National Library of Energy BETA

Sample records for acrf sgp site

  1. Initial Evaluation of the Cumulus Potential Scheme at the ACRF SGP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Meeting, 12 March 2008 Initial Evaluation of the Cumulus Potential Scheme at the ACRF SGP Site Larry K. Berg, William I. Gustafson Jr., and Evgueni I. Kassianov Pacific Northwest National Laboratory ARM Science Team Meeting, 12 March 2008 Where are We Going? Development Simulation Evaluation Observations ARM Science Team Meeting, 12 March 2008 Development: Coupling Clouds to the Convective Boundary Layer * Shallow cumuli are turbulently coupled to the planetary boundary layer 4 3 2 1 0 Height

  2. Radiative Closure Studies at the NSA ACRF Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiative Closure Studies at the NSA ACRF Site Delamere, Jennifer Atmospheric and Environmental Research, Inc. Mlawer, Eli Atmospheric & Environmental Research, Inc. Turner, David University of Wisconsin-Madison Clough, Shepard Atmospheric and Environmental Research Jensen, Michael Brookhaven National Laboratory Miller, Mark Brookhaven National Laboratory Johnson, Karen Brookhaven National Laboratory Troyan, David Brookhaven National Laboratory Shippert, Timothy Pacific Northwest National

  3. Finite Cloud Effects at the ACRF TWP Site Patrick Taylor and...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patrick Taylor and Robert G. Ellingson Dept. of Meteorology, Florida State University, Tallahassee, FL 32306 Data: Observations are taken at the ACRF TWP Site from June 1999 ...

  4. New Eddy Correlation System for ARM SGP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Eddy Correlation System for ARM SGP Site M. S. Pekour Argonne National Laboratory ... of 2002. Development and testing of a new ECOR system began in November 2002; field ...

  5. Senator Myers Tours SGP CART Site Technical Contact: James C...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Senator Myers Tours SGP CART Site Technical Contact: James C. Liljegren Phone: 630-252-9540 Email: jcliljegren@anl.gov Editor: Donna J. Holdridge ANLERNL-03-06 www.arm.gov ARM...

  6. ARM Carbon Cycle Gases Flasks at SGP Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Biraud, Sebastien

    2013-03-26

    Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern Great Plains Site and analyzed by the National Oceanic and Atmospheric Administration NOAA, Earth System Research Laboratory ESRL. The SGP site is included in the NOAA Cooperative Global Air Sampling Network. The surface samples are collected from a 60 m tower at the ARM SGP Central Facility, usually once per week in the afternoon. The aircraft samples are collected approximately weekly from a chartered aircraft, and the collection flight path is centered over the tower where the surface samples are collected. The samples are collected by the ARM and LBNL Carbon Project.

  7. ARM Carbon Cycle Gases Flasks at SGP Site (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Carbon Cycle Gases Flasks at SGP Site Title: ARM Carbon Cycle Gases Flasks at SGP Site Data from flasks are sampled at the Atmospheric Radiation Measurement Program ARM, Southern ...

  8. CIMEL Measurements of Zenith Radiances at the ARM SGP Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CIMEL Measurements of Zenith Radiances at the ARM SGP Site W. J. Wiscombe National Aeronautics and Space Administration Goddard Space Flight Center Climate and Radiation Branch Greenbelt, Maryland A. Marshak and K. Evans Joint Center for Earth Systems Technology University of Maryland Baltimore, Maryland Y. Knyazikhin Department of Geography Boston University Boston, Massachusetts H. W. Barker Environment Canada Downsview, Ontario, Canada C. F. Pavloski Department of Meteorology Pennsylvania

  9. ARM - Visiting the SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PlainsVisiting the SGP SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts Visiting the SGP View a custom Google map with driving directions to the SGP Central Facility. View a custom Google map with

  10. ARM - SGP Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Science Overall Objectives The primary goal of the Southern Great Plains (SGP) site is to produce data adequate to support significant

  11. Atmospheric Radiation Measurement (ARM) Data from the Southern Great Plains (SGP) Site

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Atmospheric Radiation Measurement (ARM) Program is the largest global change research program supported by the U.S. Department of Energy. The primary goal of the ARM Program is to improve the treatment of cloud and radiation physics in global climate models in order to improve the climate simulation capabilities of these models. To achieve this goal, ARM scientists and researchers around the world use continuous data obtained through the ARM Climate Research Facility. ARM maintains four major, permanent sites for data collection and deploys the ARM Mobile Facility to other sites as determined. Scientists are using the information obtained from the permanent SGP site to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research. More than 30 instrument clusters have been placed around the SGP site. The locations for the instruments were chosen so that the measurements reflect conditions over the typical distribution of land uses within the site. The continuous observations at the SGP site are supplemented by intensive observation periods, when the frequency of measurements is increased and special measurements are added to address specific research questions. During such periods, 2 gigabytes or more of data (two billion bytes) are generated daily. SGP data sets from 1993 to the present reside in the ARM Archive at http://www.archive.arm.gov/ http. Users will need to register for a password, but all files are then free for viewing or downloading. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  12. An Improved Cloud Classification Algorithm Based on the SGP CART Site Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Improved Cloud Classification Algorithm Based on the SGP CART Site Observations Z. Wang Goddard Earth Sciences and Technology Center University of Maryland Greenbelt, Maryland K. Sassen University of Alaska Fairbanks, Alaska Introduction Different types of clouds are usually governed by different cloud dynamics processes and have different microphysical properties, which results in different cloud radiative forcings (Hartmann et al. 1992; Chen et al. 2000). Climate changes can result in changing

  13. Surface Spectral Albedo Intensive Operational Period at the ARM SGP Site in august 2002: Results, Analysis, and Future Plans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectral Albedo Intensive Operational Period at the ARM SGP Site in August 2002: Results, Analysis, and Future Plans A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada M. C. Cribb and Z. Li University of Maryland College Park, Maryland K. Hamm University of Oklahoma Norman, Oklahoma Introduction A surface spectral albedo Intensive Operational Period (IOP) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site was conducted during August

  14. ARM - SGP Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... which are being outfitted with ARM-provided radio acoustic sounding system (RASS) units. ... the nearby SGP site central facility collects a relative abundance of thermodynamic data. ...

  15. Observed and Simulated Cirrus Cloud Properties at the SGP CART Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Simulated Cirrus Cloud Properties at the SGP CART Site A. D. Del Genio and A. B. Wolf National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York G. G. Mace University of Utah Salt Lake City, Utah Introduction Despite their potential importance in a long-term climate change, less is known about cirrus clouds than most other cloud types, for a variety of reasons (Del Genio 2001) including: (1) the difficulty of remotely sensing ice water content (IWC),

  16. ARM: Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    1997-01-01

    Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

  17. ARM: Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    Gridded (0.25 x 0.25 lat/lon) fractional cloud cover, clear-sky and all-sky shortwave flux over the SGP site.

  18. ARM - SGP Rural Driving Hazards

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rural Driving Hazards SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Rural Driving Hazards The rural location of the Southern Great Plains (SGP) site facilities requires that visitors travel on

  19. ARM - SGP Radiometric Calibration Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiometric Calibration Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Radiometric Calibration Facility The Radiometric Calibration Facility (RCF) provides shortwave radiometer

  20. A one-year climatology using data from the Southern Great Plains (SGP) site micropulse lidar

    SciTech Connect (OSTI)

    Mace, G.G.; Ackerman, T.P.; Spinhirne, J.; Scott, S.

    1996-04-01

    The micropulse lidar (MPL) has been operational at the Southern Great Plains (SGP) site of the Atmospheric Radiation Measurement Program for the past 15 months. The compact MPL is unique among research lidar systems in that it is eye-safe and operates continuously, except during precipitation. The MPL is capable of detecting cloud base throughout the entire depth of the troposphere. The MPL data set is an unprecedented time series of cloud heights. It is a vital resource for understanding the frequency of cloud ocurrence and the impact of clouds on the surface radiation budget, as well as for large-scale model validation and satellite retrieval verification. The raw lidar data are processed for cloud base height at a temporal frequency of one minute and a vertical resolution of 270 m. The resultant time series of cloud base is used to generate histograms as a function of month and time of day. Sample results are described.

  1. Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Remotely Controlled, Continuous Observations of Infrared Radiance with the CSIRO/ARM Mark II Radiometer at the SGP CART Site C. M. R. Platt and R. T. Austin Department of Atmospheric Science Colorado State University Fort Collins, Colorado C. M. R. Platt and J. A. Bennett Commonwealth Scientific and Industrial Research Organization Atmospheric Research Aspendale, Victoria, Australia Abstract The Commonwealth Scientific and Industrial Research Organization/Atmospheric Radiation Measurement

  2. Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Asymmetry in the Diurnal Cycle of Atmospheric Downwelling Radiation at the ARM SGP CF Site Over 1995-2001 Period A. P. Trishchenko Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction The shape of the diurnal cycle of atmospheric downwelling radiation is an important climatic feature of cloud-radiation interactions and atmospheric properties. Adequate characterization of this diurnal cycle is critical for accurate determination of monthly and seasonal radiation budgets from a

  3. Cloud properties derived from two lidars over the ARM SGP site

    SciTech Connect (OSTI)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is

  4. The Status of the ACRF Millimeter Wave Cloud Radars (MMCRs), the Path Forward for Future MMCR Upgrades, the Concept of 3D Volume Imaging Radar and the UAV Radar

    SciTech Connect (OSTI)

    P Kollias; MA Miller; KB Widener; RT Marchand; TP Ackerman

    2005-12-30

    The United States (U.S.) Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) operates millimeter wavelength cloud radars (MMCRs) in several climatological regimes. The MMCRs, are the primary observing tool for quantifying the properties of nearly all radiatively important clouds over the ACRF sites. The first MMCR was installed at the ACRF Southern Great Plains (SGP) site nine years ago and its original design can be traced to the early 90s. Since then, several MMCRs have been deployed at the ACRF sites, while no significant hardware upgrades have been performed. Recently, a two-stage upgrade (first C-40 Digital Signal Processors [DSP]-based, and later the PC-Integrated Radar AcQuisition System [PIRAQ-III] digital receiver) of the MMCR signal-processing units was completed. Our future MMCR related goals are: 1) to have a cloud radar system that continues to have high reliability and uptime and 2) to suggest potential improvements that will address increased sensitivity needs, superior sampling and low cost maintenance of the MMCRs. The Traveling Wave Tube (TWT) technology, the frequency (35-GHz), the radio frequency (RF) layout, antenna, the calibration and radar control procedure and the environmental enclosure of the MMCR remain assets for our ability to detect the profile of hydrometeors at all heights in the troposphere at the ACRF sites.

  5. ARM - SGP Geographic Information By Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Geographic Information By Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Summer Training SGP Fact Sheet Images Information for Guest Scientists Contacts SGP Geographic Information By Facility Note: BF = Boundary Facility, EF = Extended Facility, and IF = Intermediate

  6. ACRF Newsletter_May_FINAL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CHANGE STUDIES FOR TEACHERS AND STUDENTS The Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility supports education and outreach efforts for communities and schools located near its sites. The mission of the Education and Outreach Program is to promote basic science education and community awareness of climate change research by focusing on three goals: student enrichment, teacher support, and community outreach. http://education.arm.gov/ ACRF Education and

  7. Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites

    SciTech Connect (OSTI)

    Turner, David D.; Ferrare, Richard

    2015-01-13

    The systematic and routine measurements of aerosol, water vapor, and clouds in the vertical column above the Atmospheric Radiation Measurement (ARM) sites from surface-based remote sensing systems provides a unique and comprehensive data source that can be used to characterize the boundary layer (i.e., the lowest 3 km of the atmosphere) and its evolution. New algorithms have been developed to provide critical datasets from ARM instruments, and these datasets have been used in long-term analyses to better understand the climatology of water vapor and aerosol over Darwin, the turbulent structure of the boundary layer and its statistical properties over Oklahoma, and to better determine the distribution of ice and aerosol particles over northern Alaska.

