National Library of Energy BETA

Sample records for acoustic doppler current

  1. Velocity Comparisons from Upward and Downward Acoustic Doppler Current Profilers on the West Florida Shelf

    E-Print Network [OSTI]

    Meyers, Steven D.

    of deploying current meters including bottom-mounted, upward looking and surface buoy-mounted, downward looking Acoustic Doppler Current Profilers (ADCPs). In the case of a surface buoy, an ADCP may be mounted within a cage suspended below the buoy (Irish et al. 1992; Seim and Edwards 2005), within the buoy bridle

  2. Noise correction of turbulent spectra obtained from Acoustic Doppler Velocimeters

    SciTech Connect (OSTI)

    Durgesh, Vibhav; Thomson, Jim; Richmond, Marshall C.; Polagye, Brian

    2014-03-02

    Accurately estimated auto-spectral density functions are essential for characterization of turbulent flows, and they also have applications in computational fluid dynamics modeling, site and inflow characterization for hydrokinetic turbines, and inflow turbulence generation. The Acoustic Doppler Velocimeter (ADV) provides single-point temporally resolved data, that are used to characterize turbulent flows in rivers, seas, and oceans. However, ADV data are susceptible to contamination from various sources, including instrument noise, which is the intrinsic limit to the accuracy of acoustic velocity measurements. Due to the presence of instrument noise, the spectra obtained are altered at high frequencies. The focus of this study is to develop a robust and effective method for accurately estimating auto-spectral density functions from ADV data by reducing or removing the spectral contribution derived from instrument noise. For this purpose, the “Noise Auto-Correlation” (NAC) approach was developed, which exploits the correlation properties of instrument noise to identify and remove its contribution from spectra. The spectra estimated using the NAC approach exhibit increased fidelity and a slope of -5/3 in the inertial range, which is typically observed for turbulent flows. Finally, this study also compares the effectiveness of low-pass Gaussian filters in removing instrument noise with that of the NAC approach. For the data used in this study, both the NAC and Gaussian filter approaches are observed to be capable of removing instrument noise at higher frequencies from the spectra. However, the NAC results are closer to the expected frequency power of -5/3 in the inertial sub-range.

  3. An Evaluation of Acoustic Doppler Velocimeters as Sensors to Obtain the Concentration of Suspended Mass in Water

    E-Print Network [OSTI]

    Boss, Emmanuel S.

    An Evaluation of Acoustic Doppler Velocimeters as Sensors to Obtain the Concentration of Suspended, acoustic Doppler velocimeters (ADVs) and other acoustic sensors have been used by researchers in the ocean than optical turbidity sensors, and the high-frequency velocity measurements allow for a direct

  4. MHK ISDB/Instruments/Sontek Acoustic Doppler Profiler | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHK ISDB/Instruments/Nortek Aquadopp CurrentOpen

  5. Measuring the Kuroshio Current with ocean acoustic tomography Naokazu Taniguchia)

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Measuring the Kuroshio Current with ocean acoustic tomography Naokazu Taniguchia) Graduate School 29 April 2013) Ocean current profiling using ocean acoustic tomography (OAT) was conducted proportional to temperature) and current in the ocean (Munk et al., 1995). Other than coastal sea studies (e

  6. Laser Doppler Velocimetry for Joint Measurements of Acoustic and Mean Flow Velocities : LMS-based Algorithm and CRB Calculation

    E-Print Network [OSTI]

    Simon, Laurent; Degroot, Anne; Lionet, Louis; 10.1109/TIM.2008.917670

    2009-01-01

    This paper presents a least mean square (LMS) algorithm for the joint estimation of acoustic and mean flow velocities from laser doppler velocimetry (LDV) measurements. The usual algorithms used for measuring with LDV purely acoustic velocity or mean flow velocity may not be used when the acoustic field is disturbed by a mean flow component. The LMS-based algorithm allows accurate estimations of both acoustic and mean flow velocities. The Cram\\'er-Rao bound (CRB) of the associated problem is determined. The variance of the estimators of both acoustic and mean flow velocities is also given. Simulation results of this algorithm are compared with the CRB and the comparison leads to validate this estimator.

  7. Laser-Doppler acoustic probing of granular media with in-depth property gradient and varying pore pressures

    SciTech Connect (OSTI)

    Bodet, L.; Dhemaied, A.; Mourgues, R.; Tournat, V.; Rejiba, F.

    2012-05-24

    Non-contacting ultrasonic techniques recently proved to be efficient in the physical modeling of seismic-wave propagation at various application scales, as for instance in the context of geological analogue and seismic modeling. An innovative experimental set-up is proposed here to perform laser-Doppler acoustic probing of unconsolidated granular media with varying pore pressures. The preliminary experiments presented here provide reproducible results and exploitable data, thus validating both the proposed medium preparation and pressure gradient generation procedure.

  8. MHK ISDB/Instruments/Sontek 10 MHz Acoustic Doppler Velocimeter | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHK ISDB/Instruments/Nortek Aquadopp Current

  9. MHK ISDB/Instruments/Sontek 16 MHz Micro Acoustic Doppler Velocimeter |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,Information MHK ISDB/Instruments/Nortek Aquadopp CurrentOpen Energy

  10. Filamentation instability of current-driven dust ion-acoustic waves in a collisional dusty plasma

    SciTech Connect (OSTI)

    Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran 19839-63113 (Iran, Islamic Republic of); Haghtalab, T.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand 97179-63384 (Iran, Islamic Republic of)

    2011-11-15

    A theoretical investigation has been made of the dust ion-acoustic filamentation instability in an unmagnetized current-driven dusty plasma by using the Lorentz transformation formulas. The effect of collision between the charged particles with neutrals and their thermal motion on this instability is considered. Developing the filamentation instability of the current-driven dust ion-acoustic wave allows us to determine the period and the establishment time of the filamentation structure and threshold for instability development.

  11. Dust-acoustic filamentation of a current-driven dusty plasma

    SciTech Connect (OSTI)

    Khorashadizadeh, S. M.; Haghtalab, T. [Physics Department, Birjand University, Birjand, 97179-63384 (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran, 19839-63113 (Iran, Islamic Republic of)

    2011-06-15

    The thermal motion effect of charged particles in the filamentation of a current-driven dusty plasma in the dust-acoustic frequency region is investigated by using the Lorentz transformed conductivity of the dusty plasma components and the total dielectric permittivity tensor of the dusty plasma in the laboratory frame. Obtaining the dispersion relation for dust-acoustic waves and considering the filamentation instability, the establishment time of the filamentation structure and the instability development threshold are derived. Moreover, it is shown that the current layer divides into separate current filaments.

  12. Filamentation instability of nonextensive current-driven plasma in the ion acoustic frequency range

    SciTech Connect (OSTI)

    Khorashadizadeh, S. M. Rastbood, E.; Niknam, A. R.

    2014-12-15

    The filamentation and ion acoustic instabilities of nonextensive current-driven plasma in the ion acoustic frequency range have been studied using the Lorentz transformation formulas. Based on the kinetic theory, the possibility of filamentation instability and its growth rate as well as the ion acoustic instability have been investigated. The results of the research show that the possibility and growth rate of these instabilities are significantly dependent on the electron nonextensive parameter and drift velocity. Besides, the increase of electrons nonextensive parameter and drift velocity lead to the increase of the growth rates of both instabilities. In addition, the wavelength region in which the filamentation instability occurs is more stretched in the presence of higher values of drift velocity and nonextensive parameter. Finally, the results of filamentation and ion acoustic instabilities have been compared and the conditions for filamentation instability to be dominant mode of instability have been presented.

  13. Active control of passive acoustic fields: Passive synthetic apertureDoppler beamforming with data from an autonomous

    E-Print Network [OSTI]

    Smith, Jerome A.

    Active control of passive acoustic fields: Passive synthetic apertureÕDoppler beamforming with data without the use of an active source under control by the receiver. In this passive case, the properties interest. Passive synthetic aperture sonar has no ana- log in the radar community. In contrast

  14. Dust acoustic waves in a direct current glow discharge C. Thompson, A. Barkan, N. D'Angelo, and R. L. Merlinoa)

    E-Print Network [OSTI]

    Merlino, Robert L.

    Dust acoustic waves in a direct current glow discharge C. Thompson, A. Barkan, N. D'Angelo, and R Received 25 February 1997; accepted 21 April 1997 An experimental investigation of dust acoustic DA waves electrostatically. The dust acoustic waves were produced by applying a modulation signal 5­40 Hz to the anode

  15. Doppler Tomography

    E-Print Network [OSTI]

    T. R. Marsh

    2000-11-01

    I review the method of Doppler tomography which translates binary-star line profiles taken at a series of orbital phases into a distribution of emission over the binary. I begin with a discussion of the basic principles behind Doppler tomography, including a comparison of the relative merits of maximum entropy regularisation versus filtered back-projection for implementing the inversion. Following this I discuss the issue of noise in Doppler images and possible methods for coping with it. Then I move on to look at the results of Doppler Tomography applied to cataclysmic variable stars. Outstanding successes to date are the discovery of two-arm spiral shocks in cataclysmic variable accretion discs and the probing of the stream/magnetospheric interaction in magnetic cataclysmic variable stars. Doppler tomography has also told us much about the stream/disc interaction in non-magnetic systems and the irradiation of the secondary star in all systems. The latter indirectly reveals such effects as shadowing by the accretion disc or stream. I discuss all of these and finish with some musings on possible future directions for the method. At the end I include a tabulation of Doppler maps published in refereed journals.

  16. Doppler segmentation 

    E-Print Network [OSTI]

    Yeh, Chih-Ping

    1983-01-01

    OF CONTENTS ABSTRACT . ACKNOWLEDGEMENT TABLE OF CONTENTS LIST OF FIGURES CHAPTER I. INTRODUCTION . CHAPTER II. SYSTEM DEVELOPMENT 1. Range Imaging System 2. Range and Velocity Acquisition by Linear FM Pulse . 3. Infrared Range/Doppler Imaging System... . CHAPTER III. SYSTEM PARAMETERS DESIGN l. Angular Resolution and Aperture Size 2. Pulse Repetition Frequency and Detector Array for Compact Image . 3. Pulse Duration and Velocity Sensitivity . 4. Pulse Modulation Bandwidth and Range Resolution 5...

  17. Doppler flowmeter

    DOE Patents [OSTI]

    Karplus, H.H.B.; Raptis, A.C.

    1981-11-13

    A Doppler flowmeter impulses an ultrasonic fixed-frequency signal obliquely into a slurry flowing in a pipe and a reflected signal is detected after having been scattered off of the slurry particles, whereby the shift in frequencies between the signals is proportional to the slurry velocity and hence slurry flow rate. This flowmeter filters the Doppler frequency-shift signal, compares the filtered and unfiltered shift signals in a divider to obtain a ratio, and then further compares this ratio against a preset fractional ratio. The flowmeter utilizes a voltage-to-frequency convertor to generate a pulsed signal having a determinable rate of repetition precisely proportional to the divergence of the ratios. The pulsed signal serves as the input control for a frequency-controlled low-pass filter, which provides thereby that the cutoff frequency of the filtered signal is known. The flowmeter provides a feedback control by minimizing the divergence. With the cutoff frequency and preset fractional ratio known, the slurry velocity and hence flow will also be determinable.

  18. Current-driven ion-acoustic and potential-relaxation instabilities excited in plasma plume during electron beam welding

    SciTech Connect (OSTI)

    Trushnikov, D. N.; Mladenov, G. M. Koleva, E. G.; Belenkiy, V. Ya. Varushkin, S. V.

    2014-04-15

    Many papers have sought correlations between the parameters of secondary particles generated above the beam/work piece interaction zone, dynamics of processes in the keyhole, and technological processes. Low- and high-frequency oscillations of the current, collected by plasma have been observed above the welding zone during electron beam welding. Low-frequency oscillations of secondary signals are related to capillary instabilities of the keyhole, however; the physical mechanisms responsible for the high-frequency oscillations (>10 kHz) of the collected current are not fully understood. This paper shows that peak frequencies in the spectra of the collected high-frequency signal are dependent on the reciprocal distance between the welding zone and collector electrode. From the relationship between current harmonics frequency and distance of the collector/welding zone, it can be estimated that the draft velocity of electrons or phase velocity of excited waves is about 1600 m/s. The dispersion relation with the properties of ion-acoustic waves is related to electron temperature 10 000 K, ion temperature 2 400 K and plasma density 10{sup 16} m{sup ?3}, which is analogues to the parameters of potential-relaxation instabilities, observed in similar conditions. The estimated critical density of the transported current for creating the anomalous resistance state of plasma is of the order of 3 A·m{sup ?2}, i.e. 8 mA for a 3–10 cm{sup 2} collector electrode. Thus, it is assumed that the observed high-frequency oscillations of the current collected by the positive collector electrode are caused by relaxation processes in the plasma plume above the welding zone, and not a direct demonstration of oscillations in the keyhole.

  19. Doppler radar flowmeter

    DOE Patents [OSTI]

    Petlevich, Walter J. (Uniontown, PA); Sverdrup, Edward F. (Adamsburg, PA)

    1978-01-01

    A Doppler radar flowmeter comprises a transceiver which produces an audio frequency output related to the Doppler shift in frequency between radio waves backscattered from particulate matter carried in a fluid and the radiated radio waves. A variable gain amplifier and low pass filter are provided for amplifying and filtering the transceiver output. A frequency counter having a variable triggering level is also provided to determine the magnitude of the Doppler shift. A calibration method is disclosed wherein the amplifier gain and frequency counter trigger level are adjusted to achieve plateaus in the output of the frequency counter and thereby allow calibration without the necessity of being able to visually observe the flow.

  20. Doppler Lidar (DL) Handbook

    SciTech Connect (OSTI)

    Newsom, RK

    2012-02-13

    The Doppler lidar (DL) is an active remote sensing instrument that provides range- and time-resolved measurements of radial velocity and attenuated backscatter. The principle of operation is similar to radar in that pulses of energy are transmitted into the atmosphere; the energy scattered back to the transceiver is collected and measured as a time-resolved signal. From the time delay between each outgoing transmitted pulse and the backscattered signal, the distance to the scatterer is inferred. The radial or line-of-sight velocity of the scatterers is determined from the Doppler frequency shift of the backscattered radiation. The DL uses a heterodyne detection technique in which the return signal is mixed with a reference laser beam (i.e., local oscillator) of known frequency. An onboard signal processing computer then determines the Doppler frequency shift from the spectra of the heterodyne signal. The energy content of the Doppler spectra can also be used to determine attenuated backscatter.

  1. Sandia Energy - TTU Advanced Doppler Radar

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TTU Advanced Doppler Radar Home Stationary Power Energy Conversion Efficiency Wind Energy SWiFT Facility & Testing TTU Advanced Doppler Radar TTU Advanced Doppler...

  2. Accurate determination of the Boltzmann constant by Doppler spectroscopy: Towards a new definition of the kelvin

    E-Print Network [OSTI]

    Darquié, Benoît; Sow, Papa Lat Tabara; Lemarchand, Cyril; Triki, Meriam; Tokunaga, Sean; Bordé, Christian J; Chardonnet, Christian; Daussy, Christophe

    2015-01-01

    Accurate molecular spectroscopy in the mid-infrared region allows precision measurements of fundamental constants. For instance, measuring the linewidth of an isolated Doppler-broadened absorption line of ammonia around 10 $\\mu$m enables a determination of the Boltzmann constant k B. We report on our latest measurements. By fitting this lineshape to several models which include Dicke narrowing or speed-dependent collisional effects, we find that a determination of k B with an uncertainty of a few ppm is reachable. This is comparable to the best current uncertainty obtained using acoustic methods and would make a significant contribution to any new value of k B determined by the CODATA. Furthermore, having multiple independent measurements at these accuracies opens the possibility of defining the kelvin by fixing k B, an exciting prospect considering the upcoming redefinition of the International System of Units.

  3. Method and apparatus for ultrasonic doppler velocimetry using speed of sound and reflection mode pulsed wideband doppler

    DOE Patents [OSTI]

    Shekarriz, Alireza (Kennewick, WA); Sheen, David M. (Richland, WA)

    2000-01-01

    According to the present invention, a method and apparatus rely upon tomographic measurement of the speed of sound and fluid velocity in a pipe. The invention provides a more accurate profile of velocity within flow fields where the speed of sound varies within the cross-section of the pipe. This profile is obtained by reconstruction of the velocity profile from the local speed of sound measurement simultaneously with the flow velocity. The method of the present invention is real-time tomographic ultrasonic Doppler velocimetry utilizing a to plurality of ultrasonic transmission and reflection measurements along two orthogonal sets of parallel acoustic lines-of-sight. The fluid velocity profile and the acoustic velocity profile are determined by iteration between determining a fluid velocity profile and measuring local acoustic velocity until convergence is reached.

  4. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 51, NO. 7, JULY 2003 1499 Acoustic and Electromagnetic Wave Interaction

    E-Print Network [OSTI]

    Sarabandi, Kamal

    and Electromagnetic Wave Interaction: Estimation of Doppler Spectrum From an Acoustically Vibrated Metallic Circular spectrum could provide an effective means of buried object identification, where acoustic waves are used being mechanically vibrated by an incident acoustic wave. If the buried objects have unique

  5. Doppler characteristics of sea clutter.

    SciTech Connect (OSTI)

    Raynal, Ann Marie; Doerry, Armin Walter

    2010-06-01

    Doppler radars can distinguish targets from clutter if the target's velocity along the radar line of sight is beyond that of the clutter. Some targets of interest may have a Doppler shift similar to that of clutter. The nature of sea clutter is different in the clutter and exo-clutter regions. This behavior requires special consideration regarding where a radar can expect to find sea-clutter returns in Doppler space and what detection algorithms are most appropriate to help mitigate false alarms and increase probability of detection of a target. This paper studies the existing state-of-the-art in the understanding of Doppler characteristics of sea clutter and scattering from the ocean to better understand the design and performance choices of a radar in differentiating targets from clutter under prevailing sea conditions.

  6. Current

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would like submit theCovalent Bonding in ActinideRail betweenProtection andCurrent profile

  7. MHK ISDB/Instruments/ARGONAUT Acoustic Doppler Velocimeter | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon:LowellMHK ISDB/Instruments/ACM-WAVE-PLUS

  8. MHK ISDB/Instruments/Nortek Acoustic Doppler Velocimeter | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma, Arizona:Oregon:LowellMHKInformationInformationMHKInformation

  9. Micro acoustic spectrum analyzer

    DOE Patents [OSTI]

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  10. Field Measurements at River and Tidal Current Sites for Hydrokinetic Energy Development: Best Practices Manual

    SciTech Connect (OSTI)

    Neary, Vincent S; Gunawan, Budi

    2011-09-01

    In this report, existing data collection techniques and protocols for characterizing open channel flows are reviewed and refined to further address the needs of the MHK industry. The report provides an overview of the hydrodynamics of river and tidal channels, and the working principles of modern acoustic instrumentation, including best practices in remote sensing methods that can be applied to hydrokinetic energy site characterization. Emphasis is placed upon acoustic Doppler velocimeter (ADV) and acoustic-Doppler current profiler (ADCP) instruments, as these represent the most practical and economical tools for use in the MHK industry. Incorporating the best practices as found in the literature, including the parameters to be measured, the instruments to be deployed, the instrument deployment strategy, and data post-processing techniques. The data collected from this procedure aims to inform the hydro-mechanical design of MHK systems with respect to energy generation and structural loading, as well as provide reference hydrodynamics for environmental impact studies. The standard metrics and protocols defined herein can be utilized to guide field experiments with MHK systems.

  11. 38 | Acoustics Today | Winter 2015 Acoustic Cloaking

    E-Print Network [OSTI]

    Norris, Andrew

    is called transformation acoustics (TA). he technical details of TA convert the acoustic wave equation from that the transformed medium must display acoustic anisotropy. he wave speed in the hori- zontal direction is unchanged of acoustic wave relection in Figure 1 captures the essence of TA. he incident wave relects from a ixed

  12. Investigation and Analytical Description of Acoustic Production by Magneto-Acoustic Mixing Technology

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Henderson, Hunter Bryant; Rios, Orlando; Ludtka, Gerard Michael; Manuel, Michele V.

    2015-05-07

    Magneto-Acoustic Mixing Technology (MAMT) is a novel manufacturing method that combines two magnetic fields to produce high-intensity sonication for liquid-state materials processing. This method may be adapted to the manufacture of various materials that benefit from a combination of high temperature, magnetic fields, and acoustic energy. In this work, the acoustic generation mechanism is described in detail and found to be dependent on the skin depth of the induction currents. Analytical models of acoustic pressure are derived, based on two mutually exclusive vibration modes, crucible vibration and melt vibration. Additionally, grain size evidence of acoustic pressure distribution is presented asmore »model validation.« less

  13. Acoustic transducer for acoustic microscopy

    DOE Patents [OSTI]

    Khuri-Yakub, Butrus T. (Palo Alto, CA); Chou, Ching H. (Palo Alto, CA)

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  14. Acoustic transducer for acoustic microscopy

    DOE Patents [OSTI]

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  15. Electromagnetic acoustic transducer

    DOE Patents [OSTI]

    Alers, George A. (Albuquerque, NM); Burns, Jr., Leigh R. (Albuquerque, NM); MacLauchlan, Daniel T. (Sandia Park, NM)

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  16. Nonlinear characterization of a single-axis acoustic levitator

    SciTech Connect (OSTI)

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  17. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  18. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  19. Optimization of Concurrent Deployments of the Juvenile Salmon Acoustic Telemetry System and Other Hydroacoustic Equipment at John Day Dam

    SciTech Connect (OSTI)

    Ploskey, Gene R.; Hughes, James S.; Khan, Fenton; Kim, Jina; Lamarche, Brian L.; Johnson, Gary E.; Choi, Eric Y.; Faber, Derrek M.; Wilberding, Matthew C.; Deng, Zhiqun; Weiland, Mark A.; Zimmerman, Shon A.; Fischer, Eric S.; Cushing, Aaron W.

    2008-09-01

    The purpose of this report is to document the results of the acoustic optimization study conducted at John Day Dam during January and February 2008. The goal of the study was to optimize performance of the Juvenile Salmon Acoustic Telemetry System (JSATS) by determining deployment and data acquisition methods to minimize electrical and acoustic interference from various other acoustic sampling devices. Thereby, this would allow concurrent sampling by active and passive acoustic methods during the formal evaluations of the prototype surface flow outlets at the dam during spring and summer outmigration seasons for juvenile salmonids. The objectives for the optimization study at John Day Dam were to: 1. Design and test prototypes and provide a total needs list of pipes and trolleys to deploy JSATS hydrophones on the forebay face of the powerhouse and spillway. 2. Assess the effect on mean percentage decoded of JSATS transmissions from tags arrayed in the forebay and detected on the hydrophones by comparing: turbine unit OFF vs. ON; spill bay OPEN vs. CLOSED; dual frequency identification sonar (DIDSON) and acoustic Doppler current profiler (ADCP) both OFF vs. ON at a spill bay; and, fixed-aspect hydroacoustic system OFF vs. ON at a turbine unit and a spill bay. 3. Determine the relationship between fixed-aspect hydroacoustic transmit level and mean percentage of JSATS transmissions decoded. The general approach was to use hydrophones to listen for transmissions from JSATS tags deployed in vertical arrays in a series perpendicular to the face of the dam. We used acoustic telemetry equipment manufactured by Technologic and Sonic Concepts. In addition, we assessed old and new JSATS signal detectors and decoders and two different types of hydrophone baffling. The optimization study consisted of a suite of off/on tests. The primary response variable was mean percentage of tag transmissions decoded. We found that there was no appreciable adverse effect on mean percentage decoded for JSATS transmitters from: turbine operations; spillway operations; DIDSON/ADCP acoustic energy; and PAS hydroacoustic systems at transmit level of -12 dB, although there was a significant impact at all higher transmit levels (-11 to -6 dB). The main conclusion from this optimization study is that valid JSATS telemetry data can be collected simultaneously with a DIDSON/ADCP and a PAS hydroacoustic system at transmit level -12 dB. Multiple evaluation tools should be considered to increase the robustness and thoroughness of future fish passage evaluations at John Day and other dams.

  20. Acoustic cryocooler

    SciTech Connect (OSTI)

    Swift, G.W.; Martin, R.A.; Radebaugh, R.

    1989-09-26

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintain a cooling load of 5 W at 80 K. 3 figs.

  1. Acoustic cryocooler

    SciTech Connect (OSTI)

    Swift, G.W.; Martin, R.A.; Radebaugh, R.

    1990-09-04

    This patent describes an acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effect to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15--60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintain a cooling load of 5 W at 80 K.

  2. Acoustic cryocooler

    SciTech Connect (OSTI)

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  3. Acoustic transducer

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  4. Acoustic Based Sketch Recognition 

    E-Print Network [OSTI]

    Li, Wenzhe

    2012-10-19

    investigate this new area, which we call acoustic based sketch recognition, and evaluate the possibilities of using it as a new interaction technique. We focus specifically on building a recognition engine for acoustic sketch recognition. We first propose a...

  5. Inline Ultrasonic Rheometry by Pulsed Doppler

    SciTech Connect (OSTI)

    Pfund, David M.; Greenwood, Margaret S.; Bamberger, Judith A.; Pappas, Richard A.

    2006-12-22

    This will be a discussion of the non-invasive determination of the viscosity of a non-Newtonian fluid in laminar pipe flow over the range of shear rates present in the pipe. The procedure used requires knowledge of the flow profile in and the pressure drop along a long straight run of pipe. The profile is determined by using a pulsed ultrasonic Doppler velocimeter. This approach is ideal for making non-invasive, real-time measurements for monitoring and control. Rheograms of a shear thinning, thixotropic gel will be presented. The operating parameters and limitations of the Doppler-based instrument will be discussed. The most significant limitation is velocity gradient broadening of the Doppler spectra near the walls of the pipe. This limitation can be significant for strongly shear thinning fluids (depending also on the ratio of beam to pipe diameter and the transducer's insertion angle).

  6. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    DOE Patents [OSTI]

    Ziminsky, Willy Steve (Simpsonville, SC); Krull, Anthony Wayne (Anderson, SC); Healy, Timothy Andrew (Simpsonville, SC), Yilmaz, Ertan (Glenville, NY)

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  7. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources

    E-Print Network [OSTI]

    between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allowElastic parabolic equation solutions for underwater acoustic problems using seismic sources Scott D acoustic field is consistent with benchmark solu- tions. A shear wave self-starter is implemented and shown

  8. Diagnosis of Fracture Flow Conditions with Acoustic Sensing 

    E-Print Network [OSTI]

    Martinez, Roberto

    2014-07-10

    Distributed acoustic sensing (DAS) is an emerging technology in hydraulic fracture diagnosis. Current uses of DAS systems have been limited to qualitative analysis that pinpoint noise sources, such as injection into formation or production from a...

  9. Design of a Doppler reflectometer for KSTAR

    SciTech Connect (OSTI)

    Lee, K. D., E-mail: kdlee@nfri.re.kr; Nam, Y. U.; Seo, Seong-Heon; Kim, Y. S. [National Fusion Research Institute, Yuseong, Daejeon 305-333 (Korea, Republic of)

    2014-11-15

    A Doppler reflectometer has been designed to measure the poloidal propagation velocity on the Korea Superconducting Tokamak Advanced Research (KSTAR) tokamak. It has the operating frequency range of V-band (50-75 GHz) and the monostatic antenna configuration with extraordinary mode (X-mode). The single sideband modulation with an intermediate frequency of 50 MHz is used for the heterodyne measurement with the 200 MHz in-phase and quadrature (I/Q) phase detector. The corrugated conical horn antenna is used to approximate the Gaussian beam propagation and it is installed together with the oversized rectangular waveguides in the vacuum vessel. The first commissioning test of the Doppler reflectometer system on the KSTAR tokamak is planned in the 2014 KSTAR experimental campaign.

  10. Acoustic Simulation COMP 768 Presentation

    E-Print Network [OSTI]

    Lin, Ming C.

    ) · Variation of pressure governed by Helmholtz's Acoustic Wave Equation (a PDE) · Use a numerical method;Auralization 7[Funkhouser03] #12;Acoustic Phenomena · In reality, sound waves exhibit: ­ Reflection (specular · Statistical Acoustics · Hybrid Acoustics 10 #12;Numerical Simulation · Sound modeled as pressure waves: P(x, t

  11. Acoustic cooling engine

    DOE Patents [OSTI]

    Hofler, Thomas J. (Los Alamos, NM); Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM)

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  12. Acoustic well cleaner

    DOE Patents [OSTI]

    Maki, Jr., Voldi E. (11904 Bell Ave., Austin, TX 78759-2415); Sharma, Mukul M. (Dept. of Petroleum Engr. Univ. of Texas, Austin, TX 78712)

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  13. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  14. Acoustical heat pumping engine

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  15. Upstream Measurements of Wind Profiles with Doppler Lidar for Improved Wind Energy Integration

    SciTech Connect (OSTI)

    Rodney Frehlich

    2012-10-30

    New upstream measurements of wind profiles over the altitude range of wind turbines will be produced using a scanning Doppler lidar. These long range high quality measurements will provide improved wind power forecasts for wind energy integration into the power grid. The main goal of the project is to develop the optimal Doppler lidar operating parameters and data processing algorithms for improved wind energy integration by enhancing the wind power forecasts in the 30 to 60 minute time frame, especially for the large wind power ramps. Currently, there is very little upstream data at large wind farms, especially accurate wind profiles over the full height of the turbine blades. The potential of scanning Doppler lidar will be determined by rigorous computer modeling and evaluation of actual Doppler lidar data from the WindTracer system produced by Lockheed Martin Coherent Technologies, Inc. of Louisville, Colorado. Various data products will be investigated for input into numerical weather prediction models and statistically based nowcasting algorithms. Successful implementation of the proposed research will provide the required information for a full cost benefit analysis of the improved forecasts of wind power for energy integration as well as the added benefit of high quality wind and turbulence information for optimal control of the wind turbines at large wind farms.

