National Library of Energy BETA

Sample records for acoustic sounding system

  1. System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources

    DOE Patents [OSTI]

    Holzrichter, John F. (Berkeley, CA); Burnett, Greg C. (Livermore, CA); Ng, Lawrence C. (Danville, CA)

    2003-01-01

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  2. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOE Patents [OSTI]

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  3. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOE Patents [OSTI]

    Holzrichter, John F. (Berkeley, CA); Burnett, Greg C. (Livermore, CA); Ng, Lawrence C. (Danville, CA)

    2007-10-16

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  4. An inexpensive passive acoustic system for recording and localizing wild animal sounds

    E-Print Network [OSTI]

    An inexpensive passive acoustic system for recording and localizing wild animal sounds Sean A. Hayes Biology Department, A316 Earth and Marine Science Building, University of California, Santa Cruz and Institute of Marine Science, A316 Earth and Marine Science Building, University of California, Santa Cruz

  5. Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources

    DOE Patents [OSTI]

    Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2007-03-13

    A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  6. Generation of Sound Bullets with a Nonlinear Acoustic Lens

    E-Print Network [OSTI]

    Alessandro Spadoni; Chiara Daraio

    2009-08-31

    Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery, to defense systems, but their performance is limited by their linear operational envelope and complexity. Here we show a dramatic focusing effect and the generation of large amplitude, compact acoustic pulses (sound bullets) in solid and fluid media, enabled by a tunable, highly nonlinear acoustic lens. The lens consists of ordered arrays of granular chains. The amplitude, size and location of the sound bullets can be controlled by varying static pre-compression on the chains. We support our findings with theory, numerical simulations, and corroborate the results experimentally with photoelasticity measurements. Our nonlinear lens makes possible a qualitatively new way of generating high-energy acoustic pulses, enabling, for example, surgical control of acoustic energy.

  7. Sound Science: Taking Action with Acoustics

    ScienceCinema (OSTI)

    Sinha, Dipen

    2014-07-21

    From tin whistles to sonic booms, sound waves interact with each other and with the medium through which they travel. By observing these interactions, we can identify substances that are hidden in sealed containers and obtain images of buried objects. By manipulating the ability of sound to push matter around, we can create novel structures and unique materials. Join the Lab's own sound hound, Dipen Sinha, as he describes how he uses fundamental research in acoustics for solving problems in industry, security and health.

  8. A Computational Model for Sound Field Absorption by Acoustic Arrays

    E-Print Network [OSTI]

    . We then formulate the acoustic wave equation with the absorption boundary coeÆcient in the frequency the sound absorption property of arrays of micro-acoustic actuators at a control surface. We use the waveA Computational Model for Sound Field Absorption by Acoustic Arrays H. T. Banks #3; D. G. Cole z K

  9. Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino

    E-Print Network [OSTI]

    Merlino, Robert L.

    Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some findings and outstanding problems are also presented. Keywords: dusty plasmas, dust acoustic waves PACS: 52

  10. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

    2015-01-28

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  11. Field Theory for Zero Sound and Ion Acoustic Wave in Astrophysical Matter

    E-Print Network [OSTI]

    Gabadadze, Gregory

    2015-01-01

    We set up a field theory model to describe the longitudinal low energy modes in high density matter present in white dwarf stars. At the relevant scales, ions -- the nuclei of oxygen, carbon and helium -- are treated as heavy point-like spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  12. Field Theory for Zero Sound and Ion Acoustic Wave in Astrophysical Matter

    E-Print Network [OSTI]

    Gregory Gabadadze; Rachel A Rosen

    2015-07-24

    We set up a field theory model to describe the longitudinal low energy modes in high density matter present in white dwarf stars. At the relevant scales, ions -- the nuclei of oxygen, carbon and helium -- are treated as heavy point-like spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  13. Guided acoustic wave inspection system

    DOE Patents [OSTI]

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  14. Lung sound localization using array of acoustic S.M. Akramus Salehin and Thushara D. Abhayapala

    E-Print Network [OSTI]

    Abhayapala, Thushara D.

    1 Lung sound localization using array of acoustic sensors S.M. Akramus Salehin and Thushara D University Abstract-- This paper presents a localization algorithm to detect lung sounds using an circular by computer simulations. I. INTRODUCTION Lung disorders or injury can result in changes in the spectral and

  15. Truck acoustic data analyzer system

    DOE Patents [OSTI]

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  16. Simple model of photo acoustic system for greenhouse effect

    E-Print Network [OSTI]

    Fukuhara, Akiko; Ogawa, Naohisa

    2010-01-01

    The simple theoretical basis for photo acoustic (PA) system for studying infrared absorption properties of greenhouse gases is constructed. The amplitude of sound observed in PA depends on the modulation frequency of light pulse. Its dependence can be explained by our simple model. According to this model, sound signal has higher harmonics. The theory and experiment are compared in third and fifth harmonics by spectrum analysis. The theory has the analogy with electric circuits. This analogy helps students for understanding the PA system.

  17. The Acoustic Oceanographic Buoy A Light Acoustic Data Acquisition System

    E-Print Network [OSTI]

    Jesus, Sérgio M.

    The Acoustic Oceanographic Buoy A Light Acoustic Data Acquisition System Cristiano Soares Sea Trials Description Conclusion and Acknowledgements Introduction The Acoustic Oceanographic Buoy transmission. · Surface buoy with small dimensions (1.2m body plus 1.8m mast) and weight (45kg). · A vertical

  18. Acoustical Communications for Wireless Downhole Telemetry Systems 

    E-Print Network [OSTI]

    Farraj, Abdallah

    2012-08-22

    This dissertation investigates the use of advanced acoustical communication techniques for wireless downhole telemetry systems. Using acoustic waves for downhole telemetry systems is investigated in order to replace the wired communication systems...

  19. Single Channel Estimation Algorithm for Acoustic OFDM Communication Systems

    E-Print Network [OSTI]

    Lin, David; Barbieri, Alan; Mitra, Urbashi

    2007-01-01

    for Acoustic OFDM Communication Systems David Lin, Alanultrawideband communication System Hardware Hardwaremultiple-output systems underwater acoustic communication

  20. Effects of Noise on Sound Detection and Acoustic Communication in Fishes

    E-Print Network [OSTI]

    Ladich, Friedrich

    Chapter 4 Effects of Noise on Sound Detection and Acoustic Communication in Fishes Friedrich Ladich, and vocalizing animals. Fish hearing sensitivity declines when exposed to high noise levels or in the presence of masking noise, in particular, in taxa possessing hearing enhancements. Most vocal fishes commu- nicate

  1. Balloon-Borne Sounding System (SONDE) Handbook

    SciTech Connect (OSTI)

    Holdridge, D; Ritsche, M; Prell, J; Coulter, R

    2011-02-08

    The balloon-borne sounding system (SONDE) provides in situ measurements (vertical profiles) of both the thermodynamic state of the atmosphere and the wind speed and direction.

  2. A low order flow/acoustics interaction method for the prediction of sound propagation using 3D adaptive hybrid grids

    SciTech Connect (OSTI)

    Kallinderis, Yannis; Vitsas, Panagiotis A.; Menounou, Penelope

    2012-07-15

    A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using static and dynamic flow/acoustics coupling demonstrating the importance of the latter.

  3. Source and Listener Directivity for Interactive Wave-based Sound Propagation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    integrated our sound propagation system in Valve's Source game engine and use it to demonstrate realistic acoustic effects such as sound amplification, diffraction low-passing, scattering, localization

  4. Cutting sound enhancement system for mining machines

    DOE Patents [OSTI]

    Leigh, Michael C. (Coal Center, PA); Kwitowski, August J. (Clairton, PA)

    1992-01-01

    A cutting sound enhancement system (10) for transmitting an audible signal from the cutting head (101) of a piece of mine machinery (100) to an operator at a remote station (200), wherein, the operator using a headphone unit (14) can monitor the difference in sounds being made solely by the cutting head (101) to determine the location of the roof, floor, and walls of a coal seam (50).

  5. Copper vapor laser acoustic thermometry system

    DOE Patents [OSTI]

    Galkowski, Joseph J. (Livermore, CA)

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  6. Acoustic dispersion in a two-dimensional dipole system

    SciTech Connect (OSTI)

    Golden, Kenneth I.; Kalman, Gabor J.; Donko, Zoltan; Hartmann, Peter [Department of Mathematics and Statistics, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05401-1455 (United States); Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467 (United States); Research Institute for Solid State Physics and Optics of the Hungarian Academy of Sciences, P.O. Box 49, H-1525 Budapest (Hungary)

    2008-07-15

    We calculate the full density response function and from it the long-wavelength acoustic dispersion for a two-dimensional system of strongly coupled point dipoles interacting through a 1/r{sup 3} potential at arbitrary degeneracy. Such a system has no random-phase-approximation (RPA) limit and the calculation has to include correlations from the outset. We follow the quasilocalized charge (QLC) approach, accompanied by molecular-dynamics (MD) simulations. Similarly to what has been recently reported for the closely spaced classical electron-hole bilayer [G. J. Kalman et al., Phys. Rev. Lett. 98, 236801 (2007)] and in marked contrast to the RPA, we report a long-wavelength acoustic phase velocity that is wholly maintained by particle correlations and varies linearly with the dipole moment p. The oscillation frequency, calculated both in an extended QLC approximation and in the Singwi-Tosi-Land-Sjolander approximation [Phys. Rev. 176, 589 (1968)], is invariant in form over the entire classical to quantum domains all the way down to zero temperature. Based on our classical MD-generated pair distribution function data and on ground-state energy data generated by recent quantum Monte Carlo simulations on a bosonic dipole system [G. E. Astrakharchik et al., Phys. Rev. Lett. 98, 060405 (2007)], there is a good agreement between the QLC approximation kinetic sound speeds and the standard thermodynamic sound speeds in both the classical and quantum domains.

  7. Acoustic microscope surface inspection system and method

    DOE Patents [OSTI]

    Khuri-Yakub, Butrus T. (Palo Alto, CA); Parent, Philippe (Chilly-Mazarin, FR); Reinholdtsen, Paul A. (Seattle, WA)

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  8. Acoustic microscope surface inspection system and method

    DOE Patents [OSTI]

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  9. The Slovene Sound System Through Time

    E-Print Network [OSTI]

    Greenberg, Marc L.

    2006-01-01

    3 ). From a theoretical viewpoint, sound change is conceptualized along the lines of Henning Andersen’s model, in which deductively developed (phonetic) changes create ambiguities that are resolved by abductive deci- sions by speakers about... and Greenberg 1999; the reversal of lenited mediae, G 38 and Green- berg 2001). While structural factors (deductive change or drift, abductive change or phonemic reinterpretation) drive sound change in one direction, stylistic considera- tions for speakers...

  10. Entropic-acoustic instability of shocked Bondi accretion I. What does perturbed Bondi accretion sound like ?

    E-Print Network [OSTI]

    T. Foglizzo

    2001-01-04

    In the radial flow of gas into a black hole (i.e. Bondi accretion), the infall of any entropy or vorticity perturbation produces acoustic waves propagating outward. The dependence of this acoustic flux on the shape of the perturbation is investigated in detail. This is the key process in the mechanism of the entropic-acoustic instability proposed by Foglizzo & Tagger (2000) to explain the instability of Bondi-Hoyle-Lyttleton accretion. These acoustic waves create new entropy and vorticity perturbations when they reach the shock, thus closing the entropic-acoustic cycle. With an adiabatic index 1acoustic refraction, below which ingoing acoustic waves are refracted out. This cut-off is significantly smaller than the Keplerian frequency at the sonic radius and depends on the latitudinal number l of the perturbations. When advected adiabatically inward, entropy and vorticity perturbations trigger acoustic waves propagating outward, with an efficiency which is highest for non radial perturbations l=1. The outgoing acoustic flux produced by the advection of vorticity perturbations is always moderate and peaks at rather low frequency. By contrast, the acoustic flux produced by an entropy wave is highest close to the refraction cut-off. It can be very large if gamma is close to 5/3. These results suggest that the shocked Bondi flow with gamma=5/3 is strongly unstable with respect to the entropic-acoustic mechanism.

  11. Speaker verification system using acoustic data and non-acoustic data

    DOE Patents [OSTI]

    Gable, Todd J. (Walnut Creek, CA); Ng, Lawrence C. (Danville, CA); Holzrichter, John F. (Berkeley, CA); Burnett, Greg C. (Livermore, CA)

    2006-03-21

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  12. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOE Patents [OSTI]

    Moore, Thomas L. (Livermore, CA); Fisher, Karl A. (Brentwood, CA)

    2005-08-09

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  13. 2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 18-21, 2009, New Paltz, NY SOUND TEXTURE SYNTHESIS VIA FILTER STATISTICS

    E-Print Network [OSTI]

    Simoncelli, Eero

    2009 IEEE Workshop on Applications of Signal Processing to Audio and Acoustics October 18-21, 2009 of a perceptual model [1]. We used synthesis to study the perception of sound textures ­ signals that result from in the computational audio community [3, 4, 5, 6]. Their tempo- ral homogeneity suggests they might be particularly

  14. The study of waves is clearly an important subject in acoustics because sound energy is transmitted by waves traveling though air. Furthermore, it turns out that the

    E-Print Network [OSTI]

    Robertson, William

    Waves The study of waves is clearly an important subject in acoustics because sound energy energy without any net movement of mass. In other words the energy in the wave moves from point A to point B without moving any material from A to B. After transmission of wave energy the medium is left

  15. Electromechanical transducer for acoustic telemetry system

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  16. Electromechanical transducer for acoustic telemetry system

    DOE Patents [OSTI]

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  17. Determining both sound speed and internal source in thermo- and photo-acoustic tomography

    E-Print Network [OSTI]

    Hongyu Liu; Gunther Uhlmann

    2015-02-04

    This paper concerns thermoacoustic tomography and photoacoustic tomography, two couple-physics imaging modalities that attempt to combine the high resolution of ultrasound and the high contrast capabilities of electromagnetic waves. We give sufficient conditions to recover both the sound speed of the medium being probed and the source.

  18. 5. SOUND ATTENUATION 5.1 NATURE OF SOUND WAVE

    E-Print Network [OSTI]

    Cambridge, University of

    5. SOUND ATTENUATION 5.1 NATURE OF SOUND WAVE Historically, acoustic is the scientific study of sound. Sound can be considered as a wave phenomenon. A sound wave is a longitudinal wave where particles the sound wave, the particles of the medium through which the sound moves is vibrating in a back and forth

  19. Passive localization of acoustic sources in media with non-constant sound velocity 

    E-Print Network [OSTI]

    Brandes, Thomas Scott

    1998-01-01

    . S. Norris. (Univ. of Calif. , Berkeley, CA), pp. 510-527. Bowles, A. E. , Sumultea, M. , Wursig, B, , DeMaster, D. P. , and Palka, D. (1994). "Relative abundance and behavior of marine mammals exposed to transmissions from the Heard Island.... S. Natl. Res. Counc, , Ocean Stud. Board, Committee on Low- Frequency Sound and Marine Mammals. Green, D. M. , DeFerrari, H. A. , McFadden, D. , Pearse, J. S. , Popper, A. N. , Richardson, W. J. , Ridgway, S. H. , and Tyack, P. L, , (Natl. Acad...

  20. Mitigation of Sounding Pilot Contamination in Massive MIMO Systems

    E-Print Network [OSTI]

    Bahk, Saewoong

    Mitigation of Sounding Pilot Contamination in Massive MIMO Systems Taeseop Lee, Hyung-Sin Kim contamination of cell edge users or a lowered number of serviced users in a multi-cell scenario. In this paper the quality of service (QoS) of mobile users by mitigating the pilot contamination as well as minimize

  1. Computational dynamics of acoustically-driven microsphere systems

    E-Print Network [OSTI]

    Glosser, Connor A; Dault, Daniel L; Piermarocchi, Carlo; Shanker, Balasubramaniam

    2015-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the inter-particle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of non-dissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities, and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation ...

  2. Journal of Counter-Ordnance Technology (Fifth International Symposium on Technology and Mine Problem) 1 Acoustic Mine Detection Using the Navy's

    E-Print Network [OSTI]

    Chu, Peter C.

    Problem) 1 Acoustic Mine Detection Using the Navy's CASS/GRAB Model Peter C. Chu, Carlos Cintron, Steven D the Navy's Comprehensive Acoustic Simulation System/Gaussian Ray Bundle (CASS/GRAB) model. Sound speed needs in that region. Index Terms--Acoustic mine hunting, Navy's comprehensive acoustic simulation

  3. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOE Patents [OSTI]

    Chanson, Gary J. (Weston, MA); Nicolson, Alexander M. (Concord, MA)

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  4. Acoustic Simulation COMP 768 Presentation

    E-Print Network [OSTI]

    Lin, Ming C.

    ) · Variation of pressure governed by Helmholtz's Acoustic Wave Equation (a PDE) · Use a numerical method;Auralization 7[Funkhouser03] #12;Acoustic Phenomena · In reality, sound waves exhibit: ­ Reflection (specular · Statistical Acoustics · Hybrid Acoustics 10 #12;Numerical Simulation · Sound modeled as pressure waves: P(x, t

  5. Acoustic system for communication in pipelines

    DOE Patents [OSTI]

    Martin, II, Louis Peter (San Ramon, CA); Cooper, John F. (Oakland, CA)

    2008-09-09

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  6. Balloon-borne sounding system (BBSS): Vaisala-processed winds, press., temp, and RH

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Coulter, Richard; Ritsche, Michael

    Balloon-borne sounding system (BBSS): Vaisala-processed winds, press., temp, and RH. The balloon-borne sounding system (SONDE) provides in situ measurements (vertical profiles) of both the thermodynamic state of the atmosphere, and the wind speed and direction.

  7. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  8. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOE Patents [OSTI]

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  9. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOE Patents [OSTI]

    Burnett, Greg C. (Livermore, CA); Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  10. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOE Patents [OSTI]

    Burnett, Greg C. (Livermore, CA); Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  11. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOE Patents [OSTI]

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  12. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOE Patents [OSTI]

    Bouchard, A.M.; Osbourn, G.C.

    1998-07-28

    The present invention teaches systems and methods for verifying or recognizing a person`s identity based on measurements of the acoustic response of the individual`s ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications. 5 figs.

  13. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOE Patents [OSTI]

    Bouchard, Ann Marie (Albuquerque, NM); Osbourn, Gordon Cecil (Albuquerque, NM)

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.

  14. WellPosedness for a Nonsmooth Acoustic System H. T. Banks and J. K. Raye \\Lambda

    E-Print Network [OSTI]

    a one­dimensional wave equation in the context of acoustic propagation. This equation describes 18, 2003 Abstract We consider an acoustic wave system with discontinuous coefficients and nonsmooth. 1 Introduction In this note we treat a particular wave equation that arises in the investigation

  15. Well-Posedness for a Nonsmooth Acoustic System H. T. Banks and J. K. Raye

    E-Print Network [OSTI]

    -dimensional wave equation in the context of acoustic propagation. This equation describes the propagation Abstract We consider an acoustic wave system with discontinuous coe cients and nonsmooth inputs. Existence In this note we treat a particular wave equation that arises in the investigation of an electromagnetic

  16. Electron-acoustic solitons in an electron-beam plasma system Matthieu Berthomiera)

    E-Print Network [OSTI]

    California at Berkeley, University of

    Electron-acoustic solitons in an electron-beam plasma system Matthieu Berthomiera) Swedish Physics, Uppsala, Sweden Received 18 November 1999; accepted 16 March 2000 Electron-acoustic solitons exist in a two electron temperature plasma with ``cold'' and ``hot'' electrons and take the form

  17. Methods And Systems For Using Reference Images In Acoustic Image Processing

    DOE Patents [OSTI]

    Moore, Thomas L. (Livermore, CA); Barter, Robert Henry (Oakland, CA)

    2005-01-04

    A method and system of examining tissue are provided in which a field, including at least a portion of the tissue and one or more registration fiducials, is insonified. Scattered acoustic information, including both transmitted and reflected waves, is received from the field. A representation of the field, including both the tissue and the registration fiducials, is then derived from the received acoustic radiation.

  18. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Nardi, Anthony P. (Burlington, MA)

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  19. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Kent, William H. (Westford, MA); Mitchell, Peter G. (Concord, MA)

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  20. Signal processing for fiber optic acoustic sensor system 

    E-Print Network [OSTI]

    Zhu, Juhong

    2000-01-01

    pulses from a single mode laser. Signals from multiple sensors in the array are separated and demultiplexed. The acoustic pressure information is determined by processing the returned optical pulses using a fiber Mach-Zehnder interferometer as an optical...

  1. Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing

    E-Print Network [OSTI]

    Balusamy, Saravanan; Li, Larry K. B.; Han, Zhiyi; Juniper, Matthew P.; Hochgreb, Simone

    2014-06-25

    We experimentally study the nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Our aim is to relate these dynamics to the behavior of universal model oscillators subjected to external forcing. The self...

  2. Nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing

    E-Print Network [OSTI]

    Balusamy, Saravanan; Li, Larry K.B.; Han, Zhiyi; Juniper, Matthew P.; Hochgreb, Simone

    2014-06-25

    We experimentally study the nonlinear dynamics of a self-excited thermoacoustic system subjected to acoustic forcing. Our aim is to relate these dynamics to the behavior of universal model oscillators subjected to external forcing. The self...

  3. Design and Instrumentation of a Measurement and Calibration System for an Acoustic Telemetry System

    SciTech Connect (OSTI)

    Deng, Zhiqun; Weiland, Mark A.; Carlson, Thomas J.; Eppard, M. B.

    2010-03-31

    The Juvenile Salmon Acoustic Telemetry System (JSATS) is an active sensing technology developed by Portland District, the U.S. Army Corps of Engineers for detecting and tracking small fish. It is used at hydroelectric projects and in the laboratory for evaluating behavior and survival of juvenile salmonids migrating through the Federal Columbia River Power System to the Pacific Ocean. It provides critical data for salmon protection and development of more “fish-friendly” hydroelectric facilities. The objective of this study was to design and build a measurement and calibration system for evaluating the JSATS component, because the JSATS requires comprehensive acceptance and performance testing in a controlled environment before it is deployed in the field. The system consists of a reference transducer, a water test tank lined with anechoic material, a motion control unit, a reference receiver, a signal conditioner and amplifier unit, a data acquisition board, MATLAB control and analysis interface, and a computer. The fully integrated system has been evaluated successfully at various simulated distances and using different encoded signals at frequencies within the bandwidth of the JSATS transmitter. It provides accurate acoustic mapping capability in a controlled environment and automates the process that allows real-time measurements and evaluation of the piezoelectric transducers, sensors, or the acoustic fields. The measurement and calibration system has been in use since 2009 for acceptance and performance testing of, and further improvements to, the JSATS.

  4. Surface acoustic wave propagation and inhomogeneities in low-density two-dimensional electron systems near the metalinsulator transition

    E-Print Network [OSTI]

    Eisenstein, Jim

    Surface acoustic wave propagation and inhomogeneities in low-density two-dimensional electron) in a low-density regime (!1010 cmK2 ) at zero magnetic field. The interaction of the surface acoustic wave systems; D. Metal­insulator transition; E. Surface acoustic waves The apparent metal­insulator transition

  5. Music with Unconventional Computing: A System for Physarum Polycephalum Sound

    E-Print Network [OSTI]

    Miranda, Eduardo Reck

    other than the conventional Von Neumann architecture and Turing machine, which have dominated computing, chemical and physical systems, and how they may be exploited as either a genuine or utopian compu- tational

  6. Slow sound in lined flow ducts

    E-Print Network [OSTI]

    Auregan, Yves

    2015-01-01

    We consider the acoustic propagation in lined flow duct with a purely reactive impedance at the wall. This reacting liner has the capability to reduce the speed of sound, and thus to enhance the interaction between the acoustic propagation and the low Mach number flow ($M\\simeq0.3$). At the lower frequencies, there are typically 4 acoustic or hydrodynamic propagating modes, with 3 of them propagating in the direction of the flow. Above a critical frequency, there are only 2 propagating modes that all propagate in the direction of the flow. From the exact 2D formulation an approximate 1D model is developed to study the scattering of acoustic waves in a straight duct with varying wall impedance. This simple system, with a uniform flow and with a non-uniform liner impedance at the wall, permits to study the scattering between regions with different waves characteristics. Several situations are characterized to show the importance of negative energy waves, strong interactions between acoustic and hydrodynamic mod...

  7. Perceiving Emotion in Sounds: Does Timbre Play a Role? 

    E-Print Network [OSTI]

    Bowman, Casady

    2012-02-14

    Acoustic features of sound such as pitch, loudness, perceived duration and timbre have been shown to be related to emotion in regard to sound, demonstrating that an important connection between the perceived emotions and their timbres is lacking...

  8. Thermoacoustic Stirling Engine --An acoustic amplifier

    E-Print Network [OSTI]

    Lee, Dongwon

    Thermoacoustic Stirling Engine -- An acoustic amplifier: ambient heat exchanger (water) stacked kW sound hot diesel exhaust hot diesel exhaust 34" 24" Thermoacoustic Stirling Engine -- An acoustic to ambient air 0º 120º 240º 2 kW electricity Thermoacoustic Energy Conversion Waste or prime heat sound

  9. An investigation of thermally driven acoustical oscillations in helium systems

    SciTech Connect (OSTI)

    Fuerst, J.D.

    1990-08-01

    The phenomenon of thermal-acoustic oscillation is seen to arise spontaneously in gas columns subjected to steep temperature gradients, particularly in tubes connecting liquid helium reservoirs with the ambient environment. This if often the arrangement for installed cryogenic instrumentation and is accompanied by undesirably large heat transfer rates to the cold region. Experimental data are collected and matched to theoretical predictions of oscillatory behavior; these results are in good agreement with the analytical model and with previously collected data. The present experiment places the open ends of oscillating tubes of the various lengths and cross sections in communication with flowing helium in the subcooled, 2-phase, or superheated state while the other ends are maintained at some controlled, elevated temperature. Assorted cold end conditions are achieved through adjustments to the Fermilab Tevatron satellite test refrigerator to which the test cryostat is connected. The warm, closed ends of the tubes are maintained by isothermal baths of liquid nitrogen, ice water, and boiling water. The method is contrasted to previous arrangements whereby tubes are run from room temperature into or adjacent to a stagnant pool of liquid helium. Additionally, the effect of pulsations in the flowing helium stream is explored through operation of the refrigerator's wet and dry expanders during data collection. These data confirm the theory to which try were compared and support its use in the design of cryogenic sensing lines for avoidance of thermoacoustic oscillation.

  10. A proposed system to automatically control audio sound-to-noise levels 

    E-Print Network [OSTI]

    Neinast, Gary Strickland

    1957-01-01

    for the degree oi' MASTER OP SCIENCE August 1957 Major Sub]eot'f Eleotrioal Engineering A PROPOSED SYSTEM TO AUTOMATICALLY CONTROL AUDIO SOUND-TO-NOISE LEVELS k Thesis QARY S. NEINAST Approved as to style and content by& islay a FBNR o 0 ee e epsx' ne... fxequency shown. This is the sero decibel level that 1s produced by a pure tone of 1000 cycles pex second at an intensity of . 0002 dynes per square centimeter. ~loudas . The Ieudaess of a sousd I ~ the asouut ef feeling ox sensation produced...

  11. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    DOE Patents [OSTI]

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  12. Video Tracking Using Acoustic Triangulation 

    E-Print Network [OSTI]

    Ivanov, Alexander

    2012-05-03

    This study focuses on the detection and triangulation of sound sources. Specifically, we focus on the detection of sound in order to track a person’s position with a video camera. Acoustic tracking, an alternative to visual tracking, is relatively...

  13. VIDEO TRACKING USING ACOUSTIC TRIANGULATION 

    E-Print Network [OSTI]

    Raducanu, Alexandru

    2012-05-03

    This study focuses on the detection and triangulation of sound sources. Specifically, we focus on the detection of sound in order to track a person’s position with a video camera. Acoustic tracking, an alternative to visual tracking, is relatively...

  14. 11. Acoustic waves and shocks 11.1 Acoustic waves of low amplitude

    E-Print Network [OSTI]

    Pohl, Martin Karl Wilhelm

    11. Acoustic waves and shocks 11.1 Acoustic waves of low amplitude Let us consider an adiabatic (or velocity of sound waves is constant. Does that still hold for sound waves of finite amplitude? Equation 11. This is the result of the non-linear nature of the hydrodynamical equations. On should note that wave damping, e

  15. Potential use of feebate systems to foster environmentally sound urban waste management

    SciTech Connect (OSTI)

    Puig-Ventosa, Ignasi

    2004-07-01

    Waste treatment facilities are often shared among different municipalities as a means of managing wastes more efficiently. Usually, management costs are assigned to each municipality depending on the size of the population or total amount of waste produced, regardless of important environmental aspects such as per capita waste generation or achievements in composting or recycling. This paper presents a feebate (fee+rebate) system aimed to foster urban waste reduction and recovery. The proposal suggests that municipalities achieving better results in their waste management performance (from an ecological viewpoint) be recompensated with a rebate obtained from a fee charged to those municipalities that are less environmentally sound. This is a dynamic and flexible instrument that would positively encourage municipalities to reduce waste whilst increasing the recycling.

  16. DISCO: An object-oriented system for music composition and sound design

    SciTech Connect (OSTI)

    Kaper, H. G.; Tipei, S.; Wright, J. M.

    2000-09-05

    This paper describes an object-oriented approach to music composition and sound design. The approach unifies the processes of music making and instrument building by using similar logic, objects, and procedures. The composition modules use an abstract representation of musical data, which can be easily mapped onto different synthesis languages or a traditionally notated score. An abstract base class is used to derive classes on different time scales. Objects can be related to act across time scales, as well as across an entire piece, and relationships between similar objects can replicate traditional music operations or introduce new ones. The DISCO (Digital Instrument for Sonification and Composition) system is an open-ended work in progress.

  17. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  18. Passive pavement-mounted acoustical linguistic drive alert system and method

    DOE Patents [OSTI]

    Kisner, Roger A. (Knoxville, TN); Anderson, Richard L. (Oak Ridge, TN); Carnal, Charles L. (Cookeville, TN); Hylton, James O. (Clinton, TN); Stevens, Samuel S. (Harriman, TN)

    2001-01-01

    Systems and methods are described for passive pavement-mounted acoustical alert of the occupants of a vehicle. A method of notifying a vehicle occupant includes providing a driving medium upon which a vehicle is to be driven; and texturing a portion of the driving medium such that the textured portion interacts with the vehicle to produce audible signals, the textured portion pattern such that a linguistic message is encoded into the audible signals. The systems and methods provide advantages because information can be conveyed to the occupants of the vehicle based on the location of the vehicle relative to the textured surface.

