is a method for the 2,3-dihydroxybenzamidation of azaalkanes.

  6. Actinide and lanthanide separation process (ALSEP)

    DOE Patents [OSTI]

    Guelis, Artem V.

    2013-01-15

    The process of the invention is the separation of minor actinides from lanthanides in a fluid mixture comprising, fission products, lanthanides, minor actinides, rare earth elements, nitric acid and water by addition of an organic chelating aid to the fluid; extracting the fluid with a solvent comprising a first extractant, a second extractant and an organic diluent to form an organic extractant stream and an aqueous raffinate. Scrubbing the organic stream with a dicarboxylic acid and a chelating agent to form a scrubber discharge. The scrubber discharge is stripped with a simple buffering agent and a second chelating agent in the pH range of 2.5 to 6.1 to produce actinide and lanthanide streams and spent organic diluents. The first extractant is selected from bis(2-ethylhexyl)hydrogen phosphate (HDEHP) and mono(2-ethylhexyl)2-ethylhexyl phosphonate (HEH(EHP)) and the second extractant is selected from N,N,N,N-tetra-2-ethylhexyl diglycol amide (TEHDGA) and N,N,N',N'-tetraoctyl-3-oxapentanediamide (TODGA).

  7. Collisionless Weibel shocks: Full formation mechanism and timing

    SciTech Connect (OSTI)

    Bret, A. [ETSI Industriales, Universidad de Castilla-La Mancha, 13071 Ciudad Real (Spain); Instituto de Investigaciones Energticas y Aplicaciones Industriales, Campus Universitario de Ciudad Real, 13071 Ciudad Real (Spain); Stockem, A. [GoLP/Instituto de Plasmas e Fuso Nuclear, Instituto Superior Tcnico, Universidade de Lisboa, Lisbon (Portugal); Institut fr Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universitt Bochum, D-44780 Bochum (Germany); Narayan, R. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51 Cambridge, Massachusetts 02138 (United States); Silva, L. O. [GoLP/Instituto de Plasmas e Fuso Nuclear, Instituto Superior Tcnico, Universidade de Lisboa, Lisbon (Portugal)

    2014-07-15

    Collisionless shocks in plasmas play an important role in space physics (Earth's bow shock) and astrophysics (supernova remnants, relativistic jets, gamma-ray bursts, high energy cosmic rays). While the formation of a fluid shock through the steepening of a large amplitude sound wave has been understood for long, there is currently no detailed picture of the mechanism responsible for the formation of a collisionless shock. We unravel the physical mechanism at work and show that an electromagnetic Weibel shock always forms when two relativistic collisionless, initially unmagnetized, plasma shells encounter. The predicted shock formation time is in good agreement with 2D and 3D particle-in-cell simulations of counterstreaming pair plasmas. By predicting the shock formation time, experimental setups aiming at producing such shocks can be optimised to favourable conditions.

  8. Bidentate organophosphorus solvent extraction process for actinide recovery and partition

    DOE Patents [OSTI]

    Schulz, Wallace W.

    1976-01-01

    A liquid-liquid extraction process for the recovery and partitioning of actinide values from acidic nuclear waste aqueous solutions, the actinide values including trivalent, tetravalent and hexavalent oxidation states is provided and includes the steps of contacting the aqueous solution with a bidentate organophosphorous extractant to extract essentially all of the actinide values into the organic phase. Thereafter the respective actinide fractions are selectively partitioned into separate aqueous solutions by contact with dilute nitric or nitric-hydrofluoric acid solutions. The hexavalent uranium is finally removed from the organic phase by contact with a dilute sodium carbonate solution.

  9. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT...

    Office of Scientific and Technical Information (OSTI)

    IN LIGHT WATER REACTORS USING HYDRIDE FUEL Citation Details In-Document Search Title: FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING ...

  10. Actinide Research Quarterly (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Actinide Research Quarterly Citation Details In-Document Search Title: ... This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ...

  11. Actinide Ion Sensor For Pyroprocess Monitoring - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Actinide Ion Sensor For Pyroprocess Monitoring DOE Grant Recipients Idaho National Laboratory Contact GRANT About This Technology Technology Marketing Summary Idaho National ...

  12. Development of the Actinide-Lanthanide Separation (ALSEP) Process

    SciTech Connect (OSTI)

    Lumetta, Gregg J.; Carter, Jennifer C.; Niver, Cynthia M.; Gelis, Artem V.

    2014-09-30

    Separating the minor actinide elements (Am and Cm) from acidic high-level raffinates arising from the reprocessing of irradiated nuclear fuel is an important step in closing the nuclear fuel cycle. Most proposed approaches to this problem involve two solvent extraction steps: 1) co-extraction of the trivalent lanthanides and actinides, followed by 2) separation of the actinides from the lanthanides. The objective of our work is to develop a single solvent-extraction process for isolating the minor actinide elements. We report here a solvent containing N,N,N',N'-tetra(2 ethylhexyl)diglycolamide (T2EHDGA) combined with 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) that can be used to separate the minor actinides in a single solvent-extraction process. T2EHDGA serves to co-extract the trivalent actinide and lanthanide ions from nitric acid solution. Switching the aqueous phase chemistry to a citrate buffered solution of N-(2-hydroxyethyl)ethylenediamine-N,N',N'-triacetic acid at pH 2.5 to 4 results in selective transfer of the actinides to the aqueous phase, thus affecting separation of the actinides from the lanthanides. Separation factors between the lanthanides and actinides are approximately 20 in the pH range of 3 to 4, and the distribution ratios are not highly dependent on the pH in this system.

  13. Advanced Aqueous Separation Systems for Actinide Partitioning

    SciTech Connect (OSTI)

    Nash, Ken; Martin, Leigh; Lumetta, Gregg

    2015-04-02

    One of the most challenging aspects of advanced processing of used nuclear fuel is the separation of transplutonium actinides from fission product lanthanides. This separation is essential if actinide transmutation options are to be pursued in advanced fuel cycles, as lanthanides compete with actinides for neutrons in both thermal and fast reactors, thus limiting efficiency. The separation is difficult because the chemistry of Am3+ and Cm3+ is nearly identical to that of the trivalent lanthanides (Ln3+). The prior literature teaches that two approaches offer the greatest probability of devising a successful group separation process based on aqueous processes: 1) the application of complexing agents containing ligand donor atoms that are softer than oxygen (N, S, Cl-) or 2) changing the oxidation state of Am to the IV, V, or VI state to increase the essential differences between Am and lanthanide chemistry (an approach utilized in the PUREX process to selectively remove Pu4+ and UO22+ from fission products). The latter approach offers the additional benefit of enabling a separation of Am from Cm, as Cm(III) is resistant to oxidation and so can easily be made to follow the lanthanides. The fundamental limitations of these approaches are that 1) the soft(er) donor atoms that interact more strongly with actinide cations than lanthanides form substantially weaker bonds than oxygen atoms, thus necessitating modification of extraction conditions for adequate phase transfer efficiency, 2) soft donor reagents have been seen to suffer slow phase transfer kinetics and hydro-/radiolytic stability limitations and 3) the upper oxidation states of Am are all moderately strong oxidants, hence of only transient stability in media representative of conventional aqueous separations systems. There are examples in the literature of both approaches having been described. However, it is not clear at present that any extant process is sufficiently robust for application at the scale

  14. Simulations of Turbulent Flows with Strong Shocks and Density Variations

    SciTech Connect (OSTI)

    Zhong, Xiaolin

    2012-12-13

    In this report, we present the research efforts made by our group at UCLA in the SciDAC project Simulations of turbulent flows with strong shocks and density variations. We use shock-fitting methodologies as an alternative to shock-capturing schemes for the problems where a well defined shock is present. In past five years, we have focused on development of high-order shock-fitting Navier-Stokes solvers for perfect gas flow and thermochemical non-equilibrium flow and simulation of shock-turbulence interaction physics for very strong shocks. Such simulation has not been possible before because the limitation of conventional shock capturing methods. The limitation of shock Mach number is removed by using our high-order shock-fitting scheme. With the help of DOE and TeraGrid/XSEDE super computing resources, we have obtained new results which show new trends of turbulence statistics behind the shock which were not known before. Moreover, we are also developing tools to consider multi-species non-equilibrium flows. The main results are in three areas: (1) development of high-order shock-fitting scheme for perfect gas flow, (2) Direct Numerical Simulation (DNS) of interaction of realistic turbulence with moderate to very strong shocks using super computing resources, and (3) development and implementation of models for computation of mutli-species non-quilibrium flows with shock-fitting codes.

  15. Hanford Site production reactor data pertinent to actinide burning

    SciTech Connect (OSTI)

    Toffer, H.; Roblyer, S.P.

    1993-06-01

    During the 44 years of operation, irradiation of special actinides occurred in the Hanford Site production reactors. The data derived from such irradiations could be of value to advanced actinide burners having a thermal neutron spectrum. Recently, such information has become unclassified and, therefore available for public release. This data is discussed in this report.

  16. Process for making a ceramic composition for immobilization of actinides

    DOE Patents [OSTI]

    Ebbinghaus, Bartley B.; Van Konynenburg, Richard A.; Vance, Eric R.; Stewart, Martin W.; Walls, Philip A.; Brummond, William Allen; Armantrout, Guy A.; Herman, Connie Cicero; Hobson, Beverly F.; Herman, David Thomas; Curtis, Paul G.; Farmer, Joseph

    2001-01-01

    Disclosed is a process for making a ceramic composition for the immobilization of actinides, particularly uranium and plutonium. The ceramic is a titanate material comprising pyrochlore, brannerite and rutile. The process comprises oxidizing the actinides, milling the oxides to a powder, blending them with ceramic precursors, cold pressing the blend and sintering the pressed material.

  17. POTENTIAL BENCHMARKS FOR ACTINIDE PRODUCTION IN HANFORD REACTORS

    SciTech Connect (OSTI)

    PUIGH RJ; TOFFER H

    2011-10-19

    A significant experimental program was conducted in the early Hanford reactors to understand the reactor production of actinides. These experiments were conducted with sufficient rigor, in some cases, to provide useful information that can be utilized today in development of benchmark experiments that may be used for the validation of present computer codes for the production of these actinides in low enriched uranium fuel.

  18. Improved method for extracting lanthanides and actinides from acid solutions

    DOE Patents [OSTI]

    Horwitz, E.P.; Kalina, D.G.; Kaplan, L.; Mason, G.W.

    1983-07-26

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions uses a new series of neutral bi-functional extractants, the alkyl(phenyl)-N,N-dialkylcarbamoylmethylphosphine oxides. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high-level nuclear reprocessing waste solutions.

  19. Detailed calculations of minor actinide transmutation in a fast reactor

    SciTech Connect (OSTI)

    Takeda, Toshikazu

    2015-12-31

    The transmutation of minor actinides in a fast reactor is investigated by a new method to investigate the transmutation behavior of individual minor actinides. It is found that Np-237 and Am-241 mainly contributes to the transmutation rate though the transmutation behaviors are very different.

  20. Actinide management with commercial fast reactors

    SciTech Connect (OSTI)

    Ohki, Shigeo

    2015-12-31

    The capability of plutonium-breeding and minor-actinide (MA) transmutation in the Japanese commercial sodium-cooled fast reactor offers one of practical solutions for obtaining sustainable energy resources as well as reducing radioactive toxicity and inventory. The reference core design meets the requirement of flexible breeding ratio from 1.03 to 1.2. The MA transmutation amount has been evaluated as 50-100 kg/GW{sub e}y if the MA content in fresh fuel is 3-5 wt%, where about 30-40% of initial MA can be transmuted in the discharged fuel.

  1. Status of nuclear data for actinides

    SciTech Connect (OSTI)

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N.

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  2. Separation of actinides from lanthanides utilizing molten salt electrorefining

    SciTech Connect (OSTI)

    Grimmett, D.L.; Fusselman, S.P.; Roy, J.J.; Gay, R.L.; Krueger, C.L.; Storvick, T.S.; Inoue, T.; Hijikata, T.; Takahashi, N.

    1996-10-01

    TRUMP-S (TRansUranic Management through Pyropartitioning Separation) is a pyrochemical process being developed to separate actinides form fission products in nuclear waste. A key process step involving molten salt electrorefining to separate actinides from lanthanides has been studied on a laboratory scale. Electrorefining of U, Np, Pu, Am, and lanthanide mixtures from molten cadmium at 450 C to a solid cathode utilizing a molten chloride electrolyte resulted in > 99% removal of actinides from the molten cadmium and salt phases. Removal of the last few percent of actinides is accompanied by lowered cathodic current efficiency and some lanthanide codeposition. Actinide/lanthanide separation ratios on the cathode are ordered U > Np > Pu > Am and are consistent with predictions based on equilibrium potentials.

  3. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    SciTech Connect (OSTI)

    Dr. David L. Clark; Dr. Alexander M. Fedosseev

    2001-12-21

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier.

  4. Preparation of actinide specimens for the US/UK joint experiment in the Dounreay Prototype Fast Reactor

    SciTech Connect (OSTI)

    Quinby, T C; Adair, H L; Kobisk, E H

    1982-05-01

    A joint research program involving the United States and the United Kingdom was initiated about four years ago for the purpose of studying the fuel behavior of higher actinides using in-core irradiation in the fast reactor at Dounreay, Scotland. Simultaneously, determination of integral cross sections of a wide variety of higher actinide isotopes (physics specimens) was proposed. Coincidental neutron flux and energy spectral measurements were to be made using vanadium encapsulated dosimetry materials in the immediate region of the fuel pellets and physics samples. The higher actinide samples chosen for the fuel study were /sup 241/Am and /sup 244/Cm in the forms of Am/sub 2/O/sub 3/, Cm/sub 2/O/sub 3/, and Am/sub 6/Cm(RE)/sub 7/O/sub 21/, where (RE) represents a mixture of lanthanides. Milligram quantities of actinide oxides of /sup 248/Cm, /sup 246/Cm, /sup 244/Cm, /sup 243/Cm, /sup 243/Am, /sup 241/Am, /sup 244/Pu, /sup 242/Pu, /sup 241/Pu, /sup 240/Pu, /sup 239/Pu, /sup 238/Pu, /sup 237/Np, /sup 238/U, /sup 236/U, /sup 235/U, /sup 234/U, /sup 233/U, /sup 232/Th, /sup 230/Th, and /sup 231/Pa were encapsulated to obtain nuclear cross section and reaction rate data for these materials.

  5. Actinide Solubility and Speciation in the WIPP

    SciTech Connect (OSTI)

    Reed, Donald T.

    2015-11-02

    The presentation begins with the role and need for nuclear repositories (overall concept, international updates (Sweden, Finland, France, China), US approach and current status), then moves on to the WIPP TRU repository concept (design, current status--safety incidents of February 5 and 14, 2014, path forward), and finally considers the WIPP safety case: dissolved actinide concentrations (overall approach, oxidation state distribution and redox control, solubility of actinides, colloidal contribution and microbial effects). The following conclusions are set forth: (1) International programs are moving forward, but at a very slow and somewhat sporadic pace. (2) In the United States, the Salt repository concept, from the perspective of the long-term safety case, remains a viable option for nuclear waste management despite the current operational issues/concerns. (3) Current model/PA prediction (WIPP example) are built on redundant conservatisms. These conservatisms are being addressed in the ongoing and future research to fill existing data gaps--redox control of plutonium by Fe(0, II), thorium (analog) solubility studies in simulated brine, contribution of intrinsic and biocolloids to the mobile concentration, and clarification of microbial ecology and effects.

  6. Separation and Analytical Chemistry of the Actinides

    SciTech Connect (OSTI)

    Ensor, D.D.

    1998-06-30

    The determination of low levels of actinides from water samples and aqueous waste streams involves a lengthy and complicated process which is characterized by low recoveries and poor precision. The objective of this work was to evaluate the use of a Photon Electron Rejecting Alpha Liquid Scintillation Spectrometer (PERALS{reg_sign}), in combination with extractive scintillators, for the detection of actinides. The results of the application of this method to aqueous samples containing uranium, thorium, plutonium, and americium, both individually and in mixtures showed promising results. Using a commercially available extractant, ALPHAEX{reg_sign}, recoveries of plutonium and americium were > 98.4% in individual samples and in mixtures with activities ranging from 6 pci to 500 pci. The separation of these two elements was accomplished by selective extraction after adjusting the acidity of the aqueous sample. The application of this technique to a raw waste sample showed reasonable recoveries when combined with classical anion exchange separation techniques. Efforts to develop an extractive scintillator using a recently synthesized tetradentate extractant were only moderately successful since solubility problems limit the extractant's efficiency in the scintillator. The application of a curve fitting program, PEAKFIT{reg_sign}, to spectra obtained using the PERALS{reg_sign} spectrometer provided useful isotropic information.

  7. Spherical strong-shock generation for shock-ignition inertial...

    Office of Scientific and Technical Information (OSTI)

    Spherical strong-shock generation for shock-ignition inertial fusion Citation Details In-Document Search Title: Spherical strong-shock generation for shock-ignition inertial fusion ...