  8. Interpolation Uncertainties Across the ARM SGP Area

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Interpolation Uncertainties Across the ARM SGP Area J. E. Christy, C. N. Long, and T. R. Shippert Pacific Northwest National Laboratory Richland, Washington Interpolation Grids Across the SGP Network Area The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program operates a network of surface radiation measurement sites across north central Oklahoma and south central Kansas. This Southern Great Plains (SGP) network consists of 21 sites unevenly spaced from 95.5 to 99.5

  9. AC/RF Superconductivity

    SciTech Connect (OSTI)

    Ciovati, Gianluigi

    2015-02-01

    This contribution provides a brief introduction to AC/RF superconductivity, with an emphasis on application to accelerators. The topics covered include the surface impedance of normal conductors and superconductors, the residual resistance, the field dependence of the surface resistance, and the superheating field.

  10. ARM - SGP Extended Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  11. ARM - SGP Contacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contacts SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility...

  12. ARM - SGP Intermediate Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Intermediate Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  13. ARM - SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Central Facility SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration...

  14. AMIE (ACRF MJO Investigation Experiment)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AMIE (ACRF MJO Investigation Experiment) Planning Meeting AMIE Science Steering Committee Chuck Long, Tony DelGenio, Bill Gustafson, Bob Houze, Mike Jensen, Steve Klein, Ruby...

  15. SGP Overview Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview Map SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility...

  16. SGP Shipment Notification Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PlainsShipment Notification Form SGP Related Links Virtual Tour Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric...

  17. Soundings from SGP, June 2014 Sonde Comparison Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    2015-03-06

    In early June 2014, a radiosonde intercomparison trial was undertaken at the SGP Central Facility site with the goal of quantifying the relative performance of the RS92-SGP/MW31 and RS41-SG/MW41 radiosondes/systems. The June time period at SGP represents a springtime mid-latitude convective environment where the extensive remote sensing observations at the SGP site were used to further quantify the environment during the intercomparison. Over the course of five days (3 - 8 June) a total of 20 balloon launches were completed with efforts to sample the entire diurnal cycle and a variety of cloud conditions

  18. Soundings from SGP, June 2014 Sonde Comparison Study

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jensen, Michael

    In early June 2014, a radiosonde intercomparison trial was undertaken at the SGP Central Facility site with the goal of quantifying the relative performance of the RS92-SGP/MW31 and RS41-SG/MW41 radiosondes/systems. The June time period at SGP represents a springtime mid-latitude convective environment where the extensive remote sensing observations at the SGP site were used to further quantify the environment during the intercomparison. Over the course of five days (3 - 8 June) a total of 20 balloon launches were completed with efforts to sample the entire diurnal cycle and a variety of cloud conditions

  19. ACRF Ingest Software Status: New, Current, and Future - June 2008

    SciTech Connect (OSTI)

    AS Koontz; S Choudhury; BD Ermold; NN Keck; KL Gaustad; RC Perez

    2008-06-01

    The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF). The report is divided into 4 sections: (1) for news about ingests currently under development, (2) for current production ingests, (3) for future ingest development plans, and (4) for information on retired ingests. Please note that datastreams beginning in “xxx” indicate cases where ingests run at multiple ACRF sites, which results in a datastream(s) for each location.

  20. ACRF Ingest Software Status: New, Current, and Future - May 2008

    SciTech Connect (OSTI)

    AS Koontz; S Choudhury; BD Ermold; N N Keck; KL Gaustad; RC Perez

    2008-05-01

    The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF). The report is divided into 4 sections: (1) for news about ingests currently under development, (2) for current production ingests, (3) for future ingest development plans, and (4) for information on retired ingests. Please note that datastreams beginning in “xxx” indicate cases where ingests run at multiple ACRF sites, which results in a datastream(s) for each location.

  1. ACRF Ingest Software Status: New, Current, and Future (September 2007)

    SciTech Connect (OSTI)

    Koontz, AS; Choudhury, S; Ermold, BD; Gaustad, KL

    2007-04-01

    The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF). The report is divided into 4 sections: (1) for news about ingests currently under development, (2) for current production ingests, (3) for future ingest development plans, and (4) for information on retired ingests. Please note that datastreams beginning in “xxx” indicate cases where ingests run at multiple ACRF sites, which results in a datastream(s) for each location.

  2. ACRF Ingest Software Status: New, Current, and Future - April 2008

    SciTech Connect (OSTI)

    AS Koontz; S Choudhury; BD Ermold; NN Keck; KL Gaustad; RC Perez

    2008-04-01

    The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF). The report is divided into 4 sections: (1) for news about ingests currently under development, (2) for current production ingests, (3) for future ingest development plans, and (4) for information on retired ingests. Please note that datastreams beginning in “xxx” indicate cases where ingests run at multiple ACRF sites, which results in a datastream(s) for each location.

  3. ACRF Ingest Software Status: New, Current, and Future - March 2008

    SciTech Connect (OSTI)

    AS Koontz; S Choudhury; BD Ermold; NN Keck; KL Gaustad; RC Perez

    2008-03-01

    The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF). The report is divided into four sections: (1) news about ingests currently under development, (2) current production ingests, (3) future ingest development plans, and (4) information on retired ingests. Please note that datastreams beginning in “xxx” indicate cases where ingests run at multiple ACRF sites, which results in a datastream(s) for each location.

  4. ACRF Instrumentation Status: New, Current, and Future - January 2008

    SciTech Connect (OSTI)

    AS Koontz; S Choudhury; BD Ermold; KL Gaustad

    2008-01-31

    The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF). The report is divided into 4 sections: (1) for news about ingests currently under development, (2) for current production ingests, (3) for future ingest development plans, and (4) for information on retired ingests. Please note that datastreams beginning in “xxx” indicate cases where ingests run at multiple ACRF sites, which results in a datastream(s) for each location.

  5. ACRF Ingest Software Status: New, Current, and Future (November 2007)

    SciTech Connect (OSTI)

    Koontz, AS; Choudhury, S; Ermold, BD: Gaustad, KL

    2007-11-01

    The purpose of this report is to provide status of the ingest software used to process instrument data for the Atmospheric Radiation Measurement Program Climate Research Facility (ACRF). The report is divided into 4 sections: (1) for news about ingests currently under development, (2) for current production ingests, (3) for future ingest development plans, and (4) for information on retired ingests. Please note that datastreams beginning in “xxx” indicate cases where ingests run at multiple ACRF sites, which results in a datastream(s) for each location.

  6. Microsoft Word - lesht.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Relative Humidity Climatology at the ARM NSA, SGP, and TWP Climate Research Facility ... ACRF Site Start Date End Date Number of Soundings NSA 04282002 11302003 402 SGP 0501...

  7. New Atmospheric Profiling Instrument Added to SGP CART Suite

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 New Atmospheric Profiling Instrument Added to SGP CART Suite A new atmospheric profiling instrument at the SGP CART site is giving researchers an additional useful data stream. The new instrument is a microwave radiometer profiler (MWRP) developed by Radiometrics Corporation. One ARM Program focus is improving the quality of simulations by global climate models, particularly models that deal with interactions between sunlight (solar radiation) and clouds. To support this improvement, ARM needs

  8. An Overview of the SGP Tandem Differential Mobility Analyzer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    An Overview of the SGP Tandem Differential Mobility Analyzer Collins, Don Texas A&M University Spencer, Chance Texas A&M University Category: Instruments A differential mobility analyzer / tandem differential mobility analyzer (DMA / TDMA) system was integrated into the Aerosol Observing System (AOS) trailer at the SGP site in September, 2005. This instrument is used to continuously characterize the size-resolved concentration, hygroscopicity, and volatility of submicron particles. These

  9. ARM - PI Product - Soundings from SGP, June 2014 Sonde Comparison Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsSoundings from SGP, June 2014 Sonde Comparison Study ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Soundings from SGP, June 2014 Sonde Comparison Study [ ARM research ] The data set contains the measurements for 40 sondes launched at SGP in June 2014, for a radiosonde intercomparison. Purpose In early June 2014, a radiosonde intercomparison trial was undertaken at the SGP Central Facility site

  10. SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an ideal site for major collaborative field projects. Image from the Total Sky Imager Image from the Total Sky Imager Current sky cover retrievals at the Central Facility, to...

  11. ARM - SGP Boundary Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nearest Town Status B1 Hillsboro Removed 10212010 B5 Morris Removed 11172010 B6 Purcell Removed 1132010 B4 Vici Removed 2172010 *NOTE: Site designations are used in...

  12. Failure and Redemption of Multifilter Rotating Shadowband Radiometer (MFRSR)/Normal Incidence Multifilter Radiometer (NIMFR) Cloud Screening: Contrasting Algorithm Performance at Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) and Southern Great Plains (SGP) Sites

    SciTech Connect (OSTI)

    Kassianov, Evgueni I.; Flynn, Connor J.; Koontz, Annette S.; Sivaraman, Chitra; Barnard, James C.

    2013-09-11

    Well-known cloud-screening algorithms, which are designed to remove cloud-contaminated aerosol optical depths (AOD) from AOD measurements, have shown great performance at many middle-to-low latitude sites around the world. However, they may occasionally fail under challenging observational conditions, such as when the sun is low (near the horizon) or when optically thin clouds with small spatial inhomogeneity occur. Such conditions have been observed quite frequently at the high-latitude Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) sites. A slightly modified cloud-screening version of the standard algorithm is proposed here with a focus on the ARM-supported Multifilter Rotating Shadowband Radiometer (MFRSR) and Normal Incidence Multifilter Radiometer (NIMFR) data. The modified version uses approximately the same techniques as the standard algorithm, but it additionally examines the magnitude of the slant-path line of sight transmittance and eliminates points when the observed magnitude is below a specified threshold. Substantial improvement of the multi-year (1999-2012) aerosol product (AOD and its Angstrom exponent) is shown for the NSA sites when the modified version is applied. Moreover, this version reproduces the AOD product at the ARM Southern Great Plains (SGP) site, which was originally generated by the standard cloud-screening algorithms. The proposed minor modification is easy to implement and its application to existing and future cloud-screening algorithms can be particularly beneficial for challenging observational conditions.

  13. Aerosol Retrievals from ARM SGP MFRSR Data (Dataset) | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Aerosol Retrievals from ARM SGP MFRSR Data Title: Aerosol Retrievals from ARM SGP MFRSR Data The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous ...

  14. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    SciTech Connect (OSTI)

    Mace, G.G.; Ackerman, T.P.; George, A.T.

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  15. LandUse/Land Cover Map of the CF of ARM in the SGP Site Using DOE's Multispectral Thermal Imager (MTI) Satellite Images

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Land Use/Land Cover Map of the Central Facility of ARM in the Southern Great Plains Site Using DOE's Multi-Spectral Thermal Imager Satellite Images S. E. Báez Cazull Pre-Service Teacher Program University of Puerto Rico Rio Piedras, Puerto Rico A. Cialla Brookhaven National Laboratory Department of Environmental Sciences Upton, New York Introduction The Atmospheric Radiation Measurement (ARM) Program is a multi-laboratory, interagency program that was created with funding from the U.S.

  16. Characterization of Surface Albedo Over the ARM SGP CART and the NSA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Surface Albedo Over the ARM SGP CART and the NSA Z. Li and M. C. Cribb Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland A. P. Trishchenko and Y. Luo Canada Centre for Remote Sensing Ottawa, Ontario, Canada Introduction Surface albedo is needed for satellite remote sensing of the surface radiation budget and for climate modelling. Determination of areal-mean surface albedo is challenging. Over the Southern Great Plains (SGP) site, a

  17. ARM - Field Campaign - SGP99 IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSGP99 IOP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : SGP99 IOP 1999.07.07 - 1999.07.22 Lead Scientist : Richard Cederwall Summary The Southern Great Plains 1997 Hydrology Experiment (SGP97) successfully demonstrated the ability to map and monitor soil moisture using low frequency microwave radiometers (L band, 1.4 GHz). Soil moisture retrieval algorithms developed using higher resolution data were proven to be

  18. Aspects of the quality of data from the Southern Great Plains (SGP) cloud and radiation testbed (CART) site broadband radiation sensors

    SciTech Connect (OSTI)

    Splitt, M.E.; Wesely, M.L.