  16. Anisotropic and Negative Acoustic Index Metamaterials

    E-Print Network [OSTI]

    Fok, Lee Ren

    2010-01-01

    the standard wave equation, conventional acoustic imaging isdifferential equations for EM and acoustic waves can bemagnetic field. Equation 1.5 describes fluid acoustic waves

  17. Compact acoustic refrigerator

    SciTech Connect (OSTI)

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  18. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, Gloria A. (Los Alamos, NM)

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  19. Compact acoustic refrigerator

    DOE Patents [OSTI]

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  20. IEEE JOURNAL OF OCEANIC ENGINEERING, VOL. 0510, NO. 2, APRIL 1985 123 Reciprocal Acoustic Transmissions: Instrumentation for

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Transmissions: Instrumentation for Mesoscale Monitoring of Ocean Currents PETER F. WORCESTER, ROBERT C. SPINDEL in opposite directionsbetweentwo pointsin midocean, one can separate the effects of ocean currents on acoustic to measure ocean currents. Acoustic transceivers have been designedand built to measure the mean currents

  1. HADES - Hydrophone for Acoustic Detection at South Pole

    E-Print Network [OSTI]

    Benjamin Semburg; for the IceCube Collaboration

    2008-11-07

    The South Pole Acoustic Test Setup (SPATS) is located in the upper part of the optical neutrino observatory IceCube, currently under construction. SPATS consists of four strings at depths between 80 m and 500 m below the surface of the ice with seven stages per string. Each stage is equipped with an acoustic sensor and a transmitter. Three strings (string A-C) were deployed in the austral summer 2006/07. SPATS was extended by a fourth string (string D) with second generation sensors and transmitters in 2007/08. One second generation sensor type HADES (Hydrophone for Acoustic Detection at South Pole) consists of a ring-shaped piezo-electric element coated with polyurethane. The development of the sensor, optimization of acoustic transmission by acoustic impedance matching and first in-situ results will be discussed.

  2. Quantum Acoustics with Surface Acoustic Waves

    E-Print Network [OSTI]

    Thomas Aref; Per Delsing; Maria K. Ekström; Anton Frisk Kockum; Martin V. Gustafsson; Göran Johansson; Peter Leek; Einar Magnusson; Riccardo Manenti

    2015-06-04

    It has recently been demonstrated that surface acoustic waves (SAWs) can interact with superconducting qubits at the quantum level. SAW resonators in the GHz frequency range have also been found to have low loss at temperatures compatible with superconducting quantum circuits. These advances open up new possibilities to use the phonon degree of freedom to carry quantum information. In this paper, we give a description of the basic SAW components needed to develop quantum circuits, where propagating or localized SAW-phonons are used both to study basic physics and to manipulate quantum information. Using phonons instead of photons offers new possibilities which make these quantum acoustic circuits very interesting. We discuss general considerations for SAW experiments at the quantum level and describe experiments both with SAW resonators and with interaction between SAWs and a qubit. We also discuss several potential future developments.

  3. Vibrational spectra of nanowires measured using laser doppler...

    Office of Scientific and Technical Information (OSTI)

    of nanowires measured using laser doppler vibrometry and STM studies of epitaxial graphene : an LDRD fellowship report. Citation Details In-Document Search Title: Vibrational...

  4. Observation of sub-Doppler absorption in the /Lambda-type three-level Doppler-broadened cesium system

    E-Print Network [OSTI]

    Junmin Wang; Yanhua Wang; Shubin Yan; Tao Liu; Tiancai Zhang

    2003-12-31

    Thanks to the atomic coherence in coupling laser driven atomic system, sub-Doppler absorption has been observed in Doppler-broadened cesium vapor cell via the /Lambda-type three-level scheme. The linewidth of the sub-Doppler absorption peak become narrower while the frequency detuning of coupling laser increases. The results are in agreement with the theoretical prediction by G. Vemuri et al.[PRA,Vol.53(1996) p.2842].

  5. Laboratory measurements of wave height variations and currents along a steep-sided channel 

    E-Print Network [OSTI]

    Way, Francis

    2000-01-01

    surface piercing wave gages. Particle velocities were measured at 49 positions with a side looking three-dimensional acoustic Doppler velocimeter. A spectral analysis was performed on each free surface time series to obtain H[m]?, as well as first...

  6. Acoustic subwavelength imaging of subsurface objects with acoustic...

    Office of Scientific and Technical Information (OSTI)

    liuxiaojun@nju.edu.cn 1 ; State Key Laboratory of Acoustics, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 2 ; Zhou, Chen ; Wei, Qi ; Wu, DaJian 1 +...

  7. Prediction of Acoustic Noise in Switched Reluctance Motor Drives

    SciTech Connect (OSTI)

    Lin, CJ; Fahimi, B

    2014-03-01

    Prediction of acoustic noise distribution generated by electric machines has become an integral part of design and control in noise sensitive applications. This paper presents a fast and precise acoustic noise imaging technique for switched reluctance machines (SRMs). This method is based on distribution of radial vibration in the stator frame of the SRM. Radial vibration of the stator frame, at a network of probing points, is computed using input phase current and phase voltage waveforms. Sequentially, the acceleration of the probing network will be expanded to predict full acceleration on the stator frame surface, using which acoustic noise emission caused by the stator can be calculated using the boundary element method.

  8. Acoustic metafluids made from three acoustic fluids Andrew N. Norrisa

    E-Print Network [OSTI]

    Norris, Andrew

    . It was subsequently demonstrated that the same methods should work for the acoustic wave equation.3,4 The acoustic by the possibility of acoustic cloaking. The first electromag- netic wave cloaking device2 uses transformation of coordi- nates in the governing wave equation to steer energy around the cloaked object

  9. The Acoustic Oceanographic Buoy A Light Acoustic Data Acquisition System

    E-Print Network [OSTI]

    Jesus, Sérgio M.

    The Acoustic Oceanographic Buoy A Light Acoustic Data Acquisition System Cristiano Soares Sea Trials Description Conclusion and Acknowledgements Introduction The Acoustic Oceanographic Buoy transmission. · Surface buoy with small dimensions (1.2m body plus 1.8m mast) and weight (45kg). · A vertical

  10. Acoustic emission intrusion detector

    DOE Patents [OSTI]

    Carver, Donald W. (Knoxville, TN); Whittaker, Jerry W. (Knoxville, TN)

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  11. Doppler Signatures of the Atmospheric Circulation on Hot Jupiters

    E-Print Network [OSTI]

    Showman, Adam P; Lewis, Nikole K; Shabram, Megan

    2013-01-01

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines seen during transit. Motivated by these observations, we show how Doppler measurements can place powerful constraints on the meteorology. We show that the atmospheric circulation--and Doppler signature--of hot Jupiters splits into two regimes. Under weak stellar insolation, the day-night thermal forcing generates fast zonal jet streams from the interaction of atmospheric waves with the mean flow. In this regime, air along the terminator (as seen during transit) flows toward Earth in some regions and away from Earth in others, leading to a Doppler signature exhibiting superposed blue- and redshifted components. Under intense stellar insolation, however, the strong thermal forcing damps these planetary-scale waves, inhibiting their ability to generate jets. Strong frictional drag likewise damps...

  12. DOPPLER SIGNATURES OF THE ATMOSPHERIC CIRCULATION ON HOT JUPITERS

    E-Print Network [OSTI]

    Showman, Adam P.

    The meteorology of hot Jupiters has been characterized primarily with thermal measurements, but recent observations suggest the possibility of directly detecting the winds by observing the Doppler shift of spectral lines ...

  13. PROBLEM DEPENDENT DOPPLER BROADENING OF CONTINUOUS ENERGY CROSS SECTIONS IN THE KENO MONTE CARLO COMPUTER CODE

    SciTech Connect (OSTI)

    Hart, S. W. D.; Maldonado, G. Ivan; Celik, Cihangir; Leal, Luiz C

    2014-01-01

    For many Monte Carlo codes cross sections are generally only created at a set of predetermined temperatures. This causes an increase in error as one moves further and further away from these temperatures in the Monte Carlo model. This paper discusses recent progress in the Scale Monte Carlo module KENO to create problem dependent, Doppler broadened, cross sections. Currently only broadening the 1D cross sections and probability tables is addressed. The approach uses a finite difference method to calculate the temperature dependent cross-sections for the 1D data, and a simple linear-logarithmic interpolation in the square root of temperature for the probability tables. Work is also ongoing to address broadening theS (alpha , beta) tables. With the current approach the temperature dependent cross sections are Doppler broadened before transport starts, and, for all but a few isotopes, the impact on cross section loading is negligible. Results can be compared with those obtained by using multigroup libraries, as KENO currently does interpolation on the multigroup cross sections to determine temperature dependent cross-sections. Current results compare favorably with these expected results.

  14. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    SciTech Connect (OSTI)

    Pantea, Cristian

    2012-05-04

    The projects objectives and purpose are to: (1) development a multipurpose acoustic sensor for downhole fluid monitoring in Enhanced Geothermal Systems (EGS) reservoirs over typical ranges of pressures and temperatures and demonstrate its capabilities and performance for different EGS systems; (2) determine in real-time and in a single sensor package several parameters - temperature, pressure, fluid flow and fluid properties; (3) needed in nearly every phase of an EGS project, including Testing of Injection and Production Wells, Reservoir Validation, Inter-well Connectivity, Reservoir Scale Up and Reservoir Sustainability. (4) Current sensors are limited to operating at lower temperatures, but the need is for logging at high temperatures. The present project deals with the development of a novel acoustic-based sensor that can work at temperatures up to 374 C, in inhospitable environments.

  15. ACOUSTIC REMOTE SENSING OF THE NORTH PACIFIC ON GYRE AND REGIONAL SCALES

    E-Print Network [OSTI]

    Dushaw, Brian

    the mesoscale with high resolution, for measuring barotropic ocean currents in a unique way, and for directly - Since it was first proposed in the late 1970's (Munk and Wunsch 1979, 1982), ocean acoustic tomography variety of physical set- tings. In the context of long-term oceanic climate change, acoustic tomography

  16. Acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  17. Doppler-resolved kinetics of saturation recovery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forthomme, Damien; Hause, Michael L.; Yu, Hua -Gen; Dagdigian, Paul J.; Sears, Trevor J.; Hall, Gregory E.

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Totalmore »recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. As a result, quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.« less

  18. Doppler-resolved kinetics of saturation recovery

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Forthomme, Damien [Brookhaven National Lab. (BNL), Upton, NY (United States); Hause, Michael L. [Brookhaven National Lab. (BNL), Upton, NY (United States); Yu, Hua-Gen [Brookhaven National Lab. (BNL), Upton, NY (United States); Dagdigian, Paul J. [John Hopkins Univ., Baltimore, MD (United States); Sears, Trevor J. [Brookhaven National Lab. (BNL), Upton, NY (United States); Stony Brook Univ., Stony Brook, NY (United States); Hall, Gregory E. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-04-08

    Frequency modulated laser transient absorption has been used to monitor the ground state rotational energy transfer rates of CN radicals in a double-resonance, depletion recovery experiment. When a pulsed laser is used to burn a hole in the equilibrium ground state population of one rotational state without velocity selection, the population recovery rate is found to depend strongly on the Doppler detuning of a narrow-band probe laser. Similar effects should be apparent for any relaxation rate process that competes effectively with velocity randomization. Alternative methods of extracting thermal rate constants in the presence of these non-thermal conditions are evaluated. Total recovery rate constants, analogous to total removal rate constants in an experiment preparing a single initial rotational level, are in good agreement with quantum scattering calculations, but are slower than previously reported experiments and show qualitatively different rotational state dependence between Ar and He collision partners. Quasi-classical trajectory studies confirm that the differing rotational state dependence is primarily a kinematic effect.

  19. Guided acoustic wave inspection system

    DOE Patents [OSTI]

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  20. Truck acoustic data analyzer system

    DOE Patents [OSTI]

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  1. Three-Dimensional Nonlinear Acoustical Holography 

    E-Print Network [OSTI]

    Niu, Yaying

    2013-05-06

    nonlinear acoustic holography procedure is derived for reconstructing steady-state acoustic pressure fields by applying perturbation and renormalization methods to nonlinear, dissipative, pressure-based Westervelt Wave Equation (WWE). The nonlinear acoustic...

  2. Acoustic Character Of Hydraulic Fractures In Granite

    E-Print Network [OSTI]

    Paillet, Frederick I.

    1983-01-01

    Hydraulic fractures in homogeneous granitic rocks were logged with conventional acoustic-transit-time, acoustic-waveform, and acoustic-televiewer logging systems. Fractured intervals ranged in depth from 45 to 570m. and ...

  3. Anisotropic and Negative Acoustic Index Metamaterials

    E-Print Network [OSTI]

    Fok, Lee Ren

    2010-01-01

    density and acoustic metamaterials. Physica B 394, 256 (resonant acoustic metamaterials. Phys. Rev. B 76, 144302 (celestial mechanics in metamaterials. Nat. Phys. 5, 687 (

  4. Investigation and Analytical Description of Acoustic Production...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Investigation and Analytical Description of Acoustic Production by Magneto-Acoustic Mixing Technology Citation Details In-Document Search This content will become...

  5. The electron geodesic acoustic mode

    SciTech Connect (OSTI)

    Chakrabarti, N. [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta 700 064 (India); Guzdar, P. N. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Kaw, P. K. [Institute for Plasma Research Bhat, Gandhinagar 382428 (India)

    2012-09-15

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  6. Acoustic emission linear pulse holography

    DOE Patents [OSTI]

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  7. Opto-acoustic thrombolysis

    DOE Patents [OSTI]

    Celliers, Peter (Berkeley, CA); Da Silva, Luiz (Danville, CA); Glinsky, Michael (Livermore, CA); London, Richard (Orinda, CA); Maitland, Duncan (Livermore, CA); Matthews, Dennis (Moss Beach, CA); Fitch, Pat (Livermore, CA)

    2000-01-01

    This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.

  8. NW-MILO Acoustic Data Collection

    SciTech Connect (OSTI)

    Matzner, Shari; Myers, Joshua R.; Maxwell, Adam R.; Jones, Mark E.

    2010-02-17

    There is an enduring requirement to improve our ability to detect potential threats and discriminate these from the legitimate commercial and recreational activity ongoing in the nearshore/littoral portion of the maritime domain. The Northwest Maritime Information and Littoral Operations (NW-MILO) Program at PNNL’s Coastal Security Institute in Sequim, Washington is establishing a methodology to detect and classify these threats - in part through developing a better understanding of acoustic signatures in a near-shore environment. The purpose of the acoustic data collection described here is to investigate the acoustic signatures of small vessels. The data is being recorded continuously, 24 hours a day, along with radar track data and imagery. The recording began in August 2008, and to date the data contains tens of thousands of signals from small vessels recorded in a variety of environmental conditions. The quantity and variety of this data collection, with the supporting imagery and radar track data, makes it particularly useful for the development of robust acoustic signature models and advanced algorithms for signal classification and information extraction. The underwater acoustic sensing system is part of a multi-modal sensing system that is operating near the mouth of Sequim Bay. Sequim Bay opens onto the Straight of Juan de Fuca, which contains part of the border between the U.S. and Canada. Table 1 lists the specific components used for the NW-MILO system. The acoustic sensor is a hydrophone permanently deployed at a mean depth of about 3 meters. In addition to a hydrophone, the other sensors in the system are a marine radar, an electro-optical (EO) camera and an infra-red (IR) camera. The radar is integrated with a vessel tracking system (VTS) that provides position, speed and heading information. The data from all the sensors is recorded and saved to a central server. The data has been validated in terms of its usability for characterizing the signatures of small vessels. The sampling rate of 8 kHz and low pass filtering to 2 kHz results in an alias-free signal in the frequency band that is appropriate for small vessels. Calibration was performed using a Lubell underwater speaker so that the raw data signal levels can be converted to sound pressure. Background noise is present due to a nearby pump and as a result of tidal currents. More study is needed to fully characterize the noise, but it does not pose an obstacle to using the acoustic data for the purposes of vessel detection and signature analysis. The detection range for a small vessel was estimated using the calibrated voltage response of the system and a cylindrical spreading model for transmission loss. The sound pressure of a typical vessel with an outboard motor was found to be around 140 dB mPa, and could theoretically be detected from 10 km away. In practical terms, a small vessel could reliably be detected from 3 - 5 km away. The data is archived in netCDF files, a standard scientific file format that is "self describing". This means that each data file contains the metadata - timestamps, units, origin, etc. - needed to make the data meaningful and portable. Other file formats, such as XML, are also supported. A visualization tool has been developed to view the acoustic data in the form of spectrograms, along with the coincident radar track data and camera images.

  9. Acoustic geometry for general relativistic barotropic irrotational fluid flow

    E-Print Network [OSTI]

    Visser, Matt

    2010-01-01

    "Acoustic spacetimes", in which techniques of differential geometry are used to investigate sound propagation in moving fluids, have attracted considerable attention over the last few decades. Most of the models currently considered in the literature are based on non-relativistic barotropic irrotational fluids, defined in a flat Newtonian background. The extension, first to special relativistic barotropic fluid flow, and then to general relativistic barotropic fluid flow in an arbitrary background, is less straightforward than it might at first appear. In this article we provide a pedagogical and simple derivation of the general relativistic "acoustic spacetime" in an arbitrary (d+1) dimensional curved-space background.

  10. Imaging doppler lidar for wind turbine wake profiling

    DOE Patents [OSTI]

    Bossert, David J.

    2015-11-19

    An imaging Doppler lidar (IDL) enables the measurement of the velocity distribution of a large volume, in parallel, and at high spatial resolution in the wake of a wind turbine. Because the IDL is non-scanning, it can be orders of magnitude faster than conventional coherent lidar approaches. Scattering can be obtained from naturally occurring aerosol particles. Furthermore, the wind velocity can be measured directly from Doppler shifts of the laser light, so the measurement can be accomplished at large standoff and at wide fields-of-view.

  11. Experimental Investigation of Mass Sensing With Surface Acoustic Wave Devices

    E-Print Network [OSTI]

    MacDonald, Frank Dickinson

    2010-01-01

    Colin, “1927- Surface acoustic wave devices for mobile andColin, “1927- Surface acoustic wave devices and their signalhorizontal surface acoustic waves (SH-SAW) sensor. Figure 9.

  12. Testing Doppler type shift for an accelerated source and determination of the universal maximal acceleration

    E-Print Network [OSTI]

    Yaakov Friedman

    2010-06-10

    An experiment for testing Doppler type shift for an accelerated source and determination of the universal maximal acceleration is proposed.

  13. Acoustic Characterization of Mesoscale Objects

    SciTech Connect (OSTI)

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  14. Acoustically Enhanced Boiling Heat Transfer

    E-Print Network [OSTI]

    Z. W. Douglas; M. K. Smith; A. Glezer

    2008-01-07

    An acoustic field is used to increase the critical heat flux (CHF) of a flat-boiling-heat-transfer surface. The increase is a result of the acoustic effects on the vapor bubbles. Experiments are performed to explore the effects of an acoustic field on vapor bubbles in the vicinity of a rigid-heated wall. Work includes the construction of a novel heater used to produce a single vapor bubble of a prescribed size and at a prescribed location on a flatboiling surface for better study of an individual vapor bubble's reaction to the acoustic field. Work also includes application of the results from the single-bubble heater to a calibrated-copper heater used for quantifying the improvements in CHF.

  15. Acoustic characteristics of English fricatives

    E-Print Network [OSTI]

    Jongman, Allard; Wayland, Ratree; Wong, Serena

    2000-09-01

    This study constitutes a large-scale comparative analysis of acoustic cues for classification of place of articulation in fricatives. To date, no single metric has been found to classify fricative place of articulation with a high degree of accuracy...

  16. Doppler weather radar based nowcasting of cyclone Ogni Soma Sen Roy1,

    E-Print Network [OSTI]

    Lakshmanan, Valliappa

    Doppler weather radar based nowcasting of cyclone Ogni Soma Sen Roy1, , V Lakshmanan2 , S K Roy@yahoo.com In this paper, we describe offline analysis of Indian Doppler Weather Radar (DWR) data from cyclone Ogni using). Processing of Indian Doppler Weather Radar (DWR) data for nowcasting application under the sub-project Local

  17. Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical modeling of drizzle evolution

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 2. Observations and microphysical I, the influence of cloud microphysics and dynamics on the shape of cloud radar Doppler spectra in warm stratiform clouds was discussed. The traditional analysis of radar Doppler moments was extended

  18. Extracting Fish and Water Velocity from Doppler Profiler Data

    E-Print Network [OSTI]

    deYoung, Brad

    Extracting Fish and Water Velocity from Doppler Profiler Data ĺ Ð 1 ¸ Ö Ò ×¹ Ò ÝÖ¹Ê Ò 2 1 processing algo- rithms normally used to extract water velocity. We present an alternative method for velocity homogeneity precludes the extraction of fish velocities. Water velocities can sometimes still

  19. Laser Locking with Doppler-free Saturated Absorption Spectroscopy

    E-Print Network [OSTI]

    Novikova, Irina

    - 1 - Laser Locking with Doppler-free Saturated Absorption Spectroscopy Paul L. Stubbs, Advisor the frequency of a 795 nm diode laser using a saturated absorption spectroscopy method. Laser locking in AMO physics is done to stabilize the frequency of lasers used in the laboratory in order to make results more

  20. Dual beam translator for use in Laser Doppler anemometry

    DOE Patents [OSTI]

    Brudnoy, David M. (Albany, NY)

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  1. Dual beam translator for use in Laser Doppler anemometry

    DOE Patents [OSTI]

    Brudnoy, D.M.

    1984-04-12

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  2. An alternative derivation of Einstein's Doppler shift and aberration formulae

    E-Print Network [OSTI]

    Jean Reignier

    2009-02-06

    I propose an alternative, purely kinematical, derivation of Einstein's Doppler formula. It is valid for periodic signals of any shape that propagate with the velocity of light. The formula is asymptotic in a parameter proportional to the relative variation of the distance source-receiver during one period. As a by-product, I also derive an alternative proof of Einstein's aberration formulae.

  3. Auto-acoustic compaction in steady shear flows: experimental evidence for the suppression of shear dilatancy by internal acoustic vibration

    E-Print Network [OSTI]

    Van der Elst, Nicholas J; Brodsky, Emily E; Le Bas, Pierre-Yves; Johnson, Paul A.

    2012-01-01

    by internal acoustic vibration Nicholas J. van der Elst, 1by internal acoustic vibration, J. Geophys. Res. , 117,generated acoustic vibration. By examining the response to

  4. Analog circuit for controlling acoustic transducer arrays

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  5. Observation of Doppler broadening in $?$-delayed proton-$?$ decay

    E-Print Network [OSTI]

    S. B. Schwartz; C. Wrede; M. B. Bennett; S. N. Liddick; D. Perez-Loureiro; A. Bowe; A. A. Chen; K. A. Chipps; N. Cooper; D. Irvine; E. McNeice; F. Montes; F. Naqvi; R. Ortez; S. D. Pain; J. Pereira; C. Prokop; J. Quaglia; S. J. Quinn; J. Sakstrup; M. Santia; S. Shanab; A. Simon; A. Spyrou; E. Thiagalingam

    2015-10-26

    Background: The Doppler broadening of $\\gamma$-ray peaks due to nuclear recoil from $\\beta$-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using $\\beta$-delayed proton emission or applied to a recoil heavier than $A=10$. Purpose: To test and apply this Doppler broadening method using $\\gamma$-ray peaks from the $^{26}$P($\\beta p\\gamma$)$^{25}$Al decay sequence. Methods: A fast beam of $^{26}$P was implanted into a planar Ge detector, which was used as a $^{26}$P $\\beta$-decay trigger. The SeGA array of high-purity Ge detectors was used to detect $\\gamma$ rays from the $^{26}$P($\\beta p\\gamma$)$^{25}$Al decay sequence. Results: Radiative Doppler broadening in $\\beta$-delayed proton-$\\gamma$ decay was observed for the first time. The Doppler broadening analysis method was verified using the 1613 keV $\\gamma$-ray line for which the proton energies were previously known. The 1776 keV $\\gamma$ ray de-exciting the 2720 keV $^{25}$Al level was observed in $^{26}$P($\\beta p\\gamma$)$^{25}$Al decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 $\\pm$ 1.0 (stat.) $\\pm$ 0.6 (syst.) MeV, corresponding to a $^{26}$Si excitation energy of 13.3 $\\pm$ 1.0 (stat.) $\\pm$ 0.6 (syst.) MeV for the proton-emitting level. Conclusions: The Doppler broadening method has been demonstrated to provide practical measurements of the energies for $\\beta$-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as $A=25$.

  6. Contour mode resonators with acoustic reflectors

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Tuck, Melanie R. (Albuquerque, NM)

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  7. Reflective echo tomographic imaging using acoustic beams

    DOE Patents [OSTI]

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  8. Acoustic emission: The first half century

    SciTech Connect (OSTI)

    Drouillard, T.F.

    1994-08-01

    The technology of acoustic emission (AE) is approaching the half century mark, having had its beginning in 1950 with the work of Joseph Kaiser. During the 1950s and 1960s researchers delved into the fundamentals of acoustic emission, developed instrumentation specifically for AE, and characterized the AE behavior of many materials. AE was starting to be recognized for its unique capabilities as an NDT method for monitoring dynamic processes. In the decade of the 1970s research activities became more coordinated and directed with the formation of the working groups, and its use as an NDT method continued to increase for industrial applications. In the 1980s the computer became a basic component for both instrumentation and data analysis, and today it has sparked a resurgence of opportunities for research and development. Today we are seeing a transition to waveform-based AE analysis and a shift in AE activities with more emphasis on applications than on research. From the beginning, we have been fortunate to have had so many dedicated savants with different fields of expertise contribute in a collective way to bring AE to a mature, fully developed technology and leave a legacy of knowledge recorded in its literature. AE literature has been a key indicator of the amount of activity, the proportion of research to application, the emphasis on what was of current interest, and the direction AE has taken. The following is a brief survey of the history of acoustic emission with emphasis on development of the infrastructure over the past half century.

  9. Single Channel Estimation Algorithm for Acoustic OFDM Communication Systems

    E-Print Network [OSTI]

    Lin, David; Barbieri, Alan; Mitra, Urbashi

    2007-01-01

    for Acoustic OFDM Communication Systems David Lin, Alanultrawideband communication System Hardware Hardwaremultiple-output systems underwater acoustic communication

  10. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine in the Philippine Sea during 2009­2011 investigated deep-water acoustic propagation and ambient noise of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also

  11. Acoustical Society of America International Student Challenge Problem in Acoustic Signal Processing 2014

    E-Print Network [OSTI]

    Processing 2014 Student Entry Evaluation Report by the Technical Committee on Signal Processing in Acoustics in Acoustic Signal Processing," Acoustics Today, Volume 10, Issue 2, pp 2629, Spring 2014 (available the opportunity to distinguish themselves by solving a challenging problem in acoustic signal processing

  12. Computational and experimental techniques for coupled acoustic...

    Office of Scientific and Technical Information (OSTI)

    and shown to be an effective means of testing acoustic loading on simple test structures. The tube is capable of creating a semi-infinite acoustic field due to nonreflecting...

  13. Acoustic vector-sensor array processing

    E-Print Network [OSTI]

    Kitchens, Jonathan Paul

    2010-01-01

    Existing theory yields useful performance criteria and processing techniques for acoustic pressure-sensor arrays. Acoustic vector-sensor arrays, which measure particle velocity and pressure, offer significant potential but ...

  14. Acoustic data transmission through a drill string

    DOE Patents [OSTI]

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  15. Acoustical Communications for Wireless Downhole Telemetry Systems 

    E-Print Network [OSTI]

    Farraj, Abdallah

    2012-08-22

    This dissertation investigates the use of advanced acoustical communication techniques for wireless downhole telemetry systems. Using acoustic waves for downhole telemetry systems is investigated in order to replace the wired communication systems...

  16. Pinniped hearing in a changing acoustic environment

    E-Print Network [OSTI]

    Cunningham, Kane Alexander

    2015-01-01

    in high-frequency, high-energy marine acoustic technologies—of high-frequency, high-energy marine technologies such asproliferation of high-energy acoustic marine technologies

  17. Multipoint photonic doppler velocimetry using optical lens elements

    DOE Patents [OSTI]

    Frogget, Brent Copely; Romero, Vincent Todd

    2014-04-29

    A probe including a fisheye lens is disclosed to measure the velocity distribution of a moving surface along many lines of sight. Laser light, directed to the surface and then reflected back from the surface, is Doppler shifted by the moving surface, collected into fisheye lens, and then directed to detection equipment through optic fibers. The received light is mixed with reference laser light and using photonic Doppler velocimetry, a continuous time record of the surface movement is obtained. An array of single-mode optical fibers provides an optic signal to an index-matching lens and eventually to a fisheye lens. The fiber array flat polished and coupled to the index-matching lens using index-matching gel. Numerous fibers in a fiber array project numerous rays through the fisheye lens which in turn project many measurement points at numerous different locations to establish surface coverage over a hemispherical shape with very little crosstalk.

  18. The effect of acoustics on an ethanol spray flame in a propane-fired pulse combustor

    SciTech Connect (OSTI)

    Dubey, R.K.; Black, D.L.; McQuay, M.Q. [Brigham Young Univ., Provo, UT (United States). Mechanical Engineering Dept.] [Brigham Young Univ., Provo, UT (United States). Mechanical Engineering Dept.; Carvalho, J.A. Jr. [Inst. Nacional de Pesquisas Espaciais, Cachoeira Paulista, Sao Paulo (Brazil). Lab. Associado de Comubustao e Propulsao] [Inst. Nacional de Pesquisas Espaciais, Cachoeira Paulista, Sao Paulo (Brazil). Lab. Associado de Comubustao e Propulsao

    1997-07-01

    The influence of an acoustic field on the combustion characteristics of a hydrogen-stabilized ethanol spray flame has been experimentally investigated using a phase-Doppler particle analyzer in a propane-fired, Rijke-tube, pulse combustor. The controlled sinusoidal acoustic field in the combustor had a sound pressure level of 155 dB and a frequency of 80 Hz. Experiments were performed to study the effect of oscillations on Sauter-mean and arithmetic-mean diameters, droplet velocity, and droplet number density for the present operating conditions of the Rijke-tube combustor. Similar measurements were also performed on a water spray in the propane-fired reactor to study the effect of the acoustic field on the atomization process for the nozzle type used. Spectral analysis of the droplet axial velocity component for the oscillating conditions revealed a dominant frequency equal to the frequency of the sinusoidal acoustic wave in the combustor. The Sauter-mean diameter of the ethanol spray decreased by 15%, on average, in the presence of the acoustic field because of enhanced evaporation, while the droplet arrival rate at the probe volume increased due to changes in the flame structure. Analysis of the measured size distributions indicated that under an oscillating flow there was a larger population of droplets in the diameter range of 3--20 {micro}m. Experiments conducted with the water spray indicated that the oscillations did affect droplet size distributions in the ethanol spray due to enhanced evaporation caused by the relocation of the flame front inside and around the spray cone.