  19. Acoustic monitoring method and system in laser-induced optical breakdown (LIOB)

    DOE Patents [OSTI]

    O'Donnell, Matthew (Ann Arbor, MI); Ye, Jing Yong (Ann Arbor, MI); Norris, Theodore B. (Dexter, MI); Baker, Jr., James R. (Ann Arbor, MI); Balogh, Lajos P. (Ann Arbor, MI); Milas, Susanne M. (Ann Arbor, MI); Emelianov, Stanislav Y. (Ann Arbor, MI); Hollman, Kyle W. (Fenton, MI)

    2008-05-06

    An acoustic monitoring method and system in laser-induced optical breakdown (LIOB) provides information which characterize material which is broken down, microbubbles in the material, and/or the microenvironment of the microbubbles. In one embodiment of the invention, femtosecond laser pulses are focused just inside the surface of a volume of aqueous solution which may include dendrimer nanocomposite (DNC) particles. A tightly focused, high frequency, single-element ultrasonic transducer is positioned such that its focus coincides axially and laterally with this laser focus. When optical breakdown occurs, a microbubble forms and a shock or pressure wave is emitted (i.e., acoustic emission). In addition to this acoustic signal, the microbubble may be actively probed with pulse-echo measurements from the same transducer. After the microbubble forms, received pulse-echo signals have an extra pulse, describing the microbubble location and providing a measure of axial microbubble size. Wavefield plots of successive recordings illustrate the generation, growth, and collapse of microbubbles due to optical breakdown. These same plots can also be used to quantify LIOB thresholds.

  20. Broadband non-reciprocal transmission of sound with invariant frequency

    E-Print Network [OSTI]

    Gu, Zhong-ming; Liang, Bin; Zou, Xin-ye; Cheng, Jian-chun

    2015-01-01

    The emergence of "acoustic diode" (AD) capable of rectifying acoustic wave like electrical diodes do to electricity has been believed to be able to offer unconventional manipulation on sound, e.g., to isolate the wrong-way reflection, and therefore have great potential in various important scenarios such as medical ultrasound applications. However, the existing ADs have always been suffering from the problem that the transmitted wave must have either doubled frequency or deviated direction, lacking the most crucial features for achieving such expectations in practice. Here we design and experimentally demonstrate a broadband yet compact non-reciprocal device with hitherto inaccessible functionality of maintaining the original frequency and high forward transmission while virtually blocking the backscattered wave, which is close to what a perfect AD is expected to provide and is promising to play the essential role in realistic acoustic systems like electric diodes do in electrical circuits. Such an extreme ab...

  1. Acoustic transducer for acoustic microscopy

    DOE Patents [OSTI]

    Khuri-Yakub, Butrus T. (Palo Alto, CA); Chou, Ching H. (Palo Alto, CA)

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  2. Acoustic transducer for acoustic microscopy

    DOE Patents [OSTI]

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  3. Puget Sound Operational Forecast System - A Real-time Predictive Tool for Marine Resource Management and Emergency Responses

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Khangaonkar, Tarang; Chase, Jared M.; Wang, Taiping

    2009-12-01

    To support marine ecological resource management and emergency response and to enhance scientific understanding of physical and biogeochemical processes in Puget Sound, a real-time Puget Sound Operational Forecast System (PS-OFS) was developed by the Coastal Ocean Dynamics & Ecosystem Modeling group (CODEM) of Pacific Northwest National Laboratory (PNNL). PS-OFS employs the state-of-the-art three-dimensional coastal ocean model and closely follows the standards and procedures established by National Oceanic and Atmospheric Administration (NOAA) National Ocean Service (NOS). PS-OFS consists of four key components supporting the Puget Sound Circulation and Transport Model (PS-CTM): data acquisition, model execution and product archive, model skill assessment, and model results dissemination. This paper provides an overview of PS-OFS and its ability to provide vital real-time oceanographic information to the Puget Sound community. PS-OFS supports pacific northwest region’s growing need for a predictive tool to assist water quality management, fish stock recovery efforts, maritime emergency response, nearshore land-use planning, and the challenge of climate change and sea level rise impacts. The structure of PS-OFS and examples of the system inputs and outputs, forecast results are presented in details.

  4. Acoustic Character Of Hydraulic Fractures In Granite

    E-Print Network [OSTI]

    Paillet, Frederick I.

    1983-01-01

    Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

  5. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    SciTech Connect (OSTI)

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This work also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.

  6. Design guidelines for avoiding thermo-acoustic oscillations in helium piping systems

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gupta, Prabhat Kumar; Rabehl, Roger

    2015-04-02

    Thermo-acoustic oscillations are a commonly observed phenomenon in helium cryogenic systems, especially in tubes connecting hot and cold areas. The open ends of these tubes are connected to the lower temperature (typically at 4.5 K), and the closed ends of these tubes are connected to the high temperature (300 K). Cryogenic instrumentation installations provide ideal conditions for these oscillations to occur due to the steep temperature gradient along the tubing. These oscillations create errors in measurements as well as an undesirable heat load to the system. The work presented here develops engineering guidelines to design oscillation-free helium piping. This workmore »also studies the effect of different piping inserts and shows how the proper geometrical combinations have to be chosen to avoid thermo-acoustic oscillations. The effect of an 80 K intercept is also studied and shows that thermo-oscillations can be dampened by placing the intercept at an appropriate location. As a result, the design of helium piping based on the present work is also verified with the experimental results available in open literature.« less

  7. Institute of Fluid Mechanics and Engineering Acoustics

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Institute of Fluid Mechanics and Engineering Acoustics Sound Transmission Lab Click to insert the image of the facility or test-rig Application area Facility Mechanical Property measurement Physical

  8. Acoustic Cloaking in a Mean Flow Siyang Zhong

    E-Print Network [OSTI]

    Huang, Xun

    towards sound waves. Existing acoustic cloak designs were originally formulated in a stationary medium Acoustic cloak is a metamaterial that shields the cloaked objects from sound waves. The idea of cloaking wave equation. When an object exists, the physical domain can be mapped to the virtual domain

  9. Optimization of Concurrent Deployments of the Juvenile Salmon Acoustic Telemetry System and Other Hydroacoustic Equipment at John Day Dam

    SciTech Connect (OSTI)

    Ploskey, Gene R.; Hughes, James S.; Khan, Fenton; Kim, Jina; Lamarche, Brian L.; Johnson, Gary E.; Choi, Eric Y.; Faber, Derrek M.; Wilberding, Matthew C.; Deng, Zhiqun; Weiland, Mark A.; Zimmerman, Shon A.; Fischer, Eric S.; Cushing, Aaron W.

    2008-09-01

    The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimization study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage decoded for JSATS transmitters from: turbine operations; spillway operations; DIDSON/ADCP acoustic energy; and PAS hydroacoustic systems at transmit level of -12 dB, although there was a significant impact at all higher transmit levels (-11 to -6 dB). The main conclusion from this optimization study is that valid JSATS telemetry data can be collected simultaneously with a DIDSON/ADCP and a PAS hydroacoustic system at transmit level -12 dB. Multiple evaluation tools should be considered to increase the robustness and thoroughness of future fish passage evaluations at John Day and other dams.

  10. Micro acoustic spectrum analyzer

    DOE Patents [OSTI]

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  11. Multiphase fluid characterization system

    DOE Patents [OSTI]

    Sinha, Dipen N.

    2014-09-02

    A measurement system and method for permitting multiple independent measurements of several physical parameters of multiphase fluids flowing through pipes are described. Multiple acoustic transducers are placed in acoustic communication with or attached to the outside surface of a section of existing spool (metal pipe), typically less than 3 feet in length, for noninvasive measurements. Sound speed, sound attenuation, fluid density, fluid flow, container wall resonance characteristics, and Doppler measurements for gas volume fraction may be measured simultaneously by the system. Temperature measurements are made using a temperature sensor for oil-cut correction.

  12. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    DOE Patents [OSTI]

    Ziminsky, Willy Steve (Simpsonville, SC); Krull, Anthony Wayne (Anderson, SC); Healy, Timothy Andrew (Simpsonville, SC), Yilmaz, Ertan (Glenville, NY)

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  13. A Hydrological Model of Harrington Sound, Bermuda and its Surrounding Cave Systems 

    E-Print Network [OSTI]

    Stoffer, Jonathan L

    2013-04-23

    ). 6 1.3 Inland Waters and Harrington Sound The waters surrounding Bermuda are host to a diverse marine landscape, supporting great expanses of coral reefs, and are thus a hot spot of biodiversity requiring environmental protection. In 2008, about... 7%, or 294.74 km2, of the waters surrounding Bermuda were designated as protected coral reefs (Bermuda Department of Statistics, 2009). The majority of Bermuda?s reefs are in the North Lagoon, a large area north of the island encompassing...

  14. Theory of Sound Propagation in Superfluid Solutions Filled Porous Media

    E-Print Network [OSTI]

    Sh. E. Kekutia; N. D. Chkhaidze

    2005-02-10

    A theory of the propagation of acoustic waves in a porous medium filled with superfluid solution is developed. The elastic coefficients in the system of equations are expressed in terms of physically measurable quantities. The equations obtained describe all volume modes that can propagate in a porous medium saturated with superfluid solution. Finally, derived equations are applied to the most important particular case when the normal fluid component is locked inside a highly porous media (aerogel) by viscous forces and the velocities of two longitudinal sound modes are calculated.

  15. Method for chemically analyzing a solution by acoustic means

    DOE Patents [OSTI]

    Beller, L.S.

    1997-04-22

    A method and apparatus are disclosed for determining a type of solution and the concentration of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration. 10 figs.

  16. Method for chemically analyzing a solution by acoustic means

    DOE Patents [OSTI]

    Beller, Laurence S. (Idaho Falls, ID)

    1997-01-01

    A method and apparatus for determining a type of solution and the concention of that solution by acoustic means. Generally stated, the method consists of: immersing a sound focusing transducer within a first liquid filled container; locating a separately contained specimen solution at a sound focal point within the first container; locating a sound probe adjacent to the specimen, generating a variable intensity sound signal from the transducer; measuring fundamental and multiple harmonic sound signal amplitudes; and then comparing a plot of a specimen sound response with a known solution sound response, thereby determining the solution type and concentration.

  17. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOE Patents [OSTI]

    Burnett, Greg C. (Livermore, CA); Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2002-01-01

    Low power EM waves are used to detect motions of vocal tract tissues of the human speech system before, during, and after voiced speech. A voiced excitation function is derived. The excitation function provides speech production information to enhance speech characterization and to enable noise removal from human speech.

  18. Phonon statistics in an acoustical resonator coupled to a pumped two-level emitter

    E-Print Network [OSTI]

    Victor Ceban; Mihai A. Macovei

    2015-02-04

    The concept of an acoustical analog of the optical laser has been developed recently both in theoretical as well as experimental works. We discuss here a model of a coherent phonon generator with a direct signature of quantum properties of the sound vibrations. The considered setup is made of a laser driven quantum dot (QD) embedded in an acoustical nanocavity. The system's dynamics is solved for a single phonon mode in the steady-state and in the strong QD-phonon coupling regime beyond the secular approximation. We demonstrate that the phonon statistics exhibits quantum features, i.e. sub-Poissonian phonon statistics.

  19. Method and system for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Johnson Paul A. (Santa Fe, NM); Ten Cate, James A. (Los Alamos, NM); Guyer, Robert (Reno, NV); Le Bas, Pierre-Yves (Los Alamos, NM); Vu, Cung (Houston, TX); Nihei, Kurt (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

    2012-02-14

    A compact array of transducers is employed as a downhole instrument for acoustic investigation of the surrounding rock formation. The array is operable to generate simultaneously a first acoustic beam signal at a first frequency and a second acoustic beam signal at a second frequency different than the first frequency. These two signals can be oriented through an azimuthal rotation of the array and an inclination rotation using control of the relative phases of the signals from the transmitter elements or electromechanical linkage. Due to the non-linearity of the formation, the first and the second acoustic beam signal mix into the rock formation where they combine into a collimated third signal that propagates in the formation along the same direction than the first and second signals and has a frequency equal to the difference of the first and the second acoustic signals. The third signal is received either within the same borehole, after reflection, or another borehole, after transmission, and analyzed to determine information about rock formation. Recording of the third signal generated along several azimuthal and inclination directions also provides 3D images of the formation, information about 3D distribution of rock formation and fluid properties and an indication of the dynamic acoustic non-linearity of the formation.

  20. NW-MILO Acoustic Data Collection

    SciTech Connect (OSTI)

    Matzner, Shari; Myers, Joshua R.; Maxwell, Adam R.; Jones, Mark E.

    2010-02-17

    There is an enduring requirement to improve our ability to detect potential threats and discriminate these from the legitimate commercial and recreational activity ongoing in the nearshore/littoral portion of the maritime domain. The Northwest Maritime Information and Littoral Operations (NW-MILO) Program at PNNL’s Coastal Security Institute in Sequim, Washington is establishing a methodology to detect and classify these threats - in part through developing a better understanding of acoustic signatures in a near-shore environment. The purpose of the acoustic data collection described here is to investigate the acoustic signatures of small vessels. The data is being recorded continuously, 24 hours a day, along with radar track data and imagery. The recording began in August 2008, and to date the data contains tens of thousands of signals from small vessels recorded in a variety of environmental conditions. The quantity and variety of this data collection, with the supporting imagery and radar track data, makes it particularly useful for the development of robust acoustic signature models and advanced algorithms for signal classification and information extraction. The underwater acoustic sensing system is part of a multi-modal sensing system that is operating near the mouth of Sequim Bay. Sequim Bay opens onto the Straight of Juan de Fuca, which contains part of the border between the U.S. and Canada. Table 1 lists the specific components used for the NW-MILO system. The acoustic sensor is a hydrophone permanently deployed at a mean depth of about 3 meters. In addition to a hydrophone, the other sensors in the system are a marine radar, an electro-optical (EO) camera and an infra-red (IR) camera. The radar is integrated with a vessel tracking system (VTS) that provides position, speed and heading information. The data from all the sensors is recorded and saved to a central server. The data has been validated in terms of its usability for characterizing the signatures of small vessels. The sampling rate of 8 kHz and low pass filtering to 2 kHz results in an alias-free signal in the frequency band that is appropriate for small vessels. Calibration was performed using a Lubell underwater speaker so that the raw data signal levels can be converted to sound pressure. Background noise is present due to a nearby pump and as a result of tidal currents. More study is needed to fully characterize the noise, but it does not pose an obstacle to using the acoustic data for the purposes of vessel detection and signature analysis. The detection range for a small vessel was estimated using the calibrated voltage response of the system and a cylindrical spreading model for transmission loss. The sound pressure of a typical vessel with an outboard motor was found to be around 140 dB mPa, and could theoretically be detected from 10 km away. In practical terms, a small vessel could reliably be detected from 3 - 5 km away. The data is archived in netCDF files, a standard scientific file format that is "self describing". This means that each data file contains the metadata - timestamps, units, origin, etc. - needed to make the data meaningful and portable. Other file formats, such as XML, are also supported. A visualization tool has been developed to view the acoustic data in the form of spectrograms, along with the coincident radar track data and camera images.

  1. Snohomish PUD No 1 (TRL 7 8 System) - Puget Sound Pilot Tidal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Documents & Publications Ocean Renewable Power Co (ORPC) (TRL 7 8 System) - TidGen (TM) Power System Commercialization Project Vortex Hydro Energy (TRL 5 6 System) - Advanced...

  2. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  3. A Cabled Acoustic Telemetry System for Detecting and Tracking Juvenile Salmon: Part 2. Three-Dimensional Tracking and Passage Outcomes

    SciTech Connect (OSTI)

    Deng, Zhiqun; Weiland, Mark A.; Fu, Tao; Seim, Thomas A.; Lamarche, Brian L.; Choi, Eric Y.; Carlson, Thomas J.; Eppard, Matthew B.

    2011-05-26

    In Part 1 of this paper [1], we presented the engineering design and instrumentation of the Juvenile Salmon Acoustic Telemetry System (JSATS) cabled system, a nonproprietary technology developed by the U.S. Army Corps of Engineers, Portland District, to meet the needs for monitoring the survival of juvenile salmonids through the 31 dams in the Federal Columbia River Power System. Here in Part 2, we describe how the JSATS cabled system was employed as a reference sensor network for detecting and tracking juvenile salmon. Time-of-arrival data for valid detections on four hydrophones were used to solve for the three-dimensional (3D) position of fish surgically implanted with JSATS acoustic transmitters. Validation tests demonstrated high accuracy of 3D tracking up to 100 m from the John Day Dam spillway. The along-dam component, used for assigning the route of fish passage, had the highest accuracy; the median errors ranged from 0.06 to 0.22 m, and root mean square errors ranged from 0.05 to 0.56 m at distances up to 100 m. For the case study at John Day Dam during 2008, the range for 3D tracking was more than 100 m upstream of the dam face where hydrophones were deployed, and detection and tracking probabilities of fish tagged with JSATS acoustic transmitters were higher than 98%. JSATS cabled systems have been successfully deployed on several major dams to acquire information for salmon protection and for development of more “fish-friendly” hydroelectric facilities.

  4. DOI 10.1007/s10665-007-9193-z Acoustic scattering at a hardsoft lining transition

    E-Print Network [OSTI]

    Rienstra, Sjoerd W.

    . Rienstra 1 James Lighthill and aero-acoustics James Lighthill's involvement with aero-acoustics is legendary [1,2]. As far as aero-acoustics regards the generation of sound by aerodynamic disturbances (turbulence), Lighthill defined aero-acoustics. With the publication of his most influential first paper [3

  5. RESEARCH ARTICLE Diversity and evolution of sound production in the social behavior

    E-Print Network [OSTI]

    Tricas, Timothy C.

    that two sound production mechanisms exist in the bannerfish clade and that other mechanisms are used). Here, we determine the kinematic action patterns associated with sound production during social for the tail slap acoustic behaviors. Independent contrast analysis shows a correlation between sound duration

  6. Well-posedness for Systems Representing Electromagnetic/Acoustic Wavefront Interaction

    E-Print Network [OSTI]

    interrogation.) In one such class of electromagnetic interrogation techniques, one uses a superconductive (also and applications for techniques which employ superconductive metal backings and standing acoustic waves as re are absorbing on the left (z = 0) and superconductive on the right (z = 1). We use general initial conditions

  7. SYSTEM IDENTIFICATION FOR MULTI-CHANNEL LISTENING-ROOM COMPENSATION USING AN ACOUSTIC ECHO CANCELLER

    E-Print Network [OSTI]

    Lübeck, Universität zu

    state of the AEC and to incorporate this knowledge into the equalizer design. Index Terms-- Listening employ several subsystems in combination. Ambient noise has to be suppressed and acoustic echoes due propose a method to avoid signal dis- tortions due to unsatisfactory RIR estimates by using the knowledge

  8. Design of a system to measure light scattering from individual cells excited by an acoustic wave

    E-Print Network [OSTI]

    Bigio, Irving J.

    , and the detected frequencies are consistent with theoretical predictions. © 2008 Optical Society of America OCIS. Micheletto, and Y. Kawakami, "Acoustical nanometre-scale vibrations of live cells detected by a near ultrashort electric pulsing," Proc. 3rd Int'l. Workshop on Biological Effect of EMFs, 56-65 (2004). 14. D. B

  9. Analysis of an arrayed acoustic listening system for sperm whale studies 

    E-Print Network [OSTI]

    Duncan, Michael Eric

    1997-01-01

    surveys were conducted in the northwest Gulf of Mexico as a part of the GulfCet program. This program sought to establish the distribution and abundance of native cetacean species. A towed acoustic array was used to passively monitor cetacean vocalizations...

  10. On reconstruction and time reversal in thermoacoustic tomography in acoustically

    E-Print Network [OSTI]

    Kuchment, Peter

    On reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous of recent approaches to the reconstruction in thermoacoustic/photoacoustic tomography: backprojection of the problem of sound speed recovery is also provided. Keywords: Tomography, thermoacoustic, wave equation. AMS

  11. Reflective echo tomographic imaging using acoustic beams

    DOE Patents [OSTI]

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  12. Compact acoustic refrigerator

    SciTech Connect (OSTI)

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  13. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM)

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  14. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  15. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac (Houston, TX); Sinha, Dipen N. (Los Alamos, NM); Pantea, Cristian (Los Alamos, NM); Nihei, Kurt T. (Oakland, CA); Schmitt, Denis P. (Katy, TX); Skelt, Christopher (Houston, TX)

    2012-07-31

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  16. System for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher

    2012-09-04

    In some aspects of the invention, a device, positioned within a well bore, configured to generate and direct an acoustic beam into a rock formation around a borehole is disclosed. The device comprises a source configured to generate a first signal at a first frequency and a second signal at a second frequency; a transducer configured to receive the generated first and the second signals and produce acoustic waves at the first frequency and the second frequency; and a non-linear material, coupled to the transducer, configured to generate a collimated beam with a frequency equal to the difference between the first frequency and the second frequency by a non-linear mixing process, wherein the non-linear material includes one or more of a mixture of liquids, a solid, a granular material, embedded microspheres, or an emulsion.

  17. Studying MRI acquisition protocols of sustained sounds with a multimodal acquisition system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    system which utilizes infrared emit- ting diodes (IREDs) requires that the sensors to be visible from a multimodal acquisition system which uses electromagnetogra- phy sensors to locate the US probe a millimetric accuracy 3D MRI images of the vocal tract have enabled more accurate evaluations of vocal tract

  18. National Center for Physical Acoustics The University of Mississippi

    E-Print Network [OSTI]

    Gui, Lichuan

    Skals Inst. Biol., U. South. Denmark, Odense, Denmark #12;National Center for Physical Acoustics of wing-beat motions is crucial in developing a model for sound production · Long-focal-length, high The University of Mississippi 1986 Note that acoustic energy is clearly observable to at least 40 kHz. #12

  19. Method of sound synthesis

    DOE Patents [OSTI]

    Miner, Nadine E.; Caudell, Thomas P.

    2004-06-08

    A sound synthesis method for modeling and synthesizing dynamic, parameterized sounds. The sound synthesis method yields perceptually convincing sounds and provides flexibility through model parameterization. By manipulating model parameters, a variety of related, but perceptually different sounds can be generated. The result is subtle changes in sounds, in addition to synthesis of a variety of sounds, all from a small set of models. The sound models can change dynamically according to changes in the simulation environment. The method is applicable to both stochastic (impulse-based) and non-stochastic (pitched) sounds.

  20. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations

    E-Print Network [OSTI]

    of the corresponding acoustic wave equation. 1. Introduction For the typical dimensions of microfluidic structures and small 1 mm particles can be understood in terms of the acoustic eigenmodes or standing ultra-sound wavesAcoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical

  1. Assessment of Energy Storage Alternatives in the Puget Sound Energy System

    SciTech Connect (OSTI)

    Balducci, Patrick J.; Jin, Chunlian; Wu, Di; Kintner-Meyer, Michael CW; Leslie, Patrick; Daitch, Charles

    2013-12-12

    As part of an ongoing study co-funded by the Bonneville Power Administration, under its Technology Innovation Grant Program, and the U.S. Department of Energy, the Pacific Northwest National Laboratory (PNNL) has developed an approach and modeling tool for assessing the net benefits of using energy storage located close to the customer in the distribution grid to manage demand. PNNL in collaboration with PSE and Primus Power has evaluated the net benefits of placing a zinc bromide battery system at two locations in the PSE system (Baker River / Rockport and Bainbridge Island). Energy storage can provide a number of benefits to the utility through the increased flexibility it provides to the grid system. Applications evaluated in the assessment include capacity value, balancing services, arbitrage, distribution deferral and outage mitigation. This report outlines the methodology developed for this study and Phase I results.

  2. The dust acoustic waves in three dimensional scalable complex plasma

    E-Print Network [OSTI]

    Zhukhovitskii, D I

    2015-01-01

    Dust acoustic waves in the bulk of a dust cloud in complex plasma of low pressure gas discharge under microgravity conditions are considered. The dust component of complex plasma is assumed a scalable system that conforms to the ionization equation of state (IEOS) developed in our previous study. We find singular points of this IEOS that determine the behavior of the sound velocity in different regions of the cloud. The fluid approach is utilized to deduce the wave equation that includes the neutral drag term. It is shown that the sound velocity is fully defined by the particle compressibility, which is calculated on the basis of the scalable IEOS. The sound velocities and damping rates calculated for different 3D complex plasmas both in ac and dc discharges demonstrate a good correlation with experimental data that are within the limits of validity of the theory. The theory provides interpretation for the observed independence of the sound velocity on the coordinate and for a weak dependence on the particle ...

  3. A wireless interrogation system exploiting narrowband acoustic resonator for remote physical quantity measurement

    SciTech Connect (OSTI)

    Friedt, J.-M [SENSeOR, 32 Avenue de l'Observatoire, 25044 Besancon (France); Droit, C.; Martin, G.; Ballandras, S. [Department of Time and Frequency, FEMTO-ST, 32 Avenue de l'Observatoire, 25044 Besancon (France)

    2010-01-15

    Monitoring physical quantities using acoustic wave devices can be advantageously achieved using the wave characteristic dependence to various parametric perturbations (temperature, stress, and pressure). Surface acoustic wave (SAW) resonators are particularly well suited to such applications as their resonance frequency is directly influenced by these perturbations, modifying both the phase velocity and resonance conditions. Moreover, the intrinsic radio frequency (rf) nature of these devices makes them ideal for wireless applications, mainly exploiting antennas reciprocity and piezoelectric reversibility. In this paper, we present a wireless SAW sensor interrogation unit operating in the 434 MHz centered ISM band--selected as a tradeoff between antenna dimensions and electromagnetic wave penetration in dielectric media--based on the principles of a frequency sweep network analyzer. We particularly focus on the compliance with the ISM standard which reveals complicated by the need for switching from emission to reception modes similarly to radar operation. In this matter, we propose a fully digital rf synthesis chain to develop various interrogation strategies to overcome the corresponding difficulties and comply with the above-mentioned standard. We finally assess the reader interrogation range, accuracy, and dynamics.

  4. Acoustic emission linear pulse holography

    DOE Patents [OSTI]

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  5. Wireless Stethoscope for Recording Heart and Lung Sound W.Y. Shi, Jeffrey Mays, and J.-C. Chiao

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    Wireless Stethoscope for Recording Heart and Lung Sound W.Y. Shi, Jeffrey Mays, and J.-C. Chiao acoustic properties of the heart and lung sounds using a wearable wireless stethoscope. Cardiac action parameters were extracted from the recorded digitized heart sound and analyzed. The cardiac pulse and lung

  6. The Blizzard Challenge 2007 --Bonn, Germany, August 25, 2007 1 CMU Blizzard 2007: A Hybrid Acoustic Unit Selection System from Statistically

    E-Print Network [OSTI]

    Black, Alan W

    of a hybrid statistical parameter generation system whose output was used to do acoustic unit selection. After Challenges were benchmarked on CMU ARCTIC databases which were typically of around one hour of speech needed more than one hour of speech to produce natural and consistent speech. Thus the Blizzard Challenge

  7. Gravity waves generated by sounds from big bang phase transitions

    E-Print Network [OSTI]

    Tigran Kalaydzhyan; Edward Shuryak

    2015-04-03

    Inhomogeneities associated with the cosmological QCD and electroweak phase transitions produce hydrodynamical perturbations, longitudinal sounds and rotations. It has been demonstrated by Hindmarsh et al. that the sounds produce gravity waves (GW) well after the phase transition is over. We further argue that, under certain conditions, an inverse acoustic cascade may occur and move sound perturbations from the (UV) momentum scale at which the sound is originally produced to much smaller (IR) momenta. The weak turbulence regime of this cascade is studied via the Boltzmann equation, possessing stationary power and time-dependent self-similar solutions. We suggest certain indices for the strong turbulence regime as well, into which the cascade eventually proceeds. Finally, we point out that two on-shell sound waves can produce one on-shell gravity wave, and we evaluate the rate of the process using a standard sound loop diagram.

  8. Inversion for subbottom sound velocity profiles in the deep and shallow ocean

    E-Print Network [OSTI]

    Souza, Luiz Alberto Lopes de

    2005-01-01

    This thesis investigates the application of acoustic measurements in the deep and shallow ocean to infer the sound velocity profile (svp) in the seabed. For the deep water ocean, an exact method based on the Gelfand-Levitan ...

  9. Phased Array Ultrasonic Sound Field Mapping in Cast Austenitic Stainless Steel

    SciTech Connect (OSTI)

    Crawford, Susan L.; Prowant, Matthew S.; Cinson, Anthony D.; Larche, Michael R.; Diaz, Aaron A.; Anderson, Michael T.

    2014-05-31

    This study maps the phased array-generated acoustic sound fields through three types of CASS microstructure in four specimens to quantitatively assess the beam formation effectiveness in these materials.

  10. Error analysis of pose measurement from sonic sensors without using speed of sound information 

    E-Print Network [OSTI]

    Lai, Chih-Chien

    1999-01-01

    Scott Burnett (1) demonstrated the feasibility of using acoustic sensors to locate an object without information about speed of sound. The algorithms of triangulation and pose measurement, which were introduced in his paper to fulfill the goal...

  11. 38 | Acoustics Today | Winter 2015 Acoustic Cloaking

    E-Print Network [OSTI]

    Norris, Andrew

    is called transformation acoustics (TA). he technical details of TA convert the acoustic wave equation from that the transformed medium must display acoustic anisotropy. he wave speed in the hori- zontal direction is unchanged of acoustic wave relection in Figure 1 captures the essence of TA. he incident wave relects from a ixed

  12. PUBLISHED ONLINE: 5 FEBRUARY 2012 | DOI: 10.1038/NPHYS2217 Local probing of propagating acoustic waves in a

    E-Print Network [OSTI]

    Loss, Daniel

    acoustic waves in a gigahertz echo chamber Martin V. Gustafsson1 *, Paulo V. Santos2 , Göran Johansson1, surface acoustic waves resemble the sound these instruments produce, but moving over a solid surface probing of surface acoustic waves with a displacement sensitivity of 30 amRMS Hz-1/2 and detection

  13. Bottom interacting sound at 50 km range in a deep ocean environment

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    of acoustic methods in many applications. In this paper acoustic bottom interaction in the deep water LongBottom interacting sound at 50 km range in a deep ocean environment Ilya A. Udovydchenkova) Applied Ocean Physics and Engineering Department, Woods Hole Oceanographic Institution, Woods Hole

  14. Sound transmission through a periodic cascade with application to drill pipes

    E-Print Network [OSTI]

    Rienstra, Sjoerd W.