    1996-04-01

    A systmatic evaluation of the performance of broadband radiometers at the Radiation Testbed (CART) site is needed to estimate the uncertainties of the irradiance observations. Here, net radiation observed with the net radiometer in the enrgy balance Bowen ratio station at the Central facility is compared with the net radiation computed as the sum of component irradiances recorded by nearby pyranameters and pyrgeometers. In addition, data obtained from the central facility pyranometers, pyrgeometers, and pyrheliometers are examined for April 1994, when intensive operations periods were being carried out. The data used in this study are from central facility radiometers in a solar and infrared observation station, and EBBR station, the so-called `BSRN` set of upward pointing radiometers, and a set of radiometers pointed down at the 25-m level of a 60-m tower.

  19. New Surface Meteorological Measurements at SGP,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NM, March 22 - 26, 2004 1 New Surface Meteorological Measurements at SGP, and Their Use ... Work is in progress to combine the MWR-scaling and time-lag corrections into a new ARM ...

  20. ARM - Field Campaign - SGP '97 (Hydrology) IOP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSGP '97 (Hydrology) IOP Campaign Links NASA Archive Model Initialization Data Comments? We would love to hear from you Send us a note below or call us at ...

  1. Orr 2007 ARM STM poster2.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Responsible for management and maintenance of nearly all data and instrument computers as well as personal computers at the ACRF sites (AMF, NSA, SGP and TWP). Cyber...

  2. Newsletter Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The ACRF SGP site recently established a repair capability for its wind sensor equipment that is saving the program money and improving the availability of data. Wind sensor ...

  3. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Five-Year Statistics of Shallow Clouds at the ACRF SGP Site Download a printable PDF ... 2008. "Temporal variability of fair-weather cumulus statistics at the ARM SGP site." ...

  4. SGP CART Site Affected by Ice Storm

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Dry nitrogen gas purges were installed to prevent condensation from forming on instrument ... compensation for damaged or destroyed property and cleanup costs not covered by insurance. ...

  5. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Kalesse, Heike

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  6. SGP and TWP (Manus) Ice Cloud Vertical Velocities

    SciTech Connect (OSTI)

    Kalesse, Heike

    2013-06-27

    Daily netcdf-files of ice-cloud dynamics observed at the ARM sites at SGP (Jan1997-Dec2010) and Manus (Jul1999-Dec2010). The files include variables at different time resolution (10s, 20min, 1hr). Profiles of radar reflectivity factor (dbz), Doppler velocity (vel) as well as retrieved vertical air motion (V_air) and reflectivity-weighted particle terminal fall velocity (V_ter) are given at 10s, 20min and 1hr resolution. Retrieved V_air and V_ter follow radar notation, so positive values indicate downward motion. Lower level clouds are removed, however a multi-layer flag is included.

  7. Investigation of Unusual Albedos in the SGP Domain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Investigation of Unusual Albedos in the SGP Domain Groff, David ARM SGP Duchon, Claude University Of Oklahoma Category: Atmospheric State and Surface We investigate the cause of unusually high albedos at an Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) extended facility near Morris, OK. In a previous study, daily albedos were calculated at several SGP extended facilities for 1998 and 1999 using broadband (.28 to 3 microns) pyranometers. The average daily albedo during this

  8. ARM - Field Campaign - AMIE (ACRF MJO Investigation Experiment):

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Observations of the Madden Julian Oscillation for Modeling Studies govCampaignsAMIE (ACRF MJO Investigation Experiment): Observations of the Madden Julian Oscillation for Modeling Studies Campaign Links AMIE Website ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : AMIE (ACRF MJO Investigation Experiment): Observations of the Madden Julian Oscillation for Modeling Studies 2011.10.01 - 2012.03.31 Website

  9. ACRF Instrumentation Status: New, Current, and Future July 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-07-01

    The purpose of this report is to provide a concise but comprehensive overview of ACRF instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

  10. ACRF Instrumentation Status: New, Current, and Future - October November 2007

    SciTech Connect (OSTI)

    JW Voyles

    2007-11-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

  11. ACRF Instrumentation Status: New, Current, and Future - September October 2007

    SciTech Connect (OSTI)

    JW Voyles

    2007-10-30

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) SBIR instrument development.

  12. sgp_stratus_poster_v1.0.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forcing, large-scale vertical velocity, and latent and sensible heat flux. Introduction LES (SAMEX) baseline WACR profiles (in blue) LES statistics for the SGP stratus control...

  13. ARM - Publications: Science Team Meeting Documents: The SGP Aerosol...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The SGP Aerosol Best-Estimate Value-Added Procedure and Its Impact on the BBHRP Project Turner, David Pacific Northwest National Laboratory Sivaraman, Chitra Pacific Northwest...

  14. Use of Long Time-series ACRF Measurements to Improve Data Quality...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Use of Long Time-Series ACRF Measurements to Improve Data Quality Analysis Sean Moore Mission Research and Technical Services Santa Barbara, CA ARM Data Quality Office...

  15. Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

    SciTech Connect (OSTI)

    Lamb, Peter J.

    2013-06-13

    Scientific Guidance, Research, and Educational Outreach for the ARM Climate Research Facility (ACRF) in the Southern Great Plains

  16. Continental Liquid-phase Stratus Clouds at SGP: Meteorological Influences

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Relationship to Adiabacity Continental Liquid-phase Stratus Clouds at SGP: Meteorological Influences and Relationship to Adiabacity Kim, Byung-Gon Kangnung National University Schwartz, Stephen Brookhaven National Laboratory Miller, Mark Brookhaven National Laboratory Min, Qilong State University of New York at Albany Category: Cloud Properties The microphysical properties of continental stratus clouds observed over SGP appear to be substantially influenced by micrometeorological

  17. DOE/SC-ARM/P-07-002.3 ACRF Instrumentation Status: New, Current, and Future

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 ACRF Instrumentation Status: New, Current, and Future March 2007 James Liljegren ACRF Instrument Team Coordinator Work supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research Summary The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of

  18. ARM - Field Campaign - SGP Ice Nuclei Characterization Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsSGP Ice Nuclei Characterization Experiment Campaign Links Field Campaign Report ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : SGP Ice Nuclei Characterization Experiment 2014.04.22 - 2014.06.14 Lead Scientist : Paul DeMott For data sets, see below. Abstract Ice nucleating particles are required to trigger the formation of ice crystals in the mixed-phase (liquid and ice) regions of clouds,

  19. ARM - PI Product - Aerosol Retrievals from ARM SGP MFRSR Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsAerosol Retrievals from ARM SGP MFRSR Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Aerosol Retrievals from ARM SGP MFRSR Data The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM

  20. Newsletter Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    African Researcher Visits Oklahoma As a follow-up to the ARM Mobile Facility (AMF) ... Niamey, Niger, to the ACRF Southern Great Plains (SGP) site near Lamont, Oklahoma. Dr. ...

  1. Newsletter Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the ACRF Southern Great Plains (SGP) site has helped to correct problems related to signal interference. The WACR is a 95-GHz system designed for a unique purpose -...

  2. Direct Aerosol Forcing in the Infrared at the SGP Site?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Washington Introduction Low level haze is often observed ... lowers the ambient temperature and consequently ... is to improve the treatment of radiative transfer in ...

  3. Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP. S...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP Site Stage 1: Cloud Amounts, Optical Depths, and Cloud Heights Reconciliation I. Genkova and C. N. Long Pacific Northwest National Laboratory Richland, Washington P. W. Heck Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction One of the primary Atmospheric

  4. Atmospheric Radiation Measurement Climate Research Facility (ACRF) Annual Report 2008

    SciTech Connect (OSTI)

    LR Roeder

    2008-12-01

    The Importance of Clouds and Radiation for Climate Change: The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols, can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To reduce these scientific uncertainties, the ARM Program uses a unique twopronged approach: • The ARM Climate Research Facility, a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes; and • The ARM Science Program, focused on the analysis of ACRF and other data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report provides an overview of each of these components and a sample of achievements for each in fiscal year (FY) 2008.

  5. Determination of Ice Water Path Over the ARM SGP Using Combined...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Determination of Ice Water Path Over the ARM SGP Using Combined Surface and Satellite ... Global information of cloud ice water path (IWP) is urgently needed for testing ...

  6. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    1997-01-01

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  7. ARM: Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Krista Gaustad; Laura Riihimaki

    Fractional cloud cover, clear-sky and all-sky shortwave flux for each of 25 individual SGP facilities.

  8. ARM - Publications: Science Team Meeting Documents: Clouds over the ARM SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Network area - 3D prospective Clouds over the ARM SGP Network area - 3D prospective Genkova, Iliana University of Illinois-Champaign Long, Chuck Pacific Northwest National Laboratory Minnis, Patrick NASA Langley Research Center Heck, Patrick University of Wisconsin Khaiyer, Mandana Analytical Services and Material, Inc. The poster will present the final product of a 3-dimentional characterization of the clouds over the ARM SGP network area. We have aquired various ground-based and satellite

  9. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe1mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  10. Broadband Heating Rate Profile Project (BBHRP) - SGP ripbe370mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  11. Comparison of improved Aura Tropospheric Emission Spectrometer (TES) CO{sub 2} with HIPPO and SGP aircraft profile measurements

    SciTech Connect (OSTI)

    Kulawik, S. S.; Worden, J. R.; Wofsy, S. C.; Biraud, S. C.; Nassar, R.; Jones, D. B.A.; Olsen, E. T.; Osterman, G. B.

    2012-02-01

    Comparisons are made between mid-tropospheric Tropospheric Emission Spectrometer (TES) carbon dioxide (CO{sub 2}) satellite measurements and ocean profiles from three Hiaper Pole-to-Pole Observations (HIPPO) campaigns and land aircraft profiles from the United States Southern Great Plains (SGP) Atmospheric Radiation Measurement (ARM) site over a 4-yr period. These comparisons are used to characterize the bias in the TES CO{sub 2} estimates and to assess whether calculated and actual uncertainties and sensitivities are consistent. The HIPPO dataset is one of the few datasets spanning the altitude range where TES CO{sub 2} estimates are sensitive, which is especially important for characterization of biases. We find that TES CO{sub 2} estimates capture the seasonal and latitudinal gradients observed by HIPPO CO{sub 2} measurements; actual errors range from 0.8–1.2 ppm, depending on the campaign, and are approximately 1.4 times larger than the predicted errors. The bias of TES versus HIPPO is within 0.85 ppm for each of the 3 campaigns; however several of the sub-tropical TES CO{sub 2} estimates are lower than expected based on the calculated errors. Comparisons of aircraft flask profiles, which are measured from the surface to 5 km, to TES CO{sub 2} at the SGP ARM site show good agreement with an overall bias of 0.1 ppm and rms of 1.0 ppm. We also find that the predicted sensitivity of the TES CO{sub 2} estimates is too high, which results from using a multi-step retrieval for CO{sub 2} and temperature. We find that the averaging kernel in the TES product corrected by a pressure-dependent factor accurately reflects the sensitivity of the TES CO{sub 2} product.