  8. MOLECULAR SPECTROSCPY AND REACTIONS OF ACTINIDES IN THE GAS PHASE AND CRYOGENIC MATRICES

    SciTech Connect (OSTI)

    Heaven, Michael C.; Gibson, John K.; Marcalo, Joaquim

    2009-02-01

    In this chapter we review the spectroscopic data for actinide molecules and the reaction dynamics for atomic and molecular actinides that have been examined in the gas phase or in inert cryogenic matrices. The motivation for this type of investigation is that physical properties and reactions can be studied in the absence of external perturbations (gas phase) or under minimally perturbing conditions (cryogenic matrices). This information can be compared directly with the results from high-level theoretical models. The interplay between experiment and theory is critically important for advancing our understanding of actinide chemistry. For example, elucidation of the role of the 5f electrons in bonding and reactivity can only be achieved through the application of experimentally verified theoretical models. Theoretical calculations for the actinides are challenging due the large numbers of electrons that must be treated explicitly and the presence of strong relativistic effects. This topic has been reviewed in depth in Chapter 17 of this series. One of the goals of the experimental work described in this chapter has been to provide benchmark data that can be used to evaluate both empirical and ab initio theoretical models. While gas-phase data are the most suitable for comparison with theoretical calculations, there are technical difficulties entailed in generating workable densities of gas-phase actinide molecules that have limited the range of species that have been characterized. Many of the compounds of interest are refractory, and problems associated with the use of high temperature vapors have complicated measurements of spectra, ionization energies, and reactions. One approach that has proved to be especially valuable in overcoming this difficulty has been the use of pulsed laser ablation to generate plumes of vapor from refractory actinide-containing materials. The vapor is entrained in an inert gas, which can be used to cool the actinide species to room

  9. Biomass shock pretreatment

    DOE Patents [OSTI]

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  10. Separations and Actinide Science -- 2005 Roadmap

    SciTech Connect (OSTI)

    Not Available

    2005-09-01

    The Separations and Actinide Science Roadmap presents a vision to establish a separations and actinide science research (SASR) base composed of people, facilities, and collaborations and provides new and innovative nuclear fuel cycle solutions to nuclear technology issues that preclude nuclear proliferation. This enabling science base will play a key role in ensuring that Idaho National Laboratory (INL) achieves its long-term vision of revitalizing nuclear energy by providing needed technologies to ensure our nation's energy sustainability and security. To that end, this roadmap suggests a 10-year journey to build a strong SASR technical capability with a clear mission to support nuclear technology development. If nuclear technology is to be used to satisfy the expected growth in U.S. electrical energy demand, the once-through fuel cycle currently in use should be reconsidered. Although the once-through fuel cycle is cost-effective and uranium is inexpensive, a once-through fuel cycle requires long-term disposal to protect the environment and public from long-lived radioactive species. The lack of a current disposal option (i.e., a licensed repository) has resulted in accumulation of more than 50,000 metric tons of spent nuclear fuel. The process required to transition the current once-through fuel cycle to full-recycle will require considerable time and significant technical advancement. INL's extensive expertise in aqueous separations will be used to develop advanced separations processes. Computational chemistry will be expanded to support development of future processing options. In the intermediate stage of this transition, reprocessing options will be deployed, waste forms with higher loading densities and greater stability will be developed, and transmutation of long-lived fission products will be explored. SASR will support these activities using its actinide science and aqueous separations expertise. In the final stage, full recycle will be enabled by

  11. Process to remove actinides from soil using magnetic separation

    DOE Patents [OSTI]

    Avens, Larry R.; Hill, Dallas D.; Prenger, F. Coyne; Stewart, Walter F.; Tolt, Thomas L.; Worl, Laura A.

    1996-01-01

    A process of separating actinide-containing components from an admixture including forming a slurry including actinide-containing components within an admixture, said slurry including a dispersion-promoting surfactant, adjusting the pH of the slurry to within a desired range, and, passing said slurry through a pretreated matrix material, said matrix material adapted to generate high magnetic field gradients upon the application of a strong magnetic field exceeding about 0.1 Tesla whereupon a portion of said actinide-containing components are separated from said slurry and remain adhered upon said matrix material is provided.

  12. Aqueous recovery of actinides from aluminum alloys

    SciTech Connect (OSTI)

    Gray, J.H.; Chostner, D.F.; Gray, L.W.

    1989-01-01

    Early in the 1980's, a joint Rocky Flats/Savannah River program was established to recover actinides from scraps and residues generated during Rocky Flats purification operations. The initial program involved pyrochemical treatment of Molten Salt Extraction (MSE) chloride salts and Electrorefining (ER) anode heel metal to form aluminum alloys suitable for aqueous processing at Savannah River. Recently Rocky Flats has expressed interest in expanding the aluminum alloy program to include treatment of chloride salt residues from a modified Molten Salt Extraction process and from the Electrorefining purification operations. Samples of the current aluminum alloy buttons were prepared at Rocky Flats and sent to Savannah River Laboratory for flowsheet development and characterization of the alloys. A summary of the scrub alloy-anode heel alloy program will be presented along with recent results from aqueous dissolution studies of the new aluminum alloys. 2 figs., 4 tabs.

  13. Pyrometallurgical processes for recovery of actinide elements

    SciTech Connect (OSTI)

    Battles, J.E.; Laidler, J.J.; McPheeters, C.C.; Miller, W.E.

    1994-01-01

    A metallic fuel alloy, nominally U-20-Pu-lOZr, is the key element of the Integral Fast Reactor (IFR) fuel cycle. Metallic fuel permits the use of an innovative, simple pyrometallurgical process, known as pyroprocessing, (the subject of this report), which features fused salt electrorefining of the spent fuel. Electrorefining separates the actinide elements from fission products, without producing a separate stream of plutonium. The plutonium-bearing product is contaminated with higher actinides and with a minor amount of rare earth fission products, making it diversion resistant while still suitable as a fuel material in the fast spectrum of the IFR core. The engineering-scale demonstration of this process will be conducted in the refurbished EBR-II Fuel Cycle Facility, which has entered the start-up phase. An additional pyrometallurgical process is under development for extracting transuranic (TRU) elements from Light Water Reactor (LWR) spent fuel in a form suitable for use as a feed to the IFR fuel cycle. Four candidate extraction processes have been investigated and shown to be chemically feasible. The main steps in each process are oxide reduction with calcium or lithium, regeneration of the reductant and recycle of the salt, and separation of the TRU product from the bulk uranium. Two processes, referred to as the lithium and salt transport (calcium reductant) processes, have been selected for engineering-scale demonstration, which is expected to start in late 1993. An integral part of pyroprocessing development is the treatment and packaging of high-level waste materials arising from the operations, along with the qualification of these waste forms for disposal in a geologic repository.

  14. INERT-MATRIX FUEL: ACTINIDE ''BURINGIN'' AND DIRECT DISPOSAL...

    Office of Scientific and Technical Information (OSTI)

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada ...

  15. Plutonium and minor actinides utilization in Thorium molten salt...

    Office of Scientific and Technical Information (OSTI)

    The original FUJI-12 design considers Thsup 233U or ThPu as main fuel. In accordance with the currently suggestion to stay away from the separation of Pu and minor actinides ...

  16. Thorium and Uranium: Elements of Opportunity in Actinide Organometalli...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thorium and Uranium: Elements of Opportunity in Actinide Organometallic Chemistry January 12, 2016 11:00AM to 12:00PM Presenter Jaqueline L. Kiplinger, Los Alamos National...

  17. 30th Actinide Separations Conference, PNNL-SA-50126

    SciTech Connect (OSTI)

    Delegard, Calvin H.

    2006-05-25

    Program booklet for the 30th Actinide Separations Conference. Contains agenda and abstracts for 27 poster and 38 oral presentations to be made during the 3-day meeting, May 23-25, 2006.

  18. Actinide targets for the synthesis of super-heavy elements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing themore » production of rare actinides including 249Bk, 251Cf, and 254Es are described.« less

  19. Actinide targets for the synthesis of super-heavy elements

    SciTech Connect (OSTI)

    Roberto, J.; Alexander, Charles W.; Boll, Rose Ann; Ezold, Julie G.; Felker, Leslie Kevin; Rykaczewski, Krzysztof Piotr; Hogle, Susan L.

    2015-06-18

    Since 2000, six new super-heavy elements with atomic numbers 113 through 118 have been synthesized in hot fusion reactions of 48Ca beams on actinide targets. These target materials, including 242Pu, 244Pu, 243Am, 245Cm, 248Cm, 249Cf, and 249Bk, are available in very limited quantities and require specialized production and processing facilities resident in only a few research centers worldwide. This report describes the production and chemical processing of heavy actinide materials for super-heavy element research, current availabilities of these materials, and related target fabrication techniques. The impact of actinide materials in super-heavy element discovery is reviewed, and strategies for enhancing the production of rare actinides including 249Bk, 251Cf, and 254Es are described.

  20. Environmental Assessment for Actinide Chemistry and Repository Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory questions on the Environmental Assessment for Actinide Chemistry and Repository Science Laboratory, email Harold.Johnson@wipp.ws or call (505) 234-7349. Environmental Assessment for Actinide Chemistry and Repository Science Laboratory Final - January, 2006 This document has been provided to you in PDF format. Please install Adobe Acrobat Reader before accessing these documents. Some of the Chapters containing complex graphics have been split into multiple parts to allow for more

  1. Shock dynamics of phase diagrams

    SciTech Connect (OSTI)

    Moro, Antonio

    2014-04-15

    A thermodynamic phase transition denotes a drastic change of state of a physical system due to a continuous change of thermodynamic variables, as for instance pressure and temperature. The classical van der Waals equation of state is the simplest model that predicts the occurrence of a critical point associated with the gasliquid phase transition. Nevertheless, below the critical temperature theoretical predictions of the van der Waals theory significantly depart from the observed physical behaviour. We develop a novel approach to classical thermodynamics based on the solution of Maxwell relations for a generalised family of nonlocal entropy functions. This theory provides an exact mathematical description of discontinuities of the order parameter within the phase transition region, it explains the universal form of the equations of state and the occurrence of triple points in terms of the dynamics of nonlinear shock wave fronts. -- Highlights: A new generalisation of van der Waals equation of state. Description of phase transitions in terms of shock dynamics of state curves. Proof of the universality of equations of state for a general class of models. Interpretation of triple points as confluence of classical shock waves. Correspondence table between thermodynamics and nonlinear conservation laws.

  2. Actinide Source Term Program, position paper. Revision 1

    SciTech Connect (OSTI)

    Novak, C.F.; Papenguth, H.W.; Crafts, C.C.; Dhooge, N.J.

    1994-11-15

    The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA {open_quotes}expert panel{close_quotes} model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the {open_quotes}inventory limits{close_quotes} model is the only existing defensible model for the actinide source term. The model effort in progress, {open_quotes}chemical modeling of mobile actinide concentrations{close_quotes}, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the {open_quotes}Inventory limits{close_quotes} model.

  3. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    SciTech Connect (OSTI)

    Perkasa, Y. S.; Waris, A. Kurniadi, R. Su'ud, Z.

    2014-09-30

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator.

  4. Effect of microvoids on the shock initiation of PETN

    SciTech Connect (OSTI)

    Maienschein, J.L.; Urtiew, P.A.; Garcia, F.; Chandler, J.B.

    1998-07-01

    We demonstrate that the introduction of microvoids as glass microballoons sensitizes high-density solvent-pressed PETN to shock initiation. At input pressures ranging from 1.4{endash}2.0 GPa, shock propagation velocities are higher and run distances to detonation are shorter for PETN sensitized by microballoons. By selecting the size and density of microballoons, we can therefore study the effect of void size and density on shock initiation by hot spots. {copyright} {ital 1998 American Institute of Physics.}

  5. Support for Students and Young Scientists to Participate in the 2009 Actinides Conference to be held in San Francisco, CA, Sunday, 12 July 2009 -- Friday, 17 July 2009

    SciTech Connect (OSTI)

    Raymond, Kenneth N.

    2011-04-08

    Early career scientist were provided support to attend and participate in the Actinides 2009 (AN2009) International Conference held in San Francisco, California from 12-17 July 2011. This is the premier conference in the field of actinide chemistry, physics, and materials science of the actinide elements. Participation in the preeminent scientific meeting in actinide science keeps the U.S at the forefront of developments in this key field. The specific involvement of early career scientists combats the loss of expertise in the aforementioned critical areas related to f-element chemistry such as energy, homeland, and environmental security. Without these trained scientists, the U.S. will not be able to properly exploit nuclear technology to its fullest and will not be able to address its energy needs in either an environmentally safe or cost–effective manner nor will it be able to provide for its national defense. Furthermore, the early career scientists added greatly to the scientific content of the meeting and stimulates early career scientists to remain in the filed of actinide science. Providing support for participation in the AN2009 Conference via registration fee waivers, hotel cost support, and travel cost support, was extremely effective in securing the participation of early career scientists that would have not otherwise been able to attend.

  6. ACTINIDE REMOVAL PROCESS SAMPLE ANALYSIS, CHEMICAL MODELING, AND FILTRATION EVALUATION

    SciTech Connect (OSTI)

    Martino, C.; Herman, D.; Pike, J.; Peters, T.

    2014-06-05

    Filtration within the Actinide Removal Process (ARP) currently limits the throughput in interim salt processing at the Savannah River Site. In this process, batches of salt solution with Monosodium Titanate (MST) sorbent are concentrated by crossflow filtration. The filtrate is subsequently processed to remove cesium in the Modular Caustic Side Solvent Extraction Unit (MCU) followed by disposal in saltstone grout. The concentrated MST slurry is washed and sent to the Defense Waste Processing Facility (DWPF) for vitrification. During recent ARP processing, there has been a degradation of filter performance manifested as the inability to maintain high filtrate flux throughout a multi-batch cycle. The objectives of this effort were to characterize the feed streams, to determine if solids (in addition to MST) are precipitating and causing the degraded performance of the filters, and to assess the particle size and rheological data to address potential filtration impacts. Equilibrium modelling with OLI Analyzer{sup TM} and OLI ESP{sup TM} was performed to determine chemical components at risk of precipitation and to simulate the ARP process. The performance of ARP filtration was evaluated to review potential causes of the observed filter behavior. Task activities for this study included extensive physical and chemical analysis of samples from the Late Wash Pump Tank (LWPT) and the Late Wash Hold Tank (LWHT) within ARP as well as samples of the tank farm feed from Tank 49H. The samples from the LWPT and LWHT were obtained from several stages of processing of Salt Batch 6D, Cycle 6, Batch 16.

  7. Actinide Dioxides in Water: Interactions at the Interface

    SciTech Connect (OSTI)

    Alexandrov, Vitaly; Shvareva, Tatiana Y.; Hayun, Shmuel; Asta, Mark; Navrotsky, Alexandra

    2011-12-15

    A comprehensive understanding of chemical interactions between water and actinide dioxide surfaces is critical for safe operation and storage of nuclear fuels. Despite substantial previous research, understanding the nature of these interactions remains incomplete. In this work, we combine accurate calorimetric measurements with first-principles computational studies to characterize surface energies and adsorption enthalpies of water on two fluorite-structured compounds, ThO? and CeO?, that are relevant for understanding the behavior of water on actinide oxide surfaces more generally. We determine coverage-dependent adsorption enthalpies and demonstrate a mixed molecular and dissociative structure for the first hydration layer. The results show a correlation between the magnitude of the anhydrous surface energy and the water adsorption enthalpy. Further, they suggest a structural model featuring one adsorbed water molecule per one surface cation on the most stable facet that is expected to be a common structural signature of water adsorbed on actinide dioxide compounds.

  8. Nuclear waste actinides as fissile fuel in hybrid blankets

    SciTech Connect (OSTI)

    Sahin, S.; Al-Kusayer, T.A.

    1983-12-01

    The widespread use of the present LWRs produces substantial quantities of nuclear waste materials. Among those, actinide nuclear waste poses a serious problem of stockage because the associated half life times for actinides is measured in terms of geological time periods (several millions of years) so that no waste disposal guarantee over such time intervals can be given, except for space disposal. On the other hand, these nuclear waste actinides are very good fissionable materials for high energetic (D,T) fusion neutrons. It is therefore worthwhile to investigate their quality as potential nuclear fuel in hybrid blankets. The present study investigates the neutronic performance of hybrid blankets containing Np/sup 237/ and Cm/sup 244/ as fissile materials. The isotopic composition of Americium has been adjusted to the spent fuel isotope composition of a LWR. The geometrical design has been made, according to the AYMAN fussion-fission (hybrid) experimental facility, now in the very early phase of planning.

  9. Actinide (III) solubility in WIPP Brine: data summary and recommendations

    SciTech Connect (OSTI)

    Borkowski, Marian; Lucchini, Jean-Francois; Richmann, Michael K.; Reed, Donald T.

    2009-09-01

    The solubility of actinides in the +3 oxidation state is an important input into the Waste Isolation Pilot Plant (WIPP) performance assessment (PA) models that calculate potential actinide release from the WIPP repository. In this context, the solubility of neodymium(III) was determined as a function of pH, carbonate concentration, and WIPP brine composition. Additionally, we conducted a literature review on the solubility of +3 actinides under WIPP-related conditions. Neodymium(III) was used as a redox-invariant analog for the +3 oxidation state of americium and plutonium, which is the oxidation state that accounts for over 90% of the potential release from the WIPP through the dissolved brine release (DBR) mechanism, based on current WIPP performance assessment assumptions. These solubility data extend past studies to brine compositions that are more WIPP-relevant and cover a broader range of experimental conditions than past studies.

  10. Measurement of Actinides in Molybdenum-99 Solution Analytical Procedure

    SciTech Connect (OSTI)

    Soderquist, Chuck Z.; Weaver, Jamie L.

    2015-11-01

    This document is a companion report to a previous report, PNNL 24519, Measurement of Actinides in Molybdenum-99 Solution, A Brief Review of the Literature, August 2015. In this companion report, we report a fast, accurate, newly developed analytical method for measurement of trace alpha-emitting actinide elements in commercial high-activity molybdenum-99 solution. Molybdenum-99 is widely used to produce 99mTc for medical imaging. Because it is used as a radiopharmaceutical, its purity must be proven to be extremely high, particularly for the alpha emitting actinides. The sample of 99Mo solution is measured into a vessel (such as a polyethylene centrifuge tube) and acidified with dilute nitric acid. A gadolinium carrier is added (50 µg). Tracers and spikes are added as necessary. Then the solution is made strongly basic with ammonium hydroxide, which causes the gadolinium carrier to precipitate as hydrous Gd(OH)3. The precipitate of Gd(OH)3 carries all of the actinide elements. The suspension of gadolinium hydroxide is then passed through a membrane filter to make a counting mount suitable for direct alpha spectrometry. The high-activity 99Mo and 99mTc pass through the membrane filter and are separated from the alpha emitters. The gadolinium hydroxide, carrying any trace actinide elements that might be present in the sample, forms a thin, uniform cake on the surface of the membrane filter. The filter cake is first washed with dilute ammonium hydroxide to push the last traces of molybdate through, then with water. The filter is then mounted on a stainless steel counting disk. Finally, the alpha emitting actinide elements are measured by alpha spectrometry.

  11. Method for extracting lanthanides and actinides from acid solutions

    DOE Patents [OSTI]

    Horwitz, E. Philip; Kalina, Dale G.; Kaplan, Louis; Mason, George W.

    1985-01-01

    A process for the recovery of actinide and lanthanide values from aqueous acidic solutions with an organic extractant having the formula: ##STR1## where .phi. is phenyl, R.sup.1 is a straight or branched alkyl or alkoxyalkyl containing from 6 to 12 carbon atoms and R.sup.2 is an alkyl containing from 3 to 6 carbon atoms. The process is suitable for the separation of actinide and lanthanide values from fission product values found together in high level nuclear reprocessing waste solutions.