    Sound transmission through a periodic cascade with application to drill pipes Niels J. C. Lous Acoustical data transmission through the wall of drill pipes is considered. Drill pipes are known to behave the frequency domain drill pipe models presented by Barnes and Kirkwood J. Acoust. Soc. Am. 51, 1606­1608 1972

  15. Sound in the Sea: Hands-on Experience with NOAA VENTS Program Haru Matsumoto1

    E-Print Network [OSTI]

    passive autonomous hydrophone networks cover vast areas of the global oceans, and currently collect passive acoustic monitoring of the Juan de Fuca Ridge (JdFR) in 1991 using the U.S. Navy's SOund-operated instrument was developed to record one-channel acoustic data up to 2 years. Housed in a titanium pressure

  16. A Platform for Collaborative Acoustic Signal Processing

    E-Print Network [OSTI]

    Hanbiao Wang; Lewis Girod; Nithya Ramanathan

    2005-01-01

    Graphic ori- ented signal processing language - gospl,” incollaborative acoustic signal processing, and demonstrateembedded system for signal processing and the recent work on

  17. Dynamics of a spherical particle in an acoustic field: A multiscale approach

    SciTech Connect (OSTI)

    Xie, Jin-Han, E-mail: J.H.Xie@ed.ac.uk; Vanneste, Jacques [School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh EH9 3JZ (United Kingdom)

    2014-10-15

    A rigid spherical particle in an acoustic wave field oscillates at the wave period but has also a mean motion on a longer time scale. The dynamics of this mean motion is crucial for numerous applications of acoustic microfluidics, including particle manipulation and flow visualisation. It is controlled by four physical effects: acoustic (radiation) pressure, streaming, inertia, and viscous drag. In this paper, we carry out a systematic multiscale analysis of the problem in order to assess the relative importance of these effects depending on the parameters of the system that include wave amplitude, wavelength, sound speed, sphere radius, and viscosity. We identify two distinguished regimes characterised by a balance among three of the four effects, and we derive the equations that govern the mean particle motion in each regime. This recovers and organises classical results by King [“On the acoustic radiation pressure on spheres,” Proc. R. Soc. A 147, 212–240 (1934)], Gor'kov [“On the forces acting on a small particle in an acoustical field in an ideal fluid,” Sov. Phys. 6, 773–775 (1962)], and Doinikov [“Acoustic radiation pressure on a rigid sphere in a viscous fluid,” Proc. R. Soc. London A 447, 447–466 (1994)], clarifies the range of validity of these results, and reveals a new nonlinear dynamical regime. In this regime, the mean motion of the particle remains intimately coupled to that of the surrounding fluid, and while viscosity affects the fluid motion, it plays no part in the acoustic pressure. Simplified equations, valid when only two physical effects control the particle motion, are also derived. They are used to obtain sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-mean fluid motion.

  18. Acoustic Characterization of Mesoscale Objects

    SciTech Connect (OSTI)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  19. Evidence and control of bifurcations in a respiratory system

    SciTech Connect (OSTI)

    Goldin, Matías A. Mindlin, Gabriel B.

    2013-12-15

    We studied the pressure patterns used by domestic canaries in the production of birdsong. Acoustically different sound elements (“syllables”) were generated by qualitatively different pressure gestures. We found that some ubiquitous transitions between syllables can be interpreted as bifurcations of a low dimensional dynamical system. We interpreted these results as evidence supporting a model in which different timescales interact nonlinearly.

  20. A Novel Wireless Health Orthopedic System Integrating Motion and Acoustic Emission Monitoring

    E-Print Network [OSTI]

    Paul, Manda

    2013-01-01

    id/ds-260/lang/en›. [10] Wireless Ethernet Bridge (WET54G).Los Angeles A Novel Wireless Health Orthopedic SystemOF THE THESIS A Novel Wireless Health Orthopedic System

  1. Acoustic wave front conjugation in a three-phase media

    E-Print Network [OSTI]

    Pushkina, N I

    2015-01-01

    Acoustic wave front reversal is studied in a sandy marine sediment that contains air bubbles in its fluid fraction. The considered phase conjugation is a four-wave nonlinear parametric sound interaction process caused by nonlinear bubble oscillations which are known to be dominant in acoustic nonlinear interactions in three-phase marine sediments. Two various mechanisms of phase conjugation are studied. One of them is based on the stimulated Raman-type sound scattering on resonance bubble oscillations. The second one is associated with sound interactions with bubble oscillations which frequencies are far from resonance bubble frequencies. Nonlinear equations to solve the wave-front conjugation problem are derived, expressions for acoustic wave amplitudes with a reversed wave front are obtained and compared for various frequencies of the excited bubble oscillations.

  2. Acoustic wave front reversal in a three-phase media

    E-Print Network [OSTI]

    N. I. Pushkina

    2015-03-05

    Acoustic wave front conjugation is studied in a sandy marine sediment that contains air bubbles in its fluid fraction. The considered phase conjugation is a four-wave nonlinear parametric sound interaction process caused by nonlinear bubble oscillations which are known to be dominant in acoustic nonlinear interactions in three-phase marine sediments. Two various mechanisms of phase conjugation are studied. One of them is based on the stimulated Raman-type sound scattering on resonance bubble oscillations. The second one is associated with sound interactions with bubble oscillations which frequencies are far from resonance bubble frequencies. Nonlinear equations to solve the wave-front conjugation problem are derived, expressions for acoustic wave amplitudes with a reversed wave front are obtained and compared for various frequencies of the excited bubble oscillations.

  3. Acoustics in the Klebanoff-Saric Wind Tunnel: Background Identification, Forcing, and Active Control 

    E-Print Network [OSTI]

    Kuester, Matthew

    2012-07-16

    Low disturbance wind tunnels, such as the Klebanoff–Saric Wind Tunnel (KSWT), offer an ideal environment to study boundary layer transition. In particular, the leading-edge receptivity of sound can be measured by creating acoustic disturbances...

  4. Development, perceptual evaluation, and acoustic analysis of amplitude-based F0 control in Electrolarynx speech

    E-Print Network [OSTI]

    Saikachi, Yoko

    2009-01-01

    An Electrolarynx (EL) is a battery-powered device that produces a sound that can be used to acoustically excite the vocal tract as a substitute for laryngeal voice production. ELs provide laryngectomy patients with the ...

  5. Effects of internal waves on low frequency, long range, acoustic propagation in the deep ocean

    E-Print Network [OSTI]

    Xu, Jinshan

    2007-01-01

    This thesis covers a comprehensive analysis of long-range, deep-ocean, low-frequency, sound propagation experimental results obtained from the North Pacific Ocean. The statistics of acoustic fields after propagation through ...

  6. Feeding Young Horses For Sound Development 

    E-Print Network [OSTI]

    Gibbs, Pete G.; Potter, Gary D.

    2005-05-25

    Feeding Young Horses for Sound Development B-5043 05-05 Feeding Young Horses for Sound Development Pete G. Gibbs Professor and Extension Horse Specialist Department Of Animal Science Equine Sciences Program The Texas A&M University System Gary D...

  7. Theoretical analysis of sound transmission loss through graphene sheets

    SciTech Connect (OSTI)

    Natsuki, Toshiaki; Ni, Qing-Qing

    2014-11-17

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.

  8. Acoustic Emission from Breaking Bamboo Chopstick

    E-Print Network [OSTI]

    Sun-Ting Tsai; Panpan Huang; Li-Min Wang; Zhengning Yang; Chin-De Chang; Tzay-Ming Hong

    2015-09-02

    The acoustic emission from breaking a bamboo chopstick or a bundle of spaghetti is found to exhibit similar behavior as the famous seismic laws of Gutenberg-Richter, Omori, and Bath. By use of a force-sensitive detector, we establish a positive correlation between the sound intensity and the magnitude of tremor. We also succeed at deriving these power laws analytically without invoking the concept of phase transition or self-organized criticality. In essence, geometry is more important than mechanics at rendering the statistical behavior of this crackling sound.

  9. Integrated Modeling and Decision-Support System for Water Management in the Puget Sound Basin: Snow Caps to White Caps

    SciTech Connect (OSTI)

    Copping, Andrea E.; Yang, Zhaoqing; Voisin, Nathalie; Richey, Jeff; Wang, Taiping; Taira, Randal Y.; Constans, Michael; Wigmosta, Mark S.; Van Cleve, Frances B.; Tesfa, Teklu K.

    2013-12-31

    Final Report for the EPA-sponsored project Snow Caps to White Caps that provides data products and insight for water resource managers to support their predictions and management actions to address future changes in water resources (fresh and marine) in the Puget Sound basin. This report details the efforts of a team of scientists and engineers from Pacific Northwest National Laboratory (PNNL) and the University of Washington (UW) to examine the movement of water in the Snohomish Basin, within the watershed and the estuary, under present and future conditions, using a set of linked numerical models.

  10. Sound production by white shrimp (Penaeus setiferus) analysis of another crustacean-like sound from the Gulf of Mexico, and the possible use of passive sonar for dedication and stock assessment of shrimp 

    E-Print Network [OSTI]

    Berk, Ilona M.

    1997-01-01

    Sound production by white shrimp (Penaeus setiferus) was studied acoustically and behaviorally. Another crustacean-like signal from the Gulf of Mexico was analyzed, and the use of passive sonar for the detection and stock assessment of shrimp...

  11. Separation of acoustic waves in isentropic flow perturbations

    E-Print Network [OSTI]

    Christian Henke

    2015-02-22

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier-Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill's acoustic analogy. Moreover, we can define the deviations of the Navier-Stokes equation from the convective wave equation as true sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided.

  12. Nonlinear acoustic wave generation in a three-phase seabed

    E-Print Network [OSTI]

    Kukarkin, A B; Zhileikin, Ya M

    2015-01-01

    Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.

  13. Nonlinear acoustic wave generation in a three-phase seabed

    E-Print Network [OSTI]

    A. B. Kukarkin; N. I. Pushkina; Ya. M. Zhileikin

    2015-03-03

    Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.

  14. System and method for generating micro-seismic events and characterizing properties of a medium with non-linear acoustic interactions

    DOE Patents [OSTI]

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2015-12-29

    A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixing zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.

  15. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  16. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  17. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Chirstopher

    2013-10-15

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.

  18. Geometric Sound Propagation

    E-Print Network [OSTI]

    Lin, Ming C.

    ;Adorable and Cute #12;Adorable and Cute #12;Horrible and Ugly fig 1. Acoustic wave equation. Looks simple. Acoustic wave equation. Looks simple, but is full of poison and very sharp pointy teeth 2 p x2 - 1 c2 2 p t into elements Solved with discrete linear equations Model wave equation well Extremely computationally intensive

  19. Classification of Cabo Frio (Brazil) three-dimensional ocean features using single-slice acoustic observations

    E-Print Network [OSTI]

    Jesus, Sérgio M.

    Classification of Cabo Frio (Brazil) three-dimensional ocean features using single-slice acoustic-000 Arraial do Cabo, RJ, Brazil, {lcalado, ana.claudia}@ieapm.mar.mil.br Acoustic tomography is now a well for an instantaneous sound speed field constructed from dynamical predictions for Cabo Frio, Brazil. The results show

  20. Distributed Acoustic Conversation Shielding: An Application of a Smart Transducer Network

    E-Print Network [OSTI]

    Distributed Acoustic Conversation Shielding: An Application of a Smart Transducer Network Yasuhiro]@media.mit.edu ABSTRACT In this paper, we introduce distributed acoustic conversation shielding, a novel application, Conversation Shielding, Location-Awareness, Distributed Control, Sound Masking. 1. INTRODUCTION Actuators

  1. Numerical Investigation of the Acoustic Behavior of a Multi-perforated Liner

    E-Print Network [OSTI]

    Eldredge, Jeff

    Numerical Investigation of the Acoustic Behavior of a Multi-perforated Liner Jeff D. Eldredge, Stanford, CA, 94305, USA The acoustic response of a turbulent flow through an aperture in a multi-perforated, turbine, and the downstream-traveling sound created by the fan. In particular, multi-perforated liners

  2. Acoustic cryocooler

    SciTech Connect (OSTI)

    Swift, G.W.; Martin, R.A.; Radebaugh, R.

    1989-09-26

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintain a cooling load of 5 W at 80 K. 3 figs.

  3. Acoustic cryocooler

    SciTech Connect (OSTI)

    Swift, G.W.; Martin, R.A.; Radebaugh, R.

    1990-09-04

    This patent describes an acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effect to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15--60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintain a cooling load of 5 W at 80 K.

  4. Acoustic cryocooler

    SciTech Connect (OSTI)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  5. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  6. Extraordinary acoustic transmission mediated by Helmholtz resonators

    SciTech Connect (OSTI)

    Koju, Vijay; Rowe, Ebony; Robertson, William M.

    2014-07-15

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of ? radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  7. ACOUSTIC FORMING FOR ENHANCED DEWATERING AND FORMATION

    SciTech Connect (OSTI)

    Cyrus K Aidun

    2007-11-30

    The next generation of forming elements based on acoustic excitation to increase drainage and enhances formation both with on-line control and profiling capabilities has been investigated in this project. The system can be designed and optimized based on the fundamental experimental and computational analysis and investigation of acoustic waves in a fiber suspension flow and interaction with the forming wire.

  8. On sounding in wideband channels

    E-Print Network [OSTI]

    Jing, Sheng, Ph. D. Massachusetts Institute of Technology

    2006-01-01

    (cont.) This approach provides us with a cohesive framework to consider the relative costs and benefits of allotting energy for sounding versus transmission, and for repeated sounding of a single channel versus sounding ...

  9. Proc. Second International Conference on Underwater Acoustic Measurements: Technologies and Results, Heraklion, Greece, 25-29 June 2007.

    E-Print Network [OSTI]

    , Heraklion, Greece, 25-29 June 2007. ACOUSTIC MEASUREMENT OF MARINE MAMMAL SOUNDS IN NOISY ENVIRONMENTS David Measurements: Technologies and Results, Heraklion, Greece, 25-29 June 2007. 1. INTRODUCTION: MARINE

  10. Method and apparatus for acoustic imaging of objects in water

    DOE Patents [OSTI]

    Deason, Vance A.; Telschow, Kenneth L.

    2005-01-25

    A method, system and underwater camera for acoustic imaging of objects in water or other liquids includes an acoustic source for generating an acoustic wavefront for reflecting from a target object as a reflected wavefront. The reflected acoustic wavefront deforms a screen on an acoustic side and correspondingly deforms the opposing optical side of the screen. An optical processing system is optically coupled to the optical side of the screen and converts the deformations on the optical side of the screen into an optical intensity image of the target object.

  11. Acoustic Based Sketch Recognition 

    E-Print Network [OSTI]

    Li, Wenzhe

    2012-10-19

    investigate this new area, which we call acoustic based sketch recognition, and evaluate the possibilities of using it as a new interaction technique. We focus specifically on building a recognition engine for acoustic sketch recognition. We first propose a...

  12. Under consideration for publication in J. Fluid Mech. 1 Disturbance energy transport and sound

    E-Print Network [OSTI]

    Nicoud, Franck

    that the energetics of sound generation in these simulations cannot be examined by considering the Rayleigh source term alone. 1. Introduction Combustion generated sound and combustion system stability are closely generated sound, which in turn further excites the mechanisms by which the sound was first generated

  13. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  14. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  15. Collimation of sound assisted by acoustic surface waves

    E-Print Network [OSTI]

    Loss, Daniel

    -DOMINGUEZ1 , F. DE LEON-PEREZ2 , L. MARTIN-MORENO2 AND F. J. GARCIA-VIDAL1 * 1 Departamento de Fisica Teorica

  16. Aalborg Universitet Product Sound: Acoustically pleasant motor drives

    E-Print Network [OSTI]

    Mathe, Laszlo

    pleasant motor drives. Department of Energy Technology, Aalborg University. General rights Copyright Institute of Energy Technology June, 2010 #12;Aalborg University Department of Energy Technology Pontoppidanstraede 101 DK-9220 Aalborg East Denmark Web address: http://www.et.aau.dk Copyright © László Máthé, 2010

  17. Field Projects and Research Highlights for Jeff Nystuen 2004/2005 1. Spatial Averaging of Rain Generated Sound in the Ionian Sea, Greece: Jan-Apr 2004

    E-Print Network [OSTI]

    Nystuen, Jeffrey A.

    Generated Sound in the Ionian Sea, Greece: Jan-Apr 2004 An acoustic mooring with 4 PALs was deployed in 3 km deep water off the southwestern coast of Greece. Co-located radar measurements show the spatial

  18. Specific acoustic impedance measurements of an air-filled thermoacoustic prime mover

    SciTech Connect (OSTI)

    Arnott, W.P.; Bass, H.E.; Raspet, R. )

    1992-12-01

    Thermoacoustic heat engines can be used to produce sound from heat and to transport heat using sound. The air-filled prime mover studied is a quarter wavelength resonator that produces sound at nominally 115 Hz for a temperature difference of [Delta]T = 176 K. Specific acoustic impedance at the mouth of the prime mover was measured as a function of the temperature difference between the hot and cold heat exchangers. The real part of the impedance changes sign for sufficiently large temperature differences, indicating the possibility of sound production. The theoretically predicted radiation impedance of an open pipe was compared to the measured impedance curves. The operating point was confirmed from the intersection of these experimental and theoretical impedance curves. These measurements allow for analysis of the prime mover as a sound source as discussed in a recent theoretical paper [T. B. Gabrielson, J. Acoust. Soc. Am. 90, 2628-2636 (1991)]. 11 refs., 2 figs.

  19. Nonlinear characterization of a single-axis acoustic levitator

    SciTech Connect (OSTI)

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  20. Detection of coherent acoustic oscillations in a quantum electromechanical resonator

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    Detection of coherent acoustic oscillations in a quantum electromechanical resonator Florian W electromechanical QEM systems, such as nano- mechanical resonators, the different eigenstates correspond

  1. Sound emission from the gas of molecular superrotors

    E-Print Network [OSTI]

    Milner, A A; Milner, V

    2015-01-01

    We use an optical centrifuge to deposit a controllable amount of rotational energy into dense molecular ensembles. Subsequent rotation-translation energy transfer, mediated by thermal collisions, results in the localized heating of the gas and generates strong sound wave, clearly audible to the unaided ear. For the first time, the amplitude of the sound signal is analyzed as a function of the experimentally measured rotational energy. The proportionality between the two experimental observables confirms that rotational excitation is the main source of the detected sound wave. As virtually all molecules, including the main constituents of the atmosphere, are amenable to laser spinning by the centrifuge, we anticipate this work to stimulate further development in the area of photo-acoustic control and spectroscopy.

  2. Assessment of Energy Storage Alternatives in the Puget Sound Energy System Volume 2: Energy Storage Evaluation Tool

    SciTech Connect (OSTI)

    Wu, Di; Jin, Chunlian; Balducci, Patrick J.; Kintner-Meyer, Michael CW

    2013-12-01

    This volume presents the battery storage evaluation tool developed at Pacific Northwest National Laboratory (PNNL), which is used to evaluate benefits of battery storage for multiple grid applications, including energy arbitrage, balancing service, capacity value, distribution system equipment deferral, and outage mitigation. This tool is based on the optimal control strategies to capture multiple services from a single energy storage device. In this control strategy, at each hour, a look-ahead optimization is first formulated and solved to determine battery base operating point. The minute by minute simulation is then performed to simulate the actual battery operation. This volume provide background and manual for this evaluation tool.

  3. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect (OSTI)

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  4. Heating by Acoustic Waves of Multiphase Media

    E-Print Network [OSTI]

    Doron Chelouche

    2007-08-02

    We study the emission and dissipation of acoustic waves from cool dense clouds in pressure equilibrium with a hot, volume-filling dilute gas component. In our model, the clouds are exposed to a source of ionizing radiation whose flux level varies with time, forcing the clouds to pulsate. We estimate the rate at which acoustic energy is radiated away by an ensemble of clouds and the rate at which it is absorbed by, and dissipated in, the hot dilute phase. We show that acoustic energy can be a substantial heating source of the hot gas phase when the mass in the cool component is a substantial fraction of the total gas mass. We investigate the applicability of our results to the multiphase media of several astrophysical systems, including quasar outflows and cooling flows. We find that acoustic heating can have a substantial effect on the thermal properties of the hot phase in those systems.

  5. Surface acoustic wave dust deposition monitor

    DOE Patents [OSTI]

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  6. Acoustic geometry for general relativistic barotropic irrotational fluid flow

    E-Print Network [OSTI]

    Visser, Matt

    2010-01-01

    "Acoustic spacetimes", in which techniques of differential geometry are used to investigate sound propagation in moving fluids, have attracted considerable attention over the last few decades. Most of the models currently considered in the literature are based on non-relativistic barotropic irrotational fluids, defined in a flat Newtonian background. The extension, first to special relativistic barotropic fluid flow, and then to general relativistic barotropic fluid flow in an arbitrary background, is less straightforward than it might at first appear. In this article we provide a pedagogical and simple derivation of the general relativistic "acoustic spacetime" in an arbitrary (d+1) dimensional curved-space background.

  7. Acoustic Modeling for Aqua Ventus I off Monhegan Island, ME

    SciTech Connect (OSTI)

    Whiting, Jonathan M.; Hanna, Luke A.; DeChello, Nicole L.; Copping, Andrea E.

    2013-10-31

    The DeepCwind consortium, led by the University of Maine, was awarded funding under the US Department of Energy’s Offshore Wind Advanced Technology Demonstration Program to develop two floating offshore wind turbines in the Gulf of Maine equipped with Goldwind 6 MW direct drive turbines, as the Aqua Ventus I project. The Goldwind turbines have a hub height of 100 m. The turbines will be deployed in Maine State waters, approximately 2.9 miles off Monhegan Island; Monhegan Island is located roughly 10 miles off the coast of Maine. In order to site and permit the offshore turbines, the acoustic output must be evaluated to ensure that the sound will not disturb residents on Monhegan Island, nor input sufficient sound levels into the nearby ocean to disturb marine mammals. This initial assessment of the acoustic output focuses on the sound of the turbines in air by modeling the assumed sound source level, applying a sound propagation model, and taking into account the distance from shore.

  8. Localizing nearby sound sources in a classroom: Binaural room impulse responsesa)

    E-Print Network [OSTI]

    Shinn-Cunningham, Barbara

    to the listener, even for nearby sources where there is relatively little reverberant energy. © 2005 Acoustical in the presence of competing sources from other locations e.g., see Bronkhorst, 2000; Ebata, 2003 . A great dealLocalizing nearby sound sources in a classroom: Binaural room impulse responsesa) Barbara G. Shinn

  9. DETECTION OF IMPULSE-LIKE AIRBORNE SOUND FOR DAMAGE IDENTIFICATION IN ROTOR BLADES OF WIND TURBINES

    E-Print Network [OSTI]

    Boyer, Edmond

    DETECTION OF IMPULSE-LIKE AIRBORNE SOUND FOR DAMAGE IDENTIFICATION IN ROTOR BLADES OF WIND TURBINES burdens of wind turbines. To detect damage of rotor blades, several research projects focus on an acoustic, rotor blade, wind turbine INTRODUCTION There are several publications of non destructive damage

  10. Tracing Analytic Ray Curves for Light and Sound Propagation in Non-linear Media

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    algorithm is able to model general media profiles that vary in three dimensions with complex boundaries temperature, pressure, and humidity [1]. There can be wind field or other weather patterns that affect patterns in the sound field around a source. Outdoor acoustic applications such as noise reduction, urban

  11. Data sonification and sound visualization.

    SciTech Connect (OSTI)

    Kaper, H. G.; Tipei, S.; Wiebel, E.; Mathematics and Computer Science; Univ. of Illinois

    1999-07-01

    Sound can help us explore and analyze complex data sets in scientific computing. The authors describe a digital instrument for additive sound synthesis (Diass) and a program to visualize sounds in a virtual reality environment (M4Cave). Both are part of a comprehensive music composition environment that includes additional software for computer-assisted composition and automatic music notation.

  12. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    DOE Patents [OSTI]

    Shekarriz, Alireza (Kennewick, WA); Sheen, David M. (Richland, WA)

    2000-01-01

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  13. Propagation of ion-acoustic solitons in an electron beam-superthermal plasma system with finite ion-temperature: Linear and fully nonlinear investigation

    SciTech Connect (OSTI)

    Saberian, E. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of); Department of Physics, Faculty of Basic Sciences, University of Neyshabur, Neyshabur (Iran, Islamic Republic of); Esfandyari-Kalejahi, A.; Rastkar-Ebrahimzadeh, A.; Afsari-Ghazi, M. [Department of Physics, Faculty of Sciences, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of)

    2013-03-15

    The propagation of ion-acoustic (IA) solitons is studied in a plasma system, comprised of warm ions and superthermal (Kappa distributed) electrons in the presence of an electron-beam by using a hydrodynamic model. In the linear analysis, it is seen that increasing the superthermality lowers the phase speed of the IA waves. On the other hand, in a fully nonlinear investigation, the Mach number range and characteristics of IA solitons are analyzed, parametrically and numerically. It is found that the accessible region for the existence of IA solitons reduces with increasing the superthermality. However, IA solitons with both negative and positive polarities can coexist in the system. Additionally, solitary waves with both subsonic and supersonic speeds are predicted in the plasma, depending on the value of ion-temperature and the superthermality of electrons in the system. It is examined that there are upper critical values for beam parameters (i.e., density and velocity) after which, IA solitary waves could not propagate in the plasma. Furthermore, a typical interaction between IA waves and the electron-beam in the plasma is confirmed.

  14. Sensor development and calibration for acoustic neutrino detection in ice

    E-Print Network [OSTI]

    Karg, Timo; Laihem, Karim; Semburg, Benjamin; Tosi, Delia

    2009-01-01

    A promising approach to measure the expected low flux of cosmic neutrinos at the highest energies (E > 1 EeV) is acoustic detection. There are different in-situ test installations worldwide in water and ice to measure the acoustic properties of the medium with regard to the feasibility of acoustic neutrino detection. The parameters of interest include attenuation length, sound speed profile, background noise level and transient backgrounds. The South Pole Acoustic Test Setup (SPATS) has been deployed in the upper 500 m of drill holes for the IceCube neutrino observatory at the geographic South Pole. In-situ calibration of sensors under the combined influence of low temperature, high ambient pressure, and ice-sensor acoustic coupling is difficult. We discuss laboratory calibrations in water and ice. Two new laboratory facilities, the Aachen Acoustic Laboratory (AAL) and the Wuppertal Water Tank Test Facility, have been set up. They offer large volumes of bubble free ice (3 m^3) and water (11 m^3) for the devel...

  15. Acoustic cooling engine

    DOE Patents [OSTI]

    Hofler, Thomas J. (Los Alamos, NM); Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM)

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  16. Acoustic well cleaner

    DOE Patents [OSTI]

    Maki, Jr., Voldi E. (11904 Bell Ave., Austin, TX 78759-2415); Sharma, Mukul M. (Dept. of Petroleum Engr. Univ. of Texas, Austin, TX 78712)

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  17. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  18. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  19. Sound | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin Jump to:Solkar SolarSongtaoSonnengeld GmbHSosSound

  20. Sound Oil Company

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OF APPLICABLE DIRECTIVESDepartment of EnergyEnergy SolyndraSound Oil

  1. Anisotropic and Negative Acoustic Index Metamaterials

    E-Print Network [OSTI]

    Fok, Lee Ren

    2010-01-01

    the standard wave equation, conventional acoustic imaging isdifferential equations for EM and acoustic waves can bemagnetic field. Equation 1.5 describes fluid acoustic waves

  2. Optimal control techniques for thermo-acoustic tomography Maitine Bergounioux

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . These hybrid systems use an electromagnetic pulse as an input and record ultrasound waves as an output-acoustic tomography (TAT) when the heating is realized by means of microwaves, and of photo-acoustic tomography (PAT) when optical heating is used. While in TAT waves of radio frequency range are used to trigger

  3. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    SciTech Connect (OSTI)

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G.

    2014-04-10

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  4. Directing acoustic radiation using a phased array of piezoelectric transmitters

    E-Print Network [OSTI]

    Rodgers, Daniel Michael

    2010-01-01

    This thesis presents an acoustic phased array system utilizing piezoelectric transducers. The system is capable of operating at arbitrary frequencies into the low megahertz range, with a trade-off between phase accuracy ...

  5. Marine Animal Alert System -- Task 2.1.5.3: Development of Monitoring Technologies -- FY 2011 Progress Report

    SciTech Connect (OSTI)

    Carlson, Thomas J.; Deng, Zhiqun; Myers, Joshua R.; Matzner, Shari; Copping, Andrea E.

    2011-09-30

    The Marine Animal Alert System (MAAS) in development by the Pacific Northwest National Laboratory is focused on providing elements of compliance monitoring to support deployment of marine hydrokinetic energy devices. An initial focus is prototype tidal turbines to be deployed in Puget Sound in Washington State. The MAAS will help manage the risk of injury or mortality to marine animals from blade strike or contact with tidal turbines. In particular, development has focused on detection, classification, and localization of listed Southern Resident killer whales within 200 m of prototype turbines using both active and passive acoustic approaches. At the close of FY 2011, a passive acoustic system consisting of a pair of four-element star arrays and parallel processing of eight channels of acoustic receptions has been designed and built. Field tests of the prototype system are scheduled for the fourth quarter of calendar year 2011. Field deployment and testing of the passive acoustic prototype is scheduled for the first quarter of FY 2012. The design of an active acoustic system that could be built using commercially available off-the-shelf components from active acoustic system vendors is also in the final stages of design and specification.

  6. Quantum Acoustics with Surface Acoustic Waves

    E-Print Network [OSTI]

    Thomas Aref; Per Delsing; Maria K. Ekström; Anton Frisk Kockum; Martin V. Gustafsson; Göran Johansson; Peter Leek; Einar Magnusson; Riccardo Manenti

    2015-06-04

    It has recently been demonstrated that surface acoustic waves (SAWs) can interact with superconducting qubits at the quantum level. SAW resonators in the GHz frequency range have also been found to have low loss at temperatures compatible with superconducting quantum circuits. These advances open up new possibilities to use the phonon degree of freedom to carry quantum information. In this paper, we give a description of the basic SAW components needed to develop quantum circuits, where propagating or localized SAW-phonons are used both to study basic physics and to manipulate quantum information. Using phonons instead of photons offers new possibilities which make these quantum acoustic circuits very interesting. We discuss general considerations for SAW experiments at the quantum level and describe experiments both with SAW resonators and with interaction between SAWs and a qubit. We also discuss several potential future developments.

  7. ECOLOGY AND BEHAVIOR Acoustic Indicators for Targeted Detection of Stored Product and

    E-Print Network [OSTI]

    by infrared sensors, microphones, and a piezoelectric sensor in a small arena to evaluate effects of insect Pests by Inexpensive Infrared, Acoustic, and Vibrational Detection of Movement R. W. MANKIN,1 R. D crawling, but could be detected when scraping. Sound and vibration sensors detected brief, 3Ð10-ms impulses

  8. Acoustic radiation from membranes at high frequencies: The quantum chaos regime

    E-Print Network [OSTI]

    Delande, Dominique

    the air sound speed c and its important fluctuations from mode-to-mode is explained by the theory of arbitrary shapes over the whole frequency domain. The properties that will be de- scribed below in acoustics holds.4,5 On the other hand, in the classical limit, classical orbits de- scribe the Hamiltonian

  9. Acoustic velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, Edwin F. (Alamo, CA)

    1986-01-01

    Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  10. Acoustic-velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, E.F.

    1982-09-30

    Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  11. Experiencing the Production of Sounds 

    E-Print Network [OSTI]

    Nudds, Matthew

    2001-01-01

    Whether or not we would be happy to do without sounds, the idea that our experience of sounds is of things which are distinct from the world of material objects can seem compelling. All you have to do is close your eyes ...

  12. Acoustic subwavelength imaging of subsurface objects with acoustic...

    Office of Scientific and Technical Information (OSTI)

    liuxiaojun@nju.edu.cn 1 ; State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 2 ; Zhou, Chen ; Wei, Qi ; Wu, DaJian 1 +...