  12. ARM - Field Campaign - AIRS Validation Soundings Phase IV and V-SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsAIRS Validation Soundings Phase IV and V-SGP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : AIRS Validation Soundings Phase IV and V-SGP 2005.08.04 - 2006.04.19 Lead Scientist : Jimmy Voyles For data sets, see below. Abstract ARM conducted a special series of radiosonde launches in support of validation studies for the Atmospheric Infrared Sounder (AIRS) instrument aboard NASA's Aqua

  13. ARM - Field Campaign - ARM Radiosondes for NPOESS/NPP Validation - SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsARM Radiosondes for NPOESS/NPP Validation - SGP Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : ARM Radiosondes for NPOESS/NPP Validation - SGP 2012.07.09 - 2017.12.31 Lead Scientist : Lori Borg For data sets, see below. Abstract This is a satellite validation project involving the use of satellite overpass coincident radiosonde launches. This is analogous to previous IOPs performed for AIRS on the NASA Aqua platform and

  14. ARM - Field Campaign - Ground-based Cloud Tomography Experiment at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govCampaignsGround-based Cloud Tomography Experiment at SGP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign : Ground-based Cloud Tomography Experiment at SGP 2009.05.26 - 2009.07.17 Lead Scientist : Dong Huang For data sets, see below. Abstract Knowledge of 3D cloud properties is pressingly needed in many research fields. One of the problems encountered when trying to represent 3D cloud fields in numerical

  15. ARM - PI Product - Merged MMCR-WSR88D Reflectivities at SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsMerged MMCR-WSR88D Reflectivities at SGP ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : Merged MMCR-WSR88D Reflectivities at SGP There are substantial attenuations of MMCR signals for very large LWP and during precipitation events. We have used the nearest precipitation radar (WSR-88D) to merge two measurements to better represent such selected cases. In the near future, we are going to provide

  16. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect (OSTI)

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations of the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  17. Long-term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM)

    SciTech Connect (OSTI)

    Parworth, Caroline; Fast, Jerome D.; Mei, Fan; Shippert, Timothy R.; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associated with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  18. Long-term measurements of submicrometer aerosol chemistry at the Southern Great Plains (SGP) using an Aerosol Chemical Speciation Monitor (ACSM)

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Parworth, Caroline; Tilp, Alison; Fast, Jerome; Mei, Fan; Shippert, Tim; Sivaraman, Chitra; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less

  19. Newsletter Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 ANL/ER/NL-05-08 Technical Contact: Brad W. Orr Phone: 630-252-8665 Email: brad.orr@anl.gov Editor: Donna J. Holdridge Website: http://www.arm.gov ACRF Southern Great Plains Newsletter is published by Argonne National Laboratory, managed by The University of Chicago for the U.S. Department of Energy. SGP Hosts Instrument Team Meeting The SGP central facility hosted the biennial ARM Climate Research Facility (ACRF) Instrument Team Meeting on August 2-4, 2005. Almost 50 instrument mentors, site

  20. AmeriFlux US-ARb ARM Southern Great Plains burn site- Lamont...

    Office of Scientific and Technical Information (OSTI)

    Site Description - The ARM SGP Burn site is located in the native tallgrass prairies of the USDA Grazinglands Research Laboratory near El Reno, OK. One of two adjacent 35 ha plots, ...

  1. Validation of Satellite-Derived Liquid Water Paths Using ARM SGP Microwave Radiometers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Satellite-Derived Liquid Water Paths Using ARM SGP Microwave Radiometers M. M. Khaiyer and J. Huang Analytical Services & Materials, Inc. Hampton, Virginia P. Minnis, B. Lin, and W. L. Smith, Jr. National Aeronautics and Space Administration Langley Research Center Hampton, Virginia A. Fan Science Applications International Corporation Hampton, Virginia A. Rapp Colorado State University Fort Collins, Colorado Introduction Satellites are useful for monitoring climatological parameters over

  2. Improved ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM-SGP TOA OLR Fluxes from GOES-8 IR Radiances Based on CERES Data D. R. Doelling and M. M. Khaiyer Analytical Services and Materials, Inc. Hampton, Virginia P. Minnis National Aeronautics and Space Administration Langley Research Center Hampton, Virginia Introduction The radiation budget at the top of the atmosphere (TOA) is a quantity of fundamental importance to the Atmospheric Radiation Measurement (ARM) Program. Thus, it is necessary to measure the radiation budget components, broadband

  3. Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Infrared Land Surface Emissivity in the Vicinity of the ARM SGP Central Facility R. O. Knuteson, R. G. Dedecker, W. F. Feltz, B. J. Osbourne, H. E. Revercomb, and D. C. Tobin Space Science and Engineering Center University of Wisconsin-Madison Madison, Wisconsin Introduction The University of Wisconsin Space Science and Engineering Center (UW-SSEC) has developed, under National Aeronautics and Space Administration (NASA) funding, a model for the infrared land surface emissivity (LSE) in the

  4. Investigation of SGP Atmospheric Moisture Budget for CLASIC … Recycling Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SGP Atmospheric Moisture Budget for CLASIC - Recycling Study Contributors Peter Lamb, Diane Portis, Daniel Hartsock Background * Motivation: to provide larger-scale background for the interpretation of the results of CLASIC * Moisture budgets and related variables are analyzed over a large area encompassing the CLASIC field study for May-June periods with contrasting precipitation regimes * Emphasis will be given to the relative contribution to regional precipitation from local vs advective

  5. Diurnal Cycle of Convection at the ARM SGP Site: Role of Large...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    over both land and oceans (Gray and Jacobson 1977; Dai 2001; Nesbitt and Zipser 2003). ... has a significant impact on the atmospheric radiation budget and cloud radiative forcing. ...

  6. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CF during LABLE-2012 2 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2012 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  7. ARM - PI Product - AERIoe Thermodynamic Profile and Cloud Retrieval for SGP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CF during LABLE-2013 3 ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : AERIoe Thermodynamic Profile and Cloud Retrieval for SGP CF during LABLE-2013 [ ARM research ] The AERIoe algorithm retrieves profiles of temperature and water vapor mixing ratio, together with cloud properties for a single-layer cloud (i.e., LWP, effective radius), from AERI-observed infrared radiance spectrum. The method is a

  8. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    SciTech Connect (OSTI)

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B.

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  9. Broadband Heating Rate Profile Project (BBHRP) - SGP 1bbhrpripbe1mcfarlane

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Riihimaki, Laura; Shippert, Timothy

    2014-11-05

    The objective of the ARM Broadband Heating Rate Profile (BBHRP) Project is to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Required inputs to BBHRP include surface albedo and profiles of atmospheric state (temperature, humidity), gas concentrations, aerosol properties, and cloud properties. In the past year, the Radiatively Important Parameters Best Estimate (RIPBE) VAP was developed to combine all of the input properties needed for BBHRP into a single gridded input file. Additionally, an interface between the RIPBE input file and the RRTM was developed using the new ARM integrated software development environment (ISDE) and effort was put into developing quality control (qc) flags and provenance information on the BBHRP output files so that analysis of the output would be more straightforward. This new version of BBHRP, sgp1bbhrpripbeC1.c1, uses the RIPBE files as input to RRTM, and calculates broadband SW and LW fluxes and heating rates at 1-min resolution using the independent column approximation. The vertical resolution is 45 m in the lower and middle troposphere to match the input cloud properties, but is at coarser resolution in the upper atmosphere. Unlike previous versions, the vertical grid is the same for both clear-sky and cloudy-sky calculations.

  10. ARM Quick-looks Database for North Slope Alaska (NSA) sites

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Stamnes, Knut [NSA Site Scientist

    From these pages one can monitor parts of the data acquisition process and access daily data visualizations from the different instruments. These data visualizations are produced in near real time automatically and are called Quick-Looks (QLs). The quick-looks contains unofficial data of unknown quality. Once data is released one can obtain the full data-set from any instrument available, and along with that, a statement about the data quality from the ARM archive. The database provides Quick-looks for the Barrow ACRF site (NSA C1), the Atqasuk ACRF site (NSA C2), or the SHEBA ice campaign of 1997 and 1998. As of 12-17-08, the database had more than 528,000 quick-looks available as data figures and data plots. No password is required for Quick-look access. (Specialized Interface)

  11. “Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    SciTech Connect (OSTI)

    Ferrare, Richard; Turner, David

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.

  12. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Real Effect or Artifact of Cloud Cover on Aerosol Optical Thickness? M-J. Jeong and Z. Li Department of Meteorology/Earth System Science Interdisciplinary Center University of Maryland College Park, Maryland Introduction Aerosol measurements over the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF) Southern Great Plains (SGP) site characterize the temporal variability, vertical distribution, and optical properties of aerosols in the region. They were made by the Cimel

  13. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wave Cloud Radar Upgrades: Review, Status, and Plans K.B. Widener Pacific Northwest National Laboratory Richland, Washington K.P. Moran National Oceanic and Atmospheric Administration- Earth System Research Laboratory-Physical Sciences Division Boulder, Colorado Introduction The Atmospheric Radiation Measurement (ARM) Program currently operates five millimeter-wave cloud radars (MMCRs) at the ARM Climate Research Facility (ACRF) Southern Great Plains (SGP) site, North Slope of Alaska (NSA)

  14. ACRF-Newsletter.indd

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For centuries, observations of atmospheric temperature, pressure, humidity and winds were limited primarily by where instruments could be located. More recently, remote instrument platforms such as radars and satellites have been deployed to explore portions of the atmosphere beyond the reach of conventional weather instruments. With the objective of studying radiation transfer in the atmosphere as a whole, the ARM by Dr. Kevin Kloesel, University of Oklahoma Program seeks to measure atmospheric

  15. SGP Cloud and Land Surface Interaction Campaign (CLASIC): Science and Implementation Plan

    SciTech Connect (OSTI)

    MA Miller; R Avissar; LK Berg; SA Edgerton; ML Fischer; T Jackson; B.Kustas; PJ Lamb; GM McFarquhar; Q Min; B Schmid; MS Torn; DD Turner

    2007-06-30

    The Cloud and Land Surface Interaction Campaign is a field experiment designed to collect a comprehensive data set that can be used to quantify the interactions that occur between the atmosphere, biosphere, land surface, and subsurface. A particular focus will be on how these interactions modulate the abundance and characteristics of small and medium size cumuliform clouds that are generated by local convection. These interactions are not well understood and are responsible for large uncertainties in global climate models, which are used to forecast future climate states. The campaign will be conducted from June 8 to June 30, 2007, at the U.S. Department of Energys Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Data will be collected using eight aircraft equipped with a variety of specialized sensors, four specially instrumented surface sites, and two prototype surface radar systems. The architecture of Cloud and Land Surface Interaction Campaign includes a high-altitude surveillance aircraft and enhanced vertical thermodynamic and wind profile measurements that will characterize the synoptic scale structure of the clouds and the land surface within the Atmospheric Radiation Measurement Climate Research Facility Southern Great Plains site. Mesoscale and microscale structures will be sampled with a variety of aircraft, surface, and radar observations.

  16. Long-term Observations of the Convective Boundary Layer Using Insect Radar Returns at the SGP ARM Climate Research Facility

    SciTech Connect (OSTI)

    Chandra, A S; Kollias, P; Giangrande, S E; Klein, S A

    2009-08-20

    A long-term study of the turbulent structure of the convective boundary layer (CBL) at the U.S. Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) Climate Research Facility is presented. Doppler velocity measurements from insects occupying the lowest 2 km of the boundary layer during summer months are used to map the vertical velocity component in the CBL. The observations cover four summer periods (2004-08) and are classified into cloudy and clear boundary layer conditions. Profiles of vertical velocity variance, skewness, and mass flux are estimated to study the daytime evolution of the convective boundary layer during these conditions. A conditional sampling method is applied to the original Doppler velocity dataset to extract coherent vertical velocity structures and to examine plume dimension and contribution to the turbulent transport. Overall, the derived turbulent statistics are consistent with previous aircraft and lidar observations. The observations provide unique insight into the daytime evolution of the convective boundary layer and the role of increased cloudiness in the turbulent budget of the subcloud layer. Coherent structures (plumes-thermals) are found to be responsible for more than 80% of the total turbulent transport resolved by the cloud radar system. The extended dataset is suitable for evaluating boundary layer parameterizations and testing large-eddy simulations (LESs) for a variety of surface and cloud conditions.

  17. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2006-01-04

    The project is concerned with the characterization of cloud macrophysical and microphysical properties by combining radar, lidar, and radiometer measurements available from the U.S. Department of Energy's ARM Climate Research Facility (ACRF). To facilitate the production of integrated cloud product by applying different algorithms to the ARM data streams, an advanced cloud classification algorithm was developed to classified clouds into eight types at the SGP site based on ground-based active and passive measurements. Cloud type then can be used as a guidance to select an optimal retrieval algorithm for cloud microphysical property retrieval. The ultimate goal of the effort is to develop an operational cloud classification algorithm for ARM data streams. The vision 1 IDL code of the cloud classification algorithm based on the SGP ACRF site observations was delivered to the ARM cloud translator during 2004 ARM science team meeting. Another goal of the project is to study midlevel clouds, especially mixed-phase clouds, by developing new retrieval algorithms using integrated observations at the ACRF sites. Mixed-phase clouds play a particular role in the Arctic climate system. A multiple remote sensor based algorithm, which can provide ice water content and effective size profiles, liquid water path, and layer-mean effective radius of water droplet, was developed to study arctic mixed-phase clouds. The algorithm is applied to long-term ARM observations at the NSA ACRF site. Based on these retrieval results, we are studying seasonal and interannual variations of arctic mixed-phase cloud macro- and micro-physical properties.