  12. INERT-MATRIX FUEL: ACTINIDE ''BURINGIN'' AND DIRECT DISPOSAL

    SciTech Connect (OSTI)

    Rodney C. Ewing; Lumin Wang

    2002-10-30

    Excess actinides result from the dismantlement of nuclear weapons (Pu) and the reprocessing of commercial spent nuclear fuel (mainly 241 Am, 244 Cm and 237 Np). In Europe, Canada and Japan studies have determined much improved efficiencies for burnup of actinides using inert-matrix fuels. This innovative approach also considers the properties of the inert-matrix fuel as a nuclear waste form for direct disposal after one-cycle of burn-up. Direct disposal can considerably reduce cost, processing requirements, and radiation exposure to workers.

  13. Literature review of intrinsic actinide colloids related to spent fuel waste package release rates

    SciTech Connect (OSTI)

    Zhao, P.; Steward, S.A.

    1997-01-01

    Existence of actinide colloids provides an important mechanism in the migration of radionuclides and will be important in performance of a geologic repository for high-level nuclear waste. Actinide colloids have been formed during long-term unsaturated dissolution of spent fuel by groundwater. This article summarizes a literature search of actinide colloids. This report emphasizes the formation of intrinsic actinide colloids, because they would have the opportunity to form soon after groundwater contact with the spent fuel and before actinide-bearing groundwater reaches the surrounding geologic formations.

  14. Method for recovery of actinides from actinide-bearing scrap and waste nuclear material using O/sub 2/F/sub 2/

    DOE Patents [OSTI]

    Asprey, L.B.; Eller, P.G.

    1984-09-12

    Method for recovery of actinides from nuclear waste material containing sintered and other oxides thereof and from scrap materials containing the metal actinides using O/sub 2/F/sub 2/ to generate the hexafluorides of the actinides present therein. The fluorinating agent, O/sub 2/F/sub 2/, has been observed to perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are not detroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is readily prepared, stored and transferred to the place of reaction.

  15. Experimental Evaluation of Actinide Transport in a Fractured Granodiorite

    SciTech Connect (OSTI)

    Dittrich, Timothy M.; Reimus, Paul W.

    2015-03-16

    The objective of this study was to demonstrate and evaluate new experimental methods for quantifying the potential for actinide transport in deep fractured crystalline rock formations. We selected a fractured granodiorite at the Grimsel Test Site (GTS) in Switzerland as a model system because field experiments have already been conducted with uranium and additional field experiments using other actinides are planned at the site. Thus, working on this system provides a unique opportunity to compare lab experiment results with fieldscale observations. Rock cores drilled from the GTS were shipped to Los Alamos National Laboratory, characterized by x-ray diffraction and microscopy, and used in batch sorption and column breakthrough experiments. Solutions with pH 6.8 and 8.8 were tested. Solutions were switched to radionuclide-free synthetic Grimsel groundwater after near-steady actinide/colloid breakthrough occurred in column experiments. We are currently evaluating actinide adsorption/desorption rates as a function of water chemistry (initial focus on pH), with future testing planned to evaluate the influence of carbonate concentrations, flow rates, and mineralogy in solutions and suspensions with bentonite colloids. (auth)

  16. RAPID SEPARATION OF ACTINIDES AND RADIOSTRONTIUM IN VEGETATION SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.

    2010-06-01

    A new rapid method for the determination of actinides and radiostrontium in vegetation samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations or for routine analysis. The actinides in vegetation method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Alpha emitters are prepared using rare earth microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. The actinide and {sup 90}Sr in vegetation sample analysis can be performed in less than 8 h with excellent quality for emergency samples. The rapid fusion technique is a rugged sample digestion method that ensures that any refractory actinide particles or vegetation residue after furnace heating is effectively digested.

  17. Shock compression of low-density foams

    SciTech Connect (OSTI)

    Holmes, N.C.

    1993-07-01

    Shock compression of very low density micro-cellular materials allows entirely new regimes of hot fluid states to be investigated experimentally. Using a two-stage light-gas gun to generate strong shocks, temperatures of several eV are readily achieved at densities of roughly 0.5--1 g/cm{sup 3} in large, uniform volumes. The conditions in these hot, expanded fluids are readily found using the Hugoniot jump conditions. We will briefly describe the basic methodology for sample preparation and experimental measurement of shock velocities. We present data for several materials over a range of initial densities. This paper will explore the applications of these methods for investigations of equations of state and phase diagrams, spectroscopy, and plasma physics. Finally, we discus the need for future work on these and related low-density materials.

  18. Spin and orbital moments in actinide compounds (invited)

    SciTech Connect (OSTI)

    Lebech, B. ); Wulff, M.; Lander, G.H. )

    1991-04-15

    The extended spatial distribution of both the transition-metal 3{ital d} electrons and the actinide 5{ital f} electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single-electron band-structure calculations, is that the orbital moments of the actinide 5{ital f} electrons are considerably reduced from the values anticipated by a simple application of Hund's rules. To test these ideas, and thus to obtain a measure of the hybridization, we have performed a series of neutron scattering experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe{sub 2}, NpCo{sub 2}, and PuFe{sub 2} and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced as compared to the free-ion expectations. In addition there is qualitative agreement with theory, although the latter predicts values of both components that are larger than those found by experiment. Because {bold L} and {bold S} are opposed in the light actinides, and {ital L} is usually greater than {ital S}, the reduction of {ital L} can result in a situation for which {ital L}{minus}{ital S}{congruent}0. This almost occurs in UFe{sub 2}. However, neutrons are capable of observing the individual components at finite wave vector ({bold Q}), although the total component (observed at {bold Q}={bold 0}) may indeed be close to zero.

  19. Actinide partitioning-transmutation program final report. I. Overall assessment

    SciTech Connect (OSTI)

    Croff, A.G.; Blomeke, J.O.; Finney, B.C.

    1980-06-01

    This report is concerned with an overall assessment of the feasibility of and incentives for partitioning (recovering) long-lived nuclides from fuel reprocessing and fuel refabrication plant radioactive wastes and transmuting them to shorter-lived or stable nuclides by neutron irradiation. The principal class of nuclides considered is the actinides, although a brief analysis is given of the partitioning and transmutation (P-T) of /sup 99/Tc and /sup 129/I. The results obtained in this program permit us to make a comparison of the impacts of waste management with and without actinide recovery and transmutation. Three major conclusions concerning technical feasibility can be drawn from the assessment: (1) actinide P-T is feasible, subject to the acceptability of fuels containing recycle actinides; (2) technetium P-T is feasible if satisfactory partitioning processes can be developed and satisfactory fuels identified (no studies have been made in this area); and (3) iodine P-T is marginally feasible at best because of the low transmutation rates, the high volatility, and the corrosiveness of iodine and iodine compounds. It was concluded on the basis of a very conservative repository risk analysis that there are no safety or cost incentives for actinide P-T. In fact, if nonradiological risks are included, the short-term risks of P-T exceed the long-term benefits integrated over a period of 1 million years. Incentives for technetium and iodine P-T exist only if extremely conservative long-term risk analyses are used. Further RD and D in support of P-T is not warranted.

  20. Shock compression profiles in ceramics

    SciTech Connect (OSTI)

    Grady, D.E.; Moody, R.L.

    1996-03-01

    An investigation of the shock compression properties of high-strength ceramics has been performed using controlled planar impact techniques. In a typical experimental configuration, a ceramic target disc is held stationary, and it is struck by plates of either a similar ceramic or by plates of a well-characterized metal. All tests were performed using either a single-stage propellant gun or a two-stage light-gas gun. Particle velocity histories were measured with laser velocity interferometry (VISAR) at the interface between the back of the target ceramic and a calibrated VISAR window material. Peak impact stresses achieved in these experiments range from about 3 to 70 GPa. Ceramics tested under shock impact loading include: Al{sub 2}O{sub 3}, AlN, B{sub 4}C, SiC, Si{sub 3}N{sub 4}, TiB{sub 2}, WC and ZrO{sub 2}. This report compiles the VISAR wave profiles and experimental impact parameters within a database-useful for response model development, computational model validation studies, and independent assessment of the physics of dynamic deformation on high-strength, brittle solids.

  1. Applications of pulsed neutron powder diffraction to actinide elements. [Pu-Al

    SciTech Connect (OSTI)

    Lawson, A.C.; Richardson, J.W.; Mueller, M.H.; Lander, G.H.; Goldstone, J.A.; Williams, A.; Kwei, G.H.; Von Dreele, R.B.; Faber, J. Jr.; Hitterman, R.L.

    1987-11-01

    We have been using the technique of pulsed neutron powder diffraction to study several problems in the physics and chemistry of the actinide elements. In these elements one often encounters very complex structures resulting from polymorphic transformations presumably induced by the presence of 5f-electrons. For example, at least five distinct structures of plutonium metal are found between room temperature and its melting point of 640/sup 0/C, and two of the structures are monoclinc. The determination of the crystal structure of beta-uranium (tetragonal, 30 atoms per unit cell) which has finnaly been shown to be centrosymmetric, after decades of uncertainty is discussed. Some preliminary results on the structure of alpha-plutonium (which confirm Zachariasen's original determination of the monoclinic structure) are presented. Pu-Al alloys were also studied. 12 refs., 18 figs.

  2. TIMING OF SHOCK WAVES

    DOE Patents [OSTI]

    Tuck, J.L.

    1955-03-01

    This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

  3. Spherical strong-shock generation for shock-ignition inertial...

    Office of Scientific and Technical Information (OSTI)

    a shock-ignition target design for the National Ignition Facility. The timing of the x-ray flash from shock convergence in the center of the solid plastic target is used to infer ...

  4. LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun ...

    National Nuclear Security Administration (NNSA)

    LLNL Conducts First Plutonium Shot Using the JASPER Gas Gun Nevada Test Site, NV The ... Actinide Shock Physics Experimental Research (JASPER) gas gun at NNSA's Nevada Test Site. ...

  5. Independent Oversight Activity Report, Nevada National Security...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    initiatives, as well as tours of the Device Assembly Facility (DAF), National Criticality Experimental Research Center, and the Joint Actinide Shock Physics Experimental facility. ...

  6. Shock destruction armor system

    DOE Patents [OSTI]

    Froeschner, Kenneth E.

    1993-01-01

    A shock destruction armor system is constructed and arranged to destroy the force of impact of a projectile by shock hydrodynamics. The armor system is designed to comprise a plurality of superimposed armor plates each preferably having a thickness less than five times the projectile's diameter and are preferably separated one-from-another by a distance at least equal to one-half of the projectile's diameter. The armor plates are effective to hydrodynamically and sequentially destroy the projectile. The armor system is particularly adapted for use on various military vehicles, such as tanks, aircraft and ships.

  7. Nature of the wiggle instability of galactic spiral shocks

    SciTech Connect (OSTI)

    Kim, Woong-Tae; Kim, Yonghwi; Kim, Jeong-Gyu, E-mail: wkim@astro.snu.ac.kr, E-mail: kimyh@astro.snu.ac.kr, E-mail: jgkim@astro.snu.ac.kr [Center for the Exploration of the Origin of the Universe (CEOU), Astronomy Program, Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-07-01

    Gas in disk galaxies interacts nonlinearly with an underlying stellar spiral potential to form galactic spiral shocks. While numerical simulations typically show that spiral shocks are unstable to wiggle instability (WI) even in the absence of magnetic fields and self-gravity, its physical nature has remained uncertain. To clarify the mechanism behind the WI, we conduct a normal-mode linear stability analysis and nonlinear simulations assuming that the disk is isothermal and infinitesimally thin. We find that the WI is physical, originating from the generation of potential vorticity at a deformed shock front, rather than Kelvin-Helmholtz instabilities as previously thought. Since gas in galaxy rotation periodically passes through the shocks multiple times, the potential vorticity can accumulate successively, setting up a normal mode that grows exponentially with time. Eigenfunctions of the WI decay exponentially downstream from the shock front. Both shock compression of acoustic waves and a discontinuity of shear across the shock stabilize the WI. The wavelength and growth time of the WI depend on the arm strength quite sensitively. When the stellar-arm forcing is moderate at 5%, the wavelength of the most unstable mode is about 0.07 times the arm-to-arm spacing, with the growth rate comparable to the orbital angular frequency, which is found to be in good agreement with the results of numerical simulations.

  8. Complexation of lanthanides and actinides by acetohydroxamic acid

    SciTech Connect (OSTI)

    Taylor, R.J.; Sinkov, S.I.; Choppin, G.R.

    2008-07-01

    Acetohydroxamic acid (AHA) has been proposed as a suitable reagent for the complexant-based, as opposed to reductive, stripping of plutonium and neptunium ions from the tributylphosphate solvent phase in advanced PUREX or UREX processes designed for future nuclear-fuel reprocessing. Stripping is achieved by the formation of strong hydrophilic complexes with the tetravalent actinides in nitric acid solutions. To underpin such applications, knowledge of the complexation constants of AHA with all relevant actinide (5f) and lanthanide (4f) ions is therefore important. This paper reports the determination of stability constants of AHA with the heavier lanthanide ions (Dy-Yb) and also U(IV) and Th(IV) ions. Comparisons with our previously published AHA stability-constant data for 4f and 5f ions are made. (authors)

  9. Comparative Study of f-Element Electronic Structure across a Series of Multimetallic Actinide, Lanthanide-Actinide and Lanthanum-Actinide Complexes Possessing Redox-Active Bridging Ligands

    SciTech Connect (OSTI)

    Schelter, Eric J.; Wu, Ruilian; Veauthier, Jacqueline M.; Bauer, Eric D.; Booth, Corwin H.; Thomson, Robert K.; Graves, Christopher R.; John, Kevin D.; Scott, Brian L.; Thompson, Joe D.; Morris, David E.; Kiplinger, Jaqueline L.

    2010-02-24

    A comparative examination of the electronic interactions across a series of trimetallic actinide and mixed lanthanide-actinide and lanthanum-actinide complexes is presented. Using reduced, radical terpyridyl ligands as conduits in a bridging framework to promote intramolecular metal-metal communication, studies containing structural, electrochemical, and X-ray absorption spectroscopy are presented for (C{sub 5}Me{sub 5}){sub 2}An[-N=C(Bn)(tpy-M{l_brace}C{sub 5}Me4R{r_brace}{sub 2})]{sub 2} (where An = Th{sup IV}, U{sup IV}; Bn = CH{sub 2}C{sub 6}H{sub 5}; M = La{sup III}, Sm{sup III}, Yb{sup III}, U{sup III}; R = H, Me, Et) to reveal effects dependent on the identities of the metal ions and R-groups. The electrochemical results show differences in redox energetics at the peripheral 'M' site between complexes and significant wave splitting of the metal- and ligand-based processes indicating substantial electronic interactions between multiple redox sites across the actinide-containing bridge. Most striking is the appearance of strong electronic coupling for the trimetallic Yb{sup III}-U{sup IV}-Yb{sup III}, Sm{sup III}-U{sup IV}-Sm{sup III}, and La{sup III}-U{sup IV}-La{sup III} complexes, [8]{sup -}, [9b]{sup -} and [10b]{sup -}, respectively, whose calculated comproportionation constant K{sub c} is slightly larger than that reported for the benchmark Creutz-Taube ion. X-ray absorption studies for monometallic metallocene complexes of U{sup III}, U{sup IV}, and U{sup V} reveal small but detectable energy differences in the 'white-line' feature of the uranium L{sub III}-edges consistent with these variations in nominal oxidation state. The sum of this data provides evidence of 5f/6d-orbital participation in bonding and electronic delocalization in these multimetallic f-element complexes. An improved, high-yielding synthesis of 4{prime}-cyano-2,2{prime}:6{prime},2{double_prime}-terpyridine is also reported.

  10. Detection of Actinides via Nuclear Isomer De-Excitation

    SciTech Connect (OSTI)

    Francy, Christopher J.

    2009-07-22

    This dissertation discusses a data collection experiment within the Actinide Isomer Identification project (AID). The AID project is the investigation of an active interrogation technique that utilizes nuclear isomer production, with the goal of assisting in the interdiction of illicit nuclear materials. In an attempt to find and characterize isomers belonging to 235U and its fission fragments, a 232Th target was bombarded with a monoenergetic 6Li ion beam, operating at 45 MeV.

  11. Chemical and Ceramic Methods Toward Safe Storage of Actinides

    SciTech Connect (OSTI)

    P.E.D. Morgan; R.M. Housley; J.B. Davis; M.L. DeHaan

    2005-08-19

    A very import, extremely-long-term, use for monazite as a radwaste encapsulant has been proposed. THe use of ceramic La-monazite for sequestering actinides (isolating them from the environment), especially plutonium and some other radioactive elements )e.g., fission-product rare earths), had been especially championed by Lynn Boatner of ORNL. Monazite may be used alone or, copying its compatibility with many other minerals in nature, may be used in diverse composite combinations.

  12. Determination of actinides in urine and fecal samples

    SciTech Connect (OSTI)

    McKibbin, T.T.

    1992-12-31

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  13. Determination of actinides in urine and fecal samples

    DOE Patents [OSTI]

    McKibbin, T.T.

    1993-03-02

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  14. Determination of actinides in urine and fecal samples

    DOE Patents [OSTI]

    McKibbin, Terry T.

    1993-01-01

    A method of determining the radioactivity of specific actinides that are carried in urine or fecal sample material is disclosed. The samples are ashed in a muffle furnace, dissolved in an acid, and then treated in a series of steps of reduction, oxidation, dissolution, and precipitation, including a unique step of passing a solution through a chloride form anion exchange resin for separation of uranium and plutonium from americium.

  15. Computational Actinide Chemistry: Reliable Predictions and New Concepts |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne Leadership Computing Facility Optimized structure Monica Vasiliu, Karah Knope, Lynne Soderholm, and David Dixon, The University of Alabama and Argonne National Laboratory Computational Actinide Chemistry: Reliable Predictions and New Concepts PI Name: David Dixon PI Email: dadixon@bama.ua.edu Institution: University of Alabama Allocation Program: INCITE Allocation Hours at ALCF: 100 Million Year: 2014 Research Domain: Chemistry The project will obtain some of the first highly

  16. Chemical properties of the heavier actinides and transactinides

    SciTech Connect (OSTI)

    Hulet, E.K.