  19. DIFFUSING ACOUSTIC WAVE TRANSPORT AND SPECTROSCOPY

    E-Print Network [OSTI]

    Page, John

    1 Chapter DIFFUSING ACOUSTIC WAVE TRANSPORT AND SPECTROSCOPY J.H. PAGE, M.L. COWAN Dept. of Physics waves, multiple scattering, energy velocity, Diffusing Acoustic Wave Spectroscopy. Abstract the diffusive transport of ultrasonic waves, and then describe a new ultrasonic technique, Diffusing Acoustic

  20. Ronald Edward Kumon NONLINEAR SURFACE ACOUSTIC WAVES

    E-Print Network [OSTI]

    Copyright by Ronald Edward Kumon 1999 #12;NONLINEAR SURFACE ACOUSTIC WAVES IN CUBIC CRYSTALS THE UNIVERSITY OF TEXAS AT AUSTIN December 1999 #12;NONLINEAR SURFACE ACOUSTIC WAVES IN CUBIC CRYSTALS Approved Zabolotskaya for teaching me the intricacies of nonlinear surface acoustic waves and for their continuing

  1. Research equipment: Surface Acoustic Wave (SAW) devices

    E-Print Network [OSTI]

    Gizeli, Electra

    Research equipment: Surface Acoustic Wave (SAW) devices: Operating frequencies @50MHz, 104MHz, 110 outputs measuring the real-time change of the phase and amplitude of the acoustic wave. More specifically with Dissipation monitoring (QCM-D): Qsense D-300 for real-time acoustic measurements at low frequencies (5-35MHz

  2. Localization of Classical Waves I: Acoustic Waves.

    E-Print Network [OSTI]

    Localization of Classical Waves I: Acoustic Waves. Alexander Figotin \\Lambda Department, 1997 Abstract We consider classical acoustic waves in a medium described by a position dependent mass the existence of localized waves, i.e., finite energy solutions of the acoustic equations with the property

  3. Acoustics Beyond the Wave Equation Paul Pereira

    E-Print Network [OSTI]

    Pulfrey, David L.

    Acoustics Beyond the Wave Equation Paul Pereira November 20, 2003 #12;2 1 Navier-Stokes Equation). The traditional study of acoustics concerns itself with the linearized equations of fluid mechanics, however. The fundamental equations of Nonlinear Acoustics are those of fluid dynamics, a mathematical description of which

  4. AOB -Acoustic Oceanographic Buoy: concept and feasibility

    E-Print Network [OSTI]

    Jesus, Sérgio M.

    AOB - Acoustic Oceanographic Buoy: concept and feasibility S.M. Jesus1, C. Soares1, A.J. Silva1, J Spezia, Italy Abstract-- The AOB - Acoustic Oceanographic Buoy is the single node of a network of "smart" buoys for acoustic surveil- lance, Rapid Environmental Assessment (REA) and underwater communications

  5. Multi-reflective acoustic wave device

    DOE Patents [OSTI]

    Andle, Jeffrey C.

    2006-02-21

    An acoustic wave device, which utilizes multiple localized reflections of acoustic wave for achieving an infinite impulse response while maintaining high tolerance for dampening effects, is disclosed. The device utilized a plurality of electromechanically significant electrodes disposed on most of the active surface. A plurality of sensors utilizing the disclosed acoustic wave mode device are also described.

  6. Laser-induced acoustic wave generation/propagation/interaction in water in various internal channels

    E-Print Network [OSTI]

    2010-01-01

    induced plane acoustic wave generation, propagation andinduced acoustic wave generation/propagation/interaction insingle acoustic wave generation, propagation, interaction

  7. A perspective on the CMB acoustic peak

    E-Print Network [OSTI]

    T. A. Marriage

    2002-03-11

    CMB angular spectrum measurements suggest a flat universe. This paper clarifies the relation between geometry and the spherical harmonic index of the first acoustic peak ($\\ell_{peak}$). Numerical and analytic calculations show that $\\ell_{peak}$ is approximately a function of $\\Omega_K/\\Omega_M$ where $\\Omega_K$ and $\\Omega_M$ are the curvature ($\\Omega_K > 0$ implies an open geometry) and mass density today in units of critical density. Assuming $\\Omega_K/\\Omega_M \\ll 1$, one obtains a simple formula for $\\ell_{peak}$, the derivation of which gives another perspective on the widely-recognized $\\Omega_M$-$\\Omega_\\Lambda$ degeneracy in flat models. This formula for near-flat cosmogonies together with current angular spectrum data yields familiar parameter constraints.

  8. Video Tracking Using Acoustic Triangulation 

    E-Print Network [OSTI]

    Ivanov, Alexander

    2012-05-03

    This study focuses on the detection and triangulation of sound sources. Specifically, we focus on the detection of sound in order to track a person’s position with a video camera. Acoustic tracking, an alternative to visual tracking, is relatively...

  9. VIDEO TRACKING USING ACOUSTIC TRIANGULATION 

    E-Print Network [OSTI]

    Raducanu, Alexandru

    2012-05-03

    This study focuses on the detection and triangulation of sound sources. Specifically, we focus on the detection of sound in order to track a person’s position with a video camera. Acoustic tracking, an alternative to visual tracking, is relatively...

  10. Current sensor

    DOE Patents [OSTI]

    Yakymyshyn, Christopher Paul; Brubaker, Michael Allen; Yakymyshyn, Pamela Jane

    2007-01-16

    A current sensor is described that uses a plurality of magnetic field sensors positioned around a current carrying conductor. The sensor can be hinged to allow clamping to a conductor. The current sensor provides high measurement accuracy for both DC and AC currents, and is substantially immune to the effects of temperature, conductor position, nearby current carrying conductors and aging.

  11. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    E-Print Network [OSTI]

    Yang, Luyi

    2013-01-01

    6] Tomasz Dietl et al. Spintronics. Vol. 82. Semiconductorset al. “Semiconductor spintronics”. In: Acta Phys. Slovacafor semiconductor spintronics”. In: Nature Physics 3 (2007),

  12. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    E-Print Network [OSTI]

    Yang, Luyi

    2014-01-01

    6] Tomasz Dietl et al. Spintronics. Vol. 82. Semiconductorset al. “Semiconductor spintronics”. In: Acta Phys. SlovacaJ. Fabian, and S. Das Sarma. “Spintronics: Fundamentals and

  13. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    E-Print Network [OSTI]

    Yang, Luyi

    2013-01-01

    to the design of those spintronic devices in which spinFurther progress towards spintronic logic requires a deeper

  14. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    E-Print Network [OSTI]

    Yang, Luyi

    2014-01-01

    to the design of those spintronic devices in which spinFurther progress towards spintronic logic requires a deeper

  15. Method and apparatus for generating acoustic energy

    DOE Patents [OSTI]

    Guerrero, Hector N. (Evans, GA)

    2002-01-01

    A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.

  16. Doppler-Free Spectroscopy of Weak Transitions: An Analytical Model Applied to Formaldehyde

    E-Print Network [OSTI]

    Zeppenfeld, M; Pinkse, P W H; Rempe, G

    2007-01-01

    Experimental observation of Doppler-free signals for weak transitions can be greatly facilitated by an estimate for the expected amplitude of the signal. We derive an analytical model which allows the Doppler-free signal amplitude to be estimated for small Doppler-free signals. Application of this model to formaldehyde allows the amplitude of experimentally observed Doppler-free signals to be reproduced to within a factor of two and the relative amplitude of different lines to be reproduced to within a few percent.

  17. Comments on: Texas Tech University mobile doppler radars provide unique

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11texas-tech-university-mobile-doppler-radars-provide-unique-wind-measurements-to-multi-instrument-doe-field-campaign

  18. Cylindrical acoustic levitator/concentrator

    DOE Patents [OSTI]

    Kaduchak, Gregory (Los Alamos, NM); Sinha, Dipen N. (Los Alamos, NM)

    2002-01-01

    A low-power, inexpensive acoustic apparatus for levitation and/or concentration of aerosols and small liquid/solid samples having particulates up to several millimeters in diameter in air or other fluids is described. It is constructed from a commercially available, hollow cylindrical piezoelectric crystal which has been modified to tune the resonance frequency of the breathing mode resonance of the crystal to that of the interior cavity of the cylinder. When the resonance frequency of the interior cylindrical cavity is matched to the breathing mode resonance of the cylindrical piezoelectric transducer, the acoustic efficiency for establishing a standing wave pattern in the cavity is high. The cylinder does not require accurate alignment of a resonant cavity. Water droplets having diameters greater than 1 mm have been levitated against the force of gravity using; less than 1 W of input electrical power. Concentration of aerosol particles in air is also demonstrated.

  19. Acoustic plane wave preferential orientation of metal oxide superconducting materials

    DOE Patents [OSTI]

    Tolt, Thomas L. (North Olmsted, OH); Poeppel, Roger B. (Glen Ellyn, IL)

    1991-01-01

    A polycrystalline metal oxide such as YBa.sub.2 Cu.sub.3 O.sub.7-X (where 0current densities. By aligning the two-dimensional Cu-O layers which carry the current in the superconducting state in the a- and b-directions, i.e., within the basal plane, a high degree of crystalline axes alignment is provided between adjacent grains permitting the conduction of high current densities. With the superconducting metal oxide in the form of a ceramic slip which has not yet set, orientation of the crystal basal planes parallel with the direction of desired current flow is accomplished by an applied acoustic plane wave in the acoustic or ultrasonic frequency range (either progressive or standing) in applying a torque to each crystal particle. The ceramic slip is then set and fired by conventional methods to produce a conductor with preferentially oriented grains and substantially enhanced current carrying capacity.

  20. Observations of 2D Doppler backscattering on MAST

    E-Print Network [OSTI]

    Thomas, D A; Freethy, S J; Huang, B K; Shevchenko, V F; Vann, R G L

    2015-01-01

    The Synthetic Aperture Microwave Imaging (SAMI) diagnostic has conducted proof-of-principle 2D Doppler backscattering (DBS) experiments on MAST. SAMI actively probes the plasma edge using a wide (+-40 degrees vertical and horizontal) and tuneable (10-35.5 GHz) beam. The Doppler backscattered signal is digitised in vector form using an array of eight Vivaldi PCB antennas. This allows the receiving array to be focused in any direction within the field of view simultaneously to an angular range of 6-24 degrees FWHM at 10-34.5 GHz. This capability is unique to SAMI and is an entirely novel way of conducting DBS experiments. In this paper the feasibility of conducting 2D DBS experiments is explored. Initial measurements of phenomena observed on conventional DBS experiments are presented; such as momentum injection from neutral beams and an abrupt change in power and turbulence velocity coinciding with the onset of H-mode. In addition, being able to carry out 2D DBS imaging allows a measurement of magnetic pitch an...

  1. Frustrated total internal reflection acoustic field sensor

    DOE Patents [OSTI]

    Kallman, Jeffrey S. (Pleasanton, CA)

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  2. Induced Currents, Eddy Currents and

    E-Print Network [OSTI]

    Tobar, Michael

    Lecture 11 Induced Currents, Eddy Currents and Maxwell's Equations 1 Faraday Disk Dynamo F = q Eddy Currents We have learnt that changing magnetic fields can induce electric fields in conductors 108 ms-1 16 #12;In this lecture and the next Eddy Currents: We have covered Sect. 29

  3. Acoustic resonance phase locked photoacoustic spectrometer

    DOE Patents [OSTI]

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  4. Acoustic resonance frequency locked photoacoustic spectrometer

    DOE Patents [OSTI]

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-09-09

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell, the acoustic source having a source frequency; repeatedly and continuously sweeping the source frequency across the resonance frequency at a sweep rate; and employing an odd-harmonic of the source frequency sweep rate to maintain the source frequency sweep centered on the resonance frequency.

  5. Reprinted from Journal of the Optical Society of America B Limit of Doppler cooling

    E-Print Network [OSTI]

    Dalibard, Jean

    Reprinted from Journal of the Optical Society of America B Limit of Doppler cooling Y. Castin, H Laser cooling of free atoms is a technique that has been widely investigated both theoretically and experimentally during the past severalyears. The simplest cooling mecha- nism is the so-called Doppler cooling

  6. Sub-Doppler optical resolution by confining a vapour in a nanostructure

    E-Print Network [OSTI]

    Boyer, Edmond

    (typically, 10 or 20 layers of ~ 1µm diameter spheres). Sub-Doppler structures appear in the optical spectrum angles (~ 30-50°), are an original feature associated to the 3-D vapor confinement. It remembers a DickeSub-Doppler optical resolution by confining a vapour in a nanostructure Philippe BALLIN, Elias

  7. MECHANICAL VIBRATION SENSING FOR STRUCTURAL HEALTH MONITORING USING A MILLIMETER-WAVE DOPPLER RADAR SENSOR

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    MECHANICAL VIBRATION SENSING FOR STRUCTURAL HEALTH MONITORING USING A MILLIMETER-WAVE DOPPLER RADAR of structural health monitoring (SHM). In this paper, we report on a millimeter-wave Doppler radar sensor sensing, millimeter-waves, structural health monitoring. INTRODUCTION Structural health monitoring based

  8. Efficient Pulse-Doppler Processing and Ambiguity Functions of Nonuniform Coherent Pulse Trains

    E-Print Network [OSTI]

    Nehorai, Arye

    Efficient Pulse-Doppler Processing and Ambiguity Functions of Nonuniform Coherent Pulse Trains Lafayette, Indiana 47907 Email: {srasool, mrb}@purdue.edu Abstract--We propose a DFT based pulse Doppler processing receiver for staggered pulse trains. The proposed receiver is a simple extension of traditional

  9. THE HUYGENS DOPPLER WIND EXPERIMENT Titan Winds Derived from Probe Radio Frequency Measurements

    E-Print Network [OSTI]

    THE HUYGENS DOPPLER WIND EXPERIMENT Titan Winds Derived from Probe Radio Frequency Measurements M 1998; Accepted in final form 20 December 2001 Abstract. A Doppler Wind Experiment (DWE of Titan's zonal winds will be determined with an accuracy better than 1 m s-1 from the start of mission

  10. Signal Processing Algorithms for the Terminal Doppler Weather Radar: Build 2

    E-Print Network [OSTI]

    Cho, John Y. N.

    Signal Processing Algorithms for the Terminal Doppler Weather Radar: Build 2 February 21, 2010 John to the public through the National Technical Information Service, Springfield, VA 22161 Signal Processing) was developed for the Terminal Doppler Weather Radar (TDWR), enhanced signal processing algorithms taking

  11. Characterization of the Impact of Indoor Doppler Errors on Pedestrian Dead Reckoning

    E-Print Network [OSTI]

    Calgary, University of

    Characterization of the Impact of Indoor Doppler Errors on Pedestrian Dead Reckoning Valérie, University of Calgary 2500 University Drive NW Calgary, Alberta, Canada, T2N 1N4 Abstract--Indoor pedestrian on a Pedestrian Dead Reckoning (PDR) navigation filter is investigated. Doppler errors are simulated using

  12. Acoustic concentration of particles in fluid flow

    DOE Patents [OSTI]

    Ward, Michael D. (Los Alamos, NM); Kaduchak, Gregory (Los Alamos, NM)

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  13. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  14. A Platform for Collaborative Acoustic Signal Processing

    E-Print Network [OSTI]

    Hanbiao Wang; Lewis Girod; Nithya Ramanathan

    2005-01-01

    Graphic ori- ented signal processing language - gospl,” incollaborative acoustic signal processing, and demonstrateembedded system for signal processing and the recent work on

  15. Acoustic Effects of Hydrokinetic Tidal Turbines

    SciTech Connect (OSTI)

    Polagye, Brian

    2011-11-01

    This presentation from the Water Peer Review highlights one of the program's marine and hyrokinetics environmental projects to determine the likely acoustic effects from a tidal energy device.

  16. Electromagnetic Interrogation and the Doppler Shift Using the Method of Mappings

    E-Print Network [OSTI]

    be moving due to external disturbances (such as elastic waves as used in seismic exploration, acoustic waves

  17. AN ELECTROMYOGRAPHIC-CINEFLUOROGRAPHIC-ACOUSTIC STUDY OF DYNAMIC VOWEL PRODUCTION*

    E-Print Network [OSTI]

    AN ELECTROMYOGRAPHIC-CINEFLUOROGRAPHIC-ACOUSTIC STUDY OF DYNAMIC VOWEL PRODUCTION* Peter J. Alfonso of electromyographic (EMG), cinefluorographic, and acoustic data, that describe the positioning of various articulators

  18. Shear horizontal surface acoustic wave microsensor for Class...

    Office of Scientific and Technical Information (OSTI)

    Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection. Citation Details In-Document Search Title: Shear horizontal surface acoustic wave...

  19. Acoustic Enhancement of Surface Diffusion Chengping Wu,

    E-Print Network [OSTI]

    Zhigilei, Leonid V.

    provides an attractive alternative to thermal activation in thin film growth on heat-sensitive substrates to the thermal activation in thin film growth on heat-sensitive substrates. 2. MECHANISMS OF ACOUSTIC ACTIVATION, Russia *S Supporting Information ABSTRACT: The idea of acoustic activation of surface diffusion

  20. Thermoacoustic Stirling Engine --An acoustic amplifier

    E-Print Network [OSTI]

    Lee, Dongwon

    Thermoacoustic Stirling Engine -- An acoustic amplifier: ambient heat exchanger (water) stacked kW sound hot diesel exhaust hot diesel exhaust 34" 24" Thermoacoustic Stirling Engine -- An acoustic to ambient air 0º 120º 240º 2 kW electricity Thermoacoustic Energy Conversion Waste or prime heat sound

  1. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T.T.; Keller, J.O.

    1987-07-10

    A heat transfer drying apparatus includes an acoustically augmented heat transfer chamber for receiving material to be dried. The chamber includes a first heat transfer gas inlet, a second heat transfer gas inlet, a material inlet, and a gas outlet which also serves as a dried material and gas outlet. A non-pulsing first heat transfer gas source provides a first drying gas to the acoustically augmented heat transfer chamber through the first heat transfer gas inlet. A valveless, continuous second heat transfer gas source provides a second drying gas to the acoustically augmented heat transfer chamber through the second heat transfer gas inlet. The second drying gas also generates acoustic waves which bring about acoustical coupling with the gases in the acoustically augmented heat transfer chamber. The second drying gas itself oscillates at an acoustic frequency of approximately 180 Hz due to fluid mechanical motion in the gas. The oscillations of the second heat transfer gas coupled to the first heat transfer gas in the acoustically augmented heat transfer chamber enhance heat and mass transfer by convection within the chamber. 3 figs.

  2. ACOUSTIC FORMING FOR ENHANCED DEWATERING AND FORMATION

    SciTech Connect (OSTI)

    Cyrus K Aidun

    2007-11-30

    The next generation of forming elements based on acoustic excitation to increase drainage and enhances formation both with on-line control and profiling capabilities has been investigated in this project. The system can be designed and optimized based on the fundamental experimental and computational analysis and investigation of acoustic waves in a fiber suspension flow and interaction with the forming wire.

  3. aging,Bioengineering, AcousticsCircuitsand

    E-Print Network [OSTI]

    Lee, Tonghun

    Biom edicalIm aging,Bioengineering, AcousticsCircuitsand SignalProcessing Com m unicationsand) #12;Biom edicalIm aging,Bioengineering, Acoustics Circuitsand SignalProcessing Com m unicationsand. M. L. Oelze T. J. Overbye ELECTRICAL AND COMPUTER ENGINEERING (2 OF 3) #12;Biom edicalIm aging,Bioengineering

  4. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  5. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  6. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect (OSTI)

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  7. Development of Acoustic Microfluidic Platforms for Separation and Analysis of Particles and Cells 

    E-Print Network [OSTI]

    Wang, Han

    2015-08-12

    environment monitoring, such as in the case of large-scale oil spill as well as chronic oil discharge. Current fluorescence-based oil detectors have trade-offs between detection sensitivity and portability. In this research an acoustic radiation force based...

  8. CMB Distortions from Damping of Acoustic Waves Produced by Cosmic Strings

    E-Print Network [OSTI]

    Hiroyuki Tashiro; Eray Sabancilar; Tanmay Vachaspati

    2013-08-20

    We study diffusion damping of acoustic waves in the photon-baryon fluid due to cosmic strings, and calculate the induced $\\mu$- and $y$-type spectral distortions of the cosmic microwave background. For cosmic strings with tension within current bounds, their contribution to the spectral distortions is subdominant compared to the distortions from primordial density perturbations.

  9. Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino

    E-Print Network [OSTI]

    Merlino, Robert L.

    Dust-Acoustic Waves: Visible Sound Waves Robert L. Merlino Department of Physics and Astronomy and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some findings and outstanding problems are also presented. Keywords: dusty plasmas, dust acoustic waves PACS: 52

  10. Effect of multiperforated plates on the acoustic modes in combustors

    E-Print Network [OSTI]

    Mendez, Simon

    related to the wave equation in the frequency domain, and is able to provide the acoustic modes effect on acoustics [5], [1], which is enhanced by the presence of a mean bias flow [6]. Acoustic waves in the presence of an acoustic wave and is well adapted to be inserted in the Helmholtz solver. It was validated

  11. Localization of acoustic sources utilizing a decentralized particle filter

    E-Print Network [OSTI]

    Gerstoft, Peter

    localization scheme. Several sensors are embedded in an acoustic wave field. We assume that the field variables of interest are governed by a discrete-time spatial-distributed state-space equation. In particular, acoustic] of a source in a spatio-temporal field [3­8]. We assume an acoustic in-door scenario. The acoustic-wave

  12. Speaker verification system using acoustic data and non-acoustic data

    DOE Patents [OSTI]

    Gable, Todd J. (Walnut Creek, CA); Ng, Lawrence C. (Danville, CA); Holzrichter, John F. (Berkeley, CA); Burnett, Greg C. (Livermore, CA)

    2006-03-21

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  13. Copper vapor laser acoustic thermometry system

    DOE Patents [OSTI]

    Galkowski, Joseph J. (Livermore, CA)

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  14. Acoustically enhanced heat exchange and drying apparatus

    DOE Patents [OSTI]

    Bramlette, T. Tazwell (Livermore, CA); Keller, Jay O. (Oakland, CA)

    1989-01-01

    A heat transfer apparatus includes a first chamber having a first heat transfer gas inlet, a second heat transfer gas inlet, and an outlet. A first heat transfer gas source provides a first gas flow to the first chamber through the first heat transfer gas inlet. A second gas flow through a second chamber connected to the side of the first chamber, generates acoustic waves which bring about acoustical coupling of the first and second gases in the acoustically augmented first chamber. The first chamber may also include a material inlet for receiving material to be dried, in which case the gas outlet serves as a dried material and gas outlet.

  15. On Deriving Vertical Air Motions from Cloud Radar Doppler Spectra MATTHEW D. SHUPE

    E-Print Network [OSTI]

    multiple ground-based remote sensors. Corrections for Doppler spectrum broadening due to turbulence, wind the Department of Energy (DOE) Atmospheric Radiation Measurement Program's (ARM) site in Barrow, Alaska, during

  16. Low-Cost Differential Front-End for Doppler Radar Vital Sign Monitoring

    E-Print Network [OSTI]

    Fletcher, Richard Ribon

    We present a differential front end design for improving the performance of short-range low-cost Doppler radars for vital sign detection with application to automotive driver safety systems, health monitoring, and security ...

  17. Wearable Doppler radar with integrated antenna for patient vital sign monitoring

    E-Print Network [OSTI]

    Fletcher, Richard Ribon

    A 2.45 GHz wearable Doppler radar unit with radio data link is presented for use in portable patient monitoring and emergency response. Unlike portable Electrocardiograms (ECG) or Photoplethysmography (PPG), the near-field ...

  18. Acoustic emission non-destructive testing of structures using source location techniques.

    SciTech Connect (OSTI)

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  19. Characteristics of Magnetohydrodynamic Oscillations Observed with Michelson Doppler Imager

    E-Print Network [OSTI]

    Norton, A A; Bush, R I; Tarbell, T D

    1999-01-01

    We report on the spatial distribution of magnetogram oscillatory power and phase angles between velocity and magnetogram signals as observed with the Michelson Doppler Imager. The dataset is 151.25 arcsec times 151.25 arcsec containing sunspot from Dec 2, 1997 with a temporal sampling interval of 60 seconds and spatial sampling of 0.605 arcsec. Simultaneously observed continuum intensity and surface velocity accompany the magnetic information. We focus on three frequency regimes: 0.5-1.0, 3.0-3.5 and 5.5-6.0 mHz corresponding roughly to timescales of magnetic evolution, p-modes and the 3 minute resonant sunspot oscillation. Significant low frequency magnetogram power is found in lower flux pixels, 100-300 Gauss, in a striking ring with filamentary structure surrounding sunspot. Five minute magnetogram power peaks in extended regions of flux 600-800 Gauss. The 3 minute oscillation is observed in sunspot umbra in pixels whose flux measures 1300-1500 Gauss. Phase angles of approximately -90 degrees between veloc...

  20. Characteristics of Magnetohydrodynamic Oscillations Observed with Michelson Doppler Imager

    E-Print Network [OSTI]

    A. A. Norton; R. K. Ulrich; R. I. Bush; T. D. Tarbell

    1999-07-19

    We report on the spatial distribution of magnetogram oscillatory power and phase angles between velocity and magnetogram signals as observed with the Michelson Doppler Imager. The dataset is 151.25 arcsec times 151.25 arcsec containing sunspot from Dec 2, 1997 with a temporal sampling interval of 60 seconds and spatial sampling of 0.605 arcsec. Simultaneously observed continuum intensity and surface velocity accompany the magnetic information. We focus on three frequency regimes: 0.5-1.0, 3.0-3.5 and 5.5-6.0 mHz corresponding roughly to timescales of magnetic evolution, p-modes and the 3 minute resonant sunspot oscillation. Significant low frequency magnetogram power is found in lower flux pixels, 100-300 Gauss, in a striking ring with filamentary structure surrounding sunspot. Five minute magnetogram power peaks in extended regions of flux 600-800 Gauss. The 3 minute oscillation is observed in sunspot umbra in pixels whose flux measures 1300-1500 Gauss. Phase angles of approximately -90 degrees between velocity and magnetic flux in the 3.0-3.5 and 5.5-6.0 mHz regimes are found in regions of significant cross amplitude.

  1. A scanning laser Doppler vibrometer for modal testing

    SciTech Connect (OSTI)

    Sriram, P.; Craig, J.I.; Hanagud, S. (Georgia Institute of Technology, Atlanta (USA))

    1990-07-01

    Accelerometers are widely used to sense structural response in modal testing. The mass loading and local effects due to accelerometers are not always negligible. The laser Doppler velocimeter/vibrometer (LDV) is a noncontact optical sensing tool for accurately measuring point velocities. The noncontact nature of the instrument makes it particularly attractive for use on lightweight structures where measurement interaction must be minimized. Real-time scanning LDV's have recently been introduced to measure fluid flow velocity profiles rapidly. In this paper, the development of a real-time scanning LDV for structural applications is described. The instrument can be used to simultaneously measure the velocity response at a series of locations on a vibrating structure. Standard modal analysis techniques can then be applied to extract the usual modal data, e.g., natural frequencies, damping and mode shapes. The special case of beam vibration is considered in this paper though the technique can be readily extended to generic planar measurements. The measurement technique has been validated through modal testing of a simple beam structure. Comparisons between theoretical and LDV measured mode shapes and natural frequencies are presented. 20 refs.

  2. Analysis of Shear-horizontal Vibrations of Crystal Plates for Acoustic Wave Resonators and Sensors

    E-Print Network [OSTI]

    Liu, Bo

    2010-01-01

    field excited liquid acoustic wave sensor,? IEEE Trans.3 high-frequency bulk acoustic wave sensor,? IEEE Trans.field excited liquid acoustic wave sensor,? IEEE Trans.

  3. Distortion of low-frequency acoustic signals by interaction with the moving ocean surface

    E-Print Network [OSTI]

    Lynch, Stephen Dennis

    2008-01-01

    foundation of acoustic wave equation solution techniques,transformed acoustic wave equation with delta function-range-independent acoustic wave equation with point-source

  4. Iterative finite-difference solution analysis of acoustic wave equation in the Laplace-Fourier domain

    E-Print Network [OSTI]

    Um, E.S.

    2013-01-01

    mod- eling of the acoustic wave equation: Geophysics, 39,solution analysis of acoustic wave equation in the Laplace-solutions to the acoustic wave equation in the Laplace-

  5. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California /

    E-Print Network [OSTI]

    Helble, Tyler Adam

    2013-01-01

    61 3.2 Passive acoustic recording of transiting humpback100 Chapter 4 Calibrating passive acoustic monitoring: whaledensity estimates from passive acoustics . . . . . . .

  6. Heating by Acoustic Waves of Multiphase Media

    E-Print Network [OSTI]

    Doron Chelouche

    2007-08-02

    We study the emission and dissipation of acoustic waves from cool dense clouds in pressure equilibrium with a hot, volume-filling dilute gas component. In our model, the clouds are exposed to a source of ionizing radiation whose flux level varies with time, forcing the clouds to pulsate. We estimate the rate at which acoustic energy is radiated away by an ensemble of clouds and the rate at which it is absorbed by, and dissipated in, the hot dilute phase. We show that acoustic energy can be a substantial heating source of the hot gas phase when the mass in the cool component is a substantial fraction of the total gas mass. We investigate the applicability of our results to the multiphase media of several astrophysical systems, including quasar outflows and cooling flows. We find that acoustic heating can have a substantial effect on the thermal properties of the hot phase in those systems.