  18. Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 2004 ANL/ER/NL-04-04 Technical Contact: James C. Liljegren Phone: 630-252-9540 Email: jcliljegren@anl.gov Editor: Donna J. Holdridge ACRF Southern Great Plains Newsletter is published by Argonne National Laboratory, an Office of Science laboratory operated by The University of Chicago under contract W-31-109-Eng-38 with the U.S. Department of Energy. Site Operations Manager to Retire Southern Great Plains (SGP) site operations manager Jim Teske has announced that he will retire in October

  19. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The

  20. Oct08.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 ANL/EVS/NL-08-10 Technical Contact: Brad W. Orr Phone: 630-252-8665 Email: brad.orr@anl.gov Editor: Donna J. Holdridge Contributor: John Schatz Website: http://www.arm.gov ACRF Southern Great Plains Newsletter is published by Argonne National Laboratory, managed by UChicago Argonne, LLC, for the U.S. Department of Energy under contract number DE-AC02-06CH11357. Leadership Noble County Members Tour SGP Site Members of the non-profit organization Leadership Noble County

  1. Icy Cirrus Clouds to Be Studied This Spring

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Icy Cirrus Clouds to Be Studied This Spring Mid-latitude cirrus clouds, which are composed solely of ice crystals, will be the focus of an intensive operational period (IOP) in April and May 2004 at the ARM Climate Research Facility (ACRF) SGP site. Researchers will be probing the clouds with aircraft-based instruments to gather detailed information about the clouds' physical characteristics. To make measurements in cirrus clouds, which generally form in the atmosphere at and above 20,000 feet

  2. Integrated Study of MFRSR-derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facili...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Study of MFRSR-Derived Parameters of Atmospheric Aerosols and Trace Gases Over the ARM CART Site Extended Facilities - Comparison with Satellite and Other Ground-Based Measurements M. D. Alexandrov and B. Cairns Columbia University National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York A. A. Lacis and B. E. Carlson National Aeronautics and Space Administration Goddard Institute for Space Studies New York, New York Comparison of SGP MFRSR

  3. Microsoft Word - liljegren-jc.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility (ACRF) North Slope of Alaska (NSA) site at Barrow, Alaska, in February 2004. ... water content (bottom) for March 12-15, 2004, at the ARM ACRF NSA site at Barrow, Alaska. ...

  4. Site Scientific Mission Plan for the Southern Great Plains CART site: January--June 1994

    SciTech Connect (OSTI)

    Schneider, J.M.; Lamb, P.J.; Sisterson, D.L.

    1993-12-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1994, and also looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM Functional Teams (Management Team, Experiment Support Team, Operations Team, Data Management Team, Instrument Team, and Campaign Team), and it serves to disseminate the plans more generally within the ARM Program and among the Science Team. This document includes a description of the site`s operational status and the primary envisaged site activities, together with information concerning approved and proposed Intensive Observation Periods. Amendments will be prepared and distributed whenever the content changes by more than 30% within a six-month period. The primary users of this document are the site operator, the site scientist, the Science Team through the ARM Program Science Director, the ARM Program Experiment Center, and the aforementioned ARM Program Functional Teams. This plan is a living document that will be updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  5. Site scientific mission plan for the Southern Great Plains CART site: January 1997--June 1997

    SciTech Connect (OSTI)

    Peppler, R.A.; Lamb, P.J. [Univ. of Oklahoma, Norman, OK (United States). Cooperative Institute for Mesoscale Meteorological Studies; Sisterson, D.L. [Argonne National Lab., IL (United States)

    1997-01-01

    The Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site is designed to help satisfy the data needs of the Atmospheric Radiation Measurement (ARM) Program Science Team. This document defines the scientific priorities for site activities during the six months beginning on January 1, 1997, and looks forward in lesser detail to subsequent six-month periods. The primary purpose of this Site Scientific Mission Plan is to provide guidance for the development of plans for site operations. It also provides information on current plans to the ARM functional teams (Management Team, Data and Science Integration Team [DSIT], Operations Team, Instrument Team [IT], and Campaign Team) and serves to disseminate the plans more generally within the ARM Program and among the members of the Science Team. This document includes a description of the operational status of the site and the primary site activities envisioned, together with information concerning approved and proposed intensive observation periods (IOPs). The primary users of this document are the site operator, the Site Scientist Team (SST), the Science Team through the ARM Program science director, the ARM Program Experiment Center, and the aforementioned ARM Program functional teams. This plan is a living document that is updated and reissued every six months as the observational facilities are developed, tested, and augmented and as priorities are adjusted in response to developments in scientific planning and understanding.

  6. Site Index - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Index Site Index Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Site Index Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size About Us About Hanford Cleanup Regulators, Boards, Councils Hanford Advisory Board Hanford Natural Resource Trustee Council Environmental Protection Agency Washington State Department of Ecology Defense Nuclear Facilities Safety Board Hanford History Hanford Site Wide Programs DOE Human Resources Management

  7. Analytical study of the effects of the Low-Level Jet on moisture convergence and vertical motion fields at the Southern Great Plains Cloud and Radiation Testbed site

    SciTech Connect (OSTI)

    Bian, X.; Zhong, S.; Whiteman, C.D.; Stage, S.A.

    1996-04-01

    The Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) is located in a region that is strongly affected by a prominent meteorological phenomenon--the Great Plains Low-Level Jet (LLJ). Observations have shown that the LLJ plays a vital role in spring and summertime cloud formation and precipitation over the Great Plains. An improved understanding of the LLJ characteristics and its impact on the environment is necessary for addressing the fundamental issue of development and testing of radiational transfer and cloud parameterization schemes for the general circulation models (GCMs) using data from the SGP CART site. A climatological analysis of the summertime LLJ over the SGP has been carried out using hourly observations from the National Oceanic and Atmospheric Administration (NOAA) Wind Profiler Demonstration Network and from the ARM June 1993 Intensive Observation Period (IOP). The hourly data provide an enhanced temporal and spatial resolution relative to earlier studies which used 6- and 12-hourly rawinsonde observations at fewer stations.

  8. Site Feeds - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Feeds Site Feeds Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Hanford RSS Feeds Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size RSS Feed Links Site News RSS Did You Know RSS What's New RSS Event Calendar RSS Recent Videos RSS Press Releases RSS What is a feed? A feed is a document that contains summaries of web content with web links to the original versions. It may be viewed with a feed reader or news aggregator. If you

  9. Cloud Classes and Radiative Heating profiles at the Manus and Nauru Atmospheric Radiation Measurement (ARM) Sites

    SciTech Connect (OSTI)

    Mather, James H.; McFarlane, Sally A.

    2009-10-07

    The Tropical Western Pacific (TWP) is a convective regime; however, the frequency and depth of convection is dependant on dynamical forcing which exhibits variability on a range of temporal scales and also on location within the region. Manus Island, Papua New Guinea lies in the heart of the western Pacific warm pool region and exhibits frequent deep convection much of the time while Nauru, which lies approximately 20 degrees to the East of Manus, lies in a transition zone where the frequency of convection is dependent on the phase of the El Nino/Southern Oscillation. Because of this difference in dynamical regime, the distribution of clouds and the associated radiative heating is quite different at the two sites. Individual cloud types: boundary layer cumulus, thin cirrus, stratiform convective outflow, do occur at both sites – but with different frequencies. In this study we compare cloud profiles and heating profiles for specific cloud types at these two sites using data from the Atmospheric Radiation Measurement (ARM) Climate Research Facility (ACRF). Results of this comparison indicate that, while the frequency of specific cloud types differ between the two sites as one would expect, the characteristics of individual cloud classes are remarkably similar. This information could prove to be very useful for applying tropical ARM data to the broader region.

  10. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2007.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-01-24

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period October 1 - December 31, 2007, for the fixed sites and the mobile site. The AMF has been deployed to Germany and this was the final operational quarter. The first quarter comprises a total of 2,208 hours. Although the average exceeded our goal this quarter, a series of severe weather events (i.e., widespread ice storms) disrupted utility services, which affected the SGP performance measures. Some instruments were covered in ice and power and data communication lines were down for more than 10 days in some areas of Oklahoma and Kansas, which resulted in lost data at the SGP site. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. The AMF completed its mission at the end of this quarter in Haselback, Germany (FKB designation). NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE

  11. Providing Diurnal Sky Cover Data at ARM Sites

    SciTech Connect (OSTI)

    Klebe, Dimitri I.

    2015-03-06

    The Solmirus Corporation was awarded two-year funding to perform a comprehensive data analysis of observations made during Solmirus’ 2009 field campaign (conducted from May 21 to July 27, 2009 at the ARM SGP site) using their All Sky Infrared Visible Analyzer (ASIVA) instrument. The objective was to develop a suite of cloud property data products for the ASIVA instrument that could be implemented in real time and tailored for cloud modelers. This final report describes Solmirus’ research and findings enabled by this grant. The primary objective of this award was to develop a diurnal sky cover (SC) data product utilizing the ASIVA’s infrared (IR) radiometrically-calibrated data and is described in detail. Other data products discussed in this report include the sky cover derived from ASIVA’s visible channel and precipitable water vapor, cloud temperature (both brightness and color), and cloud height inferred from ASIVA’s IR channels.

  12. Remote/New sites: Many Field

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fischer Single Frequency GPS H2Ov network-John Braun SAM Support for CLASIC-John DeVore SGP Aerosol Evolution Study-Don Collins Sun and Aureole Measurement...

  13. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy laboratory managed by UChicago-Argonne, LLC Re-establishment of the MFRSR Calibration Facility at the SGP Dan Nelson 1 , Craig Webb 1 , Joseph Michalsky 2 , Gary Hodges 2 , Piotr Kiedron 2 , Patrick Disterhoft 2 , John Schmelzer 3 , Jerry Berndt 4 1 ACRF/SGP, Cherokee Nation Distributors, Stilwell, OK 2 National Oceanographic and Atmospheric Administration, Boulder, CO 3 Pacific Northwest National Laboratory, Richland, WA 4 Consultant to NOAA, Everett, WA CSPHOT SWS 90/150 GHz Radiometer

  14. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility News SGP Hosts Two Groups for "Lunch and Launch" Visit Bookmark and Share John Schatz, SGP Deputy Site Manager (in striped shirt), answers questions from Billings...

  15. ACRF Instrumentation Status and Information September 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  16. ACRF Instrumentation Status and Information April 2009

    SciTech Connect (OSTI)

    Voyles, JW

    2009-05-07

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  17. ACRF Instrumentation Status and Information July 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-08-13

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  18. ACRF Instrumentation Status and Information May 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-05-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  19. ACRF Instrumentation Status and Information August 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-09-09

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  20. ACRF Data Collection and Processing Infrastructure

    SciTech Connect (OSTI)

    Macduff, M; Egan, D

    2004-12-01

    We present a description of the data flow from measurement to long-term archive. We also discuss data communications infrastructure. The data handling processes presented include collection, transfer, ingest, quality control, creation of Value-Added Products (VAP), and data archiving.

  1. ACRF Data Collection and Processing Infrastructure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... This, in turn, reduces downtime and instrument outages. Centralizing the monitoring ... 2004, ARM TR-046 engineering design, review, and testing will have long-term dividends. ...