    1981-01-01

    The chemical properties of each of the elements 99 (Es) through 105 are reviewed and their properties correlated with the electronic structure expected for 5f and 6d elements. A major feature of the heavier actinides, which differentiates them from the comparable lanthanides, is the increasing stability of the divalent oxidation state with increasing atomic number. The divalent oxidation state first becomes observable in the anhydrous halides of californium and increases in stability through the series to nobelium, where this valency becomes predominant in aqueous solution. In comparison with the analogous 4f electrons, the 5f electrons in the latter part of the series are more tightly bound. Thus, there is a lowering of the 5f energy levels with respect to the Fermi level as the atomic number increases. The metallic state of the heavier actinides has not been investigated except from the viewpoint of the relative volatility among members of the series. In aqueous solutions, ions of these elements behave as a normal trivalent actinides and lanthanides (except for nobelium). Their ionic radii decrease with increasing nuclear charge which is moderated because of increased screening of the outer 6p electrons by the 5f electrons. The actinide series of elements is completed with the element lawrencium (Lr) in which the electronic configuration is 5f/sup 14/7s/sup 2/7p. From Mendeleev's periodicity and Dirac-Fock calculations, the next group of elements is expected to be a d-transition series corresponding to the elements Hf through Hg. The chemical properties of elements 104 and 105 only have been studied and they indeed appear to show the properties expected of eka-Hf and eka-Ta. However, their nuclear lifetimes are so short and so few atoms can be produced that a rich variety of chemical information is probably unobtainable.

  17. Particle Acceleration in Shocks: From Astrophysics to Laboratory In Silico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Credit: Frederico Fiuza, Lawrence Livermore National Laboratory Particle Acceleration in Shocks: From Astrophysics to Laboratory In Silico PI Name: Frederico Fiuza PI Email: fiuza1@llnl.gov Institution: Lawrence Livermore National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 110 Million Year: 2015 Research Domain: Physics Particle acceleration in astrophysical shocks is believed to be one of the most important sources of energetic

  18. Lessons Learned from Characterization, Performance Assessment, and EPA Regulatory Review of the 1996 Actinide Source Term for the Waste Isolation Pilot Plant

    SciTech Connect (OSTI)

    Larson, K.W.; Moore, R.C.; Nowak, E.J.; Papenguth, H.W.; Jow, H.

    1999-03-22

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) facility for the permanent disposal of transuranic waste from defense activities. In 1996, the DOE submitted the Title 40 CFR Part 191 Compliance Certification Application for the Waste Isolation Pilot Plant (CCA) to the US Environmental Protection Agency (EPA). The CCA included a probabilistic performance assessment (PA) conducted by Sandia National Laboratories to establish compliance with the quantitative release limits defined in 40 CFR 191.13. An experimental program to collect data relevant to the actinide source term began around 1989, which eventually supported the 1996 CCA PA actinide source term model. The actinide source term provided an estimate of mobile dissolved and colloidal Pu, Am, U, Th, and Np concentrations in their stable oxidation states, and accounted for effects of uncertainty in the chemistry of brines in waste disposal areas. The experimental program and the actinide source term included in the CCA PA underwent EPA review lasting more than 1 year. Experiments were initially conducted to develop data relevant to the wide range of potential future conditions in waste disposal areas. Interim, preliminary performance assessments and actinide source term models provided insight allowing refinement of experiments and models. Expert peer review provided additional feedback and confidence in the evolving experimental program. By 1995, the chemical database and PA predictions of WIPP performance were considered reliable enough to support the decision to add an MgO backfill to waste rooms to control chemical conditions and reduce uncertainty in actinide concentrations, especially for Pu and Am. Important lessons learned through the characterization, PA modeling, and regulatory review of the actinide source term are (1) experimental characterization and PA should evolve together, with neither activity completely dominating the other, (2) the understanding of physical processes

  19. Actinide behavior in the Integral Fast Reactor. Final project report

    SciTech Connect (OSTI)

    Courtney, J.C.

    1994-11-01

    The Integral Fast Reactor (IFR) under development by Argonne National Laboratory uses metallic fuels instead of ceramics. This allows electrorefining of spent fuels and presents opportunities for recycling minor actinide elements. Four minor actinides ({sup 237}Np, {sup 240}Pu, {sup 241}Am, and {sup 243}Am) determine the waste storage requirements of spent fuel from all types of fission reactors. These nuclides behave the same as uranium and other plutonium isotopes in electrorefining, so they can be recycled back to the reactor without elaborate chemical processing. An experiment has been designed to demonstrate the effectiveness of the high-energy neutron spectra of the IFR in consuming these four nuclides and weapons grade plutonium. Eighteen sets of seven actinide and five light metal targets have been selected for seven day exposure in the Experimental Breeder Reactor-II which serves as a prototype of the IFR. Post-irradiation analyses of the exposed targets by gamma, alpha, and mass spectroscopy are used to determine nuclear reaction rates and neutron spectra. These experimental data increase the authors confidence in their ability to predict reaction rates in candidate IFR designs using a variety of neutron transport and diffusion programs.

  20. Supercritical Fluid Extraction and Separation of Uranium from Other Actinides

    SciTech Connect (OSTI)

    Donna L. Quach; Bruce J. Mincher; Chien M. Wai

    2014-06-01

    This paper investigates the feasibility of separating uranium from other actinides by using supercritical fluid carbon dioxide (sc-CO2) as a solvent modified with tri-n-butylphosphate (TBP) for the development of an extraction and counter current stripping technique, which would be a more efficient and environmentally benign technology for used nuclear fuel reprocessing compared to traditional solvent extraction. Several actinides (U(VI), Np(VI), Pu(IV), and Am(III)) were extracted in sc-CO2 modified with TBP over a range of nitric acid concentrations and then the actinides were exposed to reducing and complexing agents to suppress their extractability. According to this study, the separation of uranium from plutonium in sc-CO2 modified with TBP was successful at nitric acid concentrations of less than 3 M in the presence of acetohydroxamic acid or oxalic acid, and the separation of uranium from neptunium was successful at nitric acid concentrations of less than 1 M in the presence of acetohydroxamic acid, oxalic acid, or sodium nitrite.

  1. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY AIR FILTER SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.; Noyes, G.; Culligan, B.

    2010-02-03

    A new rapid method for the determination of actinides and strontium in air filter samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used in emergency response situations. The actinides and strontium in air filter method utilizes a rapid acid digestion method and a streamlined column separation process with stacked TEVA, TRU and Sr Resin cartridges. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha emitters are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The purified {sup 90}Sr fractions are mounted directly on planchets and counted by gas flow proportional counting. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency air filter samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinide and {sup 90}Sr in air filter results were reported in {approx}4 hours with excellent quality.

  2. RAPID SEPARATION METHOD FOR ACTINIDES IN EMERGENCY SOIL SAMPLES

    SciTech Connect (OSTI)

    Maxwell, S.; Culligan, B.; Noyes, G.

    2009-11-09

    A new rapid method for the determination of actinides in soil and sediment samples has been developed at the Savannah River Site Environmental Lab (Aiken, SC, USA) that can be used for samples up to 2 grams in emergency response situations. The actinides in soil method utilizes a rapid sodium hydroxide fusion method, a lanthanum fluoride soil matrix removal step, and a streamlined column separation process with stacked TEVA, TRU and DGA Resin cartridges. Lanthanum was separated rapidly and effectively from Am and Cm on DGA Resin. Vacuum box technology and rapid flow rates are used to reduce analytical time. Alpha sources are prepared using cerium fluoride microprecipitation for counting by alpha spectrometry. The method showed high chemical recoveries and effective removal of interferences. This new procedure was applied to emergency soil samples received in the NRIP Emergency Response exercise administered by the National Institute for Standards and Technology (NIST) in April, 2009. The actinides in soil results were reported within 4-5 hours with excellent quality.

  3. Materials Science of Actinides (MSA) | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Materials Science of Actinides (MSA) Energy Frontier Research Centers (EFRCs) EFRCs Home Centers EFRC External Websites Research Science Highlights News & Events Publications History Contact BES Home Centers Materials Science of Actinides (MSA) Print Text Size: A A A FeedbackShare Page MSA Header Director Peter Burns Lead Institution University of Notre Dame Year Established 2009 Mission To understand and control, at the nanoscale, materials that contain actinides (radioactive heavy elements

  4. Method for the concentration and separation of actinides from biological and environmental samples

    DOE Patents [OSTI]

    Horwitz, E.P.; Dietz, M.L.

    1989-05-30

    A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting. 3 figs.

  5. Method for the concentration and separation of actinides from biological and environmental samples

    DOE Patents [OSTI]

    Horwitz, E. Philip; Dietz, Mark L.

    1989-01-01

    A method and apparatus for the quantitative recover of actinide values from biological and environmental sample by passing appropriately prepared samples in a mineral acid solution through a separation column of a dialkyl(phenyl)-N,N-dialylcarbamoylmethylphosphine oxide dissolved in tri-n-butyl phosphate on an inert substrate which selectively extracts the actinide values. The actinide values can be eluted either as a group or individually and their presence quantitatively detected by alpha counting.

  6. Tracking shocked dust: State estimation for a complex plasma during a shock wave

    SciTech Connect (OSTI)

    Oxtoby, Neil P.; Ralph, Jason F.; Durniak, Celine; Samsonov, Dmitry

    2012-01-15

    We consider a two-dimensional complex (dusty) plasma crystal excited by an electrostatically-induced shock wave. Dust particle kinematics in such a system are usually determined using particle tracking velocimetry. In this work we present a particle tracking algorithm which determines the dust particle kinematics with significantly higher accuracy than particle tracking velocimetry. The algorithm uses multiple extended Kalman filters to estimate the particle states and an interacting multiple model to assign probabilities to the different filters. This enables the determination of relevant physical properties of the dust, such as kinetic energy and kinetic temperature, with high precision. We use a Hugoniot shock-jump relation to calculate a pressure-volume diagram from the shocked dust kinematics. Calculation of the full pressure-volume diagram was possible with our tracking algorithm, but not with particle tracking velocimetry.

  7. EA-1404: Actinide Chemistry and Repository Science Laboratory, Carlsbad, New Mexico

    Office of Energy Efficiency and Renewable Energy (EERE)

    This EA evaluates the environmental impacts for the proposal to construct and operate an Actinide Chemistry and Repository Science Laboratory to support chemical research activities related to the...

  8. Flowsheet report for baseline actinide blanket processing for accelerator transmutation of waste

    SciTech Connect (OSTI)

    Walker, R.B.

    1992-04-08

    We provide a flowsheet analysis of the chemical processing of actinide and fission product materials form the actinide blanket of an accelerator-based transmutation concept. An initial liquid ion exchange step is employed to recover unburned plutonium and neptunium, so that it can be returned quickly to the transmitter. The remaining materials, consisting of fission products and trivalent actinides (americium, curium), is processed after a cooling period. A reverse Talspeak process is employed to separate these trivalent actinides from lanthanides and other fission products.

  9. Understanding the Chemistry of the Actinides in HL Waste Tank Systems: Actinide Speciation in Oxalic Acid Solutions in the Presence of Significant Quantities of Aluminum, Iron, and Manganese

    SciTech Connect (OSTI)

    Clark, Sue

    2006-07-30

    The overall goal of this research plan is to provide a thermodynamic basis for describing actinide speciation over a range of tank-like conditions, including elevated temperature, elevated OH- concentrations, and the presence of various organic ligands. With support from DOE's EMSP program, we have made significant progress towards measuring thermodynamic parameters for actinide complexation as a function of temperature. We have used the needs of the ESP modelers to guide our work to date, and we have made important progress defining the effect of temperature for actinide complexation by organic, and for hydrolysis of the hexa- and pentvalent oxidation states.

  10. Final Report on Actinide Glass Scintillators for Fast Neutron Detection

    SciTech Connect (OSTI)

    Bliss, Mary; Stave, Jean A.

    2012-10-01

    This is the final report of an experimental investigation of actinide glass scintillators for fast-neutron detection. It covers work performed during FY2012. This supplements a previous report, PNNL-20854 “Initial Characterization of Thorium-loaded Glasses for Fast Neutron Detection” (October 2011). The work in FY2012 was done with funding remaining from FY2011. As noted in PNNL-20854, the glasses tested prior to July 2011 were erroneously identified as scintillators. The decision was then made to start from “scratch” with a literature survey and some test melts with a non-radioactive glass composition that could later be fabricated with select actinides, most likely thorium. The normal stand-in for thorium in radioactive waste glasses is cerium in the same oxidation state. Since cerium in the 3+ state is used as the light emitter in many scintillating glasses, the next most common substitute was used: hafnium. Three hafnium glasses were melted. Two melts were colored amber and a third was clear. It barely scintillated when exposed to alpha particles. The uses and applications for a scintillating fast neutron detector are important enough that the search for such a material should not be totally abandoned. This current effort focused on actinides that have very high neutron capture energy releases but low neutron capture cross sections. This results in very long counting times and poor signal to noise when working with sealed sources. These materials are best for high flux applications and access to neutron generators or reactors would enable better test scenarios. The total energy of the neutron capture reaction is not the only factor to focus on in isotope selection. Many neutron capture reactions result in energetic gamma rays that require large volumes or high densities to detect. If the scintillator is to separate neutrons from gamma rays, the capture reactions should produce heavy particles and few gamma rays. This would improve the detection of a

  11. Plutonium and minor actinides utilization in Thorium molten salt reactor

    SciTech Connect (OSTI)

    Waris, Abdul; Aji, Indarta K.; Novitrian,; Kurniadi, Rizal; Su'ud, Zaki

    2012-06-06

    FUJI-12 reactor is one of MSR systems that proposed by Japan. The original FUJI-12 design considers Th/{sup 233}U or Th/Pu as main fuel. In accordance with the currently suggestion to stay away from the separation of Pu and minor actinides (MA), in this study we evaluated the utilization of Pu and MA in FUJI-12. The reactor grade Pu was employed in the present study as a small effort of supporting THORIMS-NES scenario. The result shows that the reactor can achieve its criticality with the Pu and MA composition in the fuel of 5.96% or more.

  12. Behavior of actinide ions during sludge washing of alkaline radioactive.

    SciTech Connect (OSTI)

    Bond, A. H.; Nash, K. L.; Gelis, A. V.; Jensen, M. P.; Sullivan, J. C.; Rao, L.

    1999-11-15

    It is difficult to accurately predict actinide behavior during the alkaline leaching of Hanford's radioactive sludges due to the diverse chemical and radiolytic conditions existing in these wastes. The results of Pu dissolution during experimental washing of sludge simulants from the BiPO{sub 4} Redox, and PUREX processes shows that {le} 2.l% Pu is dissolved during contact with alkaline media, but up to 65.5% Pu may be dissolved in acidic media. The dissolution of Cr, Fe, Nd, and Mn has also been observed, and the results of solid state, radioanalytical, and spectroscopic investigations are detailed.

  13. Recovery of the actinides by electrochemical methods in molten chlorides using solid aluminium cathode

    SciTech Connect (OSTI)

    Malmbeck, R.; Mendes, E.; Serp, J.; Soucek, P.; Glatz, J.P.; Cassayre, L.

    2007-07-01

    An electrorefining process in molten chloride salts is being developed at ITU to reprocess the spent nuclear fuel. According to the thermochemical properties of the system, aluminium is the most promising electrode material for the separation of actinides (An) from lanthanides (Ln). The actinides are selectively reduced from the fission products and stabilized by the formation of solid and compact actinide-aluminium alloys with the reactive cathode material. In this work, the maximum loading of aluminium with actinides was investigated by potentiostatic and galvano-static electrorefining of U-Pu- Zr alloys. A very high aluminium capacity was achieved, as the average loading was 1.6 g of U and Pu into 1 g of aluminium and the maximum achieved loading was 2.3 g. For recovery of the actinides from aluminium, a process based on chlorination and a subsequent sublimation of AlCl{sub 3} is proposed. (authors)

  14. Selective extraction of trivalent actinides from lanthanides with dithiophosphinic acids and tributylphosphate

    SciTech Connect (OSTI)

    Jarvinen, G.; Barrans, R.; Schroeder, N.; Wade, K.; Jones, M.; Smith, B.F.; Mills, J.; Howard, G.; Freiser, H.; Muralidharan, S.

    1995-01-01

    A variety of chemical systems have been developed to separate trivalent actinides from lanthanides based on the slightly stronger complexation of the trivalent actinides with ligands that contain soft donor atoms. The greater stability of the actinide complexes in these systems has often been attributed to a slightly greater covalent bonding component for the actinide ions relative to the lanthanide ions. The authors have investigated several synergistic extraction systems that use ligands with a combination of oxygen and sulfur donor atoms that achieve a good group separation of the trivalent actinides and lanthanides. For example, the combination of dicyclohexyldithiophosphinic acid and tributylphosphate has shown separation factors of up to 800 for americium over europium in a single extraction stage. Such systems could find application in advanced partitioning schemes for nuclear waste.

  15. SHOCK-EXCITED OSCILLATOR

    DOE Patents [OSTI]

    Creveling, R.

    1957-12-17

    S> A shock-excited quartz crystal oscillator is described. The circuit was specifically designed for application in micro-time measuring work to provide an oscillator which immediately goes into oscillation upon receipt of a trigger pulse and abruptly ceases oscillation when a second pulse is received. To achieve the instant action, the crystal has a prestressing voltage applied across it. A monostable multivibrator receives the on and off trigger pulses and discharges a pulse through the crystal to initiate or terminate oscillation instantly.

  16. Characterization of Shocked Beryllium

    SciTech Connect (OSTI)

    Cady, Carl M; Adams, Chris D; Hull, Lawrence M; Gray III, George T; Prime, Michael B; Addessio, Francis L; Wynn, Thomas A; Brown, Eric N

    2012-08-24

    Beryllium metal has many excellent structural properties in addition to its unique radiation characteristics, including: high elastic modulus, low Poisson's ratio, low density, and high melting point. However, it suffers from several major mechanical drawbacks: 1) high anisotropy - due to its hexagonal lattice structure and its susceptibility to crystallographic texturing; 2) susceptibility to impurity-induced fracture - due to grain boundary segregation; and 3) low intrinsic ductility at ambient temperatures thereby limiting fabricability. While large ductility results from deformation under the conditions of compression, the material can exhibit a brittle behavior under tension. Furthermore, there is a brittle to ductile transition at approximately 200 C under tensile conditions. While numerous studies have investigated the low-strain-rate constitutive response of beryllium, the combined influence of high strain rate and temperature on the mechanical behavior and microstructure of beryllium has received limited attention over the last 40 years. Prior studies have focused on tensile loading behavior, or limited conditions of dynamic strain rate and/or temperature. The beryllium used in this study was Grade S200-F (Brush Wellman, Inc., Elmore, OH) material. The work focused on high strain rate deformation and examine the validity of constitutive models in deformation rate regimes, including shock, the experiments were modeled using a Lagrangian hydrocode. Two constitutive strength (plasticity) models, the Preston-Tonks-Wallace (PTW) and Mechanical Threshold Stress (MTS) models, were calibrated using the same set of quasi-static and Hopkinson bar data taken at temperatures from 77K to 873K and strain rates from 0.001/sec to 4300/sec. In spite of being calibrated on the same data, the two models give noticeably different results when compared with the measured wave profiles. These high strain rate tests were conducted using both explosive drive and a gas gun to

  17. Actinide production from xenon bombardments of curium-248

    SciTech Connect (OSTI)

    Welch, R.B.