  7. Institute of Fluid Mechanics and Engineering Acoustics

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Institute of Fluid Mechanics and Engineering Acoustics Large Kundt's tubes Click to insert the image of the facility or test-rig Application area Facility Mechanical Property measurement Physical

  8. Institute of Fluid Mechanics and Engineering Acoustics

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Institute of Fluid Mechanics and Engineering Acoustics Sound Transmission Lab Click to insert the image of the facility or test-rig Application area Facility Mechanical Property measurement Physical

  9. acoustic anisotropy vs. depth, A:162, 306

    E-Print Network [OSTI]

    /aluminum ratio; thorium/aluminum ratio; titanium/aluminum ratio; uranium/alu- minum ratio; vanadium acoustic anisotropy anoxic environment deposition, A:260, 262 lithologic units, A:59, 116­118 synthesis, A

  10. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    Broader source: Energy.gov [DOE]

    Novel sensor design based on acoustics. Determine in real-timeand in a single sensor packagemultiple parameters: temperature, pressure, fluid flow; and fluid properties, such as density, viscosity, fluid composition.

  11. Surface acoustic wave dust deposition monitor

    DOE Patents [OSTI]

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  12. Application of electro acoustics for dewatering pharmaceutical sludge

    SciTech Connect (OSTI)

    Golla, P.S.; Johnson, H.W. ) Senthilnathan, P.R. )

    1992-02-01

    Application of electro acoustic principles for dewatering has been developed by Battelle Institute. The Department of Energy, Battelle Institute, and Ashbrook-Simon-Hartley, have jointly developed an Electro Acoustic Dewatering press (EAD press). The EAD press applies a combination of mechanical pressure, electrical current and ultrasonics. This press is utilized after conventional dewatering devices and can remove up to 50% water from filtered sludge cake at a fraction of the cost incurred in existing thermal drying devices. The dominant mechanism of sludge dewatering by EAD press is electro-osmosis due to the application of a direct current field. Electro-osmosis is caused by an electrical double layer of oppositely charged ions formed at the solid liquid interface, which is characterized by zeta potential. The ultrasonic fields help electro-osmosis by consolidation of the filter cake and by release of inaccessible liquid. The EAD press has been tested successfully on a variety of materials including apple pomace, corn gluten, sewage sludge, and coal fines. A three week long full scale trial was conducted successfully at a pharmaceutical industry to determine the application of this technology for dewatering waste activated sludge.

  13. AN ACOUSTICALLY DRIVEN MAGNETIZED TARGET FUSION REACTOR

    SciTech Connect (OSTI)

    Laberge, Michel [General Fusion Inc., Vancouver (Canada)

    2009-07-26

    We propose a new acoustic compression scheme for a MTF power plant. A strong acoustic wave is produced by piston impacts. The wave focuses in liquid PbLi to compress a pre-formed FRC plasma. Simulations indicate the possibility of building an economical 60 MWe power plant. A proof-of-principle experiment produces a small D-D fusion yield of 2000 neutrons per shot.

  14. Tunable damper for an acoustic wave guide

    DOE Patents [OSTI]

    Rogers, Samuel C. (Knoxville, TN)

    1984-01-01

    A damper for tunably damping acoustic waves in an ultrasonic waveguide is provided which may be used in a hostile environment such as a nuclear reactor. The area of the waveguide, which may be a selected size metal rod in which acoustic waves are to be damped, is wrapped, or surrounded, by a mass of stainless steel wool. The wool wrapped portion is then sandwiched between tuning plates, which may also be stainless steel, by means of clamping screws which may be adjusted to change the clamping force of the sandwiched assembly along the waveguide section. The plates are preformed along their length in a sinusoidally bent pattern with a period approximately equal to the acoustic wavelength which is to be damped. The bent pattern of the opposing plates are in phase along their length relative to their sinusoidal patterns so that as the clamping screws are tightened a bending stress is applied to the waveguide at 180.degree. intervals along the damping section to oppose the acoustic wave motions in the waveguide and provide good coupling of the wool to the guide. The damper is tuned by selectively tightening the clamping screws while monitoring the amplitude of the acoustic waves launched in the waveguide. It may be selectively tuned to damp particular acoustic wave modes (torsional or extensional, for example) and/or frequencies while allowing others to pass unattenuated.

  15. Current Titles

    SciTech Connect (OSTI)

    Various

    2006-06-01

    This booklet is published for those interested in current research being conducted at the National Center for Electron Microscopy. The NCEM is a DOE-designated national user facility and is available at no charge to qualified researchers. Access is controlled by an external steering committee. Interested researchers may contact Jane Cavlina, Administrator, at 510/486-6036.

  16. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Patents [OSTI]

    Kaduchak, Gregory; Ward, Michael D

    2014-10-21

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  17. Apparatus for separating particles utilizing engineered acoustic contrast capture particles

    DOE Patents [OSTI]

    Kaduchak, Gregory (Los Alamos, NM); Ward, Michael D. (Los Alamos, NM)

    2011-12-27

    An apparatus for separating particles from a medium includes a capillary defining a flow path therein that is in fluid communication with a medium source. The medium source includes engineered acoustic contrast capture particle having a predetermined acoustic contrast. The apparatus includes a vibration generator that is operable to produce at least one acoustic field within the flow path. The acoustic field produces a force potential minima for positive acoustic contrast particles and a force potential minima for negative acoustic contrast particles in the flow path and drives the engineered acoustic contrast capture particles to either the force potential minima for positive acoustic contrast particles or the force potential minima for negative acoustic contrast particles.

  18. 11. Acoustic waves and shocks 11.1 Acoustic waves of low amplitude

    E-Print Network [OSTI]

    Pohl, Martin Karl Wilhelm

    11. Acoustic waves and shocks 11.1 Acoustic waves of low amplitude Let us consider an adiabatic (or velocity of sound waves is constant. Does that still hold for sound waves of finite amplitude? Equation 11. This is the result of the non-linear nature of the hydrodynamical equations. On should note that wave damping, e

  19. Synthesis of anisotropic swirling surface acoustic waves by inverse filter, towards integrated generators of acoustical vortices

    E-Print Network [OSTI]

    Riaud, Antoine; Charron, Eric; Bussonnière, Adrien; Matar, Olivier Bou

    2015-01-01

    From radio-electronics signal analysis to biological samples actuation, surface acoustic waves (SAW) are involved in a multitude of modern devices. Despite this versatility, SAW transducers developed up to date only authorize the synthesis of the most simple standing or progressive waves such as plane and focused waves. In particular, acoustical integrated sources able to generate acoustical vortices (the analogue of optical vortices) are missing. In this work, we propose a flexible tool based on inverse filter technique and arrays of SAW transducers enabling the synthesis of prescribed complex wave patterns at the surface of anisotropic media. The potential of this setup is illustrated by the synthesis of a 2D analog of 3D acoustical vortices, namely "swirling surface acoustic waves". Similarly to their 3D counterpart, they appear as concentric structures of bright rings with a phase singularity in their center resulting in a central dark spot. Swirling SAW can be useful in fragile sensors whose neighborhood...

  20. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOE Patents [OSTI]

    Vo-Dinh, Tuan (Knoxville, TN); Norton, Stephen J. (Raleigh, NC)

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  1. Current Contracts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecoveryplanningCoalSocialFrameworks AppliedCurrent Contracts

  2. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, W.B. III.

    1989-02-14

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be performed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described. 6 figs.

  3. Dual excitation acoustic paramagnetic logging tool

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1989-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in gelogical formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleous present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth's magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation. The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores. The Dual Excitation Acoustic Paramagnetic Logging Tool employing two acoustic sources is also described.

  4. Laser and acoustic lens for lithotripsy

    DOE Patents [OSTI]

    Visuri, Steven R. (Livermore, CA); Makarewicz, Anthony J. (San Ramon, CA); London, Richard A. (Orinda, CA); Benett, William J. (Livermore, CA); Krulevitch, Peter (Pleasanton, CA); Da Silva, Luiz B. (Pleasanton, CA)

    2002-01-01

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.

  5. Acoustic clouds: standing sound waves around a black hole analogue

    E-Print Network [OSTI]

    Carolina L. Benone; Luis C. B. Crispino; Carlos Herdeiro; Eugen Radu

    2015-01-28

    Under certain conditions sound waves in fluids experience an acoustic horizon with analogue properties to those of a black hole event horizon. In particular, a draining bathtub-like model can give rise to a rotating acoustic horizon and hence a rotating black hole (acoustic) analogue. We show that sound waves, when enclosed in a cylindrical cavity, can form stationary waves around such rotating acoustic black holes. These acoustic perturbations display similar properties to the scalar clouds that have been studied around Kerr and Kerr-Newman black holes; thus they are dubbed acoustic clouds. We make the comparison between scalar clouds around Kerr black holes and acoustic clouds around the draining bathtub explicit by studying also the properties of scalar clouds around Kerr black holes enclosed in a cavity. Acoustic clouds suggest the possibility of testing, experimentally, the existence and properties of black hole clouds, using analog models.

  6. EUV detection of high-frequency surface acoustic waves

    E-Print Network [OSTI]

    Siemens, Mark

    We use coherent extreme ultraviolet radiation to probe surface acoustic wave propagation in nickel-on-sapphire nanostructures. We observe no acoustic dispersion over SAW wavelengths down to 200 nm, meaning the SAW propagation ...

  7. Search for Acoustic Signals from Ultra-High Energy Neutrinos...

    Office of Scientific and Technical Information (OSTI)

    Search for Acoustic Signals from Ultra-High Energy Neutrinos in 1500 Km3 of Sea Water Citation Details In-Document Search Title: Search for Acoustic Signals from Ultra-High Energy...

  8. 13.853 Computational Ocean Acoustics, Spring 2003

    E-Print Network [OSTI]

    Schmidt, Henrik

    Wave equations for fluid and visco-elastic media. Wave-theory formulations of acoustic source radiation and seismo-acoustic propagation in stratified ocean waveguides. Wavenumber Integration and Normal Mode methods for ...

  9. Anisotropic Complementary Acoustic Metamaterial for Canceling out Aberrating Layers

    E-Print Network [OSTI]

    Shen, Chen

    In this paper, we investigate a type of anisotropic, acoustic complementary metamaterial (CMM) and its application in restoring acoustic fields distorted by aberrating layers. The proposed quasi two-dimensional (2D), ...

  10. Acoustic measurement of the Deepwater Horizon Macondo well flow rate

    E-Print Network [OSTI]

    Camilli, Richard

    On May 31, 2010, a direct acoustic measurement method was used to quantify fluid leakage rate from the Deepwater Horizon Macondo well prior to removal of its broken riser. This method utilized an acoustic imaging sonar and ...

  11. Ultrafast photo-acoustic spectroscopy of super-cooled liquids

    E-Print Network [OSTI]

    Klieber, Christoph

    2010-01-01

    Picosecond laser ultrasonic techniques for acoustic wave generation and detection were adapted to probe longitudinal and transverse acoustic waves in liquids at gigahertz frequencies. The experimental effort was designed ...

  12. 13.811 Advanced Structural Dynamics and Acoustics, Spring 2004

    E-Print Network [OSTI]

    Schmidt, Henrik

    Foundations of 3D elasticity. Fluid and elastic wave equations. Elastic and plastic waves in rods and beams. Waves in plates. Interaction with an acoustic fluid. Dynamics and acoustics of cylindrical shells. Radiation and ...

  13. Oscillatory Flame Response in Acoustically Coupled Fuel Droplet Combustion

    E-Print Network [OSTI]

    Sevilla Esparza, Cristhian Israel

    2013-01-01

    acoustic excitation. The thermoacoustic instability fosteredgain motivation from thermoacoustic phenomena pervasive into the quantification of thermoacoustic instabil- ity in an

  14. Broad-band acoustic hyperbolic metamaterial

    E-Print Network [OSTI]

    Shen, Chen; Sui, Ni; Wang, Wenqi; Cummer, Steven A; Jing, Yun

    2015-01-01

    Acoustic metamaterials (AMMs) are engineered materials, made from subwavelength structures, that exhibit useful or unusual constitutive properties. There has been intense research interest in AMMs since its first realization in 2000 by Liu et al. A number of functionalities and applications have been proposed and achieved using AMMs. Hyperbolic metamaterials are one of the most important types of metamaterials due to their extreme anisotropy and numerous possible applications, including negative refraction, backward waves, spatial filtering, and subwavelength imaging. Although the importance of acoustic hyperbolic metamaterials (AHMMs) as a tool for achieving full control of acoustic waves is substantial, the realization of a broad-band and truly hyperbolic AMM has not been reported so far. Here, we demonstrate the design and experimental characterization of a broadband AHMM that operates between 1.0 kHz and 2.5 kHz.

  15. Active micromixer using surface acoustic wave streaming

    DOE Patents [OSTI]

    Branch; Darren W. (Albuquerque, NM), Meyer; Grant D. (Ithaca, NY), Craighead; Harold G. (Ithaca, NY)

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  16. Optical frequency standards for gravitational wave detection using satellite Doppler velocimetry

    E-Print Network [OSTI]

    Vutha, Amar C

    2015-01-01

    Gravitational waves imprint apparent Doppler shifts on the frequency of photons propagating between an emitter and detector of light. This forms the basis of a method to detect gravitational waves using Doppler velocimetry between pairs of satellites. Such detectors, operating in the milli-hertz gravitational frequency band, could lead to the direct detection of gravitational waves. The crucial component in such a detector is the frequency standard on board the emitting and receiving satellites. We point out that recent developments in atomic frequency standards have led to devices that are approaching the sensitivity required to detect gravitational waves from astrophysically interesting sources. The sensitivity of satellites equipped with optical frequency standards for Doppler velocimetry is examined, and a design for a robust, space-capable optical frequency standard is presented.

  17. Optical frequency standards for gravitational wave detection using satellite Doppler velocimetry

    E-Print Network [OSTI]

    Amar C. Vutha

    2015-06-24

    Gravitational waves imprint apparent Doppler shifts on the frequency of photons propagating between an emitter and detector of light. This forms the basis of a method to detect gravitational waves using Doppler velocimetry between pairs of satellites. Such detectors, operating in the milli-hertz gravitational frequency band, could lead to the direct detection of gravitational waves. The crucial component in such a detector is the frequency standard on board the emitting and receiving satellites. We point out that recent developments in atomic frequency standards have led to devices that are approaching the sensitivity required to detect gravitational waves from astrophysically interesting sources. The sensitivity of satellites equipped with optical frequency standards for Doppler velocimetry is examined, and a design for a robust, space-capable optical frequency standard is presented.

  18. Excitation of nonlinear electron acoustic waves Francesco Valentini

    E-Print Network [OSTI]

    California at San Diego, University of

    Excitation of nonlinear electron acoustic waves Francesco Valentini Dipartimento di Fisica and INFM acoustic waves EAWs and the stability of the EAWs against decay. An EAW is a nonlinear wave- linear wave structures can exist in a plasma, even at low amplitude. They called these waves electron-acoustic

  19. Trapping and Frequency Variability in Electron Acoustic Waves

    E-Print Network [OSTI]

    California at San Diego, University of

    Trapping and Frequency Variability in Electron Acoustic Waves C.F. Driscoll, F. Anderegg, D 92093 USA Abstract. Electron Acoustic Waves (EAWs) with a phase velocity less than twice the plasma. Keywords: add some here PACS: 52.27.Jt, 52.35.Fp, 52.35.Sb Electron Acoustic Waves (EAWs) are the low

  20. Diffusing acoustic wave spectroscopy M. L. Cowan,1

    E-Print Network [OSTI]

    Page, John

    Diffusing acoustic wave spectroscopy M. L. Cowan,1 I. P. Jones,1, * J. H. Page,1,2, and D. A. Weitz called diffusing acoustic wave spec- troscopy DAWS . In this technique, the motion of the scatterers e the particle velocity correlation function. Potential appli- cations of diffusing acoustic wave spectroscopy

  1. Excitation and Decay of Electron Acoustic Waves Francesco Valentini

    E-Print Network [OSTI]

    California at San Diego, University of

    Excitation and Decay of Electron Acoustic Waves Francesco Valentini , Thomas M. O'Neil and Daniel H) simulation is used to investigate the excitation of electron acoustic waves (EAWs) by a driver electric field structures can exist in a plasma even at low amplitude. They called these waves electron-acoustic waves (EAW

  2. May 31, 2005 Reflection Of Microwave Pulses From Acoustic Waves

    E-Print Network [OSTI]

    May 31, 2005 . Reflection Of Microwave Pulses From Acoustic Waves: Summary of Experimental of an acoustic wave as a reflecting virtual interface for propagating impulses. It is by now well accepted (e.g., see [2, 7, 11, 14]) that acoustic pressure waves will interact with electromagnetic signals in ways

  3. 2011201120112011 2011 Symposium on Piezoelectricity, Acoustic waves, and Device Application

    E-Print Network [OSTI]

    Chen, Baoquan

    2011201120112011 2011 Symposium on Piezoelectricity, Acoustic waves, and Device Application://web.siat.ac.cn/spawda2011/ 1 2011 2011 12 9 -11 IEEE Theory of Piezoelectricity; Bulk and Surface Acoustic Waves; MEMS, Acoustic waves, and Device Application 12121212 9999 ----11111111 Dec. 9-11, Shenzhen Institutes

  4. Cell separation using tilted-angle standing surface acoustic waves

    E-Print Network [OSTI]

    Dao, Ming

    Cell separation using tilted-angle standing surface acoustic waves Xiaoyun Dinga,1 , Zhangli Pengb for studying cell properties, disease diagnostics, and therapeutics. Cell sorting by acoustic waves offers diagnostics. In this work, we introduce a unique configuration of tilted-angle standing surface acoustic waves

  5. Experimental Investigation of Electron-Acoustic Waves in Electron Plasmas

    E-Print Network [OSTI]

    California at San Diego, University of

    Experimental Investigation of Electron-Acoustic Waves in Electron Plasmas Andrey A. Kabantsev , F Electron-acoustic wave (EAW) solutions of the linearized electrostatic Vlasov equations have usually been USA 92093-0319 Dipt. di Fisica and INFM, Univ. della Calabria, 87036 Rende, Italy Abstract. Electron-acoustic

  6. DIFFUSING ACOUSTIC WAVE SPECTROSCOPY: FIELD FLUCTUATION SPECTROSCOPY WITH MULTIPLY

    E-Print Network [OSTI]

    Page, John

    DIFFUSING ACOUSTIC WAVE SPECTROSCOPY: FIELD FLUCTUATION SPECTROSCOPY WITH MULTIPLY SCATTERED Martyrs, B.P. 166, 38042 Grenoble Cedex 9, France Abstract. Diffusing Acoustic Wave Spectroscopy (DAWS that acoustic waves, and ultrasonic waves in particular, are playing in understanding the rich diversity of wave

  7. ACOUSTIC PLANE WAVE A. CHRISTOFFEL EQUATIONS FOR ISOTROPIC AND

    E-Print Network [OSTI]

    Duffy, Thomas S.

    Appendix 3 ACOUSTIC PLANE WAVE PROPERTIES A. CHRISTOFFEL EQUATIONS FOR ISOTROPIC AND ANISOTROPICI/; + - 2cl(/xl.y (C1:1 + (1'13 + (el:l + (c1:1 + T ACOUSTIC PLANE WAVE PROI'ERTIES 385 ORTHORHOMBIC ell- 0 + C SIIl- () 2 44 ! a quasishear wave, (\\ 'II (~ _ \\1/( (J~, ACOUSTIC PLANE WAVE PROPERTIES 387 (k

  8. Acoustics 2000 1 The Two Dimensional Numerical Modeling

    E-Print Network [OSTI]

    -difference methods have often been used. This report terms the wave equations suited to waves in fluids, acoustic, Sven Treitel, and Alford, 1976) but the acoustic wave equations have also been used for geophysical. Key features of the model at present are: (i) The use of acoustic wave equation (ii) Time domain

  9. Theory of High Frequency Acoustic Wave Scattering by Turbulent Flames

    E-Print Network [OSTI]

    Lieuwen, Timothy C.

    of the wave equation and assumes that the smallest scales of flame wrinkling are much larger than the acoustic the integral equation approach used in this paper to assess other characteristics of acoustic waveTheory of High Frequency Acoustic Wave Scattering by Turbulent Flames TIM LIEUWEN* School

  10. Development of an acoustic wave sensor for biological

    E-Print Network [OSTI]

    Turova, Varvara

    -Jacobi equation can be rewritten as or Application to the propagation of surface acoustic waves Velocity contour . Comparison with the eikonal equation yields the condition Acoustic waves in anisotropic crystals obeyMotivation Development of an acoustic wave sensor for biological and medical applications

  11. Technical Report 2010-2 Smoothed Particle Hydrodynamics in Acoustic

    E-Print Network [OSTI]

    Negrut, Dan

    and architectural acoustics can be addressed by solving the linear wave equation with an appropriate numericalTechnical Report 2010-2 Smoothed Particle Hydrodynamics in Acoustic Simulations Philipp Hahn, Dan Lagrangian technique, called Smoothed Particle Hydrodynamics (SPH), as a method for acoustic simulation

  12. A Computational Model for Sound Field Absorption by Acoustic Arrays

    E-Print Network [OSTI]

    . We then formulate the acoustic wave equation with the absorption boundary coeÆcient in the frequency the sound absorption property of arrays of micro-acoustic actuators at a control surface. We use the waveA Computational Model for Sound Field Absorption by Acoustic Arrays H. T. Banks #3; D. G. Cole z K

  13. Quantitative Thermo-acoustics and related problems Guillaume Bal

    E-Print Network [OSTI]

    Biasutti, Michela

    Quantitative Thermo-acoustics and related problems Guillaume Bal Department of Applied Physics of Mathematics, University of Washington, Seattle, WA 98195 E-mail: tzhou@math.washington.edu Abstract. Thermo-acoustic in tissues with the good resolution properties of ultrasounds. Thermo-acoustic imaging may be decomposed

  14. An acoustic wave equation based on viscoelasticity

    E-Print Network [OSTI]

    Andrzej Hanyga

    2014-01-30

    An acoustic wave equation for pressure accounting for viscoelastic attenuation is derived from viscoelastic equations of motion. It is assumed that the relaxation moduli are completely monotonic. The acoustic equation differs significantly from the equations proposed by Szabo (1994) and in several other papers. Integral representations of dispersion and attenuation are derived. General properties and asymptotic behavior of attenuation and dispersion in the low and high frequency range are studied. The results are compatible with experiments. The relation between the asymptotic properties of attenuation and wavefront singularities is examined. The theory is applied to some classes of viscoelastic models and to the quasi-linear attenuation reported in seismology.

  15. Acoustic microscope surface inspection system and method

    DOE Patents [OSTI]

    Khuri-Yakub, Butrus T. (Palo Alto, CA); Parent, Philippe (Chilly-Mazarin, FR); Reinholdtsen, Paul A. (Seattle, WA)

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  16. Acoustic microscope surface inspection system and method

    DOE Patents [OSTI]

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  17. Low-frequency acoustic atomization with oscillatory flow around micropillars in a microfluidic device

    SciTech Connect (OSTI)

    Cheung, Yin Nee E-mail: mtnwong@ntu.edu.sg; Wong, Teck Neng E-mail: mtnwong@ntu.edu.sg; Nguyen, Nam Trung

    2014-10-06

    This letter reports a low frequency acoustic atomization technique with oscillatory extensional flow around micropillars. Large droplets passing through two micropillars are elongated. Small droplets are then produced through the pinch-off process at the spindle-shape ends. As the actuation frequency increases, the droplet size decreases with increasing monodispersity. This method is suitable for in-situ mass production of fine droplets in a multi-phase environment without external pumping. Small particles encapsulation was demonstrated with the current technique.

  18. Method and apparatus for acoustic imaging of objects in water

    DOE Patents [OSTI]

    Deason, Vance A.; Telschow, Kenneth L.

    2005-01-25

    A method, system and underwater camera for acoustic imaging of objects in water or other liquids includes an acoustic source for generating an acoustic wavefront for reflecting from a target object as a reflected wavefront. The reflected acoustic wavefront deforms a screen on an acoustic side and correspondingly deforms the opposing optical side of the screen. An optical processing system is optically coupled to the optical side of the screen and converts the deformations on the optical side of the screen into an optical intensity image of the target object.

  19. Ocean Climate Change: Comparison of Acoustic

    E-Print Network [OSTI]

    Frandsen, Jannette B.

    Ocean Climate Change: Comparison of Acoustic Tomography, Satellite Altimetry, and Modeling The ATOC to thermal expansion. Interpreting climate change signals from fluctuations in sea level is therefore in the advective heat flux. Changes in oceanic heat storage are a major expected element of future climate shifts

  20. Observations of Solar Flare Doppler Shift Oscillations with the Bragg Crystal Spectrometer on Yohkoh

    E-Print Network [OSTI]

    John T. Mariska

    2005-01-06

    Oscillations in solar coronal loops appear to be a common phenomenon. Transverse and longitudinal oscillations have been observed with both the Transition Region and Coronal Explorer and Extreme Ultraviolet Imaging Telescope imaging experiments. Damped Doppler shift oscillations have been observed in emission lines from ions formed at flare temperatures with the Solar Ultraviolet Measurements of Emitted Radiation Spectrometer. These observations provide valuable diagnostic information on coronal conditions and may help refine our understanding of coronal heating mechanisms. I have initiated a study of the time dependence of Doppler shifts measured during flares with the Bragg Crystal Spectrometer (BCS) on Yohkoh. This Letter reports the detection of oscillatory behavior in Doppler shifts measured as a function of time in the emission lines of S XV and Ca XIX. For some flares, both lines exhibit damped Doppler shift oscillations with amplitudes of a few km/s and periods and decay times of a few minutes. The observations appear to be consistent with transverse oscillations. Because the BCS observed continuously for almost an entire solar cycle, it provides numerous flare data sets, which should permit an excellent characterization of the average properties of the oscillations.

  1. Doppler Shift of the de Broglie Waves- Some New Results from Very Old Concepts

    E-Print Network [OSTI]

    Sanchari De; Somenath Chakrabarty

    2015-02-28

    The Doppler shift of de Broglie wave is obtained for fermions and massive bosons using the conventional form of Lorentz transformations for momentum and energy of the particles. A formalism is developed to obtain the variation of wave length for de Broglie waves with temperature for individual particles using the classic idea of Wien in a many body Fermi gas or massive Bose gas.

  2. Wind Profiling by Doppler Weather Radar Iwan Holleman (holleman@knmi.nl)

    E-Print Network [OSTI]

    Stoffelen, Ad

    Wind Profiling by Doppler Weather Radar Iwan Holleman (holleman@knmi.nl) Royal Netherlands wind profiles at a high temporal resolution. Several algorithms and quality ensuring procedures for the extraction of wind profiles from radar volume data have been published. A comparison and verification

  3. Modeling HSGPS Doppler Errors in Indoor Environments for Pedestrian Dead-Reckoning

    E-Print Network [OSTI]

    Calgary, University of

    Modeling HSGPS Doppler Errors in Indoor Environments for Pedestrian Dead-Reckoning Zhe He, Mark The use of high sensitivity GPS (HSGPS) receivers integrated with dead-reckoning sensors for pedestrian navigation has been broadly investigated and applied in the past decade. Pedestrian dead-reckoning (PDR

  4. Local and global statistics of clear-air Doppler radar Andreas Muschinski

    E-Print Network [OSTI]

    Muschinski, Andreas

    Local and global statistics of clear-air Doppler radar signals Andreas Muschinski CIRES, University 6 October 2003; accepted 30 October 2003; published 27 January 2004. [1] A refined theoretical statistics like locally averaged velocities, local velocity variances, local dissipation rates, and local

  5. Efficient Methods of Doppler Processing for Coexisting Land and Weather Clutter

    E-Print Network [OSTI]

    Candan, Cagatay

    Efficient Methods of Doppler Processing for Coexisting Land and Weather Clutter C¸ a~gatay Candan@metu.edu.tr, aoyilmaz@metu.edu.tr Abstract--The joint suppression of returns from land and weather clutter is required in many radar applications. Although the optimal method of land-weather clutter suppression is known

  6. 3-D laser doppler velocimeter measurements of eccentric annular and labyrinth seals 

    E-Print Network [OSTI]

    Das, Purandar Gururaj

    1993-01-01

    A 3-D laser doppler velocimeter was used to measure the flow field inside a whirling annular and labyrinth seal. The data was collected and phase averaged with the seals operating at a Reynolds number of 24,000 and a ...

  7. Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications

    E-Print Network [OSTI]

    Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing broadening and drizzle growth in shallow liquid clouds remain not well understood. Detailed, cloudscale. Profiling, millimeterwavelength (cloud) radars can provide such observations. In particular, the first three

  8. Interventional Radiology of Male Varicocele: Current Status

    SciTech Connect (OSTI)

    Iaccarino, Vittorio Venetucci, Pietro

    2012-12-15

    Varicocele is a fairly common condition in male individuals. Although a minor disease, it may cause infertility and testicular pain. Consequently, it has high health and social impact. Here we review the current status of interventional radiology of male varicocele. We describe the radiological anatomy of gonadal veins and the clinical aspects of male varicocele, particularly the physical examination, which includes a new clinical and ultrasound Doppler maneuver. The surgical and radiological treatment options are also described with the focus on retrograde and antegrade sclerotherapy, together with our long experience with these procedures. Last, we compare the outcomes, recurrence and persistence rates, complications, procedure time and cost-effectiveness of each method. It clearly emerges from this analysis that there is a need for randomized multicentre trials designed to compare the various surgical and percutaneous techniques, all of which are aimed at occlusion of the anterior pampiniform plexus.

  9. Variations in High Degree Acoustic Mode Frequencies of the Sun during Solar Cycle 23 and 24

    E-Print Network [OSTI]

    Tripathy, S C; Hill, F

    2015-01-01

    We examine continuous measurements of the high-degree acoustic mode frequencies of the Sun covering the period from 2001 July to June 2014. These are obtained through the ring-diagram technique applied to the full-disk Doppler observations made by the Global Oscillation Network Group (GONG). The frequency shifts in the degree range of 180-1200 are correlated with different proxies of solar activity e.g. 10.7 cm radio flux, the International Sunspot Number and the strength of the local magnetic field. In general, a good agreement is found between the shifts and activity indices, and the correlation coefficients are found to be comparable with intermediate degree mode frequencies. Analyzing the frequency shifts separately for the two cycles, we find that cycle 24 is weaker than cycle 23. Since the magnetic activity is known to be different in the two hemisphere, for the first time, we compute the frequency shifts over the two hemispheres separately and find that the shifts also display hemispheric asymmetry; th...