  13. Rotating analogue black holes: Quasinormal modes and tails, superresonance, and sonic bombs and plants in the draining bathtub acoustic hole

    E-Print Network [OSTI]

    José P. S. Lemos

    2013-12-27

    The analogy between sound wave propagation and light waves led to the study of acoustic holes, the acoustic analogues of black holes. Many black hole features have their counterparts in acoustic holes. The Kerr metric, the rotating metric for black holes in general relativity, has as analogue the draining bathtub metric, a metric for a rotating acoustic hole. Here we report on the progress that has been made in the understanding of features, such as quasinormal modes and tails, superresonance, and instabilities when the hole is surrounded by a reflected mirror, in the draining bathtub metric. Given then the right settings one can build up from these instabilities an apparatus that stores energy in the form of amplified sound waves. This can be put to wicked purposes as in a bomb, or to good profit as in a sonic plant.

  14. Feasibility of acoustic neutrino detection in ice: First results from the South Pole Acoustic Test Setup (SPATS)

    E-Print Network [OSTI]

    S. Böser; C. Bohm; F. Descamps; J. Fischer; A. Hallgren; R. Heller; S. Hundertmark; K. Krieger; R. Nahnhauer; M. Pohl; P. B. Price; K. -H. Sulanke; D. Tosi; J. Vandenbroucke

    2007-08-15

    Astrophysical neutrinos in the EeV range (particularly those generated by the interaction of cosmic rays with the cosmic microwave background) promise to be a valuable tool to study astrophysics and particle physics at the highest energies. Much could be learned from temporal, spectral, and angular distributions of ~100 events, which could be collected by a detector with ~100 km^3 effective volume in a few years. Scaling the optical Cherenkov technique to this scale is prohibitive. However, using the thick ice sheet available at the South Pole, the radio and acoustic techniques promise to provide sufficient sensitivity with sparse instrumentation. The best strategy may be a hybrid approach combining all three techniques. A new array of acoustic transmitters and sensors, the South Pole Acoustic Test Setup, was installed in three IceCube holes in January 2007. The purpose of SPATS is to measure the attenuation length, background noise, and sound speed for 10-100 kHz acoustic waves. Favorable results would pave the way for a large hybrid array. SPATS is the first array to study the possibility of acoustic neutrino detection in ice, the medium expected to be best for the purpose. First results from SPATS are presented.

  15. Acoustic metafluids made from three acoustic fluids Andrew N. Norrisa

    E-Print Network [OSTI]

    Norris, Andrew

    . It was subsequently demonstrated that the same methods should work for the acoustic wave equation.3,4 The acoustic by the possibility of acoustic cloaking. The first electromag- netic wave cloaking device2 uses transformation of coordi- nates in the governing wave equation to steer energy around the cloaked object

  16. Sound propagation around underwater seamounts

    E-Print Network [OSTI]

    Sikora, Joseph J., III

    2009-01-01

    In the ocean, low frequency acoustic waves propagate with low attenuation and cylindrical spreading loss over long-ranges, making them an effective tool for underwater source localization, tomography, and communications. ...

  17. Puget Sound area electric reliability plan. Draft environmental impact statement

    SciTech Connect (OSTI)

    Not Available

    1991-09-01

    The Puget Sound Area Electric Reliability Plan Draft Environmental Impact Statement (DEIS) identifies the alternatives for solving a power system problem in the Puget Sound area. This Plan is undertaken by Bonneville Power Administration (BPA), Puget Sound Power & Light, Seattle City Light, Snohomish Public Utility District No. 1 (PUD), and Tacoma Public Utilities. The Plan consists of potential actions in Puget Sound and other areas in the State of Washington. A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, there is more demand for power than the electric system can supply in the Puget Sound area. This high demand, called peak demand, occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies, the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both. The plan to balance Puget Sound`s power demand and supply has these purposes: The plan should define a set of actions that would accommodate ten years of load growth (1994--2003). Federal and State environmental quality requirements should be met. The plan should be consistent with the plans of the Northwest Power Planning Council. The plan should serve as a consensus guideline for coordinated utility action. The plan should be flexible to accommodate uncertainties and differing utility needs. The plan should balance environmental impacts and economic costs. The plan should provide electric system reliability consistent with customer expectations. 29 figs., 24 tabs.

  18. Active micromixer using surface acoustic wave streaming

    DOE Patents [OSTI]

    Branch; Darren W. (Albuquerque, NM), Meyer; Grant D. (Ithaca, NY), Craighead; Harold G. (Ithaca, NY)

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  19. Heat transfer in sound propagation and attenuation through gas-liquid polyhedral foams

    E-Print Network [OSTI]

    Yuri M. Shtemler; Isaac R. Shreiber

    2007-05-20

    A cell method is developed, which takes into account the bubble geometry of polyhedral foams, and provides for the generalized Rayleigh-Plesset equation that contains the non-local in time term corresponding to heat relaxation. The Rayleigh-Plesset equation together with the equations of mass and momentum balances for an effective single-phase inviscid fluid yield a model for foam acoustics. The present calculations reconcile observed sound velocity and attenuation with those predicted using the assumption that thermal dissipation is the dominant damping mechanism in a range of foam expansions and sound excitation frequencies.

  20. Acoustic emission intrusion detector

    DOE Patents [OSTI]

    Carver, Donald W. (Knoxville, TN); Whittaker, Jerry W. (Knoxville, TN)

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  1. Sound Production in the Isolated Mouse Larynx

    E-Print Network [OSTI]

    Berquist, Sean

    2013-01-01

    of sound production. Sound traveling in a helium medium,production have been inconclusive, with one study using the effects of helium

  2. Fourth sound of holographic superfluids

    E-Print Network [OSTI]

    Amos Yarom

    2009-05-08

    We compute fourth sound for superfluids dual to a charged scalar and a gauge field in an AdS_4 background. For holographic superfluids with condensates that have a large scaling dimension (greater than approximately two), we find that fourth sound approaches first sound at low temperatures. For condensates that a have a small scaling dimension it exhibits non-conformal behavior at low temperatures which may be tied to the non-conformal behavior of the order parameter of the superfluid. We show that by introducing an appropriate scalar potential, conformal invariance can be enforced at low temperatures.

  3. Diagnosis of Fracture Flow Conditions with Acoustic Sensing 

    E-Print Network [OSTI]

    Martinez, Roberto

    2014-07-10

    Distributed acoustic sensing (DAS) is an emerging technology in hydraulic fracture diagnosis. Current uses of DAS systems have been limited to qualitative analysis that pinpoint noise sources, such as injection into formation or production from a...

  4. 3D acoustic imaging applied to the Baikal Neutrino Telescope

    E-Print Network [OSTI]

    K. G. Kebkal; R. Bannasch; O. G. Kebkal; A. I. Panfilov; R. Wischnewski

    2008-11-07

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 meter square; acoustic pulses were "linear sweep-spread signals" - multiple-modulated wide-band signals (10-22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with a accuracy of ~0.2 m (along the beam) and ~1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km3-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  5. Acoustic energy-driven fluid pump and method

    SciTech Connect (OSTI)

    Janus, Michael C.; Richards, George A.; Robey, Edward H.

    1997-12-01

    Bulk fluid motion is promoted in a gaseous fluid contained within a conduit system provided with a diffuser without the need for a mean pressure differential across the conduit system. The contacting of the gaseous fluid with unsteady energy at a selected frequency and pressure amplitude induces fluid flow through the conical diffuser. The unsteady energy can be provided by pulse combustors, thermoacoustic engines, or acoustic energy generators such as acoustic speakers.

  6. Event identification by acoustic signature recognition

    SciTech Connect (OSTI)

    Dress, W.B.; Kercel, S.W.

    1995-07-01

    Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and future applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.

  7. Method and apparatus for separating mixtures of gases using an acoustic wave

    DOE Patents [OSTI]

    Geller, Drew A.; Swift, Gregory W.; Backhaus, Scott N.

    2004-05-11

    A thermoacoustic device separates a mixture of gases. An elongated duct is provided with first and second ends and has a length that is greater than the wavelength of sound in the mixture of gases at a selected frequency, and a diameter that is greater than a thermal penetration depth in the mixture of gases. A first acoustic source is located at the first end of the duct to generate acoustic power at the selected frequency. A plurality of side branch acoustic sources are spaced along the length of the duct and are configured to introduce acoustic power into the mixture of gases so that a first gas is concentrated at the first end of the duct and a second gas is concentrated at the second end of the duct.

  8. Cluster analysis and classification of heart sounds Guy Amit a,

    E-Print Network [OSTI]

    Intrator, Nathan

    quantitatively described in both animal models and humans [4,5]. Despite the Biomedical Signal Processing T Acoustic heart signals, generated by the mechanical processes of the cardiac cycle, carry significant of the cardiovascular system is periodic by nature. However, as the complex physiological processes driving this system

  9. Puget Sound Area Electric Reliability Plan : Draft Environmental Impact State.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1991-09-01

    The Puget Sound Area Electric Reliability Plan Draft Environmental Impact Statement (DEIS) identifies the alternatives for solving a power system problem in the Puget Sound area. This Plan is undertaken by Bonneville Power Administration (BPA), Puget Sound Power Light, Seattle City Light, Snohomish Public Utility District No. 1 (PUD), and Tacoma Public Utilities. The Plan consists of potential actions in Puget Sound and other areas in the State of Washington. A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, there is more demand for power than the electric system can supply in the Puget Sound area. This high demand, called peak demand, occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies, the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both. The plan to balance Puget Sound's power demand and supply has these purposes: The plan should define a set of actions that would accommodate ten years of load growth (1994--2003). Federal and State environmental quality requirements should be met. The plan should be consistent with the plans of the Northwest Power Planning Council. The plan should serve as a consensus guideline for coordinated utility action. The plan should be flexible to accommodate uncertainties and differing utility needs. The plan should balance environmental impacts and economic costs. The plan should provide electric system reliability consistent with customer expectations. 29 figs., 24 tabs.

  10. Measurement of sound speed vs. depth in South Pole ice: pressure waves and shear waves

    SciTech Connect (OSTI)

    IceCube Collaboration; Klein, Spencer

    2009-06-04

    We have measured the speed of both pressure waves and shear waves as a function of depth between 80 and 500 m depth in South Pole ice with better than 1% precision. The measurements were made using the South Pole Acoustic Test Setup (SPATS), an array of transmitters and sensors deployed in the ice at the South Pole in order to measure the acoustic properties relevant to acoustic detection of astrophysical neutrinos. The transmitters and sensors use piezoceramics operating at {approx}5-25 kHz. Between 200 m and 500 m depth, the measured profile is consistent with zero variation of the sound speed with depth, resulting in zero refraction, for both pressure and shear waves. We also performed a complementary study featuring an explosive signal propagating vertically from 50 to 2250 m depth, from which we determined a value for the pressure wave speed consistent with that determined for shallower depths, higher frequencies, and horizontal propagation with the SPATS sensors. The sound speed profile presented here can be used to achieve good acoustic source position and emission time reconstruction in general, and neutrino direction and energy reconstruction in particular. The reconstructed quantities could also help separate neutrino signals from background.

  11. Asymptotic wave-splitting in anisotropic linear acoustics

    E-Print Network [OSTI]

    B. L. G. Jonsson; M. Norgren

    2009-08-11

    Linear acoustic wave-splitting is an often used tool in describing sound-wave propagation through earth's subsurface. Earth's subsurface is in general anisotropic due to the presence of water-filled porous rocks. Due to the complexity and the implicitness of the wave-splitting solutions in anisotropic media, wave-splitting in seismic experiments is often modeled as isotropic. With the present paper, we have derived a simple wave-splitting procedure for an instantaneously reacting anisotropic media that includes spatial variation in depth, yielding both a traditional (approximate) and a `true amplitude' wave-field decomposition. One of the main advantages of the method presented here is that it gives an explicit asymptotic representation of the linear acoustic-admittance operator to all orders of smoothness for the smooth, positive definite anisotropic material parameters considered here. Once the admittance operator is known we obtain an explicit asymptotic wave-splitting solution.

  12. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  13. Acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  14. Extremely Low-Loss Acoustic Phonons in a Quartz Bulk Acoustic Wave Resonator at Millikelvin Temperature

    E-Print Network [OSTI]

    Maxim Goryachev; Daniel L. Creedon; Eugene N. Ivanov; Serge Galliou; Roger Bourquin; Michael E. Tobar

    2012-04-02

    Low-loss, high frequency acoustic resonators cooled to millikelvin temperatures are a topic of great interest for application to hybrid quantum systems. When cooled to 20 mK, we show that resonant acoustic phonon modes in a Bulk Acoustic Wave (BAW) quartz resonator demonstrate exceptionally low loss (with $Q$-factors of order billions) at frequencies of 15.6 and 65.4 MHz, with a maximum $f.Q$ product of 7.8$\\times10^{16}$ Hz. Given this result, we show that the $Q$-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained. Such resonators possess the low losses crucial for electromagnetic cooling to the phonon ground state, and the possibility of long coherence and interaction times of a few seconds, allowing multiple quantum gate operations.

  15. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, D.N.; Anthony, B.W.

    1997-02-25

    A method is described for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries. 3 figs.

  16. Method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Alamos, NM); Anthony, Brian W. (Clearfield, PA)

    1997-01-01

    A method for determining the octane rating of gasoline samples by observing corresponding acoustic resonances therein. A direct correlation between the octane rating of gasoline and the frequency of corresponding acoustic resonances therein has been experimentally observed. Therefore, the octane rating of a gasoline sample can be directly determined through speed of sound measurements instead of by the cumbersome process of quantifying the knocking quality of the gasoline. Various receptacle geometries and construction materials may be employed. Moreover, it is anticipated that the measurements can be performed on flowing samples in pipes, thereby rendering the present method useful in refineries and distilleries.

  17. Three-Dimensional Nonlinear Acoustical Holography 

    E-Print Network [OSTI]

    Niu, Yaying

    2013-05-06

    nonlinear acoustic holography procedure is derived for reconstructing steady-state acoustic pressure fields by applying perturbation and renormalization methods to nonlinear, dissipative, pressure-based Westervelt Wave Equation (WWE). The nonlinear acoustic...

  18. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD); Chandran, Ravi (Ellicott City, MD)

    1994-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  19. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    SciTech Connect (OSTI)

    Pantea, Cristian

    2012-05-04

    The projects objectives and purpose are to: (1) development a multipurpose acoustic sensor for downhole fluid monitoring in Enhanced Geothermal Systems (EGS) reservoirs over typical ranges of pressures and temperatures and demonstrate its capabilities and performance for different EGS systems; (2) determine in real-time and in a single sensor package several parameters - temperature, pressure, fluid flow and fluid properties; (3) needed in nearly every phase of an EGS project, including Testing of Injection and Production Wells, Reservoir Validation, Inter-well Connectivity, Reservoir Scale Up and Reservoir Sustainability. (4) Current sensors are limited to operating at lower temperatures, but the need is for logging at high temperatures. The present project deals with the development of a novel acoustic-based sensor that can work at temperatures up to 374 C, in inhospitable environments.

  20. Development of a geothermal acoustic borehole televiewer

    SciTech Connect (OSTI)

    Heard, F.E.; Bauman, T.J.

    1983-08-01

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  1. Anisotropic and Negative Acoustic Index Metamaterials

    E-Print Network [OSTI]

    Fok, Lee Ren

    2010-01-01

    density and acoustic metamaterials. Physica B 394, 256 (resonant acoustic metamaterials. Phys. Rev. B 76, 144302 (celestial mechanics in metamaterials. Nat. Phys. 5, 687 (

  2. Investigation and Analytical Description of Acoustic Production...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Investigation and Analytical Description of Acoustic Production by Magneto-Acoustic Mixing Technology Citation Details In-Document Search This content will become...

  3. Sounds & Music Is language special?

    E-Print Network [OSTI]

    Coulson, Seana

    Sounds & Music #12;Is language special? · "Language is a complex, specialized skill, which develops abilities to process information or behave intelligently." (Pinker, 1995: 18) #12;What about music? LANGUAGE cognitive abilities MUSIC · Complex skill · Exists in all human cultures · Develops in child spontaneously

  4. The electron geodesic acoustic mode

    SciTech Connect (OSTI)

    Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Guzdar, P. N. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Kaw, P. K. [Institute for Plasma Research Bhat, Gandhinagar 382428 (India)

    2012-09-15

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  5. Utility Sounding Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentric viewing system forPortal Building

  6. Schlumberger Resistivity Soundings At North Brawley Geothermal...

    Open Energy Info (EERE)

    Area Exploration Technique Schlumberger Resistivity Soundings Activity Date 1968 - 1970 Usefulness useful regional reconnaissance DOE-funding Unknown Exploration Basis...

  7. Opto-acoustic thrombolysis

    DOE Patents [OSTI]

    Celliers, Peter (Berkeley, CA); Da Silva, Luiz (Danville, CA); Glinsky, Michael (Livermore, CA); London, Richard (Orinda, CA); Maitland, Duncan (Livermore, CA); Matthews, Dennis (Moss Beach, CA); Fitch, Pat (Livermore, CA)

    2000-01-01

    This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.

  8. An injectable acoustic transmitter for juvenile salmon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; Xiao, Jie; Myjak, Mitchell J.; Lu, Jun; Martinez, Jayson J.; Woodley, Christa M.; Weiland, Mark A.; Eppard, Matthew B.

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more »and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  9. 1/2015 Sound 1/8 INTERFERENCE OF SOUND WAVES

    E-Print Network [OSTI]

    Gustafsson, Torgny

    vibrations that make sound. The piezoelectric material contracts (or expands) a small amount when a voltage

  10. and the Brain Sound may seem a straightforward physical phenom-

    E-Print Network [OSTI]

    Hill, Wendell T.

    Hearing and the Brain Sound may seem a straightforward physical phenom- enon, whose waves can be recorded, charted and parsed. But no machines can do what the human brain does--understand a wide variety of electrical and computer engineering and member of the Institute for Systems Research, studies how the brain

  11. Guaranteeing Soundness of Configurable Process Variants in Provop

    E-Print Network [OSTI]

    Ulm, Universität

    sound process models, belonging to the same process family and fitting to the given application context reasons companies are developing a growing interest in improving the efficiency and quality.1. Problem Statement When engineering process-aware information systems (PAIS) one of the fundamental

  12. Electromagnetic acoustic transducer

    DOE Patents [OSTI]

    Alers, George A. (Albuquerque, NM); Burns, Jr., Leigh R. (Albuquerque, NM); MacLauchlan, Daniel T. (Sandia Park, NM)

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  13. Experimental Investigation of Mass Sensing With Surface Acoustic Wave Devices

    E-Print Network [OSTI]

    MacDonald, Frank Dickinson

    2010-01-01

    Colin, “1927- Surface acoustic wave devices for mobile andColin, “1927- Surface acoustic wave devices and their signalhorizontal surface acoustic waves (SH-SAW) sensor. Figure 9.

  14. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOE Patents [OSTI]

    Sinha, Dipen N. (Los Almos, NM)

    1999-01-01

    Apparatus and method for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described.

  15. Apparatus and method for comparing corresponding acoustic resonances in liquids

    DOE Patents [OSTI]

    Sinha, D.N.

    1999-03-23

    Apparatus and method are disclosed for comparing corresponding acoustic resonances in liquids. The present invention permits the measurement of certain characteristics of liquids which affect the speed of sound therein. For example, a direct correlation between the octane rating of gasoline and the speed of sound in a gasoline sample has been experimentally observed. Therefore, changes in the speed of sound therein can be utilized as a sensitive parameter for determining changes in composition of a liquid sample. The present apparatus establishes interference patterns inside of a liquid without requiring the use of very thin, rigorously parallel ceramic discs, but rather uses readily available piezoelectric transducers attached to the outside surface of the usual container for the liquid and located on the same side thereof in the vicinity of one another. That is, various receptacle geometries may be employed, and the driving and receiving transducers may be located on the same side of the receptacle. The cell may also be constructed of any material that is inert to the liquid under investigation. A single-transducer embodiment, where the same transducer provides the excitation to the sample container and receives signals impressed therein, is also described. 5 figs.

  16. Converting acoustic energy into useful other energy forms

    DOE Patents [OSTI]

    Putterman, Seth J. (Sherman Oaks, CA); Barber, Bradley Paul (Northridge, CA); Hiller, Robert Anthony (Los Angeles, CA); Lofstedt, Ritva Maire Johanna (Los Angeles, CA)

    1997-01-01

    Sonoluminescence is an off-equilibrium phenomenon in which the energy of a resonant sound wave in a liquid is highly concentrated so as to generate flashes of light. The conversion of sound to light represents an energy amplification of eleven orders of magnitude. The flashes which occur once per cycle of the audible or ultrasonic sound fields can be comprised of over one million photons and last for less 100 picoseconds. The emission displays a clocklike synchronicity; the jitter in time between consecutive flashes is less than fifty picoseconds. The emission is blue to the eye and has a broadband spectrum increasing from 700 nanometers to 200 nanometers. The peak power is about 100 milliWatts. The initial stage of the energy focusing is effected by the nonlinear oscillations of a gas bubble trapped in the liquid. For sufficiently high drive pressures an imploding shock wave is launched into the gas by the collapsing bubble. The reflection of the shock from its focal point results in high temperatures and pressures. The sonoluminescence light emission can be sustained by sensing a characteristic of the emission and feeding back changes into the driving mechanism. The liquid is in a sealed container and the seeding of the gas bubble is effected by locally heating the liquid after sealing the container. Different energy forms than light can be obtained from the converted acoustic energy. When the gas contains deuterium and tritium there is the feasibility of the other energy form being fusion, namely including the generation of neutrons.

  17. Quantum ion-acoustic wave oscillations in metallic nanowires

    SciTech Connect (OSTI)

    Moradi, Afshin

    2015-05-15

    The low-frequency electrostatic waves in metallic nanowires are studied using the quantum hydrodynamic model, in which the electron and ion components of the system are regarded as a two-species quantum plasma system. The Poisson equation as well as appropriate quantum boundary conditions give the analytical expressions of dispersion relations of the surface and bulk quantum ion-acoustic wave oscillations.

  18. Acoustically Enhanced Boiling Heat Transfer

    E-Print Network [OSTI]

    Z. W. Douglas; M. K. Smith; A. Glezer

    2008-01-07

    An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

  19. Acoustic characteristics of English fricatives

    E-Print Network [OSTI]

    Jongman, Allard; Wayland, Ratree; Wong, Serena

    2000-09-01

    This study constitutes a large-scale comparative analysis of acoustic cues for classification of place of articulation in fricatives. To date, no single metric has been found to classify fricative place of articulation with a high degree of accuracy...

  20. STRUCTURAL HEALTH MONITORING OF A SMART COMPOSITE BRIDGE USING GUIDED WAVES AND ACOUSTIC EMISSION TECHNIQUES

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    STRUCTURAL HEALTH MONITORING OF A SMART COMPOSITE BRIDGE USING GUIDED WAVES AND ACOUSTIC EMISSION with the development of a structural health monitoring (SHM) system implemented on a composite footbridge during in France to serve as demonstrators. KEYWORDS : Structural Health Monitoring, Acoustic emission, Guided

  1. Formation of Hydro-acoustic Waves in Weakly Compressible Fluid Interacting with Viscous Weakly Compressible Seabed

    E-Print Network [OSTI]

    Kirby, James T.

    Formation of Hydro-acoustic Waves in Weakly Compressible Fluid Interacting with Viscous Weakly@udel.edu, giorgio.bellotti@uniroma3.it 1. Objective Enhancement of Tsunami Early Warning Systems (TEWS) Hydro/s) [2]. Study of the characteristics of hydro-acoustic waves generated by sudden sea bottom motion

  2. Parallel and real-time implementation of an acoustic echo canceller using oversampled wavelet frame algorithms 

    E-Print Network [OSTI]

    Tam, Pak-Yin

    1995-01-01

    This thesis describes a novel echo cancellation system that eliminates nonstationary echoes with long acoustic delays in real-time. By combining subband adaptive filtering and active system identification based on fast wavelet transform...

  3. Auto-acoustic compaction in steady shear flows: experimental evidence for the suppression of shear dilatancy by internal acoustic vibration

    E-Print Network [OSTI]

    Van der Elst, Nicholas J; Brodsky, Emily E; Le Bas, Pierre-Yves; Johnson, Paul A.

    2012-01-01

    by internal acoustic vibration Nicholas J. van der Elst, 1by internal acoustic vibration, J. Geophys. Res. , 117,generated acoustic vibration. By examining the response to

  4. System and technique for characterizing fluids using ultrasonic diffraction grating spectroscopy

    DOE Patents [OSTI]

    Greenwood, Margaret S.

    2005-04-12

    A system for determining a property of a fluid based on ultrasonic diffraction grating spectroscopy includes a diffraction grating on a solid in contact with the fluid. An interrogation device delivers ultrasound through the solid and a captures a reflection spectrum from the diffraction grating. The reflection spectrum including a diffraction order equal to zero exhibits a peak whose location is used to determine speed of sound in the fluid. A separate measurement of the acoustic impedance is combined with the determined speed of sound to yield a measure of fluid density. A system for determining acoustic impedance includes an ultrasonic transducer on a first surface of a solid member, and an opposed second surface of the member is in contact with a fluid to be monitored. A longitudinal ultrasonic pulse is delivered through the solid member, and a multiplicity of pulse echoes caused by reflections of the ultrasonic pulse between the solid-fluid interface and the transducer-solid interface are detected. The decay rate of the detected echo amplitude as a function of echo number is used to determine acoustic impedance.

  5. Contour mode resonators with acoustic reflectors

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM)

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  6. Computerized ultrasound risk evaluation system

    DOE Patents [OSTI]

    Duric, Nebojsa; Littrup, Peter J.; Holsapple, III, Earle; Barter, Robert Henry; Moore, Thomas L.; Azevedo, Stephen G.; Ferguson, Sidney W.

    2007-10-23

    A method and system for examining tissue are provided in which the tissue is maintained in a position so that it may be insonified with a plurality of pulsed spherical or cylindrical acoustic waves. The insonifying acoustic waves are scattered by the tissue so that scattered acoustic radiation including a mix of reflected and transmitted acoustic waves is received. A representation of a portion of the tissue is then derived from the received scattered acoustic radiation.

  7. System and method to create three-dimensional images of non-linear acoustic properties in a region remote from a borehole

    DOE Patents [OSTI]

    Vu, Cung; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Christopher; Johnson, Paul A.; Guyer, Robert; TenCate, James A.; Le Bas, Pierre-Yves

    2013-01-01

    In some aspects of the disclosure, a method for creating three-dimensional images of non-linear properties and the compressional to shear velocity ratio in a region remote from a borehole using a conveyed logging tool is disclosed. In some aspects, the method includes arranging a first source in the borehole and generating a steered beam of elastic energy at a first frequency; arranging a second source in the borehole and generating a steerable beam of elastic energy at a second frequency, such that the steerable beam at the first frequency and the steerable beam at the second frequency intercept at a location away from the borehole; receiving at the borehole by a sensor a third elastic wave, created by a three wave mixing process, with a frequency equal to a difference between the first and second frequencies and a direction of propagation towards the borehole; determining a location of a three wave mixing region based on the arrangement of the first and second sources and on properties of the third wave signal; and creating three-dimensional images of the non-linear properties using data recorded by repeating the generating, receiving and determining at a plurality of azimuths, inclinations and longitudinal locations within the borehole. The method is additionally used to generate three dimensional images of the ratio of compressional to shear acoustic velocity of the same volume surrounding the borehole.

  8. Puget Sound Area Electric Reliability Plan : Final Environmental Impact Statement.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1992-04-01

    A specific need exists in the Puget Sound area for balance between east-west transmission capacity and the increasing demand to import power generated east of the Cascades. At certain times of the year, and during certain conditions, there is more demand for power in the Puget Sound area than the transmission system and existing generation can reliably supply. This high demand, called peak demand occurs during the winter months when unusually cold weather increases electricity use for heating. The existing power system can supply enough power if no emergencies occur. However, during emergencies the system will not operate properly. As demand grows, the system becomes more strained. To meet demand, the rate of growth of demand must be reduced or the ability to serve the demand must be increased, or both.

  9. Copyright c 200x Tech Science Press CMES, vol.x, no.x, pp.1-12, 200x Perfectly matched layer for acoustic waveguide modeling --benchmark

    E-Print Network [OSTI]

    Lu, Ya Yan

    waveg- uides, one-way wave equations. 1 Introduction As a simple model used in ocean acoustics [Jensen layer. In numerical sim- ulations for sound waves in the ocean, for example using the Parabolic Equation to solve a range- dependent benchmark problem (wedge with penetrable bottoms) [Jensen and Ferla (1990

  10. A theoretical study of acoustic glitches in low-mass main-sequence stars

    SciTech Connect (OSTI)

    Verma, Kuldeep; Antia, H. M.; Basu, Sarbani; Mazumdar, Anwesh E-mail: antia@tifr.res.in E-mail: anwesh@tifr.res.in

    2014-10-20

    There are regions in stars, such as ionization zones and the interface between radiative and convective regions, that cause a localized sharp variation in the sound speed. These are known as 'acoustic glitches'. Acoustic glitches leave their signatures on the oscillation frequencies of stars, and hence these signatures can be used as diagnostics of these regions. In particular, the signatures of these glitches can be used as diagnostics for the position of the second helium ionization zone and that of the base of the envelope convection zone. With the help of stellar models, we study the properties of these acoustic glitches in main-sequence stars. We find that the acoustic glitch due to the helium ionization zone does not correspond to the dip in the adiabatic index ?{sub 1} caused by the ionization of He II, but to the peak in ?{sub 1} between the He I and He II ionization zones. We find that it is easiest to study the acoustic glitch that is due to the helium ionization zone in stars with masses in the range 0.9-1.2 M {sub ?}.

  11. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine in the Philippine Sea during 2009­2011 investigated deep-water acoustic propagation and ambient noise of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also

  12. Acoustical Society of America International Student Challenge Problem in Acoustic Signal Processing 2014

    E-Print Network [OSTI]

    Processing 2014 Student Entry Evaluation Report by the Technical Committee on Signal Processing in Acoustics in Acoustic Signal Processing," Acoustics Today, Volume 10, Issue 2, pp 2629, Spring 2014 (available the opportunity to distinguish themselves by solving a challenging problem in acoustic signal processing

  13. Computational and experimental techniques for coupled acoustic...

    Office of Scientific and Technical Information (OSTI)

    and shown to be an effective means of testing acoustic loading on simple test structures. The tube is capable of creating a semi-infinite acoustic field due to nonreflecting...

  14. Acoustic vector-sensor array processing

    E-Print Network [OSTI]

    Kitchens, Jonathan Paul

    2010-01-01

    Existing theory yields useful performance criteria and processing techniques for acoustic pressure-sensor arrays. Acoustic vector-sensor arrays, which measure particle velocity and pressure, offer significant potential but ...

