Sample records for acoustic sounding system

  1. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOE Patents [OSTI]

    Holzrichter, John F. (Berkeley, CA); Burnett, Greg C. (Livermore, CA); Ng, Lawrence C. (Danville, CA)

    2007-10-16T23:59:59.000Z

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  2. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOE Patents [OSTI]

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21T23:59:59.000Z

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  3. Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources

    DOE Patents [OSTI]

    Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2007-03-13T23:59:59.000Z

    A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  4. Generation of Sound Bullets with a Nonlinear Acoustic Lens

    E-Print Network [OSTI]

    Alessandro Spadoni; Chiara Daraio

    2009-08-31T23:59:59.000Z

    Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery, to defense systems, but their performance is limited by their linear operational envelope and complexity. Here we show a dramatic focusing effect and the generation of large amplitude, compact acoustic pulses (sound bullets) in solid and fluid media, enabled by a tunable, highly nonlinear acoustic lens. The lens consists of ordered arrays of granular chains. The amplitude, size and location of the sound bullets can be controlled by varying static pre-compression on the chains. We support our findings with theory, numerical simulations, and corroborate the results experimentally with photoelasticity measurements. Our nonlinear lens makes possible a qualitatively new way of generating high-energy acoustic pulses, enabling, for example, surgical control of acoustic energy.

  5. Sound Science: Taking Action with Acoustics

    SciTech Connect (OSTI)

    Sinha, Dipen

    2014-07-16T23:59:59.000Z

    From tin whistles to sonic booms, sound waves interact with each other and with the medium through which they travel. By observing these interactions, we can identify substances that are hidden in sealed containers and obtain images of buried objects. By manipulating the ability of sound to push matter around, we can create novel structures and unique materials. Join the Lab's own sound hound, Dipen Sinha, as he describes how he uses fundamental research in acoustics for solving problems in industry, security and health.

  6. Sound Science: Taking Action with Acoustics

    ScienceCinema (OSTI)

    Sinha, Dipen

    2014-07-21T23:59:59.000Z

    From tin whistles to sonic booms, sound waves interact with each other and with the medium through which they travel. By observing these interactions, we can identify substances that are hidden in sealed containers and obtain images of buried objects. By manipulating the ability of sound to push matter around, we can create novel structures and unique materials. Join the Lab's own sound hound, Dipen Sinha, as he describes how he uses fundamental research in acoustics for solving problems in industry, security and health.

  7. Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino

    E-Print Network [OSTI]

    Merlino, Robert L.

    Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy with their announcement that: "We find that a new type of sound wave, namely, the dust-acoustic waves, can appear" [1 and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some

  8. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

    2015-01-28T23:59:59.000Z

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  9. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Benone, Carolina L; Herdeiro, Carlos; Radu, Eugen

    2014-01-01T23:59:59.000Z

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  10. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    SciTech Connect (OSTI)

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30T23:59:59.000Z

    Hydrokinetic turbines will be a source of noise in the marine environment - both during operation and during installation/removal. High intensity sound can cause injury or behavioral changes in marine mammals and may also affect fish and invertebrates. These noise effects are, however, highly dependent on the individual marine animals; the intensity, frequency, and duration of the sound; and context in which the sound is received. In other words, production of sound is a necessary, but not sufficient, condition for an environmental impact. At a workshop on the environmental effects of tidal energy development, experts identified sound produced by turbines as an area of potentially significant impact, but also high uncertainty. The overall objectives of this project are to improve our understanding of the potential acoustic effects of tidal turbines by: (1) Characterizing sources of existing underwater noise; (2) Assessing the effectiveness of monitoring technologies to characterize underwater noise and marine mammal responsiveness to noise; (3) Evaluating the sound profile of an operating tidal turbine; and (4) Studying the effect of turbine sound on surrogate species in a laboratory environment. This study focuses on a specific case study for tidal energy development in Admiralty Inlet, Puget Sound, Washington (USA), but the methodologies and results are applicable to other turbine technologies and geographic locations. The project succeeded in achieving the above objectives and, in doing so, substantially contributed to the body of knowledge around the acoustic effects of tidal energy development in several ways: (1) Through collection of data from Admiralty Inlet, established the sources of sound generated by strong currents (mobilizations of sediment and gravel) and determined that low-frequency sound recorded during periods of strong currents is non-propagating pseudo-sound. This helped to advance the debate within the marine and hydrokinetics acoustic community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has significantly advanced the District's goals of developing a demonstration-scale tidal energy proj

  11. Lung sound localization using array of acoustic S.M. Akramus Salehin and Thushara D. Abhayapala

    E-Print Network [OSTI]

    Abhayapala, Thushara D.

    1 Lung sound localization using array of acoustic sensors S.M. Akramus Salehin and Thushara D University Abstract-- This paper presents a localization algorithm to detect lung sounds using an circular by computer simulations. I. INTRODUCTION Lung disorders or injury can result in changes in the spectral and

  12. Simple model of photo acoustic system for greenhouse effect

    E-Print Network [OSTI]

    Fukuhara, Akiko; Ogawa, Naohisa

    2010-01-01T23:59:59.000Z

    The simple theoretical basis for photo acoustic (PA) system for studying infrared absorption properties of greenhouse gases is constructed. The amplitude of sound observed in PA depends on the modulation frequency of light pulse. Its dependence can be explained by our simple model. According to this model, sound signal has higher harmonics. The theory and experiment are compared in third and fifth harmonics by spectrum analysis. The theory has the analogy with electric circuits. This analogy helps students for understanding the PA system.

  13. Truck acoustic data analyzer system

    DOE Patents [OSTI]

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04T23:59:59.000Z

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  14. An Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    SciTech Connect (OSTI)

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun; Carlson, Thomas J.

    2012-05-31T23:59:59.000Z

    Fishes and other marine mammals suffer a range of potential effects from intense sound sources generated by anthropogenic underwater processes such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording devices (USR) were built to monitor the acoustic sound pressure waves generated by those anthropogenic underwater activities, so the relevant processing software becomes indispensable for analyzing the audio files recorded by these USRs. However, existing software packages did not meet performance and flexibility requirements. In this paper, we provide a detailed description of a new software package, named Aquatic Acoustic Metrics Interface (AAMI), which is a Graphical User Interface (GUI) designed for underwater sound monitoring and analysis. In addition to the general functions, such as loading and editing audio files recorded by USRs, the software can compute a series of acoustic metrics in physical units, monitor the sound's influence on fish hearing according to audiograms from different species of fishes and marine mammals, and batch process the sound files. The detailed applications of the software AAMI will be discussed along with several test case scenarios to illustrate its functionality.

  15. Scattering of Sound Waves by a Canonical Acoustic Hole

    E-Print Network [OSTI]

    Sam R. Dolan; Ednilton S. Oliveira; Luís C. B. Crispino

    2009-04-06T23:59:59.000Z

    This is a study of a monochromatic planar perturbation impinging upon a canonical acoustic hole. We show that acoustic hole scattering shares key features with black hole scattering. The interference of wavefronts passing in opposite senses around the hole creates regular oscillations in the scattered intensity. We examine this effect by applying a partial wave method to compute the differential scattering cross section for a range of incident wavelengths. We demonstrate the existence of a scattering peak in the backward direction, known as the glory. We show that the glory created by the canonical acoustic hole is approximately 170 times less intense than the glory created by the Schwarzschild black hole, for equivalent horizon-to-wavelength ratios. We hope that direct experimental observations of such effects may be possible in the near future.

  16. A low order flow/acoustics interaction method for the prediction of sound propagation using 3D adaptive hybrid grids

    SciTech Connect (OSTI)

    Kallinderis, Yannis, E-mail: kallind@otenet.gr [Dept. of Mechanical and Aeronautical Engineering, University of Patras, Rio Patras 26504 (Greece)] [Dept. of Mechanical and Aeronautical Engineering, University of Patras, Rio Patras 26504 (Greece); Vitsas, Panagiotis A.; Menounou, Penelope [Dept. of Mechanical and Aeronautical Engineering, University of Patras, Rio Patras 26504 (Greece)] [Dept. of Mechanical and Aeronautical Engineering, University of Patras, Rio Patras 26504 (Greece)

    2012-07-15T23:59:59.000Z

    A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using static and dynamic flow/acoustics coupling demonstrating the importance of the latter.

  17. Acoustical Communications for Wireless Downhole Telemetry Systems

    E-Print Network [OSTI]

    Farraj, Abdallah

    2012-08-22T23:59:59.000Z

    This dissertation investigates the use of advanced acoustical communication techniques for wireless downhole telemetry systems. Using acoustic waves for downhole telemetry systems is investigated in order to replace the wired communication systems...

  18. Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound

    SciTech Connect (OSTI)

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.

    2012-04-04T23:59:59.000Z

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array from three different cruises during high tidal period in February, May, and June 2011. The ambient noise level decreases approximately 25 dB re 1 ?Pa per octave from frequency ranges of 1 kHz to 70 kHz, and increases approximately 20 dB re 1 ?Pa per octave for the frequency from 70 kHz to 200 kHz. The difference of noise pressure levels in different months varies from 10 to 30 dB re 1 ?Pa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range from 100 Hz to 70 kHz, and the variation could be as high as 30 dB re 1 ?Pa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deploying and operating for tidal power generation alert system.

  19. Cutting sound enhancement system for mining machines

    DOE Patents [OSTI]

    Leigh, Michael C. (Coal Center, PA); Kwitowski, August J. (Clairton, PA)

    1992-01-01T23:59:59.000Z

    A cutting sound enhancement system (10) for transmitting an audible signal from the cutting head (101) of a piece of mine machinery (100) to an operator at a remote station (200), wherein, the operator using a headphone unit (14) can monitor the difference in sounds being made solely by the cutting head (101) to determine the location of the roof, floor, and walls of a coal seam (50).

  20. Testing Thermo-acoustic Sound Generation in Water with Proton and Laser Beams

    E-Print Network [OSTI]

    K. Graf; G. Anton; J. Hoessl; A. Kappes; T. Karg; U. Katz; R. Lahmann; C. Naumann; K. Salomon; C. Stegmann

    2005-09-15T23:59:59.000Z

    Experiments were performed at a proton accelerator and an infrared laser acility to investigate the sound generation caused by the energy deposition of pulsed particle and laser beams in water. The beams with an energy range of 1 PeV to 400 PeV per proton beam spill and up to 10 EeV for the laser pulse were dumped into a water volume and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed at varying pulse energies, sensor positions, beam diameters and temperatures. The data is well described by simulations based on the thermo-acoustic model. This implies that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the media giving rise to an expansion or contraction of the medium resulting in a pressure pulse with bipolar shape. A possible application of this effect would be the acoustical detection of neutrinos with energies greater than 1 EeV.

  1. The study of waves is clearly an important subject in acoustics because sound energy is transmitted by waves traveling though air. Furthermore, it turns out that the

    E-Print Network [OSTI]

    Robertson, William

    Waves The study of waves is clearly an important subject in acoustics because sound energy, wavelength and speed of all types of waves, not only sound. In the case of sound waves in air the wave speed is transmitted by waves traveling though air. Furthermore, it turns out that the properties of waves on strings

  2. Thermo-acoustic Sound Generation in the Interaction of Pulsed Proton and Laser Beams with a Water Target

    E-Print Network [OSTI]

    Lahmann, R; Graf, K; Hößl, J; Kappes, A; Katz, U; Mecke, K; Schwemmer, S

    2015-01-01T23:59:59.000Z

    The generation of hydrodynamic radiation in interactions of pulsed proton and laser beams with matter is explored. The beams were directed into a water target and the resulting acoustic signals were recorded with pressure sensitive sensors. Measurements were performed with varying pulse energies, sensor positions, beam diameters and temperatures. The obtained data are matched by simulation results based on the thermo-acoustic model with uncertainties at a level of 10%. The results imply that the primary mechanism for sound generation by the energy deposition of particles propagating in water is the local heating of the medium. The heating results in a fast expansion or contraction and a pressure pulse of bipolar shape is emitted into the surrounding medium. An interesting, widely discussed application of this effect could be the detection of ultra-high energetic cosmic neutrinos in future large-scale acoustic neutrino detectors. For this application a validation of the sound generation mechanism to high accur...

  3. Acoustic dispersion in a two-dimensional dipole system

    SciTech Connect (OSTI)

    Golden, Kenneth I.; Kalman, Gabor J.; Donko, Zoltan; Hartmann, Peter [Department of Mathematics and Statistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05401-1455 (United States); Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2008-07-15T23:59:59.000Z

    We calculate the full density response function and from it the long-wavelength acoustic dispersion for a two-dimensional system of strongly coupled point dipoles interacting through a 1/r{sup 3} potential at arbitrary degeneracy. Such a system has no random-phase-approximation (RPA) limit and the calculation has to include correlations from the outset. We follow the quasilocalized charge (QLC) approach, accompanied by molecular-dynamics (MD) simulations. Similarly to what has been recently reported for the closely spaced classical electron-hole bilayer [G. J. Kalman et al., Phys. Rev. Lett. 98, 236801 (2007)] and in marked contrast to the RPA, we report a long-wavelength acoustic phase velocity that is wholly maintained by particle correlations and varies linearly with the dipole moment p. The oscillation frequency, calculated both in an extended QLC approximation and in the Singwi-Tosi-Land-Sjolander approximation [Phys. Rev. 176, 589 (1968)], is invariant in form over the entire classical to quantum domains all the way down to zero temperature. Based on our classical MD-generated pair distribution function data and on ground-state energy data generated by recent quantum Monte Carlo simulations on a bosonic dipole system [G. E. Astrakharchik et al., Phys. Rev. Lett. 98, 060405 (2007)], there is a good agreement between the QLC approximation kinetic sound speeds and the standard thermodynamic sound speeds in both the classical and quantum domains.

  4. Acoustic Analysis of R.E.E.L. Semi-Reveberant Sound Chamber

    E-Print Network [OSTI]

    Elliston, Sean David

    2012-07-16T23:59:59.000Z

    The Riverside Energy Efficiency Laboratory at Texas A&M University conducts sound quality testing for the Home Ventilating Institute. When the Home Ventilating Institute initially established their sound quality test, the semi-reverberant sound...

  5. Copper vapor laser acoustic thermometry system

    DOE Patents [OSTI]

    Galkowski, Joseph J. (Livermore, CA)

    1987-01-01T23:59:59.000Z

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  6. Acoustic microscope surface inspection system and method

    DOE Patents [OSTI]

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26T23:59:59.000Z

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  7. Entropic-acoustic instability of shocked Bondi accretion I. What does perturbed Bondi accretion sound like ?

    E-Print Network [OSTI]

    T. Foglizzo

    2001-01-04T23:59:59.000Z

    In the radial flow of gas into a black hole (i.e. Bondi accretion), the infall of any entropy or vorticity perturbation produces acoustic waves propagating outward. The dependence of this acoustic flux on the shape of the perturbation is investigated in detail. This is the key process in the mechanism of the entropic-acoustic instability proposed by Foglizzo & Tagger (2000) to explain the instability of Bondi-Hoyle-Lyttleton accretion. These acoustic waves create new entropy and vorticity perturbations when they reach the shock, thus closing the entropic-acoustic cycle. With an adiabatic index 1acoustic refraction, below which ingoing acoustic waves are refracted out. This cut-off is significantly smaller than the Keplerian frequency at the sonic radius and depends on the latitudinal number l of the perturbations. When advected adiabatically inward, entropy and vorticity perturbations trigger acoustic waves propagating outward, with an efficiency which is highest for non radial perturbations l=1. The outgoing acoustic flux produced by the advection of vorticity perturbations is always moderate and peaks at rather low frequency. By contrast, the acoustic flux produced by an entropy wave is highest close to the refraction cut-off. It can be very large if gamma is close to 5/3. These results suggest that the shocked Bondi flow with gamma=5/3 is strongly unstable with respect to the entropic-acoustic mechanism.

  8. Proc. Inst. Acoust. 19(9): 115122 (1997) A LOW-COST, HIGH-PERFORMANCE SOUND CAPTURE AND ARCHIVING

    E-Print Network [OSTI]

    1997-01-01T23:59:59.000Z

    , currents, animals and plants, and even electromagnetic fields can be sources of problems. Recently earlier this year at Hopkins Marine Station (HMS), Monterey, California. The system is used to monitor-collection and archival system) #12;SUBTIDAL ACOUSTIC MONITORING SYSTEM 2. THE WET END: A SUBTIDAL-ZONE HYDROPHONE ARRAY

  9. Environmentally Sound Design and Recycling of Future Wind Power Systems

    E-Print Network [OSTI]

    Environmentally Sound Design and Recycling of Future Wind Power Systems Presentation at the IEA R state-of-the-art wind power system Mapping current trends of wind power technologies and concepts Expert wind power systems Expert panel brainstorm on environmental aspects of decommissioning current

  10. Passive localization of acoustic sources in media with non-constant sound velocity

    E-Print Network [OSTI]

    Brandes, Thomas Scott

    1998-01-01T23:59:59.000Z

    There is a growing concern about the effects of low frequency sounds (LFS) on marine mammals. One way to assess these effects on marine mammals involves the study of disturbance reactions. Detailed research of disturbance reactions of submerged...

  11. Speaker verification system using acoustic data and non-acoustic data

    DOE Patents [OSTI]

    Gable, Todd J. (Walnut Creek, CA); Ng, Lawrence C. (Danville, CA); Holzrichter, John F. (Berkeley, CA); Burnett, Greg C. (Livermore, CA)

    2006-03-21T23:59:59.000Z

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  12. Acoustic method for measuring the sound speed of gases over small path lengths

    E-Print Network [OSTI]

    and the quality of gaseous fuels for alternative fueled vehicles such as hydrogen, natural gas, and propane hydrogen in air with a response time on the order of 1­2 s. An acoustic phase shift method is a very, to accurately measure the composition of binary gas mixtures. More recently, Huang et al.11 used this method

  13. Determining both sound speed and internal source in thermo- and photo-acoustic tomography

    E-Print Network [OSTI]

    Hongyu Liu; Gunther Uhlmann

    2015-02-04T23:59:59.000Z

    This paper concerns thermoacoustic tomography and photoacoustic tomography, two couple-physics imaging modalities that attempt to combine the high resolution of ultrasound and the high contrast capabilities of electromagnetic waves. We give sufficient conditions to recover both the sound speed of the medium being probed and the source.

  14. Formal Type Soundness for Cyclone's Region System Dan Grossman

    E-Print Network [OSTI]

    Hicks, Michael

    collector. To support separate compilation, Cyclone requires programmers to write some explicit regionFormal Type Soundness for Cyclone's Region System Dan Grossman Greg Morrisett Trevor Jim Mike Hicks Yanling Wang James Cheney November 2001 Abstract Cyclone is a polymorphic, type-safe programming language

  15. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOE Patents [OSTI]

    Moore, Thomas L. (Livermore, CA); Fisher, Karl A. (Brentwood, CA)

    2005-08-09T23:59:59.000Z

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  16. Electromechanical transducer for acoustic telemetry system

    DOE Patents [OSTI]

    Drumheller, D.S.

    1993-06-22T23:59:59.000Z

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  17. Electromechanical transducer for acoustic telemetry system

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1993-01-01T23:59:59.000Z

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  18. Anomalous Cherenkov spin-orbit sound

    SciTech Connect (OSTI)

    Smirnov, Sergey [Institut fuer Theoretische Physik, Universitaet Regensburg, D-93040 Regensburg (Germany)

    2011-02-15T23:59:59.000Z

    The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.

  19. An explosive acoustic telemetry system for seabed penetrators

    SciTech Connect (OSTI)

    Hauser, G.C.; Hickerson, J.

    1988-04-01T23:59:59.000Z

    This report discusses the design and past applications of an explosive acoustic telemetry system (EATS) for gathering and transmitting data from seabed penetrators. The system was first fielded in 1982 and has since been used to measure penetrator performance on three other occasions. Descriptions are given of the mechanical hardware, system electronics, and software.

  20. Journal of Counter-Ordnance Technology (Fifth International Symposium on Technology and Mine Problem) 1 Acoustic Mine Detection Using the Navy's

    E-Print Network [OSTI]

    Chu, Peter C.

    Problem) 1 Acoustic Mine Detection Using the Navy's CASS/GRAB Model Peter C. Chu, Carlos Cintron, Steven D the Navy's Comprehensive Acoustic Simulation System/Gaussian Ray Bundle (CASS/GRAB) model. Sound speed needs in that region. Index Terms--Acoustic mine hunting, Navy's comprehensive acoustic simulation

  1. 4B.3 The Sounding Analog Retrieval System (SARS) Ryan Jewell1

    E-Print Network [OSTI]

    that are determined from a calibration process. For severe hail, SARS has been designed to forecast the probability4B.3 The Sounding Analog Retrieval System (SARS) Ryan Jewell1 Storm Prediction Center, Norman, OK 1 System (SARS) is a forecasting algorithm that uses sounding derived parameters to find historical severe

  2. Balloon-borne sounding system (BBSS): Vaisala-processed winds, press., temp, and RH

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Coulter, Richard; Ritsche, Michael

    Balloon-borne sounding system (BBSS): Vaisala-processed winds, press., temp, and RH. The balloon-borne sounding system (SONDE) provides in situ measurements (vertical profiles) of both the thermodynamic state of the atmosphere, and the wind speed and direction.

  3. A proposed system to automatically control audio sound-to-noise levels

    E-Print Network [OSTI]

    Neinast, Gary Strickland

    1957-01-01T23:59:59.000Z

    the human ear is stimulated by vibrating particles of a1r, sound is sensed. If this sound is undesired, it isp by definition, noise. Any sound that is irx'egular, impulsive, non-repetitive, or simply irri, tating to the listenez' may be classified..., applause, or laughter in theaters; motor or wind noise in moving vehicles] or the noise of people dancing. The level or the souroe ef noise was unimportant sinoe the oontrol system would hold the sound-to-noise level approximately constant. Fox' design...

  4. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOE Patents [OSTI]

    Chanson, Gary J. (Weston, MA); Nicolson, Alexander M. (Concord, MA)

    1981-01-01T23:59:59.000Z

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  5. Voltage stability of the Puget Sound system under abnormally cold weather conditions

    SciTech Connect (OSTI)

    Jimma, K.M.; Sheehan, M.T. (Puget Sound Power and Light, Bellevue, WA (United States)); Comegys, G.L. (Bonneville Power Administration, Portland, OR (United States)); Miller, N.W.; D'Aquila, R.

    1993-08-01T23:59:59.000Z

    The potential for voltage collapse in the Puget Sound area is analyzed. Shunt and series compensation schemes, as well as undervoltage load shedding, are evaluated. Twenty-five minute time simulations of the Puget Sound area system are presented, showing interaction of load dynamics with LTCs, switched compensation and protective equipment. Results and analysis are relevant to utilities worldwide which must address similar concerns.

  6. Dissolved metal contamination in the East RiverLong Island sound system: potential biological effects

    E-Print Network [OSTI]

    Johnsen, Sönke

    in the United States. The ER­WLIS region receives treated sewage from 18 wastewater treatment plants in New YorkDissolved metal contamination in the East River­Long Island sound system: potential biological sewage, and to assess its possible biological impact on local waters. The East River­Long Island Sound

  7. Calibration of broadband active acoustic systems using a single standard spherical target

    E-Print Network [OSTI]

    Stanton, Tim

    Calibration of broadband active acoustic systems using a single standard spherical target Timothy K 8 April 2008 When calibrating a broadband active acoustic system with a single standard target the concept of using this echo for calibration in the work of Dragonette et al. J. Acoust. Soc. Am. 69, 1186

  8. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  9. Acoustic system for communication in pipelines

    SciTech Connect (OSTI)

    Martin, II, Louis Peter (San Ramon, CA); Cooper, John F. (Oakland, CA)

    2008-09-09T23:59:59.000Z

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  10. A proposed system to automatically control audio sound-to-noise levels 

    E-Print Network [OSTI]

    Neinast, Gary Strickland

    1957-01-01T23:59:59.000Z

    A PROPOSED SYSTEM TO AUTOMATICALLY CONTROL AUDIO SOUND TO NOISE LEVELS A Thesis ~ ]3y GARY 8% NEINAST Submitted to the Graduate Sohool of the Agrioultural and Meohanioal College of Texas in partial fulfillment of the requirements...

  11. aggregate sound velocities: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an acoustic loop filter Physics Websites Summary: observation of negative group velocity propagation of sound waves through an asymmetric loop filterSound beyond the speed of...

  12. Acoustic Building Infiltration Measurement System (ABIMS) | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    System (ABIMS) 1 of 4 ABIMS team member performs a microphone calibration. Image: Argonne National Laboratory 2 of 4 ABIMS team member fits an insert into the test chamber to...

  13. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOE Patents [OSTI]

    Burnett, Greg C. (Livermore, CA); Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2006-08-08T23:59:59.000Z

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  14. Design of Electric or Hybrid vehicle alert sound system for pedestrian

    E-Print Network [OSTI]

    Boyer, Edmond

    Design of Electric or Hybrid vehicle alert sound system for pedestrian J.-C. Chamard and V, France 1691 #12;The arrival of fully or hybrid electric vehicles raised safety problems respect the environment to warn of his approach. However, hybrid and electric vehicles can potentially be dangerous

  15. Methods And Systems For Using Reference Images In Acoustic Image Processing

    DOE Patents [OSTI]

    Moore, Thomas L. (Livermore, CA); Barter, Robert Henry (Oakland, CA)

    2005-01-04T23:59:59.000Z

    A method and system of examining tissue are provided in which a field, including at least a portion of the tissue and one or more registration fiducials, is insonified. Scattered acoustic information, including both transmitted and reflected waves, is received from the field. A representation of the field, including both the tissue and the registration fiducials, is then derived from the received acoustic radiation.

  16. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Nardi, Anthony P. (Burlington, MA)

    1981-01-01T23:59:59.000Z

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  17. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Kent, William H. (Westford, MA); Mitchell, Peter G. (Concord, MA)

    1981-01-01T23:59:59.000Z

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  18. Evolutionary methods for tuning a robot sound recognition system 

    E-Print Network [OSTI]

    Stirling, Timothy

    2006-01-01T23:59:59.000Z

    A spatially-dispersed GA with co-evolutionary methodology was developed to artificially evolve temporal-parameters for a spiking neural-model of the cricket auditory system capable of performing phonotaxis. Male chromosomes ...

  19. acoustical response: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 10 Sources of Wind Turbine Sound Massachusetts at Amherst, University of 195 Acoustic Laptops as a research...

  20. Signal processing for fiber optic acoustic sensor system

    E-Print Network [OSTI]

    Zhu, Juhong

    2000-01-01T23:59:59.000Z

    pulses from a single mode laser. Signals from multiple sensors in the array are separated and demultiplexed. The acoustic pressure information is determined by processing the returned optical pulses using a fiber Mach-Zehnder interferometer as an optical...

  1. acoustic telemetry system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vibrating the body of a cemented pipe string, a testbed was designed to investigate the propagation aspects of sound waves inside the interior... Farraj, Abdallah 2012-08-22 2...

  2. Texas A&M Transportation Institute | 2012 Page | 1 Seven transit providers in the Central Puget Sound region came together to develop the ORCA fare card system.

    E-Print Network [OSTI]

    in the Central Puget Sound region came together to develop the ORCA fare card system. The providers include outlets, phone, ticket vending machines, or ORCA customer service offices. History The Central Puget Sound to honor paper transfers. In 1999, Sound Transit and the region developed the PugetPass, which

  3. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    SciTech Connect (OSTI)

    Han, Jianning [School of Information and Communication Engineering, North University of China, Taiyuan 030051 (China); Wen, Tingdun [Key Laboratory of Instrumental Science and Dynamic Testing, Ministry of Education, North University of China, Taiyuan 030051 (China); Key Laboratory of Electronic Testing Technology, North University of China, Taiyuan 030051 (China); Yang, Peng; Zhang, Lu [Key Laboratory of Electronic Testing Technology, North University of China, Taiyuan 030051 (China)

    2014-05-15T23:59:59.000Z

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.