  10. A layered surface acoustic wave gas sensor based on a polyaniline/In2O3 nanofibre composite

    E-Print Network [OSTI]

    Sadek, A Z; Wlodarski, W; Shin, K; Kaner, Richard B; Kalantar-zadeh, K

    2006-01-01

    based layered surface acoustic wave (SAW) sensor has beenA layered surface acoustic wave (SAW) transducer isof the propagating acoustic wave by causing a change in the

  11. Implementation of On-the-Fly Doppler Broadening in MCNP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformation CurrentHenry Bellamy,Impact Assessments Impact

  12. Two-step Doppler cooling of a three-level ladder system with an intermediate metastable level

    E-Print Network [OSTI]

    Caroline Champenois; Gaetan Hagel; Martina Knoop; Marie Houssin; Cedric Zumsteg; Fernande Vedel; Michael Drewsen

    2008-02-14

    Doppler laser cooling of a three-level ladder system using two near-resonant laser fields is analyzed in the case of the intermediate level being metastable while the upper level is short-lived. Analytical as well as numerical results for e.g. obtainable scattering rates and achievable temperatures are presented. When appropriate, comparisons with two-level single photon Doppler laser cooling is made. These results are relevant to recent experimental Doppler laser cooling investigations addressing intercombination lines in alkali-earth metal atoms and quadrupole transitions in alkali-earth metal ions.

  13. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD); Chandran, Ravi (Ellicott City, MD)

    1994-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  14. Pulse combusted acoustic agglomeration apparatus and process

    DOE Patents [OSTI]

    Mansour, Momtaz N. (Columbia, MD)

    1993-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  15. An injectable acoustic transmitter for juvenile salmon

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Zhiqun; Carlson, Thomas J.; Li, Huidong; Xiao, Jie; Myjak, Mitchell J.; Lu, Jun; Martinez, Jayson J.; Woodley, Christa M.; Weiland, Mark A.; Eppard, Matthew B.

    2015-01-29

    Salmon recovery, and the potential detrimental effects of dams on fish, has been attracting national attention in due to great environmental and economic implications. Acoustic Telemetry has been the primary method for studying salmon passage. However, the size of the existing transmitters limits the minimum size of fish that can be studied, introducing bias to the study results. We developed the first acoustic fish transmitter that can be implanted by injection instead of surgery. The new injectable transmitter offers improved performance and 30% weight reduction. Because the new transmitter costs significantly less to use, substantially reduces adverse effects of implantation,more »and provides additional biological benefits for tagged fish, it will become the enabling technology for studying migration behavior and survival of species and sizes of fish that have never been studied before. This will lead to critical information for salmon recovery and the development of fish-friendly hydroelectric systems.« less

  16. Acoustic data transmission through a drillstring

    DOE Patents [OSTI]

    Drumheller, D.S.

    1992-07-07

    A method and apparatus for acoustically transmitting data along a drillstring are presented. In accordance with one embodiment of the present invention, acoustic data signals are conditioned to counteract distortions caused by the drillstring. Preferably, this conditioning step comprises multiplying each frequency component of the data signal by exp ([minus]ikL) where L is the transmission length of the drillstring, k is the wave number in the drillstring at the frequency of each component and i is ([minus]1)[sup 1/2]. In another embodiment of this invention, data signals having a frequency content in at least one passband of the drillstring are generated preferably traveling in only one direction (e.g., up the drillstring) while echoes in the drillstring resulting from the data transmission are suppressed. 20 figs.

  17. Methods And Apparatus For Acoustic Fiber Fractionation

    DOE Patents [OSTI]

    Brodeur, Pierre (Smyrna, GA)

    1999-11-09

    Methods and apparatus for acoustic fiber fractionation using a plane ultrasonic wave field interacting with water suspended fibers circulating in a channel flow using acoustic radiation forces to separate fibers into two or more fractions based on fiber radius, with applications of the separation concept in the pulp and paper industry. The continuous process relies on the use of a wall-mounted, rectangular cross-section piezoelectric ceramic transducer to selectively deflect flowing fibers as they penetrate the ultrasonic field. The described embodiment uses a transducer frequency of approximately 150 kHz. Depending upon the amount of dissolved gas in water, separation is obtained using a standing or a traveling wave field.

  18. Development of a geothermal acoustic borehole televiewer

    SciTech Connect (OSTI)

    Heard, F.E.; Bauman, T.J.

    1983-08-01

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  19. Acoustically determined linear piezoelectric response of lithium niobate up to 1100?V

    SciTech Connect (OSTI)

    Patel, N.; Branch, D. W.; Cular, S.; Schamiloglu, E.

    2014-04-21

    We present a method to measure high voltages using the piezoelectric crystal lithium niobate without using voltage dividers. A 36° Y-X cut lithium niobate crystal was coupled to two acoustic transducers, where direct current voltages were applied from 128–1100?V. The time-of-flight through the crystal was determined to be linearly dependent on the applied voltage. A model was developed to predict the time-delay in response to the applied voltage. The results show a sensitivity of 17 fs/V with a measurement error of 1 fs/V was achievable using this method. The sensitivity of this method can be increased by measuring the acoustic wave after multiple passes through the crystal. This method has many advantages over traditional techniques such as: favorable scalability for larger voltages, ease of use, cost effectiveness, and compactness.

  20. Acoustic cloaking theory BY ANDREW N. NORRIS*

    E-Print Network [OSTI]

    Norris, Andrew

    composition of the cloak is not uniquely defined, but the phase speed and wave velocity of the pseudo-acoustic is for the infinitesimal pressure p(x, t) that satisfies the scalar wave equation in the surrounding fluid, V2 pKp Z 0: ð1 that the modified wave equation in u mimics the exterior equation (1.1) in the entire region U. This is achieved

  1. Acoustic enhancement for photo detecting devices

    DOE Patents [OSTI]

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  2. Extremely Low-Loss Acoustic Phonons in a Quartz Bulk Acoustic Wave Resonator at Millikelvin Temperature

    E-Print Network [OSTI]

    Maxim Goryachev; Daniel L. Creedon; Eugene N. Ivanov; Serge Galliou; Roger Bourquin; Michael E. Tobar

    2012-04-02

    Low-loss, high frequency acoustic resonators cooled to millikelvin temperatures are a topic of great interest for application to hybrid quantum systems. When cooled to 20 mK, we show that resonant acoustic phonon modes in a Bulk Acoustic Wave (BAW) quartz resonator demonstrate exceptionally low loss (with $Q$-factors of order billions) at frequencies of 15.6 and 65.4 MHz, with a maximum $f.Q$ product of 7.8$\\times10^{16}$ Hz. Given this result, we show that the $Q$-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained. Such resonators possess the low losses crucial for electromagnetic cooling to the phonon ground state, and the possibility of long coherence and interaction times of a few seconds, allowing multiple quantum gate operations.

  3. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOE Patents [OSTI]

    Moore, Thomas L. (Livermore, CA); Fisher, Karl A. (Brentwood, CA)

    2005-08-09

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  4. Data Mining Applied to Acoustic Bird Species Recognition

    E-Print Network [OSTI]

    Vilches, Erika; Escobar, Ivan A.; Vallejo, E E; Taylor, C E

    2006-01-01

    11] Witten, I. ; Frank, E. ; Data Mining: Practical MachineData Mining Applied to Acoustic Bird Species Recognitionthe application of data mining techniques to the problem of

  5. Data Mining Applied to Acoustic Bird Species Recognition

    E-Print Network [OSTI]

    Vilches, Erika; Escobar, Ivan A.; Vallejo, E E; Taylor, C E

    2006-01-01

    I. ; Frank, E. ; Data Mining: Practical Machine LearningData Mining Applied to Acoustic Bird Species Recognitionthe application of data mining techniques to the problem of

  6. COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO...

    Open Energy Info (EERE)

    COMPARISON OF ACOUSTIC AND ELECTRICAL IMAGE LOGS FROM THE COSO GEOTHERMAL FIELD, CA Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Proceedings:...

  7. Detection of coherent acoustic oscillations in a quantum electromechanical resonator

    E-Print Network [OSTI]

    Ludwig-Maximilians-Universität, München

    Detection of coherent acoustic oscillations in a quantum electromechanical resonator Florian W electromechanical QEM systems, such as nano- mechanical resonators, the different eigenstates correspond

  8. High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams

    E-Print Network [OSTI]

    Siemens, M.

    2009-01-01

    measurement of surface acoustic waves in thin metal filmsthe generation of surface acoustic waves of high frequency,”and S. M. Cherif, “Surface acoustic waves in the ghz range

  9. Iterative finite-difference solution analysis of acoustic wave equation in the Laplace-Fourier domain

    E-Print Network [OSTI]

    Um, E.S.

    2013-01-01

    mod- eling of the acoustic wave equation: Geophysics, 39,and C. Shin, 2011, 3D acoustic wave form inversion in thesolution analysis of acoustic wave equation in the Laplace-

  10. Dispersion relations for acoustic waves in heterogeneous multi-layered structures contacting with

    E-Print Network [OSTI]

    Turova, Varvara

    Dispersion relations for acoustic waves in heterogeneous multi-layered structures contacting application for the computation of the velocity of acoustic waves excited in complicated multi: Multi-layered structures, Surface acoustic waves, Dispersion relations, Homogenization, Biosensor

  11. Ocean acoustic wave propagation and ray method correspondence: Internal wave fine structure

    E-Print Network [OSTI]

    Tomsovic, Steve

    Ocean acoustic wave propagation and ray method correspondence: Internal wave fine structure 2004 Acoustic wave fields propagating long ranges through the ocean are refracted As acoustic waves propagate long ranges through the deep ocean, they are refracted by inhomogeneities

  12. Laser-induced acoustic wave generation/propagation/interaction in water in various internal channels

    E-Print Network [OSTI]

    2010-01-01

    induced short plane acoustic wave focusing in water. Appl.Laser induced plane acoustic wave generation, propagationAT I O N Laser-induced acoustic wave generation/propagation/

  13. Polyaniline nanofiber based surface acoustic wave gas sensors - Effect of nanofiber diameter on H-2 response

    E-Print Network [OSTI]

    Sadek, A Z; Baker, Christina Opimo; Powell, D A; Wlodarski, W; Kaner, R B; Kalantar-zadeh, K

    2007-01-01

    Nano?ber Based Surface Acoustic Wave Gas Sensors—Effect ofYX LiNbO 3 sur- face-acoustic-wave transducers. The sensorsrapidly mixed, surface acoustic wave (SAW). I. I NTRODUCTION

  14. Acoustic scattering by axisymmertic finite-length bodies with application to fish : measurement and modeling

    E-Print Network [OSTI]

    Reeder, D. Benjamin (Davis Benjamin), 1966-

    2002-01-01

    This thesis investigates the complexities of acoustic scattering by finite bodies in general and by fish in particular through the development of an advanced acoustic scattering model and detailed laboratory acoustic ...

  15. Acoustic And Elastic Reverse-Time Migration: Novel Angle-Domain Imaging Conditions And Applications

    E-Print Network [OSTI]

    Yan, Rui

    2013-01-01

    by solving acoustic wave equation with an explosion source (condition of the acoustic wave equation: ? ? 2 u g ? x ,solves the acoustic two-way wave equation ? 2 2 ? 2 ? 2 ?

  16. A latent-variable modelling approach to the acoustic-to-articulatory mapping problem. I 

    E-Print Network [OSTI]

    Carreira-Perpinan, Miguel A; Renals, Steve

    1999-01-01

    We present a latent variable approach to the acoustic-to-articulatory mapping problem, where different vocal tract configurations can give rise to the same acoustics. In latent variable modelling, the combined acoustic and ...

  17. Soundfield simulation : the prediction and validation of acoustical behavior with compute models

    E-Print Network [OSTI]

    Saad, Omar, 1974-

    2004-01-01

    In the past, acoustical consultants could only try to convince the client/architect that with calculations and geometrical plots they could create an acoustically superb space. Now, by modeling the significant acoustical ...

  18. A Tool for the Spectral Analysis of the Laser Doppler Anemometer Data of the Cambridge Stratified Swirl Burner

    E-Print Network [OSTI]

    Zhou, Ruigang; Balusamy, Saravanan; Hochgreb, Simone

    2012-06-08

    A series of flow fields generated by a turbulent methane/air stratified swirl burner are investigated using laser Doppler anemometer (LDA). The LDA provides flow field measurements with comparatively high temporal resolutions. However, processing...

  19. Method and system to measure temperature of gases using coherent anti-stokes doppler spectroscopy

    DOE Patents [OSTI]

    Rhodes, Mark

    2013-12-17

    A method of measuring a temperature of a noble gas in a chamber includes providing the noble gas in the chamber. The noble gas is characterized by a pressure and a temperature. The method also includes directing a first laser beam into the chamber and directing a second laser beam into the chamber. The first laser beam is characterized by a first frequency and the second laser beam is characterized by a second frequency. The method further includes converting at least a portion of the first laser beam and the second laser beam into a coherent anti-Stokes beam, measuring a Doppler broadening of the coherent anti-Stokes beam, and computing the temperature using the Doppler broadening.

  20. Cavity ring-down spectroscopy measurements of sub-Doppler hyperfine structure

    SciTech Connect (OSTI)

    Long, D. A.; Okumura, M. [Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125 (United States); Havey, D. K.; Hodges, J. T. [Process Measurements Division, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899 (United States); Miller, C. E. [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, California 91109 (United States)

    2010-06-15

    Frequency-stabilized cavity ring-down spectroscopy (FS-CRDS) was used to measure magnetic dipole transitions in the b {sup 1{Sigma}}{sub g}{sup +} (leftarrow) X {sup 3{Sigma}}{sub g}{sup -}(0,0) band of O{sub 2}. The {sup 17}O-containing isotopologues show unresolved hyperfine structure due to magnetic hyperfine splitting in the ground state. The sensitivity and stability of FS-CRDS allow for quantitative sub-Doppler measurements of the hyperfine constants, even when the hyperfine splittings are much smaller than the Doppler width. Unlike saturation spectroscopy, this linear absorption technique can be applied to weak transitions and employed to quantitatively measure intensities and line shapes. This method may be an attractive approach for measuring unresolved hyperfine structure in excited electronic states.

  1. X-ray Doppler Imaging of 44i Boo with Chandra

    E-Print Network [OSTI]

    N. S. Brickhouse; A. K. Dupree; P. R. Young

    2001-10-25

    Chandra High-Energy Transmission Grating observations of the bright eclipsing contact binary 44i Boo show X-ray line profiles which are Doppler-shifted by orbital motions. The X-ray emission spectrum contains a multitude of lines superimposed on a weak continuum, with strong lines of O VIII, Ne X, Fe XVII, and Mg XII. The profiles of these lines from the total observed spectrum show Doppler-broadened widths of ~ 550 km s^{-1}. Line centroids vary with orbital phase, indicating velocity changes of > 180 km s^{-1}. The first-order light curve shows significant variability, but no clear evidence for either primary or secondary eclipses. Flares are observed for all spectral ranges; additionally, the light curve constructed near the peak of the emission measure distribution (T_e = 5 to 8 X 10^6 K) shows quiescent variability as well as flares. The phase-dependences of line profiles and light curves together imply that at least half of the emission is localized at high latitude. A simple model with two regions on the primary star at relatively high latitude reproduces the observed line profile shifts and quiescent light curve. These first clear X-ray Doppler shifts of stellar coronal material illustrate the power of Chandra.

  2. Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media

    DOE Patents [OSTI]

    Nelson, John Stuart (Laguna Niguel, CA); Milner, Thomas Edward (Irvine, CA); Chen, Zhongping (Irvine, CA)

    1999-01-01

    Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

  3. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California /

    E-Print Network [OSTI]

    Helble, Tyler Adam

    2013-01-01

    a solution to the acoustic wave equation, and therefore iswave equation, in which the solution is reduced in computational complexity by assuming the outgoing acoustic

  4. Linear acoustic sensitivity kernels and their applications in shallow water environments

    E-Print Network [OSTI]

    Sarkar, Bikramjit

    2011-01-01

    have on acoustic propagation via the wave equation. TSKwave equation has been previously explored with respect to travel-time sensitivity of peak-arrivals in ocean acoustic

  5. Seismic and Acoustic Investigations of Rock Fall Initiation, Processes, and Mechanics

    E-Print Network [OSTI]

    Zimmer, Valerie Louise

    2011-01-01

    Seismic  and  Acoustic  Investigations  of  Rock  Fall  Initiation,  Processes,  Seismic  and  Acoustic  Investigations  of  Rock  Fall  Initiation,  Processes,  other  seismic  sources  was  an  iterative  process.    

  6. OBSERVATIONS OF THE INTERACTION OF ACOUSTIC WAVES AND SMALL-SCALE MAGNETIC FIELDS IN A QUIET SUN

    SciTech Connect (OSTI)

    Chitta, Lakshmi Pradeep; Kariyappa, R.; Jain, Rekha; Jefferies, Stuart M. E-mail: rkari@iiap.res.in E-mail: stuartj@ifa.hawaii.edu

    2012-01-10

    The effect of the magnetic field on photospheric intensity and velocity oscillations at the sites of small-scale magnetic fields (SMFs) in a quiet Sun near the solar disk center is studied. We use observations made by the G-band filter in the Solar Optical Telescope on board Hinode for intensity oscillations; Doppler velocity, magnetic field, and continuum intensity are derived from an Ni I photospheric absorption line at 6767.8 A using the Michelson Doppler Imager on board the Solar and Heliospheric Observatory. Our analysis shows that both the high-resolution intensity observed in the G band and velocity oscillations are influenced by the presence of a magnetic field. While intensity oscillations are suppressed at all frequencies in strong magnetic field regions compared to weak magnetic field regions, velocity oscillations show an enhancement of power in the frequency band 5.5-7 mHz. We find that there is a drop of 20%-30% in the p-mode power of velocity oscillations within the SMFs when compared to the regions surrounding them. Our findings indicate that the nature of the interaction of acoustic waves with the quiet Sun SMFs is similar to that of large-scale magnetic fields in active regions. We also report the first results of the center-to-limb variation of such effects using the observations of the quiet Sun from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). The independent verification of these interactions using SDO/HMI suggests that the velocity power drop of 20%-30% in p-modes is fairly constant across the solar disk.

  7. ASSIMILATION OF DOPPLER RADAR DATA INTO NUMERICAL WEATHER MODELS

    SciTech Connect (OSTI)

    Chiswell, S.; Buckley, R.

    2009-01-15

    During the year 2008, the United States National Weather Service (NWS) completed an eight fold increase in sampling capability for weather radars to 250 m resolution. This increase is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current NWS operational model domains utilize grid spacing an order of magnitude larger than the radar data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of radar reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution was investigated under a Laboratory Directed Research and Development (LDRD) 'quick hit' grant to determine the impact of improved data resolution on model predictions with specific initial proof of concept application to daily Savannah River Site operations and emergency response. Development of software to process NWS radar reflectivity and radial velocity data was undertaken for assimilation of observations into numerical models. Data values within the radar data volume undergo automated quality control (QC) analysis routines developed in support of this project to eliminate empty/missing data points, decrease anomalous propagation values, and determine error thresholds by utilizing the calculated variances among data values. The Weather Research and Forecasting model (WRF) three dimensional variational data assimilation package (WRF-3DVAR) was used to incorporate the QC'ed radar data into input and boundary conditions. The lack of observational data in the vicinity of SRS available to NWS operational models signifies an important data void where radar observations can provide significant input. These observations greatly enhance the knowledge of storm structures and the environmental conditions which influence their development. As the increase in computational power and availability has made higher resolution real-time model simulations possible, the need to obtain observations to both initialize numerical models and verify their output has become increasingly important. The assimilation of high resolution radar observations therefore provides a vital component in the development and utility of numerical model forecasts for both weather forecasting and contaminant transport, including future opportunities to improve wet deposition computations explicitly.

  8. Event identification by acoustic signature recognition

    SciTech Connect (OSTI)

    Dress, W.B.; Kercel, S.W.

    1995-07-01

    Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and future applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.

  9. Acoustically enhanced remediation of contaminated soils and ground water. Volume 1

    SciTech Connect (OSTI)

    1995-10-01

    The Phase 1 laboratory bench-scale investigation results have shown that acoustically enhanced remediation (AER) technology can significantly accelerate the ground water remediation of non-aqueous phase liquids (NAPLs) in unconsolidated soils. The testing also determined some of the acoustic parameters which maximize fluid and contaminant extraction rates. A technology merit and trade analysis identified the conditions under which AER could be successfully deployed in the field, and an analysis of existing acoustical sources and varying methods for their deployment found that AER technology can be successfully deployed in-situ. Current estimates of deployability indicate that a NAPL plume 150 ft in diameter can be readily remediated. This program focused on unconsolidated soils because of the large number of remediation sites located in this type of hydrogeologic setting throughout the nation. It also focused on NAPLs and low permeability soil because of the inherent difficult in the remediation of NAPLs and the significant time and cost impact caused by contaminated low permeability soils. This overall program is recommended for Phase 2 which will address the technology scaling requirements for a field scale test.

  10. Baryon Acoustic Oscillations from the SDSS DR10 galaxies angular correlation function

    E-Print Network [OSTI]

    Carvalho, G C; Benetti, M; Carvalho, J C; Alcaniz, J S

    2015-01-01

    The 2-point angular correlation function $w(\\theta)$ (2PACF), where $\\theta$ is the angular separation between pairs of galaxies, provides the transversal Baryon Acoustic Oscillation (BAO) signal almost model-independently. In this paper we use 409,337 luminous red galaxies in the redshift range $z = [0.440,0.555]$ obtained from the tenth data release of the Sloan Digital Sky Survey (SDSS DR10) to estimate $\\theta_{\\rm{BAO}}(z)$ from the 2PACF at six redshift {shells}. Since noise and systematics can hide the BAO signature in the $w - \\theta$ plane, we also discuss some criteria to localize the acoustic bump. We identify two sources of model-dependence in the analysis, namely, the value of the acoustic scale from Cosmic Microwave Background (CMB) measurements and the correction in the $\\theta_{\\rm{BAO}}(z)$ position due to projection effects. Constraints on the dark energy equation-of-state parameter w$(z)$ from the $\\theta_{\\rm{BAO}}(z)$ diagram are derived, as well as from a joint analysis with current CMB ...

  11. Baryon Acoustic Oscillations from the SDSS DR10 galaxies angular correlation function

    E-Print Network [OSTI]

    G. C. Carvalho; A. Bernui; M. Benetti; J. C. Carvalho; J. S. Alcaniz

    2015-07-31

    The 2-point angular correlation function $w(\\theta)$ (2PACF), where $\\theta$ is the angular separation between pairs of galaxies, provides the transversal Baryon Acoustic Oscillation (BAO) signal almost model-independently. In this paper we use 409,337 luminous red galaxies in the redshift range $z = [0.440,0.555]$ obtained from the tenth data release of the Sloan Digital Sky Survey (SDSS DR10) to estimate $\\theta_{\\rm{BAO}}(z)$ from the 2PACF at six redshift {shells}. Since noise and systematics can hide the BAO signature in the $w - \\theta$ plane, we also discuss some criteria to localize the acoustic bump. We identify two sources of model-dependence in the analysis, namely, the value of the acoustic scale from Cosmic Microwave Background (CMB) measurements and the correction in the $\\theta_{\\rm{BAO}}(z)$ position due to projection effects. Constraints on the dark energy equation-of-state parameter w$(z)$ from the $\\theta_{\\rm{BAO}}(z)$ diagram are derived, as well as from a joint analysis with current CMB measurements. We find that the standard $\\Lambda$CDM model as well as some of its extensions are in good agreement with these $\\theta_{\\rm{BAO}}(z)$ measurements.

  12. Elastic interface acoustic waves in twinned crystals

    E-Print Network [OSTI]

    Michel Destrade

    2013-04-30

    A new type of Interface Acoustic Waves (IAW) is presented, for single-crystal orthotropic twins bonded symmetrically along a plane containing only one common crystallographic axis. The effective boundary conditions show that the waves are linearly polarized at the interface, either transversally or longitudinally. Then the secular equation is obtained in full analytical form using new relationships for the displacement-traction quadrivector at the interface. For Gallium Arsenide and for Silicon, it is found that the IAWs with transverse (resp. longitudinal) polarization at the interface are of the Stoneley (resp. leaky) type.

  13. Computational method for acoustic wave focusing

    E-Print Network [OSTI]

    A. G. Ramm; S. Gutman

    2006-10-12

    Scattering properties of a material are changed when the material is injected with small acoustically soft particles. It is shown that its new scattering behavior can be understood as a solution of a potential scattering problem with the potential $q$ explicitly related to the density of the small particles. In this paper we examine the inverse problem of designing a material with the desired focusing properties. An algorithm for such a problem is examined from the theoretical as well as from the numerical perspective.

  14. Sound Science: Taking Action with Acoustics

    ScienceCinema (OSTI)

    Sinha, Dipen

    2014-07-21

    From tin whistles to sonic booms, sound waves interact with each other and with the medium through which they travel. By observing these interactions, we can identify substances that are hidden in sealed containers and obtain images of buried objects. By manipulating the ability of sound to push matter around, we can create novel structures and unique materials. Join the Lab's own sound hound, Dipen Sinha, as he describes how he uses fundamental research in acoustics for solving problems in industry, security and health.

  15. Acoustic Emission from Breaking Bamboo Chopstick

    E-Print Network [OSTI]

    Sun-Ting Tsai; Panpan Huang; Li-Min Wang; Zhengning Yang; Chin-De Chang; Tzay-Ming Hong

    2015-09-02

    The acoustic emission from breaking a bamboo chopstick or a bundle of spaghetti is found to exhibit similar behavior as the famous seismic laws of Gutenberg-Richter, Omori, and Bath. By use of a force-sensitive detector, we establish a positive correlation between the sound intensity and the magnitude of tremor. We also succeed at deriving these power laws analytically without invoking the concept of phase transition or self-organized criticality. In essence, geometry is more important than mechanics at rendering the statistical behavior of this crackling sound.

  16. Deep Neural Networks for Acoustic Modeling in Speech Recognition

    E-Print Network [OSTI]

    Cortes, Corinna

    1 Deep Neural Networks for Acoustic Modeling in Speech Recognition Geoffrey Hinton, Li Deng, Dong states as output. Deep neural networks with many hidden layers, that are trained using new methods have views of four research groups who have had recent successes in using deep neural networks for acoustic

  17. NOISE AND ROOM ACOUSTICS DISTORTED SPEECH RECOGNITION BY HMM COMPOSITION

    E-Print Network [OSTI]

    Takiguchi, Tetsuya

    NOISE AND ROOM ACOUSTICS DISTORTED SPEECH RECOGNITION BY HMM COMPOSITION Satoshi NAKAMURA, Tetsuya method of an additive noise to that of the convolutional room acoustics distortion. The HMM composition, 2)Composition of distorted speech and noise HMMs in linear spectral domain. The speaker dependent

  18. Acoustic Cloaking in a Mean Flow Siyang Zhong

    E-Print Network [OSTI]

    Huang, Xun

    towards sound waves. Existing acoustic cloak designs were originally formulated in a stationary medium Acoustic cloak is a metamaterial that shields the cloaked objects from sound waves. The idea of cloaking wave equation. When an object exists, the physical domain can be mapped to the virtual domain

  19. ACOUSTIC WAVE TRAPPING IN ONE-DIMENSIONAL AXISYMMETRIC ARRAYS

    E-Print Network [OSTI]

    ACOUSTIC WAVE TRAPPING IN ONE- DIMENSIONAL AXISYMMETRIC ARRAYS by M. MCIVER (Department of the wave numbers of Rayleigh-Bloch modes for an array of circular plates. An integral equation for the acoustic wave-field in the neighbourhood of such an array is obtained and solved with the use of a Galerkin

  20. PHYSICAL REVIEW B 88, 024303 (2013) Tunable active acoustic metamaterials

    E-Print Network [OSTI]

    Cummer, Steven A.

    2013-01-01

    PHYSICAL REVIEW B 88, 024303 (2013) Tunable active acoustic metamaterials Bogdan-Ioan Popa,* Lucian July 2013) We describe and demonstrate an architecture for active acoustic metamaterials whose types of unit cells that generate metamaterials in which either the effective density or bulk modulus

  1. Mobile Interaction with Remote Worlds: The Acoustic Periscope

    E-Print Network [OSTI]

    Balan, Radu V.

    1 Mobile Interaction with Remote Worlds: The Acoustic Periscope Justinian Rosca Sandra Sudarsky, a periscope is an optical device that allows one to view and navigate the external environment. The acoustic periscope idea. In order to assemble the required func- tionality we resort to audio signal processing (in

  2. Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts

    E-Print Network [OSTI]

    Wang, Zhong L.

    Bulk Acoustic Resonator Based on Piezoelectric ZnO Belts Brent A. Buchine, William L. Hughes, F, a bulk acoustic resonator based on ZnO belts is demonstrated. This device shows a great deal of promise-like geometry, making them ideal candidates as SMR, FBAR, and beam resonators.13 However, handling belts can

  3. DIRECTIONAL PROPAGATION CANCELLATION FOR ACOUSTIC COMMUNICATION ALONG THE DRILL STRING

    E-Print Network [OSTI]

    DIRECTIONAL PROPAGATION CANCELLATION FOR ACOUSTIC COMMUNICATION ALONG THE DRILL STRING Sinan along the drill string to the surface. Normal drilling operations produce in-band acoustic noise at intensities comparable to the transducer output while lossy propagation through the drill string and surface

  4. Montana State University Proprietary 1 Summary of Gun Shot Acoustics

    E-Print Network [OSTI]

    Maher, Robert C.

    Montana State University Proprietary 1 Summary of Gun Shot Acoustics Robert C. Maher, Montana State University 4 April 2006 Audio recordings of gun shots can provide information about the gun location interpreting such recordings arises from reverberation (overlapping acoustic signal reflections) due to the gun

  5. ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT

    E-Print Network [OSTI]

    Firestone, Jeremy

    ACOUSTIC STUDY OF THE UD / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE January 2009 #12;ACOUSTIC STUDY OF THE UNIVERSITY OF DELAWARE / GAMESA WIND TURBINE PROJECT LEWES, DELAWARE Prepared for SUMMARY The University of Delaware (UD), Lewes proposes to locate a Gamesa G90 2.0MW wind turbine

  6. On acoustic cavitation of slightly subcritical bubbles Anthony Harkin

    E-Print Network [OSTI]

    Kaper, Tasso J.