  15. Acoustic data transmission through a drill string

    DOE Patents [OSTI]

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  16. Pinniped hearing in a changing acoustic environment

    E-Print Network [OSTI]

    Cunningham, Kane Alexander

    2015-01-01

    in high-frequency, high-energy marine acoustic technologies—of high-frequency, high-energy marine technologies such asproliferation of high-energy acoustic marine technologies

  17. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wavemore »disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.« less

  18. Impedance matched joined drill pipe for improved acoustic transmission

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA)

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  19. Mitigation of Acoustic Resonance using Electrically Shunted Loudspeakers

    E-Print Network [OSTI]

    Fleming, Andrew J.

    motivated a diverse literature on the active control of low-frequency reverberant noise. The field of non the dissipation of acoustic energy. The designed electrical impedance that effectively renders the speaker to an experimental duct system. The paper is concluded in Section 4. E-mail: andrew.fleming@newcastle.edu.au Smart

  20. Structural Health Monitoring of Smart Composite Material by Acoustic Emission

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Structural Health Monitoring of Smart Composite Material by Acoustic Emission S. Masmoudia , A. El composite structures gives the opportunity to develop smart materials for health monitoring systems and structural health monitoring [1, 3]. Several studies [5, 6] were carried for the development of non

  1. NUMERICAL MODELING OF LOW FREQUENCY HYDRO-ACOUSTIC WAVES

    E-Print Network [OSTI]

    Kirby, James T.

    NUMERICAL MODELING OF LOW FREQUENCY HYDRO-ACOUSTIC WAVES GENERATED BY SUBMARINE TSUNAMIGENIC#al to increase the reliability of the system · Can we use precursors of tsunami? Hydro numerical models applicable on an oceanic scale #12;Index · Introduc#on on hydro

  2. Stimulated optomechanical excitation of surface acoustic waves in a microdevice

    E-Print Network [OSTI]

    Gaurav Bahl; John Zehnpfennig; Matthew Tomes; Tal Carmon

    2011-09-12

    Stimulated Brillouin interaction between sound and light, known to be the strongest optical nonlinearity common to all amorphous and crystalline dielectrics, has been widely studied in fibers and bulk materials but rarely in optical microresonators. The possibility of experimentally extending this principle to excite mechanical resonances in photonic microsystems, for sensing and frequency reference applications, has remained largely unexplored. The challenge lies in the fact that microresonators inherently have large free spectral range, while the phase matching considerations for the Brillouin process require optical modes of nearby frequencies but with different wavevectors. We rely on high-order transverse optical modes to relax this limitation. Here we report on the experimental excitation of mechanical resonances ranging from 49 to 1400 MHz by using forward Brillouin scattering. These natural mechanical resonances are excited in ~100 um silica microspheres, and are of a surface-acoustic whispering-gallery type.

  3. DIFFUSING ACOUSTIC WAVE TRANSPORT AND SPECTROSCOPY

    E-Print Network [OSTI]

    Page, John

    1 Chapter DIFFUSING ACOUSTIC WAVE TRANSPORT AND SPECTROSCOPY J.H. PAGE, M.L. COWAN Dept. of Physics waves, multiple scattering, energy velocity, Diffusing Acoustic Wave Spectroscopy. Abstract the diffusive transport of ultrasonic waves, and then describe a new ultrasonic technique, Diffusing Acoustic

  4. Ronald Edward Kumon NONLINEAR SURFACE ACOUSTIC WAVES

    E-Print Network [OSTI]

    Copyright by Ronald Edward Kumon 1999 #12;NONLINEAR SURFACE ACOUSTIC WAVES IN CUBIC CRYSTALS THE UNIVERSITY OF TEXAS AT AUSTIN December 1999 #12;NONLINEAR SURFACE ACOUSTIC WAVES IN CUBIC CRYSTALS Approved Zabolotskaya for teaching me the intricacies of nonlinear surface acoustic waves and for their continuing

  5. Research equipment: Surface Acoustic Wave (SAW) devices

    E-Print Network [OSTI]

    Gizeli, Electra

    Research equipment: Surface Acoustic Wave (SAW) devices: Operating frequencies @50MHz, 104MHz, 110 outputs measuring the real-time change of the phase and amplitude of the acoustic wave. More specifically with Dissipation monitoring (QCM-D): Qsense D-300 for real-time acoustic measurements at low frequencies (5-35MHz

  6. Localization of Classical Waves I: Acoustic Waves.

    E-Print Network [OSTI]

    Localization of Classical Waves I: Acoustic Waves. Alexander Figotin \\Lambda Department, 1997 Abstract We consider classical acoustic waves in a medium described by a position dependent mass the existence of localized waves, i.e., finite energy solutions of the acoustic equations with the property

  7. Acoustics Beyond the Wave Equation Paul Pereira

    E-Print Network [OSTI]

    Pulfrey, David L.

    Acoustics Beyond the Wave Equation Paul Pereira November 20, 2003 #12;2 1 Navier-Stokes Equation). The traditional study of acoustics concerns itself with the linearized equations of fluid mechanics, however. The fundamental equations of Nonlinear Acoustics are those of fluid dynamics, a mathematical description of which

  8. AOB -Acoustic Oceanographic Buoy: concept and feasibility

    E-Print Network [OSTI]

    Jesus, Sérgio M.

    AOB - Acoustic Oceanographic Buoy: concept and feasibility S.M. Jesus1, C. Soares1, A.J. Silva1, J Spezia, Italy Abstract-- The AOB - Acoustic Oceanographic Buoy is the single node of a network of "smart" buoys for acoustic surveil- lance, Rapid Environmental Assessment (REA) and underwater communications

  9. Multi-reflective acoustic wave device

    DOE Patents [OSTI]

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  10. Surface acoustic wave probe implant for predicting epileptic seizures

    DOE Patents [OSTI]

    Gopalsami, Nachappa (Naperville, IL); Kulikov, Stanislav (Sarov, RU); Osorio, Ivan (Leawood, KS); Raptis, Apostolos C. (Downers Grove, IL)

    2012-04-24

    A system and method for predicting and avoiding a seizure in a patient. The system and method includes use of an implanted surface acoustic wave probe and coupled RF antenna to monitor temperature of the patient's brain, critical changes in the temperature characteristic of a precursor to the seizure. The system can activate an implanted cooling unit which can avoid or minimize a seizure in the patient.

  11. Laser-induced acoustic wave generation/propagation/interaction in water in various internal channels

    E-Print Network [OSTI]

    2010-01-01

    induced plane acoustic wave generation, propagation andinduced acoustic wave generation/propagation/interaction insingle acoustic wave generation, propagation, interaction

  12. An acoustic and aerodynamic study of stops in tonal and non-tonal dialects of Korean

    E-Print Network [OSTI]

    Lee, Hyunjung

    2010-03-29

    ABSTRACT This study investigates the acoustic and aerodynamic properties of well&ndashknown three&ndashway distinction of Korean voiceless stops in two dialects, which differ in their tonal systems: non&ndashtonal Seoul Korean (standard Korean...

  13. Numerical simulations of acoustically generated gravitational waves at a first order phase transition

    E-Print Network [OSTI]

    Hindmarsh, Mark; Rummukainen, Kari; Weir, David J

    2015-01-01

    We present details of numerical simulations of the gravitational radiation produced by a first order {thermal} phase transition in the early universe. We confirm that the dominant source of gravitational waves is sound waves generated by the expanding bubbles of the low-temperature phase. We demonstrate that the sound waves have a power spectrum with power-law form between the scales set by the average bubble separation (which sets the length scale of the fluid flow $L_\\text{f}$) and the bubble wall width. The sound waves generate gravitational waves whose power spectrum also has a power-law form, at a rate proportional to $L_\\text{f}$ and the square of the fluid kinetic energy density. We identify a dimensionless parameter $\\tilde\\Omega_\\text{GW}$ characterising the efficiency of this "acoustic" gravitational wave production whose value is $8\\pi\\tilde\\Omega_\\text{GW} \\simeq 0.8 \\pm 0.1$ across all our simulations. We compare the acoustic gravitational waves with the standard prediction from the envelope appr...

  14. Numerical simulations of acoustically generated gravitational waves at a first order phase transition

    E-Print Network [OSTI]

    Mark Hindmarsh; Stephan J. Huber; Kari Rummukainen; David J. Weir

    2015-04-13

    We present details of numerical simulations of the gravitational radiation produced by a first order {thermal} phase transition in the early universe. We confirm that the dominant source of gravitational waves is sound waves generated by the expanding bubbles of the low-temperature phase. We demonstrate that the sound waves have a power spectrum with power-law form between the scales set by the average bubble separation (which sets the length scale of the fluid flow $L_\\text{f}$) and the bubble wall width. The sound waves generate gravitational waves whose power spectrum also has a power-law form, at a rate proportional to $L_\\text{f}$ and the square of the fluid kinetic energy density. We identify a dimensionless parameter $\\tilde\\Omega_\\text{GW}$ characterising the efficiency of this "acoustic" gravitational wave production whose value is $8\\pi\\tilde\\Omega_\\text{GW} \\simeq 0.8 \\pm 0.1$ across all our simulations. We compare the acoustic gravitational waves with the standard prediction from the envelope approximation. Not only is the power spectrum steeper (apart from an initial transient) but the gravitational wave energy density is generically two orders of magnitude or more larger.

  15. Accuracy of cosmological parameters using the baryon acoustic scale

    SciTech Connect (OSTI)

    Thepsuriya, Kiattisak; Lewis, Antony E-mail: antony@cosmologist.info

    2015-01-01

    Percent-level measurements of the comoving baryon acoustic scale standard ruler can be used to break degeneracies in parameter constraints from the CMB alone. The sound horizon at the epoch of baryon drag is often used as a proxy for the scale of the peak in the matter density correlation function, and can conveniently be calculated quickly for different cosmological models. However, the measurements are not directly constraining this scale, but rather a measurement of the full correlation function, which depends on the detailed evolution through decoupling. We assess the level of reliability of parameter constraints based on a simple approximation of the acoustic scale compared to a more direct determination from the full numerical two-point correlation function. Using a five-parameter fitting technique similar to recent BAO data analyses, we find that for standard ?CDM models and extensions with massive neutrinos and additional relativistic degrees of freedom, the approximation is at better than 0.15% for most parameter combinations varying over reasonable ranges.

  16. Method and apparatus for generating acoustic energy

    DOE Patents [OSTI]

    Guerrero, Hector N. (Evans, GA)

    2002-01-01

    A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.

  17. MOWII Webinar: The ECO TLP, an Economical and Ecologically Sound...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MOWII Webinar: The ECO TLP, an Economical and Ecologically Sound Tension Leg Platform for Deep Water Wind Farms MOWII Webinar: The ECO TLP, an Economical and Ecologically Sound...

  18. Resonant conversion of standing acoustic oscillations into Alfv{é}n waves in the $?~ 1$ region of the solar atmosphere

    E-Print Network [OSTI]

    D. Kuridze; T. V. Zaqarashvili; B. Roberts

    2005-10-14

    We show that 5-minute acoustic oscillations may resonantly convert into Alfv{\\'e}n waves in the $\\beta{\\sim}1$ region of the solar atmosphere. Considering the 5-minute oscillations as pumping standing acoustic waves oscillating along unperturbed vertical magnetic field, we find on solving the ideal MHD equations that amplitudes of Alfv{\\'e}n waves with twice the period and wavelength of acoustic waves exponentially grow in time when the sound and Alfv{\\'e}n speeds are equal, i.e. $c_s \\approx v_A$. The region of the solar atmosphere where this equality takes place we call a {\\it swing layer}. The amplified Alfv{\\'e}n waves may easily pass through the chromosphere and transition region carrying the energy of p-modes into the corona.

  19. SoundBlocks and SoundScratch : tangible and virtual digital sound programming and manipulation for children

    E-Print Network [OSTI]

    Harrison, John, S.M. Massachusetts Institute of Technology

    2005-01-01

    Creative Digital sound manipulation is a powerful means of personal expression. However, it remains explored by only a small number of engineers, mathematicians, and avant-garde musicians and composers. Others find the ...

  20. Interpolated Sounding Value-Added Product

    SciTech Connect (OSTI)

    Troyan, D

    2013-04-01

    The Interpolated Sounding (INTERPSONDE) value-added product (VAP) uses a combination of observations from radiosonde soundings, the microwave radiometer (MWR), and surface meteorological instruments in order to define profiles of the atmospheric thermodynamic state at one-minute temporal intervals and a total of at least 266 altitude levels. This VAP is part of the Merged Sounding (MERGESONDE) suite of VAPs. INTERPSONDE is the profile of the atmospheric thermodynamic state created using the algorithms of MERGESONDE without including the model data from the European Centre for Medium-range Weather Forecasting (ECMWF). More specifically, INTERPSONDE VAP represents an intermediate step within the larger MERGESONDE process.

  1. Acoustic method for measuring the sound speed of gases over small path lengths

    E-Print Network [OSTI]

    in automotive applications, such as measuring the ex- haust gas recirculation EGR in combustion engines and the quality of gaseous fuels for alternative fueled vehicles such as hydrogen, natural gas, and propane

  2. Acoustic sand detector for fluid flowstreams

    DOE Patents [OSTI]

    Beattie, Alan G. (Corrales, NM); Bohon, W. Mark (Frisco, TX)

    1993-01-01

    The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

  3. Sound field near hydrothermal vents on Axial Seamount, Juan de Fuca Ridge. Technical report

    SciTech Connect (OSTI)

    Little, S.A.; Stolzenbach, K.D.; Purdy, G.M.

    1990-08-10

    High-quality acoustic noise measurements were obtained by two hydrophones located 3 m and 40 m from an active hydrothermal vent on Axial Seamount, Juan de Fuca Ridge, in an effort to determine the feasibility of monitoring hydrothermal vent activity through flow noise generation. Most of the measured noise field could be attributed to ambient ocean noise sources of microseisms, distant shipping, and weather, punctuated by local ships and biological sources. Long-period, low-velocity, water/rock interface waves were detected with high amplitudes which rapidly decayed with distance from the seafloor. Detection of vent signals was hampered by unexpected spatial nonstationarity due to the shadowing effects of the calders wall. No continuous vent signals were deemed significant based on a criterion of 90% probability of detection and 5% probability of false alarm. However, a small signal near 40 Hz, with a power level of 0.0001 Pa sq/Hz was noticed on two records taken within 3 m of the Inferno black smoker. The frequency of this signal is consistent with predictions, and the power level suggests the occurrence of jet noise amplification due to convected density inhomogeneities. Keywords: Seamounts; Flow noise; Underwater acoustics; Acoustic measurement; Geothermy/noise; Ocean ridges; Underwater sound signals; Reprints; North Pacific Ocean. (EDC).

  4. Sub-optical wavelength acoustic wave modulation of integrated photonic resonators at microwave frequencies

    E-Print Network [OSTI]

    Semere Ayalew Tadesse; Mo Li

    2014-10-04

    Light-sound interactions have long been exploited in various acousto-optic devices based on bulk crystalline materials. Conventionally these devices operate in megahertz frequency range where the acoustic wavelength is much longer than the optical wavelength and a long interaction length is required to attain significant coupling. With nanoscale transducers, acoustic waves with sub-optical wavelengths can now be excited to induce strong acousto-optic coupling in nanophotonic devices. Here we demonstrate microwave frequency surface acoustic wave transducers co-integrated with nanophotonic resonators on piezoelectric aluminum nitride substrates. Acousto-optic modulation of the resonance modes at above 10 GHz with the acoustic wavelength significantly below the optical wavelength is achieved. The phase and modal matching conditions in this scheme are investigated for efficient modulation. The new acousto-optic platform can lead to novel optical devices based on nonlinear Brillouin processes and provides a direct, wideband link between optical and microwave photons for microwave photonics and quantum optomechanics.

  5. Merged Sounding Value-Added Product

    SciTech Connect (OSTI)

    Troyan, D

    2010-03-03

    The Merged Sounding value-added product (VAP) uses a combination of observations from radiosonde soundings, the microwave radiometer (MWR), surface meteorological instruments, and European Centre for Medium-Range Weather Forecasts (ECMWF) model output with a sophisticated scaling/interpolation/smoothing scheme in order to define profiles of the atmospheric thermodynamic state at one-minute temporal intervals and a total of 266 altitude levels.

  6. Stability analysis and design of time-domain acoustic impedance boundary conditions for lined duct with mean flow

    E-Print Network [OSTI]

    Huang, Xun

    Stability analysis and design of time-domain acoustic impedance boundary conditions for lined duct in a lined duct with uniform mean flow, which has important practical interest for noise emission by aero boundary conditions act as closed-loop feedbacks to an overall duct acoustic system. It turns out

  7. arXiv:0904.4459v1[math.AP]28Apr2009 ACOUSTIC LIMIT OF THE BOLTZMANN EQUATION

    E-Print Network [OSTI]

    arXiv:0904.4459v1[math.AP]28Apr2009 ACOUSTIC LIMIT OF THE BOLTZMANN EQUATION: CLASSICAL SOLUTIONS JUHI JANG AND NING JIANG Abstract. We study the acoustic limit from the Boltzmann equation of the simplest system of fluid dynamical equations imaginable, being es- sentially the wave equation. It may

  8. An on-line acoustic fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    SciTech Connect (OSTI)

    Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Botelho-Direito, J.; DiGirolamo, B.; Doubek, M.; Egorov, K.; Godlewski, J.; Hallewell, G.; Katunin, S.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rozanov, A.; Vacek, V.; Vitek, M.

    2011-07-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoro-propane (C{sub 3}F{sub 8}) evaporative cooling fluid - to a composite fluid with a probable 10-20% admixture of hexafluoro-ethane (C{sub 2}F{sub 6}). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C{sub 3}F{sub 8}/C{sub 2}F{sub 6} mixture ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound 'chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C{sub 3}F{sub 8}/C{sub 2}F{sub 6} flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semiconductor manufacture and anesthetic gas mixtures. (authors)

  9. Cylindrical acoustic levitator/concentrator

    DOE Patents [OSTI]

    Kaduchak, Gregory (Los Alamos, NM); Sinha, Dipen N. (Los Alamos, NM)

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  10. Reduction of Guided Acoustic Wave Brillouin Scattering in Photonic Crystal Fibers

    E-Print Network [OSTI]

    D. Elser; U. L. Andersen; A. Korn; O. Gloeckl; S. Lorenz; Ch. Marquardt; G. Leuchs

    2006-07-24

    Guided Acoustic Wave Brillouin Scattering (GAWBS) generates phase and polarization noise of light propagating in glass fibers. This excess noise affects the performance of various experiments operating at the quantum noise limit. We experimentally demonstrate the reduction of GAWBS noise in a photonic crystal fiber in a broad frequency range using cavity sound dynamics. We compare the noise spectrum to the one of a standard fiber and observe a 10-fold noise reduction in the frequency range up to 200 MHz. Based on our measurement results as well as on numerical simulations we establish a model for the reduction of GAWBS noise in photonic crystal fibers.

  11. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  12. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect (OSTI)

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  13. Blue whale (Balaenoptera musculus) sounds from the North Atlantic

    E-Print Network [OSTI]

    Blue whale (Balaenoptera musculus) sounds from the North Atlantic David K. Mellingera) Bioacoustics 2003 Sounds of blue whales were recorded from U.S. Navy hydrophone arrays in the North Atlantic-duration, very-low-frequency sound units repeated every 1­2 min are typical of blue whale sounds recorded

  14. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S. (Pleasanton, CA)

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  15. Sound velocity of tantalum under shock compression in the 18–142?GPa range

    SciTech Connect (OSTI)

    Xi, Feng Jin, Ke; Cai, Lingcang Geng, Huayun; Tan, Ye; Li, Jun

    2015-05-14

    Dynamic compression experiments of tantalum (Ta) within a shock pressure range from 18–142?GPa were conducted driven by explosive, a two-stage light gas gun, and a powder gun, respectively. The time-resolved Ta/LiF (lithium fluoride) interface velocity profiles were recorded with a displacement interferometer system for any reflector. Sound velocities of Ta were obtained from the peak state time duration measurements with the step-sample technique and the direct-reverse impact technique. The uncertainty of measured sound velocities were analyzed carefully, which suggests that the symmetrical impact method with step-samples is more accurate for sound velocity measurement, and the most important parameter in this type experiment is the accurate sample/window particle velocity profile, especially the accurate peak state time duration. From these carefully analyzed sound velocity data, no evidence of a phase transition was found up to the shock melting pressure of Ta.

  16. Design and implementation of a marine animal alert system to support Marine Renewable Energy

    SciTech Connect (OSTI)

    Deng, Zhiqun; Carlson, Thomas J.; Fu, Tao; Ren, Huiying; Martinez, Jayson J.; Myers, Joshua R.; Matzner, Shari; Choi, Eric Y.; Copping, Andrea E.

    2013-08-08

    Power extracted from fast moving tidal currents has been identified as a potential commercial-scale source of renewable energy. Device developers and utilities are pursuing deployment of prototype tidal turbines to assess technology viability, site feasibility, and environmental interactions. Deployment of prototype turbines requires permits from a range of regulatory authorities. Ensuring the safety of marine animals, particularly those under protection of the Endangered Species Act of 1973 (ESA) and the Marine Mammal Protection Act of 1972 has emerged as a key regulatory challenge for initial MHK deployments. The greatest perceived risk to marine animals is from strike by the rotating blades of tidal turbines. Development of the marine mammal alert system (MAAS) was undertaken to support monitoring and mitigation requirements for tidal turbine deployments. The prototype system development focused on Southern Resident killer whales (SRKW), an endangered population of killer whales that frequents Puget Sound and is intermittently present in the part of the sound where deployment of prototype tidal turbines is being considered. Passive acoustics were selected as the primary means because of the vocal nature of these animals. The MAAS passive acoustic system consists of two-stage process involving the use of an energy detector and a spectrogram-based classifier to distinguish between SKRW’s calls and noise. A prototype consisting of two 2D symmetrical star arrays separated by 20 m center to center was built and evaluated in the waters of Sequim Bay using whale call playback.

  17. Acoustic resonance phase locked photoacoustic spectrometer

    DOE Patents [OSTI]

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  18. Acoustic resonance frequency locked photoacoustic spectrometer

    DOE Patents [OSTI]

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  19. Analog circuit for controlling acoustic transducer arrays

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  20. Acoustic concentration of particles in fluid flow

    DOE Patents [OSTI]

    Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  1. Acoustic Effects of Hydrokinetic Tidal Turbines

    SciTech Connect (OSTI)

    Polagye, Brian

    2011-11-01

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics environmental projects to determine the likely acoustic effects from a tidal energy device.

  2. Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health

    SciTech Connect (OSTI)

    Hsieh, AG; Bhadra, S; Hertzberg, BJ; Gjeltema, PJ; Goy, A; Fleischer, JW; Steingart, DA

    2015-01-01

    We demonstrate that a simple acoustic time-of-flight experiment can measure the state of charge and state of health of almost any closed battery. An acoustic conservation law model describing the state of charge of a standard battery is proposed, and experimental acoustic results verify the simulated trends; furthermore, a framework relating changes in sound speed, via density and modulus changes, to state of charge and state of health within a battery is discussed. Regardless of the chemistry, the distribution of density within a battery must change as a function of state of charge and, along with density, the bulk moduli of the anode and cathode changes as well. The shifts in density and modulus also change the acoustic attenuation in a battery. Experimental results indicating both state-of-charge determination and irreversible physical changes are presented for two of the most ubiquitous batteries in the world, the lithium-ion 18650 and the alkaline LR6 (AA). Overall, a one-or two-point acoustic measurement can be related to the interaction of a pressure wave at multiple discrete interfaces within a battery, which in turn provides insights into state of charge, state of health, and mechanical evolution/degradation.

  3. The Sound Edge of the Quenching Jets

    E-Print Network [OSTI]

    Edward Shuryak; Pilar Staig

    2013-07-19

    When quenching jets deposit certain amount of energy and momentum into ambient matter, part of it propagates in the form of shocks/sounds. The "sound surface", separating disturbed and undisturbed parts of the fireball, makes what we call the sound edge of jets. In this work we semi-analytically study its shape, in various geometries. We further argue that since hadrons with in the kinematical range of $p_\\perp\\sim 2\\, GeV$ originate mostly from the "rim" of the fireball, near the maximum of the radial flow at the freezeout surface, only the intersection of the "sound surface" with this "rim" would be observable. The resulting "jet edge" has a form of extra matter at the elliptic curve, in $\\Delta \\phi, \\Delta \\eta$ coordinates, with radius $|\\Delta \\phi| \\sim |\\Delta \\eta |\\sim 1$. In the case of large energy/momentum deposition $\\sim 100 \\, GeV$ we argue that the event should be considered as two sub-events, with interior of the "sound surface" having modified radial and directed flow. We further argue that in the kinematical range of $p_\\perp\\sim 3\\, GeV$ the effect of that can be large enough to be seen on event-by-event basis. If so, this effect has a potential to become a valuable tool to address geometry of jet production and quenching.

  4. Simultaneous sensing of light and sound velocities of fluids in a two-dimensional phoXonic crystal with defects

    SciTech Connect (OSTI)

    Amoudache, Samira; Pennec, Yan Djafari Rouhani, Bahram; Khater, Antoine; Lucklum, Ralf; Tigrine, Rachid

    2014-04-07

    We theoretically investigate the potentiality of dual phononic-photonic (the so-called phoxonic) crystals for liquid sensing applications. We study the transmission through a two-dimensional (2D) crystal made of infinite cylindrical holes in a silicon substrate, where one row of holes oriented perpendicular to the propagation direction is filled with a liquid. The infiltrated holes may have a different radius than the regular holes. We show, in the defect structure, the existence of well-defined features (peaks or dips) in the transmission spectra of acoustic and optical waves and estimate their sensitivity to the sound and light velocity of the analyte. Some of the geometrical requirements behave in opposite directions when searching for an efficient sensing of either sound or light velocities. Hence, a compromise in the choice of the parameters may become necessary in making the phoxonic sensor.

  5. AN ELECTROMYOGRAPHIC-CINEFLUOROGRAPHIC-ACOUSTIC STUDY OF DYNAMIC VOWEL PRODUCTION*

    E-Print Network [OSTI]

    AN ELECTROMYOGRAPHIC-CINEFLUOROGRAPHIC-ACOUSTIC STUDY OF DYNAMIC VOWEL PRODUCTION* Peter J. Alfonso of electromyographic (EMG), cinefluorographic, and acoustic data, that describe the positioning of various articulators

  6. Shear horizontal surface acoustic wave microsensor for Class...

    Office of Scientific and Technical Information (OSTI)

    Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection. Citation Details In-Document Search Title: Shear horizontal surface acoustic wave...

  7. Investigation and Analytical Description of Acoustic Production by Magneto-Acoustic Mixing Technology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henderson, Hunter Bryant; Rios, Orlando; Ludtka, Gerard Michael; Manuel, Michele V.

    2015-05-07

    Magneto-Acoustic Mixing Technology (MAMT) is a novel manufacturing method that combines two magnetic fields to produce high-intensity sonication for liquid-state materials processing. This method may be adapted to the manufacture of various materials that benefit from a combination of high temperature, magnetic fields, and acoustic energy. In this work, the acoustic generation mechanism is described in detail and found to be dependent on the skin depth of the induction currents. Analytical models of acoustic pressure are derived, based on two mutually exclusive vibration modes, crucible vibration and melt vibration. Additionally, grain size evidence of acoustic pressure distribution is presented asmore »model validation.« less

  8. Sound from ultrasound : the parametric array as an audible sound source

    E-Print Network [OSTI]

    Pompei, F. Joseph (Frank Joseph), 1973-

    2002-01-01

    A parametric array exploits the nonlinearity of the propagation medium to emit or detect acoustic waves in a spatially versatile manner, permitting concise, narrow directivity patterns otherwise possible only with physically ...

  9. The effect of acoustics on an ethanol spray flame in a propane-fired pulse combustor

    SciTech Connect (OSTI)

    Dubey, R.K.; Black, D.L.; McQuay, M.Q. [Brigham Young Univ., Provo, UT (United States). Mechanical Engineering Dept.] [Brigham Young Univ., Provo, UT (United States). Mechanical Engineering Dept.; Carvalho, J.A. Jr. [Inst. Nacional de Pesquisas Espaciais, Cachoeira Paulista, Sao Paulo (Brazil). Lab. Associado de Comubustao e Propulsao] [Inst. Nacional de Pesquisas Espaciais, Cachoeira Paulista, Sao Paulo (Brazil). Lab. Associado de Comubustao e Propulsao

    1997-07-01

    The influence of an acoustic field on the combustion characteristics of a hydrogen-stabilized ethanol spray flame has been experimentally investigated using a phase-Doppler particle analyzer in a propane-fired, Rijke-tube, pulse combustor. The controlled sinusoidal acoustic field in the combustor had a sound pressure level of 155 dB and a frequency of 80 Hz. Experiments were performed to study the effect of oscillations on Sauter-mean and arithmetic-mean diameters, droplet velocity, and droplet number density for the present operating conditions of the Rijke-tube combustor. Similar measurements were also performed on a water spray in the propane-fired reactor to study the effect of the acoustic field on the atomization process for the nozzle type used. Spectral analysis of the droplet axial velocity component for the oscillating conditions revealed a dominant frequency equal to the frequency of the sinusoidal acoustic wave in the combustor. The Sauter-mean diameter of the ethanol spray decreased by 15%, on average, in the presence of the acoustic field because of enhanced evaporation, while the droplet arrival rate at the probe volume increased due to changes in the flame structure. Analysis of the measured size distributions indicated that under an oscillating flow there was a larger population of droplets in the diameter range of 3--20 {micro}m. Experiments conducted with the water spray indicated that the oscillations did affect droplet size distributions in the ethanol spray due to enhanced evaporation caused by the relocation of the flame front inside and around the spray cone.