  4. Slow sound in lined flow ducts

    E-Print Network [OSTI]

    Auregan, Yves

    2015-01-01T23:59:59.000Z

    We consider the acoustic propagation in lined flow duct with a purely reactive impedance at the wall. This reacting liner has the capability to reduce the speed of sound, and thus to enhance the interaction between the acoustic propagation and the low Mach number flow ($M\\simeq0.3$). At the lower frequencies, there are typically 4 acoustic or hydrodynamic propagating modes, with 3 of them propagating in the direction of the flow. Above a critical frequency, there are only 2 propagating modes that all propagate in the direction of the flow. From the exact 2D formulation an approximate 1D model is developed to study the scattering of acoustic waves in a straight duct with varying wall impedance. This simple system, with a uniform flow and with a non-uniform liner impedance at the wall, permits to study the scattering between regions with different waves characteristics. Several situations are characterized to show the importance of negative energy waves, strong interactions between acoustic and hydrodynamic mod...

  5. Theoretical Modeling Issue in Active Noise Control for a One-Dimensional Acoustic Duct System

    E-Print Network [OSTI]

    Yang, Zhenyu

    Theoretical Modeling Issue in Active Noise Control for a One-Dimensional Acoustic Duct System-6700 Esbjerg, Denmark Email: yang,sp@aaue.dk Abstract--The theoretical modeling of active noise control for the entire one-dimensional active duct noise control system is obtained and validated. The developed model

  6. Comparison of acoustic and net sampling systems to determine patterns in zooplankton distribution

    E-Print Network [OSTI]

    Pierce, Stephen

    Comparison of acoustic and net sampling systems to determine patterns in zooplankton distribution and with predicted volume backscatter calculated from a coincident net tow. Spatially and temporally coincident data)) and from a 1 m2 Multiple Opening Closing Net and Environmental Sensing System (MOCNESS). The combined net

  7. Micromachined Optical and Acoustic Waveguide Systems for Advance Sensing and Imaging Applications

    E-Print Network [OSTI]

    Chang, Cheng-Chung

    2014-07-08T23:59:59.000Z

    it possible to utilize single-crystalline silicon as a structural material for acoustic wave propagation. It enables the development of high-performance integrated acoustic circuits and allows direct acoustic signal processing and control. The acoustic...

  8. Micromachined Optical and Acoustic Waveguide Systems for Advance Sensing and Imaging Applications 

    E-Print Network [OSTI]

    Chang, Cheng-Chung

    2014-07-08T23:59:59.000Z

    it possible to utilize single-crystalline silicon as a structural material for acoustic wave propagation. It enables the development of high-performance integrated acoustic circuits and allows direct acoustic signal processing and control. The acoustic...

  9. Outage Performance of a Multiuser Distributed Antenna System in Underwater Acoustic Channels

    E-Print Network [OSTI]

    Wang, Zhengdao

    1 Outage Performance of a Multiuser Distributed Antenna System in Underwater Acoustic Channels Zhaohui Wang, Shengli Zhou, Zhengdao Wang, Josko Catipovic§ and Peter Willett Dept. of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA Dept. of Electrical and Computer

  10. Acoustic spectra in a disperse system of aerosil and polypropyleneglycol (PPG-425)

    SciTech Connect (OSTI)

    Rudenko, A.P.; Gamera, A.V.; Sperkach, V.S.; Slyusar, I.A. [Kiev State Univ. (Ukraine)

    1995-10-01T23:59:59.000Z

    We have studied the absorption and speed of sound in disperse systems based on aerosil and polypropyleneglycol (PPG-425) within the range of concentrations from 1 to 10 vol. % and of frequencies from 5 to 1250 MHz. It is shown that the aerosil particles exist in the form of clusters; their dimensions have been determined.

  11. Online Submission ID: 0594 Sound Propagation in Large Complex Environments Using Wave-Ray Coupling

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Online Submission ID: 0594 Sound Propagation in Large Complex Environments Using Wave-Ray Coupling-3 cal acoustic techniques for sound propagation that computes how4 sound waves travel in space reducing the overall computation.19 1 Introduction20 Sound propagation techniques determine how sound waves

  12. Proper Setup of HVAC System in Conjunction with Sound Building 'Skin' Design for Alleviation of IAQ and Energy Performance Problems

    E-Print Network [OSTI]

    Rosenberg, M.

    2006-01-01T23:59:59.000Z

    climates, not only because of the loss of energy, but also because of damage that can result to insulation, drywall, and structure in addition to promotion of mold and mildew growth. Proper setup of the HVAC system, in conjunction with sound building “skin...

  13. A Hydrological Model of Harrington Sound, Bermuda and its Surrounding Cave Systems

    E-Print Network [OSTI]

    Stoffer, Jonathan L

    2013-04-23T23:59:59.000Z

    delay and dampening the tidal range to 35% of those on the coast. By comparing the tidal amplitude and surface area of Harrington Sound, tidal exchange can be determined. Past research has shown Flatts Inlet only supplies the Sound with about half of its...

  14. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    DOE Patents [OSTI]

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30T23:59:59.000Z

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  15. Puget Sound Operational Forecast System - A Real-time Predictive Tool for Marine Resource Management and Emergency Responses

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Khangaonkar, Tarang; Chase, Jared M.; Wang, Taiping

    2009-12-01T23:59:59.000Z

    To support marine ecological resource management and emergency response and to enhance scientific understanding of physical and biogeochemical processes in Puget Sound, a real-time Puget Sound Operational Forecast System (PS-OFS) was developed by the Coastal Ocean Dynamics & Ecosystem Modeling group (CODEM) of Pacific Northwest National Laboratory (PNNL). PS-OFS employs the state-of-the-art three-dimensional coastal ocean model and closely follows the standards and procedures established by National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). PS-OFS consists of four key components supporting the Puget Sound Circulation and Transport Model (PS-CTM): data acquisition, model execution and product archive, model skill assessment, and model results dissemination. This paper provides an overview of PS-OFS and its ability to provide vital real-time oceanographic information to the Puget Sound community. PS-OFS supports pacific northwest region’s growing need for a predictive tool to assist water quality management, fish stock recovery efforts, maritime emergency response, nearshore land-use planning, and the challenge of climate change and sea level rise impacts. The structure of PS-OFS and examples of the system inputs and outputs, forecast results are presented in details.

  16. Synthetic gauge fields and Weyl point in Time-Reversal Invariant Acoustic Systems

    E-Print Network [OSTI]

    Xiao, Meng; He, Wen-Yu; Zhang, Z Q; Chan, C T

    2015-01-01T23:59:59.000Z

    Inspired by the discovery of quantum hall effect and topological insulator, topological properties of classical waves start to draw worldwide attention. Topological non-trivial bands characterized by non-zero Chern numbers are realized with external magnetic field induced time reversal symmetry breaking or dynamic modulation. Due to the absence of Faraday-like effect, the breaking of time reversal symmetry in an acoustic system is commonly realized with moving background fluids, and hence drastically increases the engineering complexity. Here we show that we can realize effective inversion symmetry breaking and effective gauge field in a reduced two-dimensional system by structurally engineering interlayer couplings, achieving an acoustic analog of the topological Haldane model. We then find and demonstrate unidirectional backscattering immune edge states. We show that the synthetic gauge field is closely related to the Weyl points in the three-dimensional band structure.

  17. Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing

    E-Print Network [OSTI]

    Balusamy, Saravanan; Li, Larry K. B.; Han, Zhiyi; Juniper, Matthew P.; Hochgreb, Simone

    2014-06-25T23:59:59.000Z

    ) and decreasing A (Fig. 6b). All four types of behavior (phase drifting, slip- ping, trapping, and locking) have been observed in forced hydrodynamically self-excited jets [8] and in forced model oscillators. In the latter case, it can be studied analytically... Nonlinear dynamics thermoacoustic system subjected to acoustic forcing a partially synchronous state characterized by frequency locking without phase locking. Despite decades of research, thermoacoustic instability remains one of the biggest...

  18. acoustic location system: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ON POWER SYSTEMS, VOL. 29, NO. 1, JANUARY 2014 203 Distribution Locational Marginal Pricing for Optimal Power Transmission, Distribution and Plants Websites Summary:...

  19. acoustical engineering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electricity Thermoacoustic Energy Conversion Waste or prime heat soundThermoacoustic Stirling Engine -- An acoustic amplifier: ambient heat exchanger (water) stacked Lee, Dongwon...

  20. acoustic sources numerical: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    solitons CERN Preprints Summary: Acoustic solitons can be obtained by considering the propagation of large amplitude sound waves across a set of Helmholtz resonators. The model...

  1. Finite Element Methods for Nonlinear Acoustics in Fluids

    E-Print Network [OSTI]

    The non- linear terms in these wave equations imply that the sound speed ... ics, the finite element formulation of nonlinear acoustic equations for fluids has.

  2. acoustic environments prediction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1998, 2001 production by small animals limit the efficiency of sound communication (Bennet-Clark, 1998; Larsen Elias, Damian Octavio 135 Acoustic Source Localization Using the...

  3. acoustic wave properties: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1998, 2001 production by small animals limit the efficiency of sound communication (Bennet-Clark, 1998; Larsen Elias, Damian Octavio 136 Effect of drift-acoustic waves on...

  4. acoustic doppler current: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from Vibro-Acoustic Heart Signals: Correlation. In this work, heart sounds, apical pulse, and arterial pulse signals were simultaneously acquired, along analysis of...

  5. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    SciTech Connect (OSTI)

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14T23:59:59.000Z

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  6. Diagnosis of Fracture Flow Conditions with Acoustic Sensing

    E-Print Network [OSTI]

    Martinez, Roberto

    2014-07-10T23:59:59.000Z

    that this turbulent flow can generate sound as fluid flows from the fracture into the well. According to Testud et al. (2009) it is widely known that industry pipe systems, valves, taps and orifices whistle when fluid flows through them. Lacombe et al. (2013... of the fluid downstream of the shear layer (Lacombe et al. 2013). During this process there is a transfer of energy from the fluid moving to vortices that create sound. Poldervaart et al. (1974) illustrated how vortices can act as an acoustic source in Fig...

  7. Passive pavement-mounted acoustical linguistic drive alert system and method

    DOE Patents [OSTI]

    Kisner, Roger A. (Knoxville, TN); Anderson, Richard L. (Oak Ridge, TN); Carnal, Charles L. (Cookeville, TN); Hylton, James O. (Clinton, TN); Stevens, Samuel S. (Harriman, TN)

    2001-01-01T23:59:59.000Z

    Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.

  8. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01T23:59:59.000Z

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  9. Acoustic and biological studies of pitched blade mixing systems

    E-Print Network [OSTI]

    Hsi, Randolph Paul

    1986-01-01T23:59:59.000Z

    , and fermentation time and their efl'ect on cell growth; and the effectiveness of mixing conditions to be determined by the degree of balance between efficient mass transfer and low shear rates. DEDICATION This thesis is dedicated to Mindy Hsi whose untimely... in this work; Dr. Mike Midler for providing the chemicals used for medium; Dr. Dan Taylor for allowing the use of the Microgen fermenter and supporting systems; and Dr. Albert Watson l'or allowing use of the Carl Zeiss binocular microscope for bacterial cell...

  10. Acoustic monitoring method and system in laser-induced optical breakdown (LIOB)

    DOE Patents [OSTI]

    O'Donnell, Matthew (Ann Arbor, MI); Ye, Jing Yong (Ann Arbor, MI); Norris, Theodore B. (Dexter, MI); Baker, Jr., James R. (Ann Arbor, MI); Balogh, Lajos P. (Ann Arbor, MI); Milas, Susanne M. (Ann Arbor, MI); Emelianov, Stanislav Y. (Ann Arbor, MI); Hollman, Kyle W. (Fenton, MI)

    2008-05-06T23:59:59.000Z

    An acoustic monitoring method and system in laser-induced optical breakdown (LIOB) provides information which characterize material which is broken down, microbubbles in the material, and/or the microenvironment of the microbubbles. In one embodiment of the invention, femtosecond laser pulses are focused just inside the surface of a volume of aqueous solution which may include dendrimer nanocomposite (DNC) particles. A tightly focused, high frequency, single-element ultrasonic transducer is positioned such that its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a microbubble forms and a shock or pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble may be actively probed with pulse-echo measurements from the same transducer. After the microbubble forms, received pulse-echo signals have an extra pulse, describing the microbubble location and providing a measure of axial microbubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of microbubbles due to optical breakdown. These same plots can also be used to quantify LIOB thresholds.

  11. Cosmological Baryon Sound Waves Coupled with the Primeval Radiation

    E-Print Network [OSTI]

    Kazuhiro Yamamoto; Naoshi Sugiyama; Humitaka Sato

    1997-09-22T23:59:59.000Z

    The fluid equations for the baryon-electron system in an expanding universe are derived from the Boltzmann equation. The effect of the Compton interaction is taken into account properly in order to evaluate the photon-electron collisional term. As an application, the acoustic motions of the baryon-electron system after recombination are investigated. The effective adiabatic index $\\gamma$ is computed for sound waves of various wavelengths, assuming the perturbation amplitude is small. The oscillations are found to be dumped when $\\gamma$ changes from between 1 (for an isothermal process) to 5/3 (for an adiabatic process).

  12. Pan-American/Iberian Meeting on Acoustics, Cancun, Mexico, December 2-7, 2002 THE SYRINX: NATURE'S HYBRID WIND INSTRUMENT

    E-Print Network [OSTI]

    Smyth, Tamara

    ]. The neural control of the muscles and the bird's respiratory mechanics both greatly contribute to how sound a nonlinear vibrating membrane as its primary excitation mechanism. The syringeal membrane, much like the bird's vocal system provides a unique configuration of acoustic elements not found in traditional

  13. 1 st PanAmerican/Iberian Meeting on Acoustics, Cancun, Mexico, December 27, 2002 THE SYRINX: NATURE'S HYBRID WIND INSTRUMENT

    E-Print Network [OSTI]

    Smyth, Tamara

    ]. The neural control of the muscles and the bird's respiratory mechanics both greatly contribute to how sound a nonlinear vibrating membrane as its primary excitation mechanism. The syringeal membrane, much like the bird's vocal system provides a unique configuration of acoustic elements not found in traditional

  14. Acoustic Character Of Hydraulic Fractures In Granite

    E-Print Network [OSTI]

    Paillet, Frederick I.

    1983-01-01T23:59:59.000Z

    Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

  15. HST.723 Neural Coding and Perception of Sound, Spring 2003

    E-Print Network [OSTI]

    Delgutte, Bertrand

    Neural structures and mechanisms mediating the detection, localization, and recognition of sounds. Discussion of how acoustic signals are coded by auditory neurons, the impact of these codes on behavorial performance, and ...

  16. Multiphase fluid characterization system

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2014-09-02T23:59:59.000Z

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  17. Thermoacoustic Stirling Engine --An acoustic amplifier

    E-Print Network [OSTI]

    Lee, Dongwon

    Thermoacoustic Stirling Engine -- An acoustic amplifier: ambient heat exchanger (water) stacked kW sound hot diesel exhaust hot diesel exhaust 34" 24" Thermoacoustic Stirling Engine -- An acoustic@lanl.gov 505-667-7545 A lighter, smaller, faster, cheaper version of free-piston Stirling 500W Lightweight

  18. ACOUSTIC POLLUTION HOW HUMAN ACTIVITIES DISRUPT WILDLIFE COMMUNICATION

    E-Print Network [OSTI]

    Gray, Matthew

    4/17/2011 1 ACOUSTIC POLLUTION HOW HUMAN ACTIVITIES DISRUPT WILDLIFE COMMUNICATION Emily Hockman M of acoustic pollution in the oceans and effects on marine mammals Where do we go from here? #12;4/17/2011 2 ON ACOUSTIC POLLUTION Anthropogenic sound generation Transportation Army/Navy Research Commercial Birds

  19. Method for chemically analyzing a solution by acoustic means

    DOE Patents [OSTI]

    Beller, L.S.

    1997-04-22T23:59:59.000Z

    A method and apparatus are disclosed for determining a type of solution and the concentration of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration. 10 figs.

  20. Method for chemically analyzing a solution by acoustic means

    DOE Patents [OSTI]

    Beller, Laurence S. (Idaho Falls, ID)

    1997-01-01T23:59:59.000Z

    A method and apparatus for determining a type of solution and the concention of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration.

  1. Optimization of Concurrent Deployments of the Juvenile Salmon Acoustic Telemetry System and Other Hydroacoustic Equipment at John Day Dam

    SciTech Connect (OSTI)

    Ploskey, Gene R.; Hughes, James S.; Khan, Fenton; Kim, Jina; Lamarche, Brian L.; Johnson, Gary E.; Choi, Eric Y.; Faber, Derrek M.; Wilberding, Matthew C.; Deng, Zhiqun; Weiland, Mark A.; Zimmerman, Shon A.; Fischer, Eric S.; Cushing, Aaron W.

    2008-09-01T23:59:59.000Z

    The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimization study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage decoded for JSATS transmitters from: turbine operations; spillway operations; DIDSON/ADCP acoustic energy; and PAS hydroacoustic systems at transmit level of -12 dB, although there was a significant impact at all higher transmit levels (-11 to -6 dB). The main conclusion from this optimization study is that valid JSATS telemetry data can be collected simultaneously with a DIDSON/ADCP and a PAS hydroacoustic system at transmit level -12 dB. Multiple evaluation tools should be considered to increase the robustness and thoroughness of future fish passage evaluations at John Day and other dams.

  2. Sound propagation in light-modulated carbon nanosponge suspensions W. Zhou,1 R. P. Tiwari,1 R. Annamalai,2 R. Sooryakumar,1 V. Subramaniam,2 and D. Stroud1

    E-Print Network [OSTI]

    Stroud, David

    the high sound speed of the nanotubes, the measured speed of longitudinal-acoustic waves in the suspension in sound speed are considered. One is simply that the sound speed decreases because of fluid heat induced to investigate the propagation of acoustic waves through inho- mogeneous media. Sound propagation in liquid

  3. Research on ponderomotive driven Vlasov–Poisson system in electron acoustic wave parametric region

    SciTech Connect (OSTI)

    Xiao, C. Z.; Huang, T. W. [HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China)] [HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Liu, Z. J.; Zheng, C. Y.; He, X. T. [HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China) [HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Institute of Applied Physics and Computational Mathematics, Beijing 100094 (China); Qiao, B. [HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China) [HEDPS, Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); School of Physics, Peking University, Beijing 100871 (China)

    2014-03-15T23:59:59.000Z

    Theoretical analysis and corresponding 1D Particle-in-Cell (PIC) simulations of ponderomotive driven Vlasov–Poisson system in electron acoustic wave (EAW) parametric region are demonstrated. Theoretical analysis identifies that under the resonant condition, a monochromatic EAW can be excited when the wave number of the drive ponderomotive force satisfies 0.26?k{sub d}?{sub D}?0.53. If k{sub d}?{sub D}?0.26, nonlinear superposition of harmonic waves can be resonantly excited, called kinetic electrostatic electron nonlinear waves. Numerical simulations have demonstrated these wave excitation and evolution dynamics, in consistence with the theoretical predictions. The physical nature of these two waves is supposed to be interaction of harmonic waves, and their similar phase space properties are also discussed.

  4. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    DOE Patents [OSTI]

    Ziminsky, Willy Steve (Simpsonville, SC); Krull, Anthony Wayne (Anderson, SC); Healy, Timothy Andrew (Simpsonville, SC), Yilmaz, Ertan (Glenville, NY)

    2011-05-17T23:59:59.000Z

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  5. Source and Listener Directivity for Interactive Wave-based Sound Propagation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Source and Listener Directivity for Interactive Wave-based Sound Propagation Ravish Mehra, Lakulish realistic acoustic effects produced by wave-based sound propagation for directional sources and listeners at the listener position as a weighted sum of precomputed SH sound fields. We propose a novel plane-wave

  6. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOE Patents [OSTI]

    Burnett, Greg C. (Livermore, CA); Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2002-01-01T23:59:59.000Z

    Low power EM waves are used to detect motions of vocal tract tissues of the human speech system before, during, and after voiced speech. A voiced excitation function is derived. The excitation function provides speech production information to enhance speech characterization and to enable noise removal from human speech.

  7. Method and system for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Johnson Paul A. (Santa Fe, NM); Ten Cate, James A. (Los Alamos, NM); Guyer, Robert (Reno, NV); Le Bas, Pierre-Yves (Los Alamos, NM); Vu, Cung (Houston, TX); Nihei, Kurt (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

    2012-02-14T23:59:59.000Z

    A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.

  8. Studying MRI acquisition protocols of sustained sounds with a multimodal acquisition system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    system which utilizes infrared emit- ting diodes (IREDs) requires that the sensors to be visible from a multimodal acquisition system which uses electromagnetogra- phy sensors to locate the US probe a millimetric accuracy 3D MRI images of the vocal tract have enabled more accurate evaluations of vocal tract

  9. A cabled acoustic telemetry system for detecting and tracking juvenile salmon: Part 1. Engineering design and instrumentation

    SciTech Connect (OSTI)

    Weiland, Mark A.; Deng, Zhiqun; Seim, Thomas A.; Lamarche, Brian L.; Choi, Eric Y.; Fu, Tao; Carlson, Thomas J.; Thronas, Aaron I.; Eppard, Matthew B.

    2011-05-26T23:59:59.000Z

    The U.S. Army Corps of Engineers-Portland District started development of the Juvenile Salmon Acoustic Telemetry System (JSATS), a nonproprietary technology, in 2001 to meet the needs for monitoring the survival of juvenile salmonids through the 31 federal dams in the Federal Columbia River Power System (FCRPS). Initial development focused on coded acoustic microtransmitters, and autonomous receivers that could be deployed in open reaches of the river for detection of the juvenile salmonids implanted with microtransmitters as they passed the autonomous receiver arrays. In 2006 the Pacific Northwest National Laboratory (PNNL) was tasked with development of an acoustic receiver system for deployment at hydropower facilities (cabled receiver) for detecting fish tagged with microtransmitters as well as tracking them in 2 or 3-dimensions as the fish passed at the facility for determining route of passage. The additional route of passage information, combined with survival estimates, is used by the dam operators and managers to make structural and operational changes at the hydropower facilities to improve survival of fish as they pass the facilities and through the FCRPS.

  10. Assessment of Energy Storage Alternatives in the Puget Sound Energy System

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Jin, Chunlian; Wu, Di; Kintner-Meyer, Michael CW; Leslie, Patrick; Daitch, Charles

    2013-12-12T23:59:59.000Z

    As part of an ongoing study co-funded by the Bonneville Power Administration, under its Technology Innovation Grant Program, and the U.S. Department of Energy, the Pacific Northwest National Laboratory (PNNL) has developed an approach and modeling tool for assessing the net benefits of using energy storage located close to the customer in the distribution grid to manage demand. PNNL in collaboration with PSE and Primus Power has evaluated the net benefits of placing a zinc bromide battery system at two locations in the PSE system (Baker River / Rockport and Bainbridge Island). Energy storage can provide a number of benefits to the utility through the increased flexibility it provides to the grid system. Applications evaluated in the assessment include capacity value, balancing services, arbitrage, distribution deferral and outage mitigation. This report outlines the methodology developed for this study and Phase I results.

  11. acoustic imaging applied: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Acoustic Daylight Imaging: Vision In The Ocean CiteSeer Summary: Sound provides a natural means for...

  12. acoustic radar: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the electromagnetic waves... Lopez Aguilar, Luis Felipe 2012-06-07 12 Acoustic Daylight Imaging: Vision In The Ocean CiteSeer Summary: Sound provides a natural means for...

  13. acoustic interferometry technique: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preprints Summary: Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate...

  14. acoustic modes induced: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preprints Summary: Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate...

  15. acoustically induced vibration: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preprints Summary: Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate...

  16. acoustic molten metal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preprints Summary: Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate...

  17. acoustic envelope shape: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Preprints Summary: Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate...

  18. On reconstruction and time reversal in thermoacoustic tomography in acoustically

    E-Print Network [OSTI]

    Kuchment, Peter

    On reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous of recent approaches to the reconstruction in thermoacoustic/photoacoustic tomography: backprojection of the problem of sound speed recovery is also provided. Keywords: Tomography, thermoacoustic, wave equation. AMS

  19. In this paper, a system is described for the recognition of mixtures of noise sources in acoustic input signals. The

    E-Print Network [OSTI]

    Virtanen, Tuomas

    acoustic surveillance, speech processing in a noisy background, acoustic database queries, noise pollution in acoustic input signals. The problem is approached by utilizing both bottom­up signal analysis and top. 1 INTRODUCTION Recognition of acoustic noise mixtures is viewed here as the detection and broad

  20. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; van Dam, J.

    2010-11-01T23:59:59.000Z

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  1. Spring 2011 ME706 Acoustics and Aerodynamic Sound ME706 Acoustics and Aerodynamic Sound

    E-Print Network [OSTI]

    are investigated (`vortex-surface' interactions) by the powerful and universal method of `compact Green's function problems. BOOKS Students should aim to build a library of classic texts. Many of these are out of print, but are available in libraries or second hand (e.g. from: http://www.abebooks.com/). Recommended classics: Batchelor

  2. Well-posedness for Systems Representing Electromagnetic/Acoustic Wavefront Interaction

    E-Print Network [OSTI]

    interrogation.) In one such class of electromagnetic interrogation techniques, one uses a superconductive (also and applications for techniques which employ superconductive metal backings and standing acoustic waves as re are absorbing on the left (z = 0) and superconductive on the right (z = 1). We use general initial conditions

  3. Dynamics of a spherical particle in an acoustic field: a multiscale approach

    E-Print Network [OSTI]

    Xie, Jin-Han

    2014-01-01T23:59:59.000Z

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, and viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King, Gor'kov and Doinikov, clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regi...

  4. Gravity waves generated by sounds from Big Bang phase transitions

    E-Print Network [OSTI]

    Tigran Kalaydzhyan; Edward Shuryak

    2015-01-14T23:59:59.000Z

    Inhomogeneities associated with the cosmological QCD and electroweak phase transitions produce hydrodynamical perturbations, longitudinal sounds and rotations. It has been demonstrated by Hindmarsh et al. that the sounds produce gravity waves (GW) well after the phase transition is over. We further argue, that, under certain conditions, an inverse acoustic cascade may occur and move sound perturbations from the (UV) momentum scale at which the sound is originally produced to much smaller (IR) momenta. Weak turbulence regime of this cascade is studied via Boltzmann equation, possessing stationary power and time-dependent self-similar solutions. We suggest certain indices for strong turbulence regime as well, into which the cascade eventually proceeds. Finally, we point out that two on shell sound waves can produce one on-shell gravity wave, and evaluate the rate of the process using standard sound loop diagram.

  5. Reflective echo tomographic imaging using acoustic beams

    DOE Patents [OSTI]

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25T23:59:59.000Z

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  6. Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room-Temperature Ionic Liquids by the Transient Grating Technique

    E-Print Network [OSTI]

    Reid, Scott A.

    Determination of Thermal Diffusivities, Thermal Conductivities, and Sound Speeds of Room. The experiments give thermal diffusivities from which thermal conductivities can be determined, sound speeds not only on the sound speed but also on the thermal diffusivity and acoustic damping of the RTILs

  7. An Introduction to Acoustics S.W. Rienstra & A. Hirschberg

    E-Print Network [OSTI]

    Rienstra, Sjoerd W.

    of the conservation laws for ideal fluids . . . . . 4 2 Wave equation, speed of sound, and acoustic energy 8 2.1 Order.2.3 Compactness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.3 Speed of sound.3.2 Water . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 2.3.3 Bubbly liquid

  8. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, G.A.

    1992-11-24T23:59:59.000Z

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  9. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM)

    1992-01-01T23:59:59.000Z

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  10. Phased Array Ultrasonic Sound Field Mapping in Cast Austenitic Stainless Steel

    SciTech Connect (OSTI)

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.; Anderson, Michael T.

    2014-05-31T23:59:59.000Z

    This study maps the phased array-generated acoustic sound fields through three types of CASS microstructure in four specimens to quantitatively assess the beam formation effectiveness in these materials.