    . When the mean pressure in the liquid is reduced to a value below the vapor pressure, the Blake analysis than the Blake critical radius, in the presence of time-periodic acoustic pressure fields the accuracy of these predictions. Finally, the implications of these findings for acoustic pressure fields

  7. Mean Flow Acoustic Correlations for Dual-Stream Asymmetric Jets

    E-Print Network [OSTI]

    Papamoschou, Dimitri

    Mean Flow ­ Acoustic Correlations for Dual-Stream Asymmetric Jets Preben E. Nielsen* and Dimitri dual-stream jets for the exhaust of turbofan engines has demonstrated the potential for noise acoustic and mean-flow measurements, of several fan-flow deflector configurations in a subscale dual-stream

  8. Optimal control techniques for thermo-acoustic tomography Maitine Bergounioux

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    . These hybrid systems use an electromagnetic pulse as an input and record ultrasound waves as an output-acoustic tomography (TAT) when the heating is realized by means of microwaves, and of photo-acoustic tomography (PAT) when optical heating is used. While in TAT waves of radio frequency range are used to trigger

  9. Acoustic wave propagation in two-phase heterogeneous porous media

    E-Print Network [OSTI]

    J. I. Osypik; N. I. Pushkina; Ya. M. Zhileikin

    2015-03-19

    The propagation of an acoustic wave through two-phase porous media with spatial variation in porosity is studied. The evolutionary wave equation is derived, and the propagation of an acoustic wave is numerically analyzed in application to marine sediments with various physical parameters.

  10. Fresnel approximations for acoustic fields of rectangularly symmetric sources

    E-Print Network [OSTI]

    Mast, T. Douglas

    Fresnel approximations for acoustic fields of rectangularly symmetric sources T. Douglas Masta for determining the acoustic fields of rectangularly symmetric, baffled, time-harmonic sources under the Fresnel. The expressions presented are generalized to three different Fresnel approximations that correspond, respectively

  11. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Nardi, Anthony P. (Burlington, MA)

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  12. Resonant acoustic transducer system for a well drilling string

    DOE Patents [OSTI]

    Kent, William H. (Westford, MA); Mitchell, Peter G. (Concord, MA)

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  13. National Center for Physical Acoustics The University of Mississippi

    E-Print Network [OSTI]

    Gui, Lichuan

    Skals Inst. Biol., U. South. Denmark, Odense, Denmark #12;National Center for Physical Acoustics of wing-beat motions is crucial in developing a model for sound production · Long-focal-length, high The University of Mississippi 1986 Note that acoustic energy is clearly observable to at least 40 kHz. #12

  14. Multiple Simultaneous Acoustic Source Localization in Urban Terrain

    E-Print Network [OSTI]

    Maróti, Miklós

    acoustic sources, eliminate multipath effects, tolerate multiple sensor failures while providing good civilian infrastructure (power and communication network), and robustness against node failures. Figure 1. depicts the acoustic events generated by a typical rifle shot. The muzzle blast produces a spherical wave

  15. STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN

    E-Print Network [OSTI]

    Braun, Douglas C.

    STOCHASTIC SEISMIC EMISSION FROM ACOUSTIC GLORIES AND THE QUIET SUN A.-C. DONEA1, C. LINDSEY2 and D; accepted 8 January 2000) Abstract. Helioseismic images of multipolar active regions show enhanced seismic'. The acoustic glories contain elements that sustain an average seismic emission 50% greater than similar

  16. Acoustic Transmission Loss of Perforated Plates Vincent Phong1

    E-Print Network [OSTI]

    Papamoschou, Dimitri

    Acoustic Transmission Loss of Perforated Plates Vincent Phong1 and Dimitri Papamoschou2 University of California, Irvine, CA 92697, USA A study has been conducted on the acoustic response of perforated plates coefficient of the perforate. The theoretical analysis is based on planar wave propagation through a single

  17. Acoustic velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, Edwin F. (Alamo, CA)

    1986-01-01

    Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  18. Acoustic-velocity measurements in materials using a regenerative method

    DOE Patents [OSTI]

    Laine, E.F.

    1982-09-30

    Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.

  19. Generation of Sound Bullets with a Nonlinear Acoustic Lens

    E-Print Network [OSTI]

    Alessandro Spadoni; Chiara Daraio

    2009-08-31

    Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery, to defense systems, but their performance is limited by their linear operational envelope and complexity. Here we show a dramatic focusing effect and the generation of large amplitude, compact acoustic pulses (sound bullets) in solid and fluid media, enabled by a tunable, highly nonlinear acoustic lens. The lens consists of ordered arrays of granular chains. The amplitude, size and location of the sound bullets can be controlled by varying static pre-compression on the chains. We support our findings with theory, numerical simulations, and corroborate the results experimentally with photoelasticity measurements. Our nonlinear lens makes possible a qualitatively new way of generating high-energy acoustic pulses, enabling, for example, surgical control of acoustic energy.

  20. Thermometric- and Acoustic-Based Beam Power Monitor for Ultra-Bright X-Rays

    SciTech Connect (OSTI)

    Bentsen, Gregory; /Rochester U. /SLAC

    2010-08-25

    A design for an average beam power monitor for ultra-bright X-ray sources is proposed that makes simultaneous use of calorimetry and radiation acoustics. Radiation incident on a solid target will induce heating and ultrasonic vibrations, both of which may be measured to give a fairly precise value of the beam power. The monitor is intended for measuring ultra-bright Free-Electron Laser (FEL) X-ray beams, for which traditional monitoring technologies such as photo-diodes or scintillators are unsuitable. The monitor consists of a Boron Carbide (B{sub 4}C) target designed to absorb most of the incident beam's energy. Resistance temperature detectors (RTD) and piezoelectric actuators are mounted on the outward faces of the target to measure the temperature changes and ultrasonic vibrations induced by the incident beam. The design was tested using an optical pulsed beam (780 nm, 120 and 360 Hz) from a Ti:sapphire oscillator at several energies between 0.8 and 2.6 mJ. The RTDs measured an increase in temperature of about 10 K over a period of several minutes. The piezoelectric sensors recorded ringing acoustic oscillations at 580 {+-} 40 kHz. Most importantly, the amplitude of the acoustic signals was observed to scale linearly with beam power up to 2 mJ of pulse energy. Above this pulse energy, the vibrational signals became nonlinear. Several causes for this nonlinearity are discussed, including amplifier saturation and piezoelectric saturation. Despite this nonlinearity, these measurements demonstrate the feasibility of such a beam power measurement device. The advantage of two distinct measurements (acoustic and thermometric) provides a useful method of calibration that is unavailable to current LCLS diagnostics tools.

  1. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect (OSTI)

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  2. Acoustic Mine Detection UsingAcoustic Mine Detection Using the Navy' CASS/GRAB Modelthe Navy' CASS/GRAB Model

    E-Print Network [OSTI]

    Chu, Peter C.

    Acoustic Mine Detection UsingAcoustic Mine Detection Using the Navy' CASS/GRAB Modelthe Navy' CASS hunting component of the U.S. Navy's Mine Hunting and Countermeasure ships. #12;Detection Sonar and MOODS. Global GDEM has a 30'30' resolution U.S. Navy's Operationally important areas contain resolutions

  3. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOE Patents [OSTI]

    Vail, W.B. III.

    1991-08-27

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation. 9 figures.

  4. Methods and apparatus for measurement of the resistivity of geological formations from within cased wells in presence of acoustic and magnetic energy sources

    DOE Patents [OSTI]

    Vail, III, William B. (Bothell, WA)

    1991-01-01

    Methods and apparatus are provided for measuring the acoustically modulated electronic properties of geological formations and cement layers adjacent to cased boreholes. Current is passed from an electrode in electrical contact with the interior of the borehole casing to an electrode on the surface of the earth. Voltage measuring electrodes in electrical contact with the interior of the casing measure the voltage at various points thereon. The voltage differences between discrete pairs of the voltage measuring electrodes provide a measurement of the leakage current conducted into formation in the vicinity of those electrodes. Simultaneously subjecting the casing and formation to an acoustic source acoustically modulates the leakage current measured thereby providing a measure of the acoustically modulated electronic properties of the adjacent formation. Similarly, methods and apparatus are also described which measure the leakage current into formation while simultaneously subjecting the casing to an applied magnetic field which therefore allows measurement of the magnetically modulated electronic properties of the casing and the adjacent formation.

  5. Extraordinary acoustic transmission mediated by Helmholtz resonators

    SciTech Connect (OSTI)

    Koju, Vijay; Rowe, Ebony; Robertson, William M.

    2014-07-15

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of ? radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  6. Opto-acoustic transducer for medical applications

    DOE Patents [OSTI]

    Benett, W.; Celliers, P.; Da Silva, L.; Glinsky, M.; London, R.; Maitland, D.; Matthews, D.; Krulevich, P.; Lee, A.

    1999-08-31

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control. 7 figs.

  7. ACTIVE REGION MOSS: DOPPLER SHIFTS FROM HINODE/EXTREME-ULTRAVIOLET IMAGING SPECTROMETER OBSERVATIONS

    SciTech Connect (OSTI)

    Tripathi, Durgesh [Inter-University Centre for Astronomy and Astrophysics, Pune University Campus, Pune 411007 (India); Mason, Helen E. [Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom); Klimchuk, James A. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2012-07-01

    Studying the Doppler shifts and the temperature dependence of Doppler shifts in moss regions can help us understand the heating processes in the core of the active regions. In this paper, we have used an active region observation recorded by the Extreme-ultraviolet Imaging Spectrometer (EIS) on board Hinode on 2007 December 12 to measure the Doppler shifts in the moss regions. We have distinguished the moss regions from the rest of the active region by defining a low-density cutoff as derived by Tripathi et al. in 2010. We have carried out a very careful analysis of the EIS wavelength calibration based on the method described by Young et al. in 2012. For spectral lines having maximum sensitivity between log T = 5.85 and log T = 6.25 K, we find that the velocity distribution peaks at around 0 km s{sup -1} with an estimated error of 4-5 km s{sup -1}. The width of the distribution decreases with temperature. The mean of the distribution shows a blueshift which increases with increasing temperature and the distribution also shows asymmetries toward blueshift. Comparing these results with observables predicted from different coronal heating models, we find that these results are consistent with both steady and impulsive heating scenarios. However, the fact that there are a significant number of pixels showing velocity amplitudes that exceed the uncertainty of 5 km s{sup -1} is suggestive of impulsive heating. Clearly, further observational constraints are needed to distinguish between these two heating scenarios.

  8. Portable Doppler interferometer system for shock diagnostics and high speed motion

    SciTech Connect (OSTI)

    Fleming, K.J.; Crump, O.B. Jr.

    1994-05-01

    VISAR (Velocity Interferometer System for Any Reflector) is a system that uses the Doppler effect and is widely used for measuring the velocity of projectiles, detonations, flying plates, shock pressures (particle velocity) and other high speed/high acceleration motion. Other methods of measurement such as accelerometers and pressure gauges have disadvantages in that they are sensitive to radiation, electromagnetic pulses, and their mass can drastically alter the velocity of the projectile. VISAR uses single frequency-single mode laser fight focused onto a target of interest. Reflected fight from the target is collected and sent through a modified, unequal leg Michelson interferometer. In the interferometer the light is split into two components which travel through the legs of the interferometer cavity and are then recombined. When the light recombines, an interference pattern is created which can range from dark (destructive interference) to bright (constructive interference). When the target moves, the reflected laser light experiences a frequency shift (increase) with respect to the frequency from the target in a static condition. Since the Doppler shifted light is split and routed through an unequal leg interferometer cavity, there is a time lag of the light containing the Doppler information at the recombination point in the interferometer. The effect of the time lag is to create a sinusoidally changing interference pattern (commonly called fringes). Since the interferometer time delay, laser wavelength, and the speed of light are known, an accurate measurement of target velocity/acceleration may be measured by analyzing both the number of tinges and the speed of tinge generation (system accuracy is 3--4%).

  9. Observations of dust acoustic waves driven at high frequencies: Finite dust temperature effects and wave interference

    E-Print Network [OSTI]

    Merlino, Robert L.

    Observations of dust acoustic waves driven at high frequencies: Finite dust temperature effects An experiment has been performed to study the behavior of dust acoustic waves driven at high frequencies f 100 are observed--interference effects between naturally excited dust acoustic waves and driven dust acoustic waves

  10. Vehicle Speed Estimation using Acoustic Wave Patterns Volkan Cevher, Member, IEEE, Rama Chellappa, Fellow, IEEE

    E-Print Network [OSTI]

    Cevher, Volkan

    1 Vehicle Speed Estimation using Acoustic Wave Patterns Volkan Cevher, Member, IEEE, Rama Chellappa length, and tire track length by jointly estimating its acoustic wave pattern with a single passive acoustic sensor that records the vehicle's drive-by noise. The acoustic wave pattern is determined using

  11. Strontium Titanate DC Electric Field Switchable and Tunable Bulk Acoustic Wave Solidly Mounted Resonator

    E-Print Network [OSTI]

    York, Robert A.

    Strontium Titanate DC Electric Field Switchable and Tunable Bulk Acoustic Wave Solidly Mounted.3 0/0. Index Terms - Acoustic resonators, bulk acoustic wave devices, delay filters, ferroelectric,4] that can be exploited to realize voltage-switchable bulk-acoustic wave (BAW) devices for RF applications [5

  12. Effective fractional acoustic wave equations in random multiscale media Josselin Garnier

    E-Print Network [OSTI]

    Solna, Knut

    Effective fractional acoustic wave equations in random multiscale media Josselin Garnier satisfaction of the Kramers-Kronig relations. The physical model is a one-dimensional acoustic wave equation@math.uci.edu Fractional wave equations in multiscale media 1 #12;II. ACOUSTIC WAVE PROPAGATION IN RANDOM MEDIA A. Acoustic

  13. An Efficient GPU-based Time Domain Solver for the Acoustic Wave Equation Ravish Mehraa,1

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    An Efficient GPU-based Time Domain Solver for the Acoustic Wave Equation Ravish Mehraa,1 , Nikunj of the acoustic wave equation for the purpose of room acoustics is presented. It is based on adaptive rectangular. Keywords: Time-domain wave equation solver, Room acoustics, GPU-based algorithms. 1. Introduction

  14. Numerical Methods for Acoustic Problems with Complex Geometries Based on Cartesian Grids

    E-Print Network [OSTI]

    Vuik, Kees

    by the linearized Euler equations. All properties of the acoustic waves are encoded in the dispersion relation.2 The Wave Equation and Acoustic Analogies . . . . . . . . . . . . 5 1.2.1 Linear Acoustic Wave Equation. An acoustic wave has a wavelength in space, as well

  15. Droplet Combustion and Non-Reactive Shear-Coaxial Jets with Transverse Acoustic Excitation

    E-Print Network [OSTI]

    Teshome, Sophonias

    2012-01-01

    Related Works in Droplet Combustion . . . . . . . .of Acoustics on Droplet Combustion . . . . . . . . . . . .Fuel Droplet Combustion . . . . . . . . . . . . . . .

  16. Theory of Thermal Motion in Electromagnetically Induced Transparency: Diffusion, Doppler, Dicke and Ramsey

    E-Print Network [OSTI]

    O. Firstenberg; M. Shuker; R. Pugatch; D. R. Fredkin; N. Davidson; A. Ron

    2008-01-30

    We present a theoretical model for electromagnetically induced transparency (EIT) in vapor, that incorporates atomic motion and velocity-changing collisions into the dynamics of the density-matrix distribution. Within a unified formalism we demonstrate various motional effects, known for EIT in vapor: Doppler-broadening of the absorption spectrum; Dicke-narrowing and time-of-flight broadening of the transmission window for a finite-sized probe; Diffusion of atomic coherence during storage of light and diffusion of the light-matter excitation during slow-light propagation; and Ramsey-narrowing of the spectrum for a probe and pump beams of finite-size.

  17. Convergence of Legendre Expansion of Doppler-Broadened Double Differential Elastic Scattering Cross Section

    SciTech Connect (OSTI)

    Arbanas, Goran; Dunn, Michael E; Larson, Nancy M; Leal, Luiz C; Williams, Mark L

    2012-01-01

    Convergence properties of Legendre expansion of a Doppler-broadened double-differential elastic neutron scattering cross section of {sup 238}U near the 6.67 eV resonance at temperature 10{sup 3} K are studied. A variance of Legendre expansion from a reference Monte Carlo computation is used as a measure of convergence and is computed for as many as 15 terms in the Legendre expansion. When the outgoing energy equals the incoming energy, it is found that the Legendre expansion converges very slowly. Therefore, a supplementary method of computing many higher-order terms is suggested and employed for this special case.

  18. Use of a laser doppler vibrometer for high frequency accelerometer characterizations

    SciTech Connect (OSTI)

    Bateman, V.I.; Hansche, B.D.; Solomon, O.M.

    1995-12-31

    A laser doppler vibrometer (LDV) is being used for high frequency characterizations of accelerometers at Sandia National Laboratories (SNL). A LDV with high frequency (up to 1.5 MHz) and high velocity (10 M/s) capability was purchased from a commercial source and has been certified by the Primary Electrical Standards Department at SNL. The method used for this certification and the certification results are presented. Use of the LDV for characterization of accelerometers at high frequencies and of accelerometer sensitivity to cross-axis shocks on a Hopkinson bar apparatus is discussed.

  19. Cloud Properties from Doppler Radar Spectra - a Growing Suite of Information Extraction Algorithms

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D BGene NetworkNuclearDNP 20082 P r o j eCommittee offrom Doppler

  20. 3D acoustic imaging applied to the Baikal Neutrino Telescope

    E-Print Network [OSTI]

    K. G. Kebkal; R. Bannasch; O. G. Kebkal; A. I. Panfilov; R. Wischnewski

    2008-11-07

    A hydro-acoustic imaging system was tested in a pilot study on distant localization of elements of the Baikal underwater neutrino telescope. For this innovative approach, based on broad band acoustic echo signals and strictly avoiding any active acoustic elements on the telescope, the imaging system was temporarily installed just below the ice surface, while the telescope stayed in its standard position at 1100 m depth. The system comprised an antenna with four acoustic projectors positioned at the corners of a 50 meter square; acoustic pulses were "linear sweep-spread signals" - multiple-modulated wide-band signals (10-22 kHz) of 51.2 s duration. Three large objects (two string buoys and the central electronics module) were localized by the 3D acoustic imaging, with a accuracy of ~0.2 m (along the beam) and ~1.0 m (transverse). We discuss signal forms and parameters necessary for improved 3D acoustic imaging of the telescope, and suggest a layout of a possible stationary bottom based 3D imaging setup. The presented technique may be of interest for neutrino telescopes of km3-scale and beyond, as a flexible temporary or as a stationary tool to localize basic telescope elements, while these are completely passive.

  1. Current measuring system

    DOE Patents [OSTI]

    Dahl, D.A.; Appelhans, A.D.; Olson, J.E.

    1997-09-09

    A current measuring system is disclosed comprising a current measuring device having a first electrode at ground potential, and a second electrode; a current source having an offset potential of at least three hundred volts, the current source having an output electrode; and a capacitor having a first electrode electrically connected to the output electrode of the current source and having a second electrode electrically connected to the second electrode of the current measuring device. 4 figs.

  2. Current measurement apparatus

    DOE Patents [OSTI]

    Umans, Stephen D. (Belmont, MA)

    2008-11-11

    Apparatus and methods are provided for a system for measurement of a current in a conductor such that the conductor current may be momentarily directed to a current measurement element in order to maintain proper current without significantly increasing an amount of power dissipation attributable to the current measurement element or adding resistance to assist in current measurement. The apparatus and methods described herein are useful in superconducting circuits where it is necessary to monitor current carried by the superconducting elements while minimizing the effects of power dissipation attributable to the current measurement element.

  3. Acoustic stabilization of electric arc instabilities in nontransferred plasma torches

    SciTech Connect (OSTI)

    Rat, V.; Coudert, J. F.

    2010-03-08

    Electric arc instabilities in dc plasma torches lead to nonhomogeneous treatments of nanosized solid particles or liquids injected within thermal plasma jets. This paper shows that an additional acoustic resonator mounted on the cathode cavity allows reaching a significant damping of these instabilities, particularly the Helmholtz mode of arc oscillations. The acoustic resonator is coupled with the Helmholtz resonator of the plasma torch limiting the amplitude of arc voltage variations. It is also highlighted that this damping is dependent on friction effects in the acoustic resonator.

  4. Study of maximizing acoustic energy coupling to salt 

    E-Print Network [OSTI]

    Hwang, Yng-Jou

    1979-01-01

    STUDY OF MAXIMIZING ACOUSTIC ENERGY COUPLING TO SALT A Thesis by YNG-JOV HNANG Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE December 1979 Major... spaced a=0, N/2 and N, for D/%=16, with correlated photographed simulated images of the beam cross- section; the intense brightness means high acoustic pressure. 71 F I GURE 25 LIST OF FIGURES (con' t. ) Acoustic pressure on the axis of a piston...

  5. Acoustic sand detector for fluid flowstreams

    DOE Patents [OSTI]

    Beattie, Alan G. (Corrales, NM); Bohon, W. Mark (Frisco, TX)

    1993-01-01

    The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.

  6. Electromechanical transducer for acoustic telemetry system

    DOE Patents [OSTI]

    Drumheller, Douglas S. (Cedar Crest, NM)

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  7. Electromechanical transducer for acoustic telemetry system

    DOE Patents [OSTI]

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  8. MHK ISDB/Instruments/Nortek Acoustic Wave and Current Meter | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas:Montezuma,

  9. Characteristics of profiles of gamma-ray burst pulses associated with the Doppler effect of fireballs

    E-Print Network [OSTI]

    Yi-Ping Qin; Zhi-Bin Zhang; Fu-Wen Zhang; Xiao-Hong Cui

    2004-08-31

    In this paper, we derive in a much detail the formula of count rates, in terms of the integral of time, of gamma-ray bursts in the framework of fireballs, where the Doppler effect of the expanding fireball surface is the key factor to be concerned. Effects arising from the limit of the time delay due to the limited regions of the emitting areas in the fireball surface and other factors are investigated. Our analysis shows that the formula of the count rate of fireballs can be expressed as a function of $\\tau $ which is the observation time scale relative to the dynamical time scale of the fireball. The profile of light curves of fireballs depends only on the relative time scale, entirely independent of the real time scale and the real size of the objects. It displays in detail how a cutoff tail, or a turn over, feature (called a cutoff tail problem) in the decay phase of a light curve can be formed. This feature is a consequence of a hot spot in the fireball surface, moving towards the observer, and was observed in a few cases previously. By performing fits to the count rate light curves of six sample sources, we show how to obtain some physical parameters from the observed profile of the count rate of GRBs. In addition, the analysis reveals that the Doppler effect of fireballs could lead to a power law relationship between the $FWHM$ of pulses and energy, which were observed previously by many authors.

  10. Theory of sub-Doppler cooling of three-level {Lambda} atoms in standing light waves

    SciTech Connect (OSTI)

    Kosachev, D.V.; Rozhdestvenskii, Yu.V. [St. Petersburg State Technical Univ. (Russian Federation)

    1994-12-01

    A general theory of cooling of three-level {Lambda} atoms in two standing light waves between which there is a relative spatial phase shift is presented for arbitrary ratios of the intensity and detuning. It is shown that in the case of equal detuning of the light waves, deep (sub-Doppler) cooling of three-level atoms occurs for any values of the spatial phase shift. For zero spatial phase shift, the atoms are strongly cooled due to coherent population trapping in the given atom-field interaction scheme. On the other hand, for the case of different frequency detunings, sub-Doppler cooling of {Lambda} atoms is possible only with a nonzero relative phase shift; it is shown that this is associated with the so-called {open_quotes}Sisyphus{close_quotes} cooling mechanism. The authors underscore that in their scheme neither a polarization gradient of the exciting waves nor a magnetic field is required to achieve this type of cooling pattern; two standing waves acting on different transitions of a {Lambda} atom are sufficient. 13 refs., 10 figs.

  11. Random integral currents

    E-Print Network [OSTI]

    M. Zyskin

    2010-05-12

    For nice functions, invariant means over integral currents (certain generalized surfaces), can be uniquely defined.

  12. Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication: From

    E-Print Network [OSTI]

    Zhou, Shengli

    channel energy is concentrated on a few delay and/or Doppler values [5], [6]. Sparse channel estimation], or Monte Carlo Markov Chain methods [10]. More recently, advances in the new field of compressive sensing data was recorded as part of the SPACE'08 experiment off the coast of Martha's Vineyard, MA, from Oct

  13. Dust acoustic solitons in a charge varying dusty plasma in the presence of ion nonthermality and background nonextensivity

    SciTech Connect (OSTI)

    Benzekka, Moufida; Tribeche, Mouloud [Faculty of Sciences-Physics, Theoretical Physics Laboratory (TPL), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)] [Faculty of Sciences-Physics, Theoretical Physics Laboratory (TPL), University of Bab-Ezzouar, USTHB, B.P. 32, El Alia, Algiers 16111 (Algeria)

    2013-08-15

    Dust acoustic (DA) solitons are addressed in a charge varying dusty plasma in the presence of ion nonthermality and background nonextensivity. A physically meaningful nonthermal nonextensive ion distribution is outlined. The correct non-Maxwellian ion charging current is derived based on the orbit-limited motion theory. Under grain-current balance, the variable dust charge is expressed in terms of the Lambert function. It is found that nonthermality and its nonextensive nature may act concurrently and influence the restoring force and hence the soliton profile. Due to the flexibility provided by the nonextensive parameter, we think that our model should provide a better fit of the space observations.

  14. Mechanical and Acoustic Studies of Deep Ocean Glass Sphere Implosions

    E-Print Network [OSTI]

    Learned, John

    Mechanical and Acoustic Studies of Deep Ocean Glass Sphere Implosions P. W. Gorham, M. Rosen, J. W of the dynamics and kinematics of the events. The mechanical forces on the ancillary mooring hardware during

  15. An Acoustic Study of Underspecified Vowels in Turkish

    E-Print Network [OSTI]

    Lanfranca, Mark

    2012-05-31

    This paper examines the acoustics of underspecification and vowel harmony (VH) in Turkish. In Turkish, vowels in suffixes that change according to VH rules are widely believed to be underspecified for rounding and/or ...

  16. Experimental studies of the acoustic wave field near a borehole

    E-Print Network [OSTI]

    Zhu, Zhenya

    2013-01-01

    A monopole or a dipole source in a fluid borehole generates acoustic waves, part of which propagate along the borehole and the other part enter the formation propagating as P- or S-waves. The refracted waves propagating ...

  17. Nonlinear propagation and control of acoustic waves in phononic superlattices

    E-Print Network [OSTI]

    Jiménez, Noé; Picó, Rubén; García-Raffi, Lluís M; Sánchez-Morcillo, Víctor J

    2015-01-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band-gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g. cubic) nonlinearities, or extremely linear media (where distortion can be cancelled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime.

  18. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOE Patents [OSTI]

    Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    1998-01-01

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching.

  19. Universal Quantum Transducers based on Surface Acoustic Waves

    E-Print Network [OSTI]

    Martin J. A. Schuetz; Eric M. Kessler; Geza Giedke; Lieven M. K. Vandersypen; Mikhail D. Lukin; J. Ignacio Cirac

    2015-10-06

    We propose a universal, on-chip quantum transducer based on surface acoustic waves in piezo-active materials. Because of the intrinsic piezoelectric (and/or magnetostrictive) properties of the material, our approach provides a universal platform capable of coherently linking a broad array of qubits, including quantum dots, trapped ions, nitrogen-vacancy centers or superconducting qubits. The quantized modes of surface acoustic waves lie in the gigahertz range, can be strongly confined close to the surface in phononic cavities and guided in acoustic waveguides. We show that this type of surface acoustic excitations can be utilized efficiently as a quantum bus, serving as an on-chip, mechanical cavity-QED equivalent of microwave photons and enabling long-range coupling of a wide range of qubits.

  20. Laser-excited acoustic oscillations in silver and bismuth nanowires 

    E-Print Network [OSTI]

    Jerebtsov, Sergey N.; Kolomenskii, Alexandre A.; Liu, Haidong; Zhang, Hong; Ye, Zuxin; Luo, Zhiping; Wu, Wenhao; Paulus, Gerhard G.; Schuessler, Hans A.

    2007-01-01

    . The electronic and lattice contributions to the excitation of coherent acoustic phonons are described using a two-temperature model. The excitation is performed at different laser fluences, and the high density of optically induced excitations modifies the state...

  1. Multipole seismoelectric logging while drilling (LWD) for acoustic velocity measurements

    E-Print Network [OSTI]

    Zhu, Zhenya

    2012-01-01

    In seismoelectric well logging, an acoustic wave propagates along a borehole and induces electrical signals along the borehole wall. The apparent velocities of these seismoelectric signals are equal to the formation ...

  2. Acoustical study of the development of stop consonants in children

    E-Print Network [OSTI]

    Imbrie, Annika Karin Karlsson

    2005-01-01

    This study focuses on the acoustic patterns of stop consonants and adjacent vowels as they develop in young children (ages 2;6-3;3) over a six month period. Speech is generated using a series of articulatory, laryngeal, ...

  3. Quasi-normal acoustic oscillations in the Michel flow

    E-Print Network [OSTI]

    Chaverra, Eliana; Sarbach, Olivier

    2015-01-01

    We study spherical and nonspherical linear acoustic perturbations of the Michel flow, which describes the steady radial accretion of a perfect fluid into a nonrotating black hole. The dynamics of such perturbations are governed by a scalar wave equation on an effective curved background geometry determined by the acoustic metric, which is constructed from the spacetime metric and the particle density and four-velocity of the fluid. For the problem under consideration in this article the acoustic metric has the same qualitative features as an asymptotically flat, static and spherically symmetric black hole, and thus it represents a natural astrophysical analogue black hole. As for the case of a scalar field propagating on a Schwarzschild background, we show that acoustic perturbations of the Michel flow exhibit quasi-normal oscillations. Based on a new numerical method for determining the solutions of the radial mode equation, we compute the associated frequencies and analyze their dependency on the radii of t...

  4. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOE Patents [OSTI]

    Holzrichter, J.F.; Ng, L.C.

    1998-03-17

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.