  10. Acoustic Enhancement of Surface Diffusion Chengping Wu,

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    provides an attractive alternative to thermal activation in thin film growth on heat-sensitive substrates to the thermal activation in thin film growth on heat-sensitive substrates. 2. MECHANISMS OF ACOUSTIC ACTIVATION, Russia *S Supporting Information ABSTRACT: The idea of acoustic activation of surface diffusion

  11. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  12. aging,Bioengineering, AcousticsCircuitsand

    E-Print Network [OSTI]

    Lee, Tonghun

    Biom edicalIm aging,Bioengineering, AcousticsCircuitsand SignalProcessing Com m unicationsand) #12;Biom edicalIm aging,Bioengineering, Acoustics Circuitsand SignalProcessing Com m unicationsand. M. L. Oelze T. J. Overbye ELECTRICAL AND COMPUTER ENGINEERING (2 OF 3) #12;Biom edicalIm aging,Bioengineering

  13. Acoustic Monitoring of Beluga Whale Interactions with Cook Inlet Tidal Energy Project

    SciTech Connect (OSTI)

    Worthington, Monty

    2014-02-05

    Cook Inlet, Alaska is home to some of the greatest tidal energy resources in the U.S., as well as an endangered population of beluga whales (Delphinapterus leucas). Successfully permitting and operating a tidal power project in Cook Inlet requires a biological assessment of the potential and realized effects of the physical presence and sound footprint of tidal turbines on the distribution, relative abundance, and behavior of Cook Inlet beluga whales. ORPC Alaska, working with the Project Team—LGL Alaska Research Associates, University of Alaska Anchorage, TerraSond, and Greeneridge Science—undertook the following U.S. Department of Energy (DOE) study to characterize beluga whales in Cook Inlet – Acoustic Monitoring of Beluga Whale Interactions with the Cook Inlet Tidal Energy Project (Project). ORPC Alaska, LLC, is a wholly-owned subsidiary of Ocean Renewable Power Company, LLC, (collectively, ORPC). ORPC is a global leader in the development of hydrokinetic power systems and eco-conscious projects that harness the power of ocean and river currents to create clean, predictable renewable energy. ORPC is developing a tidal energy demonstration project in Cook Inlet at East Foreland where ORPC has a Federal Energy Regulatory Commission (FERC) preliminary permit (P-13821). The Project collected baseline data to characterize pre-deployment patterns of marine mammal distribution, relative abundance, and behavior in ORPC’s proposed deployment area at East Foreland. ORPC also completed work near Fire Island where ORPC held a FERC preliminary permit (P-12679) until March 6, 2013. Passive hydroacoustic devices (previously utilized with bowhead whales in the Beaufort Sea) were adapted for study of beluga whales to determine the relative abundance of beluga whale vocalizations within the proposed deployment areas. Hydroacoustic data collected during the Project were used to characterize the ambient acoustic environment of the project site pre-deployment to inform the FERC pilot project process. The Project compared results obtained from this method to results obtained from other passive hydrophone technologies and to visual observation techniques performed simultaneously. This Final Report makes recommendations on the best practice for future data collection, for ORPC’s work in Cook Inlet specifically, and for tidal power projects in general. This Project developed a marine mammal study design and compared technologies for hydroacoustic and visual data collection with potential for broad application to future tidal and hydrokinetic projects in other geographic areas. The data collected for this Project will support the environmental assessment of future Cook Inlet tidal energy projects, including ORPC’s East Foreland Tidal Energy Project and any tidal energy developments at Fire Island. The Project’s rigorous assessment of technology and methodologies will be invaluable to the hydrokinetic industry for developing projects in an environmentally sound and sustainable way for areas with high marine mammal activity or endangered populations. By combining several different sampling methods this Project will also contribute to the future preparation of a comprehensive biological assessment of ORPC’s projects in Cook Inlet.

  14. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect (OSTI)

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  15. ester Thurow says "what sounds sensible (export

    E-Print Network [OSTI]

    ester Thurow says "what sounds sensible (export more) when heard sepa- rately in each country becomes nonsense when aggregated around the world. No one can have more net exports unless someone else a strong relationship between exports and farm prosperity in the United States. From the early 1900s

  16. Waveform Inversion with Source Encoding for Breast Sound Speed Reconstruction in Ultrasound Computed Tomography

    E-Print Network [OSTI]

    Wang, Kun; Anis, Fatima; Li, Cuiping; Duric, Neb; Anastasio, Mark A

    2015-01-01

    Ultrasound computed tomography (USCT) holds great promise for improving the detection and management of breast cancer. Because they are based on the acoustic wave equation, waveform inversion-based reconstruction methods can produce images that possess improved spatial resolution properties over those produced by ray-based methods. However, waveform inversion methods are computationally demanding and have not been applied widely in USCT breast imaging. In this work, source encoding concepts are employed to develop an accelerated USCT reconstruction method that circumvents the large computational burden of conventional waveform inversion methods. This method, referred to as the waveform inversion with source encoding (WISE) method, encodes the measurement data using a random encoding vector and determines an estimate of the sound speed distribution by solving a stochastic optimization problem by use of a stochastic gradient descent algorithm. Both computer-simulation and experimental phantom studies are conduc...

  17. Acoustic Building Infiltration Measurement System (ABIMS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    efforts * Plans to apply to Chicago Innovation Exchange as well * Interest from Energy Foundry in helping find an industry partner Project Integration and Collaboration Partners *...

  18. Opto-acoustic recanilization delivery system

    DOE Patents [OSTI]

    Visuri, Steven R. (Livermore, CA); Da Silva, Luiz B. (Danville, CA); Celliers, Peter M. (Berkeley, CA); London, Richard A. (Orinda, CA); Benett, William (Livermore, CA); Broughton, Kathryn (Berkeley, CA); Esch, Victor (San Francisco, CA)

    2002-01-01

    Fiber delivered laser pulses emulsify thrombus by mechanical stresses that include a combination of pressure, tension and shear stress. Laser radiation is delivered to the locality of a thrombus and the radiation is absorbed by blood, blood dot, or other present materials. The combination of a leading pressure wave and subsequent vapor bubble cause efficient, emulsification of thrombus. Operating the laser in a low average power mode alleviates potential thermal complications. The laser is operated in a high repetition rate mode to take advantage of ultrasound frequency effects of thrombus dissolution as well as to decrease the total procedure time. Specific parameter ranges for operation are described. The device includes optical fibers surrounding a lumen intended for flow of a cooling agent. The fibers may be arranged concentrically around the lumen to deliver radiation and heat over as large an area as possible. An alternative design approach incorporates the optical fibers into the wall of the guiding catheter and utilizes the catheter lumen as the cooling channel. An eccentric tip enables rotation of the device to address all parts of the vasculature. The eccentricity can be provided via a variety of means: spring dip, balloon, protrusion, etc.

  19. Acoustic Building Infiltration Measurement System (ABIMS)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDIT REPORT:Federal Employee Fatality

  20. Effect of multiperforated plates on the acoustic modes in combustors

    E-Print Network [OSTI]

    Mendez, Simon

    related to the wave equation in the frequency domain, and is able to provide the acoustic modes effect on acoustics [5], [1], which is enhanced by the presence of a mean bias flow [6]. Acoustic waves in the presence of an acoustic wave and is well adapted to be inserted in the Helmholtz solver. It was validated

  1. Localization of acoustic sources utilizing a decentralized particle filter

    E-Print Network [OSTI]

    Gerstoft, Peter

    localization scheme. Several sensors are embedded in an acoustic wave field. We assume that the field variables of interest are governed by a discrete-time spatial-distributed state-space equation. In particular, acoustic] of a source in a spatio-temporal field [3­8]. We assume an acoustic in-door scenario. The acoustic-wave

  2. Insulating concrete forms: Installed cost and acoustic performance

    SciTech Connect (OSTI)

    1999-03-01

    The NAHB Research Center conducted a study to compare the cost and performance of Insulating Concrete Form (ICF) walls to conventional wood-frame exterior walls. This report contains the results of the cost study and sound transmission tests. Three home were built and monitored. One home has an ICF plank system, one has an ICF block system, and one is of conventional 2x4 lumber construction. The homes have identical floor plans and are located side by side. The findings indicate that the labor costs for the ICFs were slightly to moderately higher than the wood framing. However, the sound tests indicate that the ICF walls perform significantly better than the wood walls when no openings were present. The report summarizes the findings and recommends ways to increase the cost-effectiveness of ICFs.

  3. LEE-0152- In the Matter of Sound Oil Company

    Office of Energy Efficiency and Renewable Energy (EERE)

    On August 16, 1994, Sound Oil Company (Sound) of Seattle Washington, filed an Application for Exception with the Office of Hearings and Appeals of the Department of Energy. In its Application,...

  4. The Effect of Abnormal Granulation on Acoustic Wave Travel Times and Mode Frequencies

    E-Print Network [OSTI]

    K. Petrovay; R. Erdelyi; M. J. Thompson

    2007-02-02

    Observations indicate that in plage areas (i.e. in active regions outside sunspots) acoustic waves travel faster than in quiet sun, leading to shortened travel times and higher p-mode frequencies. While it is clear that the ultimate cause of any difference between quiet sun and plage is the presence of magnetic fields of order 100 G in the latter, the mechanism by which the magnetic field exerts its influence has not yet been conclusively identified. One possible such mechanism is suggested by the observation that granular motions in plage areas tend to be slightly ``abnormal'', dampened compared to quiet sun. In this paper we consider the effect that abnormal granulation observed in active regions should have on the propagation of acoustic waves. Any such effect is found to be limited to a shallow surface layer where sound waves propagate nearly vertically. The magnetically suppressed turbulence implies higher sound speeds, leading to shorter travel times. This time shift Dt is independent of the travel distance, while it shows a characteristic dependence on the assumed plage field strength. As a consequence of the variation of the acoustic cutoff with height, Dt is expected to be significantly higher for higher frequency waves within the observed regime of 3-5 mHz. The lower group velocity near the upper reflection point further leads to an increased envelope time shift, as compared to the phase shift. $p$-mode frequencies in plage areas are increased by a corresponding amount, Dnu/nu = nu*Dt. These characteristics of the time and frequency shifts are in accordance with observations. The calculated overall amplitude of the time and frequency shifts are comparable to, but still significantly (factor of 2 to 5) less than suggested by measurements.

  5. Acoustic wave propagation and stochastic effects in metamaterial absorbers

    SciTech Connect (OSTI)

    Christensen, J. Willatzen, M.

    2014-07-28

    We show how stochastic variations of the effective parameters of anisotropic structured metamaterials can lead to increased absorption of sound. For this, we derive an analytical model based on the Bourret approximation and illustrate the immediate connection between material disorder and attenuation of the averaged field. We demonstrate numerically that broadband absorption persists at oblique irradiation and that the influence of red noise comprising short spatial correlation lengths increases the absorption beyond what can be archived with a structured but ordered system.

  6. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T. Tazwell (Livermore, CA); Keller, Jay O. (Oakland, CA)

    1989-01-01

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  7. Structure-borne sound Flexural wave (bending wave)

    E-Print Network [OSTI]

    Berlin,Technische Universität

    1 Structure-borne sound · Flexural wave (bending wave) »One dimensional (beam) +(/x)dx +(/x)dx = (/x) (/x)dx=(2/x2)dx Mz +(Mz/x)dx Mz vy Fy Fy +(Fy/x)dx Structure-borne sound · Bending wave ­ flexural wave #12;2 Structure-borne sound · Two obliquely propagating waves + - + + - + - Structure

  8. Wave represents displacement Wave represents pressure Source -Sound Waves

    E-Print Network [OSTI]

    Colorado at Boulder, University of

    is wavelength Number of crests passing a point in 1 second is frequency Wave represents pressure Target - Radio. The Sound Waves simulation becomes the source of an analogical mapping to Radio Waves. Concepts Radio Waves 1 - Sound Waves references water waves 2 - Water is analogy for Sound Waves 3 - Radio

  9. Computerised lung sound analysis to improve the specificity of paediatric

    E-Print Network [OSTI]

    Elhilali, Mounya

    Computerised lung sound analysis to improve the specificity of paediatric pneumonia diagnosis that pulmonary pathology can be differentiated from normal using computerised lung sound analysis (CLSA). The authors will record lung sounds from 600 children aged #5 years, 100 each with consolidative pneumonia

  10. Detection of aeroacoustic sound sources on aircraft and wind turbines

    E-Print Network [OSTI]

    Twente, Universiteit

    Detection of aeroacoustic sound sources on aircraft and wind turbines Stefan Oerlemans #12;Detection of aeroacoustic sound sources on aircraft and wind turbines S. Oerlemans Thesis University;DETECTION OF AEROACOUSTIC SOUND SOURCES ON AIRCRAFT AND WIND TURBINES PROEFSCHRIFT ter verkrijging van de

  11. In Prince William Sound, Alaska, Pacific herring (Clupea pallasi) and

    E-Print Network [OSTI]

    400 In Prince William Sound, Alaska, Pacific herring (Clupea pallasi) and walleye pollock (Theragra the abundance of both these species in Prince William Sound has fluc- tuated, particularly that of Pacific) spatial distributions in Prince Wil- liam Sound, Alaska. We hypothe- sized that juvenile Pacific herring

  12. Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter

    SciTech Connect (OSTI)

    Li, Huidong; Deng, Zhiqun; Yuan, Yong; Carlson, Thomas J.

    2012-07-02

    The Juvenile Salmon Acoustic Telemetry System (JSATS) project supported by the U.S. Army Corps of Engineers, Portland District, has yielded the smallest acoustic fish tag transmitter commercially available to date. In order to study even smaller fish populations and make the transmitter injectable by needles, the JSATS acoustic micro transmitter needs to be further downsized. As part of the transmitter downsizing effort some of the design parameters of the lead zirconate titanate (PZT) ceramic tube transducer in the transmitter were studied, including the type of PZT, the backing material, the necessary drive voltage, the transmitting bandwidth and the length of the transducer. It was found that, to satisfy the 156-dB source level requirement of JSATS, a square wave with a 10-volt amplitude is required to drive 'soft' PZT transducers. PZT-5H demonstrated the best source level performance. For Navy types I and II, 16 volts or 18 volts were needed. Ethylene-propylene-diene monomer (EPDM) closed-cell foam was found to be the backing material providing the highest source level. The effect of tube length on the source level is also demonstrated in this paper, providing quantitative information for downsizing of small piezoelectric transmitters.

  13. Puget Sound Dissolved Oxygen Modeling Study: Development of an Intermediate Scale Water Quality Model

    SciTech Connect (OSTI)

    Khangaonkar, Tarang; Sackmann, Brandon S.; Long, Wen; Mohamedali, Teizeen; Roberts, Mindy

    2012-10-01

    The Salish Sea, including Puget Sound, is a large estuarine system bounded by over seven thousand miles of complex shorelines, consists of several subbasins and many large inlets with distinct properties of their own. Pacific Ocean water enters Puget Sound through the Strait of Juan de Fuca at depth over the Admiralty Inlet sill. Ocean water mixed with freshwater discharges from runoff, rivers, and wastewater outfalls exits Puget Sound through the brackish surface outflow layer. Nutrient pollution is considered one of the largest threats to Puget Sound. There is considerable interest in understanding the effect of nutrient loads on the water quality and ecological health of Puget Sound in particular and the Salish Sea as a whole. The Washington State Department of Ecology (Ecology) contracted with Pacific Northwest National Laboratory (PNNL) to develop a coupled hydrodynamic and water quality model. The water quality model simulates algae growth, dissolved oxygen, (DO) and nutrient dynamics in Puget Sound to inform potential Puget Sound-wide nutrient management strategies. Specifically, the project is expected to help determine 1) if current and potential future nitrogen loadings from point and non-point sources are significantly impairing water quality at a large scale and 2) what level of nutrient reductions are necessary to reduce or control human impacts to DO levels in the sensitive areas. The project did not include any additional data collection but instead relied on currently available information. This report describes model development effort conducted during the period 2009 to 2012 under a U.S. Environmental Protection Agency (EPA) cooperative agreement with PNNL, Ecology, and the University of Washington awarded under the National Estuary Program

  14. Analysis of Shear-horizontal Vibrations of Crystal Plates for Acoustic Wave Resonators and Sensors

    E-Print Network [OSTI]

    Liu, Bo

    2010-01-01

    field excited liquid acoustic wave sensor,? IEEE Trans.3 high-frequency bulk acoustic wave sensor,? IEEE Trans.field excited liquid acoustic wave sensor,? IEEE Trans.

  15. Distortion of low-frequency acoustic signals by interaction with the moving ocean surface

    E-Print Network [OSTI]

    Lynch, Stephen Dennis

    2008-01-01

    foundation of acoustic wave equation solution techniques,transformed acoustic wave equation with delta function-range-independent acoustic wave equation with point-source

  16. Iterative finite-difference solution analysis of acoustic wave equation in the Laplace-Fourier domain

    E-Print Network [OSTI]

    Um, E.S.

    2013-01-01

    mod- eling of the acoustic wave equation: Geophysics, 39,solution analysis of acoustic wave equation in the Laplace-solutions to the acoustic wave equation in the Laplace-

  17. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California /

    E-Print Network [OSTI]

    Helble, Tyler Adam

    2013-01-01

    61 3.2 Passive acoustic recording of transiting humpback100 Chapter 4 Calibrating passive acoustic monitoring: whaledensity estimates from passive acoustics . . . . . . .

  18. Institute of Fluid Mechanics and Engineering Acoustics

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Institute of Fluid Mechanics and Engineering Acoustics Large Kundt's tubes Click to insert the image of the facility or test-rig Application area Facility Mechanical Property measurement Physical

  19. acoustic anisotropy vs. depth, A:162, 306

    E-Print Network [OSTI]

    /aluminum ratio; thorium/aluminum ratio; titanium/aluminum ratio; uranium/alu- minum ratio; vanadium acoustic anisotropy anoxic environment deposition, A:260, 262 lithologic units, A:59, 116­118 synthesis, A

  20. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    Broader source: Energy.gov [DOE]

    Novel sensor design based on acoustics. Determine in real-timeand in a single sensor packagemultiple parameters: temperature, pressure, fluid flow; and fluid properties, such as density, viscosity, fluid composition.

  1. Sound Geothermal Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-Enhancing Capacity forSiliciumEnergy Inc JumpPennsylvania:Sound Beach, New

  2. An acoustic technique for measurement of bubble solids mass loading: (b) Monitoring of Jameson cell flotation performance by passive acoustic emissions

    E-Print Network [OSTI]

    Zhang, Wen

    , Australia a r t i c l e i n f o Article history: Available online 3 March 2012 Keywords: Coal Flotation flotation performance by passive acoustic emissions Steven J. Spencer a,c, , Ryan Bruniges a,c,1 , Giffard been developed and tested in Australian coal washeries. The system detects naturally occurring stress

  3. Resonances of Chindon-ya: Sound, Space, and Social Difference in Contemporary Japan

    E-Print Network [OSTI]

    Abe, Marié

    2010-01-01

    permeability of sounds through porous wood decreased and the reflection and reverberation of sounds increased in the concrete

  4. AN ACOUSTICALLY DRIVEN MAGNETIZED TARGET FUSION REACTOR

    SciTech Connect (OSTI)

    Laberge, Michel [General Fusion Inc., Vancouver (Canada)

    2009-07-26

    We propose a new acoustic compression scheme for a MTF power plant. A strong acoustic wave is produced by piston impacts. The wave focuses in liquid PbLi to compress a pre-formed FRC plasma. Simulations indicate the possibility of building an economical 60 MWe power plant. A proof-of-principle experiment produces a small D-D fusion yield of 2000 neutrons per shot.

  5. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    SciTech Connect (OSTI)

    Qi, Wenjuan [Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697 (United States); Li, Rui [Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612 (United States); Ma, Teng; Kirk Shung, K.; Zhou, Qifa [Department of Biomedical Engineering, NIH Ultrasonic Transducer Resource Center, University of Southern California, Los Angeles, California 90089 (United States); Chen, Zhongping, E-mail: z2chen@uci.edu [Beckman Laser Institute, University of California, Irvine, 1002 Health Sciences Road East, Irvine, California 92612 (United States); Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, California 92697 (United States); Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92697 (United States)

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  6. Tunable damper for an acoustic wave guide

    DOE Patents [OSTI]

    Rogers, Samuel C. (Knoxville, TN)

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  7. Spectral line width decrease in the solar corona: resonant energy conversion from Alfv{é}n to acoustic waves

    E-Print Network [OSTI]

    T. V. Zaqarashvili; R. Oliver; J. L. Ballester

    2007-03-13

    Observations reveal an increase with height of the line width of several coronal spectral lines probably caused by outwardly propagating Alfv{\\'e}n waves. However, the spectral line width sometimes shows a sudden decrease at a height 0.1-0.2 R, where the ratio of sound to Alfven speeds may approach unity. Qualitative analysis shows that the resonant energy conversion from Alfven to acoustic waves near the region of the corona where the plasma $\\beta$ approaches unity may explain the observed spectral line width reduction.

  8. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Patents [OSTI]

    Kaduchak, Gregory; Ward, Michael D

    2014-10-21

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  9. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Patents [OSTI]

    Kaduchak, Gregory (Los Alamos, NM); Ward, Michael D. (Los Alamos, NM)

    2011-12-27

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  10. Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    E-Print Network [OSTI]

    Riaud, Antoine; Charron, Eric; Bussonnière, Adrien; Matar, Olivier Bou

    2015-01-01

    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...

  11. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN); Norton, Stephen J. (Raleigh, NC)

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  12. Pinniped hearing in a changing acoustic environment

    E-Print Network [OSTI]

    Cunningham, Kane Alexander

    2015-01-01

    S1.4A- 1985 Amendment to ANSI S1.4-1983. Bowles, A. E. (Laboratory. REFERENCES ANSI (1985). Specification forSound Level Meters. ANSI standard, ANSI S1.4A- 1985

  13. Acoustical performance measurement protocols for commercial buildings

    E-Print Network [OSTI]

    Salter, Charles M P.E.; Lawrence, Travis R

    2012-01-01

    in IEC 616721-1 (2002), or type 1, as defined in ANSI S1.43and ANSI S1.11, sound level meter with parallel octave bandIndex calculation (ANSI, 1997). Speech Intelligibility

  14. Sound Coiled-Tubing Drilling Practices

    SciTech Connect (OSTI)

    Williams, Thomas; Deskins, Greg; Ward, Stephen L.; Hightower, Mel

    2001-09-30

    This Coiled-Tubing Drilling (CTD) Sound Practices Manual provides tools needed by CTD engineers and supervisors to plan, design and perform safe, successful CTD operations. As emphasized throughout, both careful planning and attention to detail are mandatory for success. A bibliography of many useful CTD references is presented in Chapter 6. This manual is organized according to three processes: 1) Pre-Job Planning Process, 2) Operations Execution Process, and 3) Post-Job Review Process. Each is discussed in a logical and sequential format.

  15. Sound velocity bound and neutron stars

    E-Print Network [OSTI]

    Paulo F. Bedaque; Andrew W. Steiner

    2015-01-25

    It has been conjectured that the velocity of sound in any medium is smaller than the velocity of light in vacuum divided by $\\sqrt{3}$. Simple arguments support this bound in non-relativistic and/or weakly coupled theories. The bound has been demonstrated in several classes of strongly coupled theories with gravity duals and is saturated only in conformal theories. We point out that the existence of neutron stars with masses around two solar masses combined with the knowledge of the equation of state of hadronic matter at "low" densities is in strong tension with this bound.

  16. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-02-14

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be performed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described. 6 figs.

  17. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  18. Laser and acoustic lens for lithotripsy

    DOE Patents [OSTI]

    Visuri, Steven R. (Livermore, CA); Makarewicz, Anthony J. (San Ramon, CA); London, Richard A. (Orinda, CA); Benett, William J. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Da Silva, Luiz B. (Pleasanton, CA)

    2002-01-01

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.

  19. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOE Patents [OSTI]

    Deason, Vance A. (Idaho Falls, ID); Telschow, Kenneth L. (Idaho Falls, ID)

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  20. Physics of the Earth and Planetary Interiors 160 (2007) 5159 Making sound inferences from geomagnetic sounding

    E-Print Network [OSTI]

    Constable, Steve

    2007-01-01

    sounding. Backus­Gilbert theory is fundamentally a linear theory, and if the inverse problem is nonlinear; accepted 8 September 2006 Abstract We examine the nonlinear inverse problem of electromagnetic induction is based completely on optimization theory for an all-at-once approach to inverting frequency

  1. Acoustic sensor for real-time control for the inductive heating process

    DOE Patents [OSTI]

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  2. Acoustic Noise Test Report for the SWIFT Wind Turbine in Boulder, CO

    SciTech Connect (OSTI)

    Roadman, J.; Huskey, A.

    2013-04-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the SWIFT wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the SWIFT is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and utilized binning by wind speed instead of regression analysis.

  3. Acoustic Noise Test Report for the Viryd CS8 Wind Turbine

    SciTech Connect (OSTI)

    Roadman, J.; Huskey, A.

    2013-07-01

    This report summarizes the results of an acoustic noise test that the National Renewable Energy Laboratory (NREL) conducted on the Viryd CS8 wind turbine. This test was conducted in accordance with the International Electrotechnical Commission's (IEC) standard, Wind Turbine Generator Systems Part 11: Acoustic Noise Measurement Techniques, IEC 61400-11 Ed.2.1, 2006-11. However, because the Viryd CS8 is a small turbine, as defined by IEC, NREL used 10-second averages instead of 60-second averages and binning by wind speed instead of regression analysis.

  4. EUV detection of high-frequency surface acoustic waves

    E-Print Network [OSTI]

    Siemens, Mark

    We use coherent extreme ultraviolet radiation to probe surface acoustic wave propagation in nickel-on-sapphire nanostructures. We observe no acoustic dispersion over SAW wavelengths down to 200 nm, meaning the SAW propagation ...

  5. Search for Acoustic Signals from Ultra-High Energy Neutrinos...

    Office of Scientific and Technical Information (OSTI)

    Search for Acoustic Signals from Ultra-High Energy Neutrinos in 1500 Km3 of Sea Water Citation Details In-Document Search Title: Search for Acoustic Signals from Ultra-High Energy...

  6. 13.853 Computational Ocean Acoustics, Spring 2003

    E-Print Network [OSTI]

    Schmidt, Henrik

    Wave equations for fluid and visco-elastic media. Wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides. Wavenumber Integration and Normal Mode methods for ...

  7. Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers

    E-Print Network [OSTI]

    Shen, Chen

    In this paper, we investigate a type of anisotropic, acoustic complementary metamaterial (CMM) and its application in restoring acoustic fields distorted by aberrating layers. The proposed quasi two-dimensional (2D), ...

  8. Acoustic measurement of the Deepwater Horizon Macondo well flow rate

    E-Print Network [OSTI]

    Camilli, Richard

    On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and ...

  9. Ultrafast photo-acoustic spectroscopy of super-cooled liquids

    E-Print Network [OSTI]

    Klieber, Christoph

    2010-01-01

    Picosecond laser ultrasonic techniques for acoustic wave generation and detection were adapted to probe longitudinal and transverse acoustic waves in liquids at gigahertz frequencies. The experimental effort was designed ...

  10. 13.811 Advanced Structural Dynamics and Acoustics, Spring 2004

    E-Print Network [OSTI]

    Schmidt, Henrik

    Foundations of 3D elasticity. Fluid and elastic wave equations. Elastic and plastic waves in rods and beams. Waves in plates. Interaction with an acoustic fluid. Dynamics and acoustics of cylindrical shells. Radiation and ...

  11. Detecting nonlinear acoustic waves in liquids with nonlinear dipole optical antennae

    E-Print Network [OSTI]

    Maksymov, Ivan S

    2015-01-01

    Ultrasound is an important imaging modality for biological systems. High-frequency ultrasound can also (e.g., via acoustical nonlinearities) be used to provide deeply penetrating and high-resolution imaging of vascular structure via catheterisation. The latter is an important diagnostic in vascular health. Typically, ultrasound requires sources and transducers that are greater than, or of order the same size as the wavelength of the acoustic wave. Here we design and theoretically demonstrate that single silver nanorods, acting as optical nonlinear dipole antennae, can be used to detect ultrasound via Brillouin light scattering from linear and nonlinear acoustic waves propagating in bulk water. The nanorods are tuned to operate on high-order plasmon modes in contrast to the usual approach of using fundamental plasmon resonances. The high-order operation also gives rise to enhanced optical third-harmonic generation, which provides an important method for exciting the higher-order Fabry-Perot modes of the dipole...

  12. On the Origin of Negative Density and Modulus in Acoustic Metamaterials

    E-Print Network [OSTI]

    Wright, Oliver B

    2015-01-01

    This paper provides a review and fundamental physical interpretation for the effective densities and moduli of acoustic metamaterials. We introduce the terminology of hidden force and hidden source of volume: the effective density or modulus is negative when the hidden force or source of volume operates in antiphase to, respectively, the force or volume change that would be obtained in their absence. We demonstrate this ansatz for some established acoustic metamaterials with elements based on membranes, Helmholtz resonators, springs and masses. The hidden force for membrane-based acoustic metamaterials, for instance, is the force from the membrane tension. The hidden source for a Helmholtz-resonator-based metamaterial is the extra air volume injected from the resonator cavity. We also explain the analogous concepts for pure mass-and-spring systems, in which case hidden forces can arise from masses and springs fixed inside other masses, whereas hidden sources - more aptly termed hidden expanders of displacemen...

  13. Acoustic emission non-destructive testing of structures using source location techniques.

    SciTech Connect (OSTI)

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  14. Microfluidic pumping through miniaturized channels driven by ultra-high frequency surface acoustic waves

    SciTech Connect (OSTI)

    Shilton, Richie J.; Travagliati, Marco; Beltram, Fabio; Cecchini, Marco

    2014-08-18

    Surface acoustic waves (SAWs) are an effective means to pump fluids through microchannel arrays within fully portable systems. The SAW-driven acoustic counterflow pumping process relies on a cascade phenomenon consisting of SAW transmission through the microchannel, SAW-driven fluid atomization, and subsequent coalescence. Here, we investigate miniaturization of device design, and study both SAW transmission through microchannels and the onset of SAW-driven atomization up to the ultra-high-frequency regime. Within the frequency range from 47.8 MHz to 754?MHz, we show that the acoustic power required to initiate SAW atomization remains constant, while transmission through microchannels is most effective when the channel widths w???10??, where ? is the SAW wavelength. By exploiting the enhanced SAW transmission through narrower channels at ultra-high frequencies, we discuss the relevant frequency-dependent length scales and demonstrate the scaling down of internal flow patterns and discuss their impact on device miniaturization strategies.

  15. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; Sun, Yannan; USA, Richland Washington; Martinez, Jayson J.; USA, Richland Washington; Fu, Tao; USA, Richland Washington; McMichael, Geoffrey A.; et al

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore »using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less

  16. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    SciTech Connect (OSTI)

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; Sun, Yannan; USA, Richland Washington; Martinez, Jayson J.; USA, Richland Washington; Fu, Tao; USA, Richland Washington; McMichael, Geoffrey A.; USA, Richland Washington; Carlson, Thomas J.; USA, Richland Washington

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  17. Performance Assessment of Suture Type in Juvenile Chinook Salmon Surgically Implanted with Acoustic Transmitters

    SciTech Connect (OSTI)

    Deters, Katherine A.; Brown, Richard S.; Carter, Kathleen M.; Boyd, James W.

    2009-02-27

    The objective of this study was to determine the best overall suture material to close incisions from the surgical implantation of Juvenile Salmon Acoustic Telemetry System (JSATS) acoustic microtransmitters in subyearling Chinook salmon Oncorhynchus tshawytscha. The effects of seven suture materials, four surgeons, and two water temperatures on suture retention, incision openness, tag retention, tissue inflammation, and tissue ulceration were quantified. The laboratory study, conducted by researchers at the Pacific Northwest National Laboratory, supports a larger effort under way for the U.S. Army Corps of Engineers, Portland District, aimed at determining the suitability of acoustic telemetry for estimating short- and longer-term (30-60 days) juvenile-salmonid survival at Columbia and Snake River dams and through the lower Columbia River.

  18. The Speed of Sound in Hadronic Matter

    E-Print Network [OSTI]

    Castorina, P; Miller, D E; Satz, H

    2009-01-01

    We calculate the speed of sound $c_s$ in an ideal gas of resonances whose mass spectrum is assumed to have the Hagedorn form $\\rho(m) \\sim m^{-a}\\exp{bm}$, which leads to singular behavior at the critical temperature $T_c = 1/b$. With $a = 4$ the pressure and the energy density remain finite at $T_c$, while the specific heat diverges there. As a function of the temperature the corresponding speed of sound initially increases similarly to that of an ideal pion gas until near $T_c$ where the resonance effects dominate causing $c_s$ to vanish as $(T_c - T)^{1/4}$. In order to compare this result to the physical resonance gas models, we introduce an upper cut-off M in the resonance mass integration. Although the truncated form still decreases somewhat in the region around $T_c$, the actual critical behavior in these models is no longer present.