    1985-01-01

    Production cross sections for many actinide nuclides formed in the reaction of /sup 129/Xe and /sup 132/Xe with /sup 248/Cm at bombarding energies slightly above the coulomb barrier were determined using radiochemical techniques to isolate these products. These results are compared with cross sections from a /sup 136/Xe + /sup 248/Cm reaction at a similar energy. When compared to the reaction with /sup 136/Xe, the maxima in the production cross section distributions from the more neutron deficient projectiles are shifted to smaller mass numbers, and the total cross section increases for the production of elements with atomic numbers greater than that of the target, and decreases for lighter elements. These results can be explained by use of a potential energy surface (PES) which illustrates the effect of the available energy on the transfer of nucleons and describes the evolution of the di-nuclear complex, an essential feature of deep-inelastic reactions (DIR), during the interaction. The other principal reaction mechanism is the quasi-elastic transfer (QE). Analysis of data from a similar set of reactions, /sup 129/Xe, /sup 132/Xe, and /sup 136/Xe with /sup 197/Au, aids in explaining the features of the Xe + Cm product distributions, which are additionally affected by the depletion of actinide product yields due to deexcitation by fission. The PES is shown to be a useful tool to predict the general features of product distributions from heavy ion reactions.

  18. Operation of a bushing melter system designed for actinide vitrification

    SciTech Connect (OSTI)

    Ramsey, W.G.

    1996-03-01

    The Westinghouse Savannah River Company is developing a melter system to vitrify actinide materials. The melter system will used to vitrify the americium and curium solution which is currently stored in one of the Savannah River Site`s (SRS) processing canyons. This solution is one of the materials designated by the Defense Nuclear Facilities Safety Board (DNFSB) to be dispositioned as part of the DNFSB recommendation 94-1. The Am/Cm solution contains an extremely large fraction (>2 kilograms of Cm and 10 kilograms of Am) of t he United States`s total inventory of both elements. They have an estimated value on the order of one billion dollars - if they are processed through the DOE Isotope Sales program at the Oak Ridge National Laboratory. It is therefore deemed highly desirable to transfer the material to Oak Ridge in a form which can allow for recovery of the material. A commercial glass composition has been demonstrated to be compatible with up to 40 weight percent of the Am/Cm solution contents. This glass is also selectively attacked by nitric acid. This allows the actinide to be recovered by common separation processes.

  19. Prediction of dissolved actinide concentrations in concentrated electrolyte solutions: a conceptual model and model results for the Waste Isolation Pilot Plant (WIPP)

    SciTech Connect (OSTI)

    Novak, C.F.; Moore, R.C.; Bynum, R.V.

    1996-10-25

    The conceptual model for WIPP dissolved concentrations is a description of the complex natural and artificial chemical conditions expected to influence dissolved actinide concentrations in the repository. By a set of physical and chemical assumptions regarding chemical kinetics, sorption substrates, and waste-brine interactions, the system was simplified to be amenable to mathematical description. The analysis indicated that an equilibrium thermodynamic model for describing actinide solubilities in brines would be tractable and scientifically supportable. This paper summarizes the conceptualization and modeling approach and the computational results as used in the WIPP application for certification of compliance with relevant regulations for nuclear waste repositories. The WIPP site contains complex natural brines ranging from sea water to 10x more concentrated than sea water. Data bases for predicting solubility of Am(III) (as well as Pu(III) and Nd(III)), Th(IV), and Np(V) in these brines under potential repository conditions have been developed, focusing on chemical interactions with Na, K, Mg, Cl, SO{sub 4}, and CO{sub 3} ions, and the organic acid anions acetate, citrate, EDTA, and oxalate. The laboratory and modeling effort augmented the Harvie et al. parameterization of the Pitzer activity coefficient model so that it could be applied to the actinides and oxidation states important to the WIPP system.

  20. Shock transmissibility of threaded joints

    SciTech Connect (OSTI)

    Hansen, N.R.; Bateman, V.I.; Brown, F.A.

    1996-12-31

    Sandia National Laboratories (SNL) designs mechanical systems with threaded joints that must survive high shock environments. These mechanical systems include penetrators that must survive soil and rock penetration; drilling pipe strings that must survive rock-cutting, shock environments; and laydown weapons that must survive delivery impact shock. This paper summarizes an analytical study and an experimental evaluation of compressive, one-dimensional, shock transmission through a threaded joint in a split Hopkinson bar configuration. Thread geometries were scaled to simulate large diameter threaded joints with loadings parallel to the axis of the threads. Both strain and acceleration were evaluated with experimental measurements and analysis. Analytical results confirm the experimental conclusions that in this split Hopkinson bar configuration, the change in the one-dimensional shock wave by the threaded joint is localized to a length equal to a few diameters` length beyond the threaded joint.

  1. Development of spectral interferometry for shock characterization...

    Office of Scientific and Technical Information (OSTI)

    interferometry for shock characterization in energetic materials. Citation Details In-Document Search Title: Development of spectral interferometry for shock characterization in ...

  2. Shock Desensitization Experiments and Reactive Flow Modeling...

    Office of Scientific and Technical Information (OSTI)

    Shock Desensitization Experiments and Reactive Flow Modeling on Self-Sustaining LX-17 Detonation Waves Citation Details In-Document Search Title: Shock Desensitization Experiments ...

  3. Conjugates of Actinide Chelator-Magnetic Nanoparticles for Used Fuel Separation Technology

    SciTech Connect (OSTI)

    Qiang, You; Paszczynski, Andrzej; Rao, Linfeng

    2011-10-30

    The actinide separation method using magnetic nanoparticles (MNPs) functionalized with actinide specific chelators utilizes the separation capability of ligand and the ease of magnetic separation. This separation method eliminated the need of large quantity organic solutions used in the liquid-liquid extraction process. The MNPs could also be recycled for repeated separation, thus this separation method greatly reduces the generation of secondary waste compared to traditional liquid extraction technology. The high diffusivity of MNPs and the large surface area also facilitate high efficiency of actinide sorption by the ligands. This method could help in solving the nuclear waste remediation problem.

  4. Integral Validation of Minor Actinide Nuclear Data by using Samples Irradiated at Dounreay Prototype Fast Reactor

    SciTech Connect (OSTI)

    Tsujimoto, Kazufumi; Oigawa, Hiroyuki; Shinohara, Nobuo [Japan Atomic Energy Research Institute, Shirakata Shirane 2-4, Tokai, Ibaraki 319-1195 (Japan)

    2005-05-24

    The reliability of nuclear data for minor actinides was evaluated by using the results of the post-irradiation experiment for actinide samples irradiated at the Dounreay Prototype Fast Reactor. The burnup calculations with JENDL-3.3, ENDF/B-VI.8, and JEFF-3.0 were performed. From the comparison between the experimental data and the calculational results, in general, the reliability of nuclear data for the minor actinides are at an adequate level for the conceptual design study of transmutation systems. It is, however, found that improvement of the accuracy is necessary for some nuclides, such as 238Pu, 242Pu, and 241Am.

  5. Irradiation of Metallic and Oxide Fuels for Actinide Transmutation in the ATR

    SciTech Connect (OSTI)

    MacLean, Heather J.; Hayes, Steven L.

    2007-07-01

    Metallic fuels containing minor actinides and rare earth additions have been fabricated and are prepared for irradiation in the ATR, scheduled to begin during the summer of 2007. Oxide fuels containing minor actinides are being fabricated and will be ready for irradiation in ATR, scheduled to begin during the summer of 2008. Fabrication and irradiation of these fuels will provide detailed studies of actinide transmutation in support of the Global Nuclear Energy Partnership. These fuel irradiations include new fuel compositions that have never before been tested. Results from these tests will provide fundamental data on fuel irradiation performance and will advance the state of knowledge for transmutation fuels. (authors)

  6. Practical combinations of light-water reactors and fast reactors for future actinide transmutation

    SciTech Connect (OSTI)

    Collins, Emory D.; Renier, John-Paul

    2007-07-01

    Multicycle partitioning-transmutation (P-T) studies continue to show that use of existing light-water reactors (LWRs) and new advanced light-water reactors (ALWRs) can effectively transmute transuranic (TRU) actinides, enabling initiation of full actinide recycle much earlier than waiting for the development and deployment of sufficient fast reactor (FR) capacity. The combination of initial P-T cycles using LWRs/ALWRs in parallel with economic improvements to FR usage for electricity production, and a follow-on transition period in which FRs are deployed, is a practical approach to near-term closure of the nuclear fuel cycle with full actinide recycle. (authors)

  7. Chemical Speciation of Americium, Curium and Selected Tetravalent Actinides in High Level Waste

    SciTech Connect (OSTI)

    Felmy, Andrew R.

    2006-06-01

    Large volumes of high-level waste (HLW) currently stored in tanks at DOE sites contain both sludges and supernatants. The sludges are composed of insoluble precipitates of actinides, radioactive fission products, and nonradioactive components. The supernatants are alkaline carbonate solutions, which can contain soluble actinides, fission products, metal ions, and high concentrations of major electrolytes including sodium hydroxide, nitrate, nitrite, phosphate, carbonate, aluminate, sulfate, and organic complexants. The organic complexants include several compounds that can form strong aqueous complexes with actinide species and fission products including ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), citrate, glycolate, gluconate, and degradation products, formate and oxalate.

  8. Chemical Speciation of Americium, Curium and Selected Tetravalent Actinides in High Level Waste

    SciTech Connect (OSTI)

    Felmy, Andrew R.

    2005-06-01

    Large volumes of high-level waste (HLW) currently stored in tanks at DOE sites contain both sludges and supernatants. The sludges are composed of insoluble precipitates of actinides, radioactive fission products, and nonradioactive components. The supernatants are alkaline carbonate solutions, which can contain soluble actinides, fission products, metal ions, and high concentrations of major electrolytes including sodium hydroxide, nitrate, nitrite, phosphate, carbonate, aluminate, sulfate, and organic complexants. The organic complexants include several compounds that can form strong aqueous complexes with actinide species and fission products including ethylenediaminetetraacetic acid (EDTA), N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA), nitrilotriacetic acid (NTA), iminodiacetic acid (IDA), citrate, glycolate, gluconate, and degradation products, formate and oxalate.

  9. Phenomenology of reverse-shock emission in the optical afterglows of gamma-ray bursts

    SciTech Connect (OSTI)

    Japelj, J.; Kopa?, D.; Gomboc, A. [Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 19, SI-1000 Ljubljana (Slovenia); Kobayashi, S.; Harrison, R.; Virgili, F. J.; Mundell, C. G. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool, L3 5RF (United Kingdom); Guidorzi, C. [Physics Departments, University of Ferrara, via Saragat 1, I-44122, Ferrara (Italy); Melandri, A., E-mail: jure.japelj@fmf.uni-lj.si, E-mail: andreja.gomboc@fmf.uni-lj.si [INAF Osservatorio Astronomico di Brera, via E. Bianchi 46, I-23807 Merate (Italy)

    2014-04-20

    We use a parent sample of 118 gamma-ray burst (GRB) afterglows, with known redshift and host galaxy extinction, to separate afterglows with and without signatures of dominant reverse-shock (RS) emission and to determine which physical conditions lead to a prominent reverse-shock emission. We identify 10 GRBs with reverse-shock signatures: 990123, 021004, 021211, 060908, 061126, 080319B, 081007, 090102, 090424, and 130427A. By modeling their optical afterglows with reverse- and forward-shock analytic light curves and using Monte Carlo simulations, we estimate the parameter space of the physical quantities describing the ejecta and circumburst medium. We find that physical properties cover a wide parameter space and do not seem to cluster around any preferential values. Comparing the rest-frame optical, X-ray, and high-energy properties of the larger sample of non-RS-dominated GRBs, we show that the early-time (<1 ks) optical spectral luminosity, X-ray afterglow luminosity, and ?-ray energy output of our reverse-shock dominated sample do not differ significantly from the general population at early times. However, the GRBs with dominant reverse-shock emission have fainter than average optical forward-shock emission at late times (>10 ks). We find that GRBs with an identifiable reverse-shock component show a high magnetization parameter R {sub B} = ?{sub B,r}/?{sub B,f} ? 2-10{sup 4}. Our results are in agreement with the mildly magnetized baryonic jet model of GRBs.

  10. Particle Acceleration in Shocks: From Astrophysics to Laboratory In Silico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Argonne Leadership Computing Facility Frederico Fiuza, Lawrence Livermore National Laboratory Particle Acceleration in Shocks: From Astrophysics to Laboratory In Silico PI Name: Frederico Fiuza PI Email: fiuza1@llnl.gov Institution: Lawrence Livermore National Laboratory Allocation Program: INCITE Allocation Hours at ALCF: 120 Million Year: 2014 Research Domain: Physics This project focuses on longstanding scientific problems closely tied to extreme plasma physics processes, such as

  11. Flammability Analysis For Actinide Oxides Packaged In 9975 Shipping Containers

    SciTech Connect (OSTI)

    Laurinat, James E.; Askew, Neal M.; Hensel, Steve J.

    2013-03-21

    Packaging options are evaluated for compliance with safety requirements for shipment of mixed actinide oxides packaged in a 9975 Primary Containment Vessel (PCV). Radiolytic gas generation rates, PCV internal gas pressures, and shipping windows (times to reach unacceptable gas compositions or pressures after closure of the PCV) are calculated for shipment of a 9975 PCV containing a plastic bottle filled with plutonium and uranium oxides with a selected isotopic composition. G-values for radiolytic hydrogen generation from adsorbed moisture are estimated from the results of gas generation tests for plutonium oxide and uranium oxide doped with curium-244. The radiolytic generation of hydrogen from the plastic bottle is calculated using a geometric model for alpha particle deposition in the bottle wall. The temperature of the PCV during shipment is estimated from the results of finite element heat transfer analyses.

  12. ENHANCING ADVANCED CANDU PROLIFERATION RESISTANCE FUEL WITH MINOR ACTINIDES

    SciTech Connect (OSTI)

    Gray S. Chang

    2010-05-01

    The advanced nuclear system will significantly advance the science and technology of nuclear energy systems and to enhance the spent fuel proliferation resistance. Minor actinides (MA) are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs can play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. In this work, an Advanced CANDU Reactor (ACR) fuel unit lattice cell model with 43 UO2 fuel rods will be used to investigate the effectiveness of a Minor Actinide Reduction Approach (MARA) for enhancing proliferation resistance and improving the fuel cycle performance. The main MARA objective is to increase the 238Pu / Pu isotope ratio by using the transuranic nuclides (237Np and 241Am) in the high burnup fuel and thereby increase the proliferation resistance even for a very low fuel burnup. As a result, MARA is a very effective approach to enhance the proliferation resistance for the on power refueling ACR system nuclear fuel. The MA transmutation characteristics at different MA loadings were compared and their impact on neutronics criticality assessed. The concept of MARA, significantly increases the 238Pu/Pu ratio for proliferation resistance, as well as serves as a burnable absorber to hold-down the initial excess reactivity. It is believed that MARA can play an important role in atoms for peace and the intermediate term of nuclear energy reconnaissance.

  13. Chondrule destruction in nebular shocks

    SciTech Connect (OSTI)

    Jacquet, Emmanuel; Thompson, Christopher

    2014-12-10

    Chondrules are millimeter-sized silicate spherules ubiquitous in primitive meteorites, but whose origin remains mysterious. One of the main proposed mechanisms for producing them is melting of solids in shock waves in the gaseous protoplanetary disk. However, evidence is mounting that chondrule-forming regions were enriched in solids well above solar abundances. Given the high velocities involved in shock models, destructive collisions would be expected between differently sized grains after passage of the shock front as a result of differential drag. We investigate the probability and outcome of collisions of particles behind a one-dimensional shock using analytic methods as well as a full integration of the coupled mass, momentum, energy, and radiation equations. Destruction of protochondrules seems unavoidable for solid/gas ratios ? ? 0.1, and possibly even for solar abundances because of 'sandblasting' by finer dust. A flow with ? ? 10 requires much smaller shock velocities (?2 versus 8 km s{sup 1}) in order to achieve chondrule-melting temperatures, and radiation trapping allows slow cooling of the shocked fragments. Initial destruction would still be extensive; although re-assembly of millimeter-sized particles would naturally occur by grain sticking afterward, the compositional heterogeneity of chondrules may be difficult to reproduce. We finally note that solids passing through small-scale bow shocks around few kilometer-sized planetesimals might experience partial melting and yet escape fragmentation.

  14. Application of extraction chromatography to actinide decontamination of hydrochloric acid effluent streams

    SciTech Connect (OSTI)

    Schulte, L.D.; McKee, S.D.; Salazar, R.R.

    1996-05-01

    Extraction chromatography is under development as a method to lower actinide activity levels in effluent steams. Successful application of this technique for radioactive liquid waste treatment would provide a low activity feed stream for HCl recycle, reduce the loss of radioactivity to the environment in aqueous effluents, and would lower the quantity and reduce the hazard of the associated solid waste. The extraction of Pu and Am from HCl solutions was examined for several commercial and laboratory-produced sorbed resin materials. Inert supports included silica and polymer beads of differing mesh sizes. The support material was coated with either n-octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (O-CMPO) or di-(4-t-butylphenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (D-CMPO) as an extractant, and using either tributyl phosphate (TBP) or diamyl amylphosphonate (DAAP) as a diluent. Solutions tested were effluent streams generated by ion exchange and solvent extraction recovery of Pu. A finer mesh silica support material demonstrated advantages in removal of trivalent Am in some tests, but also showed a tendency toward plugging and channeling as column sizes and flow rates were increased. Larger bead sizes showed better physical properties as the process was scaled up to removal of gram quantities of Am from large effluent volumes. The ratio of extractant to diluent also appeared to play a role in the retention of Am. In direct comparative studies, when loaded on identical supports and diluent conditions, D-CMPO demonstrated better Am retention than O-CMPO from HCl process effluents.