  5. Acoustic correlates of word stress in American English

    E-Print Network [OSTI]

    Okobi, Anthony O. (Anthony Obiesie), 1976-

    2006-01-01

    Acoustic parameters that differentiate between primary stress and non-primary full vowels were determined using two-syllable real and novel words and specially constructed novel words with identical syllable compositions. ...

  6. On reconstruction and time reversal in thermoacoustic tomography in acoustically

    E-Print Network [OSTI]

    Kuchment, Peter

    On reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous of recent approaches to the reconstruction in thermoacoustic/photoacoustic tomography: backprojection of the problem of sound speed recovery is also provided. Keywords: Tomography, thermoacoustic, wave equation. AMS

  7. Acoustic-Gravity Waves Interacting with a Rectangular Trench

    E-Print Network [OSTI]

    Kadri, Usama

    2015-01-01

    A mathematical solution of the two-dimensional linear problem of an acoustic-gravity wave interacting with a rectangular trench, in a compressible ocean, is presented. Expressions for the flow field on both sides of the ...

  8. Acoustic classification of buried objects with mobile sonar platforms

    E-Print Network [OSTI]

    Edwards, Joseph Richard, 1971-

    2006-01-01

    In this thesis, the use of highly mobile sonar platforms is investigated for the purpose of acoustically classifying compact objects on or below the seabed. The extension of existing strategies, including synthetic aperture ...

  9. Directing acoustic radiation using a phased array of piezoelectric transmitters

    E-Print Network [OSTI]

    Rodgers, Daniel Michael

    2010-01-01

    This thesis presents an acoustic phased array system utilizing piezoelectric transducers. The system is capable of operating at arbitrary frequencies into the low megahertz range, with a trade-off between phase accuracy ...

  10. Robust minimum energy wireless routing for underwater acoustic communication networks

    E-Print Network [OSTI]

    Stojanovic, Milica

    Marine robots are an increasingly attractive means for observing and monitoring the ocean, but underwater acoustic communications remain a major challenge. The channel exhibits long delay spreads with frequency-dependent ...

  11. Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617

    SciTech Connect (OSTI)

    Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J. [Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 (United States)

    2014-02-18

    Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, ?) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.

  12. Acoustic emission from fiber reinforced plastic damaged hoop wrapped cylinders

    SciTech Connect (OSTI)

    Akhtar, A.; Kung, D.; Westbrook, D.R.

    2000-03-01

    Metal lined continuous fiber reinforced plastic (FRP) hoop wrapped cylinders with axial cuts to the FRP were modeled mathematically and tested experimentally. Steel lined and aluminum alloy lined glass FRP vessels were subjected to acoustic emission tests (AE) and hydraulic burst tests. The burst pressure decreased monotonically with the length of the axial cut. Acoustic emission increased initially with a decrease in burst pressure, and attained a maximum at an intermediate level of damage to the FRP. However, acoustic emission decreased when the level of damage was higher and the burst pressure was lower. Implications of the findings are discussed in the context of the search for an acoustic emission test method to inspect periodically the vessels used for the storage of compressed gaseous fuels on natural gas vehicles (NGV) and hydrogen vehicles.

  13. Neighborhood analysis methods in acoustic modeling for automatic speech recognition

    E-Print Network [OSTI]

    Singh-Miller, Natasha, 1981-

    2010-01-01

    This thesis investigates the problem of using nearest-neighbor based non-parametric methods for performing multi-class class-conditional probability estimation. The methods developed are applied to the problem of acoustic ...

  14. Acoustical wave propagation in buried water filled pipes

    E-Print Network [OSTI]

    Kondis, Antonios, 1980-

    2005-01-01

    This thesis presents a comprehensive way of dealing with the problem of acoustical wave propagation in cylindrically layered media with a specific application in water-filled underground pipes. The problem is studied in ...

  15. Acoustic characterisation of ultrasound contrast agents at high frequency 

    E-Print Network [OSTI]

    Sun, Chao

    2013-07-06

    This thesis aims to investigate the acoustic properties of ultrasound contrast agents (UCAs) at high ultrasound frequencies. In recent years, there has been increasing development in the use of high frequency ultrasound ...

  16. Signal processing for fiber optic acoustic sensor system 

    E-Print Network [OSTI]

    Zhu, Juhong

    2000-01-01

    pulses from a single mode laser. Signals from multiple sensors in the array are separated and demultiplexed. The acoustic pressure information is determined by processing the returned optical pulses using a fiber Mach-Zehnder interferometer as an optical...

  17. Ion-acoustic cnoidal waves in a quantum plasma

    SciTech Connect (OSTI)

    Mahmood, S.; Haas, F.

    2014-10-15

    Nonlinear ion-acoustic cnoidal wave structures are studied in an unmagnetized quantum plasma. Using the reductive perturbation method, a Korteweg-de Vries equation is derived for appropriate boundary conditions and nonlinear periodic wave solutions are obtained. The corresponding analytical solution and numerical plots of the ion-acoustic cnoidal waves and solitons in the phase plane are presented using the Sagdeev pseudo-potential approach. The variations in the nonlinear potential of the ion-acoustic cnoidal waves are studied at different values of quantum parameter H{sub e} which is the ratio of electron plasmon energy to electron Fermi energy defined for degenerate electrons. It is found that both compressive and rarefactive ion-acoustic cnoidal wave structures are formed depending on the value of the quantum parameter. The dependence of the wavelength and frequency on nonlinear wave amplitude is also presented.

  18. Higher Order Modes in Acoustic Logging While Drilling

    E-Print Network [OSTI]

    Chi, Shihong

    2005-01-01

    In multipole acoustic logging while drilling (LWD), the fundamental modes dominate recorded waveforms. Higher order modes may also appear and complicate the processing of LWD data. In dipole LWD measurements, the dipole ...

  19. Acoustic Waveform Logging - Advances In Theory And Application

    E-Print Network [OSTI]

    Cheng, C. H.

    Full-waveform acoustic logging has made significant advances in both theory and application in recent years, and these advances have greatly increased the capability of log analysts to measure the physical properties of ...

  20. Acoustic Behavior of Flow From Fracture To Wellbore 

    E-Print Network [OSTI]

    Chen, Kyle

    2015-04-23

    Acoustic sensing technology has a long history of being implemented in the oil and gas industry; from the early days of measuring seismic activity to determine oil and gas reserve to the present day technology such as fiber optic Distributed...

  1. Optical transition radiation in presence of acoustic waves

    E-Print Network [OSTI]

    A. R. Mkrtchyan; V. V. Parazian; A. A. Saharian

    2010-10-14

    Transition radiation from relativistic electrons is investigated in an ultrasonic superlattice excited in a finite thickness plate. In the quasi-classical approximation formulae are derived for the vector potential of the electromagnetic field and for the spectral-angular distribution of the radiation intensity. The acoustic waves generate new resonance peaks in the spectral and angular distribution of the radiation intensity. The heights of the peaks can be tuned by choosing the parameters of the acoustic wave.

  2. Acoustic energy-driven fluid pump and method

    SciTech Connect (OSTI)

    Janus, Michael C.; Richards, George A.; Robey, Edward H.

    1997-12-01

    Bulk fluid motion is promoted in a gaseous fluid contained within a conduit system provided with a diffuser without the need for a mean pressure differential across the conduit system. The contacting of the gaseous fluid with unsteady energy at a selected frequency and pressure amplitude induces fluid flow through the conical diffuser. The unsteady energy can be provided by pulse combustors, thermoacoustic engines, or acoustic energy generators such as acoustic speakers.

  3. Estimating propagation velocity through a surface acoustic wave sensor

    DOE Patents [OSTI]

    Xu, Wenyuan (Oakdale, MN); Huizinga, John S. (Dellwood, MN)

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  4. Quasi-normal acoustic oscillations in the transonic Bondi flow

    E-Print Network [OSTI]

    Eliana Chaverra; Olivier Sarbach

    2015-09-17

    In recent work, we analyzed the dynamics of spherical and nonspherical acoustic perturbations of the Michel flow, describing the steady radial accretion of a relativistic perfect fluid into a nonrotating black hole. We showed that such perturbations undergo quasi-normal oscillations and computed the corresponding complex frequencies as a function of the black hole mass M and the radius r_c of the sonic horizon. It was found that when r_c is much larger than the Schwarzschild radius r_H = 2GM/c^2 of the black hole, these frequencies scale like the surface gravity of the analogue black hole associated with the acoustic metric. In this work, we analyze the Newtonian limit of the Michel solution and its acoustic perturbations. In this limit, the flow outside the sonic horizon reduces to the transonic Bondi flow, and the acoustic metric reduces to the one introduced by Unruh in the context of experimental black hole evaporation. We show that for the transonic Bondi flow, Unruh's acoustic metric describes an analogue black hole and compute the associated quasi-normal frequencies. We prove that they do indeed scale like the surface gravity of the acoustic black hole, thus providing an explanation for our previous results in the relativistic setting.

  5. Sensor development and calibration for acoustic neutrino detection in ice

    E-Print Network [OSTI]

    Karg, Timo; Laihem, Karim; Semburg, Benjamin; Tosi, Delia

    2009-01-01

    A promising approach to measure the expected low flux of cosmic neutrinos at the highest energies (E > 1 EeV) is acoustic detection. There are different in-situ test installations worldwide in water and ice to measure the acoustic properties of the medium with regard to the feasibility of acoustic neutrino detection. The parameters of interest include attenuation length, sound speed profile, background noise level and transient backgrounds. The South Pole Acoustic Test Setup (SPATS) has been deployed in the upper 500 m of drill holes for the IceCube neutrino observatory at the geographic South Pole. In-situ calibration of sensors under the combined influence of low temperature, high ambient pressure, and ice-sensor acoustic coupling is difficult. We discuss laboratory calibrations in water and ice. Two new laboratory facilities, the Aachen Acoustic Laboratory (AAL) and the Wuppertal Water Tank Test Facility, have been set up. They offer large volumes of bubble free ice (3 m^3) and water (11 m^3) for the devel...

  6. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N; Pantea, Cristian; Nihei, Kurt T; Schmitt, Denis P; Skelt, Christopher

    2013-10-01

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency and the second frequency; and transmitting the collimated beam through a diverging acoustic lens to compensate for a refractive effect caused by the curvature of the borehole.

  7. Precision Manufacturing Process Monitoring with Acoustic Emission

    E-Print Network [OSTI]

    Lee, D. E.; Hwang, I.; Valente, C. M. O.; Oliviera, J. F.G.; Dornfeld, D. A.

    2006-01-01

    feedback in a fully automated manufacturing environment. 8.Conclusions As current manufacturing trends aim for smallerfor open architecture manufacturing of precision machining

  8. Precision Manufacturing Process Monitoring With Acoustic Emission

    E-Print Network [OSTI]

    Lee, D.E.; Huang, Inkil; Valente, Carlos M. O.; Oliveira, J. F.; Dornfeld, David

    2006-01-01

    feedback in a fully automated manufacturing environment. 8.Conclusions As current manufacturing trends aim for smallerfor open architecture manufacturing of precision machining

  9. Intrusive gravity currents

    E-Print Network [OSTI]

    Hang, Alice Thanh

    2009-01-01

    The front speed of intrusive gravity currents. J. FluidP.F. Linden. Intrusive gravity currents. J. Fluid Mechanics,of mesoscale variability of gravity waves. Part II: Frontal,

  10. Car-to-car radio channel measurements at 5 GHz: Pathloss, power-delay profile, and delay-Doppler

    E-Print Network [OSTI]

    Zemen, Thomas

    Car-to-car radio channel measurements at 5 GHz: Pathloss, power-delay profile, and delay Contact: apaier@nt.tuwien.ac.at Abstract-- We carried out a car­to­infrastructure (C2I) and car­to­car (C2­Doppler spectra in a C2C highway scenario, where both cars were traveling in opposite directions. A pathloss

  11. E-LETTER Earth Planets Space, 65, e5e8, 2013 Doppler shift and broadening in solar wind turbulence

    E-Print Network [OSTI]

    and broadening using magnetic field data in solar wind turbulence. A model of the energy spectrum is constructedE-LETTER Earth Planets Space, 65, e5­e8, 2013 Doppler shift and broadening in solar wind turbulence extraterrestrische Physik, Technische Universit¨at Braunschweig, Mendelssohnstr. 3, D-38106, Germany 3Max

  12. Current to Current Corporation | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, Alabama (Utility Company)|Alabama:Crofton,DevelopingMaine:Electric JumpCurrentCurrent

  13. Acoustic detection of Immiscible Liquids in Sand

    SciTech Connect (OSTI)

    Geller, Jil T.; Kowalsky, Michael B.; Seifert, Patricia K.; Nihei, Kurt T.

    1999-03-01

    Laboratory cross-well P-wave transmission at 90 kHz was measured in a 61 cm diameter by 76 cm tall water-saturated sand pack, before and after introducing a non-aqueous phase organic liquid (NAPL) (n-dodecane). In one experiment NAPL was introduced to form a lens trapped by a low permeability layer; a second experiment considered NAPL residual trapped behind the front of flowing NAPL. The NAPL caused significant changes in the travel time and amplitude of first arrivals, as well as the generation of diffracted waves arriving after the direct wave. The spatial variations in NAPL saturation obtained from excavation at the end of the experiment correlated well with the observed variations in the P-wave amplitudes and travel times. NAPL residual saturation changes from NAPL flow channels of 3 to 4% were detectable and the 40 to 80% NAPL saturation in the NAPL lens was clearly visible at acoustic frequencies. The results of these experiments demonstrate that small NAPL saturations may be more easily detected with amplitude rather than travel time data, but that the relationships between the amplitude changes and NAPL saturation maybe more complex than those for velocity.

  14. Analysis of Doppler Lidar Data Acquired During the Pentagon Shield Field Campaign

    SciTech Connect (OSTI)

    Newsom, Rob K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2011-04-14

    Observations from two coherent Doppler lidars deployed during the Pentagon Shield field campaign are analyzed in conjunction with other sensors to characterize the overall boundary-layer structure, and identify the dominant flow characteristics during the entire two-week field campaign. Convective boundary layer (CBL) heights and cloud base heights (CBH) are estimated from an analysis of the lidar signal-to-noise-ratio (SNR), and mean wind profiles are computed using a modified velocity-azimuth-display (VAD) algorithm. Three-dimensional wind field retrievals are computed from coordinated overlapping volume scans, and the results are analyzed by visualizing the flow in horizontal and vertical cross sections. The VAD winds show that southerly flows dominate during the two-week field campaign. Low-level jets (LLJ) were evident on all but two of the nights during the field campaign. The LLJs tended to form a couple hours after sunset and reach maximum strength between 03 and 07 UTC. The surface friction velocities show distinct local maxima during four nights when strong LLJs formed. Estimates of the convective boundary layer height and residual layer height are obtained through an analysis of the vertical gradient of the lidar signal-to-noise-ratio (SNR). Strong minimum in the SNR gradient often develops just above the surface after sunrise. This minimum is associated with the developing CBL, and increases rapidly during the early portion of the daytime period. On several days, this minimum continues to increase until about sunset. Secondary minima in the SNR gradient were also observed at higher altitudes, and are believed to be remnants of the CBL height from previous days, i.e. the residual layer height. The dual-Doppler analysis technique used in this study makes use of hourly averaged radial velocity data to produce three-dimensional grids of the horizontal velocity components, and the horizontal velocity variance. Visualization of horizontal and vertical cross sections of the dual-Doppler wind retrievals often indicated a jet-like flow feature over the Potomac River under southerly flow conditions. This linear flow feature is roughly aligned with the Potomac River corridor to the south of the confluence with the Anatostia River, and is most apparent at low levels (i.e. below ~150 m MSL). It is believed that this flow arises due to reduced drag over the water surface and when the large scale flow aligns with the Potomac River corridor. A so-called area-constrained VAD analysis generally confirmed the observations from the dual-Doppler analysis. When the large scale flow is southerly, wind speeds over the Potomac River are consistently larger than the at a site just to the west of the river for altitudes less than 100 m MSL. Above this level, the trend is somewhat less obvious. The data suggest that the depth of the wind speed maximum may be reduced by strong directional shear aloft.

  15. IN-PLANE MODAL TESTING OF A FREE ISOTROPIC PLATE USING LASER DOPPLER VIBROMETER MEASUREMENTS

    SciTech Connect (OSTI)

    Batista, F. B.; Fabro, A. T.; Coser, L. F.; Arruda, J. R. F. [Faculty of Mechanical Engineering, University of Campinas, Campinas, SP 13083-970 (Brazil); Albuquerque, E. L. [Technological Faculty, University of Brasilia, Brasilia, DF 70910-900 (Brazil)

    2010-05-28

    In this work an experimental procedure is proposed to obtain the lowest free in-plane vibration modes of an aluminum plate. Responses are measured along two longitudinal directions on the plate surface at selected points by an out-of-plane laser Doppler vibrometer set up to measure in-plane vibrations. Excitation is made at one specific point of the plate edge using a light impact hammer. The plate is supported by silicone spheres to simulate the free edge boundary conditions and ensure a stable stationary position in order to keep the laser focus distance. Numerical finite element simulations are carried out to compute the in-plane modes and frequencies in order to compare them with the corresponding experimental results. The identified experimental modes agree very well with the numerical predictions. The smooth in-plane modes can be used to identify the plate material constitutive model parameters using existing methods proposed elsewhere by the authors.

  16. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    E-Print Network [OSTI]

    Crua, Cyril

    2015-01-01

    In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a three dimensional laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently f...

  17. Characterization of isotropic solids with nonlinear surface acoustic wave pulses Al. A. Kolomenskii and H. A. Schuessler

    E-Print Network [OSTI]

    Schuessler, Hans

    Characterization of isotropic solids with nonlinear surface acoustic wave pulses Al. A. Kolomenskii acoustic wave SAW pulses in two isotropic materials, polycrystalline aluminum and synthetic fused silica Studies of nonlinear properties of surface acoustic waves SAW's recently attracted substantial interest

  18. An on-line acoustic fluorocarbon coolant mixture analyzer for the ATLAS silicon tracker

    SciTech Connect (OSTI)

    Bates, R.; Battistin, M.; Berry, S.; Bitadze, A.; Bonneau, P.; Bousson, N.; Boyd, G.; Botelho-Direito, J.; DiGirolamo, B.; Doubek, M.; Egorov, K.; Godlewski, J.; Hallewell, G.; Katunin, S.; Mathieu, M.; McMahon, S.; Nagai, K.; Perez-Rodriguez, E.; Rozanov, A.; Vacek, V.; Vitek, M.

    2011-07-01

    The ATLAS silicon tracker community foresees an upgrade from the present octafluoro-propane (C{sub 3}F{sub 8}) evaporative cooling fluid - to a composite fluid with a probable 10-20% admixture of hexafluoro-ethane (C{sub 2}F{sub 6}). Such a fluid will allow a lower evaporation temperature and will afford the tracker silicon substrates a better safety margin against leakage current-induced thermal runaway caused by cumulative radiation damage as the luminosity profile at the CERN Large Hadron Collider increases. Central to the use of this new fluid is a new custom-developed speed-of-sound instrument for continuous real-time measurement of the C{sub 3}F{sub 8}/C{sub 2}F{sub 6} mixture ratio and flow. An acoustic vapour mixture analyzer/flow meter with new custom electronics allowing ultrasonic frequency transmission through gas mixtures has been developed for this application. Synchronous with the emission of an ultrasound 'chirp' from an acoustic transmitter, a fast readout clock (40 MHz) is started. The clock is stopped on receipt of an above threshold sound pulse at the receiver. Sound is alternately transmitted parallel and anti-parallel with the vapour flow for volume flow measurement from transducers that can serve as acoustic transmitters or receivers. In the development version, continuous real-time measurement of C{sub 3}F{sub 8}/C{sub 2}F{sub 6} flow and calculation of the mixture ratio is performed within a graphical user interface developed in PVSS-II, the Supervisory, Control and Data Acquisition standard chosen for LHC and its experiments at CERN. The described instrument has numerous potential applications - including refrigerant leak detection, the analysis of hydrocarbons, vapour mixtures for semiconductor manufacture and anesthetic gas mixtures. (authors)

  19. CMB aberration and Doppler effects as a source of hemispherical asymmetries

    SciTech Connect (OSTI)

    Notari, Alessio [Departament de Física Fondamental i Institut de Ciéncies del Cosmos, Universitat de Barcelona, Martí i Franqués 1, Barcelona, E-08028 (Spain); Quartin, Miguel [Instituto de Física, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Rio de Janeiro, 21941-972 (Brazil); Catena, Riccardo, E-mail: notari@ffn.ub.es, E-mail: mquartin@if.ufrj.br, E-mail: riccardo.catena@theorie.physik.uni-goettingen.de [Institut für Theoretische Physik, Friedrich-Hund-Platz 1, Göttingen, 37077 (Germany)

    2014-03-01

    Our peculiar motion with respect to the CMB rest frame represents a preferred direction in the observed CMB sky since it induces an apparent deflection of the observed CMB photons (aberration) and a shift in their frequency (Doppler). Both effects distort the multipoles a{sub ?m}'s at all ?'s. Such effects are real as it has been recently measured for the first time by Planck according to what was forecast in some recent papers. However, the common lore when estimating a power spectrum from CMB is to consider that Doppler affects only the ? = 1 multipole, neglecting any other corrections. In this work we use simulations of the CMB sky in a boosted frame with a peculiar velocity ??v/c = 1.23 × 10{sup ?3} in order to assess the impact of such effect on power spectrum estimations in different regions of the sky. We show that the boost induces a north-south asymmetry in the power spectrum which is highly significant and non-negligible, of about (0.58±0.10)% for half-sky cuts when going up to ? ? 2500. We suggest that these effects are relevant and may account for some of the north-south asymmetries seen in the Planck data, being especially important at small scales. Finally we analyze the particular case of the ACT experiment, which observed only a small fraction of the sky and show that it suffers a bias of about 1% on the power spectrum and of similar size on some cosmological parameters: for example the position of the peaks shifts by 0.5% and the overall amplitude of the spectrum is about 0.4% lower than a full-sky case.

  20. On the measurement of wind speeds in tornadoes with a portable CW/FM-CW Doppler radar

    SciTech Connect (OSTI)

    Bluestein, H.B. . School of Meteorology); Unruh, W.P. )

    1991-01-01

    Both the formation mechanism and structure of tornadoes are not yet well understood. The Doppler radar is probably the best remote-sensing instrument at present for determining the wind field in tornadoes. Although much has been learned about the non-supercell tornado from relatively close range using Doppler radars at fixed sites, close-range measurements in supercell tornadoes are relatively few. Doppler radar can increase significantly the number of high-resolution, sub-cloud base measurements of both the tornado vortex and its parent vortex in supercells, with simultaneous visual documentation. The design details and operation of the CW/FM-CW Doppler radar developed at the Los Alamos National Laboratory and used by storm-intercept teams at the Univ. of Oklahoma are described elsewhere. The radar transmits 1 W at 3 cm, and can be switched back and forth between CW and FM-CW modes. In the FM-CW mode the sweep repetition frequency is 15.575 kHz and the sweep width 1.9 MHz; the corresponding maximum unambiguous range and velocity, and range resolution are 5 km, {plus minus} 115 m s{sup {minus}1}, and 78 m respectively. The bistatic antennas, which have half-power beamwidths of 5{degree}, are easily pointed wit the aid of a boresighted VCR. FM-CW Data are recorded on the VCR, while voice documentation is recorded on the audio tape; video is recorded on another VCR. The radar and antennas are easily mounted on a tripod, and can be set up by three people in a minute or two. The purpose of this paper is to describe the signal processing techniques used to determine the Doppler spectrum in the FM-CW mode and a method of its interpretation in real time, and to present data gathered in a tornadic storm in 1990. 15 refs., 7 figs.

  1. Separation of acoustic waves in isentropic flow perturbations

    E-Print Network [OSTI]

    Christian Henke

    2015-02-22

    The present contribution investigates the mechanisms of sound generation and propagation in the case of highly-unsteady flows. Based on the linearisation of the isentropic Navier-Stokes equation around a new pathline-averaged base flow, it is demonstrated for the first time that flow perturbations of a non-uniform flow can be split into acoustic and vorticity modes, with the acoustic modes being independent of the vorticity modes. Therefore, we can propose this acoustic perturbation as a general definition of sound. As a consequence of the splitting result, we conclude that the present acoustic perturbation is propagated by the convective wave equation and fulfils Lighthill's acoustic analogy. Moreover, we can define the deviations of the Navier-Stokes equation from the convective wave equation as true sound sources. In contrast to other authors, no assumptions on a slowly varying or irrotational flow are necessary. Using a symmetry argument for the conservation laws, an energy conservation result and a generalisation of the sound intensity are provided.

  2. Heat-driven acoustic cooling engine having no moving parts

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Santa Fe, NM); Migliori, Albert (Santa Fe, NM); Hofler, Thomas J. (Los Alamos, NM)

    1989-01-01

    A heat-driven acoustic cooling engine having no moving parts receives heat from a heat source. The acoustic cooling engine comprises an elongated resonant pressure vessel having first and second ends. A compressible fluid having a substantial thermal expansion coefficient and capable of supporting an acoustic standing wave is contained in the resonant pressure vessel. The heat source supplies heat to the first end of the vessel. A first heat exchanger in the vessel is spaced-apart from the first end and receives heat from the first end. A first thermodynamic element is adjacent to the first heat exchanger and converts some of the heat transmitted by the first heat exchanger into acoustic power. A second thermodynamic element has a first end located spaced-apart from the first thermodynamic element and a second end farther away from the first thermodynamic element than is its first end. The first end of the second thermodynamic element heats while its second end cools as a consequence of the acoustic power. A second heat exchanger is adjacent to and between the first and second thermodynamic elements. A heat sink outside of the vessel is thermally coupled to and receives heat from the second heat exchanger. The resonant pressure vessel can include a housing less than one-fourth wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir.

  3. Wax Point Determinations Using Acoustic Resonance Spectroscopy

    SciTech Connect (OSTI)

    Bostick, D.T.; Jubin, R.T.; Schmidt, T.W.

    2001-06-01

    The thermodynamic characterization of the wax point of a given crude is essential in order to maintain flow conditions that prevent plugging of undersea pipelines. This report summarizes the efforts made towards applying an Acoustic Cavity Resonance Spectrometer (ACRS) to the determination of pressures and temperatures at which wax precipitates from crude. Phillips Petroleum Company, Inc., the CRADA participant, supplied the ACRS. The instrumentation was shipped to Dr. Thomas Schmidt of ORNL, the CRADA contractor, in May 2000 after preliminary software development performed under the guidance of Dr. Samuel Colgate and Dr. Evan House of the University of Florida, Gainesville, Fl. Upon receipt it became apparent that a number of modifications still needed to be made before the ACRS could be precisely and safely used for wax point measurements. This report reviews the sequence of alterations made to the ACRS, as well as defines the possible applications of the instrumentation once the modifications have been completed. The purpose of this Cooperative Research and Development Agreement (CRADA) between Phillips Petroleum Company, Inc. (Participant) and Lockheed Martin Energy Research Corporation (Contractor) was the measurement of the formation of solids in crude oils and petroleum products that are commonly transported through pipelines. This information is essential in the proper design, operation and maintenance of the petroleum pipeline system in the United States. Recently, new petroleum discoveries in the Gulf of Mexico have shown that there is a potential for plugging of undersea pipeline because of the precipitation of wax. It is important that the wax points of the expected crude oils be well characterized so that the production facilities for these new wells are capable of properly transporting the expected production. The goal of this work is to perform measurements of solids formation in crude oils and petroleum products supplied by the Participant. It is anticipated that these data will be used in the design of new production facilities and in the development of thermodynamic models that describe the behavior of wax-saturated petroleum.

  4. Electric current locator

    DOE Patents [OSTI]

    King, Paul E. (Corvallis, OR); Woodside, Charles Rigel (Corvallis, OR)

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  5. Quantum computation with moving quantum dots generated by surface acoustic waves

    E-Print Network [OSTI]

    X. Shi; M. Zhang; L. F. Wei

    2011-02-15

    Motivated by the recent experimental observations [M. Kataoka et al., Phys. Rev. Lett. {\\bf102}, 156801 (2009)], we propose here an theoretical approach to implement quantum computation with bound states of electrons in moving quantum dots generated by the driving of surface acoustic waves. Differing from static quantum dots defined by a series of static electrodes above the two-dimensional electron gas (2DEG), here a single electron is captured from a 2DEG-reservoir by a surface acoustic wave (SAW) and then trapped in a moving quantum dot (MQD) transporting across a quasi-one dimensional channel (Q1DC), wherein all the electrons have been excluded out by the actions of the surface gates. The flying qubit introduced here is encoded by the two lowest adiabatic levels of the electron in the MQD, and the Rabi oscillation between these two levels could be implemented by applying finely-selected microwave pulses to the surface gates. By using the Coulomb interaction between the electrons in different moving quantum dots, we show that a desirable two-qubit operation, i.e., i-SWAP gate, could be realized. Readouts of the present flying qubits are also feasible with the current single-electron detected technique.

  6. Optical Generation of Gigahertz-Frequency Shear Acoustic Waves in Liquid Glycerol

    E-Print Network [OSTI]

    Andrieu, S.

    Picosecond laser ultrasonic techniques for acoustic wave generation and detection have been employed to probe shear acoustic waves in liquid glycerol at gigahertz frequencies. The experimental approach uses a unique laser ...