  11. EFFECTIVE EQUATIONS FOR SOUND AND VOID WAVE PROPAGATION IN BUBBLY FLUIDS

    E-Print Network [OSTI]

    Smereka, Peter

    ;1850 NIANQING WANG AND PETER SMEREKA calculation of the sound speed agrees with those of previous investigators including nonlinear effects. For review of the literature on acoustic waves in bubbly liquids the reader

  12. Neural correlates and mechanisms of sound localization in everyday reverberant settings

    E-Print Network [OSTI]

    Devore, Sasha

    2009-01-01T23:59:59.000Z

    Nearly all listening environments-indoors and outdoors alike-are full of boundary surfaces (e.g., walls, trees, and rocks) that produce acoustic reflections. These reflections interfere with the direct sound arriving at a ...

  13. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher

    2012-09-04T23:59:59.000Z

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  14. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac (Houston, TX); Sinha, Dipen N. (Los Alamos, NM); Pantea, Cristian (Los Alamos, NM); Nihei, Kurt T. (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

    2012-07-31T23:59:59.000Z

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  15. Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing

    E-Print Network [OSTI]

    Balusamy, Saravanan; Li, Larry K.B.; Han, Zhiyi; Juniper, Matthew P.; Hochgreb, Simone

    2014-06-25T23:59:59.000Z

    . Introduction Despite decades of research, thermoacoustic instability remains one of the biggest challenges facing manufacturers of gas turbines. In these devices, the acoustics is usually linear,1 but the flame’s heat-release response to incident perturba... of magnitude higher than that in [6–8] but is an order of magnitude lower than that in actual gas turbines.3. Results and discussion 3.1. Self-excited instability Exploratory tests performed without forcing reveal several (unforced) operating conditions capable...

  16. A versatile scanning acoustic platform

    E-Print Network [OSTI]

    N G Parker; P V Nelson; M J W Povey

    2010-02-01T23:59:59.000Z

    We present a versatile and highly configurable scanning acoustic platform. This platform, comprising of a high frequency transducer, bespoke positioning system and temperature-regulated sample unit, enables the acoustic probing of materials over a wide range of length scales and with minimal thermal aberration. In its bare form the platform acts as a reflection-mode acoustic microscope, while optical capabilities are readily incorporated to extend its abilities to the acousto-optic domain. Here we illustrate the capabilities of the platform through its incarnation as an acoustic microscope. Operating at 55 MHz we demonstrate acoustic imaging with a lateral resolution of 25 microns. We outline its construction, calibration and capabilities as an acoustic microscope, and discuss its wider applications.

  17. Reconstruction of nonstationary sound fields based on time domain plane wave superposition method

    E-Print Network [OSTI]

    Boyer, Edmond

    Reconstruction of nonstationary sound fields based on time domain plane wave superposition method X.-Z. Zhanga , J.-H. Thomasb , C.-X. Bia and J.-C. Pascalb a Institute of Sound and Vibration Research, Hefei of the Acoustics 2012 Nantes Conference 23-27 April 2012, Nantes, France 1811 #12;A time-domain plane wave

  18. Wave-Ray Coupling for Interactive Sound Propagation in Large Complex Scenes Hengchin Yeh

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Wave-Ray Coupling for Interactive Sound Propagation in Large Complex Scenes Hengchin Yeh Ravish geometric and numerical acoustic techniques for interactive sound propagation in complex environments. Our numerical wave-based techniques to precompute the pressure field in the near-object regions and geometric

  19. Optimization of Power in the Problems of Active Control of Sound ?

    E-Print Network [OSTI]

    Optimization of Power in the Problems of Active Control of Sound ? J. Lon#20;cari#19;c 1 Los Alamos- dered by active means, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls

  20. Optimization of Power in the Problems of Active Control of Sound

    E-Print Network [OSTI]

    Optimization of Power in the Problems of Active Control of Sound J. Loncari´c 1 Los Alamos National, i.e., by introducing the additional acoustic sources called controls that generate the appropriate anti-sound. Previously, we have obtained general solutions for active controls in both continuous

  1. Feeding Young Horses For Sound Development 

    E-Print Network [OSTI]

    Gibbs, Pete G.; Potter, Gary D.

    2005-05-25T23:59:59.000Z

    Feeding Young Horses for Sound Development B-5043 05-05 Feeding Young Horses for Sound Development Pete G. Gibbs Professor and Extension Horse Specialist Department Of Animal Science Equine Sciences Program The Texas A&M University System Gary D...

  2. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    SciTech Connect (OSTI)

    Friedt, J.-M [SENSeOR, 32 Avenue de l'Observatoire, 25044 Besancon (France); Droit, C.; Martin, G.; Ballandras, S. [Department of Time and Frequency, FEMTO-ST, 32 Avenue de l'Observatoire, 25044 Besancon (France)

    2010-01-15T23:59:59.000Z

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  3. Sound Waves from Quenched Jets

    E-Print Network [OSTI]

    Vladimir Khachatryan; Edward Shuryak

    2011-08-15T23:59:59.000Z

    Heavy ion collisions at RHIC/LHC energies are well described by the (nearly ideal) hydrodynamics. Last year this success has been extended to higher angular harmonics, $v_n,n=3..9$ induced by initial-state perturbations, in analogy to cosmic microwave background fluctuations. Here we use hydrodynamics to study sound propagation emitted by quenched jets. We use the so called "geometric acoustics" to follow the sound propagation, on top of the expanding fireball. The conical waves, known as "Mach cones", turn out to be strongly distorted. We show that large radial flow makes the observed particle spectra to be determined mostlly by the vicinity of their intersection with the fireball's space-like and time-like freezeout surfaces. We further show how the waves modify the freezeout surfaces and spectra. We end up comparing our calculations to the two-particle correlation functions at RHIC, while emphasizing that studies of dijet events observed at LHC should provide much better test of our theory.

  4. Integrated Modeling and Decision-Support System for Water Management in the Puget Sound Basin: Snow Caps to White Caps

    SciTech Connect (OSTI)

    Copping, Andrea E.; Yang, Zhaoqing; Voisin, Nathalie; Richey, Jeff; Wang, Taiping; Taira, Randal Y.; Constans, Michael; Wigmosta, Mark S.; Van Cleve, Frances B.; Tesfa, Teklu K.

    2013-12-31T23:59:59.000Z

    Final Report for the EPA-sponsored project Snow Caps to White Caps that provides data products and insight for water resource managers to support their predictions and management actions to address future changes in water resources (fresh and marine) in the Puget Sound basin. This report details the efforts of a team of scientists and engineers from Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) to examine the movement of water in the Snohomish Basin, within the watershed and the estuary, under present and future conditions, using a set of linked numerical models.

  5. Evidence and control of bifurcations in a respiratory system

    SciTech Connect (OSTI)

    Goldin, Matías A., E-mail: mgoldin@df.uba.ar; Mindlin, Gabriel B. [Laboratorio de Sistemas Dinámicos, IFIBA y Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires (Argentina)] [Laboratorio de Sistemas Dinámicos, IFIBA y Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, Buenos Aires (Argentina)

    2013-12-15T23:59:59.000Z

    We studied the pressure patterns used by domestic canaries in the production of birdsong. Acoustically different sound elements (“syllables”) were generated by qualitatively different pressure gestures. We found that some ubiquitous transitions between syllables can be interpreted as bifurcations of a low dimensional dynamical system. We interpreted these results as evidence supporting a model in which different timescales interact nonlinearly.

  6. UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging

    E-Print Network [OSTI]

    Buckingham, Michael

    UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging using ambient noise ............................................................................................... xviii SECTION 1: INTRODUCTION Chapter 1: Acoustic Daylight......................................................................... 1 1.2 Acoustic Daylight

  7. Sounds and Space 

    E-Print Network [OSTI]

    Nudds, Matthew

    the account I give (in section 1) of what sounds are and (in section 2) of the role of space in auditory perception....

  8. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    SciTech Connect (OSTI)

    Xie, Jin-Han, E-mail: J.H.Xie@ed.ac.uk; Vanneste, Jacques [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2014-10-15T23:59:59.000Z

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, and viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.

  9. Gravity waves generated by sounds from Big Bang phase transitions

    E-Print Network [OSTI]

    Kalaydzhyan, Tigran

    2014-01-01T23:59:59.000Z

    Inhomogeneities associated with the cosmological QCD and electroweak phase transitions produce hydrodynamical perturbations, longitudinal sounds and rotations. It has been demonstrated numerically by Hindmarsh et al. that the sounds produce gravity waves (GW), and that this process does continue well after the phase transition is over. We further introduce a long period of the so-called inverse acoustic cascade, between the UV momentum scale at which the sound is originally produced and the IR scale at which GW is generated. It can be described by the Boltzmann equation, possessing stationary power and self-similar time-dependent solutions. If the sound dispersion law allows one-to-two sound decays, the exponent of the power solution is large and a strong amplification of the sound amplitude (limited only by the total energy) takes place. Alternative scenario dominated by sound scattering leads to smaller indices and much smaller IR sound amplitude. We also point out that two on shell phonons can produce a gr...

  10. Sound Wave in Vortex with Sink

    E-Print Network [OSTI]

    Soumen Basak

    2003-11-17T23:59:59.000Z

    Using Komar's definition, we give expressions for the mass and angular momentum of a rotating acoustic black hole. We show that the mass and angular momentum so defined, obey the equilibrium version of the first law of Black Hole thermodynamics. We also show that when a phonon passes by a vortex with a sink, its trajectory is bent. The angle of bending of the sound wave to leading order is quadratic in $A/cb$ and $B/cb$, where $b$ is the impact parameter and $A$ and $B$ are the parameters in the velocity of the fluid flow. The time delay in the propagation of sound wave which to first order depends only on $B/c^2$ and is independent of $A$.

  11. Acoustic levitation

    SciTech Connect (OSTI)

    None

    2012-09-12T23:59:59.000Z

    Scientists at Argonne National Laboratory have discovered a way to use sound waves to levitate individual droplets of solutions containing different pharmaceuticals. While the connection between levitation and drug development may not be immediately apparent, a special relationship emerges at the molecular level. Read more: http://www.anl.gov/articles/no-magic-show-real-world-levitation-inspire-better-pharmaceuticals

  12. Operational Performance Analysis of Passive Acoustic Monitoring for Killer Whales

    SciTech Connect (OSTI)

    Matzner, Shari; Fu, Tao; Ren, Huiying; Deng, Zhiqun; Sun, Yannan; Carlson, Thomas J.

    2011-09-30T23:59:59.000Z

    For the planned tidal turbine site in Puget Sound, WA, the main concern is to protect Southern Resident Killer Whales (SRKW) due to their Endangered Species Act status. A passive acoustic monitoring system is proposed because the whales emit vocalizations that can be detected by a passive system. The algorithm for detection is implemented in two stages. The first stage is an energy detector designed to detect candidate signals. The second stage is a spectral classifier that is designed to reduce false alarms. The evaluation presented here of the detection algorithm incorporates behavioral models of the species of interest, environmental models of noise levels and potential false alarm sources to provide a realistic characterization of expected operational performance.

  13. Acoustic wave front reversal in a three-phase media

    E-Print Network [OSTI]

    N. I. Pushkina

    2015-03-05T23:59:59.000Z

    Acoustic wave front conjugation is studied in a sandy marine sediment that contains air bubbles in its fluid fraction. The considered phase conjugation is a four-wave nonlinear parametric sound interaction process caused by nonlinear bubble oscillations which are known to be dominant in acoustic nonlinear interactions in three-phase marine sediments. Two various mechanisms of phase conjugation are studied. One of them is based on the stimulated Raman-type sound scattering on resonance bubble oscillations. The second one is associated with sound interactions with bubble oscillations which frequencies are far from resonance bubble frequencies. Nonlinear equations to solve the wave-front conjugation problem are derived, expressions for acoustic wave amplitudes with a reversed wave front are obtained and compared for various frequencies of the excited bubble oscillations.

  14. Acoustic wave front conjugation in a three-phase media

    E-Print Network [OSTI]

    Pushkina, N I

    2015-01-01T23:59:59.000Z

    Acoustic wave front reversal is studied in a sandy marine sediment that contains air bubbles in its fluid fraction. The considered phase conjugation is a four-wave nonlinear parametric sound interaction process caused by nonlinear bubble oscillations which are known to be dominant in acoustic nonlinear interactions in three-phase marine sediments. Two various mechanisms of phase conjugation are studied. One of them is based on the stimulated Raman-type sound scattering on resonance bubble oscillations. The second one is associated with sound interactions with bubble oscillations which frequencies are far from resonance bubble frequencies. Nonlinear equations to solve the wave-front conjugation problem are derived, expressions for acoustic wave amplitudes with a reversed wave front are obtained and compared for various frequencies of the excited bubble oscillations.

  15. Development, perceptual evaluation, and acoustic analysis of amplitude-based F0 control in Electrolarynx speech

    E-Print Network [OSTI]

    Saikachi, Yoko

    2009-01-01T23:59:59.000Z

    An Electrolarynx (EL) is a battery-powered device that produces a sound that can be used to acoustically excite the vocal tract as a substitute for laryngeal voice production. ELs provide laryngectomy patients with the ...

  16. Acoustic Heating Peter Ulmschneider

    E-Print Network [OSTI]

    Ulmschneider, Peter

    mechanisms. 1. The acoustic heating theory Only a few years after Edlen's (1941) discovery that the solar acoustic wave radiation- · b. field acoustic wave Figure 1. Panel a: Acoustic heating in late-type stars: effective temperature TeJ f, gravity g and mixing length parameter fr. Panel b: Acoustic heating in early

  17. acoustic wave-assisted scanning: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gent transportation systems (ITS 17 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  18. Acoustical and Noise Control Criteria and Guidelines for Building Design and Operations

    E-Print Network [OSTI]

    Evans, J. B.; Himmel, C. N.

    Noise, vibration and acoustical design, construction, commissioning and operation practices influence building cost, efficiency, performance and effectiveness. Parameters for structural vibration, building systems noise, acoustics and environmental...

  19. Physical Consonance Law of Sound Waves

    E-Print Network [OSTI]

    Mario Goto

    2005-06-16T23:59:59.000Z

    Sound consonance is the reason why it is possible to exist music in our life. However, rules of consonance between sounds had been found quite subjectively, just by hearing. To care for, the proposal is to establish a sound consonance law on the basis of mathematical and physical foundations. Nevertheless, the sensibility of the human auditory system to the audible range of frequencies is individual and depends on a several factors such as the age or the health in a such way that the human perception of the consonance as the pleasant sensation it produces, while reinforced by an exact physical relation, may involves as well the individual subjective feeling.

  20. Acoustic Characterization of Mesoscale Objects

    SciTech Connect (OSTI)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13T23:59:59.000Z

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  1. Nonlinear acoustic wave generation in a three-phase seabed

    E-Print Network [OSTI]

    Kukarkin, A B; Zhileikin, Ya M

    2015-01-01T23:59:59.000Z

    Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.

  2. Nonlinear acoustic wave generation in a three-phase seabed

    E-Print Network [OSTI]

    A. B. Kukarkin; N. I. Pushkina; Ya. M. Zhileikin

    2015-03-03T23:59:59.000Z

    Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.

  3. Separation of acoustic waves in isentropic flow perturbations

    E-Print Network [OSTI]

    Christian Henke

    2015-02-22T23:59:59.000Z

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier-Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill's acoustic analogy. Moreover, we can define the deviations of the Navier-Stokes equation from the convective wave equation as true sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided.

  4. Crickets produce sound as their forewings (tegmina) close and specialized structures (the file teeth and the plectrum)

    E-Print Network [OSTI]

    Prestwich, Ken

    expect that natural selection should favour mechanisms that efficiently convert energy stores into sound.01550 We here report the first simultaneous measurement of metabolic cost of calling, acoustic power in the sand that forms the burrow's walls. Damping is therefore an important cause of the low sound production

  5. NAME: Eelgrass Restoration in Puget Sound LOCATION: Puget Sound, WA

    E-Print Network [OSTI]

    US Army Corps of Engineers

    NAME: Eelgrass Restoration in Puget Sound LOCATION: Puget Sound, WA ACRES: 3,700 acres of subtidal restoration efforts and to contribute to the Puget Sound Partnership's Action Agenda recovery goal of 20% more within the Puget Sound region of the Salish Sea: the Nisqually, Elwha, and Skokomish Rivers. These major

  6. Acoustic measurement of potato cannon velocity

    E-Print Network [OSTI]

    Courtney, M; Courtney, Amy; Courtney, Michael

    2006-01-01T23:59:59.000Z

    This article describes measurement of potato cannon velocity with a digitized microphone signal. A microphone is attached to the potato cannon muzzle and a potato is fired at an aluminum target about 10 m away. The potato's flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato velocity is simply the flight distance divided by the flight time.

  7. Classification of Cabo Frio (Brazil) three-dimensional ocean features using single-slice acoustic observations

    E-Print Network [OSTI]

    Jesus, Sérgio M.

    Classification of Cabo Frio (Brazil) three-dimensional ocean features using single-slice acoustic-000 Arraial do Cabo, RJ, Brazil, {lcalado, ana.claudia}@ieapm.mar.mil.br Acoustic tomography is now a well for an instantaneous sound speed field constructed from dynamical predictions for Cabo Frio, Brazil. The results show

  8. Changes in Acoustic Impedance of Marine Sediment Covered with Liquid Henning Harms, Wlner Matuschek, Volker Mellert

    E-Print Network [OSTI]

    Vormann, Matthias

    ) with different densities and sound speeds as a function of grazing angle. The measurements clearly show of the liqui~, TABLE1, Sound speed and density of the chemicals wed in the experiments. substance lChanges in Acoustic Impedance of Marine Sediment Covered with Liquid Pollutants Henning Harms

  9. Design and implementation of an underwater sound recording device

    SciTech Connect (OSTI)

    Martinez, Jayson J.; Myers, Joshua R.; Carlson, Thomas J.; Deng, Zhiqun; Rohrer, John S.; Caviggia, Kurt A.; Woodley, Christa M.; Weiland, Mark A.

    2011-09-01T23:59:59.000Z

    To monitor the underwater sound and pressure waves generated by activities such as underwater blasting and pile driving, an autonomous system used to record underwater acoustic signals was designed. The device designed allows two hydrophones or other dynamic pressure sensors to be connected, filters out high frequency noise, has a gain that can be independently set for each sensor, and allows two hours of data to be collected. Two versions of the USR were created; one is submersible to a maximum depth of 300 m, and the other, although watertight, is not intended to be fully submersed. Tests were performed in the laboratory using a data acquisition system to send single-frequency sinusoidal voltages directly to the each component. These tests verified that the device performs as well as larger commercially available data acquisition systems, which are not suited for field use. A prototype of the device was used in a case study to investigate the effect of underwater rock blasting on juvenile Chinook salmon and rainbow trout. The case study demonstrated that the device was able to tolerate being operated in harsh environments, making it a valuable tool for collecting field measurements.

  10. Hybrid percussion : extending physical instruments using sampled acoustics

    E-Print Network [OSTI]

    Aimi, Roberto Mario, 1973-

    2007-01-01T23:59:59.000Z

    This thesis presents a system architecture for creating hybrid digital-acoustic percussion instruments by combining extensions of existing signal processing techniques with specially-designed semi-acoustic physical ...

  11. A Review of Thermal Acoustical and Special Project Requirements Data in Designing a Duct System

    E-Print Network [OSTI]

    Lebens, A. F.

    1986-01-01T23:59:59.000Z

    less than acceptable environment for occupants could occur. AIR LEAKAGE Probably the most neglected design criteria for duct work is air leakage. Testing by SMACNA (HVAC Air Duct Leakage Test Manual. First Edition, August. 1985), and TIM (Thermal... 48 48 48 Appendix A of the SMACNA HVAC Air Duct Leakage Test Manual gives leakage as a percent of flow in a system by Leakage Class, fan CFM, and static pressure. The leakage in a 1" static pressure system can be as high as 24 percent in Leakage...

  12. Sound modes in holographic superfluids

    SciTech Connect (OSTI)

    Herzog, Christopher P.; Yarom, Amos [Department of Physics, Princeton University, Princeton, New Jersey 08544 (United States)

    2009-11-15T23:59:59.000Z

    Superfluids support many different types of sound waves. We investigate the relation between the sound waves in a relativistic and a nonrelativistic superfluid by using hydrodynamics to calculate the various sound speeds. Then, using a particular holographic scalar gravity realization of a strongly interacting superfluid, we compute first, second, and fourth sound speeds as a function of the temperature. The relativistic low temperature results for second sound differ from Landau's well known prediction for the nonrelativistic, incompressible case.

  13. Extraordinary acoustic transmission mediated by Helmholtz resonators

    SciTech Connect (OSTI)

    Koju, Vijay [Computation Science Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Rowe, Ebony [Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Robertson, William M., E-mail: William.Robertson@mtsu.edu [Computation Science Program, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States); Department of Physics and Astronomy, Middle Tennessee State University, Murfreesboro, Tennessee 37132 (United States)

    2014-07-15T23:59:59.000Z

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of ? radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  14. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, D.S.

    1997-12-30T23:59:59.000Z

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  15. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1997-01-01T23:59:59.000Z

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  16. ORE 654: Applications of Ocean Acoustics Fall Semester 2014

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    of this course is to provide the ocean engineering student an understanding of how sound propagates through: Ocean engineering specialization Program Outcome 5: Use of latest tools in ocean engineering ProgramORE 654: Applications of Ocean Acoustics Syllabus Fall Semester 2014 Tuesday/Thursday 12:00-1:15 PM

  17. Field Projects and Research Highlights for Jeff Nystuen 2004/2005 1. Spatial Averaging of Rain Generated Sound in the Ionian Sea, Greece: Jan-Apr 2004

    E-Print Network [OSTI]

    Nystuen, Jeffrey A.

    Generated Sound in the Ionian Sea, Greece: Jan-Apr 2004 An acoustic mooring with 4 PALs was deployed in 3 km deep water off the southwestern coast of Greece. Co-located radar measurements show the spatial

  18. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    2000-01-01T23:59:59.000Z

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  19. Acoustic cryocooler

    DOE Patents [OSTI]

    Swift, Gregory W. (Santa Fe, NM); Martin, Richard A. (Los Alamos, NM); Radenbaugh, Ray (Louisville, CO)

    1990-01-01T23:59:59.000Z

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  20. Sound emission from the gas of molecular superrotors

    E-Print Network [OSTI]

    Milner, A A; Milner, V

    2015-01-01T23:59:59.000Z

    We use an optical centrifuge to deposit a controllable amount of rotational energy into dense molecular ensembles. Subsequent rotation-translation energy transfer, mediated by thermal collisions, results in the localized heating of the gas and generates strong sound wave, clearly audible to the unaided ear. For the first time, the amplitude of the sound signal is analyzed as a function of the experimentally measured rotational energy. The proportionality between the two experimental observables confirms that rotational excitation is the main source of the detected sound wave. As virtually all molecules, including the main constituents of the atmosphere, are amenable to laser spinning by the centrifuge, we anticipate this work to stimulate further development in the area of photo-acoustic control and spectroscopy.

  1. High-resolution reservoir characterization by an acoustic impedance inversion of a Tertiary deltaic clinoform system in the North Sea

    E-Print Network [OSTI]

    van Vliet, Lucas J.

    High-resolution reservoir characterization by an acoustic impedance inversion of a Tertiary deltaic a low level of parameterization embedded in a geologic framework and is computationally fast. The second in the geologic settings of the res- ervoir; however, there is no explicit geologic significance and the method

  2. Analysis of a PML method applied to computation to resonances in open systems and acoustic scattering problems

    E-Print Network [OSTI]

    Kim, Seungil

    2010-01-14T23:59:59.000Z

    equation ?U(x,t) = 1c2 ? 2 ?t2U(x,t). Here c is the speed of a wave such as light or sound. U is a velocity potential and has a relation with the velocity field v and pressure p as follows: v = 1? 0 ?U, p = ??U?t (III.1) with the density ?0 at a steady...

  3. SOUND GENERATION 1. Introduction

    E-Print Network [OSTI]

    Berlin,Technische Universität

    source mechanisms in terms of the ratio of radiated power to supplied mechanical or electrical power of heat as in combustion processes where the temporally varying thermal expansions are #12 it locally and a small proportion of the flow energy is converted to acoustic by the forces internal

  4. What Is Sound? Sound is a pressure wave which is

    E-Print Network [OSTI]

    Toronto, University of

    What Is Sound? Sound is a pressure wave which is created by a vibrating object. This vibrations set the medium. Since the particles are moving in parallel direction to the wave movement, the sound wave of a sine wave (C~crests, R~troughs) The speed of a sound pressure wave in air is 331.5+0.6Tc m/s , Tc

  5. An Acoustical Basis for Universal Constraints on Sound Sequences

    E-Print Network [OSTI]

    Kawasaki, Haruko

    1982-01-01T23:59:59.000Z

    M S E C ) T IM E (M S E C ) [BWE] [BWA] N X prohibited u z zbri bwi bji bi ib ble bre bwe bje be eb bla bra bwa bja ba

  6. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool

    SciTech Connect (OSTI)

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.; Kintner-Meyer, Michael CW

    2013-12-01T23:59:59.000Z

    This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide background and manual for this evaluation tool.

  7. Sound propagation around underwater seamounts

    E-Print Network [OSTI]

    Sikora, Joseph J., III

    2005-01-01T23:59:59.000Z

    This thesis develops and utilizes a method for analyzing data from the North Pacific Acoustic Laboratory's (NPAL) Basin Acoustic Seamount Scattering Experiment (BASSEX). BASSEX was designed to provide data to support the ...

  8. Journal of Sound and Vibration ] (

    E-Print Network [OSTI]

    Ge, Shuzhi Sam

    the ocean surface to the sea floor. With the trend towards oil and gas exploration in deeper watersJOURNAL OF SOUND AND VIBRATION Journal of Sound and Vibration ] (

  9. Surface wave acoustics of granular packing under gravity

    SciTech Connect (OSTI)

    Clement, Eric; Andreotti, Bruno [PMMH, ESPCI, CNRS (UMR 7636) and Univ. Paris 6 and Paris 7, 10 rue Vauquelin, 75005 Paris (France); Bonneau, Lenaic [PMMH, ESPCI, CNRS (UMR 7636) and Univ. Paris 6 and Paris 7, 10 rue Vauquelin, 75005 Paris (France)

    2009-06-18T23:59:59.000Z

    Due to the non-linearity of Hertzian contacts, the speed of sound in granular matter increases with pressure. For a packing under gravity and in the presence of a free surface, bulk acoustic waves cannot propagate due to the inherent refraction toward the surface (the mirage effect). Thus, only modes corresponding to surface waves (Raleigh-Hertz modes) are able to propagate the acoustic signal. First, based on a non-linear elasticity model, we describe the main features associated to these surface waves. We show that under gravity, a granular packing is from the acoustic propagation point of view an index gradient waveguide that selects modes of two distinct families i.e. the sagittal and transverse waves localized in the vicinity of the free surface. A striking feature of these surface waves is the multi-modal propagation: for both transverse and sagittal waves, we show the existence of a infinite but discrete series of propagating modes. In each case, we determine the mode shape and and the corresponding dispersion relation. In the case of a finite size system, a geometric waveguide is superimposed to the index gradient wave guide. In this later case, the dispersion relations are modified by the appearance of a cut-off frequency that scales with depth. The second part is devoted to an experimental study of surface waves propagating in a granular packing confined in a long channel. This set-up allows to tune a monomodal emission by taking advantage of the geometric waveguide features combined with properly designed emitters. For both sagittal and transverses waves, we were able to isolate a single mode (the fundamental one) and to plot the dispersion relation. This measurements agree well with the Hertzian scaling law as predicted by meanfield models. Furthermore, it allows us to determine quantitatively relations on the elastic moduli. However, we observe that our data yield a shear modulus abnormally weak when compared to several meanfield predictions.