  15. Theoretical Studies of the Electronic Structure of the Compounds of the Actinide Elements

    SciTech Connect (OSTI)

    Kaltsoyannis, Nikolas; Hay, P. Jeffrey; Li, Jun; Blaudeau, Jean-Philippe; Bursten, Bruce E.

    2006-02-02

    In this chapter, we will present an overview of the theoretical and computational developments that have increased our understanding of the electronic structure of actinide-containing molecules and ions. The application of modern electronic structure methodologies to actinide systems remains one of the great challenges in quantum chemistry; indeed, as will be discussed below, there is no other portion of the periodic table that leads to the confluence of complexity with respect to the calculation of ground- and excited-state energies, bonding descriptions, and molecular properties. But there is also no place in the periodic table in which effective computational modeling of electronic structure can be more useful. The difficulties in creating, isolating, and handling many of the actinide elements provide an opportunity for computational chemistry to be an unusually important partner in developing the chemistry of these elements. The importance of actinide electronic structure begins with the earliest studies of uranium chemistry and predates the discovery of quantum mechanics. The fluorescence of uranyl compounds was observed as early as 1833 (Jørgensen and Reisfeld, 1983), a presage of the development of actinometry as a tool for measuring photochemical quantum yields. Interest in nuclear fuels has stimulated tremendous interest in understanding the properties, including electronic properties, of small actinide-containing molecules and ions, especially the oxides and halides of uranium and plutonium. The synthesis of uranocene in 1968 (Streitwieser and Mu¨ ller-Westerhoff, 1968) led to the flurry of activity in the organometallic chemistry of the actinides that continues today. Actinide organometallics (or organoactinides) are nearly always molecular systems and are often volatile, which makes them amenable to an arsenal of experimental probes of molecular and electronic structure (Marks and Fischer, 1979). Theoretical and computational studies of the electronic

  16. SRNL Development of Recovery Processes for Mark-18A Heavy Actinide...

    Office of Scientific and Technical Information (OSTI)

    plans for the recovery of rare and unique isotopes contained within heavy-actinide target assemblies, specifically the Mark-18A. Mark-18A assemblies were irradiated in Savannah ...

  17. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides...

    Office of Scientific and Technical Information (OSTI)

    Conference: Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides Citation Details In-Document Search Title: Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of ...

  18. Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides...

    Office of Scientific and Technical Information (OSTI)

    Conference: Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of the Actinides Citation Details In-Document Search Title: Soft X-Ray and Vacuum Ultraviolet Based Spectroscopy of...

  19. Partitioning of minor actinides from PUREX raffinate by the TODGA process

    SciTech Connect (OSTI)

    Magnusson, D.; Christiansen, B.; Glatz, J.P.; Malmbeck, R.; Serrano Purroy, D.; Modolo, G.; Sorel, C.

    2007-07-01

    A genuine High Active Raffinate (HAR) was produced from small scale PUREX reprocessing of a UO{sub 2} spent fuel solution as feed for a subsequent TODGA/TBP process. In this process, efficient recovery of the trivalent Minor Actinides (MA) actinides could be demonstrated using a hot cell set-up of 32 centrifugal contactor stages. The feed decontamination factors obtained for Am and Cm were in the range of 4 x 10{sup 4} which corresponds to a recovery of more than 99.99 % in the product fraction. Trivalent lanthanides and Y were co-extracted, otherwise only a small part of the Ru ended up in the product. The collected actinide/lanthanide fraction can be used as feed for a SANEX (separation actinides from lanthanides) with some modification of the acidity depending on the extracting molecule. (authors)

  20. Separation of actinides using capillary extraction chromatography-inductively coupled plasma mass spectrometry

    SciTech Connect (OSTI)

    Peterson, Dominic S

    2008-01-01

    Trace levels of actinides have been separated on extraction chromatography columns. Detection of the actinides was achieved using an inductively coupled plasma mass spectrometer (ICP-MS), which was coupled with the extraction chromatography system. In this study we compare 30 cm long, 4.6 mm ID columns to capillary columns (750 {micro}m ID) with lengths from 30 cm up to 150 cm. The columns that were tested were packed with TRU resin. We were able to separate a mixture of five actinides ({sup 232}Th, {sup 238}U, {sup 237}Np, {sup 239}pU, {sup 241}Am). This work has application to rapid bioassay as well as for automated separations of actinide materials.

  1. Key features of the Talspeak and similar trivalent actinide-lanthanide partitioning processes

    SciTech Connect (OSTI)

    Nash, Kenneth L.

    2008-07-01

    As closing of the nuclear-fuel cycle via the suite of UREX processes under development in the U.S. progresses, the Trivalent Actinide-Lanthanide Separation by Phosphorus Extractants and Aqueous Komplexants (TALSPEAK) process has been selected as the baseline process for partition of trivalent actinides away from fission-product lanthanides. In this report, selected features of the chemistry of the TALSPEAK process and the limited parallel information on other TALSPEAK-like processes are discussed. (author)

  2. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fissionmore » yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.« less

  3. Actinide-lanthanide separation with solvents on the base of amides of heterocyclic diacids

    SciTech Connect (OSTI)

    Babain, V.A.; Alyapyshev, M.Y.; Tkachenko, L.I.

    2013-07-01

    The separation of actinides from lanthanides with a particular emphasis on Am(III) from Eu(III) with amides of heterocyclic dicarboxylic diacids was reviewed. It was shown that the di-amides of the 2,2'-dipyridyl-6,6'-dicarboxylic acid are the most promising ligands for the simultaneous selective recovery of actinides from HLLW (high level radioactive liquid waste) within the GANEX concept. (author)

  4. Testing actinide fission yield treatment in CINDER90 for use in MCNP6 burnup calculations

    SciTech Connect (OSTI)

    Fensin, Michael Lorne; Umbel, Marissa

    2015-09-18

    Most of the development of the MCNPX/6 burnup capability focused on features that were applied to the Boltzman transport or used to prepare coefficients for use in CINDER90, with little change to CINDER90 or the CINDER90 data. Though a scheme exists for best solving the coupled Boltzman and Bateman equations, the most significant approximation is that the employed nuclear data are correct and complete. Thus, the CINDER90 library file contains 60 different actinide fission yields encompassing 36 fissionable actinides (thermal, fast, high energy and spontaneous fission). Fission reaction data exists for more than 60 actinides and as a result, fission yield data must be approximated for actinides that do not possess fission yield information. Several types of approximations are used for estimating fission yields for actinides which do not possess explicit fission yield data. The objective of this study is to test whether or not certain approximations of fission yield selection have any impact on predictability of major actinides and fission products. Further we assess which other fission products, available in MCNP6 Tier 3, result in the largest difference in production. Because the CINDER90 library file is in ASCII format and therefore easily amendable, we assess reasons for choosing, as well as compare actinide and major fission product prediction for the H. B. Robinson benchmark for, three separate fission yield selection methods: (1) the current CINDER90 library file method (Base); (2) the element method (Element); and (3) the isobar method (Isobar). Results show that the three methods tested result in similar prediction of major actinides, Tc-99 and Cs-137; however, certain fission products resulted in significantly different production depending on the method of choice.

  5. An instrument for the investigation of actinides with spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy

    SciTech Connect (OSTI)

    Yu, S.-W.; Tobin, J. G.; Chung, B. W.

    2011-01-01

    A new system for spin resolved photoelectron spectroscopy and bremsstrahlung isochromat spectroscopy has been built and commissioned at Lawrence Livermore National Laboratory for the investigation of the electronic structure of the actinides.Actinide materials are very toxic and radioactive and therefore cannot be brought to most general user facilities for spectroscopic studies. The technical details of the new system and preliminary data obtained therein will be presented and discussed.

  6. Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME

    SciTech Connect (OSTI)

    Johnson, Aaron T.; Nash, Kenneth L.

    2015-08-20

    The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in a single process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).

  7. Enhancing the actinide sciences in Europe through hot laboratories networking and pooling: from ACTINET to TALISMAN

    SciTech Connect (OSTI)

    Bourg, S.; Poinssot, C.

    2013-07-01

    Since 2004, Europe supports the strengthening of the European actinides sciences scientific community through the funding of dedicated networks: (i) from 2004 to 2008, the ACTINET6 network of excellence (6. Framework Programme) gathered major laboratories involved in nuclear research and a wide range of academic research organisations and universities with the specific aims of funding and implementing joint research projects to be performed within the network of pooled facilities; (ii) from 2009 to 2013, the ACTINET-I3 integrated infrastructure initiative (I3) supports the cost of access of any academics in the pooled EU hot laboratories. In this continuation, TALISMAN (Trans-national Access to Large Infrastructures for a Safe Management of Actinides) gathers now the main European hot laboratories in actinides sciences in order to promote their opening to academics and universities and strengthen the EU-skills in actinides sciences. Furthermore, a specific focus is set on the development of advanced cutting-edge experimental and spectroscopic capabilities, the combination of state-of-the art experimental with theoretical first-principle methods on a quantum mechanical level and to benefit from the synergy between the different scientific and technical communities. ACTINET-I3 and TALISMAN attach a great importance and promote the Education and Training of the young generation of actinides scientists in the Trans-national access but also by organizing Schools (general Summer Schools or Theoretical User Lab Schools) or by granting students to attend International Conference on actinide sciences. (authors)

  8. Mixed monofunctional extractants for trivalent actinide/lanthanide separations: TALSPEAK-MME

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Aaron T.; Nash, Kenneth L.

    2015-08-20

    The basic features of an f-element extraction process based on a solvent composed of equimolar mixtures of Cyanex-923 (a mixed trialkyl phosphine oxide) and 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (HEH[EHP]) extractants in n-dodecane are investigated in this report. This system, which combines features of the TRPO and TALSPEAK processes, is based on co-extraction of trivalent lanthanides and actinides from 0.1 to 1.0 M HNO3 followed by application of a buffered aminopolycarboxylate solution strip to accomplish a Reverse TALSPEAK selective removal of actinides. This mixed-extractant medium could enable a simplified approach to selective trivalent f-element extraction and actinide partitioning in a singlemore » process. As compared with other combined process applications in development for more compact actinide partitioning processes (DIAMEX-SANEX, GANEX, TRUSPEAK, ALSEP), this combination features only monofunctional extractants with high solubility limits and comparatively low molar mass. Selective actinide stripping from the loaded extractant phase is done using a glycine-buffered solution containing N-(2-hydroxyethyl)ethylenediaminetriacetic acid (HEDTA) or triethylenetetramine-N,N,N',N'',N''',N'''-hexaacetic acid (TTHA). Lastly, the results reported provide evidence for simplified interactions between the two extractants and demonstrate a pathway toward using mixed monofunctional extractants to separate trivalent actinides (An) from fission product lanthanides (Ln).« less

  9. Calculation of binary phase diagrams between the actinide elements, rare earth elements, and transition metal elements

    SciTech Connect (OSTI)

    Selle, J E

    1992-06-26

    Attempts were made to apply the Kaufman method of calculating binary phase diagrams to the calculation of binary phase diagrams between the rare earths, actinides, and the refractory transition metals. Difficulties were encountered in applying the method to the rare earths and actinides, and modifications were necessary to provide accurate representation of known diagrams. To calculate the interaction parameters for rare earth-rare earth diagrams, it was necessary to use the atomic volumes for each of the phases: liquid, body-centered cubic, hexagonal close-packed, and face-centered cubic. Determination of the atomic volumes of each of these phases for each element is discussed in detail. In some cases, empirical means were necessary. Results are presented on the calculation of rare earth-rare earth, rare earth-actinide, and actinide-actinide diagrams. For rare earth-refractory transition metal diagrams and actinide-refractory transition metal diagrams, empirical means were required to develop values for the enthalpy of vaporization for rare earth elements and values for the constant (C) required when intermediate phases are present. Results of using the values determined for each element are presented.

  10. The History of the APS Shock Compression of Condensed Matter Topical Group

    SciTech Connect (OSTI)

    Forbes, J W

    2001-05-02

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wave/high pressure sessions at APS general meetings in even numbered years.

  11. History of the APS Topical Group on Shock Compression of Condensed Matter

    SciTech Connect (OSTI)

    Forbes, J W

    2001-10-19

    In order to provide broader scientific recognition and to advance the science of shock compressed condensed matter, a group of American Physical Society (APS) members worked within the Society to make this field an active part of the APS. Individual papers were presented at APS meetings starting in the 1940's and shock wave sessions were organized starting with the 1967 Pasadena meeting. Shock wave topical conferences began in 1979 in Pullman, WA. Signatures were obtained on a petition in 1984 from a balanced cross-section of the shock wave community to form an APS Topical Group (TG). The APS Council officially accepted the formation of the Shock Compression of Condensed Matter (SCCM) TG at its October 1984 meeting. This action firmly aligned the shock wave field with a major physical science organization. Most early topical conferences were sanctioned by the APS while those held after 1992 were official APS meetings. The topical group organizes a shock wave topical conference in odd numbered years while participating in shock wavehigh pressure sessions at APS general meetings in even numbered years.

  12. Method for fluorination of actinide fluorides and oxyfluorides thereof using O.sub.2 F.sub.2

    DOE Patents [OSTI]

    Eller, Phillip G. (Los Alamos, NM); Malm, John G. (Naperville, IL); Penneman, Robert A. (Albuquerque, NM)

    1988-01-01

    Method for fluorination of actinides and fluorides and oxyfluorides thereof using O.sub.2 F.sub.2 which generates actinide hexafluorides, and for removal of actinides and compounds thereof from surfaces upon which they appear as unwanted deposits. The fluorinating agent, O.sub.2 F.sub.2, has been observed to readily perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are thereby not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is easily prepared, stored and transferred to the desired place of reaction.

  13. Method for fluorination of actinide fluorides and oxyfluorides using O/sub 2/F/sub 2/

    DOE Patents [OSTI]

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1984-08-01

    The present invention relates generally to methods of fluorination and more particularly to the use of O/sub 2/F/sub 2/ for the preparation of actinide hexafluorides, and for the extraction of deposited actinides and fluorides and oxyfluorides thereof from reaction vessels. The experiments set forth hereinabove demonstrate that the room temperature or below use of O/sub 2/F/sub 2/ will be highly beneficial for the preparation of pure actinide hexafluorides from their respective tetrafluorides without traces of HF being present as occurs using other fluorinating agents: and decontamination of equipment previously exposed to actinides: e.g., walls, feed lines, etc.

  14. Method for fluorination of actinide fluorides and oxyfluorides thereof using O[sub 2]F[sub 2

    DOE Patents [OSTI]

    Eller, P.G.; Malm, J.G.; Penneman, R.A.

    1988-11-08

    Method is described for fluorination of actinides and fluorides and oxyfluorides thereof using O[sub 2]F[sub 2] which generates actinide hexafluorides, and for removal of actinides and compounds thereof from surfaces upon which they appear as unwanted deposits. The fluorinating agent, O[sub 2]F[sub 2], has been observed to readily perform the above-described tasks at sufficiently low temperatures that there is virtually no damage to the containment vessels. Moreover, the resulting actinide hexafluorides are thereby not destroyed by high temperature reactions with the walls of the reaction vessel. Dioxygen difluoride is easily prepared, stored and transferred to the desired place of reaction.

  15. Predictions of pure liquid shock Hugoniots

    SciTech Connect (OSTI)

    Hobbs, M.L.; Baer, M.R.

    1998-06-01

    Determination of product species and associated equations-of-state (EOS) for energetic materials such as pyrotechnics with complex elemental compositions remains a major unsolved problem. Although, empirical EOS models may be calibrated to replicate detonation conditions within experimental variability (5--10%), different states, e.g. expansion, may produce significant discrepancy with data if the basic form of the EOS model is incorrect. A more physically realistic EOS model based on intermolecular potentials, such as the Jacobs Cowperthwaite Zwisler (JCZ3) EOS, is needed to predict detonation states as well as expanded states. Predictive capability for any EOS requires a large species data base composed of a wide variety of elements. Unfortunately, only 20 species have known exponential 6 (EXP 6) molecular force constants which are used in the JCZ3-EOS. Of these 20 species, only 10 have been adequately compared to experimental data such as molecular scattering or shock Hugoniot data. Since data in the strongly repulsive region of the molecular potential is limited, alternative methods must be found to deduce force constants for a larger number of species. The objective of the present study is to determine JCZ3 product species force constants using corresponding state theory. Intermolecular potential parameters were obtained for a variety of gas species using a simple corresponding states technique with critical volume and critical temperature. A more complex, four parameter corresponding state method with shape and polarity corrections was also used to obtain intermolecular potential parameters. Both corresponding state methods were used to predict shock Hugoniot data obtained from pure liquids. The simple corresponding state method is shown to give adequate agreement with shock Hugoniot data.

  16. Actinide production in /sup 136/Xe bombardments of /sup 249/Cf

    SciTech Connect (OSTI)

    Gregorich, K.E.

    1985-08-01

    The production cross sections for the actinide products from /sup 136/Xe bombardments of /sup 249/Cf at energies 1.02, 1.09, and 1.16 times the Coulomb barrier were determined. Fractions of the individual actinide elements were chemically separated from recoil catcher foils. The production cross sections of the actinide products were determined by measuring the radiations emitted from the nuclides within the chemical fractions. The chemical separation techniques used in this work are described in detail, and a description of the data analysis procedure is included. The actinide production cross section distributions from these /sup 136/Xe + /sup 249/Cf bombardments are compared with the production cross section distributions from other heavy ion bombardments of actinide targets, with emphasis on the comparison with the /sup 136/Xe + /sup 248/Cm reaction. A technique for modeling the final actinide cross section distributions has been developed and is presented. In this model, the initial (before deexcitation) cross section distribution with respect to the separation energy of a dinuclear complex and with respect to the Z of the target-like fragment is given by an empirical procedure. It is then assumed that the N/Z equilibration in the dinuclear complex occurs by the transfer of neutrons between the two participants in the dinuclear complex. The neutrons and the excitation energy are statistically distributed between the two fragments using a simple Fermi gas level density formalism. The resulting target-like fragment initial cross section distribution with respect to Z, N, and excitation energy is then allowed to deexcite by emission of neutrons in competition with fission. The result is a final cross section distribution with respect to Z and N for the actinide products. 68 refs., 33 figs., 6 tabs.