  2. ACRF Instrumentation Status and Information - June 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-06-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  3. Atmospheric Radiation Measurement program climate research facility operations quarterly report January 1 - March 31, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-05-22

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period January 1 - March 31, 2008, for the fixed sites. The AMF is being deployed to China and is not in operation this quarter. The second quarter comprises a total of 2,184 hours. The average as well as the individual site values exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the research accounts are located at the Barrow

  4. Evaluating cloud retrieval algorithms with the ARM BBHRP framework

    SciTech Connect (OSTI)

    Mlawer,E.; Dunn,M.; Mlawer, E.; Shippert, T.; Troyan, D.; Johnson, K. L.; Miller, M. A.; Delamere, J.; Turner, D. D.; Jensen, M. P.; Flynn, C.; Shupe, M.; Comstock, J.; Long, C. N.; Clough, S. T.; Sivaraman, C.; Khaiyer, M.; Xie, S.; Rutan, D.; Minnis, P.

    2008-03-10

    Climate and weather prediction models require accurate calculations of vertical profiles of radiative heating. Although heating rate calculations cannot be directly validated due to the lack of corresponding observations, surface and top-of-atmosphere measurements can indirectly establish the quality of computed heating rates through validation of the calculated irradiances at the atmospheric boundaries. The ARM Broadband Heating Rate Profile (BBHRP) project, a collaboration of all the working groups in the program, was designed with these heating rate validations as a key objective. Given the large dependence of radiative heating rates on cloud properties, a critical component of BBHRP radiative closure analyses has been the evaluation of cloud microphysical retrieval algorithms. This evaluation is an important step in establishing the necessary confidence in the continuous profiles of computed radiative heating rates produced by BBHRP at the ARM Climate Research Facility (ACRF) sites that are needed for modeling studies. This poster details the continued effort to evaluate cloud property retrieval algorithms within the BBHRP framework, a key focus of the project this year. A requirement for the computation of accurate heating rate profiles is a robust cloud microphysical product that captures the occurrence, height, and phase of clouds above each ACRF site. Various approaches to retrieve the microphysical properties of liquid, ice, and mixed-phase clouds have been processed in BBHRP for the ACRF Southern Great Plains (SGP) and the North Slope of Alaska (NSA) sites. These retrieval methods span a range of assumptions concerning the parameterization of cloud location, particle density, size, shape, and involve different measurement sources. We will present the radiative closure results from several different retrieval approaches for the SGP site, including those from Microbase, the current 'reference' retrieval approach in BBHRP. At the NSA, mixed-phase clouds and

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report. October 1 - December 31, 2009.

    SciTech Connect (OSTI)

    D. L. Sisterson

    2010-01-12

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent approximately daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The U.S. Department of Energy (DOE) requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 - (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the first quarter of FY 2010 for the North Slope Alaska (NSA) locale is 1,987.20 hours (0.90 x 2,208); for the Southern Great Plains (SGP) site is 2,097.60 hours (0.95 x 2,208); and for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 x 2,208). The ARM Mobile Facility (AMF) deployment in Graciosa Island, the Azores, Portugal, continues; its OPSMAX time this quarter is 2,097.60 hours (0.95 x 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the Archive. Data not at the Archive are the result of downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to

  6. ARM - Publications: Science Team Meeting Documents: Establishing...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Alaska ARM Climate Research Facility (NSA ACRF) are a necessity for both accurate ... of two important initiatives at the NSA site, the Broadband Heating Rate Profile ...

  7. "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: "Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites" Citation Details In-Document Search Title: "Lidar Investigations ...

  8. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fiber Original location: 250m SE of Great White Sample data: A Total Precipitation Sensor at the Barrow ACRF Site ABSTRACT A Yankee Environmental TPS-3100 Total Precipitation...

  9. Nov08.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System With more than 300 instrument systems operating at remote sites around the globe, ACRF Instrument Mentors can now use the centralized Operations Support System (OSS)...

  10. Tropical Western Pacific site science mission plan. Semiannual project report, January--June 1998

    SciTech Connect (OSTI)

    Ackerman, T.; Mather, J.; Clements, W.; Barnes, F.

    1998-11-01

    The Department of Energy`s Atmospheric Radiation Measurement (ARM) program was created in 1989 as part of the US Global Change Research Program to improve the treatment of atmospheric radiative and cloud processes in computer models used to predict climate change. The overall goal of the ARM program is to develop and test parameterizations of important atmospheric processes, particularly cloud and radiative processes, for use in atmospheric models. This goal is being achieved through a combination of field measurements and modeling studies. Three primary locales were chosen for extensive field measurement facilities. These are the Southern Great Plains (SGP) of the United States, the Tropical Western Pacific (TWP), and the North Slope of Alaska and Adjacent Arctic Ocean (NSA/AAO). This Site Science Mission Plan [RPT(TWP)-010.000] describes the ARM program in the Tropical Western Pacific locale.

  11. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Did You Know Did You Know Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Did You Know Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Close Did you know.... Close

  12. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Cleanup Tours Hanford Site Cleanup Tours Tour Registration Required Forms of ID Tour Information Tour Route Find Confirmation Seat Notification Frequently Asked Questions Media Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size This website will not function with Javascript disabled Tour Information Hanford Site Cleanup Tours Hanford Site Cleanup Tours for the public are planned on the following dates: May 3, 11, 17, 24 and 25 June 1, 7, 15, 21, 28, and

  13. TRACKING SITE

    Energy Science and Technology Software Center (OSTI)

    003235MLTPL00 AASG Geothermal Data submissions tracking application and site. https://github.com/usgin/aasgtrack

  14. Atmospheric Radiation Measurement program climate research facility operations quarterly report July 1 - September 30, 2008.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2008-10-08

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real-time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), actual hours of operation, and variance (unplanned downtime) for the period July 1 - September 30, 2008, for the fixed sites. The AMF has been deployed to China, but the data have not yet been released. The fourth quarter comprises a total of 2,208 hours. The average exceeded our goal this quarter. The Site Access Request System is a web-based database used to track visitors to the fixed and mobile sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a central facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. HFE represents the AMF statistics for the Shouxian, China, deployment in 2008. FKB represents the AMF statistics for the Haselbach, Germany, past deployment in 2007. NIM represents the AMF statistics for the Niamey, Niger, Africa, past deployment in 2006. PYE represents just the AMF Archive statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be provided through the ACRF Archive can request a research account on the local site data system. The seven computers for the

  15. Aerosol Retrievals from ARM SGP MFRSR Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Alexandrov, Mikhail

    2008-01-15

    The Multi-Filter Rotating Shadowband Radiometer (MFRSR) makes precise simultaneous measurements of the solar direct normal and diffuse horizontal irradiances at six wavelengths (nominally 415, 500, 615, 673, 870, and 940 nm) at short intervals (20 sec for ARM instruments) throughout the day. Time series of spectral optical depth are derived from these measurements. Besides water vapor at 940 nm, the other gaseous absorbers within the MFRSR channels are NO2 (at 415, 500, and 615 nm) and ozone (at 500, 615, and 670 nm). Aerosols and Rayleigh scattering contribute atmospheric extinction in all MFRSR channels. Our recently updated MFRSR data analysis algorithm allows us to partition the spectral aerosol optical depth into fine and coarse modes and to retrieve the fine mode effective radius. In this approach we rely on climatological amounts of NO2 from SCIAMACHY satellite retrievals and use daily ozone columns from TOMS.

  16. Washington Energy Facility Site Evalutation Council - Siting...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Web Site: Washington Energy Facility Site Evalutation Council - Siting and Review Process Abstract Overview of the siting and review process for...

  17. Newsletter Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 ANL/EVS/NL-07-08 Technical Contact: Brad W. Orr Phone: 630-252-8665 Email: brad.orr@anl.gov Editor: Donna J. Holdridge Contributor: Lynne Roeder Website: http://www.arm.gov ACRF Southern Great Plains Newsletter is published by Argonne National Laboratory, managed by UChicago Argonne, LLC, for the U.S. Department of Energy under contract number DE-AC02-06CH11357. ACRF Instrument Team Meets at SGP The ARM Program has had unprecedented success in operating a large array of sophisticated

  18. Atmospheric Radiation Measurement program climate research facility operations quarterly report October 1 - December 31, 2006.

    SciTech Connect (OSTI)

    Sisterson, D. L.

    2007-03-14

    Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. Table 1 shows the accumulated maximum operation time (planned uptime), the actual hours of operation, and the variance (unplanned downtime) for the period October 1 through December 31, 2006, for the fixed and mobile sites. Although the AMF is currently up and running in Niamey, Niger, Africa, the AMF statistics are reported separately and not included in the aggregate average with the fixed sites. The first quarter comprises a total of 2,208 hours. For all fixed sites, the actual data availability (and therefore actual hours of operation) exceeded the individual (and well as aggregate average of the fixed sites) operational goal for the first quarter of fiscal year (FY) 2007. The Site Access Request System is a web-based database used to track visitors to the fixed sites, all of which have facilities that can be visited. The NSA locale has the Barrow and Atqasuk sites. The SGP site has a Central Facility, 23 extended facilities, 4 boundary facilities, and 3 intermediate facilities. The TWP locale has the Manus, Nauru, and Darwin sites. NIM represents the AMF statistics for the current deployment in Niamey, Niger, Africa. PYE represents the AMF statistics for the Point Reyes, California, past deployment in 2005. In addition, users who do not want to wait for data to be

  19. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Home » Site Map Site Map Home About Overview NERSC Mission Contact us Staff Center Leadership Sudip Dosanjh Sudip Dosanjh: Select Publications Jeff Broughton Katie Antypas Richard Gerber Publications Center Administration James Craw Norma Early Jeff Grounds Betsy MacGowan Zaida McCunney Kerri Peyovich Lynn Rippe David Tooker Center Communications Jon Bashor Kathy Kincade Linda Vu Margie Wylie Advanced Technologies Nicholas Wright Brian Austin Research Projects Christopher Daley Glenn K.

  20. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aerosol Indirect Effect: Evidence from the ARM SGP and NSA Sites Penner, J.E.(a), Chen, ... The ARM SGP site and the NSA site provide a unique opportunity to examine the effects of ...

  1. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Depth and Liquid Water Path at the NSA and SGP Sites Chen, Y.(a), Penner, J.E.(a), ... and updraft velocity on this relationship at both the ARM NSA site and SGP site. ...

  2. Hanford Site Tours - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tours Hanford Site Tours Hanford Tour Restrictions Hanford Site Tours Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size The Hanford Site is a very unique place offering a number of tours for members of the public, elected officials and their staffs, tribal officials, stakeholders, and others. A list of the kinds of Hanford tours we provide is shown below, along with links to register for the tour or a contact person to call for more information on how to sign up.

  3. LM Sites | Department of Energy

    Office of Environmental Management (EM)

    Site Fernald Preserve Gasbuggy Site General Atomics Geothermal Gnome-Coach Site Grand Junction Sites Granite City Site Green River Site Gunnison Sites Hallam Site Hamilton Site ...

  4. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2004

    SciTech Connect (OSTI)

    Sisterson, DL

    2004-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  5. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report January 1 - March 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-03-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for this second quarter for the Southern Great Plains (SGP) site is 2052 hours (0.95 × 2,160 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1944 hours (0.90 × 2,160), and that for the Tropical Western Pacific (TWP) site is 1836 hours (0.85 × 2,160). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 90

  6. Atmospheric Radiation Measurement Program Climate Research Facility Operations Cumulative Quarterly Report October 1, 2003 - September 30, 2004

    SciTech Connect (OSTI)

    Sisterson, DL

    2004-09-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year (FY) dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The annual OPSMAX time for the Southern Great Plains (SGP) site is 8,322 hours per year (0.95 × 8,760, the number hours in a year, not including leap year). The annual OPSMAX for the North Slope Alaska (NSA) site is 7,884 hours per year (0.90 × 8,760), and that for the Tropical Western Pacific (TWP) site is 7,446 hours per year (0.85 × 8,760). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the

  7. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report April 1 - June 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-06-30

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The United States Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,074.8 hours (0.95 2,184 hours this quarter). The annual OPSMAX for the North Slope Alaska (NSA) site is 1,965.6 hours (0.90 2,184), and that for the Tropical Western Pacific (TWP) site is 1,856.4 hours (0.85 2,184). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,074.8 (0.95 2,184). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in

  8. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report July 1 - September 30, 2005

    SciTech Connect (OSTI)

    DL Sisterson

    2005-09-30

    Description. Individual raw data streams from instrumentation at the ACRF fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at PNNL for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The DOE requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 2,208 hours this quarter). The OPSMAX for the North Slope Alaska (NSA) site is 1,987.2 hours (0.90 2,208), and that for the Tropical Western Pacific (TWP) site is 1,876.8 hours (0.85 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent of data in the Archive represents the average percent of the time (24 hours per day, 92 days for this quarter) the instruments were operating this

  9. Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Expand All | Collapse All Item Sir John Pople, Gaussian Code, and Complex Chemical Reactions Item DOE Research and Development Accomplishments Click to expand or collapse folder Folder DOE Research and Development Accomplishments About Item The Manhattan Project Click to expand or collapse folder Folder DOE Research and Development Accomplishments Alfred Nobel Laureates Associated with the DOE and Predecessors Item Abdus Salam and his International Influences Item Ahmed Zewail and

  10. Development of Aerosol Models for Radiative Flux Calculations...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plains (SGP), and North Slope of Alaska (NSA) sites to begin development of a set of ... Aerosol properties at the SGP and NSA sites show considerable variability on multiple time ...