  10. Puget Sound Career & Job Resources

    E-Print Network [OSTI]

    Kaminsky, Werner

    Puget Sound Career & Job Resources The UW Career Center provides services to current UW students-8300; www.lwtech.edu/ #12;Puget Sound Career & Job Resources North Seattle Community College (206) 934, then Jobs & Careers ADDITIONAL RESOURCES Puget Sound Career Development Association (Professional Career

  11. ENERGY CONSERVATION AND GRAVITY WAVES IN SOUND-PROOF TREATMENTS OF STELLAR INTERIORS. II. LAGRANGIAN CONSTRAINED ANALYSIS

    SciTech Connect (OSTI)

    Vasil, Geoffrey M.; Lecoanet, Daniel [Department of Astronomy and Theoretical Astrophysics Center, University of California Berkeley, Berkeley, CA 94720 (United States); Brown, Benjamin P.; Zweibel, Ellen G. [Department of Astronomy, University of Wisconsin, Madison, WI 53706-1582 (United States); Wood, Toby S., E-mail: vasil@cita.utoronto.ca [Department of Applied Mathematics and Statistics, Baskin School of Engineering, University of California, Santa Cruz, CA (United States)

    2013-08-20T23:59:59.000Z

    The speed of sound greatly exceeds typical flow velocities in many stellar and planetary interiors. To follow the slow evolution of subsonic motions, various sound-proof models attempt to remove fast acoustic waves while retaining stratified convection and buoyancy dynamics. In astrophysics, anelastic models typically receive the most attention in the class of sound-filtered stratified models. Generally, anelastic models remain valid in nearly adiabatically stratified regions like stellar convection zones, but may break down in strongly sub-adiabatic, stably stratified layers common in stellar radiative zones. However, studying stellar rotation, circulation, and dynamos requires understanding the complex coupling between convection and radiative zones, and this requires robust equations valid in both regimes. Here we extend the analysis of equation sets begun in Brown et al., which studied anelastic models, to two types of pseudo-incompressible models. This class of models has received attention in atmospheric applications, and more recently in studies of white-dwarf supernova progenitors. We demonstrate that one model conserves energy but the other does not. We use Lagrangian variational methods to extend the energy conserving model to a general equation of state, and dub the resulting equation set the generalized pseudo-incompressible (GPI) model. We show that the GPI equations suitably capture low-frequency phenomena in both convection and radiative zones in stars and other stratified systems, and we provide recommendations for converting low-Mach number codes to this equation set.

  12. DETECTION OF IMPULSE-LIKE AIRBORNE SOUND FOR DAMAGE IDENTIFICATION IN ROTOR BLADES OF WIND TURBINES

    E-Print Network [OSTI]

    Boyer, Edmond

    DETECTION OF IMPULSE-LIKE AIRBORNE SOUND FOR DAMAGE IDENTIFICATION IN ROTOR BLADES OF WIND TURBINES burdens of wind turbines. To detect damage of rotor blades, several research projects focus on an acoustic, rotor blade, wind turbine INTRODUCTION There are several publications of non destructive damage

  13. Optical Measurement of the Non-linear Focusing of Sound in Liquid Helium 4

    E-Print Network [OSTI]

    Caupin, Frédéric

    Optical Measurement of the Non-linear Focusing of Sound in Liquid Helium 4 X. Chavanne, S. Balibar have measured the amplitude of 1MHz acoustic waves focused in liquid helium 4. Our resolution is 10 the reflec- tion of light at the glass/helium interface, which depends on the refractive index of the liquid

  14. VOLUME 86, NUMBER 24 P H Y S I C A L R E V I E W L E T T E R S 11 JUNE 2001 Acoustic Crystallization and Heterogeneous Nucleation

    E-Print Network [OSTI]

    Caupin, Frédéric

    ever observed that a high- intensity sound wave traveling in a liquid can crystallize this liquid to the speed of sound). We believe that it is the ability of helium crystals to grow at very high speed which pressure, the sound velocity is 366.3 m s in the liquid phase [9], so that the acoustic wavelength is 360

  15. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming leg, Carol

    2010-06-08T23:59:59.000Z

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  16. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  17. Nonlinear characterization of a single-axis acoustic levitator

    SciTech Connect (OSTI)

    Andrade, Marco A. B. [Institute of Physics, University of São Paulo, São Paulo (Brazil)] [Institute of Physics, University of São Paulo, São Paulo (Brazil); Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C. [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)] [Department of Mechatronics and Mechanical Systems Engineering, Escola Politécnica, University of São Paulo, São Paulo (Brazil)

    2014-04-15T23:59:59.000Z

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  18. Testing Cosmology with Cosmic Sound Waves

    E-Print Network [OSTI]

    Pier Stefano Corasaniti; Alessandro Melchiorri

    2008-03-25T23:59:59.000Z

    WMAP observations have accurately determined the position of the first two peaks and dips in the CMB temperature power spectrum. These encode information on the ratio of the distance to the last scattering surface to the sound horizon at decoupling. However pre-recombination processes can contaminate this distance information. In order to assess the amplitude of these effects we use the WMAP data and evaluate the relative differences of the CMB peaks and dips multipoles. We find that the position of the first peak is largely displaced with the respect to the expected position of the sound horizon scale at decoupling. In contrast the relative spacings of the higher extrema are statistically consistent with those expected from perfect harmonic oscillations. This provides evidence for a scale dependent phase shift of the CMB oscillations which is caused by gravitational driving forces affecting the propagation of sound waves before recombination. By accounting for these effects we have performed a MCMC likelihood analysis to constrain in combination with recent BAO data a constant dark energy equation w. For a flat universe we find at 95% upper limit w<-1.10, and including the HST prior w<-1.14, which are only marginally consistent with limits derived from the supernova SNLS sample. Larger limits are obtained for non-flat cosmologies. From the full CMB likelihood analysis we also estimate the values of the shift parameter R and the multipole l_a of the acoustic horizon at decoupling for several cosmologies to test their dependence on model assumptions. Although the analysis of the full CMB spectra should be always preferred, using the position of the CMB peaks and dips provide a simple and consistent method for combining CMB constraints with other datasets.

  19. Testing cosmology with cosmic sound waves

    SciTech Connect (OSTI)

    Corasaniti, Pier Stefano [LUTH, Observatoire de Paris, CNRS UMR 8102, Universite Paris Diderot, 5 Place Jules Janssen, 92195 Meudon Cedex (France); Melchiorri, Alessandro [Dipartimento di Fisica e Sezione INFN, Universita degli Studi di Roma 'La Sapienza', Ple Aldo Moro 5, 00185, Rome (Italy); CERN, Theory Division, CH-1211 Geneva 23 (Switzerland)

    2008-05-15T23:59:59.000Z

    Wilkinson Microwave Anisotropy Probe (WMAP) observations have accurately determined the position of the first two peaks and dips in the cosmic microwave background (CMB) temperature power spectrum. These encode information on the ratio of the distance to the last scattering surface to the sound horizon at decoupling. However prerecombination processes can contaminate this distance information. In order to assess the amplitude of these effects, we use the WMAP data and evaluate the relative differences of the CMB peak and dip multipoles. We find that the position of the first peak is largely displaced with respect to the expected position of the sound horizon scale at decoupling. In contrast, the relative spacings of the higher extrema are statistically consistent with those expected from perfect harmonic oscillations. This provides evidence for a scale dependent phase shift of the CMB oscillations which is caused by gravitational driving forces affecting the propagation of sound waves before recombination. By accounting for these effects we have performed a Markov Chain Monte Carlo likelihood analysis of the location of WMAP extrema to constrain, in combination with recent BAO data, a constant dark energy equation of state parameter w. For a flat universe we find a strong 2{sigma} upper limit w<-1.10, and including the Hubble Space Telescope prior, we obtain w<-1.14, which is only marginally consistent with limits derived from the Supernova Legacy Survey sample. On the other hand, we infer larger limits for nonflat cosmologies. From the full CMB likelihood analysis, we also estimate the values of the shift parameter R and the multipole l{sub a} of the acoustic horizon at decoupling for several cosmologies, to test their dependence on model assumptions. Although the analysis of the full CMB spectra should always be preferred, using the position of the CMB peaks and dips provides a simple and consistent method for combining CMB constraints with other data sets.

  20. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    DOE Patents [OSTI]

    Shekarriz, Alireza (Kennewick, WA); Sheen, David M. (Richland, WA)

    2000-01-01T23:59:59.000Z

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  1. acoustic focusing devices: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in suitable environment, therefore to produce maximum efficiency. In this paper, we present an acoustic wave actuated micro-generator for power system by using the energy of...

  2. Sound | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit with form HistoryRistmaSinosteelSolarSolkar SolarSomont GmbHSonnengeldSosSound

  3. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect (OSTI)

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H. [Laboratoire de Mécanique des Fluides et d’Acoustique, CNRS/Université de Lyon, Ecole Centrale de Lyon/Université Lyon 1/INSA de Lyon, ECL, 36 Avenue Guy de Collongue, 69134 Ecully Cedex (France); Garandet, J.-P. [CEA, Laboratoire d’Instrumentation et d’Expérimentation en Mécanique des Fluides et Thermohydraulique, DEN/DANS/DM2S/STMF/LIEFT, CEA-Saclay, F-91191 Gif-sur-Yvette Cedex (France)

    2014-09-15T23:59:59.000Z

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  4. Sound Waves, Thermal Conduction, and the Continuity Equation Carl Sovinec, T-15 LANL

    E-Print Network [OSTI]

    Sovinec, Carl

    Sound Waves, Thermal Conduction, and the Continuity Equation Carl Sovinec, T-15 LANL 8 to sound waves when we use thermal conduction in our system of equations without continuity. The fluid definitions 0 02 p c , defining c as the adiabatic sound speed, kc 1 , the time for the adiabatic wave

  5. Wave-Based Sound Propagation in Large Open Scenes using an Equivalent Source Formulation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Wave-Based Sound Propagation in Large Open Scenes using an Equivalent Source Formulation RAVISH We present a novel approach for wave-based sound propagation suitable for large, open spaces spanning or simulation systems, present a significant chal- lenge for interactive, wave-based sound propagation

  6. Sound Environment Analysis in Smart Home Mohamed A. Sehili1,3

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Sound Environment Analysis in Smart Home Mohamed A. Sehili1,3 , Benjamin Lecouteux2 , Michel Vacher evaluated thanks to a corpus of data acquired in a real smart home environment. The 4 steps of analysis be it for the modules evaluated in- dependently or for the whole system. Keywords: Smart Home, Sound Analysis, Sound

  7. SOUND CLASSIFICATION IN A SMART ROOM ENVIRONMENT: AN APPROACH USING GMM AND HMM METHODS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    be hospitalized at home and smart information systems would be needed in order to assist human operatorsSOUND CLASSIFICATION IN A SMART ROOM ENVIRONMENT: AN APPROACH USING GMM AND HMM METHODS Michel suited for sound classification. Until now, GMMs are frequently used for sound classification in smart

  8. Acoustic Modeling for Aqua Ventus I off Monhegan Island, ME

    SciTech Connect (OSTI)

    Whiting, Jonathan M.; Hanna, Luke A.; DeChello, Nicole L.; Copping, Andrea E.

    2013-10-31T23:59:59.000Z

    The DeepCwind consortium, led by the University of Maine, was awarded funding under the US Department of Energy’s Offshore Wind Advanced Technology Demonstration Program to develop two floating offshore wind turbines in the Gulf of Maine equipped with Goldwind 6 MW direct drive turbines, as the Aqua Ventus I project. The Goldwind turbines have a hub height of 100 m. The turbines will be deployed in Maine State waters, approximately 2.9 miles off Monhegan Island; Monhegan Island is located roughly 10 miles off the coast of Maine. In order to site and permit the offshore turbines, the acoustic output must be evaluated to ensure that the sound will not disturb residents on Monhegan Island, nor input sufficient sound levels into the nearby ocean to disturb marine mammals. This initial assessment of the acoustic output focuses on the sound of the turbines in air by modeling the assumed sound source level, applying a sound propagation model, and taking into account the distance from shore.

  9. Abstract--During lung sound recordings, an incessant noise source occurs due to heart sounds. The heart sound

    E-Print Network [OSTI]

    Moussavi, Zahra M. K.

    Abstract--During lung sound recordings, an incessant noise source occurs due to heart sounds. The heart sound interference on lung sounds is significant especially at low flow rates. In this paper a new to detect HN segments in the spectrogram of the recorded lung sound signal. Afterwards the algorithm removes

  10. Acoustic studies for alpha background rejection in dark matter bubble chamber detectors

    SciTech Connect (OSTI)

    Bou-Cabo, M.; Felis, I.; Ardid, M.; Collaboration: COUPP Collaboration

    2013-08-08T23:59:59.000Z

    COUPP (Chicagoland Observatory for Underground Particle Physics) is an experiment with bubble chambers able to detect dark matter directly either with Spin-Dependent or with Spin-Independent interactions. The target material is a superheated liquid (usually CF3I) that can be bubble nucleated due to nuclear recoils produced by elastic collisions of dark matter particles. The bubble growth inside the chamber is accompanied with an acoustic signature. The acoustic technique has been successfully used to have a good alpha discrimination (about 99%). In this paper, we present different studies and results related with the characterization of the acoustic properties of the detector and the different phenomena involved in the acoustic measurements of the bubble growth, such as sound generation, sound transmission and optimization of piezoelectric transducers.

  11. EIS-0160: Puget Sound Area Electric Reliability Plan

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Bonneville Power Administration prepared this statement to assess the environmental and socioeconomic implications of potential solutions to address a power system problem in the Puget Sound area of Washington State.

  12. Surface acoustic wave dust deposition monitor

    DOE Patents [OSTI]

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12T23:59:59.000Z

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  13. EFFECTS OF SOUND WAVES ON YOUNG SALMON

    E-Print Network [OSTI]

    EFFECTS OF SOUND WAVES ON YOUNG SALMON Marine Biological Laboratory X. 1 33 R A. RTT ir.':; WOODS instantaneously to sounds. It was con- were tested in an experimental tank and in eluded that sound waves were, Wash . sound studies conducted under the above contract are terminated. #12;EFFECTS OF SOUND WAVES

  14. Wave Equation for Sound in Fluids with Vorticity

    E-Print Network [OSTI]

    Santiago Esteban Perez Bergliaffa; Katrina Hibberd; Michael Stone; Matt Visser

    2001-06-13T23:59:59.000Z

    We use Clebsch potentials and an action principle to derive a closed system of gauge invariant equations for sound superposed on a general background flow. Our system reduces to the Unruh (1981) and Pierce (1990) wave equations when the flow is irrotational, or slowly varying. We illustrate our formalism by applying it to waves propagating in a uniformly rotating fluid where the sound modes hybridize with inertial waves.

  15. Observation of an Inverse Energy Cascade in Developed Acoustic Turbulence in Superfluid Helium

    E-Print Network [OSTI]

    A. N. Ganshin; V. B. Efimov; G. V. Kolmakov; L. P. Mezhov-Deglin; P. V. E. McClintock

    2009-01-27T23:59:59.000Z

    We report observation of an inverse energy cascade in second sound acoustic turbulence in He II. Its onset occurs above a critical driving energy and it is accompanied by giant waves that constitute an acoustic analogue of the rogue waves that occasionally appear on the surface of the ocean. The theory of the phenomenon is developed and shown to be in good agreement with the experiments.

  16. Acoustical “transparency” induced by local resonance in Bragg bandgaps

    SciTech Connect (OSTI)

    Yu, Gaokun; Wang, Xinlong, E-mail: xlwang@nju.edu.cn [Key Laboratory of Modern Acoustics and Institute of Acoustics, Nanjing University, Nanjing 210093 (China)

    2014-01-28T23:59:59.000Z

    We show that sound waves can resonantly transmit through Bragg bandgaps in an acoustical duct periodically attached with an array of Helmholtz resonators, forming within the normally forbidden band a transparency window with group velocity smaller than the normal speed of sound. The transparency occurs for the locally resonant frequency so much close to the Bragg one that both the local-resonance-induced bandgap and the Bragg one heavily overlap with each other. The phenomenon seems an acoustical analog of the well-known electromagnetically induced transparency by quantum interference. Different from the Fano-like interference explanation, we also provide a mechanism for the transparency window phenomenon which makes it possible to extend the phenomenon in general.

  17. 2011 Interference -1 INTERFERENCE OF SOUND WAVES

    E-Print Network [OSTI]

    Glashausser, Charles

    2011 Interference - 1 INTERFERENCE OF SOUND WAVES The objectives of this experiment are: · To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves. · To observe interference phenomena with ultrasonic sound waves. APPARATUS: Oscilloscope, function generator, ultrasonic

  18. A preliminary study of acoustic propagation in thick foam tissue scaffolds composed of poly(lactic-co-glycolic acid)

    E-Print Network [OSTI]

    Parker, N G; Morgan, S P; Povey, M J W

    2010-01-01T23:59:59.000Z

    The exclusive ability of acoustic waves to probe the structural, mechanical and fluidic properties of foams may offer novel approaches to characterise the porous scaffolds employed in tissue engineering. Motivated by this we conduct a preliminary investigation into the acoustic properties of a typical biopolymer and the feasibility of acoustic propagation within a foam scaffold thereof. Focussing on poly(lactic-co-glycolic acid), we use a pulse-echo method to determine the longitudinal speed of sound, whose temperature-dependence reveals the glass transition of the polymer. Finally, we demonstrate the first topographic and tomographic acoustic images of polymer foam tissue scaffolds.

  19. A preliminary study of acoustic propagation in thick foam tissue scaffolds composed of poly(lactic-co-glycolic acid)

    E-Print Network [OSTI]

    N. G. Parker; M. L. Mather; S. P. Morgan; M. J. W. Povey

    2010-02-26T23:59:59.000Z

    The exclusive ability of acoustic waves to probe the structural, mechanical and fluidic properties of foams may offer novel approaches to characterise the porous scaffolds employed in tissue engineering. Motivated by this we conduct a preliminary investigation into the acoustic properties of a typical biopolymer and the feasibility of acoustic propagation within a foam scaffold thereof. Focussing on poly(lactic-co-glycolic acid), we use a pulse-echo method to determine the longitudinal speed of sound, whose temperature-dependence reveals the glass transition of the polymer. Finally, we demonstrate the first topographic and tomographic acoustic images of polymer foam tissue scaffolds.

  20. Puget Sound area electric reliability plan. Draft environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1991-09-01T23:59:59.000Z

    The Puget Sound Area Electric Reliability Plan Draft Environmental Impact Statement (DEIS) identifies the alternatives for solving a power system problem in the Puget Sound area. This Plan is undertaken by Bonneville Power Administration (BPA), Puget Sound Power & Light, Seattle City Light, Snohomish Public Utility District No. 1 (PUD), and Tacoma Public Utilities. The Plan consists of potential actions in Puget Sound and other areas in the State of Washington. A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, there is more demand for power than the electric system can supply in the Puget Sound area. This high demand, called peak demand, occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies, the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both. The plan to balance Puget Sound`s power demand and supply has these purposes: The plan should define a set of actions that would accommodate ten years of load growth (1994--2003). Federal and State environmental quality requirements should be met. The plan should be consistent with the plans of the Northwest Power Planning Council. The plan should serve as a consensus guideline for coordinated utility action. The plan should be flexible to accommodate uncertainties and differing utility needs. The plan should balance environmental impacts and economic costs. The plan should provide electric system reliability consistent with customer expectations. 29 figs., 24 tabs.

  1. Ammonia availability shapes the seasonal distribution and activity of archaeal and bacterial ammonia oxidizers in the Puget Sound Estuary

    E-Print Network [OSTI]

    de la Torre, José R.

    ammonia oxidizers in the Puget Sound Estuary Hidetoshi Urakawa,1,a,* Willm Martens-Habbena,1 Carme Huguet, a fjord within the Puget Sound, Washington State estuary system. A greater contribution of AOA numbers of AOA in Hood Canal, a fjord in the Puget Sound estuary system (Urakawa et al. 2010; Horak et al

  2. Localization with Dive'N'Rise (DNR) Beacons for Underwater Acoustic Sensor Networks

    E-Print Network [OSTI]

    Zhou, Shengli

    Localization with Dive'N'Rise (DNR) Beacons for Underwater Acoustic Sensor Networks Melike Erol-Based Systems]: Underwater acoustic sensor networks - localization General Terms: Performance Keywords: Underwater sensor networks, localization, positioning, mobile beacon 1. INTRODUCTION Pollution monitoring

  3. Scanning acoustic microscopy for mapping the microstructure of soft materials

    E-Print Network [OSTI]

    N. G. Parker; M. J. W. Povey

    2009-04-30T23:59:59.000Z

    Acoustics provides a powerful modality with which to 'see' the mechanical properties of a wide range of elastic materials. It is particularly adept at probing soft materials where excellent contrast and propagation distance can be achieved. We have constructed a scanning acoustic microscope capable of mapping the microstructure of such materials. We review the general principles of scanning acoustic microscopy and present new examples of its application in imaging biological matter, industrial materials and particulate systems.

  4. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, VOL. 15, NO. 4, AUGUST 2006 957 Acoustic Picoliter Droplets for Emerging Applications

    E-Print Network [OSTI]

    Demirci, Utkan

    an impact on semiconductor industry and microelectromechanical systems technologies. We demonstrate a direct

  5. Sound propagation around underwater seamounts

    E-Print Network [OSTI]

    Sikora, Joseph J., III

    2009-01-01T23:59:59.000Z

    In the ocean, low frequency acoustic waves propagate with low attenuation and cylindrical spreading loss over long-ranges, making them an effective tool for underwater source localization, tomography, and communications. ...

  6. Heat transfer in sound propagation and attenuation through gas-liquid polyhedral foams

    E-Print Network [OSTI]

    Yuri M. Shtemler; Isaac R. Shreiber

    2007-05-20T23:59:59.000Z

    A cell method is developed, which takes into account the bubble geometry of polyhedral foams, and provides for the generalized Rayleigh-Plesset equation that contains the non-local in time term corresponding to heat relaxation. The Rayleigh-Plesset equation together with the equations of mass and momentum balances for an effective single-phase inviscid fluid yield a model for foam acoustics. The present calculations reconcile observed sound velocity and attenuation with those predicted using the assumption that thermal dissipation is the dominant damping mechanism in a range of foam expansions and sound excitation frequencies.

  7. Well conditioned boundary integral equations for two-dimensional sound-hard scattering problems in domains with corners

    E-Print Network [OSTI]

    Turc, Catalin

    Well conditioned boundary integral equations for two-dimensional sound-hard scattering problems-posed, well conditioned integral equation formulations for the solution of two-dimensional acoustic scattering-order, rapidly convergent numerical methods based on well-conditioned boundary integral equations for the case

  8. Marine Animal Alert System -- Task 2.1.5.3: Development of Monitoring Technologies -- FY 2011 Progress Report

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Deng, Zhiqun; Myers, Joshua R.; Matzner, Shari; Copping, Andrea E.

    2011-09-30T23:59:59.000Z

    The Marine Animal Alert System (MAAS) in development by the Pacific Northwest National Laboratory is focused on providing elements of compliance monitoring to support deployment of marine hydrokinetic energy devices. An initial focus is prototype tidal turbines to be deployed in Puget Sound in Washington State. The MAAS will help manage the risk of injury or mortality to marine animals from blade strike or contact with tidal turbines. In particular, development has focused on detection, classification, and localization of listed Southern Resident killer whales within 200 m of prototype turbines using both active and passive acoustic approaches. At the close of FY 2011, a passive acoustic system consisting of a pair of four-element star arrays and parallel processing of eight channels of acoustic receptions has been designed and built. Field tests of the prototype system are scheduled for the fourth quarter of calendar year 2011. Field deployment and testing of the passive acoustic prototype is scheduled for the first quarter of FY 2012. The design of an active acoustic system that could be built using commercially available off-the-shelf components from active acoustic system vendors is also in the final stages of design and specification.

  9. Puget Sound Dredged Disposal Analysis

    SciTech Connect (OSTI)

    Urabeck, F.J.; Phillips, K.E.

    1992-04-01T23:59:59.000Z

    Future disposal of dredged material in the Puget Sound estuary of the State of Washington is of major interest to Federal, state, and local governmental regulatory agencies, as well as those responsible for maintaining existing waterways and harbors. Elevated levels of toxic chemicals exist in bottom sediments of all the urban bays, with tumors and other biological abnormalities found in bottom fish associated with these water bodies. Public awareness of this situation has been heightened by extensive media coverage of recent government investigations of environmental conditions in Puget Sound. These investigations and public concerns have led to three ongoing regional planning efforts, all of which deal with Puget Sound water quality and marine bottom sediments. This paper reports on the Puget Sound Dredged Disposal Analysis (PSDDA), a 3-year joint Federal-state study primarily focusing on unconfined, open-water disposal of material dredged from Federal and non-Federal navigation projects. Study objectives include (a) selection of unconfined, open-water disposal sites; (b) development of sampling, testing, and test interpretation procedures to be used in evaluating the suitability of dredged material for disposal in Puget Sound waters; and (c) formulation of disposal site management plans. Preliminary findings for each of these objectives are discussed for central Puget Sound, which includes the ports of Seattle, Tacoma, and Everett.

  10. Puget Sound Area Electric Reliability Plan : Draft Environmental Impact State.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01T23:59:59.000Z

    The Puget Sound Area Electric Reliability Plan Draft Environmental Impact Statement (DEIS) identifies the alternatives for solving a power system problem in the Puget Sound area. This Plan is undertaken by Bonneville Power Administration (BPA), Puget Sound Power Light, Seattle City Light, Snohomish Public Utility District No. 1 (PUD), and Tacoma Public Utilities. The Plan consists of potential actions in Puget Sound and other areas in the State of Washington. A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, there is more demand for power than the electric system can supply in the Puget Sound area. This high demand, called peak demand, occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies, the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both. The plan to balance Puget Sound's power demand and supply has these purposes: The plan should define a set of actions that would accommodate ten years of load growth (1994--2003). Federal and State environmental quality requirements should be met. The plan should be consistent with the plans of the Northwest Power Planning Council. The plan should serve as a consensus guideline for coordinated utility action. The plan should be flexible to accommodate uncertainties and differing utility needs. The plan should balance environmental impacts and economic costs. The plan should provide electric system reliability consistent with customer expectations. 29 figs., 24 tabs.

  11. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  12. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16T23:59:59.000Z

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  13. Acoustic well cleaner

    DOE Patents [OSTI]

    Maki, Jr., Voldi E. (11904 Bell Ave., Austin, TX 78759-2415); Sharma, Mukul M. (Dept. of Petroleum Engr. Univ. of Texas, Austin, TX 78712)

    1997-01-21T23:59:59.000Z

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  14. An efficient approximation for the vibro-acoustic response of a turbulent boundary layer excited panel

    E-Print Network [OSTI]

    Boyer, Edmond

    hal-01004463,version1-11Jun2014 Author manuscript, published in "Journal of Sound and Vibration 264, 4 and the acoustic pressure radiated when a thin elastic plate is immersed in a low Mach number flow of fluid. The mechanical properties of this panel are a Young's modulus E, a Pois- son coefficient and a mass per unit

  15. ECOLOGY AND BEHAVIOR Acoustic Indicators for Targeted Detection of Stored Product and

    E-Print Network [OSTI]

    by infrared sensors, microphones, and a piezoelectric sensor in a small arena to evaluate effects of insect Pests by Inexpensive Infrared, Acoustic, and Vibrational Detection of Movement R. W. MANKIN,1 R. D crawling, but could be detected when scraping. Sound and vibration sensors detected brief, 3Ð10-ms impulses

  16. Design and implementation of an underwater sound recording device

    SciTech Connect (OSTI)

    Martinez, Jayson J.; Myers, Joshua R.; Carlson, Thomas J.; Deng, Zhiqun; Rohrer, John S.; Caviggia, Kurt A.

    2011-09-19T23:59:59.000Z

    The purpose of this study was to design and build two versions of an underwater sound recording device. The device designed is referred to as the Underwater Sound Recorder (USR), which can be connected to one or two hydrophones or other underwater sound sensors. The URS contains a 26 dB preamplifier and a user selectable gain that permits additional amplification of input to the system from 26 dB to 46 dB. Signals within the frequency range up to 15 kHz may be recorded using the USR. Examples of USR applications are monitoring underwater processes that have the potential to create large pressure waves that could potentially harm fish or other aquatic life, such as underwater explosions or pile driving. Additional applications are recording sound generated by vessels or the vocalizations of some marine mammals, such as the calls from many species of whales.