  19. Acoustic-Tactile Rendering of Visual Information Pubudu Madhawa Silva1

    E-Print Network [OSTI]

    Pappas, Thrasyvoulos N.

    as the primary source of information for object localization and identification, while touch is used bothAcoustic-Tactile Rendering of Visual Information Pubudu Madhawa Silva1 , Thrasyvoulos N. Pappas1 have proposed a dynamic, interactive system for conveying visual information via hearing and touch

  20. BLIND SEPARATION OF DELAYED AND SUPERIMPOSED ACOUSTIC SOURCES: LEARNING ALGORITHM AND EXPERIMENTAL STUDY

    E-Print Network [OSTI]

    Cichocki, Andrzej

    Information Systems, Brain Science Institute, RIKEN, JAPAN cia@brain.riken.go.jp ABSTRACT This paper addressesBLIND SEPARATION OF DELAYED AND SUPERIMPOSED ACOUSTIC SOURCES: LEARNING ALGORITHM AND EXPERIMENTAL,sparrowg@engine.chungbuk.ac.kr z Institut de la Communication Parlee/INPG, 46 Av. Felix Viallet, 38301 Grenoble CEDEX, FRANCE

  1. Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion

    E-Print Network [OSTI]

    Sevilla Esparza, Cristhian Israel

    2013-01-01

    acoustic excitation. The thermoacoustic instability fosteredgain motivation from thermoacoustic phenomena pervasive into the quantification of thermoacoustic instabil- ity in an

  2. Broad-band acoustic hyperbolic metamaterial

    E-Print Network [OSTI]

    Shen, Chen; Sui, Ni; Wang, Wenqi; Cummer, Steven A; Jing, Yun

    2015-01-01

    Acoustic metamaterials (AMMs) are engineered materials, made from subwavelength structures, that exhibit useful or unusual constitutive properties. There has been intense research interest in AMMs since its first realization in 2000 by Liu et al. A number of functionalities and applications have been proposed and achieved using AMMs. Hyperbolic metamaterials are one of the most important types of metamaterials due to their extreme anisotropy and numerous possible applications, including negative refraction, backward waves, spatial filtering, and subwavelength imaging. Although the importance of acoustic hyperbolic metamaterials (AHMMs) as a tool for achieving full control of acoustic waves is substantial, the realization of a broad-band and truly hyperbolic AMM has not been reported so far. Here, we demonstrate the design and experimental characterization of a broadband AHMM that operates between 1.0 kHz and 2.5 kHz.

  3. Schlumberger Resistivity Soundings At Kilauea East Rift Geothermal...

    Open Energy Info (EERE)

    Exploration Basis This study was conducted to learn about and model the resistivity structures in the Puna area Notes Five Schlumberger soundings were conducted and interpreted...

  4. Interpretation of electromagnetic soundings in the Raft River...

    Open Energy Info (EERE)

    Interpretation of electromagnetic soundings in the Raft River geothermal area, Idaho Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: Interpretation of...

  5. Vertical Electrical Sounding Configurations At Mt Princeton Hot...

    Open Energy Info (EERE)

    Vertical Electrical Sounding Configurations At Mt Princeton Hot Springs Geothermal Area (Zohdy, Et Al., 1971) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home...

  6. Accounting for the phonetic value of nonspeech sounds

    E-Print Network [OSTI]

    Finley, Gregory P.

    2015-01-01

    Accounting for the phonetic value of nonspeech sounds BySpring 2015 Abstract Accounting for the phonetic value ofsuggest an approach towards accounting for human perception

  7. 20 -Vol. 41, No. 1, April 2013 Acoustics Australia INVESTIGATION OF UNDERWATER ACOUSTIC

    E-Print Network [OSTI]

    underwater is between electromagnetic waves (e.g. light or radio) or sound waves. Light and radio waves transmission is required over longer distances through water, sound waves are the only viable wireless option communication signals under the influence of surface waves and transmitter-receiver motion were investigated

  8. Excitation of nonlinear electron acoustic waves Francesco Valentini

    E-Print Network [OSTI]

    California at San Diego, University of

    Excitation of nonlinear electron acoustic waves Francesco Valentini Dipartimento di Fisica and INFM acoustic waves EAWs and the stability of the EAWs against decay. An EAW is a nonlinear wave- linear wave structures can exist in a plasma, even at low amplitude. They called these waves electron-acoustic

  9. Trapping and Frequency Variability in Electron Acoustic Waves

    E-Print Network [OSTI]

    California at San Diego, University of

    Trapping and Frequency Variability in Electron Acoustic Waves C.F. Driscoll, F. Anderegg, D 92093 USA Abstract. Electron Acoustic Waves (EAWs) with a phase velocity less than twice the plasma. Keywords: add some here PACS: 52.27.Jt, 52.35.Fp, 52.35.Sb Electron Acoustic Waves (EAWs) are the low

  10. Diffusing acoustic wave spectroscopy M. L. Cowan,1

    E-Print Network [OSTI]

    Page, John

    Diffusing acoustic wave spectroscopy M. L. Cowan,1 I. P. Jones,1, * J. H. Page,1,2, and D. A. Weitz called diffusing acoustic wave spec- troscopy DAWS . In this technique, the motion of the scatterers e the particle velocity correlation function. Potential appli- cations of diffusing acoustic wave spectroscopy

  11. Excitation and Decay of Electron Acoustic Waves Francesco Valentini

    E-Print Network [OSTI]

    California at San Diego, University of

    Excitation and Decay of Electron Acoustic Waves Francesco Valentini , Thomas M. O'Neil and Daniel H) simulation is used to investigate the excitation of electron acoustic waves (EAWs) by a driver electric field structures can exist in a plasma even at low amplitude. They called these waves electron-acoustic waves (EAW

  12. May 31, 2005 Reflection Of Microwave Pulses From Acoustic Waves

    E-Print Network [OSTI]

    May 31, 2005 . Reflection Of Microwave Pulses From Acoustic Waves: Summary of Experimental of an acoustic wave as a reflecting virtual interface for propagating impulses. It is by now well accepted (e.g., see [2, 7, 11, 14]) that acoustic pressure waves will interact with electromagnetic signals in ways

  13. 2011201120112011 2011 Symposium on Piezoelectricity, Acoustic waves, and Device Application

    E-Print Network [OSTI]

    Chen, Baoquan

    2011201120112011 2011 Symposium on Piezoelectricity, Acoustic waves, and Device Application://web.siat.ac.cn/spawda2011/ 1 2011 2011 12 9 -11 IEEE Theory of Piezoelectricity; Bulk and Surface Acoustic Waves; MEMS, Acoustic waves, and Device Application 12121212 9999 ----11111111 Dec. 9-11, Shenzhen Institutes

  14. Cell separation using tilted-angle standing surface acoustic waves

    E-Print Network [OSTI]

    Dao, Ming

    Cell separation using tilted-angle standing surface acoustic waves Xiaoyun Dinga,1 , Zhangli Pengb for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves

  15. Experimental Investigation of Electron-Acoustic Waves in Electron Plasmas

    E-Print Network [OSTI]

    California at San Diego, University of

    Experimental Investigation of Electron-Acoustic Waves in Electron Plasmas Andrey A. Kabantsev , F Electron-acoustic wave (EAW) solutions of the linearized electrostatic Vlasov equations have usually been USA 92093-0319 Dipt. di Fisica and INFM, Univ. della Calabria, 87036 Rende, Italy Abstract. Electron-acoustic

  16. DIFFUSING ACOUSTIC WAVE SPECTROSCOPY: FIELD FLUCTUATION SPECTROSCOPY WITH MULTIPLY

    E-Print Network [OSTI]

    Page, John

    DIFFUSING ACOUSTIC WAVE SPECTROSCOPY: FIELD FLUCTUATION SPECTROSCOPY WITH MULTIPLY SCATTERED Martyrs, B.P. 166, 38042 Grenoble Cedex 9, France Abstract. Diffusing Acoustic Wave Spectroscopy (DAWS that acoustic waves, and ultrasonic waves in particular, are playing in understanding the rich diversity of wave

  17. ACOUSTIC PLANE WAVE A. CHRISTOFFEL EQUATIONS FOR ISOTROPIC AND

    E-Print Network [OSTI]

    Duffy, Thomas S.

    Appendix 3 ACOUSTIC PLANE WAVE PROPERTIES A. CHRISTOFFEL EQUATIONS FOR ISOTROPIC AND ANISOTROPICI/; + - 2cl(/xl.y (C1:1 + (1'13 + (el:l + (c1:1 + T ACOUSTIC PLANE WAVE PROI'ERTIES 385 ORTHORHOMBIC ell- 0 + C SIIl- () 2 44 ! a quasishear wave, (\\ 'II (~ _ \\1/( (J~, ACOUSTIC PLANE WAVE PROPERTIES 387 (k

  18. Acoustics 2000 1 The Two Dimensional Numerical Modeling

    E-Print Network [OSTI]

    -difference methods have often been used. This report terms the wave equations suited to waves in fluids, acoustic, Sven Treitel, and Alford, 1976) but the acoustic wave equations have also been used for geophysical. Key features of the model at present are: (i) The use of acoustic wave equation (ii) Time domain

  19. Theory of High Frequency Acoustic Wave Scattering by Turbulent Flames

    E-Print Network [OSTI]

    Lieuwen, Timothy C.

    of the wave equation and assumes that the smallest scales of flame wrinkling are much larger than the acoustic the integral equation approach used in this paper to assess other characteristics of acoustic waveTheory of High Frequency Acoustic Wave Scattering by Turbulent Flames TIM LIEUWEN* School

  20. Development of an acoustic wave sensor for biological

    E-Print Network [OSTI]

    Turova, Varvara

    -Jacobi equation can be rewritten as or Application to the propagation of surface acoustic waves Velocity contour . Comparison with the eikonal equation yields the condition Acoustic waves in anisotropic crystals obeyMotivation Development of an acoustic wave sensor for biological and medical applications

  1. Technical Report 2010-2 Smoothed Particle Hydrodynamics in Acoustic

    E-Print Network [OSTI]

    Negrut, Dan

    and architectural acoustics can be addressed by solving the linear wave equation with an appropriate numericalTechnical Report 2010-2 Smoothed Particle Hydrodynamics in Acoustic Simulations Philipp Hahn, Dan Lagrangian technique, called Smoothed Particle Hydrodynamics (SPH), as a method for acoustic simulation

  2. Quantitative Thermo-acoustics and related problems Guillaume Bal

    E-Print Network [OSTI]

    Biasutti, Michela

    Quantitative Thermo-acoustics and related problems Guillaume Bal Department of Applied Physics of Mathematics, University of Washington, Seattle, WA 98195 E-mail: tzhou@math.washington.edu Abstract. Thermo-acoustic in tissues with the good resolution properties of ultrasounds. Thermo-acoustic imaging may be decomposed

  3. An acoustic wave equation based on viscoelasticity

    E-Print Network [OSTI]

    Andrzej Hanyga

    2014-01-30

    An acoustic wave equation for pressure accounting for viscoelastic attenuation is derived from viscoelastic equations of motion. It is assumed that the relaxation moduli are completely monotonic. The acoustic equation differs significantly from the equations proposed by Szabo (1994) and in several other papers. Integral representations of dispersion and attenuation are derived. General properties and asymptotic behavior of attenuation and dispersion in the low and high frequency range are studied. The results are compatible with experiments. The relation between the asymptotic properties of attenuation and wavefront singularities is examined. The theory is applied to some classes of viscoelastic models and to the quasi-linear attenuation reported in seismology.

  4. Wax Point Determinations Using Acoustic Resonance Spectroscopy

    SciTech Connect (OSTI)

    Bostick, D.T.; Jubin, R.T.; Schmidt, T.W.

    2001-06-01

    The thermodynamic characterization of the wax point of a given crude is essential in order to maintain flow conditions that prevent plugging of undersea pipelines. This report summarizes the efforts made towards applying an Acoustic Cavity Resonance Spectrometer (ACRS) to the determination of pressures and temperatures at which wax precipitates from crude. Phillips Petroleum Company, Inc., the CRADA participant, supplied the ACRS. The instrumentation was shipped to Dr. Thomas Schmidt of ORNL, the CRADA contractor, in May 2000 after preliminary software development performed under the guidance of Dr. Samuel Colgate and Dr. Evan House of the University of Florida, Gainesville, Fl. Upon receipt it became apparent that a number of modifications still needed to be made before the ACRS could be precisely and safely used for wax point measurements. This report reviews the sequence of alterations made to the ACRS, as well as defines the possible applications of the instrumentation once the modifications have been completed. The purpose of this Cooperative Research and Development Agreement (CRADA) between Phillips Petroleum Company, Inc. (Participant) and Lockheed Martin Energy Research Corporation (Contractor) was the measurement of the formation of solids in crude oils and petroleum products that are commonly transported through pipelines. This information is essential in the proper design, operation and maintenance of the petroleum pipeline system in the United States. Recently, new petroleum discoveries in the Gulf of Mexico have shown that there is a potential for plugging of undersea pipeline because of the precipitation of wax. It is important that the wax points of the expected crude oils be well characterized so that the production facilities for these new wells are capable of properly transporting the expected production. The goal of this work is to perform measurements of solids formation in crude oils and petroleum products supplied by the Participant. It is anticipated that these data will be used in the design of new production facilities and in the development of thermodynamic models that describe the behavior of wax-saturated petroleum.

  5. Acoustic Array Development for Wind Turbine Noise Characterization

    SciTech Connect (OSTI)

    Buck, S.; Roadman, J.; Moriarty, P.; Palo, S.

    2013-11-01

    This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team from the University of Colorado Boulder. This design process is a continuation of the elliptical array design work done by Simley. A description of the array system design process is presented, including array shape design, mechanical design, design of electronics and the data acquisition system, and development of post-processing software. System testing and calibration methods are detailed. Results from the initial data acquisition campaign are offered and discussed. Issues faced during this initial deployment of the array are presented and potential remedies discussed.

  6. Cuton, cutoff transition of sound in slowly varying flow ducts

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Cut­on, cut­off transition of sound in slowly varying flow ducts Sjoerd W. Rienstra 19­walled duct with irrotational isentropic mean flow is studied. The usual turning point behaviour was found. 1 Introduction The exact multiple scale solution for sound propagation in a slowly varying lined flow duct

  7. SOUND PROPAGATION IN SLOWLY VARYING LINED FLOW DUCTS

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    SOUND PROPAGATION IN SLOWLY VARYING LINED FLOW DUCTS OF ARBITRARY CROSS SECTION S.W. Rienstra.w.rienstra@tue.nl November 20, 2002 Abstract Sound transmission through ducts of constant cross section with a uniform expansion, where the modes are eigenfunctions of the corresponding Laplace eigenvalue problem along a duct

  8. From"Green Growth"to sound policies: An overview*

    E-Print Network [OSTI]

    Growth" to sound policies: An overview Richard Schmalensee ,1 Massachusetts Institute of TechnologyFrom"Green Growth"to sound policies: An overview* Richard Schmalensee *Reprinted from Energy Change Postal Address: Massachusetts Institute of Technology 77 Massachusetts Avenue, E19-411 Cambridge

  9. SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE

    E-Print Network [OSTI]

    Firestone, Jeremy

    SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE UD - LEWES, DELAWARE January 2011 ` #12;SOUND COMPLIANCE MONITORING FOR THE GAMESA WIND TURBINE AT THE UNIVERSITY OF DELAWARE LEWES, DELAWARE A Gamesa G90 2.0-MW wind turbine operates at the University of Delaware (UD), Lewes campus on a parcel

  10. The Automation of Sound Reasoning and Successful Proof Finding

    E-Print Network [OSTI]

    Fitelson, Branden

    709 44 The Automation of Sound Reasoning and Successful Proof Finding LARRY WOS AND BRANDEN scientist naturally envisioned the automation of sound rea- soning ­ reasoning in which conclusions, and find proofs. But can such logical reasoning be fully automated? Can a single computer program

  11. The Sounds of Early Cinema in Britain: Textual, Material

    E-Print Network [OSTI]

    Miranda, Eduardo Reck

    The Sounds of Early Cinema in Britain: Textual, Material and Technological Sources 7-9 June 2009 (University of Edinburgh), `Sound' and Silent Cinema in Scotland 11.15 ­ 11.45am Coffee 3 #12;11.45am ­ 1pm for Accompaniment Practice in London Cinemas, 1896-1913 Vanessa Toulmin (National Fairground Archive, University

  12. ATTEMPTS TO GUIDE SMALL FISH WITH UNDERWATER SOUND

    E-Print Network [OSTI]

    -electric crystal transducer "Wampus" - Underwater turbine Electromagnetic transducer. Bell (lK-2) Summary403 ATTEMPTS TO GUIDE SMALL FISH WITH UNDERWATER SOUND -iD^ SPECIAL SCIENTIFK REPOKT-FISHERIES Na ATTEMPTS TO GUIDE SMALL FISH WITH UNDERWATER SOUND by Clifford J. Burner and Harvey L.. Moore United States

  13. ATTEMPTS TO GUIDE SMALL FISH WITH UNDERWATER SOUND

    E-Print Network [OSTI]

    " - Electro-magnetic transducer 6 Piezo-electric crystal transducer l8 "Wampus" - Underwater turbine 20ATTEMPTS TO GUIDE SMALL FISH WITH UNDERWATER SOUND Marine Biological Laboratory NOV 9 -1953 WOODS, Director ATTEMPTS TO GUIDE SMALL FISH WITH UNDERWATER SOUND by Clifford J. Burner and Harvey Lo Moore

  14. Ocean Climate Change: Comparison of Acoustic

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Ocean Climate Change: Comparison of Acoustic Tomography, Satellite Altimetry, and Modeling The ATOC to thermal expansion. Interpreting climate change signals from fluctuations in sea level is therefore in the advective heat flux. Changes in oceanic heat storage are a major expected element of future climate shifts

  15. A feasibility study of in vivo applications of single beam acoustic tweezers

    SciTech Connect (OSTI)

    Li, Ying, E-mail: yli582@usc.edu; Lee, Changyang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk [NIH Transducer Resource Center and Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089-1111 (United States)

    2014-10-27

    Tools that are capable of manipulating micro-sized objects have been widely used in such fields as physics, chemistry, biology, and medicine. Several devices, including optical tweezers, atomic force microscope, micro-pipette aspirator, and standing surface wave type acoustic tweezers have been studied to satisfy this need. However, none of them has been demonstrated to be suitable for in vivo and clinical studies. Single beam acoustic tweezers (SBAT) is a technology that uses highly focused acoustic beam to trap particles toward the beam focus. Its feasibility was first theoretically and experimentally demonstrated by Lee and Shung several years ago. Since then, much effort has been devoted to improving this technology. At present, the tool is capable of trapping a microparticle as small as 1 ?m, as well as a single red blood cell. Although in comparing to other microparticles manipulating technologies, SBAT has advantages of providing stronger trapping force and deeper penetration depth in tissues, and producing less tissue damage, its potential for in vivo applications has yet been explored. It is worth noting that ultrasound has been used as a diagnostic tool for over 50 years and no known major adverse effects have been observed at the diagnostic energy level. This paper reports the results of an initial attempt to assess the feasibility of single beam acoustic tweezers to trap microparticles in vivo inside of a blood vessel. The acoustic intensity of SBAT under the trapping conditions that were utilized was measured. The mechanical index and thermal index at the focus of acoustic beam were found to be 0.48 and 0.044, respectively, which meet the standard of commercial diagnostic ultrasound system.

  16. Joint Reconstruction of Absorbed Optical Energy Density and Sound Speed Distribution in Photoacoustic Computed Tomography: A numerical Investigation

    E-Print Network [OSTI]

    Huang, Chao; Schoonover, Robert W; Wang, Lihong V; Anastasio, Mark A

    2015-01-01

    Photoacoustic computed tomography (PACT) is a rapidly emerging bioimaging modality that seeks to reconstruct an estimate of the absorbed optical energy density within an object. Conventional PACT image reconstruction methods assume a constant speed-of-sound (SOS), which can result in image artifacts when acoustic aberrations are significant. It has been demonstrated that incorporating knowledge of an object's SOS distribution into a PACT image reconstruction method can improve image quality. However, in many cases, the SOS distribution cannot be accurately and/or conveniently estimated prior to the PACT experiment. Because variations in the SOS distribution induce aberrations in the measured photoacoustic wavefields, certain information regarding an object's SOS distribution is encoded in the PACT measurement data. Based on this observation, a joint reconstruction (JR) problem has been proposed in which the SOS distribution is concurrently estimated along with the sought-after absorbed optical energy density ...

  17. Sources and levels of ambient ocean sound near the antarctic peninsula

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dziak, Robert P.; Bohnenstiehl, DelWayne R.; Stafford, Kathleen M.; Matsumoto, Haruyoshi; Park, Minkyu; Lee, Won Sang; Fowler, Matt J.; Lau, Tai-Kwan; Haxel, Joseph H.; Mellinger, David K.; et al

    2015-04-14

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open,more »deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.« less

  18. Sources and levels of ambient ocean sound near the antarctic peninsula

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Dziak, Robert P. [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Bohnenstiehl, DelWayne R. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Marine, Earth, and Atmospheric Sciences.; Stafford, Kathleen M. [Univ. of Washington, Seattle, WA (United States). Applied Physics Lab.; Matsumoto, Haruyoshi [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Park, Minkyu [Korea Polar Research Inst., Incheon (Korea, Republic of). Polar Environmental Research Div.; Lee, Won Sang [Korea Polar Research Inst., Incheon (Korea, Republic of). Polar Environmental Research Div.; Fowler, Matt J. [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Lau, Tai-Kwan [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Haxel, Joseph H. [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Mellinger, David K. [Oregon State Univ./Cooperative Inst. for Marine Resources Studies/National Oceanic and Atmospheric Administration (NOAA)/Pacific Marine Environmental Lab., Newport, OR (United States); Fine, Michael L [Virginia Commonwealth Univ., Richmond, VA (United States)

    2015-04-14

    Arrays of hydrophones were deployed within the Bransfield Strait and Scotia Sea (Antarctic Peninsula region) from 2005 to 2009 to record ambient ocean sound at frequencies of up to 125 and 500 Hz. Icequakes, which are broadband, short duration signals derived from fracturing of large free-floating icebergs, are a prominent feature of the ocean soundscape. Icequake activity peaks during austral summer and is minimum during winter, likely following freeze-thaw cycles. Iceberg grounding and rapid disintegration also releases significant acoustic energy, equivalent to large-scale geophysical events. Overall ambient sound levels can be as much as ~10–20 dB higher in the open, deep ocean of the Scotia Sea compared to the relatively shallow Bransfield Strait. Noise levels become lowest during the austral winter, as sea-ice cover suppresses wind and wave noise. Ambient noise levels are highest during austral spring and summer, as surface noise, ice cracking and biological activity intensifies. Vocalizations of blue (Balaenoptera musculus) and fin (B. physalus) whales also dominate the long-term spectra records in the 15–28 and 89 Hz bands. Blue whale call energy is a maximum during austral summer-fall in the Drake Passage and Bransfield Strait when ambient noise levels are a maximum and sea-ice cover is a minimum. Fin whale vocalizations were also most common during austral summer-early fall months in both the Bransfield Strait and Scotia Sea. The hydrophone data overall do not show sustained anthropogenic sources (ships and airguns), likely due to low coastal traffic and the typically rough weather and sea conditions of the Southern Ocean.

  19. A sound budget for the southeastern Bering Sea: measuring wind, rainfall, shipping and other sources of underwater sound

    E-Print Network [OSTI]

    by wind-driven breaking waves and precipitation. These physical processes generate sound principally,6 . Because wind-driven breaking waves and raindrop splashes generate different distributions of bubbles sizesA sound budget for the southeastern Bering Sea: measuring wind, rainfall, shipping and other

  20. Second sound and the superfluid fraction in a resonantly interacting Fermi gas

    E-Print Network [OSTI]

    Sidorenkov, Leonid A; Grimm, Rudolf; Hou, Yan-Hua; Pitaevskii, Lev; Stringari, Sandro

    2013-01-01

    Superfluidity is a macroscopic quantum phenomenon, which shows up below a critical temperature and leads to a peculiar behavior of matter, with frictionless flow, the formation of quantized vortices, and the quenching of the moment of inertia being intriguing examples. A remarkable explanation for many phenomena exhibited by a superfluid at finite temperature can be given in terms of a two-fluid mixture comprised of a normal component that behaves like a usual fluid and a superfluid component with zero viscosity and zero entropy. Important examples of superfluid systems are liquid helium and neutron stars. More recently, ultracold atomic gases have emerged as new superfluid systems with unprecedented possibilities to control interactions and external confinement. Here we report the first observation of `second sound' in an ultracold Fermi gas with resonant interactions. Second sound is a striking manifestation of the two-component nature of a superfluid and corresponds to an entropy wave, where the superfluid...

  1. Broadband asymmetric acoustic transmission by a plate with quasi-periodic surface ridges

    SciTech Connect (OSTI)

    Li, Chunhui; Ke, Manzhu Ye, Yangtao; Xu, Shengjun; Qiu, Chunyin; Liu, Zhengyou

    2014-07-14

    In this paper, an acoustic system with broadband asymmetric transmission is designed and fabricated, which consists of a water-immersed aluminum plate engraved with quasi-periodically-patterned ridges on single surface. It demonstrates that when the acoustic waves are launched into the system from the structured side, they can couple into the Lamb modes in the plate efficiently and attain a high transmission; on the contrary, when the waves are incident from the opposite flat side, the coupling is weak, and the transmission is low. Superior to systems with periodic patterning, this quasi-periodically-patterned system has a broad working frequency range due to the collective contributions from the multiple diffractions specific to the structure.

  2. Tidal Residual Eddies and their Effect on Water Exchange in Puget Sound

    SciTech Connect (OSTI)

    Yang, Zhaoqing; Wang, Taiping

    2013-08-30

    Tidal residual eddies are one of the important hydrodynamic features in tidally dominant estuaries and coastal bays, and they could have significant effects on water exchange in a tidal system. This paper presents a modeling study of tides and tidal residual eddies in Puget Sound, a tidally dominant fjord-like estuary in the Pacific Northwest coast, using a three-dimensional finite-volume coastal ocean model. Mechanisms of vorticity generation and asymmetric distribution patterns around an island/headland were analyzed using the dynamic vorticity transfer approach and numerical experiments. Model results of Puget Sound show that a number of large twin tidal residual eddies exist in the Admiralty Inlet because of the presence of major headlands in the inlet. Simulated residual vorticities near the major headlands indicate that the clockwise tidal residual eddy (negative vorticity) is generally stronger than the anticlockwise eddy (positive vorticity) because of the effect of Coriolis force. The effect of tidal residual eddies on water exchange in Puget Sound and its sub-basins were evaluated by simulations of dye transport. It was found that the strong transverse variability of residual currents in the Admiralty Inlet results in a dominant seaward transport along the eastern shore and a dominant landward transport along the western shore of the Inlet. A similar transport pattern in Hood Canal is caused by the presence of tidal residual eddies near the entrance of the canal. Model results show that tidal residual currents in Whidbey Basin are small in comparison to other sub-basins. A large clockwise residual circulation is formed around Vashon Island near entrance of South Sound, which can potentially constrain the water exchange between the Central Basin and South Sound.

  3. A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite

    E-Print Network [OSTI]

    Sadek, A Z; Wlodarski, W; Shin, K; Kaner, Richard B; Kalantar-zadeh, K

    2006-01-01

    based layered surface acoustic wave (SAW) sensor has beenA layered surface acoustic wave (SAW) transducer isof the propagating acoustic wave by causing a change in the

  4. Applications of quantum chaos to realistic quantum computations and sound treatment on quantum computers

    E-Print Network [OSTI]

    Shepelyansky, Dima

    Applications of quantum chaos to realistic quantum computations and sound treatment on quantum speech and sound of complex quantum wavefunctions. Keywords: Quantum computers, quantum chaos

  5. An analysis of the properties of VAS satellite soundings 

    E-Print Network [OSTI]

    Rhodes, Robert Charles

    1984-01-01

    participating in AVE/VAS II (6-7 March 1982). Rawinsonde sounding in AVE/VAS format . Locations of available satellite soundings (dark circles) in comoarison with rawinsonde network (open circles) for 6 March 1982 at 2100 GMT. Mesoscale rawi nsonde stations... ~ ~ ~ ~ p ~ ~ 0 L) 1 / I I I 0 'I I I ~ ~ ~ Fig. 3. Locations of available satellite soundings (dark circles) in comparison with rawinsonde network (open circles) for 6 March 1982 at 2100 GMT. Mesoscaie rawinsonde stations are not shown. of the 16...

  6. Non-normality in combustion-acoustic interaction in diffusion flames: a critical revision

    E-Print Network [OSTI]

    Magri, Luca; Sujith, R I; Juniper, Matthew P

    2013-01-01

    Perturbations in a non-normal system can grow transiently even if the system is linearly stable. If this transient growth is sufficiently large, it can trigger self-sustained oscillations from small initial disturbances. This has important practical consequences for combustion-acoustic oscillations, which are a continual problem in rocket and aircraft engines. Balasubramanian and Sujith (Journal of Fluid Mechanics, 2008, 594, 29-57) modelled an infinite-rate chemistry diffusion flame in an acoustic duct and found that the transient growth in this system can amplify the initial energy by a factor, $G_{max}$, of order $10^5$ to $10^7$. However, recent investigations by L. Magri & M. P. Juniper have brought to light certain errors in that paper. When the errors are corrected, $G_{max}$ is found to be of order 1 to 10, revealing that non-normality is not as influential as it was thought to be.

  7. Acoustic data transmission through a drillstring

    DOE Patents [OSTI]

    Drumheller, D.S.

    1992-07-07

    A method and apparatus for acoustically transmitting data along a drillstring are presented. In accordance with one embodiment of the present invention, acoustic data signals are conditioned to counteract distortions caused by the drillstring. Preferably, this conditioning step comprises multiplying each frequency component of the data signal by exp ([minus]ikL) where L is the transmission length of the drillstring, k is the wave number in the drillstring at the frequency of each component and i is ([minus]1)[sup 1/2]. In another embodiment of this invention, data signals having a frequency content in at least one passband of the drillstring are generated preferably traveling in only one direction (e.g., up the drillstring) while echoes in the drillstring resulting from the data transmission are suppressed. 20 figs.

  8. Methods And Apparatus For Acoustic Fiber Fractionation

    DOE Patents [OSTI]

    Brodeur, Pierre (Smyrna, GA)

    1999-11-09

    Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.