  17. Minor actinide transmutation in thorium and uranium matrices in heavy water moderated reactors

    SciTech Connect (OSTI)

    Bhatti, Zaki; Hyland, B.; Edwards, G.W.R.

    2013-07-01

    The irradiation of Th{sup 232} breeds fewer of the problematic minor actinides (Np, Am, Cm) than the irradiation of U{sup 238}. This characteristic makes thorium an attractive potential matrix for the transmutation of these minor actinides, as these species can be transmuted without the creation of new actinides as is the case with a uranium fuel matrix. Minor actinides are the main contributors to long term decay heat and radiotoxicity of spent fuel, so reducing their concentration can greatly increase the capacity of a long term deep geological repository. Mixing minor actinides with thorium, three times more common in the Earth's crust than natural uranium, has the additional advantage of improving the sustainability of the fuel cycle. In this work, lattice cell calculations have been performed to determine the results of transmuting minor actinides from light water reactor spent fuel in a thorium matrix. 15-year-cooled group-extracted transuranic elements (Np, Pu, Am, Cm) from light water reactor (LWR) spent fuel were used as the fissile component in a thorium-based fuel in a heavy water moderated reactor (HWR). The minor actinide (MA) transmutation rates, spent fuel activity, decay heat and radiotoxicity, are compared with those obtained when the MA were mixed instead with natural uranium and taken to the same burnup. Each bundle contained a central pin containing a burnable neutron absorber whose initial concentration was adjusted to have the same reactivity response (in units of the delayed neutron fraction β) for coolant voiding as standard NU fuel. (authors)

  18. On the valence fluctuation in the early actinide metals

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Soderlind, P.; Landa, A.; Tobin, J. G.; Allen, P.; Medling, S.; Booth, C. H.; Bauer, E. D.; Cooley, J. C.; Sokaras, D.; Weng, T. -C.; et al

    2015-12-15

    In this study, recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the α phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the δ phase. The model predicts uranium and neptunium to be dominated by the f3 and f4 configurations, respectively, with only minor contributions from other configurations. For plutonium (both α and δmore » phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The δ phase has a greater configuration fraction of f6 compared to that of the α phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for α-uranium.« less

  19. On the valence fluctuation in the early actinide metals

    SciTech Connect (OSTI)

    Soderlind, P.; Landa, A.; Tobin, J. G.; Allen, P.; Medling, S.; Booth, C. H.; Bauer, E. D.; Cooley, J. C.; Sokaras, D.; Weng, T. -C.; Nordlund, D.

    2015-12-15

    In this study, recent X-ray measurements suggest a degree of valence fluctuation in plutonium and uranium intermetallics. We are applying a novel scheme, in conjunction with density functional theory, to predict 5f configuration fractions of states with valence fluctuations for the early actinide metals. For this purpose we perform constrained integer f-occupation calculations for the α phases of uranium, neptunium, and plutonium metals. For plutonium we also investigate the δ phase. The model predicts uranium and neptunium to be dominated by the f3 and f4 configurations, respectively, with only minor contributions from other configurations. For plutonium (both α and δ phase) the scenario is dramatically different. Here, the calculations predict a relatively even distribution between three valence configurations. The δ phase has a greater configuration fraction of f6 compared to that of the α phase. The theory is consistent with the interpretations of modern X-ray experiments and we present resonant X-ray emission spectroscopy results for α-uranium.

  20. Microenergetic shock initiation studies on deposited films of PETN.

    SciTech Connect (OSTI)

    Long, Gregory T.; Knepper, Robert; Jones, David Alexander; Brundage, Aaron L.; Trott, Wayne Merle; Wixom, Ryan R.; Tappan, Alexander Smith

    2009-07-01

    Films of the high explosive PETN (pentaerythritol tetranitrate) up to 500-{micro}m thick have been deposited through physical vapor deposition, with the intent of creating well-defined samples for shock-initiation studies. PETN films were characterized with surface profilometry, scanning electron microscopy, x-ray diffraction, and focused ion beam nanotomography. These high-density films were subjected to strong shocks in both the in-plane and out-of-plane orientations. Initiation behavior was monitored with high-speed framing and streak camera photography. Direct initiation with a donor explosive (either RDX with binder, or CL-20 with binder) was possible in both orientations, but with the addition of a thin aluminum buffer plate (in-plane configuration only), initiation proved to be difficult due to the attenuated shock and the high density of the PETN films. Mesoscale models of microenergetic samples were created using the shock physics code CTH and compared with experimental results. The results of these experiments will be discussed in the context of small sample geometry, deposited film morphology, and density.

  1. Thermal shock resistance ceramic insulator (Patent) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Patent: Thermal shock resistance ceramic insulator Citation Details In-Document Search Title: Thermal shock resistance ceramic insulator Thermal shock resistant cermet insulators ...

  2. Kinetic Simulations of Particle Acceleration at Shocks (Conference...

    Office of Scientific and Technical Information (OSTI)

    ion acceleration and B field amplification where the shock is parallel, are shown. ... reflection and shock drift acceleration; and electron DSA is efficient at oblique shocks. ...

  3. Shock compression of liquid hydrazine

    SciTech Connect (OSTI)

    Garcia, B.O.; Chavez, D.J.

    1995-01-01

    Liquid hydrazine (N{sub 2}H{sub 4}) is a propellant used by the Air Force and NASA for aerospace propulsion and power systems. Because the propellant modules that contain the hydrazine can be subject to debris impacts during their use, the shock states that can occur in the hydrazine need to be characterized to safely predict its response. Several shock compression experiments have been conducted in an attempt to investigate the detonability of liquid hydrazine; however, the experiments results disagree. Therefore, in this study, we reproduced each experiment numerically to evaluate in detail the shock wave profiles generated in the liquid hydrazine. This paper presents the results of each numerical simulation and compares the results to those obtained in experiment. We also present the methodology of our approach, which includes chemical kinetic experiments, chemical equilibrium calculations, and characterization of the equation of state of liquid hydrazine.

  4. Shock Initiation of Damaged Explosives

    SciTech Connect (OSTI)

    Chidester, S K; Vandersall, K S; Tarver, C M

    2009-10-22

    Explosive and propellant charges are subjected to various mechanical and thermal insults that can increase their sensitivity over the course of their lifetimes. To quantify this effect, shock initiation experiments were performed on mechanically and thermally damaged LX-04 (85% HMX, 15% Viton by weight) and PBX 9502 (95% TATB, 5% Kel-F by weight) to obtain in-situ manganin pressure gauge data and run distances to detonation at various shock pressures. We report the behavior of the HMX-based explosive LX-04 that was damaged mechanically by applying a compressive load of 600 psi for 20,000 cycles, thus creating many small narrow cracks, or by cutting wedge shaped parts that were then loosely reassembled, thus creating a few large cracks. The thermally damaged LX-04 charges were heated to 190 C for long enough for the beta to delta solid - solid phase transition to occur, and then cooled to ambient temperature. Mechanically damaged LX-04 exhibited only slightly increased shock sensitivity, while thermally damaged LX-04 was much more shock sensitive. Similarly, the insensitive explosive PBX 9502 was mechanically damaged using the same two techniques. Since PBX 9502 does not undergo a solid - solid phase transition but does undergo irreversible or 'rachet' growth when thermally cycled, thermal damage to PBX 9502 was induced by this procedure. As for LX-04, the thermally damaged PBX 9502 demonstrated a greater shock sensitivity than mechanically damaged PBX 9502. The Ignition and Growth reactive flow model calculated the increased sensitivities by igniting more damaged LX-04 and PBX 9502 near the shock front based on the measured densities (porosities) of the damaged charges.

  5. Final Project Report for ER15351 A Study of New Actinide Zintl Ion Materials

    SciTech Connect (OSTI)

    Peter K. Dorhout

    2007-11-12

    The structural chemistry of actinide main-group metal materials provides the fundamental basis for the understanding of structural coordination chemistry and the formation of materials with desired or predicted structural features. The main-group metal building blocks, comprising sulfur-group, phosphorous-group, or silicon-group elements, have shown versatility in oxidation state, coordination, and bonding preferences. These building blocks have allowed us to elucidate a series of structures that are unique to the actinide elements, although we can find structural relationships to transition metal and 4f-element materials. In the past year, we investigated controlled metathesis and self-propagating reactions between actinide metal halides and alkali metal salts of main-group metal chalcogenides such as K-P-S salts. Ternary plutonium thiophosphates have resulted from these reactions at low temperature in sealed ampules. we have also focused efforts to examine reactions of Th, U, and Pu halide salts with other alkali metal salts such as Na-Ge-S and Na-Si-Se and copper chloride to identify if self-propagating reactions may be used as a viable reaction to prepare new actinide materials and we prepared a series of U and Th copper chalcogenide materials. Magnetic measurements continued to be a focus of actinide materials prepared in our laboratory. We also contributed to the XANES work at Los Alamos by preparing materials for study and for comparison with environmental samples.

  6. Coupled Hybrid Monte Carlo: Deterministic Analysis of VHTR Configurations with Advanced Actinide Fuels

    SciTech Connect (OSTI)

    Tsvetkov, Pavel V.; Ames II, David E.; Alajo, Ayodeji B.; Pritchard, Megan L.

    2006-07-01

    Partitioning and transmutation of minor actinides are expected to have a positive impact on the future of nuclear technology. Their deployment would lead to incineration of hazardous nuclides and could potentially provide additional fuel supply. The U.S. DOE NERI Project assesses the possibility, advantages and limitations of involving minor actinides as a fuel component. The analysis takes into consideration and compares capabilities of actinide-fueled VHTRs with pebble-bed and prismatic cores to approach a reactor lifetime long operation without intermediate refueling. A hybrid Monte Carlo-deterministic methodology has been adopted for coupled neutronics-thermal hydraulics design studies of VHTRs. Within the computational scheme, the key technical issues are being addressed and resolved by implementing efficient automated modeling procedures and sequences, combining Monte Carlo and deterministic approaches, developing and applying realistic 3D coupled neutronics-thermal-hydraulics models with multi-heterogeneity treatments, developing and performing experimental/computational benchmarks for model verification and validation, analyzing uncertainty effects and error propagation. This paper introduces the suggested modeling approach, discusses benchmark results and the preliminary analysis of actinide-fueled VHTRs. The presented up-to-date results are in agreement with the available experimental data. Studies of VHTRs with minor actinides suggest promising performance. (authors)

  7. Multi-scale Shock Technique

    Energy Science and Technology Software Center (OSTI)

    2009-08-01

    The code to be released is a new addition to the LAMMPS molecular dynamics code. LAMMPS is developed and maintained by Sandia, is publicly available, and is used widely by both natioanl laboratories and academics. The new addition to be released enables LAMMPS to perform molecular dynamics simulations of shock waves using the Multi-scale Shock Simulation Technique (MSST) which we have developed and has been previously published. This technique enables molecular dynamics simulations of shockmore » waves in materials for orders of magnitude longer timescales than the direct, commonly employed approach.« less

  8. ACCELERATION OF LOW-ENERGY IONS AT PARALLEL SHOCKS WITH A FOCUSED TRANSPORT MODEL

    SciTech Connect (OSTI)

    Zuo, Pingbing; Zhang, Ming; Rassoul, Hamid K.

    2013-04-10

    We present a test particle simulation on the injection and acceleration of low-energy suprathermal particles by parallel shocks with a focused transport model. The focused transport equation contains all necessary physics of shock acceleration, but avoids the limitation of diffusive shock acceleration (DSA) that requires a small pitch angle anisotropy. This simulation verifies that the particles with speeds of a fraction of to a few times the shock speed can indeed be directly injected and accelerated into the DSA regime by parallel shocks. At higher energies starting from a few times the shock speed, the energy spectrum of accelerated particles is a power law with the same spectral index as the solution of standard DSA theory, although the particles are highly anisotropic in the upstream region. The intensity, however, is different from that predicted by DSA theory, indicating a different level of injection efficiency. It is found that the shock strength, the injection speed, and the intensity of an electric cross-shock potential (CSP) jump can affect the injection efficiency of the low-energy particles. A stronger shock has a higher injection efficiency. In addition, if the speed of injected particles is above a few times the shock speed, the produced power-law spectrum is consistent with the prediction of standard DSA theory in both its intensity and spectrum index with an injection efficiency of 1. CSP can increase the injection efficiency through direct particle reflection back upstream, but it has little effect on the energetic particle acceleration once the speed of injected particles is beyond a few times the shock speed. This test particle simulation proves that the focused transport theory is an extension of DSA theory with the capability of predicting the efficiency of particle injection.

  9. Imaging shock waves in diamond with both high temporal and spatial resolution at an XFEL

    SciTech Connect (OSTI)

    Schropp, Andreas; Hoppe, Robert; Meier, Vivienne; Patommel, Jens; Seiboth, Frank; Ping, Yuan; Hicks, Damien G.; Beckwith, Martha A.; Collins, Gilbert W.; Higginbotham, Andrew; Wark, Justin S.; Lee, Hae Ja; Nagler, Bob; Galtier, Eric C.; Arnold, Brice; Zastrau, Ulf; Hastings, Jerome B.; Schroer, Christian G.

    2015-06-18

    The advent of hard x-ray free-electron lasers (XFELs) has opened up a variety of scientific opportunities in areas as diverse as atomic physics, plasma physics, nonlinear optics in the x-ray range, and protein crystallography. In this article, we access a new field of science by measuring quantitatively the local bulk properties and dynamics of matter under extreme conditions, in this case by using the short XFEL pulse to image an elastic compression wave in diamond. The elastic wave was initiated by an intense optical laser pulse and was imaged at different delay times after the optical pump pulse using magnified x-ray phase-contrast imaging. The temporal evolution of the shock wave can be monitored, yielding detailed information on shock dynamics, such as the shock velocity, the shock front width, and the local compression of the material. The method provides a quantitative perspective on the state of matter in extreme conditions.

  10. Fusion Techniques for the Oxidation of Refractory Actinide Oxides

    SciTech Connect (OSTI)

    Rudisill, T.S.

    1999-04-15

    Small-scale experiments were performed to demonstrate the feasibility of fusing refractory actinide oxides with a series of materials commonly used to decompose minerals, glasses, and other refractories as a pretreatment to dissolution and subsequent recovery operations. In these experiments, 1-2 g of plutonium or neptunium oxide (PuO2 or NpO2) were calcined at 900 degrees Celsius, mixed and heated with the fusing reagent(s), and dissolved. For refractory PuO2, the most effective material tested was a lithium carbonate (Li2CO3)/sodium tetraborate (Na2B4O7) mixture which aided in the recovery of 90 percent of the plutonium. The fused product was identified as a lithium plutonate (Li3PuO4) by x-ray diffraction. The use of a Li2CO3/Na2B4O7 mixture to solubilize high-fired NpO2 was not as effective as demonstrated for refractory PuO2. In a small-scale experiment, 25 percent of the NpO2 was oxidized to a neptunium (VI) species that dissolved in nitric acid. The remaining neptunium was then easily recovered from the residue by fusing with sodium peroxide (Na2O2). Approximately 70 percent of the neptunium dissolved in water to yield a basic solution of neptunium (VII). The remainder was recovered as a neptunium (VI) solution by dissolving the residue in 8M nitric acid. In subsequent experiments with Na2O2, the ratio of neptunium (VII) to (VI) was shown to be a function of the fusion temperature, with higher temperatures (greater than approximately 400 degrees C) favoring the formation of neptunium (VII). The fusion of an actual plutonium-containing residue with Na2O2 and subsequent dissolution was performed to demonstrate the feasibility of a pretreatment process on a larger scale. Sodium peroxide was chosen due

  11. Enhancing BWR Proliferation Resistance Fuel with Minor Actinides

    SciTech Connect (OSTI)

    Gray S. Chang

    2008-07-01

    Key aspects of the Global Nuclear Energy Partnership (GNEP) are to significantly advance the science and technology of nuclear energy systems and the Advanced Fuel Cycle (AFC) program. It consists of both innovative nuclear reactors and innovative research in separation and transmutation. To accomplish these goals, international cooperation is very important and public acceptance is crucial. The merits of nuclear energy are high-density energy, with low environmental impacts (i.e. almost zero greenhouse gas emission). Planned efforts involve near-term and intermediate-term improvements in fuel utilization and recycling in current light water reactors (LWRs) as well as the longer-term development of new nuclear energy systems that offer much improved fuel utilization and proliferation resistance, along with continued advances in operational safety. The challenges are solving the energy needs of the world, protection against nuclear proliferation, the problem of nuclear waste, and the global environmental problem. To reduce spent fuel for storage and enhance the proliferation resistance for the intermediate-term, there are two major approaches (a) increase the discharged spent fuel burnup in the advanced LWR (Gen-III Plus), which not only can reduce the spent fuel for storage, but also increase the 238Pu and 240Pu isotopes ratio to enhance the proliferation resistance, and (b) use of transuranic nuclides (237Np and 241Am) in the high burnup fuel, which can drastically increase the proliferation resistance isotope ratio of 238Pu /Pu. For future advanced nuclear systems, the minor actinides (MA) are viewed more as a resource to be recycled, or transmuted to less hazardous and possibly more useful forms, rather than simply as a waste stream to be disposed of in expensive repository facilities. As a result, MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the

  12. Minor Actinides Loading Optimization for Proliferation Resistant Fuel Design - BWR

    SciTech Connect (OSTI)

    G. S. Chang; Hongbin Zhang

    2009-09-01

    One approach to address the United States Nuclear Power (NP) 2010 program for the advanced light water reactor (LWR) (Gen-III+) intermediate-term spent fuel disposal need is to reduce spent fuel storage volume while enhancing proliferation resistance. One proposed solution includes increasing burnup of the discharged spent fuel and mixing minor actinide (MA) transuranic nuclides (237Np and 241Am) in the high burnup fuel. Thus, we can reduce the spent fuel volume while increasing the proliferation resistance by increasing the isotopic ratio of 238Pu/Pu. For future advanced nuclear systems, MAs are viewed more as a resource to be recycled, and transmuted to less hazardous and possibly more useful forms, rather than simply disposed of as a waste stream in an expensive repository facility. MAs play a much larger part in the design of advanced systems and fuel cycles, not only as additional sources of useful energy, but also as direct contributors to the reactivity control of the systems into which they are incorporated. A typical boiling water reactor (BWR) fuel unit lattice cell model with UO2 fuel pins will be used to investigate the effectiveness of adding MAs (237Np and/or 241Am) to enhance proliferation resistance and improve fuel cycle performance for the intermediate-term goal of future nuclear energy systems. However, adding MAs will increase plutonium production in the discharged spent fuel. In this work, the Monte-Carlo coupling with ORIGEN-2.2 (MCWO) method was used to optimize the MA loading in the UO2 fuel such that the discharged spent fuel demonstrates enhanced proliferation resistance, while minimizing plutonium production. The axial averaged MA transmutation characteristics at different burnup were compared and their impact on neutronics criticality and the ratio of 238Pu/Pu discussed.