  17. Acoustic resonance spectroscopy for safeguards

    SciTech Connect (OSTI)

    Olinger, C.T. [Los Alamos National Lab., NM (United States)

    1994-12-31T23:59:59.000Z

    Acoustic resonance spectroscopy (ARS) nonintrusively assesses changes in a sealed item, such as a special nuclear material (SNM) container. The acoustic spectrum of a container is a function of its geometry, material of construction, and occupied volume and a function of the parameters of the contents, such as acoustic velocity, viscosity, and composition. Measuring the spectrum establishes a fingerprint for that item. Monitoring for changes in the fingerprint can be used to detect intrinsic changes in the contents or tampering. Spectra are obtained by inducing vibrations in a container at a given frequency with one transducer and detecting the vibrational response at that frequency with a second transducer. The excitation and detection frequency is then incremented until the desired frequency range is sampled. If desired, the signature can then be reduced to a series of resonant peaks, which facilitates the comparison of spectra for many applications. Required measurement time is typically 10 to 40 s, depending on the measurement range and resolution. Useful attributes of ARS are that spectra respond to various parameters differently, only a few seconds are required to perform an ARS measurement, and measurements can be performed without disturbing the container or its contents. Analysis for these applications of ARS is based on comparison of spectra from the same item taken at different times, so anomalies can be detected without any modeling of the system. However, some theoretical modeling can aid in interpreting spectra.

  18. acoustic radiation force: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems Peder of Denmark 31 January 2008 12;ii 12;Abstract Within the field of microfluidics and lab-on-a-chip systems 9 Identification of the acoustic component in the...

  19. acoustic radiation forces: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems Peder of Denmark 31 January 2008 12;ii 12;Abstract Within the field of microfluidics and lab-on-a-chip systems 9 Identification of the acoustic component in the...

  20. Optimal control techniques for thermo-acoustic tomography Maitine Bergounioux

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . These hybrid systems use an electromagnetic pulse as an input and record ultrasound waves as an output-acoustic tomography (TAT) when the heating is realized by means of microwaves, and of photo-acoustic tomography (PAT) when optical heating is used. While in TAT waves of radio frequency range are used to trigger

  1. IMMERSIVE SOUND RENDERING USING LASER-BASED TRACKING Panayiotis G. Georgiou, Athanasios Mouchtaris, Stergios I. Roumeliotis, Chris Kyriakakis

    E-Print Network [OSTI]

    Roumeliotis, Stergios I.

    IMMERSIVE SOUND RENDERING USING LASER-BASED TRACKING Panayiotis G. Georgiou, Athanasios Mouchtaris behind the spatial sound renderer built at the University of Southern California's Immersive Audio Laboratory. In creating this sound rendering system, we were faced with three main challenges. First

  2. Acoustic velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, Edwin F. (Alamo, CA)

    1986-01-01T23:59:59.000Z

    Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  3. Acoustic-velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, E.F.

    1982-09-30T23:59:59.000Z

    Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  4. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-06-04T23:59:59.000Z

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  5. Spacetime transformation acoustics

    E-Print Network [OSTI]

    C. García-Meca; S. Carloni; C. Barceló; G. Jannes; J. Sánchez-Dehesa; A. Martínez

    2014-07-08T23:59:59.000Z

    A recently proposed analogue transformation method has allowed the extension of transformation acoustics to general spacetime transformations. We analyze here in detail the differences between this new analogue transformation acoustics (ATA) method and the standard one (STA). We show explicitly that STA is not suitable for transformations that mix space and time. ATA takes as starting point the acoustic equation for the velocity potential, instead of that for the pressure as in STA. This velocity-potential equation by itself already allows for some transformations mixing space and time, but not all of them. We explicitly obtain the entire set of transformations that do not leave its form invariant. It is in these cases that ATA shows its true potential, allowing for building a transformation acoustics method that enables the full range of spacetime transformations. We provide an example of an important transformation which cannot be achieved with STA. Using this transformation, we design and simulate an acoustic frequency converter via the ATA approach. Furthermore, in those cases in which one can apply both the STA and ATA approaches, we study the different transformational properties of the corresponding physical quantities.

  6. Active micromixer using surface acoustic wave streaming

    DOE Patents [OSTI]

    Branch; Darren W. (Albuquerque, NM), Meyer; Grant D. (Ithaca, NY), Craighead; Harold G. (Ithaca, NY)

    2011-05-17T23:59:59.000Z

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  7. Thermoacoustic tomography, variable sound speed Plamen Stefanov

    E-Print Network [OSTI]

    Stefanov, Plamen

    Thermoacoustic tomography, variable sound speed Plamen Stefanov Purdue University Based on a joint work with Gunther Uhlmann Plamen Stefanov (Purdue University ) Thermoacoustic tomography, variable sound speed 1 / 18 #12;Formulation Main Problem Thermoacoustic Tomography In thermoacoustic tomography

  8. Diving with microparticles in acoustic fields

    E-Print Network [OSTI]

    Marin, Alvaro; Barnkob, Rune; Augustsson, Per; Muller, Peter; Bruus, Henrik; Laurell, Thomas; Kaehler, Christian

    2012-01-01T23:59:59.000Z

    Sound can move particles. A good example of this phenomenon is the Chladni plate, in which an acoustic wave is induced in a metallic plate and particles migrate to the nodes of the acoustic wave. For several years, acoustophoresis has been used to manipulate microparticles in microscopic scales. In this fluid dynamics video, submitted to the 30th Annual Gallery of Fluid Motion, we show the basic mechanism of the technique and a simple way of visualize it. Since acoustophoretic phenomena is essentially a three-dimensional effect, we employ a simple technique to visualize the particles in 3D. The technique is called Astigmatism Particle Tracking Velocimetry and it consists in the use of cylindrical lenses to induce a deformation in the particle shape, which will be then correlated with its distance from the observer. With this method we are able to dive with the particles and observe in detail particle motion that would otherwise be missed. The technique not only permits visualization but also precise quantitat...

  9. Acoustic radiation force on a double-layer microsphere by a Gaussian focused beam

    SciTech Connect (OSTI)

    Wu, Rongrong; Cheng, Kaixuan; Liu, Jiehui; Mao, Yiwei; Gong, Xiufen [Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); Liu, Xiaozhou, E-mail: xzliu@nju.edu.cn [Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)

    2014-10-14T23:59:59.000Z

    A new model for calculating the radiation force on double-layer microsphere is proposed based on the ray acoustics approach. The axial acoustic radiation force resulting from a focused Gaussian beam incident on spherical shells immersed in water is examined theoretically in relation to its thickness and the contents of its double-layer. The attenuation both in the water and inside the sphere is considered in this method, which cannot be ignored while the high frequency ultrasonic is used. Results of numerical calculations are presented for fat and low density polyethylene materials, with the hollow region filled with animal oil, water, or air. These results show how the acoustic impedance and the sound velocity of both layers, together with the thickness of the shell, affect the acoustic radiation force.

  10. Method and apparatus for separating mixtures of gases using an acoustic wave

    DOE Patents [OSTI]

    Geller, Drew A.; Swift, Gregory W.; Backhaus, Scott N.

    2004-05-11T23:59:59.000Z

    A thermoacoustic device separates a mixture of gases. An elongated duct is provided with first and second ends and has a length that is greater than the wavelength of sound in the mixture of gases at a selected frequency, and a diameter that is greater than a thermal penetration depth in the mixture of gases. A first acoustic source is located at the first end of the duct to generate acoustic power at the selected frequency. A plurality of side branch acoustic sources are spaced along the length of the duct and are configured to introduce acoustic power into the mixture of gases so that a first gas is concentrated at the first end of the duct and a second gas is concentrated at the second end of the duct.

  11. Acoustic emission intrusion detector

    DOE Patents [OSTI]

    Carver, Donald W. (Knoxville, TN); Whittaker, Jerry W. (Knoxville, TN)

    1980-01-01T23:59:59.000Z

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  12. Report of the Puget Sound Expedition

    E-Print Network [OSTI]

    Report of the Puget Sound Expedition September 8-16, 1998 A Rapid Assessment Survey of Non-indigenous Species in the Shallow Waters of Puget Sound Prepared by Andrew Cohen, Claudia Mills, Helen Berry Olympia, WA 98504-7027 (360) 902-1100 #12;Report of the Puget Sound Expedition Sept. 8-16, 1998 Contents

  13. S10-Sound-Interference -1 -Page 1 of 8 INTERFERENCE OF SOUND WAVES

    E-Print Network [OSTI]

    Glashausser, Charles

    S10-Sound-Interference - 1 - Page 1 of 8 INTERFERENCE OF SOUND WAVES PURPOSE: To measure the wavelength, frequency, and propagation speed of ultrasonic sound waves and to observe interference phenomena with ultrasonic sound waves. APPARATUS: Oscilloscope, function generator, transducers, meter stick, angle board

  14. EXPERIMENTS ON CROSSLANGUAGE ACOUSTIC MODELING T. Schultz and A. Waibel

    E-Print Network [OSTI]

    Schultz, Tanja

    studies we applied acoustic models from four languages to bootstrap Chinese, Croatian, and Turkish [5]. We applied monolingual systems from Chinese, Croatian, German, French, Japanese, Spanish and Turkish, as well

  15. A comparison of the response of a captive carried store to both reverberant and progressive wave acoustic excitation

    SciTech Connect (OSTI)

    Cap, J.S.

    1995-12-31T23:59:59.000Z

    Stores carried on high performance military aircraft are exposed to severe vibroacoustic environments which are caused by several different sources. Two methods available for simulating the acoustic portion of this environment in the laboratory are reverberant chambers and progressive wave tubes. The literature indicates that structures will respond differently to each of these acoustic sources as a function of frequency for the same Sound Pressure Level. Sandia National Laboratories participated in a test program that obtained acoustic data for a common store using both types of acoustic excitation. The purpose of this paper is to present the results from those tests in such a way so as to document the existence or absence of any significant differences in the coupling efficiencies for these acoustic sources.

  16. KILLER WHALE, Orcinus orca, SOUNDS REPEL WHITE WHALES, D elphinapterus leucas

    E-Print Network [OSTI]

    to the sounds. Theil' transmitting sys- tem was similar to the high-power system de- scribed here which we used. While in the river the whales feed on salmon smolt migrating down to the sea. Transmission of killer for underwater sound transmission. Most other workers at- tempting to influence the movement of wild whales

  17. On viscosity, conduction and sound waves in the intracluster medium

    E-Print Network [OSTI]

    A. C. Fabian; C. S. Reynolds; G. B. Taylor; R. J. H. Dunn

    2005-08-04T23:59:59.000Z

    Recent X-ray and optical observations of the Perseus cluster indicate that the viscous and conductive dissipation of sound waves is the mechanism responsible for heating the intracluster medium and thus balancing radiative cooling of cluster cores. We discuss this mechanism more generally and show how the specific heating and cooling rates vary with temperature and radius. It appears that the heating mechanism is most effective above 10^7K, which allows for radiative cooling to proceed within normal galaxy formation but will stifle the growth of very massive galaxies. The scaling of the wavelength of sound waves with cluster temperature and feedback in the system are investigated.

  18. Sound waves and the absence of Galilean invariance in flocks

    E-Print Network [OSTI]

    Yuhai Tu; John Toner; Markus Ulm

    1997-10-21T23:59:59.000Z

    We study a model of flocking for a very large system (N=320,000) numerically. We find that in the long wavelength, long time limit, the fluctuations of the velocity and density fields are carried by propagating sound modes, whose dispersion and damping agree quantitatively with the predictions of our previous work using a continuum equation. We find that the sound velocity is anisotropic and characterized by its speed $c$ for propagation perpendicular to the mean velocity $$, $$ itself, and a third velocity $\\lambda $, arising explicitly from the lack of Galilean invariance in flocks.

  19. and the Brain Sound may seem a straightforward physical phenom-

    E-Print Network [OSTI]

    Hill, Wendell T.

    Hearing and the Brain Sound may seem a straightforward physical phenom- enon, whose waves can be recorded, charted and parsed. But no machines can do what the human brain does--understand a wide variety of electrical and computer engineering and member of the Institute for Systems Research, studies how the brain

  20. Experimenting with Sound Immersion in an Arts and Crafts Museum

    E-Print Network [OSTI]

    Boyer, Edmond

    Experimenting with Sound Immersion in an Arts and Crafts Museum Fatima-Zahra Kaghat, Cécile Le.azough, leprado, cubaud}@cnam.fr, areti.damala@gmail.com Abstract. Technical museums are goods targets wireless devices. Our system takes into consideration the position of museum visitors as well

  1. Sound damping constant for generalized theories of gravity

    SciTech Connect (OSTI)

    Brustein, Ram [Department of Physics, Ben-Gurion University, Beer-Sheva, 84105 (Israel); Medved, A. J. M. [Physics Department, University of Seoul, Seoul 130-743 (Korea, Republic of)

    2009-06-15T23:59:59.000Z

    The near-horizon metric for a black brane in anti-de Sitter space and the metric near the AdS boundary both exhibit hydrodynamic behavior. We demonstrate the equivalence of this pair of hydrodynamic systems for the sound mode of a conformal theory. This is first established for Einstein's gravity, but we then show how the sound damping constant will be modified from its Einstein form for a generalized theory. The modified damping constant is expressible as the ratio of a pair of gravitational couplings that are indicative of the sound-channel class of gravitons. This ratio of couplings differs from both that of the shear diffusion coefficient and the shear viscosity to entropy ratio. Our analysis is mostly limited to conformal theories, but suggestions are made as to how this restriction might eventually be lifted.

  2. Vol. 11, No. 8/August 1994/J. Opt. Soc. Am. B 1367 Acoustic-wavenonlinearity in stimulated

    E-Print Network [OSTI]

    Coutsias, Evangelos

    in liquids, and hence the compressed regions or crests of the mate- rial wave overtake the rarefied regions by Kuznetsov8 for problems in nonlinear acoustics. In addition to the non- linearity that arises from the sound speed's dependence on the instantaneous thermodynamic state, Kuznetsov's equation also includes

  3. Acoustic imaging of a duct spinning mode by the use of an in-duct circular microphone array

    E-Print Network [OSTI]

    Huang, Xun

    acoustic images of spinning modes in a duct cross section in real-time. Advanced signal processing theory duct. In particular, the rotating fan and stator assembly is mainly responsible for the generation be mounted on a pipe to stimulate a spinning mode. The sound propagation process can be simu- lated using

  4. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM); Anthony, Brian W. (Clearfield, PA)

    1997-01-01T23:59:59.000Z

    A method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries.

  5. Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves

    SciTech Connect (OSTI)

    Destgeer, Ghulam; Im, Sunghyuk; Hang Ha, Byung; Ho Jung, Jin; Ahmad Ansari, Mubashshir; Jin Sung, Hyung, E-mail: hjsung@kaist.ac.kr [Department of Mechanical Engineering, KAIST, 291 Daejak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2014-01-13T23:59:59.000Z

    We demonstrate a simple device to generate chemical concentration gradients in a microfluidic channel using focused travelling surface acoustic waves (F-TSAW). A pair of curved interdigitated metal electrodes deposited on the surface of a piezoelectric (LiNbO{sub 3}) substrate disseminate high frequency sound waves when actuated by an alternating current source. The F-TSAW produces chaotic acoustic streaming flow upon its interaction with the fluid inside a microfluidic channel, which mixes confluent streams of chemicals in a controlled fashion for an adjustable and rapidly switching gradient generation.

  6. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, D.N.; Anthony, B.W.

    1997-02-25T23:59:59.000Z

    A method is described for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries. 3 figs.

  7. SPECIES RECOGNITION IS DRIVING EVOLUTION OF THE ACOUSTIC MATING SYSTEM OF SHIELD BACK KATYDIDS (ORTHOPTERA: TETTIGONIIDAE: AGLAOTHORAX): BEHAVIORAL AND PHYLOGENETIC EVIDENCE

    E-Print Network [OSTI]

    Cole, Jeffrey A.

    2009-12-01T23:59:59.000Z

    of the five Aglaothorax species. The songs of four acoustically aberrant populations were classified as unknowns: Arroyo Seco (site 6), Millard Canyon (17), Kenneth Hahn (12), and Malaga Dune (15). The first two populations represent nominate A. morsei... described from the Santa Monica Mountains (Table 2). Millard Canyon (17) and Arroyo Seco (6) populations are nominate A. morsei morsei from the San Gabriel Mountains, but songs of the former were identified exclusively as A. diminutiva, and those...

  8. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-01-01T23:59:59.000Z

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  9. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers

    E-Print Network [OSTI]

    Baresch, Diego; Marchiano, Régis

    2014-01-01T23:59:59.000Z

    The ability to manipulate matter precisely is critical for the study and development of a large variety of systems. Optical tweezers are excellent tools to handle particles ranging in size from a few micrometers to hundreds of nanometers but become inefficient and damaging on larger objects. We demonstrate for the first reported time the trapping of elastic particles by the large gradient force of a single acoustical beam in three dimensions. We show that at equal power, acoustical forces overtake by 8 orders of magnitude that of optical ones on macroscopic objects. Acoustical tweezers can push, pull and accurately control both the position of the particle and the forces exerted under damage-free conditions. The large spectrum of frequencies covered by coherent ultrasonic sources will provide a wide variety of manipulation possibilities from macro- to microscopic length scales. We believe our observations improve the prospects for wider use of non-contact manipulation in biology, biophysics, microfluidics and...

  10. Acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1988-01-01T23:59:59.000Z

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  11. Puget Sound Area Electric Reliability Plan : Final Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-04-01T23:59:59.000Z

    A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, and during certain conditions, there is more demand for power in the Puget Sound area than the transmission system and existing generation can reliably supply. This high demand, called peak demand occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both.

  12. Advanced structure-borne sound Wave mobilities

    E-Print Network [OSTI]

    Berlin,Technische Universität

    ^p e j(v -p ) · Wave mobilities © Prof. B.A.T. Petersson Advanced structure-borne sound · Decomposed1 Advanced structure-borne sound p(kx) v(kx) v = p Y = ^ve- jkx x ejv ^pe- jkx x e jp = ^v ^p = ^v;2 Advanced structure-borne sound · Interface mobilities s C kp = 2p C kq = 2q C ; p = 0 ±1 ±2 ±3... ; q = 0

  13. Zero sound in dipolar Fermi gases

    SciTech Connect (OSTI)

    Ronen, Shai [JILA and Department of Physics, University of Colorado, Boulder, Colorado 80301 (United States); Institute for Theoretical Physics, University of Innsbruck, and Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck (Austria); Bohn, John L. [JILA and Department of Physics, University of Colorado, Boulder, Colorado 80301 (United States)

    2010-03-15T23:59:59.000Z

    We study the propagation of sound in a homogeneous dipolar gas at zero temperature, which is known as zero sound. We find that undamped zero sound propagation is possible only in a range of solid angles around the direction of polarization of the dipoles. Above a critical dipole moment, we find an unstable mode, by which the gas collapses locally perpendicular to the dipoles' direction.

  14. Three-Dimensional Nonlinear Acoustical Holography

    E-Print Network [OSTI]

    Niu, Yaying

    2013-05-06T23:59:59.000Z

    Nearfield Acoustical Holography (NAH) is an acoustic field visualization technique that can be used to reconstruct three-dimensional (3-D) acoustic fields by projecting two-dimensional (2-D) data measured on a hologram surface. However, linear NAH...

  15. Acoustic cavitation and its chemical consequences

    E-Print Network [OSTI]

    Suslick, Kenneth S.

    Acoustic cavitation and its chemical consequences By Kenneth S. Suslick, Yuri Didenko, Ming M. Fang Acoustic cavitation is responsible for both sonochemistry and sonoluminescence. Bubble collapse in liquids, sonochemistry and sonoluminescence derive principally from acoustic cavitation: the formation, growth

  16. Schlumberger Resistivity Soundings At North Brawley Geothermal...

    Open Energy Info (EERE)

    due to the success of a geothermal power plant at the southern part of Imperial Valley in Cerro Prieto, Mexico. Notes Schlumberger depth soundings were conducted across Imperial...

  17. Schlumberger Resistivity Soundings At Chena Geothermal Area ...

    Open Energy Info (EERE)

    Schlumberger Resistivity Soundings Activity Date 1979 - 1980 Usefulness useful DOE-funding Unknown Exploration Basis Geophysical studies through the University of Alaska...

  18. Experiment Indicates Sound Waves Can Trigger Quakes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in a laboratory setting, a Los Alamos researcher and his colleagues have shown that seismic waves-the sounds radiated from earthquakes-can induce earthquake aftershocks, often...

  19. Development of a geothermal acoustic borehole televiewer

    SciTech Connect (OSTI)

    Heard, F.E.; Bauman, T.J.

    1983-08-01T23:59:59.000Z

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  20. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD); Chandran, Ravi (Ellicott City, MD)

    1994-01-01T23:59:59.000Z

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  1. acoustics: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 4 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  2. Dynamic Range Adaptation to Sound Level Statistics in the Auditory Nerve

    E-Print Network [OSTI]

    Dean, Isabel

    The auditory system operates over a vast range of sound pressure levels (100–120 dB) with nearly constant discrimination ability across most of the range, well exceeding the dynamic range of most auditory neurons (20–40 ...

  3. Assessment of Ocean Prediction Model for Naval Operations Using Acoustic Preset

    E-Print Network [OSTI]

    Chu, Peter C.

    the effectiveness of high technology sensor and weapon systems, it is essential to understand the impact on them of the acoustic sensors employed and the success of any associated weapon systems. Since acoustic sensors detect. Such quantitative analyses offer a means to optimize the ASW requirements and technical capabilities of new weapon

  4. The electron geodesic acoustic mode

    SciTech Connect (OSTI)

    Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Guzdar, P. N. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Kaw, P. K. [Institute for Plasma Research Bhat, Gandhinagar 382428 (India)

    2012-09-15T23:59:59.000Z

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  5. Acoustic metafluids Andrew N. Norrisa

    E-Print Network [OSTI]

    Norris, Andrew

    of material that surrounds the object to be rendered acoustically "invisible." Stealth can also be achieved of material necessary to achieve stealth. We define these materials as acoustic metafluids, which as we are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials

  6. Satellite Infrared Soundings From NOAA Spacecraft

    E-Print Network [OSTI]

    NOAA Tec / Satellite Infrared Soundings From NOAA Spacecraft #12;U.S. DEPARTMENT OF COMMERCE Infrared Soundings From NOAA Spacecraft L. M. McMillin D. Q. Wark J. M. Siomkajlo P. G. Abel A. Werbowetzki. E. Bittner C. M. Hayden #12;UDC 551.507.362.2:551.508.2:551.501.7:535-1 Physics Infrared radiation

  7. Generalised Soundness of Workflow Nets is Decidable

    E-Print Network [OSTI]

    Sidorova, Natalia

    Generalised Soundness of Workflow Nets is Decidable Kees van Hee, Natalia Sidorova, and Marc investigate the decidability of the problem of generalised soundness for Workflow nets: ``Every marking with considering simple correctness criteria for Workflow nets and reduce them to the check of structural

  8. Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control

    SciTech Connect (OSTI)

    Kelley, N.D.; McKenna, H.E.; Hemphill, R.R.; Etter, C.L.; Garrelts, R.L.; Linn, N.C.

    1985-02-01T23:59:59.000Z

    This report summarizes extensive research by staff of the Solar Energy Research Institute and its subcontractors conducted to establish the origin and possible amelioration of acoustic disturbances associated with the operation of the DOE/NASA MOD-1 wind turbine installed in 1979 near Boone, North Carolina. Results have shown that the source of this acoustic annoyance was the transient, unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the low-frequency, acoustic impulses propagated into the structures in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing. Several techniques for reducing the abrupt, unsteady blade load transients were researched and are discussed in the report.

  9. Opto-acoustic thrombolysis

    DOE Patents [OSTI]

    Celliers, Peter (Berkeley, CA); Da Silva, Luiz (Danville, CA); Glinsky, Michael (Livermore, CA); London, Richard (Orinda, CA); Maitland, Duncan (Livermore, CA); Matthews, Dennis (Moss Beach, CA); Fitch, Pat (Livermore, CA)

    2000-01-01T23:59:59.000Z

    This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.

  10. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Almos, NM)

    1999-01-01T23:59:59.000Z

    Apparatus and method for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described.

  11. Converting acoustic energy into useful other energy forms

    DOE Patents [OSTI]

    Putterman, Seth J. (Sherman Oaks, CA); Barber, Bradley Paul (Northridge, CA); Hiller, Robert Anthony (Los Angeles, CA); Lofstedt, Ritva Maire Johanna (Los Angeles, CA)

    1997-01-01T23:59:59.000Z

    Sonoluminescence is an off-equilibrium phenomenon in which the energy of a resonant sound wave in a liquid is highly concentrated so as to generate flashes of light. The conversion of sound to light represents an energy amplification of eleven orders of magnitude. The flashes which occur once per cycle of the audible or ultrasonic sound fields can be comprised of over one million photons and last for less 100 picoseconds. The emission displays a clocklike synchronicity; the jitter in time between consecutive flashes is less than fifty picoseconds. The emission is blue to the eye and has a broadband spectrum increasing from 700 nanometers to 200 nanometers. The peak power is about 100 milliWatts. The initial stage of the energy focusing is effected by the nonlinear oscillations of a gas bubble trapped in the liquid. For sufficiently high drive pressures an imploding shock wave is launched into the gas by the collapsing bubble. The reflection of the shock from its focal point results in high temperatures and pressures. The sonoluminescence light emission can be sustained by sensing a characteristic of the emission and feeding back changes into the driving mechanism. The liquid is in a sealed container and the seeding of the gas bubble is effected by locally heating the liquid after sealing the container. Different energy forms than light can be obtained from the converted acoustic energy. When the gas contains deuterium and tritium there is the feasibility of the other energy form being fusion, namely including the generation of neutrons.

  12. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOE Patents [OSTI]

    Sinha, D.N.

    1999-03-23T23:59:59.000Z

    Apparatus and method are disclosed for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described. 5 figs.

  13. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOE Patents [OSTI]

    Datskos, Panagiotis G.

    2003-11-25T23:59:59.000Z

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  14. Central Puget Sound freeway network usage and performance. Research report

    SciTech Connect (OSTI)

    Ishimaru, J.M.; Hallenbeck, M.E.

    1999-03-01T23:59:59.000Z

    The summary report presents an overview of the level of traveler usage (e.g., how many vehicles use the freeways) and travel performance (e.g., how fast they are traveling, where and how often congestion occurs) on the principal urban freeways in the central Puget Sound area for 1997. Data presented in this report were collected by the Washington State Department of Transportation`s (WDSOT`s) freeway surveillance system.

  15. achieve uniform sound: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Sound Renderer Computer Technologies and Information Sciences Websites Summary: sound waves propagation is achieved by the ECHO module using an original hierarchical radiant...

  16. Analysis Procedure And Equipment For Deep Geoelectrical Soundings...

    Open Energy Info (EERE)

    Soundings In Noisy Areas Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Analysis Procedure And Equipment For Deep Geoelectrical Soundings...