  9. Acoustic cloaking theory BY ANDREW N. NORRIS*

    E-Print Network [OSTI]

    Norris, Andrew

    composition of the cloak is not uniquely defined, but the phase speed and wave velocity of the pseudo-acoustic is for the infinitesimal pressure p(x, t) that satisfies the scalar wave equation in the surrounding fluid, V2 pKp Z 0: ð1 that the modified wave equation in u mimics the exterior equation (1.1) in the entire region U. This is achieved

  10. Acoustic enhancement for photo detecting devices

    DOE Patents [OSTI]

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  11. Demonstration of novel high-power acoustic through-the-wall sensor

    E-Print Network [OSTI]

    Felber, Franklin

    2015-01-01

    A high-power acoustic sensor, capable of detecting and tracking persons through steel walls of cargo containers, trailer truck bodies, and train cars, has been developed and demonstrated. The sensor is based on a new concept for narrowband mechanical-impact acoustic transmitters and matched resonant receivers. The lightweight, compact, and low-cost transmitters produce high-power acoustic pulses at one or more discrete frequencies with little input power. The energy for each pulse is accumulated over long times at low powers, like a mousetrap, and therefore can be operated with ordinary batteries and no power conditioning. A breadboard impact-transmitter and matched-receiver system that detected human motion through thick walls with only rudimentary signal processing is described, and results are presented. A conceptual design is presented of an acoustic through-the-wall sensor, costing about $10,000 per unit and capable of remotely and non-intrusively scanning steel cargo containers for stowaways at a rate o...

  12. Adjustable virtual pore-size filter for automated sample preparation using acoustic radiation force

    SciTech Connect (OSTI)

    Jung, B; Fisher, K; Ness, K; Rose, K; Mariella, R

    2008-05-22

    We present a rapid and robust size-based separation method for high throughput microfluidic devices using acoustic radiation force. We developed a finite element modeling tool to predict the two-dimensional acoustic radiation force field perpendicular to the flow direction in microfluidic devices. Here we compare the results from this model with experimental parametric studies including variations of the PZT driving frequencies and voltages as well as various particle sizes and compressidensities. These experimental parametric studies also provide insight into the development of an adjustable 'virtual' pore-size filter as well as optimal operating conditions for various microparticle sizes. We demonstrated the separation of Saccharomyces cerevisiae and MS2 bacteriophage using acoustic focusing. The acoustic radiation force did not affect the MS2 viruses, and their concentration profile remained unchanged. With optimized design of our microfluidic flow system we were able to achieve yields of > 90% for the MS2 with > 80% of the S. cerevisiae being removed in this continuous-flow sample preparation device.

  13. Frontispiece. (a) The first 0.2 seconds of the synthesized open vowel sound. (b) The excitation pressure at the bottom region of the trachea section of the model. (c) The behavior of the vocal folds of the model

    E-Print Network [OSTI]

    Miranda, Eduardo Reck

    -language, in a pri- marily linguistic sense rather than a musical sense. The piece is entirely sung with "words paths: one to the mouth and the other to the nasal cavity. Length, diameter and branching control for producing nasal sounds change during sound production. The vocal system can be roughly simulated

  14. Improved Bacterial and Viral Recoveries from 'Complex' Samples using Electrophoretically Assisted Acoustic Focusing

    SciTech Connect (OSTI)

    Ness, K; Rose, K; Jung, B; Fisher, K; Mariella, Jr., R P

    2008-03-27

    Automated front-end sample preparation technologies can significantly enhance the sensitivity and reliability of biodetection assays [1]. We are developing advanced sample preparation technologies for biowarfare detection and medical point-of-care diagnostics using microfluidic systems with continuous sample processing capabilities. Here we report an electrophoretically assisted acoustic focusing technique to rapidly extract and enrich viral and bacterial loads from 'complex samples', applied in this case to human nasopharyngeal samples as well as simplified surrogates. The acoustic forces capture and remove large particles (> 2 {micro}m) such as host cells, debris, dust, and pollen from the sample. We simultaneously apply an electric field transverse to the flow direction to transport small ({le} 2 {micro}m), negatively-charged analytes into a separate purified recovery fluid using a modified H-filter configuration [Micronics US Patent 5,716,852]. Hunter and O'Brien combined transverse electrophoresis and acoustic focusing to measure the surface charge on large particles, [2] but to our knowledge, our work is the first demonstration combining these two techniques in a continuous flow device. Marina et al. demonstrated superimposed dielectrophoresis (DEP) and acoustic focusing for enhanced separations [3], but these devices have limited throughput due to the rapid decay of DEP forces. Both acoustic standing waves and electric fields exert significant forces over the entire fluid volume in microchannels, thus allowing channels with larger dimensions (> 100 {micro}m) and high throughputs (10-100 {micro}L/min) necessary to process real-world volumes (1 mL). Previous work demonstrated acoustic focusing of microbeads [4] and biological species [5] in various geometries. We experimentally characterized our device by determining the biological size-cutoff where acoustic radiation pressure forces no longer transport biological particles. Figure 1 shows images of E.Coli ({approx}1 {micro}m) and yeast ({approx}4-5 {micro}m) flowing in a microchannel (200 {micro}m deep, 500 {micro}m wide) at a flow rate of 10 {micro}L/min. The E.Coli does not focus in the acoustic field while the yeast focuses at the channel centerline. This result suggests the acoustic size-cutoff for biological particles in our device lies between 2 and 3 {micro}m. Transverse electrophoresis has been explored extensively in electric field flow fractionation [6] and isoelectric focusing devices [7]. We demonstrated transverse electrophoretic transport of a wide variety of negatively-charged species, including fluorophores, beads, viruses, E.Coli, and yeast. Figure 2 shows the electromigration of a fluorescently labeled RNA virus (MS2) from the lower half of the channel to the upper half region with continuous flow. We demonstrated the effectiveness of our electrophoretically assisted acoustic focusing device by separating virus-like particles (40 nm fluorescent beads, selected to aid in visualization) from a high background concentration of yeast contaminants (see Figure 3). Our device allows for the efficient recovery of virus into a pre-selected purified buffer while background contaminants are acoustically captured and removed. We also tested the device using clinical nasopharyngeal samples, both washes and lavages, and demonstrated removal of unknown particulates (>2 ?m size) from the sample. Our future research direction includes spiking known amounts of bacteria and viruses into clinical samples and performing quantitative off-chip analysis (real-time PCR and flow cytometry).

  15. Low-cost, high-power mechanical impact transducers for sonar and acoustic through-wall surveillance applications

    E-Print Network [OSTI]

    Felber, Franklin

    2014-01-01

    A new concept is presented for mechanical acoustic transmitters and matched resonant receivers. The lightweight, compact, and low-cost transmitters produce high-power acoustic pulses at one or more discrete frequencies with very little input power. The transducer systems are well suited for coupling acoustic pulse energy into dense media, such as walls and water. Applications of the impact transducers are discussed, including detection and tracking of humans through walls and long-duration underwater surveillance by a low-cost network of autonomous, self-recharging, battery-operated sonobuoys. A conceptual design of a sonobuoy surveillance network for harbors and littoral waters is presented. An impact-transmitter and matched-receiver system that detected human motion through thick walls with only rudimentary signal processing is described, and results are presented. Signal processing methods for increasing the signal-to-noise ratio by several tens of dB are discussed.

  16. Effects of Tidal Turbine Noise on Fish Task 2.1.3.2: Effects on Aquatic Organisms: Acoustics/Noise - Fiscal Year 2011 - Progress Report - Environmental Effects of Marine and Hydrokinetic Energy

    SciTech Connect (OSTI)

    Halvorsen, Michele B.; Carlson, Thomas J.; Copping, Andrea E.

    2011-09-30

    Naturally spawning stocks of Chinook salmon (Oncorhynchus tshawytscha) that utilize Puget Sound are listed as threatened (http://www.nwr.noaa.gov/ESA-Salmon-Listings/Salmon-Populations/ Chinook/CKPUG.cfm). Plans exist for prototype tidal turbines to be deployed into their habitat. Noise is known to affect fish in many ways, such as causing a threshold shift in auditory sensitivity or tissue damage. The characteristics of noise, its spectra and level, are important factors that influence the potential for the noise to injure fish. For example, the frequency range of the tidal turbine noise includes the audiogram (frequency range of hearing) of most fish. This study (Effects on Aquatic Organisms, Subtask 2.1.3.2: Acoustics) was performed during FY 2011 to determine if noise generated by a 6-m-diameter open-hydro turbine might affect juvenile Chinook salmon hearing or cause barotrauma. After they were exposed to simulated tidal turbine noise, the hearing of juvenile Chinook salmon was measured and necropsies performed to check for tissue damage. Experimental groups were (1) noise exposed, (2) control (the same handling as treatment fish but without exposure to tidal turbine noise), and (3) baseline (never handled). Preliminary results indicate that low levels of tissue damage may have occurred but that there were no effects of noise exposure on the auditory systems of the test fish.

  17. Testing the effectiveness of an acoustic deterrent for gray whales along the Oregon coast

    SciTech Connect (OSTI)

    Lagerquist, Barbara; Winsor, Martha; Mate, Bruce

    2012-12-31

    This study was conducted to determine whether a low-powered sound source could be effective at deterring gray whales from areas that may prove harmful to them. With increased interest in the development of marine renewal energy along the Oregon coast the concern that such development may pose a collision or entanglement risk for gray whales. A successful acoustic deterrent could act as a mitigation tool to prevent harm to whales from such risks. In this study, an acoustic device was moored on the seafloor in the pathway of migrating gray whales off Yaquina Head on the central Oregon coast. Shore-based observers tracked whales with a theodolite (surveyor’s tool) to accurately locate whales as they passed the headland. Individual locations of different whales/whale groups as well as tracklines of the same whale/whale groups were obtained and compared between times with the acoustic device was transmitting and when it was off. Observations were conducted on 51 d between January 1 and April 15, 2012. A total of 143 individual whale locations were collected for a total of 243 whales, as well as 57 tracklines for a total of 142 whales. Inclement weather and equipment problems resulted in very small sample sizes, especially during experimental periods, when the device was transmitting. Because of this, the results of this study were inconclusive. We feel that another season of field testing is warranted to successfully test the effectiveness of the deterrent, but recommend increasing the zone of influence to 3 km to ensure the collection of adequate sample sizes. Steps have been taken to acquire the necessary federal research permit modification to authorize the increased zone of influence and to modify the acoustic device for the increased power. With these changes we are confident we will be able to determine whether the deterrent is effective at deflecting gray whales. A successful deterrent device may serve as a valuable mitigation tool to protect gray whales, and other baleen whales, in the event that marine energy development poses a collision or entanglement risk.

  18. PUGET SOUND ENERGY, INC- 14-123-LNG

    Broader source: Energy.gov [DOE]

    The Office of Fossil Energy gives notice of receipt of an application filed on September 4,  2014, by Puget Sound Energy, Inc. requesting authorization to import and export a combined total of up...

  19. Artificial Intelligence through the eyes of Organised Sound

    E-Print Network [OSTI]

    Miranda, Eduardo Reck

    Artificial Intelligence through the eyes of Organised Sound Eduardo Miranda Keywords: Artificial Intelligence, symbolic and artificial life approaches, algorithmic composition Abstract Artificial intelligence is a rich and still-developing field with many musical applications

  20. Social Context of Gray Whale Eschrichtius robustus Sound Activity 

    E-Print Network [OSTI]

    Charles, Sarah

    2012-07-16

    -distance communication, as startle responses, or "precursors" to the adult repertoire. Frequency-related parameters of all sound classes showed variation among social contexts, but duration demonstrated very little variation. Calf-containing contexts exhibited greatest...

  1. Update on the Micro-X Sounding Rocket payload

    E-Print Network [OSTI]

    Figueroa-Feliciano, Enectali

    The Micro-X High Resolution Microcalorimeter X-ray Imaging Rocket is a sounding rocket experiment that will combine a transition-edge-sensor X-ray-microcalorimeter array with a conical imaging mirror to obtain high- ...

  2. Gravitational Wave Detection with High Frequency Phonon Trapping Acoustic Cavities

    E-Print Network [OSTI]

    Maxim Goryachev; Michael E. Tobar

    2014-10-31

    There are a number of theoretical predictions for astrophysical and cosmological objects, which emit high frequency ($10^6-10^9$~Hz) Gravitation Waves (GW) or contribute somehow to the stochastic high frequency GW background. Here we propose a new sensitive detector in this frequency band, which is based on existing cryogenic ultra-high quality factor quartz Bulk Acoustic Wave cavity technology, coupled to near-quantum-limited SQUID amplifiers at $20$~mK. We show that spectral strain sensitivities reaching $10^{-22}$ per $\\sqrt{\\text{Hz}}$ per mode is possible, which in principle can cover the frequency range with multiple ($>100$) modes with quality factors varying between $10^6-10^{10}$ allowing wide bandwidth detection. Due to its compactness and well established manufacturing process, the system is easily scalable into arrays and distributed networks that can also impact the overall sensitivity and introduce coincidence analysis to ensure no false detections.

  3. Determination of wind from Nimbus-6 satellite sounding data 

    E-Print Network [OSTI]

    Carle, William Everett

    1979-01-01

    DETERMINATION OF WIND FROM NIMBUS-6 SATELLITE SOUNDING DATA A Thesis by WILLIAM EVERETT CARLE Submitted to the Graduate College of Texas A&M University in partial fulfil!. ment of the requirement for the deg. . ec of MASTER OF SCIENCE... December 1979 Major Subject: Meteorology DETEIQ&INATION OE WIND PROS1 NINEDS-6 SATELLITE SOUNDING DATA A Thesis WILLIA11 EVERETT CARLE Aporoved as to style and content by: (Chairman of Commi tee) Nember) (Head of Department) December 1979...

  4. The geometry of sound rays in a wind

    E-Print Network [OSTI]

    G. W. Gibbons; C. M. Warnick

    2011-02-11

    We survey the close relationship between sound and light rays and geometry. In the case where the medium is at rest, the geometry is the classical geometry of Riemann. In the case where the medium is moving, the more general geometry known as Finsler geometry is needed. We develop these geometries ab initio, with examples, and in particular show how sound rays in a stratified atmosphere with a wind can be mapped to a problem of circles and straight lines.

  5. Data Mining Applied to Acoustic Bird Species Recognition

    E-Print Network [OSTI]

    Vilches, Erika; Escobar, Ivan A.; Vallejo, E E; Taylor, C E

    2006-01-01

    11] Witten, I. ; Frank, E. ; Data Mining: Practical MachineData Mining Applied to Acoustic Bird Species Recognitionthe application of data mining techniques to the problem of

  6. Data Mining Applied to Acoustic Bird Species Recognition

    E-Print Network [OSTI]

    Vilches, Erika; Escobar, Ivan A.; Vallejo, E E; Taylor, C E

    2006-01-01

    I. ; Frank, E. ; Data Mining: Practical Machine LearningData Mining Applied to Acoustic Bird Species Recognitionthe application of data mining techniques to the problem of

  7. COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO...

    Open Energy Info (EERE)

    COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL FIELD, CA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  8. High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams

    E-Print Network [OSTI]

    Siemens, M.

    2009-01-01

    measurement of surface acoustic waves in thin metal filmsthe generation of surface acoustic waves of high frequency,”and S. M. Cherif, “Surface acoustic waves in the ghz range

  9. Iterative finite-difference solution analysis of acoustic wave equation in the Laplace-Fourier domain

    E-Print Network [OSTI]

    Um, E.S.

    2013-01-01

    mod- eling of the acoustic wave equation: Geophysics, 39,and C. Shin, 2011, 3D acoustic wave form inversion in thesolution analysis of acoustic wave equation in the Laplace-

  10. Dispersion relations for acoustic waves in heterogeneous multi-layered structures contacting with

    E-Print Network [OSTI]

    Turova, Varvara

    Dispersion relations for acoustic waves in heterogeneous multi-layered structures contacting application for the computation of the velocity of acoustic waves excited in complicated multi: Multi-layered structures, Surface acoustic waves, Dispersion relations, Homogenization, Biosensor

  11. Ocean acoustic wave propagation and ray method correspondence: Internal wave fine structure

    E-Print Network [OSTI]

    Tomsovic, Steve

    Ocean acoustic wave propagation and ray method correspondence: Internal wave fine structure 2004 Acoustic wave fields propagating long ranges through the ocean are refracted As acoustic waves propagate long ranges through the deep ocean, they are refracted by inhomogeneities

  12. Laser-induced acoustic wave generation/propagation/interaction in water in various internal channels

    E-Print Network [OSTI]

    2010-01-01

    induced short plane acoustic wave focusing in water. Appl.Laser induced plane acoustic wave generation, propagationAT I O N Laser-induced acoustic wave generation/propagation/

  13. Polyaniline nanofiber based surface acoustic wave gas sensors - Effect of nanofiber diameter on H-2 response

    E-Print Network [OSTI]

    Sadek, A Z; Baker, Christina Opimo; Powell, D A; Wlodarski, W; Kaner, R B; Kalantar-zadeh, K

    2007-01-01

    Nano?ber Based Surface Acoustic Wave Gas Sensors—Effect ofYX LiNbO 3 sur- face-acoustic-wave transducers. The sensorsrapidly mixed, surface acoustic wave (SAW). I. I NTRODUCTION

  14. Acoustic scattering by axisymmertic finite-length bodies with application to fish : measurement and modeling

    E-Print Network [OSTI]

    Reeder, D. Benjamin (Davis Benjamin), 1966-

    2002-01-01

    This thesis investigates the complexities of acoustic scattering by finite bodies in general and by fish in particular through the development of an advanced acoustic scattering model and detailed laboratory acoustic ...

  15. Acoustic And Elastic Reverse-Time Migration: Novel Angle-Domain Imaging Conditions And Applications

    E-Print Network [OSTI]

    Yan, Rui

    2013-01-01

    by solving acoustic wave equation with an explosion source (condition of the acoustic wave equation: ? ? 2 u g ? x ,solves the acoustic two-way wave equation ? 2 2 ? 2 ? 2 ?

  16. A latent-variable modelling approach to the acoustic-to-articulatory mapping problem. I 

    E-Print Network [OSTI]

    Carreira-Perpinan, Miguel A; Renals, Steve

    1999-01-01

    We present a latent variable approach to the acoustic-to-articulatory mapping problem, where different vocal tract configurations can give rise to the same acoustics. In latent variable modelling, the combined acoustic and ...

  17. Soundfield simulation : the prediction and validation of acoustical behavior with compute models

    E-Print Network [OSTI]

    Saad, Omar, 1974-

    2004-01-01

    In the past, acoustical consultants could only try to convince the client/architect that with calculations and geometrical plots they could create an acoustically superb space. Now, by modeling the significant acoustical ...

  18. Evaluation of Routine Atmospheric Sounding Measurements Using Unmanned Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation Current HABFES October 27th,EnvironmentalEqual7/31/2016Routine Atmospheric

  19. Instrument Development Tethered Balloon Sounding System for Vertical Radiation Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACT EVALUATION PLANIs gravity a particleInstructionalWagetoTethered Balloon

  20. Acoustic Energy: An Innovative Technology for Stimulating Oil Wells

    SciTech Connect (OSTI)

    Edgar, Dorland E.; Peters, Robert W.; Johnson, Donald O.; Paulsen, P. David; Roberts, Wayne

    2006-04-30

    The objective of this investigation was to demonstrate the effectiveness of sonication in reducing the viscosity of heavy crude oils. Sonication is the use of acoustic or sound energy to produce physical and/or chemical changes in materials, usually fluids. The goal of the first project phase was to demonstrate a proof of concept for the project objective. Batch tests of three commercially available, single-weight oils (30-, 90-, and 120-wt) were performed in the laboratory. Several observations and conclusions were made from this series of experiments. These include the following: (1) In general, the lower the acoustic frequency, the greater the efficiency in reducing the viscosity of the oils; (2) Sonication treatment of the three oils resulted in reductions in viscosity that ranged from a low of 31% to a high of 75%; and (3) The results of the first phase of the project successfully demonstrated that sonication could reduce the viscosity of oils of differing viscosity. The goal of the second project phase was to demonstrate the ability of sonication to reduce the viscosity of three crude oils ranging from a light crude to a heavy crude. The experiments also were designed to examine the benefits of two proprietary chemical additives used in conjunction with sonication. Acoustic frequencies ranging from 800 Hz to 1.6 kHz were used in these tests, and a reactor chamber was designed for flow-through operation with a capacity of one gallon (3.8 liters). The three crude oils selected for use in the testing program were: (1) a heavy crude from California with a viscosity of approximately 65,000 cP (API gravity about 12{sup o}), (2) a crude from Alabama with a significant water content and a viscosity of approximately 6,000 cP (API gravity about 22 {sup o}), and (3) a light crude from the Middle East with a viscosity of approximately 700 cP (API gravity about 32{sup o}). The principal conclusions derived from the second project phase include the following: (1) The application of acoustic energy (sonication) significantly reduced the viscosity of crude oils, and the amount of viscosity reduction resulting is greater for more viscous, heavy crude oils than it is for less viscous, light crude oils. (2) Test results showed that after being heated, resulting viscosity reductions were not sustained following treatment to the extent that post-sonication reductions were sustained. (3) The maximum viscosity reductions in Oils 1, 2, and 3 due to sonication were 43%, 76%, and 6%, respectively. Samples of Oil 2 associated with larger viscosity reductions often exhibited a definite water separation layer follow the tests, whereas reductions of approximately 23% were measured when this separation was not observed. (4) It was observed that neither horn design nor the reduction of input power by 25% had very little effect on the ability of sonication to alter crude oil viscosity. (5) The chemical additives produced a range of viscosity reduction from 37% to a maximum of 94% with the largest reductions being facilitated by the abundant water present Oil 2. If the Oil 2 results are not considered, the maximum reduction was 73%. The effects of the additives and sonication are enhanced by each other. (6) In only one test did the viscosity return to as much as 50% of the pre-treatment value during a period of 30 days following treatment; recovery was much less in all other cases. Therefore, more than half of the viscosity reduction was maintained for a month without additional treatment. (7) Possible applications, market potential, and economic value of the implementation of a mature sonication technology within the petroleum industry were identified, and it was estimated that the potential exists that more than a billion barrels of oil could be upgraded or produced annually as a result. The project results successfully demonstrated that sonication alone and in combination with chemical additives can effectively reduce the viscosity of crude oils having a broad range of viscosity/API gravity values. Several recommendations are made for follow-on

  1. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California /

    E-Print Network [OSTI]

    Helble, Tyler Adam

    2013-01-01

    a solution to the acoustic wave equation, and therefore iswave equation, in which the solution is reduced in computational complexity by assuming the outgoing acoustic

  2. Linear acoustic sensitivity kernels and their applications in shallow water environments

    E-Print Network [OSTI]

    Sarkar, Bikramjit

    2011-01-01

    have on acoustic propagation via the wave equation. TSKwave equation has been previously explored with respect to travel-time sensitivity of peak-arrivals in ocean acoustic

  3. Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics

    E-Print Network [OSTI]

    Zimmer, Valerie Louise

    2011-01-01

    Seismic  and  Acoustic  Investigations  of  Rock  Fall  Initiation,  Processes,  Seismic  and  Acoustic  Investigations  of  Rock  Fall  Initiation,  Processes,  other  seismic  sources  was  an  iterative  process.    

  4. Acoustic emission: The first half century

    SciTech Connect (OSTI)

    Drouillard, T.F.

    1994-08-01

    The technology of acoustic emission (AE) is approaching the half century mark, having had its beginning in 1950 with the work of Joseph Kaiser. During the 1950s and 1960s researchers delved into the fundamentals of acoustic emission, developed instrumentation specifically for AE, and characterized the AE behavior of many materials. AE was starting to be recognized for its unique capabilities as an NDT method for monitoring dynamic processes. In the decade of the 1970s research activities became more coordinated and directed with the formation of the working groups, and its use as an NDT method continued to increase for industrial applications. In the 1980s the computer became a basic component for both instrumentation and data analysis, and today it has sparked a resurgence of opportunities for research and development. Today we are seeing a transition to waveform-based AE analysis and a shift in AE activities with more emphasis on applications than on research. From the beginning, we have been fortunate to have had so many dedicated savants with different fields of expertise contribute in a collective way to bring AE to a mature, fully developed technology and leave a legacy of knowledge recorded in its literature. AE literature has been a key indicator of the amount of activity, the proportion of research to application, the emphasis on what was of current interest, and the direction AE has taken. The following is a brief survey of the history of acoustic emission with emphasis on development of the infrastructure over the past half century.

  5. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-20, NO. 6, DECEMBER 1975 127 Acoustics, Stability, and Compensation in Boiling

    E-Print Network [OSTI]

    Kwatny, Harry G.

    , and Compensation in Boiling Water Reactor Pressure Control Systems Abstract-An analysisis provided of the effeds THECONTROL of steam pressure inboiling water reactor(BWR)nuclear power stations is one of the critical plantIEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-20, NO. 6, DECEMBER 1975 127 Acoustics, Stability

  6. Elastic interface acoustic waves in twinned crystals

    E-Print Network [OSTI]

    Michel Destrade

    2013-04-30

    A new type of Interface Acoustic Waves (IAW) is presented, for single-crystal orthotropic twins bonded symmetrically along a plane containing only one common crystallographic axis. The effective boundary conditions show that the waves are linearly polarized at the interface, either transversally or longitudinally. Then the secular equation is obtained in full analytical form using new relationships for the displacement-traction quadrivector at the interface. For Gallium Arsenide and for Silicon, it is found that the IAWs with transverse (resp. longitudinal) polarization at the interface are of the Stoneley (resp. leaky) type.

  7. Computational method for acoustic wave focusing

    E-Print Network [OSTI]

    A. G. Ramm; S. Gutman

    2006-10-12

    Scattering properties of a material are changed when the material is injected with small acoustically soft particles. It is shown that its new scattering behavior can be understood as a solution of a potential scattering problem with the potential $q$ explicitly related to the density of the small particles. In this paper we examine the inverse problem of designing a material with the desired focusing properties. An algorithm for such a problem is examined from the theoretical as well as from the numerical perspective.

  8. Deep Neural Networks for Acoustic Modeling in Speech Recognition

    E-Print Network [OSTI]

    Cortes, Corinna

    1 Deep Neural Networks for Acoustic Modeling in Speech Recognition Geoffrey Hinton, Li Deng, Dong states as output. Deep neural networks with many hidden layers, that are trained using new methods have views of four research groups who have had recent successes in using deep neural networks for acoustic

  9. Measuring the Kuroshio Current with ocean acoustic tomography Naokazu Taniguchia)

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Measuring the Kuroshio Current with ocean acoustic tomography Naokazu Taniguchia) Graduate School 29 April 2013) Ocean current profiling using ocean acoustic tomography (OAT) was conducted proportional to temperature) and current in the ocean (Munk et al., 1995). Other than coastal sea studies (e

  10. NOISE AND ROOM ACOUSTICS DISTORTED SPEECH RECOGNITION BY HMM COMPOSITION

    E-Print Network [OSTI]

    Takiguchi, Tetsuya

    NOISE AND ROOM ACOUSTICS DISTORTED SPEECH RECOGNITION BY HMM COMPOSITION Satoshi NAKAMURA, Tetsuya method of an additive noise to that of the convolutional room acoustics distortion. The HMM composition, 2)Composition of distorted speech and noise HMMs in linear spectral domain. The speaker dependent

  11. ACOUSTIC WAVE TRAPPING IN ONE-DIMENSIONAL AXISYMMETRIC ARRAYS

    E-Print Network [OSTI]

    ACOUSTIC WAVE TRAPPING IN ONE- DIMENSIONAL AXISYMMETRIC ARRAYS by M. MCIVER (Department of the wave numbers of Rayleigh-Bloch modes for an array of circular plates. An integral equation for the acoustic wave-field in the neighbourhood of such an array is obtained and solved with the use of a Galerkin

  12. PHYSICAL REVIEW B 88, 024303 (2013) Tunable active acoustic metamaterials

    E-Print Network [OSTI]

    Cummer, Steven A.

    2013-01-01

    PHYSICAL REVIEW B 88, 024303 (2013) Tunable active acoustic metamaterials Bogdan-Ioan Popa,* Lucian July 2013) We describe and demonstrate an architecture for active acoustic metamaterials whose types of unit cells that generate metamaterials in which either the effective density or bulk modulus

  13. Mobile Interaction with Remote Worlds: The Acoustic Periscope

    E-Print Network [OSTI]

    Balan, Radu V.

    1 Mobile Interaction with Remote Worlds: The Acoustic Periscope Justinian Rosca Sandra Sudarsky, a periscope is an optical device that allows one to view and navigate the external environment. The acoustic periscope idea. In order to assemble the required func- tionality we resort to audio signal processing (in

  14. Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts

    E-Print Network [OSTI]

    Wang, Zhong L.

    Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts Brent A. Buchine, William L. Hughes, F, a bulk acoustic resonator based on ZnO belts is demonstrated. This device shows a great deal of promise-like geometry, making them ideal candidates as SMR, FBAR, and beam resonators.13 However, handling belts can

  15. DIRECTIONAL PROPAGATION CANCELLATION FOR ACOUSTIC COMMUNICATION ALONG THE DRILL STRING

    E-Print Network [OSTI]

    DIRECTIONAL PROPAGATION CANCELLATION FOR ACOUSTIC COMMUNICATION ALONG THE DRILL STRING Sinan along the drill string to the surface. Normal drilling operations produce in-band acoustic noise at intensities comparable to the transducer output while lossy propagation through the drill string and surface

  16. Montana State University Proprietary 1 Summary of Gun Shot Acoustics

    E-Print Network [OSTI]

    Maher, Robert C.

    Montana State University Proprietary 1 Summary of Gun Shot Acoustics Robert C. Maher, Montana State University 4 April 2006 Audio recordings of gun shots can provide information about the gun location interpreting such recordings arises from reverberation (overlapping acoustic signal reflections) due to the gun

  17. ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT

    E-Print Network [OSTI]

    Firestone, Jeremy

    ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE January 2009 #12;ACOUSTIC STUDY OF THE UNIVERSITY OF DELAWARE / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE Prepared for SUMMARY The University of Delaware (UD), Lewes proposes to locate a Gamesa G90 2.0MW wind turbine

  18. On acoustic cavitation of slightly subcritical bubbles Anthony Harkin

    E-Print Network [OSTI]

    Kaper, Tasso J.

    . When the mean pressure in the liquid is reduced to a value below the vapor pressure, the Blake analysis than the Blake critical radius, in the presence of time-periodic acoustic pressure fields the accuracy of these predictions. Finally, the implications of these findings for acoustic pressure fields

  19. Mean Flow Acoustic Correlations for Dual-Stream Asymmetric Jets

    E-Print Network [OSTI]

    Papamoschou, Dimitri

    Mean Flow ­ Acoustic Correlations for Dual-Stream Asymmetric Jets Preben E. Nielsen* and Dimitri dual-stream jets for the exhaust of turbofan engines has demonstrated the potential for noise acoustic and mean-flow measurements, of several fan-flow deflector configurations in a subscale dual-stream

  20. Acoustic wave propagation in two-phase heterogeneous porous media

    E-Print Network [OSTI]

    J. I. Osypik; N. I. Pushkina; Ya. M. Zhileikin

    2015-03-19

    The propagation of an acoustic wave through two-phase porous media with spatial variation in porosity is studied. The evolutionary wave equation is derived, and the propagation of an acoustic wave is numerically analyzed in application to marine sediments with various physical parameters.