  11. Hanford.gov Site Maintenance - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford.gov Site Maintenance Hanford.gov Site Maintenance Hanford.gov Site Maintenance Hanford.gov Site Maintenance Email Email Page | Print Print Page | Text Increase Font Size ...

  12. Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of 06934566 .l\ ~ ~ ~~9 u.s. Department of Energy Hanford Site OEC 2 8 2004 04-0RP-O78 Mr. Todd Martin, Chair Hanford Advisory Board 1933 Jadwin Avenue, Suite 135 Rich1and, Washington 99352 Dear Mr. Martin: HANFORD ADVISORY BOARD (HAB) CONSENSUS ADVICE #167 -STOP WORK AUTHORITY Reference: HAB letter from T. Martin to P. Golan and J. Shaw, DOE-HQ; K. Klein, RL; R. Schepens, ORP; L. Hoffman, Ecology; and R. Kreizeneeck, EPA, "Stop Work Authority," dated November 5, 2004. This letter

  13. Newsletter Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb./Mar. 2006 ANL/EVS/NL-06-02 Technical Contact: Brad W. Orr Phone: 630-252-8665 Email: brad.orr@anl.gov Editor: Donna J. Holdridge Website: http://www.arm.gov ACRF Southern Great Plains Newsletter is published by Argonne National Laboratory, managed by The University of Chicago for the U.S. Department of Energy. New Shipping and Receiving Building Dedicated The SGP central facility is operating more efficiently with a newly completed Shipping and Receiving building. The SGP Shipping and

  14. Atmospheric Radiation Measurement Program Climate Research Facility Operations Quarterly Report October 1 - December 31, 2005

    SciTech Connect (OSTI)

    Sisterson, DL

    2005-12-31

    Description. Individual raw data streams from instrumentation at the Atmospheric Radiation Measurement (ARM) Program Climate Research Facility (ACRF) fixed and mobile sites are collected and sent to the Data Management Facility (DMF) at Pacific Northwest National Laboratory (PNNL) for processing in near real time. Raw and processed data are then sent daily to the ACRF Archive, where they are made available to users. For each instrument, we calculate the ratio of the actual number of data records received daily at the Archive to the expected number of data records. The results are tabulated by (1) individual data stream, site, and month for the current year and (2) site and fiscal year dating back to 1998. The U.S. Department of Energy requires national user facilities to report time-based operating data. The requirements concern the actual hours of operation (ACTUAL); the estimated maximum operation or uptime goal (OPSMAX), which accounts for planned downtime; and the VARIANCE [1 – (ACTUAL/OPSMAX)], which accounts for unplanned downtime. The OPSMAX time for the third quarter for the Southern Great Plains (SGP) site is 2,097.6 hours (0.95 × 2,208 hours this quarter). The OPSMAX for the North Slope of Alaska (NSA) locale is 1,987.2 hours (0.90 × 2,208), and that for the Tropical Western Pacific (TWP) locale is 1,876.8 hours (0.85 × 2,208). The OPSMAX time for the ARM Mobile Facility (AMF) is 2,097.6 hours (0.95 × 2,208). The differences in OPSMAX performance reflect the complexity of local logistics and the frequency of extreme weather events. It is impractical to measure OPSMAX for each instrument or data stream. Data availability reported here refers to the average of the individual, continuous data streams that have been received by the ACRF Archive. Data not at the Archive are caused by downtime (scheduled or unplanned) of the individual instruments. Therefore, data availability is directly related to individual instrument uptime. Thus, the average percent

  15. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Vertical Structure of Cloud Radiative Forcing at the ACRF SGP Revealed by 8 Years of Continuous Measurements Submitter: Mace, G., University of Utah Area of Research: Cloud Distributions/Characterizations Working Group(s): Cloud Modeling, Cloud Properties Journal Reference: Accepted to Journal of Climate, 2007. Figure 1. Cloud occurrence, coverage, radiative forcing, and radiation effects over a composite annual cycle that is derived by averaging all observations collected during a

  16. Hanford Site Voluntary Protection Program - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Voluntary Protection Program Hanford Site Voluntary Protection Program Hanford Site Voluntary Protection Program VPP Home VPP Hanford Site Champions Committee Getting Started Maintaining STAR VPP Communications VPP Conferences Hanford Site Voluntary Protection Program Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size 2013 VPPPA Outreach Award Winners VPP Committee Business Case (PDF)

  17. Hanford Site Wide Programs - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page | Print Print Page |Text Increase Font Size Decrease Font Size Hanford Site-Wide Programs Hanford Safety and Health Hanford Site Wide Programs Hanford Fire Department...

  18. Site Map | Geothermal

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Basic Search Advanced Search Geothermal FAQ About Geothermal Site Map Geothermal Feedback Website PoliciesImportant Links

  19. Site Map | DOE Patents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Map Site Map Home Basic Search Advanced Search DOEpatents FAQ About DOEpatents Site Map Contact Us Website Policies/Important Links

  20. Site Map | Data Explorer

    Office of Scientific and Technical Information (OSTI)

    Data Explorer Site Map Site Map Home Basic Search Advanced Search Data Explorer FAQ About Data Explorer Site Map Data Explorer Feedback Website PoliciesImportant Links

  1. Ohio Web Sites

    Gasoline and Diesel Fuel Update (EIA)

    Restructuring > Ohio Web Sites Ohio Web Sites Other Links Ohio Electricity Profile Ohio Energy Profile Ohio Restructuring Last Updated: April 2007 Sites Links Public Utilities ...

  2. Untitled Page -- Other Sites Summary

    Office of Legacy Management (LM)

    Considered Sites > Other Sites Summary Search Other Sites Considered Sites Other Sites All LM Quick Search All Other Sites Last Updated: 12

  3. 2D Gridded Surface Data Value-Added Product (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    High-density ARM sites deployed at the Southern Great Plains (SGP) allow us to observe the spatial patterns of variables of scientific interests. The upcoming megasite at SGP with ...

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water Vapor Network at SGP Site Goes Offline Bookmark and Share Each of the 24 solar-powered GPS stations streamed data via a wireless network to the SGP Central Facility for data ...

  5. Newsletter Southern Great Plains

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dowell and SGP assistant site scientist Daniel Hartsock, Rusk also led the group on a walking tour. The students observed a radiosonde (weather balloon) launch by SGP upper air...

  6. Hanford Site Safety Standards - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Safety Standards Documents Documents Hanford Site Cleanup Completion Framework Tri-Party Agreement Freedom of Information and Privacy Act Hanford Site Budget Hanford Site Safety Standards Hanford Hoisting and Rigging Manual DOE - ORP Contracts/Procurements DOE - RL Contracts/Procurements Integrated Waste Feed Delivery Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RI/FS 100-D/H Operable Units RI/FS Sitewide Probabilistic Seismic Hazard Analysis Environmental Hanford Site

  7. VPP Hanford Site Champions Committee - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Champions Committee Hanford Site Voluntary Protection Program VPP Home VPP Hanford Site Champions Committee Who We Are Annual Reports Assessments Getting Started Maintaining STAR VPP Communications VPP Conferences VPP Hanford Site Champions Committee Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size VPP Hanford Site Champions Committee VPP Committee VPP Champions Committee Charter (PDF) Business Case (PDF) VPP Champions Committee Roster (PDF) Share on

  8. Safety Issues

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Safety Orientation April, 2015 Atmospheric Radiation Measurement Climate Research Facility/ North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Site Safety Orientation Purpose This document provides an overview and summary of safety issues and safe work practices associated with operations at the Atmospheric Radiation Measurement Climate Research Facility/North Slope of Alaska/Adjacent Arctic Ocean (ACRF/NSA/AAO) Sites. It is intended for site visitors as well as routine site

  9. ACRF Instrumentation Status: New, Current, and Future August 2006

    SciTech Connect (OSTI)

    JC Liljegren

    2006-08-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

  10. ACRF Instrumentation Status: New, Current, and Future May 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-05-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  11. ACRF Instrumentation Status: New, Current, and Future June 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-06-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  12. ACRF Instrumentation Status: New, Current, and Future May 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-04-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  13. ACRF Instrumentation Status: New, Current, and Future - January 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-03-02

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  14. ACRF Instrumentation Status: New, Current, and Future July 2006

    SciTech Connect (OSTI)

    JC Liljegren

    2006-07-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

  15. ACRF Instrumentation Status: New, Current, and Future March 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-03-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  16. ACRF Instrumentation Status: New, Current, and Future March 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-03-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  17. ACRF Instrumentation Status: New, Current, and Future February 2009

    SciTech Connect (OSTI)

    JW Voyles

    2009-02-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  18. Interannual variation of cloud optical properties at ACRF Manus...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 153; Journal Issue: C; Journal ID: ISSN 0022-4073 Publisher: Elsevier Sponsoring Org: USDOE Office of Science (SC), Biological and ...

  19. ACRF Instrumentation Status: New, Current, and Future - June 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-07-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  20. ACRF Instrumentation Status: New, Current, and Future - August 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-09-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  1. ACRF Instrumentation Status: New, Current, and Future - November December 2007

    SciTech Connect (OSTI)

    JW Voyles

    2007-12-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  2. ACRF Instrumentation Status: New, Current, and Future - July 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-07-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  3. ACRF Instrumentation Status: New, Current, and Future - April 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-05-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  4. ACRF Instrumentation Status: New, Current, and Future - December 2008

    SciTech Connect (OSTI)

    JW Voyles

    2009-01-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  5. ACRF Instrumentation Status: New, Current, and Future - March 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-04-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  6. ACRF Instrumentation Status: New, Current, and Future - October 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  7. ACRF Instrumentation Status: New, Current, and Future - May 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-05-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  8. ACRF Instrumentation Status: New, Current, and Future - November 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-12-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  9. ACRF Instrumentation Status: New, Current, and Future - September 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-10-15

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following five sections: (1) new instrumentation in the process of being acquired and deployed, (2) field campaigns, (3) existing instrumentation and progress on improvements or upgrades, (4) proposed future instrumentation, and (5) Small Business Innovation Research instrument development.

  10. ACRF Instrumentation Status: New, Current, and Future - February 2008

    SciTech Connect (OSTI)

    JW Voyles

    2008-03-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Climate Research Facility instrumentation status. The report is divided into the following four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  11. ACRF Instrumentation Status: New, Current, and Future January 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-01-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  12. ACRF Instrumentation Status: New, Current, and Future September 2006

    SciTech Connect (OSTI)

    JC Liljegren

    2006-09-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development. New information is highlighted in blue text.

  13. ACRF Instrumentation Status: New, Current, and Future October 2006

    SciTech Connect (OSTI)

    JC Liljegren

    2006-10-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development.