  17. Copyright c 200x Tech Science Press CMES, vol.x, no.x, pp.1-12, 200x Perfectly matched layer for acoustic waveguide modeling --benchmark

    E-Print Network [OSTI]

    Lu, Ya Yan

    waveg- uides, one-way wave equations. 1 Introduction As a simple model used in ocean acoustics [Jensen layer. In numerical sim- ulations for sound waves in the ocean, for example using the Parabolic Equation to solve a range- dependent benchmark problem (wedge with penetrable bottoms) [Jensen and Ferla (1990

  18. Electromagnetic acoustic transducer

    DOE Patents [OSTI]

    Alers, George A. (Albuquerque, NM); Burns, Jr., Leigh R. (Albuquerque, NM); MacLauchlan, Daniel T. (Sandia Park, NM)

    1988-01-01T23:59:59.000Z

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  19. Nonlinear Sound during Granular Impact

    E-Print Network [OSTI]

    Abram H. Clark; Alec J. Petersen; Lou Kondic; R. P. Behringer

    2014-08-08T23:59:59.000Z

    How do dynamic stresses propagate in granular material after a high-speed impact? This occurs often in natural and industrial processes. Stress propagation in a granular material is controlled by the inter-particle force law, $f$, in terms of particle deformation, $\\delta$, often given by $f\\propto\\delta^{\\alpha}$, with $\\alpha>1$. This means that a linear wave description is invalid when dynamic stresses are large compared to the original confining pressure. With high-speed video and photoelastic grains with varying stiffness, we experimentally study how forces propagate following an impact and explain the results in terms of the nonlinear force law (we measure $\\alpha\\approx 1.4$). The spatial structure of the forces and the propagation speed, $v_f$, depend on a dimensionless parameter, $M'=t_cv_0/d$, where $v_0$ is the intruder speed at impact, $d$ is the grain diameter, and $t_c$ is a binary collision time between grains with relative speed $v_0$. For $M'\\ll 1$, propagati ng forces are chain-like, and the measured $v_f \\propto d/t_c\\propto v_b(v_0/v_b)^\\frac{\\alpha-1}{\\alpha+1}$, where $v_b$ is the bulk sound speed. For larger $M'$, the force response has a 2D character, and forces propagate faster than predicted by $d/t_c$ due to collective stiffening of a packing.

  20. ERROR VISUALIZATION FOR TANDEM ACOUSTIC MODELING ON THE AURORA TASK

    E-Print Network [OSTI]

    Ellis, Dan

    ERROR VISUALIZATION FOR TANDEM ACOUSTIC MODELING ON THE AURORA TASK Manuel J. Reyes. This structure reduces the error rate on the Aurora 2 noisy English digits task by more than 50% compared development of tandem systems showed an improvement in the performance on the Aurora task [2] of these systems

  1. Parallel and real-time implementation of an acoustic echo canceller using oversampled wavelet frame algorithms

    E-Print Network [OSTI]

    Tam, Pak-Yin

    1995-01-01T23:59:59.000Z

    This thesis describes a novel echo cancellation system that eliminates nonstationary echoes with long acoustic delays in real-time. By combining subband adaptive filtering and active system identification based on fast wavelet transform...

  2. STRUCTURAL HEALTH MONITORING OF A SMART COMPOSITE BRIDGE USING GUIDED WAVES AND ACOUSTIC EMISSION TECHNIQUES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    STRUCTURAL HEALTH MONITORING OF A SMART COMPOSITE BRIDGE USING GUIDED WAVES AND ACOUSTIC EMISSION with the development of a structural health monitoring (SHM) system implemented on a composite footbridge during in France to serve as demonstrators. KEYWORDS : Structural Health Monitoring, Acoustic emission, Guided

  3. Oceans. Europe2005 An Acoustically-Linked Deep-Ocean Observatory

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    to communications power efficiency and cost of the acoustic and satellite telemetry systems. The efficiency ship servicing. Solarcells on the buoy provide enough power for many hours of Iridium terminalHole Oceano a hicKnstitution A6slmei - A buoy-based observatory that uses acoustic communication to retrieve

  4. ACOUSTIC EMISSION HEALTH MONITORING OF STEEL BRIDGES Pooria L. Pahlavan1

    E-Print Network [OSTI]

    Boyer, Edmond

    ACOUSTIC EMISSION HEALTH MONITORING OF STEEL BRIDGES Pooria L. Pahlavan1 , Joep Paulissen2 in the field of Acoustic Emission (AE) for monitoring fatigue cracks in steel structures, the implementation in the utilization of AE systems for steel bridge decks. These challenges are mainly related to the multi

  5. Acoustically Enhanced Boiling Heat Transfer

    E-Print Network [OSTI]

    Z. W. Douglas; M. K. Smith; A. Glezer

    2008-01-07T23:59:59.000Z

    An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

  6. Puget Sound Energy- Resource Conservation Manager Program

    Broader source: Energy.gov [DOE]

    Puget Sound Energy's (PSE) Resource Conservation Manager Program (RCM) provides funding and support to customers who hire a RCM. The role of an RCM is to increase efficiency by focusing on...

  7. Acoustic techniques in nuclear safeguards

    SciTech Connect (OSTI)

    Olinger, C.T.; Sinha, D.N.

    1995-07-01T23:59:59.000Z

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  8. Computerized ultrasound risk evaluation system

    DOE Patents [OSTI]

    Duric, Nebojsa; Littrup, Peter J.; Holsapple III, Earle; Barter, Robert Henry; Moore, Thomas L; Azevedo, Stephen G.; Ferguson, Sidney W.

    2007-10-23T23:59:59.000Z

    A method and system for examining tissue are provided in which the tissue is maintained in a position so that it may be insonified with a plurality of pulsed spherical or cylindrical acoustic waves. The insonifying acoustic waves are scattered by the tissue so that scattered acoustic radiation including a mix of reflected and transmitted acoustic waves is received. A representation of a portion of the tissue is then derived from the received scattered acoustic radiation.

  9. Merged Sounding Value-Added Product

    SciTech Connect (OSTI)

    Troyan, D

    2010-03-03T23:59:59.000Z

    The Merged Sounding value-added product (VAP) uses a combination of observations from radiosonde soundings, the microwave radiometer (MWR), surface meteorological instruments, and European Centre for Medium-Range Weather Forecasts (ECMWF) model output with a sophisticated scaling/interpolation/smoothing scheme in order to define profiles of the atmospheric thermodynamic state at one-minute temporal intervals and a total of 266 altitude levels.

  10. Sound art and spatial practices : situating sound installation art since 1958

    E-Print Network [OSTI]

    Ouzounian, Gascia

    2008-01-01T23:59:59.000Z

    the interior and exterior spaces as well as visuallydo not represent exterior space, but were conceived andexterior architecture. Varèse claimed that: Densil Cabrera, “Sound Space and

  11. System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole

    DOE Patents [OSTI]

    Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

    2013-01-01T23:59:59.000Z

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  12. toProtectandRestorePugetSound Final Report to the Puget Sound Partnership July 30, 2009 Grant #200806

    E-Print Network [OSTI]

    Carrington, Emily

    1 Citizen Science Harnessing toProtectandRestorePugetSound Final Report to the Puget Sound;2 Harnessing Citizen Science to Protect and Restore Puget Sound Cover photo: Lopez Island's community salmon Department of Ecology Susan Bullerdick, COSEE-Ocean Learning Communities Doug Myers, People for Puget Sound

  13. Medical Remote Monitoring using sound environment analysis and wearable sensors 1 Medical Remote Monitoring using sound

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Medical Remote Monitoring using sound environment analysis and wearable sensors 1 X Medical Remote Monitoring using sound environment analysis and wearable sensors Dan Istrate1, Jérôme Boudy2, Hamid Medjahed1. In Europe, for example, the life expectancy for men is about 71 years and for women about 79 years

  14. Effects of macrofauna on acoustic backscatter from the seabed: Field manipulations in West Sound, Orcas Island,

    E-Print Network [OSTI]

    Jumars, Pete

    nuttali, from bait used as chum for fishes and crabs, and from tethered crabs (Cancer magister); other treatments showed no significant change. All of the effective treatments involved increased backscatter analysis and geoacoustic modeling suggest that failure of other treatments to show significant effects

  15. Acoustic radiation force in tissue-like solids due to modulated sound field

    E-Print Network [OSTI]

    Guzina, Bojan

    (Rayleigh, 1884; Rudenko and Soluyan, 1977; Lighthill, 1978; Hamilton and Blackstock, 1998). In simple terms

  16. Journal of Sound and Vibration (1996) 196(1), 7584 ON ACOUSTIC INTERACTION BETWEEN TWO

    E-Print Network [OSTI]

    Norris, Andrew

    . The joint is assumed to be welded, that is, the kinematic and dynamic quantities are continuous there. The kinematic and dynamic conditions at a plate junction of this type are well known, but they have to date been the plates interact through not only flexural but also longitudinal and shear wave 75 0022­460X/96

  17. Numerical simulations of acoustically generated gravitational waves at a first order phase transition

    E-Print Network [OSTI]

    Hindmarsh, Mark; Rummukainen, Kari; Weir, David J

    2015-01-01T23:59:59.000Z

    We present details of numerical simulations of the gravitational radiation produced by a first order {thermal} phase transition in the early universe. We confirm that the dominant source of gravitational waves is sound waves generated by the expanding bubbles of the low-temperature phase. We demonstrate that the sound waves have a power spectrum with power-law form between the scales set by the average bubble separation (which sets the length scale of the fluid flow $L_\\text{f}$) and the bubble wall width. The sound waves generate gravitational waves whose power spectrum also has a power-law form, at a rate proportional to $L_\\text{f}$ and the square of the fluid kinetic energy density. We identify a dimensionless parameter $\\tilde\\Omega_\\text{GW}$ characterising the efficiency of this "acoustic" gravitational wave production whose value is $8\\pi\\tilde\\Omega_\\text{GW} \\simeq 0.8 \\pm 0.1$ across all our simulations. We compare the acoustic gravitational waves with the standard prediction from the envelope appr...

  18. Numerical simulations of acoustically generated gravitational waves at a first order phase transition

    E-Print Network [OSTI]

    Mark Hindmarsh; Stephan J. Huber; Kari Rummukainen; David J. Weir

    2015-04-13T23:59:59.000Z

    We present details of numerical simulations of the gravitational radiation produced by a first order {thermal} phase transition in the early universe. We confirm that the dominant source of gravitational waves is sound waves generated by the expanding bubbles of the low-temperature phase. We demonstrate that the sound waves have a power spectrum with power-law form between the scales set by the average bubble separation (which sets the length scale of the fluid flow $L_\\text{f}$) and the bubble wall width. The sound waves generate gravitational waves whose power spectrum also has a power-law form, at a rate proportional to $L_\\text{f}$ and the square of the fluid kinetic energy density. We identify a dimensionless parameter $\\tilde\\Omega_\\text{GW}$ characterising the efficiency of this "acoustic" gravitational wave production whose value is $8\\pi\\tilde\\Omega_\\text{GW} \\simeq 0.8 \\pm 0.1$ across all our simulations. We compare the acoustic gravitational waves with the standard prediction from the envelope approximation. Not only is the power spectrum steeper (apart from an initial transient) but the gravitational wave energy density is generically two orders of magnitude or more larger.

  19. Beam excited acoustic instability in semiconductor quantum plasmas

    SciTech Connect (OSTI)

    Rasheed, A.; Siddique, M.; Huda, F. [Department of Physics, Government College University, Faisalabad 38000 (Pakistan); Jamil, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Jung, Y.-D. [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)

    2014-06-15T23:59:59.000Z

    The instability of hole-Acoustic waves due to electron beam in semiconductor quantum plasmas is examined using the quantum hydrodynamic model. The quantum effects are considered including Bohm potential, Fermi degenerate pressure, and exchange potential of the semiconductor quantum plasma species. Our model is applied to nano-sized GaAs semiconductor plasmas. The variation of the growth rate of the unstable mode is obtained over a wide range of system parameters. It is found that the thermal effects of semiconductor species have significance over the hole-Acoustic waves.

  20. Impedance matched joined drill pipe for improved acoustic transmission

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA)

    2000-01-01T23:59:59.000Z

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  1. Structural Health Monitoring of Smart Composite Material by Acoustic Emission

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Structural Health Monitoring of Smart Composite Material by Acoustic Emission S. Masmoudia , A. El composite structures gives the opportunity to develop smart materials for health monitoring systems and structural health monitoring [1, 3]. Several studies [5, 6] were carried for the development of non

  2. Acoustic signal estimation using multiple blind observations

    E-Print Network [OSTI]

    Lee, Joonsung

    2006-01-01T23:59:59.000Z

    This thesis proposes two algorithms for recovering an acoustic signal from multiple blind measurements made by sensors (microphones) over an acoustic channel. Unlike other algorithms that use a posteriori probabilistic ...

  3. Acoustic data transmission through a drill string

    DOE Patents [OSTI]

    Drumheller, D.S.

    1988-04-21T23:59:59.000Z

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  4. Particle analysis in an acoustic cytometer

    DOE Patents [OSTI]

    Kaduchak, Gregory; Ward, Michael D

    2012-09-18T23:59:59.000Z

    The present invention is a method and apparatus for acoustically manipulating one or more particles. Acoustically manipulated particles may be separated by size. The particles may be flowed in a flow stream and acoustic radiation pressure, which may be radial, may be applied to the flow stream. This application of acoustic radiation pressure may separate the particles. In one embodiment, the particles may be separated by size, and as a further example, the larger particles may be transported to a central axis.

  5. Prototype acoustic resonance spectroscopy monitor

    SciTech Connect (OSTI)

    Sinha, D.N.; Olinger, C.T.

    1996-03-01T23:59:59.000Z

    This report reports on work performed for the International Atomic Energy Agency (IAEA) through the Program Office for Technical Assistance (POTAS). In this work, we investigate possible applications of nondestructive acoustics measurements to facilitate IAEA safeguards at bulk processing facilities. Two different acoustic techniques for verifying the internal structure of a processing tank were investigated. During this effort we also examined two acoustic techniques for assessing the fill level within a processing tank. The fill-level measurements could be made highly portable and have an added safeguards advantage that they can also detect stratification of fill material. This later application may be particularly useful in confirming the absence of stratification in plutonium processing tanks before accountability samples are withdrawn.

  6. Temperature dependent sound velocity in hydrodynamic equations for relativistic heavy-ion collisions

    E-Print Network [OSTI]

    Mikolaj Chojnacki

    2007-09-11T23:59:59.000Z

    We analyze the effects of different forms of the sound-velocity function cs(T) on the hydrodynamic evolution of matter formed in the central region of relativistic heavy-ion collisions. At high temperatures (above the critical temperature Tc) the sound velocity is calculated from the recent lattice simulations of QCD, while in the low temperature region it is obtained from the hadron gas model. In the intermediate region we use different interpolations characterized by the values of the sound velocity at the local maximum (at T = 0.4 Tc) and local minimum (at T = Tc). In all considered cases the temperature dependent sound velocity functions yield the entropy density, which is consistent with the lattice QCD simulations at high temperature. Our calculations show that the presence of a distinct minimum of the sound velocity leads to a very long (about 20 fm/c) evolution time of the system, which is not compatible with the recent estimates based on the HBT interferometry. Hence, we conclude that the hydrodynamic description is favored in the case where the cross-over phase transition renders the smooth sound velocity function with a possible shallow minimum at Tc.

  7. Surface acoustic wave probe implant for predicting epileptic seizures

    DOE Patents [OSTI]

    Gopalsami, Nachappa (Naperville, IL); Kulikov, Stanislav (Sarov, RU); Osorio, Ivan (Leawood, KS); Raptis, Apostolos C. (Downers Grove, IL)

    2012-04-24T23:59:59.000Z

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  8. Seeing Sound Waves in the Early Universe

    E-Print Network [OSTI]

    Arthur Kosowsky

    1998-11-10T23:59:59.000Z

    Temperature and polarization power spectra of the cosmic microwave background can provide essentially incontrovertible evidence for coherent acoustic oscillations in the early universe. A simple model calculation demonstrates explicitly how polarization couples to velocities at the surface of last scatter and is nearly independent of gravitational or density perturbations. For coherent acoustic oscillations, peaks in the temperature and polarization power spectra are precisely interleaved. If observed, such a signal would provide strong support for initial density perturbations on scales larger than the horizon, and thus for inflation.

  9. Multi-reflective acoustic wave device

    DOE Patents [OSTI]

    Andle, Jeffrey C.

    2006-02-21T23:59:59.000Z

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  10. Gas sensing with acoustic devices

    SciTech Connect (OSTI)

    Martin, S.J.; Frye, G.C. [Sandia National Labs., Albuquerque, NM (United States); Spates, J.J. [Ktech Corp., Albuquerque, NM (United States); Butler, M.A. [Sandia National Labs., Albuquerque, NM (United States)

    1996-12-31T23:59:59.000Z

    A survey is made of acoustic devices that are suitable as gas and vapor sensors. This survey focuses on attributes such as operating frequency, mass sensitivity, quality factor (Q), and their ability to be fabricated on a semiconductor substrate to allow integration with electronic circuitry. The treatment of the device surface with chemically-sensitive films to detect species of interest is discussed. Strategies for improving discrimination are described, including sensor arrays and species concentration and separation schemes. The advantages and disadvantages of integrating sensors with microelectronics are considered, along with the effect on sensitivity of scaling acoustic gas sensors to smaller size.

  11. Spectral analyses of avian heart value sounds

    E-Print Network [OSTI]

    Jeyaseelan, Prithika

    1993-01-01T23:59:59.000Z

    septum gives rise to a small positive R wave in the elctrocardiogram. The depolarization wave moves upwards along the walls ol' the right and left ventri- cles, giving rise to the S wave in the electrocardiogram. Ventricular depolarization lasts.... The fourth sound is fused with the first in individuals having a short P-R interval in the EGG. In rare cs. ses a third component caused by the presystolic tensing of the AV valves had been recorded (19). A fifth sound occurs in some cases after the third...

  12. Sound Geothermal Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro Industries Pvt LtdShawangunk, NewSingaporeSonix Japan Inc Jump to:Sound Beach, New York:Sound

  13. Observation of a single-beam gradient force acoustical trap for elastic particles: acoustical tweezers

    E-Print Network [OSTI]

    Diego Baresch; Jean-Louis Thomas; Régis Marchiano

    2014-11-07T23:59:59.000Z

    The ability to manipulate matter precisely is critical for the study and development of a large variety of systems. Optical tweezers are excellent tools to handle particles ranging in size from a few micrometers to hundreds of nanometers but become inefficient and damaging on larger objects. We demonstrate for the first reported time the trapping of elastic particles by the large gradient force of a single acoustical beam in three dimensions. We show that at equal power, acoustical forces overtake by 8 orders of magnitude that of optical ones on macroscopic objects. Acoustical tweezers can push, pull and accurately control both the position of the particle and the forces exerted under damage-free conditions. The large spectrum of frequencies covered by coherent ultrasonic sources will provide a wide variety of manipulation possibilities from macro- to microscopic length scales. We believe our observations improve the prospects for wider use of non-contact manipulation in biology, biophysics, microfluidics and robotics and bridge the gap that had remained to the macroscopic scale.

  14. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoXonic crystal with defects

    SciTech Connect (OSTI)

    Amoudache, Samira [Institut d'Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d'Ascq (France); Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria); Pennec, Yan, E-mail: yan.pennec@univ-lille1.fr; Djafari Rouhani, Bahram [Institut d'Electronique, de Microélectronique et de Nanotechnologie, Université de Lille 1, 59655 Villeneuve d'Ascq (France); Khater, Antoine [Institut des Molécules et Matériaux du Mans UMR 6283 CNRS, Université du Maine, 72085 Le Mans (France); Lucklum, Ralf [Institute of Micro and Sensor Systems (IMOS), Otto-von-Guericke-University, Magdeburg (Germany); Tigrine, Rachid [Laboratoire de Physique et Chimie Quantique, Université Mouloud Mammeri, B.P. 17 RP, 15000 Tizi-Ouzou (Algeria)

    2014-04-07T23:59:59.000Z

    We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.

  15. EXPERIMENTS ON CROSS-LANGUAGE ACOUSTIC MODELING T. Schultz and A. Waibel

    E-Print Network [OSTI]

    Schultz, Tanja

    studies we applied acoustic models from four languages to bootstrap Chinese, Croatian, and Turkish [5]. We applied monolingual systems from Chinese, Croatian, German, French, Japanese, Spanish and Turkish, as well

  16. The estimation of geotechnical properties of marine sediments from their acoustic reflectivity

    E-Print Network [OSTI]

    Ebel, Martin

    1993-01-01T23:59:59.000Z

    A 3.5 kilohertz subbottom profiler was calibrated such that digitized signals from reflections can be used to quantitatively describe the acoustic response of the seafloor. Two methods were used to calibrate the system, both methods require...

  17. Acoustics 2000 1 INVESTIGATING THE ACOUSTIC PROPERTIES OF THE

    E-Print Network [OSTI]

    the speed of sound in the liquid. This can be seen from equation (3), where as R becomes very small to an instantaneous radius R is equivalent to the kinetic energy of the liquid. The kinetic energy of the liquid can be predicted by integrating the spherically symmetrical energy distribution over shells of liquid of thickness

  18. Design and implementation of a marine animal alert system to support Marine Renewable Energy

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Fu, Tao; Ren, Huiying; Martinez, Jayson J.; Myers, Joshua R.; Matzner, Shari; Choi, Eric Y.; Copping, Andrea E.

    2013-08-08T23:59:59.000Z

    Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotating blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifier to distinguish between SKRW’s calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.

  19. Travel Diary-Based Emissions Analysis of Telecommuting for the Puget Sound Demonstration Project

    E-Print Network [OSTI]

    Henderson, Dennis K; Koenig, Brett E; Mokhtarian, Patricia L

    1994-01-01T23:59:59.000Z

    B. and P. L. Mokhtarian (1993) "Puget Sound TelecommutingQuaid, M. and B. Lagerberg (1992) "Puget Sound Telecommutingof Telecommuting for the Puget Sound Demonstration Project

  20. Review: Saving Puget Sound: A Conservation Strategy for the 21st Century by John Lombard

    E-Print Network [OSTI]

    Miller, Ryder W.

    2008-01-01T23:59:59.000Z

    Review: Saving Puget Sound: a Conservation Strategy for theUSA John Lombard. Saving Puget Sound: A Conservationan impassioned plea to save the Puget Sound region from the

  1. LLNL`s acoustic spectrometer

    SciTech Connect (OSTI)

    Baker, J.

    1997-03-17T23:59:59.000Z

    This paper describes the development of a frequency sensitive acoustic transducer that operates in the 10 Hz to 10 kHz regime. This device uses modem silicon microfabrication techniques to form mechanical tines that resonate at specified frequencies. This high-sensitivity device is intended for low-power battery powered applications.

  2. ester Thurow says "what sounds sensible (export

    E-Print Network [OSTI]

    ester Thurow says "what sounds sensible (export more) when heard sepa- rately in each country becomes nonsense when aggregated around the world. No one can have more net exports unless someone else a strong relationship between exports and farm prosperity in the United States. From the early 1900s

  3. Demonstrations: sound source for Doppler shift

    E-Print Network [OSTI]

    Boal, David

    of the Universe Doppler effect The technique for measuring the velocities of very remote galaxies is based uponDemonstrations: ·sound source for Doppler shift ·big balloon and labels Text: Mod. Phys. 8.A, 8.B, 8.C Problems: 1, 3, 6, 7 from Ch. 8 What's important: ·Doppler shift ·Hubble's law ·age

  4. Nonlinear dust acoustic waves and shocks

    SciTech Connect (OSTI)

    Merlino, R. L.; Heinrich, J. R.; Hyun, S.-H.; Meyer, J. K. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States)

    2012-05-15T23:59:59.000Z

    We describe experiments on (1) nonlinear dust acoustic waves and (2) dust acoustic shocks performed in a direct current (DC) glow discharge dusty plasma. First, we describe experiments showing nonlinear dust acoustic waves characterized by waveforms of the dust density that are typically sharper in the wave crests and flatter in the wave troughs (compared to sinusoidal waves), indicating the development of wave harmonics. We discuss this behavior in terms of a second-order fluid theory for dust acoustic waves. Second, experimental observations of the propagation and steepening of large-amplitude dust acoustic waves into dust acoustic shock waves are presented. The observed shock wave evolution is compared with numerical calculations based on the Riemann solution of the fully nonlinear fluid equations for dust acoustic waves.

  5. Method and apparatus for generating acoustic energy

    DOE Patents [OSTI]

    Guerrero, Hector N. (Evans, GA)

    2002-01-01T23:59:59.000Z

    A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.

  6. MHD wave refraction and the acoustic halo effect around solar active regions - a 3D study

    E-Print Network [OSTI]

    Rijs, Carlos; Przybylski, Damien; Cally, Paul S

    2015-01-01T23:59:59.000Z

    An enhancement in high-frequency acoustic power is commonly observed in the solar photosphere and chromosphere surrounding magnetic active regions. We perform 3D linear forward wave modelling with a simple wavelet pulse acoustic source to ascertain whether the formation of the acoustic halo is caused by MHD mode conversion through regions of moderate and inclined magnetic fields. This conversion type is most efficient when high frequency waves from below intersect magnetic field lines at a large angle. We find a strong relationship between halo formation and the equipartition surface at which the Alfv\\'en speed $a$ matches the sound speed $c$, lending support to the theory that photospheric and chromospheric halo enhancement is due to the creation and subsequent reflection of magnetically dominated fast waves from essentially acoustic waves as they cross $a=c$. In simulations where we have capped $a$ such that waves are not permitted to refract after reaching the $a=c$ height, halos are non-existent, which su...

  7. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies

    E-Print Network [OSTI]

    Semere Ayalew Tadesse; Mo Li

    2014-10-04T23:59:59.000Z

    Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct, wideband link between optical and microwave photons for microwave photonics and quantum optomechanics.

  8. Experimental observation of acoustic sub-harmonic diffraction by a grating

    SciTech Connect (OSTI)

    Liu, Jingfei, E-mail: benjamin.jf.liu@gatech.edu; Declercq, Nico F., E-mail: declercqdepatin@gatech.edu [Laboratory for Ultrasonic Nondestructive Evaluation “LUNE,” Georgia Tech Lorraine, Georgia Tech-CNRS UMI2958, Georgia Institute of Technology, 2, rue Marconi, Metz 57070 (France)

    2014-06-28T23:59:59.000Z

    A diffraction grating is a spatial filter causing sound waves or optical waves to reflect in directions determined by the frequency of the waves and the period of the grating. The classical grating equation is the governing principle that has successfully described the diffraction phenomena caused by gratings. However, in this work, we show experimental observation of the so-called sub-harmonic diffraction in acoustics that cannot be explained by the classical grating equation. Experiments indicate two physical phenomena causing the effect: internal scattering effects within the corrugation causing a phase shift and nonlinear acoustic effects generating new frequencies. This discovery expands our current understanding of the diffraction phenomenon, and it also makes it possible to better design spatial diffraction spectra, such as a rainbow effect in optics with a more complicated color spectrum than a traditional rainbow. The discovery reveals also a possibly new technique to study nonlinear acoustics by exploitation of the natural spatial filtering effect inherent to an acoustic diffraction grating.

  9. Ion beam driven ion-acoustic waves in a plasma cylinder with negatively charged dust grains

    SciTech Connect (OSTI)

    Sharma, Suresh C.; Walia, Ritu [Department of Physics, Maharaja Agrasen Institute of Technology, PSP Area Plot No.-1, Sector-22, Rohini, Delhi 110 086 (India); Sharma, Kavita [Department of Physics, Bhagwan Parshuram Institute of Technology, Sector-17, Rohini, New Delhi 110 089 (India)

    2012-07-15T23:59:59.000Z

    An ion beam propagating through a magnetized potassium plasma cylinder having negatively charged dust grains drives electrostatic ion-acoustic waves to instability via Cerenkov interaction. The phase velocity of sound wave increases with the relative density of negatively charged dust grains. The unstable wave frequencies and the growth rate increase, with the relative density of negatively charged dust grains. The growth rate of the unstable mode scales as one-third power of the beam density. The real part of frequency of the unstable mode increases with the beam energy and scales as almost the one-half power of the beam energy.

  10. Microwave-induced thermoacoustic tomography: applications and corrections for the effects of acoustic heterogeneities

    E-Print Network [OSTI]

    Jin, Xing

    2009-05-15T23:59:59.000Z

    and the sound speed in the lesion region compared to those in untreated tissue regions. Imaging techniques based on changes in acoustic properties have been proposed to visualize HIFU-induced lesions, and while preliminary results have been obtained... the different ways to measure relative permittivity, a coaxial probe is ideal for liquids and semi-solid materials, 30,31 and has thus been chosen for our application. The open-ended coaxial probe can be regarded as a cut-off section of a transmission line...

  11. LEE-0152- In the Matter of Sound Oil Company

    Broader source: Energy.gov [DOE]

    On August 16, 1994, Sound Oil Company (Sound) of Seattle Washington, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application,...