  13. LANL Shock Tube Kathy Prestridge Extreme Fluids Team

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Header image FLUID DYNAMICS at Los Alamos Extreme Fluids Team in Physics Division home the team research publications pictures diversity contact The Extreme Fluids Team On the P-23 Extreme Fluids Team at Los Alamos National Laboratory, we apply high-resolution diagnostics to study fluid dynamics problems in extreme environments, such as shock-driven mixing, multiphase flows, and variable-density turbulence. The team is composed of Los Alamos staff, postdocs, and students. EXPERIMENTAL FACILITIES

  14. Emergence of californium as the second transitional element in the actinide series

    SciTech Connect (OSTI)

    Cary, Samantha K.; Vasiliu, Monica; Baumbach, Ryan E.; Stritzinger, Jared T.; Green, Thomas D.; Diefenbach, Kariem; Cross, Justin N.; Knappenberger, Kenneth L.; Liu, Guokui; Silver, Mark A.; DePrince, A. Eugene; Polinski, Matthew J.; Van Cleve, Shelley M.; House, Jane H.; Kikugawa, Naoki; Gallagher, Andrew; Arico, Alexandra A.; Dixon, David A.; Albrecht-Schmitt, Thomas E.

    2015-04-16

    A break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resultant complex with respect to that predicted for the free ion. We expand on this by characterizing the americium and curium analogues for comparison, and show that these pronounced effects result from a second transition in periodicity in the actinide series that occurs, in part, because of the stabilization of the divalent oxidation state. As a result, the metastability of californium(II) is responsible for many of the unusual properties of californium including the green photoluminescence.

  15. Emergence of californium as the second transitional element in the actinide series

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cary, Samantha K.; Vasiliu, Monica; Baumbach, Ryan E.; Stritzinger, Jared T.; Green, Thomas D.; Diefenbach, Kariem; Cross, Justin N.; Knappenberger, Kenneth L.; Liu, Guokui; Silver, Mark A.; et al

    2015-04-16

    A break in periodicity occurs in the actinide series between plutonium and americium as the result of the localization of 5f electrons. The subsequent chemistry of later actinides is thought to closely parallel lanthanides in that bonding is expected to be ionic and complexation should not substantially alter the electronic structure of the metal ions. Here we demonstrate that ligation of californium(III) by a pyridine derivative results in significant deviations in the properties of the resultant complex with respect to that predicted for the free ion. We expand on this by characterizing the americium and curium analogues for comparison, andmore » show that these pronounced effects result from a second transition in periodicity in the actinide series that occurs, in part, because of the stabilization of the divalent oxidation state. As a result, the metastability of californium(II) is responsible for many of the unusual properties of californium including the green photoluminescence.« less

  16. MEMS reliability in shock environments

    SciTech Connect (OSTI)

    TANNER,DANELLE M.; WALRAVEN,JEREMY A.; HELGESEN,KAREN SUE; IRWIN,LLOYD W.; BROWN,FREDERICK A.; SMITH,NORMAN F.; MASTERS,NATHAN

    2000-02-09

    In order to determine the susceptibility of the MEMS (MicroElectroMechanical Systems) devices to shock, tests were performed using haversine shock pulses with widths of 1 to 0.2 ms in the range from 500g to 40,000g. The authors chose a surface-micromachined microengine because it has all the components needed for evaluation: springs that flex, gears that are anchored, and clamps and spring stops to maintain alignment. The microengines, which were unpowered for the tests, performed quite well at most shock levels with a majority functioning after the impact. Debris from the die edges moved at levels greater than 4,000g causing shorts in the actuators and posing reliability concerns. The coupling agent used to prevent stiction in the MEMS release weakened the die-attach bond, which produced failures at 10,000g and above. At 20,000g the authors began to observe structural damage in some of the thin flexures and 2.5-micron diameter pin joints. The authors observed electrical failures caused by the movement of debris. Additionally, they observed a new failure mode where stationary comb fingers contact the ground plane resulting in electrical shorts. These new failure were observed in the control group indicating that they were not shock related.

  17. The Sandia MEMS passive shock sensor : FY08 design summary. ...

    Office of Scientific and Technical Information (OSTI)

    SENSORS; DESIGN; MATHEMATICAL MODELS; SHOCK WAVES; MONITORING; MICROELECTRONICS; SENSITIVITY Microelectromechanical systems-Design and construction.; Shock waves-Measurement. ...

  18. Stability of shocks relating to the shock ignition inertial fusion energy scheme

    SciTech Connect (OSTI)

    Davie, C. J. Bush, I. A.; Evans, R. G.

    2014-08-15

    Motivated by the shock ignition approach to improve the performance of inertial fusion targets, we make a series of studies of the stability of shock waves in planar and converging geometries. We examine stability of shocks moving through distorted material and driving shocks with non-uniform pressure profiles. We then apply a fully 3D perturbation, following this spherically converging shock through collapse to a distorted plane, bounce and reflection into an outgoing perturbed, broadly spherical shock wave. We find broad shock stability even under quite extreme perturbation.

  19. Rapid method to determine actinides and 89/90Sr in limestone and marble samples

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Maxwell, Sherrod L.; Culligan, Brian; Hutchison, Jay B.; Utsey, Robin C.; Sudowe, Ralf; McAlister, Daniel R.

    2016-04-12

    A new method for the determination of actinides and radiostrontium in limestone and marble samples has been developed that utilizes a rapid sodium hydroxide fusion to digest the sample. Following rapid pre-concentration steps to remove sample matrix interferences, the actinides and 89/90Sr are separated using extraction chromatographic resins and measured radiometrically. The advantages of sodium hydroxide fusion versus other fusion techniques will be discussed. Lastly, this approach has a sample preparation time for limestone and marble samples of <4 hours.

  20. Method for extracting lanthanides and actinides from acid solutions by modification of Purex solvent

    DOE Patents [OSTI]

    Horwitz, E.P.; Kalina, D.G.

    1984-05-21

    A process has been developed for the extraction of multivalent lanthanide and actinide values from acidic waste solutions, and for the separation of these values from fission product and other values, which utilizes a new series of neutral bi-functional extractants, the alkyl(phenyl)-N, N-dialkylcarbamoylmethylphosphine oxides, in combination with a phase modifier to form an extraction solution. The addition of the extractant to the Purex process extractant, tri-n-butylphosphate in normal paraffin hydrocarbon diluent, will permit the extraction of multivalent lanthanide and actinide values from 0.1 to 12.0 molar acid solutions.

  1. Three-temperature plasma shock solutions with gray radiation diffusion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Johnson, Bryan M.; Klein, Richard I.

    2016-04-19

    Here we discuss the effects of radiation on the structure of shocks in a fully ionized plasma are investigated by solving the steady-state fluid equations for ions, electrons, and radiation. The electrons and ions are assumed to have the same bulk velocity but separate temperatures, and the radiation is modeled with the gray diffusion approximation. Both electron and ion conduction are included, as well as ion viscosity. When the material is optically thin, three-temperature behavior occurs. When the diffusive flux of radiation is important but radiation pressure is not, two-temperature behavior occurs, with the electrons strongly coupled to the radiation.more » Since the radiation heats the electrons on length scales that are much longer than the electron–ion Coulomb coupling length scale, these solutions resemble radiative shock solutions rather than plasma shock solutions that neglect radiation. When radiation pressure is important, all three components are strongly coupled. Results with constant values for the transport and coupling coefficients are compared to a full numerical simulation with a good match between the two, demonstrating that steady shock solutions constitute a straightforward and comprehensive verification test methodology for multi-physics numerical algorithms.« less

  2. Method of loading organic materials with group III plus lanthanide and actinide elements

    DOE Patents [OSTI]

    Bell, Zane W.; Huei-Ho, Chuen; Brown, Gilbert M.; Hurlbut, Charles

    2003-04-08

    Disclosed is a composition of matter comprising a tributyl phosphate complex of a group 3, lanthanide, actinide, or group 13 salt in an organic carrier and a method of making the complex. These materials are suitable for use in solid or liquid organic scintillators, as in x-ray absorption standards, x-ray fluorescence standards, and neutron detector calibration standards.

  3. Method for decontamination of nickel-fluoride-coated nickel containing actinide-metal fluorides

    DOE Patents [OSTI]

    Windt, Norman F.; Williams, Joe L.

    1983-01-01

    The invention is a process for decontaminating particulate nickel contaminated with actinide-metal fluorides. In one aspect, the invention comprises contacting nickel-fluoride-coated nickel with gaseous ammonia at a temperature effecting nickel-catalyzed dissociation thereof and effecting hydrogen-reduction of the nickel fluoride. The resulting nickel is heated to form a melt and a slag and to effect transfer of actinide metals from the melt into the slag. The melt and slag are then separated. In another aspect, nickel containing nickel oxide and actinide metals is contacted with ammonia at a temperature effecting nickel-catalyzed dissociation to effect conversion of the nickel oxide to the metal. The resulting nickel is then melted and separated as described. In another aspect nickel-fluoride-coated nickel containing actinide-metal fluorides is contacted with both steam and ammonia. The resulting nickel then is melted and separated as described. The invention is characterized by higher nickel recovery, efficient use of ammonia, a substantial decrease in slag formation and fuming, and a valuable increase in the service life of the furnace liners used for melting.

  4. Method for forming an extraction agent for the separation of actinides from lanthanides

    DOE Patents [OSTI]

    Klaehn, John R.; Harrup, Mason K.; Law, Jack D.; Peterman, Dean R.

    2010-04-27

    An extraction agent for the separation of trivalent actinides from lanthanides in an acidic media and a method for forming same are described, and wherein the methodology produces a stable regiospecific and/or stereospecific dithiophosphinic acid that can operate in an acidic media having a pH of less than about 7.

  5. Assessment of SFR fuel pin performance codes under advanced fuel for minor actinide transmutation

    SciTech Connect (OSTI)

    Bouineau, V.; Lainet, M.; Chauvin, N.; Pelletier, M.

    2013-07-01

    Americium is a strong contributor to the long term radiotoxicity of high activity nuclear waste. Transmutation by irradiation in nuclear reactors of long-lived nuclides like {sup 241}Am is, therefore, an option for the reduction of radiotoxicity and residual power packages as well as the repository area. In the SUPERFACT Experiment four different oxide fuels containing high and low concentrations of {sup 237}Np and {sup 241}Am, representing the homogeneous and heterogeneous in-pile recycling concepts, were irradiated in the PHENIX reactor. The behavior of advanced fuel materials with minor actinide needs to be fully characterized, understood and modeled in order to optimize the design of this kind of fuel elements and to evaluate its performances. This paper assesses the current predictability of fuel performance codes TRANSURANUS and GERMINAL V2 on the basis of post irradiation examinations of the SUPERFACT experiment for pins with low minor actinide content. Their predictions have been compared to measured data in terms of geometrical changes of fuel and cladding, fission gases behavior and actinide and fission product distributions. The results are in good agreement with the experimental results, although improvements are also pointed out for further studies, especially if larger content of minor actinide will be taken into account in the codes. (authors)

  6. Performance Comparison of Metallic, Actinide Burning Fuel in Lead-Bismuth and Sodium Cooled Fast Reactors

    SciTech Connect (OSTI)

    Weaver, Kevan Dean; Herring, James Stephen; Mac Donald, Philip Elsworth

    2001-04-01

    Various methods have been proposed to incinerate or transmutate the current inventory of trans-uranic waste (TRU) that exits in spent light-water-reactor (LWR) fuel, and weapons plutonium. These methods include both critical (e.g., fast reactors) and non-critical (e.g., accelerator transmutation) systems. The work discussed here is part of a larger effort at the Idaho National Engineering and Environmental Laboratory (INEEL) and at the Massachusetts Institute of Technology (MIT) to investigate the suitability of lead and lead-alloy cooled fast reactors for producing low-cost electricity as well as for actinide burning. The neutronics of non-fertile fuel loaded with 20 or 30-wt% light water reactor (LWR) plutonium plus minor actinides for use in a lead-bismuth cooled fast reactor are discussed in this paper, with an emphasis on the fuel cycle life and isotopic content. Calculations show that the average actinide burn rate is similar for both the sodium and lead-bismuth cooled cases ranging from -1.02 to -1.16 g/MWd, compared to a typical LWR actinide generation rate of 0.303 g/MWd. However, when using the same parameters, the sodium-cooled case went subcritical after 0.2 to 0.8 effective full power years, and the lead-bismuth cooled case ranged from 1.5 to 4.5 effective full power years.

  7. NEW METHOD FOR DETERMINATION OF ACTINIDES AND STRONTIUM IN ANIMAL TISSUE

    SciTech Connect (OSTI)

    Maxwell, S; Jay Hutchison, J; Don Faison, D

    2007-05-07

    The analysis of actinides in animal tissue samples is very important for environmental monitoring. There is a need to measure actinide isotopes with very low detection limits in animal tissue samples, including fish, deer, hogs, beef and shellfish. A new, rapid actinide separation method has been developed and implemented that allows the measurement of plutonium, neptunium, uranium, americium, curium and strontium isotopes in large animal tissue samples (100-200 g) with high chemical recoveries and effective removal of matrix interferences. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and DGA-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), and curium (Cm) using a single multi-stage column combined with alpha spectrometry. Sr-90 is collected on Sr Resin{reg_sign} from Eichrom Technologies (Darien, IL, USA). After acid digestion and furnace heating of the animal tissue samples, the actinides and Sr-89/90 are separated using column extraction chromatography. This method has been shown to be effective over a wide range of animal tissue matrices. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized.

  8. Head-on collision of dust-acoustic shock waves in strongly coupled dusty plasmas

    SciTech Connect (OSTI)

    EL-Shamy, E. F.; Al-Asbali, A. M.

    2014-09-15

    A theoretical investigation is carried out to study the propagation and the head-on collision of dust-acoustic (DA) shock waves in a strongly coupled dusty plasma consisting of negative dust fluid, Maxwellian distributed electrons and ions. Applying the extended PoincarLighthillKuo method, a couple of KortewegdeVriesBurgers equations for describing DA shock waves are derived. This study is a first attempt to deduce the analytical phase shifts of DA shock waves after collision. The impacts of physical parameters such as the kinematic viscosity, the unperturbed electron-to-dust density ratio, parameter determining the effect of polarization force, the ion-to-electron temperature ratio, and the effective dust temperature-to-ion temperature ratio on the structure and the collision of DA shock waves are examined. In addition, the results reveal the increase of the strength and the steepness of DA shock waves as the above mentioned parameters increase, which in turn leads to the increase of the phase shifts of DA shock waves after collision. The present model may be useful to describe the structure and the collision of DA shock waves in space and laboratory dusty plasmas.

  9. Sigma Team for Advanced Actinide Recycle FY2015 Accomplishments and Directions

    SciTech Connect (OSTI)

    Moyer, Bruce A.

    2015-09-30

    The Sigma Team for Minor Actinide Recycle (STAAR) has made notable progress in FY 2015 toward the overarching goal to develop more efficient separation methods for actinides in support of the United States Department of Energy (USDOE) objective of sustainable fuel cycles. Research in STAAR has been emphasizing the separation of americium and other minor actinides (MAs) to enable closed nuclear fuel recycle options mainly within the paradigm of aqueous reprocessing of used oxide nuclear fuel dissolved in nitric acid. Its major scientific challenge concerns achieving selectivity for trivalent actinides vs lanthanides. Not only is this challenge yielding to research advances, but technology concepts such as ALSEP (Actinide Lanthanide Separation) are maturing toward demonstration readiness. Efforts are organized in five task areas: 1) combining bifunctional neutral extractants with an acidic extractant to form a single process solvent, developing a process flowsheet, and demonstrating it at bench scale; 2) oxidation of Am(III) to Am(VI) and subsequent separation with other multivalent actinides; 3) developing an effective soft-donor solvent system for An(III) selective extraction using mixed N,O-donor or all-N donor extractants such as triazinyl pyridine compounds; 4) testing of inorganic and hybrid-type ion exchange materials for MA separations; and 5) computer-aided molecular design to identify altogether new extractants and complexants and theory-based experimental data interpretation. Within these tasks, two strategies are employed, one involving oxidation of americium to its pentavalent or hexavalent state and one that seeks to selectively complex trivalent americium either in the aqueous phase or the solvent phase. Solvent extraction represents the primary separation method employed, though ion exchange and crystallization play an important role. Highlights of accomplishments include: Confirmation of the first-ever electrolytic oxidation of Am(III) in a

  10. Performance of the Lead-Alloy Cooled Concept Balanced for Actinide Burning and Electricity Production

    SciTech Connect (OSTI)

    Pavel Hejzlar; Cliff Davis

    2004-09-01

    A lead-bismuth-cooled fast reactor concept targeted for a balanced mission of actinide burning and low-cost electricity production is proposed and its performance analyzed. The design explores the potential benefits of thorium-based fuel in actinide-burning cores, in particular in terms of the reduction of the large reactivity swing and enhancement of the small Doppler coefficient typical of fertile-free actinide burners. Reduced electricity production cost is pursued through a longer cycle length than that used for fertile-free burners and thus a higher capacity factor. It is shown that the concept can achieve a high transuranics destruction rate, which is only 20% lower than that of an accelerator-driven system with fertile-free fuel. The small negative fuel temperature reactivity coefficient, small positive coolant temperature reactivity coefficient, and negative core radial expansion coefficient provide self-regulating characteristics so that the reactor is capable of inherent shutdown during major transients without scram, as in the Integral Fast Reactor. This is confirmed by thermal-hydraulic analysis of several transients without scram, including primary coolant pump trip, station blackout, and reactivity step insertion, which showed that the reactor was able to meet all identified thermal limits. However, the benefits of high actinide consumption and small reactivity swing can be attained only if the uranium from the discharged fuel is separated and not recycled. This additional uranium separation step and thorium reprocessing significantly increase the fuel cycle costs. Because the higher fuel cycle cost has a larger impact on the overall cost of electricity than the savings from the higher capacity factor afforded through use of thorium, this concept appears less promising than the fertile-free actinide burners.