  14. ACRF Instrumentation Status: New, Current, and Future February 2007

    SciTech Connect (OSTI)

    JC Liljegren

    2007-02-01

    The purpose of this report is to provide a concise but comprehensive overview of Atmospheric Radiation Measurement Program Climate Research Facility instrumentation status. The report is divided into four sections: (1) new instrumentation in the process of being acquired and deployed, (2) existing instrumentation and progress on improvements or upgrades, (3) proposed future instrumentation, and (4) Small Business Innovation Research instrument development

  15. MIDC: Web Site Search

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIDC Web Site Search Enter words or phrases: Search Clear Also see the site directory. [NREL] [MIDC]

  16. Microsoft PowerPoint - Kassianov_etal_ARM2007_presentation_v01.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Between Relationship Between Cumulus Cloud Fraction Cumulus Cloud Fraction Cumulus Cloud Fraction Cumulus Cloud Fraction and and Aerosol Optical Depth Aerosol Optical Depth: : p p p p a Five a Five- -Year Climatology at Year Climatology at th ARM SGP Sit th ARM SGP Sit the ARM SGP Site the ARM SGP Site E. Kassianov, L. Berg, C.Flynn, and S. McFarlane Pacific Northwest National Laboratoty Outline Outline Outline Outline * * Motivation & Objectives Motivation & Objectives * * Approach

  17. turner_poster.arctic_bbhrp.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Profiles over the ACRF NSA Site Dave Turner 1 , Matt Shupe 2 , Dan DeSlover 1 , Eli ... National Laboratory Photo by D. Turner at NSA site, Mar 2007 Introduction A multi-sensor ...

  18. ARM TR-009

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ......... 2 2.2 TWP and NSA Sites......Pacific (TWP) and North Slope of Alaska (NSA) sites: 2.1 SGP Site SIRS instruments: ...

  19. Development of Site Transition Plan, Use of the Site Transition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site Transition Plan, Use of the Site Transition Framework, and Terms and Conditions for Site Transition Development of Site Transition Plan, Use of the Site Transition Framework, ...

  20. Site Monitoring Area Maps

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maps Individual Permit: Site Monitoring Area Maps Each Site Monitoring Area Map is updated whenever the map information is updated. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email What do these maps show? The Individual Permit for Storm Water site monitoring area maps display the following information: Surface hydrological features Locations of the Site(s) assigned to the Site Monitoring Area (SMA) The Site Monitoring

  1. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains Site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jensen, M. P.; Holdridge, D.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K. L.

    2015-11-02

    In the fall of 2013, the Vaisala RS41-SG (4th generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity and pressure. Thus, in order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Facility site in north Central Oklahoma USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results suggest that the RS92 and RS41 measurements generally agree within manufacturermore » specified tolerances with notable exceptions when exiting liquid cloud layers where the "wet bulbing" effect is mitigated in the RS41 observations. The RS41 measurements also appear to show a smaller impact from solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions, but under most observational conditions the RS41 and RS92 measurements agree within the manufacturer specified limits and so a switch to RS41 radiosondes will have little impact on long-term observational records.« less

  2. Comparison of Vaisala radiosondes RS41 and RS92 at the ARM Southern Great Plains Site

    SciTech Connect (OSTI)

    Jensen, M. P.; Holdridge, D.; Survo, P.; Lehtinen, R.; Baxter, S.; Toto, T.; Johnson, K. L.

    2015-11-02

    In the fall of 2013, the Vaisala RS41-SG (4th generation) radiosonde was introduced as a replacement for the RS92-SGP radiosonde with improvements in measurement accuracy of profiles of atmospheric temperature, humidity and pressure. Thus, in order to help characterize these improvements, an intercomparison campaign was undertaken at the US Department of Energy's Atmospheric Radiation Measurement (ARM) Facility site in north Central Oklahoma USA. During 3–8 June 2014, a total of 20 twin-radiosonde flights were performed in a variety of atmospheric conditions representing typical midlatitude continental summertime conditions. The results suggest that the RS92 and RS41 measurements generally agree within manufacturer specified tolerances with notable exceptions when exiting liquid cloud layers where the "wet bulbing" effect is mitigated in the RS41 observations. The RS41 measurements also appear to show a smaller impact from solar heating. These results suggest that the RS41 does provide important improvements, particularly in cloudy conditions, but under most observational conditions the RS41 and RS92 measurements agree within the manufacturer specified limits and so a switch to RS41 radiosondes will have little impact on long-term observational records.

  3. Visitor Control / Site Access - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us Hanford Site Wide Programs Visitor Control / Site Access About Us About Hanford Cleanup Hanford History Hanford Site Wide Programs Hanford Cultural Resources Contact Us Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size Planning to come to the Hanford Site? Map of Hanford Map of Hanford If you are planning on coming to Hanford as part of a job assignment, tour, or event, you need to be familiar with the requirements and restrictions associated with being on

  4. Sandia Energy - Siting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siting Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Siting SitingTara Camacho-Lopez2015-03-20T19:23:23+00:00 At the...

  5. SITE OFFICE CONSOLIDATION

    Broader source: Energy.gov [DOE]

    Paul Golan, Site Office Manager, SLAC/LBNL, presented on the role of the DOE Site Office. Paul covered the role of the DOE Site Office, operating model, and vision.

  6. [SITE NAME] Fact Sheet

    Office of Legacy Management (LM)

    Shiprock, New Mexico, Disposal Site This fact sheet provides information about the Shiprock, New Mexico, Disposal Site. These sites are managed by the U.S. Department of Energy Office of Legacy Management under Title I of the Uranium Mill Tailings Radiation Control Act of 1978. Location of the Shiprock Disposal Site Site Description and History The Shiprock site is the location of a former uranium- and vanadium-ore processing facility within the Navajo Nation in the northwest corner of New

  7. Potential Release Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    PRS Potential Release Sites Legacy sites where hazardous materials are found to be above acceptable levels are collectively called potential release sites. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email Less than 10 percent of the total number of potential release sites need to go through the full corrective action process. What are potential release sites? Potential release sites are areas around the Laboratory and

  8. MAJOR SITE CONTRACTS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NON-NNSA MANAGEMENT and OPERATING and MAJOR SITE CONTRACTS # DOE OFFICE HEAD OF CONTRACTING ACTIVITY PROCUREMENT DIRECTORS SENIOR DOE SITE PROCUREMENT MANAGERS M&O CONTRACT MAJOR SITE & FACILITIES CONTRACT CONTRACTOR NAME 1 Chicago Office (Ames Site Office) Jennifer A. Stricker Ames National Laboratory Iowa State University 2 Chicago Office (Argonne Site Office) Sergio E. Martinez Argonne National Laboratory University of Chicago Argonne, LLC 3 Chicago Office (Berkeley Site Office)

  9. Nevada Site Offce's Talbot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nuclear Security Administration (NNSA) Nevada Site Offce (NSO) manager, says Complex ... "The activities that occur at the Nevada Test Site (NTS) provide a very specifc value ...

  10. Weather - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Weather Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Weather Email Email Page | Print Print Page |Text Increase Font Size Decrease Font...

  11. Hanford Site Development Plan

    SciTech Connect (OSTI)

    Rinne, C.A.; Curry, R.H.; Hagan, J.W.; Seiler, S.W.; Sommer, D.J. ); Yancey, E.F. )

    1990-01-01

    The Hanford Site Development Plan (Site Development Plan) is intended to guide the short- and long-range development and use of the Hanford Site. All acquisition, development, and permanent facility use at the Hanford Site will conform to the approved plan. The Site Development Plan also serves as the base document for all subsequent studies that involve use of facilities at the Site. This revision is an update of a previous plan. The executive summary presents the highlights of the five major topics covered in the Site Development Plan: general site information, existing conditions, planning analysis, Master Plan, and Five-Year Plan. 56 refs., 67 figs., 31 tabs.

  12. ARM - Cool Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  13. Nevada Test Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in greater detail in the Nevada Test Site Environ- mental Report 2004 (DOENV11718-1080). ... mental programs and efforts Nevada Test Site Environmental Report 2004 Summary ...

  14. Search - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Search Search Calendar Hanford Blog Archive Search Site Feeds Site Index Weather What's New Search Email Email Page | Print Print Page | Text Increase Font Size Decrease Font Size

  15. Hanford Site Hazards Guide

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hanford Site Hazards Guide 2016 Approved for Public Release; Further Dissemination Unlimited Hanford Site Hazards Guide Contents ASBESTOS .............................................................................................................................................. 2 BERYLLIUM ........................................................................................................................................... 4 CHEMICAL SAFETY

  16. Siting and Barrier Mitigation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Tool for Siting, Planning, and Encroachment Analysis for Renewables The Department of ... the Tool for Siting, Planning, and Encroachment Analysis for Renewables (TSPEAR). ...

  17. ARM - Education Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1, 2006 [Education] Students Tour the SGP Facility Bookmark and Share Seventh graders tour the ARM SGP site in November. On November 1, 2006, the SGP site hosted a group of 30 seventh graders from the local Deer Creek-Lamont school district. The students and their teacher, Deborah McFeeters, were on a mission to learn about the ARM Program and the exciting research taking place at the SGP site. SGP Operations Manager Dan Rusk gave a slide presentation about ARM and lead the group on a short

  18. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    August 15, 2008 [Facility News] New Ceilometer Evaluated at Southern Great Plains Site Bookmark and Share Dan Nelson, SGP facilities manager, inspects the new ceilometer during its evaluation period on the platform of the SGP Guest Instrument Facility between June and July 2008. Dan Nelson, SGP facilities manager, inspects the new ceilometer during its evaluation period on the platform of the SGP Guest Instrument Facility between June and July 2008. To analyze cloud properties, ARM scientists

  19. Hanford Site Cleanup Completion Framework - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plan Single-Shell Tank Evaluations Deep Vadose Zone 100-F RIFS Sitewide Probabilistic Seismic Hazard Analysis Environmental Hanford Site Cleanup Completion Framework Email Email...

  20. Enterprise Assessments Review, Savannah River Site 2014 Site...

    Energy Savers [EERE]

    Savannah River Site 2014 Site-Level Exercise - January 2015 Enterprise Assessments Review, Savannah River Site 2014 Site-Level Exercise - January 2015 January 2015 Review of the ...

  1. Site Visit Report, Livermore Site Office - February 2011 | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Livermore Site Office - February 2011 Site Visit Report, Livermore Site Office - February 2011 February 2011 Livermore Site Office Safety Basis Self-Assessment esults of the Office ...

  2. ARM - Site Tours

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    HomeroomSite Tours Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox Lesson Plans Site Tours As part of the Barrow Arctic Science Consortium outreach program, Courtney Hammond brought third-grade students from Fred Ipalook Elementary School to the ARM site in Barrow, Alaska for a science field trip in

  3. Site Map | ScienceCinema

    Office of Scientific and Technical Information (OSTI)

    Site Map Site Map Home Audio Search Fielded Search About FAQ Site Map Contact Us Website PoliciesImportant Links

  4. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data from ARM sites in Barrow, Alaska; Nauru Island; Manus Island, Papua New Guinea; and Darwin, Australia; and the Southern Great Plains (SGP) site in Lamont, Oklahoma. ...

  5. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    began collecting data at the ARM Southern Great Plains (SGP) site and the ARM Darwin site in the Tropical Western Pacific (TWP), adding details about rain drop size...

  6. Nevada National Security Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 24, 2014 Cultural Artifacts Cross Eras at the Nevada National Security Site It is well known that the Nevada National Security Site (NNSS) is home to many artifacts from the ...

  7. Salmon, Mississippi, Site

    Office of Legacy Management (LM)

    The Salmon, Mississippi, Site, also called the Tatum Dome Test Site, is a 1,470-acre tract ... The Salmon test took place on October 22, 1964, at a depth of 2,700 feet below ground ...

  8. nevada national security site

    National Nuclear Security Administration (NNSA)

    7%2A en Nevada National Security Site operator recognized for green fleet http:www.nnsa.energy.govblognevada-national-security-site-operator-recognized-green-fleet

    The...

  9. Considered Sites Overview

    Office of Energy Efficiency and Renewable Energy (EERE)

    DOE maintains the Considered Sites Database to provide information to the public about sites that were formerly used in the nation’s nuclear weapons and early atomic energy programs and that had...

  10. SRNL Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Security Notice This web site is part of a Federal computer system used to accomplish Federal functions. The Savannah River Site (SRS) uses software programs to monitor this web ...