  12. Acoustic sand detector for fluid flowstreams

    DOE Patents [OSTI]

    Beattie, Alan G. (Corrales, NM); Bohon, W. Mark (Frisco, TX)

    1993-01-01T23:59:59.000Z

    The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

  13. 6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines 1/2www.sciencedaily.com/releases/2012/05/120515104537.htm

    E-Print Network [OSTI]

    Sóbester, András

    6/10/12 The use of acoustic inversion to estimate the bubble size distribution in pipelines 1/2www gas bubbles in pipelines. The ability to measure gas bubbles in pipelines is vital technique for estimating the gas bubble size distribution (BSD) is to send sound waves through the bubble

  14. The Archeology of Relic Sound Waves J.R. Gladden

    E-Print Network [OSTI]

    Gladden, Josh

    The Archeology of Relic Sound Waves J.R. Gladden Assistant Professor of Physics University and results from this large body of work. I have found the recent article "Cosmic sound waves rule" by Daniel" in the movies aside). However, there was a time when sound waves filled the entire universe, and recent

  15. INFLUENCE OF SOUND WAVE STIMULATION ON THE GROWTH OF

    E-Print Network [OSTI]

    Boyer, Edmond

    INFLUENCE OF SOUND WAVE STIMULATION ON THE GROWTH OF STRAWBERRY IN SUNLIGHT GREENHOUSE Lirong Qi differences between the circumstances of the two sunlight greenhouses, the strawberry after the sound wave disease and insect pest were enhanced. The experiment results show that sound wave stimulation can

  16. ISIS, AN ALTERNATIVE APPROACH TO SOUND WAVES Clarence Barlow

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    ISIS, AN ALTERNATIVE APPROACH TO SOUND WAVES Clarence Barlow Royal Conservatoire Juliana van Sinusoids', is a means of mathematically interpolating sine wave segments between the samples of a sound wave recording (the word "sample" is here used as in "sample rate"). The sound wave is thus

  17. NOAA Support for Puget Sound Shellfish: Native Oysters, Abalone &

    E-Print Network [OSTI]

    NOAA Support for Puget Sound Shellfish: Native Oysters, Abalone & a Healthy Marine Habitatnoaa shellfish aquaculture and conservation in Puget Sound as part of NOAA's comprehensive strategy,000 to Rebuild Native Oysters in Puget Sound According to The Nature Conservancy, "shellfish reefs are the most

  18. UNCORRECTEDPROOF Profiles of Alexandrium catenella cysts in Puget Sound sediments

    E-Print Network [OSTI]

    Shull, David H.

    UNCORRECTEDPROOF Profiles of Alexandrium catenella cysts in Puget Sound sediments and the geographical scope of shellfish closures in Puget Sound have increased in recent decades. PSP, monitored by the Washington Department of Health, has spread from Sequim Bay in the 1950s into central Puget Sound in the 1970

  19. patible with the distribution and behavior of Puget Sound ratfish.

    E-Print Network [OSTI]

    patible with the distribution and behavior of Puget Sound ratfish. While no quantitative measurements were made of light intensity or wavelength, to the human eye, the water in Puget Sound is quite it is found closer to shore in Puget Sound than in other areas in its range. In summary, the data indicate

  20. Fish Foraging on an Artificial Reef in Puget Sound, Washington

    E-Print Network [OSTI]

    Fish Foraging on an Artificial Reef in Puget Sound, Washington GREGORY J. HUECKEL and R. LEE with an artificial reef in Puget Sound to increase our knowledge of the changes in the structure of the fish com with an artificial reef in Puget Sound, Wash. Stomachs ofthesefish species, dissectedfrom 609 fish speared on, around

  1. Ecology of Puget Sound Winter 2001: All Level Group Contract

    E-Print Network [OSTI]

    Thuesen, Erik V.

    - 1 - Ecology of Puget Sound Winter 2001: All Level Group Contract Faculty: Erik Thuesen (thuesene@evergreen.edu), Lab 1 3065 This program will investigate ecological interactions of the organisms in the Puget Sound in Puget Sound for hands-on observations and field work. There will be one multi-day field trip to Friday

  2. Structure-borne sound Flexural wave (bending wave)

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Structure-borne sound · Flexural wave (bending wave) »One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound · Bending wave ­ flexural wave #12;2 Structure-borne sound · Two obliquely propagating waves + - + + - + - Structure

  3. Detection of aeroacoustic sound sources on aircraft and wind turbines

    E-Print Network [OSTI]

    Twente, Universiteit

    Detection of aeroacoustic sound sources on aircraft and wind turbines Stefan Oerlemans #12;Detection of aeroacoustic sound sources on aircraft and wind turbines S. Oerlemans Thesis University;DETECTION OF AEROACOUSTIC SOUND SOURCES ON AIRCRAFT AND WIND TURBINES PROEFSCHRIFT ter verkrijging van de

  4. Computerised lung sound analysis to improve the specificity of paediatric

    E-Print Network [OSTI]

    Elhilali, Mounya

    Computerised lung sound analysis to improve the specificity of paediatric pneumonia diagnosis that pulmonary pathology can be differentiated from normal using computerised lung sound analysis (CLSA). The authors will record lung sounds from 600 children aged #5 years, 100 each with consolidative pneumonia

  5. Waveform Inversion with Source Encoding for Breast Sound Speed Reconstruction in Ultrasound Computed Tomography

    E-Print Network [OSTI]

    Wang, Kun; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A

    2015-01-01T23:59:59.000Z

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer-simulation and experimental phantom studies are conduc...

  6. Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA

    SciTech Connect (OSTI)

    Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.

    2012-06-05T23:59:59.000Z

    Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.

  7. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-10-01T23:59:59.000Z

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on the water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program

  8. Effects of language experience on organization of vowel sounds Andrew J. Lotto

    E-Print Network [OSTI]

    Holt, Lori L.

    the interaction of phonetic inventories and constraints of auditory perception and articulatory production. For example, Liljencrants & Lindblom (1972) attempted to predict the inventories of typical vowel systems of these inventories with reference to stable articulatory-acoustic mappings. This tradition is based on the notion

  9. Acoustic techniques for localizing holdup

    SciTech Connect (OSTI)

    Vnuk, D.

    1996-09-01T23:59:59.000Z

    Material that does not come out of a process as product or waste is called holdup. When this is fissile material, its location and quantity must be determined to improve safeguards and security as well as safety at the facility. The most common method for detecting and measuring holdup is with radiation based techniques. When using them, one must consider equipment geometry, geometry of holdup, and effects of background radiation when converting the radiation measurement into a fissile material quantity. We are developing complementary techniques that use tiny acoustic transducers, which are unaffected by background radiation, to improve holdup measurements by aiding in determining the above conversion factors for holdup measurements. Thus far, we have applied three techniques, Acoustic Interferometry, Pulse Echo, and bending Wave Propagation, of which the latter appears most effective. This paper will describe each of these techniques and show how they may ultimately reduce costs and personnel radiation exposure while increasing confidence I and accuracy of holdup measurements.

  10. Cylindrical acoustic levitator/concentrator

    DOE Patents [OSTI]

    Kaduchak, Gregory (Los Alamos, NM); Sinha, Dipen N. (Los Alamos, NM)

    2002-01-01T23:59:59.000Z

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  11. Acoustic horizons in nuclear fluids

    E-Print Network [OSTI]

    Niladri Sarkar; Abhik Basu; Jayanta K. Bhattacharjee; Arnab K. Ray

    2014-04-13T23:59:59.000Z

    We consider a hydrodynamic description of the spherically symmetric outward flow of nuclear matter, accommodating dispersion in it as a very weak effect. About the resulting stationary conditions in the flow, we apply an Eulerian scheme to derive a fully nonlinear equation of a time-dependent radial perturbation. In its linearized limit, with no dispersion, this equation implies the static acoustic horizon of an analogue gravity model. We, however, show that time-dependent nonlinear effects destabilize the static horizon. We also model the perturbation as a high-frequency travelling wave, and perform a {\\it WKB} analysis, in which the effect of weak dispersion is studied iteratively. We show that even arbitrarily small values of dispersion make the horizon fully opaque to any acoustic disturbance propagating against the bulk flow, with the amplitude and the energy flux of the radial perturbation undergoing a discontinuity at the horizon, and decaying exponentially just outside it.

  12. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31T23:59:59.000Z

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  13. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01T23:59:59.000Z

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  14. Analog circuit for controlling acoustic transducer arrays

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1991-01-01T23:59:59.000Z

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  15. Acoustic emission feedback control for control of boiling in a microwave oven

    DOE Patents [OSTI]

    White, Terry L. (Oak Ridge, TN)

    1991-01-01T23:59:59.000Z

    An acoustic emission based feedback system for controlling the boiling level of a liquid medium in a microwave oven is provided. The acoustic emissions from the medium correlated with surface boiling is used to generate a feedback control signal proportional to the level of boiling of the medium. This signal is applied to a power controller to automatically and continuoulsly vary the power applied to the oven to control the boiling at a selected level.

  16. SoundWave: Using the Doppler Effect to Sense Gestures Sidhant Gupta1,2

    E-Print Network [OSTI]

    Anderson, Richard

    SoundWave: Using the Doppler Effect to Sense Gestures Sidhant Gupta1,2 , Dan Morris1 , Shwetak N a well-understood phenomenon known as the "Doppler effect" or "Doppler shift", which characterizes to vision-based systems. We are not the first to use sonic techniques or the Doppler effect for gesture

  17. Acoustic resonance phase locked photoacoustic spectrometer

    DOE Patents [OSTI]

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19T23:59:59.000Z

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  18. Acoustic resonance frequency locked photoacoustic spectrometer

    DOE Patents [OSTI]

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09T23:59:59.000Z

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  19. Acoustics of finite-aperture vortex beams

    E-Print Network [OSTI]

    Mitri, F G

    2014-01-01T23:59:59.000Z

    A method based on the Rayleigh-Sommerfeld surface integral is provided, which makes it feasible to rigorously model, evaluate and compute the acoustic scattering and other mechanical effects of finite-aperture vortex beams such as the acoustic radiation force and torque on a viscoelastic sphere in various applications in acoustic tweezers and microfluidics, particle entrapment, manipulation and rotation. Partial-wave series expansions are derived for the incident field of acoustic spiraling (vortex) beams, comprising high-order Bessel and Bessel-Gauss beams.

  20. Acoustic resonance for nonmetallic mine detection

    SciTech Connect (OSTI)

    Kercel, S.W.

    1998-04-01T23:59:59.000Z

    The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

  1. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect (OSTI)

    Worthington, Monty [Project Director - AK] [Project Director - AK

    2014-02-05T23:59:59.000Z

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

  2. Platforms and Methods for Acoustic Detection and Monitoring of Key

    E-Print Network [OSTI]

    Hawai'i at Manoa, University of

    #12;Platforms and Methods for Acoustic Detection and Monitoring of Key Ecosystem Properties Nils Olav Handegard #12;· Introduction · Platforms carrying acoustics · Methods · Applications ­ What we have done · Applications ­ What we would like to do #12;· Introduction · Platforms carrying acoustics

  3. Acoustic imaging microscope

    DOE Patents [OSTI]

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17T23:59:59.000Z

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  4. acoustic impedance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nassir Navab 6 ACOUSTIC IMPEDANCE INVERSION FOR STATIC AND DYNAMIC CHARACTERIZATION OF A CO2 EOR PROJECT, Fossil Fuels Websites Summary: ACOUSTIC IMPEDANCE INVERSION FOR STATIC...

  5. acoustic impedance inversion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Topic Index 1 ACOUSTIC IMPEDANCE INVERSION FOR STATIC AND DYNAMIC CHARACTERIZATION OF A CO2 EOR PROJECT, Fossil Fuels Websites Summary: ACOUSTIC IMPEDANCE INVERSION FOR STATIC...

  6. acoustic wave resonator: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helmholtz resonators Physics Websites Summary: Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators Bruno Acoustic wave propagation in a...

  7. acoustic wave resonators: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Helmholtz resonators Physics Websites Summary: Numerical modeling of nonlinear acoustic waves in a tube connected with Helmholtz resonators Bruno Acoustic wave propagation in a...

  8. acoustic band gaps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    type of phononic crystals manufactured Institute of Physics. DOI: 10.10631.2167794 The propagation of acoustic waves in periodic composite Deymier, Pierre 2 Acoustic band gap...

  9. amplitude acoustic wave: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    same.29 Keywords: Nonlinear standing wave; Closed acoustic Heller, Barbara 4 Long-range propagation of finite-amplitude acoustic waves in an ocean waveguide Geosciences Websites...

  10. alternative proposal acoustic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in theory. However, two critical Zhou, Shengli 80 ACOUSTIC STUDY OF THE UD GAMESA WIND TURBINE PROJECT Environmental Sciences and Ecology Websites Summary: ACOUSTIC STUDY OF THE...

  11. acoustic noise reduction: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acoustic receivers of vessels using spectral subtraction Physics Websites Summary: , cavitation etc. created by the propellers generate immense acoustic noise in the vicinity...

  12. acoustic background noise: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    or remove acoustic background noise uses setups Paris-Sud XI, Universit de 3 Wind Turbine Acoustic Noise A white paper Renewable Energy Websites Summary: Wind Turbine...

  13. acoustic desorption liad: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    coverage... Juwono, Tjipto 2013-01-01 18 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  14. acoustic neurinomas early: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 10 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  15. acoustic equipment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    was to be Music 302 Maher, Robert C. 13 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  16. acoustic monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acoustic methods have impediments as well, of course, most notably 26 Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring: The...

  17. assisted acoustic focusing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and solved. A. G. Ramm 2008-05-16 28 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  18. acoustic microscopy risswachstumsstudien: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zhang; Rong-Gen Cai 2004-11-18 8 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  19. acoustic insulation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Teo, Chi Yan Jeffrey 2011-01-01 17 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  20. acoustic passive localization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    inter-sensor propagation Boyer, Edmond 2 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  1. acoustic chemometrics monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acoustic methods have impediments as well, of course, most notably 27 Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring: The...

  2. acoustic neurinoma presenting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    testable. Visser, M 1999-01-01 18 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  3. acoustic howling suppression: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 15 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  4. acoustics ultrasonic imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Junjie Gong; Fangfang Shi; Yijing Ke 2 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  5. acoustic chemometric monitoring: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acoustic methods have impediments as well, of course, most notably 27 Acoustic daylight imaging via spectral factorization: Helioseismology and reservoir monitoring: The...

  6. acoustic noise: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of anisotropy in oceanic ambient noise fields and its relevance to Acoustic Daylight imaging CiteSeer Summary: Acoustic Daylight is a new technique for creating pictorial...

  7. acoustic 4f imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    24 25 Next Page Last Page Topic Index 1 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  8. acoustic neuroma mimicking: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    botnet owners have Stojmenovic, Ivan 12 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  9. acoustic 3-d imaging: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    landmarks or com- plete Delson, Eric 20 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  10. acoustic microscopy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zhang; Rong-Gen Cai 2004-11-18 8 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  11. acoustic neuroma surgery: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 8 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  12. acoustic trauma evokes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Course Requirements Lockery, Shawn 18 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  13. airborne acoustical noise: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of anisotropy in oceanic ambient noise fields and its relevance to Acoustic Daylight imaging CiteSeer Summary: Acoustic Daylight is a new technique for creating pictorial...

  14. acoustic overstimulation modifies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    synthesizer can Johnson, Michael T. 13 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  15. acoustic neuroma treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 10 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  16. acoustic neuroma resection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 6 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  17. acoustic nmr: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Isaac; Steffen, Matthias 2004-01-01 9 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  18. acoustic neurinoma removal: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by the Leningrad unknown authors 4 UNIVERSITY OF CALIFORNIA, SAN DIEGO Acoustic Daylight: passive acoustic imaging Geosciences Websites Summary: UNIVERSITY OF CALIFORNIA, SAN...

  19. acoustic wave based: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acoustic dispersion over SAW wavelengths down to 200 nm, meaning the SAW propagation ... Siemens, Mark 44 Excitation of kinetic geodesic acoustic modes by drift waves in...

  20. acoustic wave sensors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acoustic wave devices can be used as wireless sensor elements (SAW transponders Zachmann, Gabriel 30 Underwater Acoustic Sensor Networks: Research Challenges CiteSeer...

  1. acoustic wave sensor: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acoustic wave devices can be used as wireless sensor elements (SAW transponders Zachmann, Gabriel 30 Underwater Acoustic Sensor Networks: Research Challenges CiteSeer...

  2. acoustical testing laboratory: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Computational Acoustics, Vol. 9, No. 3 (2001) 1215-1225 c IMACS AIRBORNE ACOUSTICS October 1999 Revised 16 April 2000 A recently developed theoretical model of the airborne...

  3. acoustics ultrasound device: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at low frequencies (5-35MHz Gizeli, Electra 6 Ultrasound acoustic emission in water-stressed plants of Picea abies Karst. Physics Websites Summary: Ultrasound acoustic...

  4. Acoustic wave propagation and stochastic effects in metamaterial absorbers

    SciTech Connect (OSTI)

    Christensen, J., E-mail: jochri@fotonik.dtu.dk; Willatzen, M. [Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby (Denmark)

    2014-07-28T23:59:59.000Z

    We show how stochastic variations of the effective parameters of anisotropic structured metamaterials can lead to increased absorption of sound. For this, we derive an analytical model based on the Bourret approximation and illustrate the immediate connection between material disorder and attenuation of the averaged field. We demonstrate numerically that broadband absorption persists at oblique irradiation and that the influence of red noise comprising short spatial correlation lengths increases the absorption beyond what can be archived with a structured but ordered system.

  5. ACOUSTICALLY-DRIVEN TALKING FACE SYNTHESIS USING DYNAMIC BAYESIAN Jianxia Xue1

    E-Print Network [OSTI]

    Alwan, Abeer

    the synthesis system. Section 3 describes the three DBN prototypes. The experimental setup and results recognition applications. Here, we introduce DBNs into an acoustically-driven talking face synthesis system. 1. INTRODUCTION Highly-intelligible talking face synthesis systems could facilitate speech

  6. Sound Coiled-Tubing Drilling Practices

    SciTech Connect (OSTI)

    Williams, Thomas; Deskins, Greg (Maurer Technology Inc.); Ward, Stephen L. (Advantage Energy Services Ltd); Hightower, Mel

    2001-09-30T23:59:59.000Z

    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  7. Characterization of acoustically forced swirl flame dynamics

    E-Print Network [OSTI]

    Lieuwen, Timothy C.

    of the flame to acoustic excitation is required. This study presents an analysis of phase-locked OH PLIF images of acoustically excited swirl flames, to identify the key controlling physical processes and qualitatively discuss, and whose relative significance depends upon forcing frequency, amplitude of excitation, and flame

  8. Cooperative Multihop Communication for Underwater Acoustic Networks

    E-Print Network [OSTI]

    Zhou, Shengli

    Cooperative Multihop Communication for Underwater Acoustic Networks Cecilia Carbonelli and Urbashi propagation 1. INTRODUCTION Underwater sensor networks will find applications in data collection, pollution acoustic (UWA) channels differ from those in other media, such as radio channels, due to the high temporal

  9. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10T23:59:59.000Z

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  10. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect (OSTI)

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07T23:59:59.000Z

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  11. Sizing fish with an acoustic system

    E-Print Network [OSTI]

    Jaffe, Jules S.

    2009-01-01T23:59:59.000Z

    and Computer Engineering (Applied Ocean Sciences) Degree2006. Keywords ocean engineering, bioacoustics, fisheries

  12. Opto-acoustic recanilization delivery system

    DOE Patents [OSTI]

    Visuri, Steven R. (Livermore, CA); Da Silva, Luiz B. (Danville, CA); Celliers, Peter M. (Berkeley, CA); London, Richard A. (Orinda, CA); Benett, William (Livermore, CA); Broughton, Kathryn (Berkeley, CA); Esch, Victor (San Francisco, CA)

    2002-01-01T23:59:59.000Z

    Fiber delivered laser pulses emulsify thrombus by mechanical stresses that include a combination of pressure, tension and shear stress. Laser radiation is delivered to the locality of a thrombus and the radiation is absorbed by blood, blood dot, or other present materials. The combination of a leading pressure wave and subsequent vapor bubble cause efficient, emulsification of thrombus. Operating the laser in a low average power mode alleviates potential thermal complications. The laser is operated in a high repetition rate mode to take advantage of ultrasound frequency effects of thrombus dissolution as well as to decrease the total procedure time. Specific parameter ranges for operation are described. The device includes optical fibers surrounding a lumen intended for flow of a cooling agent. The fibers may be arranged concentrically around the lumen to deliver radiation and heat over as large an area as possible. An alternative design approach incorporates the optical fibers into the wall of the guiding catheter and utilizes the catheter lumen as the cooling channel. An eccentric tip enables rotation of the device to address all parts of the vasculature. The eccentricity can be provided via a variety of means: spring dip, balloon, protrusion, etc.

  13. Acoustic Building Infiltration Measurement System (ABIMS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of roofingDepartmentAchieveMilestones |ofRalph T

  14. Acoustic Building Infiltration Measurement System (ABIMS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't Your Destiny: The Future of1 AAccelerated aging of roofingDepartmentAchieveMilestones |ofRalph

  15. The Speed of Sound in Hadronic Matter

    E-Print Network [OSTI]

    Castorina, P; Miller, D E; Satz, H

    2009-01-01T23:59:59.000Z

    We calculate the speed of sound $c_s$ in an ideal gas of resonances whose mass spectrum is assumed to have the Hagedorn form $\\rho(m) \\sim m^{-a}\\exp{bm}$, which leads to singular behavior at the critical temperature $T_c = 1/b$. With $a = 4$ the pressure and the energy density remain finite at $T_c$, while the specific heat diverges there. As a function of the temperature the corresponding speed of sound initially increases similarly to that of an ideal pion gas until near $T_c$ where the resonance effects dominate causing $c_s$ to vanish as $(T_c - T)^{1/4}$. In order to compare this result to the physical resonance gas models, we introduce an upper cut-off M in the resonance mass integration. Although the truncated form still decreases somewhat in the region around $T_c$, the actual critical behavior in these models is no longer present.

  16. Acoustic resonance spectroscopy intrinsic seals

    SciTech Connect (OSTI)

    Olinger, C.T.; Burr, T.; Vnuk, D.R.

    1994-08-01T23:59:59.000Z

    We have begun to quantify the ability of acoustic resonance spectroscopy (ARS) to detect the removal and replacement of the lid of a simulated special nuclear materials drum. Conceptually, the acoustic spectrum of a container establishcs a baseline fingerprint, which we refer to as an intrinsic seal, for the container. Simply removing and replacing the lid changes some of the resonant frequencies because it is impossible to exactly duplicate all of the stress patterns between the lid and container. Preliminary qualitative results suggested that the ARS intrinsic seal could discriminate between cases where a lid has or has not been removed. The present work is directed at quantifying the utility of the ARS intrinsic seal technique, including the technique`s sensitivity to ``nuisance`` effects, such as temperature swings, movement of the container, and placement of the transducers. These early quantitative tests support the potential of the ARS intrinsic seal application, but also reveal a possible sensitivity to nuisance effects that could limit environments or conditions under which the technique is effective.

  17. Development of an Acoustic Sensor On-Line Gas Temperature Measurement in Gasifiers

    SciTech Connect (OSTI)

    Peter Ariessohn

    2008-06-30T23:59:59.000Z

    This project was awarded under U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) Program Solicitation DE-PS26-02NT41422 and specifically addresses Technical Topical Area 2 - Gasification Technologies. The project team includes Enertechnix, Inc. as the main contractor and ConocoPhillips Company as a technical partner, who also provides access to the SG Solutions Gasification Facility (formerly Wabash River Energy Limited), host for the field-testing portion of the research. The objective of this project was to adapt acoustic pyrometer technology to make it suitable for measuring gas temperature inside a coal gasifier, to develop a prototype sensor based on this technology, and to demonstrate its performance through testing on a commercial gasifier. The project was organized in three phases, each of approximately one year duration. The first phase consisted of researching a variety of sound generation and coupling approaches suitable for use with a high pressure process, evaluation of the impact of gas composition variability on the acoustic temperature measurement approach, evaluation of the impact of suspended particles and gas properties on sound attenuation, evaluation of slagging issues and development of concepts to deal with this issue, development and testing of key prototype components to allow selection of the best approaches, and development of a conceptual design for a field prototype sensor that could be tested on an operating gasifier. The second phase consisted of designing and fabricating a series of prototype sensors, testing them in the laboratory, and developing a conceptual design for a field prototype sensor. The third phase consisted of designing and fabricating the field prototype, and testing it in the lab and in a commercial gasifier to demonstrate the ability to obtain accurate measurements of gas temperature in an operating gasifier. Following the completion of the initial 3 year project, several continuations were awarded by the Department of Energy to allow Enertechnix to conduct extended testing of the sensor at the Wabash River facility. In February, 2008 the sensor was installed on the gasifier in preparation for a long-term test. During the initial testing of the sensor a stainless steel tube on the sensor failed and allowed syngas to escape. The syngas self-ignited and the ensuing small fire damaged some of the components on the sensor. There was no damage to the gasifier or other equipment and no injuries resulted from this incident. Two meetings were held to identify the root causes of the incident-one at Wabash River and one at Enertechnix. A list of recommended improvements that would have addressed the causes of the incident was created and presented to the Department of Energy on May 2, 2008. However, the DOE decided not to pursue these improvements and terminated the project. This report describes all of the activities conducted during the project and reports the findings of each activity in detail. The investigation of potential sound generation and coupling methods led to the selection of a reflected shock method which has been developed into a functioning prototype device. The principles of operation of this device and its performance characteristics are described in the report. Modeling of the attenuation of sound by suspended particles and by interaction of the sound pulses with the high temperature syngas inside the gasifier was conducted and the predictions of those models were used to determine the required sound pulse intensity to allow the sound pulses to be detected after passage through the gasifier environment. These modeling results are presented in this report. A study of the likely spatial and temporal variability of gas composition inside the gasifier was performed and the results of that study was used to predict the impact of that variability on the accuracy of the acoustic temperature method. These results are reported here. A design for a port rodding mechanism was developed to deal with potential slagging issues and was incorporated i

  18. Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan...

    Open Energy Info (EERE)

    Mallan, Et Al., 2001) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Electromagnetic Soundings At Dixie Valley Geothermal Area (Mallan, Et Al.,...

  19. UBC 50th Anniversary Sound Collection / UBC Archives (collector)

    E-Print Network [OSTI]

    Handy, Todd C.

    UBC 50th Anniversary Sound Collection / UBC Archives (collector) Compiled by Erwin Wodarczak (2006 Archives (collector). ­ September- October 1965. 20 audio recordings. Administrative Sketch The University

  20. atmospheric sound: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Applications of Atmospheric Soundings from Geostationary Environmental Sciences and Ecology Websites Summary: products can help nowcasting, an improved clear-sky physical...

  1. Puget Sound Energy- Portable Classroom Energy Efficient Controls Rebate Program

    Broader source: Energy.gov [DOE]

    Puget Sound Energy's (PSE) Portable Classroom Controls Rebate program offers rebates to school customers who upgrade portable classroom controls from seven-day programmable thermostats to 365-day...

  2. Electromagnetic Soundings At Kilauea East Rift Geothermal Area...

    Open Energy Info (EERE)

    of this study was to obtain a more complete model of the geologic structure and hydrology of Kilauea's east rift zone Notes Electromagnetic transient soundings were conducted...

  3. Puget Sound Energy- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Puget Sound Energy's (PSE) Residential Energy Efficiency Rebate Programs offer a variety of incentives for customers who purchase energy efficient appliances and equipment. Rebates include furnaces...

  4. Puget Sound Energy- Multi-Family Efficiency Programs

    Broader source: Energy.gov [DOE]

    Puget Sound Energy (PSE) offers two different programs for multifamily energy efficiency rebates: the Multifamily Retrofit Program and the Multifamily New Construction Program. In order to...

  5. accurate sound localization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Profile Layers Engineering Websites Summary: Accurate Ranging in a Stratified Underwater Medium with Multiple Iso-gradient Sound Speed Profile between sensor nodes in an...

  6. Puget Sound Energy- Commercial Energy Efficient Equipment Rebate Programs

    Broader source: Energy.gov [DOE]

    Puget Sound Energy's (PSE) Energy Efficient Equipment Rebate Programs offer a variety of incentives to non-residential customers. Eligible technologies include lighting measures, air conditioners,...

  7. A passively tunable acoustic metamaterial lens for selective ultrasonic excitation

    SciTech Connect (OSTI)

    Zhu, H.; Semperlotti, F., E-mail: Fabio.Semperlotti.1@nd.edu [Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana 46556 (United States)

    2014-09-07T23:59:59.000Z

    In this paper, we present an approach to ultrasonic beam-forming and beam-steering in structures based on the concept of embedded acoustic metamaterial lenses. The lens design exploits the principle of acoustic drop-channel that enables the dynamic coupling of multiple ultrasonic waveguides at selected frequencies. In contrast with currently available technology, the embedded lens allows exploiting the host structure as a key component of the transducer system therefore enabling directional excitation by means of a single ultrasonic transducer. The design and the performance of the lens are numerically investigated by using Plane Wave Expansion and Finite Difference Time Domain techniques applied to bulk structures. Then, the design is experimentally validated on a thin aluminum plate waveguide where the lens is implemented by through-holes. The dynamic response of the embedded lens is estimated by reconstructing, via Laser Vibrometry, the velocity field induced by a single source located at the center of the lens.

  8. Nonlinear theory of ionic sound waves in a hot quantum-degenerate electron-positron-ion plasma

    SciTech Connect (OSTI)

    Dubinov, A. E., E-mail: dubinov-ae@yandex.ru; Sazonkin, M. A., E-mail: figma@mail.r [Sarov State Physicotechnical Institute (Russian Federation)

    2010-11-15T23:59:59.000Z

    A collisionless nonmagnetized e-p-i plasma consisting of quantum-degenerate gases of ions, electrons, and positrons at nonzero temperatures is considered. The dispersion equation for isothermal ionic sound waves is derived and analyzed, and an exact expression is obtained for the linear velocity of ionic sound. Analysis of the dispersion equation has made it possible to determine the ranges of parameters in which nonlinear solutions in the form of solitons should be sought. A nonlinear theory of isothermal ionic sound waves is developed and used for obtaining and analyzing the exact solution to the system of initial equations. Analysis has been carried out by the method of the Bernoulli pseudopotential. The ranges of phase velocities of periodic ionic sound waves and soliton velocities are determined. It is shown that in the plasma under investigation, these ranges do not overlap and that the soliton velocity cannot be lower than the linear velocity of ionic sound. The profiles of physical quantities in a periodic wave and in a soliton are constructed, as well as the dependences of the velocity of sound and the critical velocity on the ionic concentration in the plasma. It is shown that these velocities increase with the ion concentration.

  9. 15 Acoustic Daylight Imaging in the Michael J. Buckingham

    E-Print Network [OSTI]

    Buckingham, Michael

    15 Acoustic Daylight Imaging in the Ocean Michael J. Buckingham Scripps Institution of Oceanography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 15.4 Acoustic daylight images . . . . . . . . . . . . . . . . . . . . . . . . 420 15.5 Concluding. Sensors and Imaging ISBN 0­12­379771­3/$30.00 #12;416 15 Acoustic Daylight Imaging in the Ocean Acoustic

  10. Correlation time of ocean ambient noise intensity in San Diego Bay and target recognition in acoustic daylight images

    E-Print Network [OSTI]

    Wadsworth, Adam J.

    2010-01-01T23:59:59.000Z

    Intensity Data Chapter 3 Acoustic Daylight Image TargetC. L. Epifanio. Acoustic Daylight: Passive Acoustic ImagingRecognition in Acoustic Daylight Images A Thesis submitted

  11. Online Submission ID: 0301 Wave-Ray Coupling for Interactive Sound Propagation in Large Complex Scenes

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Online Submission ID: 0301 Wave-Ray Coupling for Interactive Sound Propagation in Large Complex numerical techniques.18 1 Introduction19 Sound propagation techniques are used to model how sound waves20 applications use geometric sound propagation40 techniques, which assume that sound waves travels like rays

  12. Spectral line width decrease in the solar corona: resonant energy conversion from Alfv{é}n to acoustic waves

    E-Print Network [OSTI]

    T. V. Zaqarashvili; R. Oliver; J. L. Ballester

    2007-03-13T23:59:59.000Z

    Observations reveal an increase with height of the line width of several coronal spectral lines probably caused by outwardly propagating Alfv{\\'e}n waves. However, the spectral line width sometimes shows a sudden decrease at a height 0.1-0.2 R, where the ratio of sound to Alfven speeds may approach unity. Qualitative analysis shows that the resonant energy conversion from Alfven to acoustic waves near the region of the corona where the plasma $\\beta$ approaches unity may explain the observed spectral line width reduction.

  13. Writing magnetic patterns with surface acoustic waves

    SciTech Connect (OSTI)

    Li, Weiyang; Buford, Benjamin; Jander, Albrecht; Dhagat, Pallavi, E-mail: dhagat@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon 97331 (United States)

    2014-05-07T23:59:59.000Z

    A novel patterning technique that creates magnetization patterns in a continuous magnetostrictive film with surface acoustic waves is demonstrated. Patterns of 10??m wide stripes of alternating magnetization and a 3??m dot of reversed magnetization are written using standing and focusing acoustic waves, respectively. The magnetization pattern is size-tunable, erasable, and rewritable by changing the magnetic field and acoustic power. This versatility, along with its solid-state implementation (no moving parts) and electronic control, renders it as a promising technique for application in magnetic recording, magnonic signal processing, magnetic particle manipulation, and spatial magneto-optical modulation.

  14. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T. Tazwell (Livermore, CA); Keller, Jay O. (Oakland, CA)

    1989-01-01T23:59:59.000Z

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  15. acoustic ducts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 10 Sources of Wind Turbine Sound Massachusetts at Amherst, University of 238 Receiver designs for multiuser...

  16. advanced nacelle acoustic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 10 Sources of Wind Turbine Sound Massachusetts at Amherst, University of 171 Receiver designs for multiuser...

  17. acoustical instrumentation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... 10 Sources of Wind Turbine Sound Massachusetts at Amherst, University of 247 Receiver designs for multiuser...

  18. The Automation of Sound Reasoning and Successful Proof Finding

    E-Print Network [OSTI]

    Fitelson, Branden

    709 44 The Automation of Sound Reasoning and Successful Proof Finding LARRY WOS AND BRANDEN scientist naturally envisioned the automation of sound rea- soning ­ reasoning in which conclusions, and find proofs. But can such logical reasoning be fully automated? Can a single computer program

  19. Wave-Based Sound Propagation for VR Applications Ravish Mehra

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Wave-Based Sound Propagation for VR Applications Ravish Mehra University of North Carolina to state-of-the-art wave solvers, enabling real-time, wave-based sound propagation in scenes spanning propagation accurately, it is important to develop interactive wave-based propagation techniques. We present

  20. TIME-PERIODIC SOUND WAVE PROPAGATION COMPRESSIBLE EULER EQUATIONS

    E-Print Network [OSTI]

    A PARADIGM FOR TIME-PERIODIC SOUND WAVE PROPAGATION IN THE COMPRESSIBLE EULER EQUATIONS BLAKE consistent with time-periodic sound wave propagation in the 3 Ã? 3 nonlinear compressible Euler equations description of shock-free waves that propagate through an oscillating entropy field without breaking or dis

  1. South Puget Sound Community College Portland State University Transfer Worksheet

    E-Print Network [OSTI]

    Caughman, John

    South Puget Sound Community College Portland State University Transfer Worksheet Transferring to Portland State University (PSU) with a Direct Transfer Agreement (DTA) Associates degree from South Puget) #12;South Puget Sound Community College Portland State University 2. DEGREE REQUIREMENTS The majority

  2. SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE

    E-Print Network [OSTI]

    Firestone, Jeremy

    SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE UD - LEWES, DELAWARE January 2011 ` #12;SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE AT THE UNIVERSITY OF DELAWARE LEWES, DELAWARE A Gamesa G90 2.0-MW wind turbine operates at the University of Delaware (UD), Lewes campus on a parcel

  3. Description Sound Devices USBPre is a complete, portable hardware

    E-Print Network [OSTI]

    Description Sound Devices USBPre is a complete, portable hardware interface for PC and Mac audio electronics, and S/PDIF digital sources with personal computers. Its high-performance, 24-bit 9.x and Windows. SOUND DEVICES #12;Specifications Frequency Response: (reference 1 kHz) 10 Hz - 20 k

  4. Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter

    SciTech Connect (OSTI)

    Li, Huidong; Deng, Zhiqun; Yuan, Yong; Carlson, Thomas J.

    2012-07-02T23:59:59.000Z

    The Juvenile Salmon Acoustic Telemetry System (JSATS) project supported by the U.S. Army Corps of Engineers, Portland District, has yielded the smallest acoustic fish tag transmitter commercially available to date. In order to study even smaller fish populations and make the transmitter injectable by needles, the JSATS acoustic micro transmitter needs to be further downsized. As part of the transmitter downsizing effort some of the design parameters of the lead zirconate titanate (PZT) ceramic tube transducer in the transmitter were studied, including the type of PZT, the backing material, the necessary drive voltage, the transmitting bandwidth and the length of the transducer. It was found that, to satisfy the 156-dB source level requirement of JSATS, a square wave with a 10-volt amplitude is required to drive 'soft' PZT transducers. PZT-5H demonstrated the best source level performance. For Navy types I and II, 16 volts or 18 volts were needed. Ethylene-propylene-diene monomer (EPDM) closed-cell foam was found to be the backing material providing the highest source level. The effect of tube length on the source level is also demonstrated in this paper, providing quantitative information for downsizing of small piezoelectric transmitters.

  5. Impacts of Center-Based Telecommuting on Travel and Emissions: Analysis of the Puget Sound Demonstration Project

    E-Print Network [OSTI]

    Henderson, Dennis K.; Mokhtarian, Patricia L.

    1996-01-01T23:59:59.000Z

    of telecommuting D. , for the Puget Sound Demonstrationof transportation strategies: The Puget Sound TelecommutingLagerberg B. (1992) Puget sound telecommutingdemonstration:

  6. Using Travel Diary Data to Estimate the Emissions Impacts of Transportation Strategies: The Puget Sound Telecommuting Demonstration Project

    E-Print Network [OSTI]

    Henderson, Dennis K.; Koenig, Brett E.; Mokhtarian, Patricia L.

    1996-01-01T23:59:59.000Z

    1996. Davis), M. ; B. ~Puget telecommuting Sound demons~’a-of Transportation Strategies: The Puget Sound Telecomrnutingof Transportation Strategies: The Puget Sound Telecommuting

  7. Impacts of Center-Based Telecommuting on Travel and Emissions: Analysis of the Puget Sound Demonstration Project

    E-Print Network [OSTI]

    Henderson, Dennis; Mohktarian, Patricia

    1996-01-01T23:59:59.000Z

    Lagerberg B. (1992) Puget sound telecommuting demonstration:EMISSIONS: ANALYSIS OF THE PUGET SOUND DEMONSTRATION PROJECTthe travel diaries of the Puget Sound Project participants.

  8. Comparative Performance of Acoustic-tagged and PIT-tagged Juvenile Salmonids

    SciTech Connect (OSTI)

    Hockersmith, Eric E.; Brown, Richard S.; Liedtke, Theresa L.

    2008-02-01T23:59:59.000Z

    Numerous research tools and technologies are currently being used to evaluate fish passage and survival to determine the impacts of the Federal Columbia River Power System (FCRPS) on endangered and threatened juvenile salmonids, including PIT tags, balloon tags, hydroacoustic evaluations, radio telemetry, and acoustic telemetry. Each has advantages and disadvantages, but options are restricted in some situations because of limited capabilities of a specific technology, lack of detection capability downstream, or availability of adequate numbers of fish. However, there remains concern about the comparative effects of the tag or the tagging procedure on fish performance. The recently developed Juvenile Salmonid Acoustic Telemetry System (JSATS) acoustic transmitter is the smallest active acoustic tag currently available. The goal of this study was to determine whether fish tagged with the JSATS acoustic-telemetry tag can provide unbiased estimates of passage behavior and survival within the performance life of the tag. We conducted both field and laboratory studies to assess tag effects. For the field evaluation we released a total of 996 acoustic-tagged fish in conjunction with 21,026 PIT-tagged fish into the tailrace of Lower Granite Dam on 6 and 13 May. Travel times between release and downstream dams were not significantly different for the majority of the reaches between acoustic-tagged and PIT-tagged fish. In addition to the field evaluation, a series of laboratory experiments were conducted to determine if growth and survival of juvenile Chinook salmon surgically implanted with acoustic transmitters is different than untagged or PIT tagged juvenile Chinook salmon. Only yearling fish with integrated and non-integrated transmitters experienced mortalities, and these were low (<4.5%). Mortality among sub-yearling control and PIT-tag treatments ranged up to 7.7% while integrated and non-integrated treatments had slightly higher rates (up to 8.3% and 7.9% respectively). No acoustic transmitters were shed by yearling fish during the course of the 90 day study. Up to 7.8% of subyearling fish expelled transmitters. Tags were expelled from 5 to 63 days post-surgery. The average time to expulsion was 27 days; few fish expelled transmitters within 14 days of implantation or less. Histological results suggest that inflammation associated with implantation of an acoustic transmitter can produce fibrous tissue which can invade and possibly damage internal organs soon after implantation. Reactions severe enough to damage organs however, were limited to only ~20% of subyearling Chinook salmon, all of which were under 101mm and 12g at tagging. The infiltration of the fibrous tissue into organs was observed most often in fish held for 21 days and appeared to decrease in subsequent holding times.

  9. Spatial Sound Rendering Using Measured Room Impulse Responses Yan Li, Peter F. Driessen

    E-Print Network [OSTI]

    Driessen, Peter F.

    Spatial Sound Rendering Using Measured Room Impulse Responses Yan Li, Peter F. Driessen Dept, Banff Centre Banff, Alberta, Canada Abstract-- Spatial sound rendering has many applications different quality and complexity requirements. This paper presents a new spatial sound rendering framework

  10. A Survey of Biological Underwater Noises Off the Coast of California and in Upper Puget Sound

    E-Print Network [OSTI]

    Johnson, Martin W

    1943-01-01T23:59:59.000Z

    OF CALIFORNIA AND IN UPPER PUGET SOUND by Martin W Johnson iin noise conditions in the Puget Sound area. ii CONFIDENTIALin background noises in the Puget Sound area which had been

  11. Travel Trends Using the Puget Sound Panel Survey: A Generalized Estimating Equations Approach

    E-Print Network [OSTI]

    Yee, Julie; Niemeier, Debbie

    1998-01-01T23:59:59.000Z

    panel survey for the Puget Sound Region. Trans­ portationTravel trends using the Puget Sound Panel Table 18. Wave 1longitudinal data from the Puget Sound Transportation Panel.

  12. Tidal Residual Eddies and their Effect on Water Exchange in Puget Sound

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2013-08-30T23:59:59.000Z

    Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies exist in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.

  13. Tunable damper for an acoustic wave guide

    DOE Patents [OSTI]

    Rogers, S.C.

    1982-10-21T23:59:59.000Z

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180/sup 0/ intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  14. The effects of sound on the boundary layer of an airfoil at high angles of attack

    E-Print Network [OSTI]

    Hutchinson, Thomas Ira

    1963-01-01T23:59:59.000Z

    were run to determine the lift coefficients for the NACA 4415 airfoil model used. At this time, irreparable internal leaks in the static pressure system of the airfoil were discovered, apparently caused by aging since the airfoil had last been used.... This report also contains an early mention of the use of sound as a means of controlling airflow. This came about while seeking a means of producing artificial disturbances in the airflow of known frequency and amplitude. One of these methods involved...

  15. Sources and levels of ambient ocean sound near the antarctic peninsula

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dziak, Robert P. [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Bohnenstiehl, DelWayne R. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Marine, Earth, and Atmospheric Sciences.; Stafford, Kathleen M. [Univ. of Washington, Seattle, WA (United States). Applied Physics Lab.; Matsumoto, Haruyoshi [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Park, Minkyu [Korea Polar Research Inst., Incheon (Korea, Republic of). Polar Environmental Research Div.; Lee, Won Sang [Korea Polar Research Inst., Incheon (Korea, Republic of). Polar Environmental Research Div.; Fowler, Matt J. [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Lau, Tai-Kwan [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Haxel, Joseph H. [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Mellinger, David K. [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Fine, Michael L [Virginia Commonwealth Univ., Richmond, VA (United States)

    2015-04-14T23:59:59.000Z

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.

  16. Sources and levels of ambient ocean sound near the antarctic peninsula

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J.; Lau, Tai-Kwan; Haxel, Joseph H.; Mellinger, David K.; et al

    2015-04-14T23:59:59.000Z

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open,more »deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.« less

  17. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Patents [OSTI]

    Kaduchak, Gregory; Ward, Michael D

    2014-10-21T23:59:59.000Z

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  18. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Patents [OSTI]

    Kaduchak, Gregory (Los Alamos, NM); Ward, Michael D. (Los Alamos, NM)

    2011-12-27T23:59:59.000Z

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  19. Intelligent front-end sample preparation tool using acoustic streaming.

    SciTech Connect (OSTI)

    Cooley, Erika J.; McClain, Jaime L.; Murton, Jaclyn K.; Edwards, Thayne L.; Achyuthan, Komandoor E.; Branch, Darren W.; Clem, Paul Gilbert; Anderson, John Mueller; James, Conrad D.; Smith, Gennifer; Kotulski, Joseph Daniel

    2009-09-01T23:59:59.000Z

    We have successfully developed a nucleic acid extraction system based on a microacoustic lysis array coupled to an integrated nucleic acid extraction system all on a single cartridge. The microacoustic lysing array is based on 36{sup o} Y cut lithium niobate, which couples bulk acoustic waves (BAW) into the microchannels. The microchannels were fabricated using Mylar laminates and fused silica to form acoustic-fluidic interface cartridges. The transducer array consists of four active elements directed for cell lysis and one optional BAW element for mixing on the cartridge. The lysis system was modeled using one dimensional (1D) transmission line and two dimensional (2D) FEM models. For input powers required to lyse cells, the flow rate dictated the temperature change across the lysing region. From the computational models, a flow rate of 10 {micro}L/min produced a temperature rise of 23.2 C and only 6.7 C when flowing at 60 {micro}L/min. The measured temperature changes were 5 C less than the model. The computational models also permitted optimization of the acoustic coupling to the microchannel region and revealed the potential impact of thermal effects if not controlled. Using E. coli, we achieved a lysing efficacy of 49.9 {+-} 29.92 % based on a cell viability assay with a 757.2 % increase in ATP release within 20 seconds of acoustic exposure. A bench-top lysing system required 15-20 minutes operating up to 58 Watts to achieve the same level of cell lysis. We demonstrate that active mixing on the cartridge was critical to maximize binding and release of nucleic acid to the magnetic beads. Using a sol-gel silica bead matrix filled microchannel the extraction efficacy was 40%. The cartridge based magnetic bead system had an extraction efficiency of 19.2%. For an electric field based method that used Nafion films, a nucleic acid extraction efficiency of 66.3 % was achieved at 6 volts DC. For the flow rates we tested (10-50 {micro}L/min), the nucleic acid extraction time was 5-10 minutes for a volume of 50 {micro}L. Moreover, a unique feature of this technology is the ability to replace the cartridges for subsequent nucleic acid extractions.

  20. L.L.Thompson: Finite element methods for acoustics, Preprint: J.Acoust.Soc.Am. A review of finite element methods for time-harmonic acoustics

    E-Print Network [OSTI]

    Thompson, Lonny L.

    L.L.Thompson: Finite element methods for acoustics, Preprint: J.Acoust.Soc.Am. A review of finite element methods for time-harmonic acoustics Lonny L. Thompson Department of Mechanical Engineering, Clemson University Clemson, South Carolina, 29634-0921, USA Email: lonny.thompson@ces.clemson.edu (Dated

  1. Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    E-Print Network [OSTI]

    Riaud, Antoine; Charron, Eric; Bussonnière, Adrien; Matar, Olivier Bou

    2015-01-01T23:59:59.000Z

    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...

  2. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN); Norton, Stephen J. (Raleigh, NC)

    2001-01-01T23:59:59.000Z

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  3. Volumetric measurements of a spatially growing dust acoustic wave

    SciTech Connect (OSTI)

    Williams, Jeremiah D. [Physics Department, Wittenberg University, Springfield, Ohio 45504 (United States)

    2012-11-15T23:59:59.000Z

    In this study, tomographic particle image velocimetry (tomo-PIV) techniques are used to make volumetric measurements of the dust acoustic wave (DAW) in a weakly coupled dusty plasma system in an argon, dc glow discharge plasma. These tomo-PIV measurements provide the first instantaneous volumetric measurement of a naturally occurring propagating DAW. These measurements reveal over the measured volume that the measured wave mode propagates in all three spatial dimensional and exhibits the same spatial growth rate and wavelength in each spatial direction.

  4. Long-Lived, Coherent Acoustic Phonon Oscillations in GaN Single Crystals

    SciTech Connect (OSTI)

    Wu, S.; Geiser, P.; Jun, J.; Karpinski, J.; Park, J.-R.; Sobolewski, R.

    2006-01-31T23:59:59.000Z

    We report on coherent acoustic phonon (CAP) oscillations studied in high-quality bulk GaN single crystals with a two-color femtosecond optical pump-probe technique. Using a far-above-the-band gap ultraviolet excitation (~270 nm wavelength) and a near-infrared probe beam (~810 nm wavelength), the long-lived, CAP transients were observed within a 10 ns time-delay window between the pump and probe pulses, with a dispersionless (proportional to the probe-beam wave vector) frequency of ~45 GHz. The measured CAP attenuation corresponded directly to the absorption of the probe light in bulk GaN, indicating that the actual (intrinsic) phonon-wave attenuation in our crystals was significantly smaller than the measured 65.8 cm^-1 value. The velocity of the phonon propagation was equal to the velocity of sound in GaN.

  5. Fast high-order algorithms and well-conditioned integral equations for high-frequency sound-hard scattering problems

    E-Print Network [OSTI]

    Turc, Catalin

    equations do not give rise to sparse systems of linear equations, the smaller-sized associated boundary algorithm for this prob- lem whose performance is similar to that arising from the sound-soft method [9 is based on the Nystr¨om methodology introduced in [23]: global trigonometric approximations

  6. Detecting Sound-Wave-Like Surface Brightness Ripples in Cluster Cores

    E-Print Network [OSTI]

    J. Graham; A. C. Fabian; J. S. Sanders

    2008-08-18T23:59:59.000Z

    We investigate the observational requirements for the detection of sound-wave-like features in galaxy cluster cores. We calculate the effect of projection on the observed wave amplitude, and find that the projection factor depends only weakly on the underlying cluster properties but strongly on the wavelength of the sound waves, with the observed amplitude being reduced by a factor ~5 for 5 kpc waves but only by a factor ~ 2 for 25 kpc waves. We go on to estimate the time needed to detect ripples similar to those previously detected in the Perseus cluster in other clusters. We find that the detection time scales most strongly with the flux of the cluster and the amplitude of the ripples. By connecting the ripple amplitude to the heating power in the system, we estimate detection times for a selection of local clusters and find that several may have ripples detected with ~1Ms Chandra time.

  7. Hearing Material 1 Perception of Material from Contact Sounds

    E-Print Network [OSTI]

    Pai, Dinesh

    of simulated enviroments. This circumstance is unfortunate, when one considers that sounds provide important, the force of impact, and the location of contact relative to object geometry. In this paper we concentrate

  8. Non-Gaussianities of primordial perturbations and tensor sound speed

    E-Print Network [OSTI]

    Toshifumi Noumi; Masahide Yamaguchi

    2014-03-24T23:59:59.000Z

    We investigate the relation between the non-Gaussianities of the primordial perturbations and the sound speed of the tensor perturbations, that is, the propagation speed of the gravitational waves. We find that the sound speed of the tensor perturbations is directly related not to the auto-bispectrum of the tensor perturbations but to the cross-bispectrum of the primordial perturbations, especially, the scalar-tensor-tensor bispectrum. This result is in sharp contrast with the case of the scalar (curvature) perturbations, where their reduced sound speed enhances their auto-bispectrum. Our findings indicate that the scalar-tensor-tensor bispectrum can be a powerful tool to probe the sound speed of the tensor perturbations.

  9. Sound Waves in (2+1) Dimensional Holographic Magnetic Fluids

    E-Print Network [OSTI]

    Evgeny I. Buchbinder; Alex Buchel; Samuel E. Vazquez

    2008-12-22T23:59:59.000Z

    We use the AdS/CFT correspondence to study propagation of sound waves in strongly coupled (2+1) dimensional conformal magnetic fluids. Our computation provides a nontrivial consistency check of the viscous magneto-hydrodynamics of Hartnoll-Kovtun-Muller-Sachdev to leading order in the external field. Depending on the behavior of the magnetic field in the hydrodynamic limit, we show that it can lead to further attenuation of sound waves in the (2+1) dimensional conformal plasma, or reduce the speed of sound. We present both field theory and dual supergravity descriptions of these phenomena. While to the leading order in momenta the dispersion of the sound waves obtained from the dual supergravity description agrees with the one predicted from field theory, we find a discrepancy at higher order. This suggests that further corrections to HKMS magneto-hydrodynamics are necessary.

  10. Guessing Attacks and the Computational Soundness of Static Equivalence

    E-Print Network [OSTI]

    Warinschi, Bogdan

    Guessing Attacks and the Computational Soundness of Static Equivalence Martin Abadi1 , Mathieu static equivalence. Static equivalence depends on an underlying equa- tional theory. The choice, fundamental cryp- tographic operations. This equational theory yields a notion of static equivalence

  11. NEURAL PROCESSING OF EMOTIONAL MUSIC AND SOUNDS IN DEPRESSION

    E-Print Network [OSTI]

    Lepping, Rebecca Jo Chambers

    2013-05-31T23:59:59.000Z

    The present study uses functional MRI and an emotional sound and music paradigm to examine how neural processing of emotionally provocative auditory stimuli is altered in depression. Functional MRI was used to localize the ...

  12. afro celt sound: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the IEA R&D Wind's Topical expert meeting on Material recycling and life cycle analysis (LCA) of wind turbines 445 and the Brain Sound may seem a straightforward physical phenom-...

  13. Sound localization and interaural time sensitivity with bilateral cochlear implants

    E-Print Network [OSTI]

    Poon, Becky Bikkei

    2006-01-01T23:59:59.000Z

    Bilateral cochlear implantation is becoming more common as clinicians attempt to provide better sound-source localization and speech reception in noise for cochlear implant (CI) users. While some improvement over the ...

  14. Sound-induced micromechanical motions in an isolated cochlea preparation

    E-Print Network [OSTI]

    Page, Scott Lawrence

    2006-01-01T23:59:59.000Z

    The mechanical processes at work within the organ of Corti can be greatly elucidated by measuring both radial motions and traveling-wave behavior of structures within this organ in response to sound stimuli. To enable such ...

  15. PUGET SOUND ENERGY, INC- 14-123-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on September 4,  2014, by Puget Sound Energy, Inc. requesting authorization to import and export a combined total of up...

  16. Update on the Micro-X Sounding Rocket payload

    E-Print Network [OSTI]

    Figueroa-Feliciano, Enectalí

    The Micro-X High Resolution Microcalorimeter X-ray Imaging Rocket is a sounding rocket experiment that will combine a transition-edge-sensor X-ray-microcalorimeter array with a conical imaging mirror to obtain high- ...

  17. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    2002-01-01T23:59:59.000Z

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  18. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1989-01-01T23:59:59.000Z

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  19. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-02-14T23:59:59.000Z

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be performed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described. 6 figs.

  20. Laser and acoustic lens for lithotripsy

    DOE Patents [OSTI]

    Visuri, Steven R. (Livermore, CA); Makarewicz, Anthony J. (San Ramon, CA); London, Richard A. (Orinda, CA); Benett, William J. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Da Silva, Luiz B. (Pleasanton, CA)

    2002-01-01T23:59:59.000Z

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.