  7. Independent components in acoustic emission energy signals from large diesel engines

    E-Print Network [OSTI]

    Independent components in acoustic emission energy signals from large diesel engines Niels Henrik-Sørensen et al. [5], to acoustic emission (AE) energy signals obtained from a large diesel engine

  8. Creation of cavitation activity in a microfluidic device through acoustically driven capillary waves

    E-Print Network [OSTI]

    Ohl, Claus-Dieter

    is through hydrodynamic cavitation from fast flowing liquids through a microfluidic orifice.15 The thirdCreation of cavitation activity in a microfluidic device through acoustically driven capillary acoustic cavitation generated by ultrasonic vibrations in polydimethylsiloxane (PDMS) based microfluidic

  9. TEMPERATURE AND LOAD EFFECTS ON ACOUSTIC EMISSION SIGNALS FOR STRUCTURAL HEALTH MONITORING APPLICATIONS

    E-Print Network [OSTI]

    Boyer, Edmond

    TEMPERATURE AND LOAD EFFECTS ON ACOUSTIC EMISSION SIGNALS FOR STRUCTURAL HEALTH MONITORING. KEYWORDS : Structural Health Monitoring, Acoustic Emission, Environmental and Operational Conditions2014 Author manuscript, published in "EWSHM - 7th European Workshop on Structural Health Monitoring

  10. Device and method for generating a beam of acoustic energy from a borehole, and applications thereof

    DOE Patents [OSTI]

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian; Nihei, Kurt T.; Schmitt, Denis P.; Skelt, Chirstopher

    2013-10-15

    In some aspects of the invention, a method of generating a beam of acoustic energy in a borehole is disclosed. The method includes generating a first acoustic wave at a first frequency; generating a second acoustic wave at a second frequency different than the first frequency, wherein the first acoustic wave and second acoustic wave are generated by at least one transducer carried by a tool located within the borehole; transmitting the first and the second acoustic waves into an acoustically non-linear medium, wherein the composition of the non-linear medium produces a collimated beam by a non-linear mixing of the first and second acoustic waves, wherein the collimated beam has a frequency based upon a difference between the first frequency range and the second frequency, and wherein the non-linear medium has a velocity of sound between 100 m/s and 800 m/s.

  11. Current Testbed Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Current Testbed Research Previous Testbed Research Proposal Process Terms and Conditions Dark Fiber Testbed Federated Testbed Circuits Test Circuit Service Performance (perfSONAR)...

  12. Feasibility of acoustic neutrino detection in ice: First results from the South Pole Acoustic Test Setup (SPATS)

    E-Print Network [OSTI]

    S. Böser; C. Bohm; F. Descamps; J. Fischer; A. Hallgren; R. Heller; S. Hundertmark; K. Krieger; R. Nahnhauer; M. Pohl; P. B. Price; K. -H. Sulanke; D. Tosi; J. Vandenbroucke

    2007-08-15

    Astrophysical neutrinos in the EeV range (particularly those generated by the interaction of cosmic rays with the cosmic microwave background) promise to be a valuable tool to study astrophysics and particle physics at the highest energies. Much could be learned from temporal, spectral, and angular distributions of ~100 events, which could be collected by a detector with ~100 km^3 effective volume in a few years. Scaling the optical Cherenkov technique to this scale is prohibitive. However, using the thick ice sheet available at the South Pole, the radio and acoustic techniques promise to provide sufficient sensitivity with sparse instrumentation. The best strategy may be a hybrid approach combining all three techniques. A new array of acoustic transmitters and sensors, the South Pole Acoustic Test Setup, was installed in three IceCube holes in January 2007. The purpose of SPATS is to measure the attenuation length, background noise, and sound speed for 10-100 kHz acoustic waves. Favorable results would pave the way for a large hybrid array. SPATS is the first array to study the possibility of acoustic neutrino detection in ice, the medium expected to be best for the purpose. First results from SPATS are presented.

  13. Acoustic Kappa-Density Fluctuation Waves in Suprathermal Kappa Function Fluids

    E-Print Network [OSTI]

    Michael R. Collier; Aaron Roberts; Adolfo Vinas

    2007-10-20

    We describe a new wave mode similar to the acoustic wave in which both density and velocity fluctuate. Unlike the acoustic wave in which the underlying distribution is Maxwellian, this new wave mode occurs when the underlying distribution is a suprathermal kappa function and involves fluctuations in the power law index, kappa. This wave mode always propagates faster than the acoustic wave with an equivalent effective temperature and becomes the acoustic wave in the Maxwellian limit as kappa goes to infinity.

  14. Polyaniline nanofiber based surface acoustic wave gas sensors - Effect of nanofiber diameter on H-2 response

    E-Print Network [OSTI]

    Sadek, A Z; Baker, Christina Opimo; Powell, D A; Wlodarski, W; Kaner, R B; Kalantar-zadeh, K

    2007-01-01

    acoustic wave due to piezoelectric effects. The center frequency of a SAW device is given by the equation

  15. Aeroacoustics of volcanic jets: Acoustic power estimation and jet velocity dependence

    E-Print Network [OSTI]

    Matoza, Robin S; Fee, D; Neilsen, Tracianne B; Gee, Kent L; Ogden, Darcy E

    2013-01-01

    acoustic analogy theory, in which he manipulated the compressible equations of motion into the form of an inhomogeneous wave equation @

  16. Analogue Transformations in Physics and their Application to Acoustics

    E-Print Network [OSTI]

    C. García-Meca; S. Carloni; C. Barceló; G. Jannes; J. Sánchez-Dehesa; A. Martínez

    2015-06-10

    Transformation optics has shaped up a revolutionary electromagnetic design paradigm, enabling scientists to build astonishing devices such as invisibility cloaks. Unfortunately, the application of transformation techniques to other branches of physics is often constrained by the structure of the field equations. We develop here a complete transformation method using the idea of analogue spacetimes. The method is general and could be considered as a new paradigm for controlling waves in different branches of physics, from acoustics in quantum fluids to graphene electronics. As an application, we derive an "analogue transformation acoustics" formalism that naturally allows the use of transformations mixing space and time or involving moving fluids, both of which were impossible with the standard approach. To demonstrate the power of our method, we give an explicit design of a spacetime compressor for acoustic waves and a carpet cloak for a moving aircraft.

  17. Acoustic wave front conjugation in a three-phase media

    E-Print Network [OSTI]

    Pushkina, N I

    2015-01-01

    Acoustic wave front reversal is studied in a sandy marine sediment that contains air bubbles in its fluid fraction. The considered phase conjugation is a four-wave nonlinear parametric sound interaction process caused by nonlinear bubble oscillations which are known to be dominant in acoustic nonlinear interactions in three-phase marine sediments. Two various mechanisms of phase conjugation are studied. One of them is based on the stimulated Raman-type sound scattering on resonance bubble oscillations. The second one is associated with sound interactions with bubble oscillations which frequencies are far from resonance bubble frequencies. Nonlinear equations to solve the wave-front conjugation problem are derived, expressions for acoustic wave amplitudes with a reversed wave front are obtained and compared for various frequencies of the excited bubble oscillations.

  18. Acoustic wave front reversal in a three-phase media

    E-Print Network [OSTI]

    N. I. Pushkina

    2015-03-05

    Acoustic wave front conjugation is studied in a sandy marine sediment that contains air bubbles in its fluid fraction. The considered phase conjugation is a four-wave nonlinear parametric sound interaction process caused by nonlinear bubble oscillations which are known to be dominant in acoustic nonlinear interactions in three-phase marine sediments. Two various mechanisms of phase conjugation are studied. One of them is based on the stimulated Raman-type sound scattering on resonance bubble oscillations. The second one is associated with sound interactions with bubble oscillations which frequencies are far from resonance bubble frequencies. Nonlinear equations to solve the wave-front conjugation problem are derived, expressions for acoustic wave amplitudes with a reversed wave front are obtained and compared for various frequencies of the excited bubble oscillations.

  19. Surface acoustic wave devices for harsh environment wireless sensing

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensormore »with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.« less

  20. Can High Frequency Acoustic Waves Heat the Quiet Sun Chromosphere?

    E-Print Network [OSTI]

    Mats Carlsson; Viggo H. Hansteen; Bart De Pontieu; Scott McIntosh; Theodore D. Tarbell; Dick Shine; Saku Tsuneta; Yukio Katsukawa; Kiyoshi Ichimoto; Yoshinori Suematsu; Toshifumi Shimizu; Shin'ichi Nagata

    2007-09-21

    We use Hinode/SOT Ca II H-line and blue continuum broadband observations to study the presence and power of high frequency acoustic waves at high spatial resolution. We find that there is no dominant power at small spatial scales; the integrated power using the full resolution of Hinode (0.05'' pixels, 0.16'' resolution) is larger than the power in the data degraded to 0.5'' pixels (TRACE pixel size) by only a factor of 1.2. At 20 mHz the ratio is 1.6. Combining this result with the estimates of the acoustic flux based on TRACE data of Fossum & Carlsson (2006), we conclude that the total energy flux in acoustic waves of frequency 5-40 mHz entering the internetwork chromosphere of the quiet Sun is less than 800 W m$^{-2}$, inadequate to balance the radiative losses in a static chromosphere by a factor of five.

  1. Temperature dependence of bulk viscosity in water using acoustic spectroscopy

    E-Print Network [OSTI]

    M. J. Holmes; N. G. Parker; M. J. W. Povey

    2010-02-16

    Despite its fundamental role in the dynamics of compressible fluids, bulk viscosity has received little experimental attention and there remains a paucity of measured data. Acoustic spectroscopy provides a robust and accurate approach to measuring this parameter. Working from the Navier-Stokes model of a compressible fluid one can show that the bulk viscosity makes a significant and measurable contribution to the frequency-squared acoustic attenuation. Here we employ this methodology to determine the bulk viscosity of Millipore water over a temperature range of 7 to 50 degrees Celsius. The measured attenuation spectra are consistent with the theoretical predictions, while the bulk viscosity of water is found to be approximately three times larger than its shear counterpart, reinforcing its significance in acoustic propagation. Moreover, our results demonstrate that this technique can be readily and generally applied to fluids to accurately determine their temperature dependent bulk viscosities.

  2. Surface acoustic wave devices for harsh environment wireless sensing

    SciTech Connect (OSTI)

    Greve, David W.; Chin, Tao -Lun; Zheng, Peng; Ohodnicki, Paul; Baltrus, John; Oppenheim, Irving J.

    2013-05-24

    In this study, langasite surface acoustic wave devices can be used to implement harsh environment wireless sensing of gas concentration and temperature. This paper reviews prior work on the development of langasite surface acoustic wave devices, followed by a report of recent progress toward the implementation of oxygen gas sensors. Resistive metal oxide films can be used as the oxygen sensing film, although development of an adherent barrier layer will be necessary with the sensing layers studied here to prevent interaction with the langasite substrate. Experimental results are presented for the performance of a langasite surface acoustic wave oxygen sensor with tin oxide sensing layer, and these experimental results are correlated with direct measurements of the sensing layer resistivity.

  3. Ionospheric acoustic and gravity waves associated with midlatitude thunderstorms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lay, Erin H.; Shao, Xuan -Min; Kendrick, Alexander K.; Carrano, Charles S.

    2015-07-30

    Acoustic waves with periods of 2–4 min and gravity waves with periods of 6–16 min have been detected at ionospheric heights (25–350 km) using GPS total electron content measurements. The area disturbed by these waves and the wave amplitudes have been associated with underlying thunderstorm activity. A statistical study comparing Next Generation Weather Radar thunderstorm measurements with ionospheric acoustic and gravity waves in the midlatitude U.S. Great Plains region was performed for the time period of May–July 2005. An increase of ionospheric acoustic wave disturbed area and amplitude is primarily associated with large thunderstorms (mesoscale convective systems). Ionospheric gravity wavemore »disturbed area and amplitude scale with thunderstorm activity, with even small storms (i.e., individual storm cells) producing an increase of gravity waves.« less

  4. Impedance matched joined drill pipe for improved acoustic transmission

    DOE Patents [OSTI]

    Moss, William C. (San Mateo, CA)

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  5. Computational dynamics of acoustically-driven microsphere systems

    E-Print Network [OSTI]

    Glosser, Connor A; Dault, Daniel L; Piermarocchi, Carlo; Shanker, Balasubramaniam

    2015-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the inter-particle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of non-dissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities, and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation ...

  6. ION ACOUSTIC WAVES IN THE HELIOSPHERE NAIGUO LIN and P. J. KELLOGG

    E-Print Network [OSTI]

    California at Berkeley, University of

    ION ACOUSTIC WAVES IN THE HELIOSPHERE NAIGUO LIN and P. J. KELLOGG University of Minnesota acoustic waves in the solar wind during the first and second orbit of the Ulysses spacecraft are presented temperature, Te/Tp, are examined. 1. Overview of Ion Acoustic Wave Observations Electrostatic noise at a few k

  7. Background atmospheric acoustic waves from 0.01 to 0.1 Hz

    E-Print Network [OSTI]

    Nishida, Kiwamu

    Background atmospheric acoustic waves from 0.01 to 0.1 Hz K. Nishida(1), Y. Fukao (2), S. Watada (1 observation of them. In at- tempt to detect the long period acoustic waves, we installed a cross array continuous sampling records in a time period. Acoustic waves traveled from around northwest direction from 0

  8. 2Dimensional localization of acoustic waves in random perturbation of periodic media.

    E-Print Network [OSTI]

    2­Dimensional localization of acoustic waves in random perturbation of periodic media. Hatem NAJAR to the spectral properties of the relevant self­adjoint di#erential operator. As far as the acoustic waves, electromagnetic or acoustic) waves in a periodic me­ dia perturbed by random impurities. See [7, 8, 9, 10

  9. Acoustic-gravity waves during solar eclipses: detection and characterization using wavelet

    E-Print Network [OSTI]

    Roux, Stephane

    Acoustic-gravity waves during solar eclipses: detection and characterization using wavelet) and to detect and analyze the propagation of the generated acoustic-gravity waves (AGW). Second, injecting wave of the propagation of 2 #12;the waves. This enables us to dierentiate acoustic-gravity waves from others wave- like

  10. Secondary dust density waves excited by nonlinear dust acoustic waves J. R. Heinrich,1,a)

    E-Print Network [OSTI]

    Merlino, Robert L.

    Secondary dust density waves excited by nonlinear dust acoustic waves J. R. Heinrich,1,a) S.-H. Kim amplitude ðnd=nd0 > 2Þ dust acoustic waves (DAW) that were spontaneously excited in a dc glow discharge dusty plasma in the moderately coupled, C $ 1; state. The high amplitude dust acoustic waves produced

  11. Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals

    E-Print Network [OSTI]

    Directional dependence of nonlinear surface acoustic waves in the (001) plane of cubic crystals R surface acoustic waves in the 001 plane of a variety of nonpiezoelectric cubic crystals. The basic theory the theory for nonlinear Rayleigh waves in iso- tropic media, the theory for nonlinear surface acoustic waves

  12. Proceedings of the Combustion Institute, Volume 29, 2002/pp. 18091815 MEASUREMENTS OF INCOHERENT ACOUSTIC WAVE SCATTERING

    E-Print Network [OSTI]

    Lieuwen, Timothy C.

    OF INCOHERENT ACOUSTIC WAVE SCATTERING FROM TURBULENT PREMIXED FLAMES TIM LIEUWEN, RAJESH RAJARAM, YEDIDIA-0150, USA This paper presents measurements of acoustic wave scattering from turbulent, premixed flames Dinkelacker et al. [1]. Introduction This paper describes measurements of acoustic wave interactions

  13. Experimental quiescent drifting dusty plasmas and temporal dust acoustic wave growth

    E-Print Network [OSTI]

    Merlino, Robert L.

    Experimental quiescent drifting dusty plasmas and temporal dust acoustic wave growth J. R. Heinrich quiescent drifting dusty plasmas and temporal dust acoustic wave growth J. R. Heinrich, S.-H. Kim, J. K report on dust acoustic wave growth rate measurements taken in a dc (anode glow) discharge plasma device

  14. Analysis of optical interferometric measurements of guided acoustic waves in transparent solid media

    E-Print Network [OSTI]

    Paris 7 - Denis Diderot, Université

    Analysis of optical interferometric measurements of guided acoustic waves in transparent solid mechanisms and dispersion characteristics of guided waves in multilayered cylindrical solid media J. Acoust.1063/1.110550 DEFLECTION OF AN OPTICAL GUIDED WAVE BY A SURFACE ACOUSTIC WAVE Appl. Phys. Lett. 17, 265 (1970); 10

  15. Non-Destructive Evaluation of Materials Using Pulsed Microwave Interrogating Signals and Acoustic Wave

    E-Print Network [OSTI]

    interrogation. A third possibility, treated in this paper, entails use of a traveling acoustic wave as a re ect]) that acoustic pressure waves will interact with electromagnetic signals in ways that often mimic interfacial aspects of elementary electromagnetic/acoustic wave interac- tion. The modeling presented in [4

  16. Direct imaging of the acoustic waves generated by femtosecond filaments in air

    E-Print Network [OSTI]

    Milchberg, Howard

    Direct imaging of the acoustic waves generated by femtosecond filaments in air J. K. Wahlstrand, N trapping in the expanding annular acoustic wave can create the impression of on-axis guiding in a limited]. The generation of acoustic waves in gases by filaments has been noted in various contexts [2­5]. The physical

  17. Interactions of collinear acoustic waves propagating along pure mode directions of crystals

    E-Print Network [OSTI]

    Cao, Wenwu

    Interactions of collinear acoustic waves propagating along pure mode directions of crystals; published online 13 February 2014) Previous studies on the interaction of collinear acoustic waves have been://dx.doi.org/10.1063/1.4865271] I. INTRODUCTION It is well known that interaction of collinear acoustic waves

  18. The computation of conical diffraction coefficients in high-frequency acoustic wave scattering

    E-Print Network [OSTI]

    Scheichl, Robert

    The computation of conical diffraction coefficients in high-frequency acoustic wave scattering B DIFFRACTION COEFFICIENTS IN HIGH-FREQUENCY ACOUSTIC WAVE SCATTERING B.D. BONNER, I.G. GRAHAM, AND V.P. SMYSHLYAEV§ Abstract. When a high-frequency acoustic or electromagnetic wave is scattered by a surface

  19. On the extrapolation of acoustic waves from flow simulations with vortical outflow

    E-Print Network [OSTI]

    On the extrapolation of acoustic waves from flow simulations with vortical outflow M. C. M. Wright of Lighthill's acoustic analogy as a way to extrapolate radiated waves from simulations of unsteady flows acoustical predictions when entropy fluctuations or vorticity pass across the extrapolation surface

  20. Reflection Of Microwave Pulses From Acoustic Waves: Summary of Experimental and Computational Studies

    E-Print Network [OSTI]

    Kepler, Grace Martinelli

    Reflection Of Microwave Pulses From Acoustic Waves: Summary of Experimental and Computational to detect reflections of the electromagnetic wave off the acoustic wave front. To date, we have constructed. The circuitry and timing necessary to initiate an acoustic wave and synchronize it with the EM pulse have been

  1. Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in a DC Glow Discharge Dusty Plasma

    E-Print Network [OSTI]

    Merlino, Robert L.

    Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in a DC Glow Discharge Dusty Plasma drifting dusty plasmas and temporal dust acoustic wave growth Phys. Plasmas 18, 113706 (2011) Modulational;Nonlinear Dust Acoustic Waves, Shocks and Stationary Structures in a DC Glow Discharge Dusty Plasma Robert L

  2. On the Intrinsic Difficulty of Producing Stellar Coronae With Acoustic Waves

    E-Print Network [OSTI]

    Ulmschneider, Peter

    On the Intrinsic Difficulty of Producing Stellar Coronae With Acoustic Waves Reiner Hammer Abstract. We discuss theoretical limits on the potential of acoustic waves to produce coronae around and chromosphere. This fundamental difficulty to produce coronae with acoustic waves is even aggravated towards

  3. Effects of harmonic phase on nonlinear surface acoustic waves in the (111) plane of cubic crystals

    E-Print Network [OSTI]

    Effects of harmonic phase on nonlinear surface acoustic waves in the (111) plane of cubic crystals of surface acoustic waves SAWs in the 001 surface cut of nonpiezo- electric, cubic crystals. The present 2002 Spectral evolution equations are used to perform numerical studies of nonlinear surface acoustic

  4. Creating and studying ion acoustic waves in ultracold neutral plasmasa) T. C. Killian,1,b)

    E-Print Network [OSTI]

    California at San Diego, University of

    Creating and studying ion acoustic waves in ultracold neutral plasmasa) T. C. Killian,1,b) P. Mc online 23 March 2012) We excite ion acoustic waves in ultracold neutral plasmas by imprinting density of IAWs in UNPs, including the effects of strong coupling, was published16 and ion-acoustic shock waves

  5. The electromagneto-acoustic surface wave in a piezoelectric medium: The BleusteinGulyaev mode

    E-Print Network [OSTI]

    Li, Shaofan

    The electromagneto-acoustic surface wave in a piezoelectric medium: The Bleustein­Gulyaev mode electromagneto-acoustic surface wave mode in a class of piezoelectric media. As the wave speed is much less than­Gulyaev wave. The Bleustein­Gulyaev BG sur- face wave is an unique result in the repertoire of surface acoustic

  6. Parameter Identification for Dispersive Dielectrics Using Pulsed Microwave Interrogating Signals and Acoustic Wave

    E-Print Network [OSTI]

    and Acoustic Wave Induced Reflections in Two and Three Dimensions H. T. Banks and V. A. Bokil Center and the relaxation time of the Debye medium. In this technique a travelling acoustic pressure wave that is generated. The reflections of the microwave pulse from the air-Debye interface and from the acoustic pressure wave

  7. Evidence of surface acoustic wave band gaps in the phononic crystals created on thin plates

    E-Print Network [OSTI]

    Deymier, Pierre

    Evidence of surface acoustic wave band gaps in the phononic crystals created on thin plates Xinya acoustic wave SAW band gaps. In this letter, we report a new type of phononic crystals manufactured Institute of Physics. DOI: 10.1063/1.2167794 The propagation of acoustic waves in periodic composite

  8. Electron acoustic waves in pure ion plasmasa... F. Anderegg,1,b

    E-Print Network [OSTI]

    California at San Diego, University of

    Electron acoustic waves in pure ion plasmasa... F. Anderegg,1,b C. F. Driscoll,1 D. H. E. Dubin,1 T 2009 Standing electron acoustic waves EAWs are observed in a pure ion plasma. EAWs are slow nonlinear. DOI: 10.1063/1.3099646 I. INTRODUCTION Electron acoustic waves EAWs are the nonlinear low frequency

  9. Nonlinear surface acoustic wave pulses in solids: Laser excitation, propagation, interactions ,,invited...

    E-Print Network [OSTI]

    Schuessler, Hans

    Nonlinear surface acoustic wave pulses in solids: Laser excitation, propagation, interactions techniques enabled generation of very high amplitude pulses with acoustic Mach numbers about 0.01. Such waves their propagation. As an intense surface acoustic wave SAW propagates, the temporal evolution of the wave shape

  10. dc electric field tunable bulk acoustic wave solidly mounted resonator using SrTiO3

    E-Print Network [OSTI]

    York, Robert A.

    dc electric field tunable bulk acoustic wave solidly mounted resonator using SrTiO3 G. N. SaddikTiO3 solidly mounted bulk acoustic wave resonator has been designed, fabricated, and tested of Physics. DOI: 10.1063/1.2759464 Thin film bulk acoustic wave resonators FBARs have been in use by research

  11. Acoustic pulse propagation in an urban environment using a three-dimensional numerical simulation

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    - cally complex problem that has many practical applications. In urban planning and city design, acoustic and scattering play a significant role in acoustic energy transport in urban areas, especially in cases whenAcoustic pulse propagation in an urban environment using a three-dimensional numerical simulation

  12. Acoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical simulations

    E-Print Network [OSTI]

    of the corresponding acoustic wave equation. 1. Introduction For the typical dimensions of microfluidic structures and small 1 mm particles can be understood in terms of the acoustic eigenmodes or standing ultra-sound wavesAcoustic resonances in microfluidic chips: full-image micro-PIV experiments and numerical

  13. Application of a new composite BIE for 3-D acoustic problems

    E-Print Network [OSTI]

    Liu, Yijun

    of a new weakly- singular form of the HBIE for 3-D acoustic wave problems presented in [8] is further of the HBIE The conventional boundary integral equation (CBIE) for acoustic problem can be written as: ,)()()( ),()( ),()()( o I S o ooo PPdSP n PPG n P PPGPPC + -= (1) where is the total acoustic wave satisfying

  14. Direct-to-Indirect Acoustic Radiance Lakulish Antani, Anish Chandak, Micah Taylor and Dinesh Manocha

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    the acoustic wave equation. However, their complexity is proportional to the volume of the scene and the fourth1 Direct-to-Indirect Acoustic Radiance Transfer Lakulish Antani, Anish Chandak, Micah Taylor for visual rendering and uses them to develop an improved acoustic radiance transfer technique. We precompute

  15. Theory of acoustic scattering by supported ridges at a solid-liquid interface A. Khelif,1

    E-Print Network [OSTI]

    Deymier, Pierre

    linear and nonlinear solutions to the acoustic wave equation is presented in some details in Sec. II/liquid interface. We treat the problem of scattering of an incident acoustic plane wave by a single ridge and two.25. y, 62.60. v, 68.08. p I. INTRODUCTION The problem of the interaction between acoustic waves

  16. An explicit time evolution method for acoustic wave propagation Huafeng Liu1

    E-Print Network [OSTI]

    Niu, Fenglin

    . We started from the constant-density acoustic wave equation and obtained an analytical timeAn explicit time evolution method for acoustic wave propagation Huafeng Liu1 , Nanxun Dai2 (ETE) method to efficiently simulate wave propaga- tion in acoustic media with high temporal accuracy

  17. Comparison of simulations and data from a seismo-acoustic tank Jon M. Collisa

    E-Print Network [OSTI]

    of the slab requires accounting for shear waves in this environment. Acoustic measurements were obtained along for solving such range-dependent seismo-acoustics problems,8,9 including anisotropic10 and interface wave prior to the experiment. We were unable to obtain acoustic/fluid para- bolic equation solutions

  18. High Order Space-Time Finite Element Schemes for Acoustic and Viscodynamic Wave Equations with

    E-Print Network [OSTI]

    High Order Space-Time Finite Element Schemes for Acoustic and Viscodynamic Wave Equations applications are to the acoustic wave equation and to elastodynamics. We also build in the well-known Kelvin for decoupled DGFEM in time 6 3 Specific applications 10 3.1 The acoustic wave equation

  19. Seismo-acoustic ray model benchmarking against experimental Orlando Camargo Rodrigueza)

    E-Print Network [OSTI]

    . The ray solution to the acoustic wave equation is an asymptotic approximation, which improves as frequencySeismo-acoustic ray model benchmarking against experimental tank data Orlando Camargo Rodri Harry J. Simpson Physical Acoustic Branch Code 7136, Naval Research Laboratory, 4555 Overlook Avenue

  20. Long-range propagation of finite-amplitude acoustic waves in an ocean waveguide

    E-Print Network [OSTI]

    Gerstoft, Peter

    Wave Equation NPE 7 is used to propagate a finite-amplitude acoustic wave field. Second, this codeLong-range propagation of finite-amplitude acoustic waves in an ocean waveguide Kae¨lig Castor for T-wave formation. © 2004 Acoustical Society of America. DOI: 10.1121/1.1756613 PACS numbers: 43

  1. Finite Element Approximation of the Acoustic Wave Equation: Error Control and Mesh

    E-Print Network [OSTI]

    Bangerth, Wolfgang

    Finite Element Approximation of the Acoustic Wave Equation: Error Control and Mesh Adaptation of the Acoustic Wave Equation: Error Control and Mesh Adaptation Wolfgang Bangerth and Rolf Rannacher1 Institute@iwr.uni-heidelberg.de Abstract We present an approach to solving the acoustic wave equation by adaptive finite el- ement methods

  2. Effect of the open roof on low frequency acoustic propagation in street canyons

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Effect of the open roof on low frequency acoustic propagation in street canyons O. Richoux, C of the effect of open roof on acoustic propagation along a 3D urban canyon. The experimental study is led Domain approach adapted to take into account the acoustic radiation losses due to the street open roof

  3. COMMENTS ON "THE RADIATION OF ACOUSTIC WAVES FROM AN AIR-GUN"*

    E-Print Network [OSTI]

    COMMENTS ON "THE RADIATION OF ACOUSTIC WAVES FROM AN AIR-GUN"* BY A. ZIOLKOWSKI"" Safar's (1976) paper does not contain a treatment of the radiation of acoustic waves from an air-gun. Safar attempts to predict three parameters of the acoustic wave generated by an air gun-the rise time and amplitude

  4. Acoustic Emission, Cylinder Pressure and Vibration: A Multisensor Approach to Robust Fault Diagnosis \\Lambda

    E-Print Network [OSTI]

    Sharkey, Amanda

    Acoustic Emission, Cylinder Pressure and Vibration: A Multisensor Approach to Robust Fault in the ensuing cylinder pressure traces, acoustic emission and vibration signals. In this paper, we explore the idea of exploiting information detected by pressure, vibration and acoustic emission sensors in order

  5. High-frequency acoustic scattering from turbulent oceanic microstructure: The importance of density fluctuations

    E-Print Network [OSTI]

    High-frequency acoustic scattering from turbulent oceanic microstructure: The importance of density properties of the ocean interior over large spatial and temporal scales. With high-frequency acoustic numbers: 43.30.Ft, 43.30.Re, 43.30.Pc WMC Pages: 2685­2697 I. INTRODUCTION High-frequency acoustic

  6. Hydro-acoustic Wave Generation During the Tohoku-oki 2011 Earthquake A. Abdolali1

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    Hydro-acoustic Wave Generation During the Tohoku-oki 2011 Earthquake A. Abdolali1 , James T. Kirby1 and hydro-acoustic wave fields, generated by the 2011 Tohoku-oki tsunamigenic event using a numerical model in deep water revealed the role of underlying layer on the formation of hydro- acoustic waves and carrying

  7. Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2

    E-Print Network [OSTI]

    Kirby, James T.

    Numerical Modeling of Hydro-acoustic Waves In Weakly Compressible Fluid Ali Abdolali1,2 , James T of Civil Engineering, University of Roma Tre Low-frequency hydro-acoustic waves are precursors of tsunamis. Detection of hydro-acoustic waves generated due to the water column compression triggered by sudden seabed

  8. Acoustic modeling of perforated plates with bias flow for Large-Eddy Simulations

    E-Print Network [OSTI]

    Mendez, Simon

    Acoustic modeling of perforated plates with bias flow for Large-Eddy Simulations S. Mendez a,, J. D of California, Los Angeles, Los Angeles, CA 90095, USA. Abstract The study of the acoustic effect of perforated to provide data on the flow around a perforated plate and the associated acoustic damping is demonstrated

  9. Tokamak halo currents

    SciTech Connect (OSTI)

    Boozer, Allen H. [Department of Applied Physics and Applied Mathematics Columbia University, New York, New York 10027 (United States)] [Department of Applied Physics and Applied Mathematics Columbia University, New York, New York 10027 (United States)

    2013-08-15

    A halo current flows for part of its path through the plasma edge and for part through the chamber walls and can be as large as tenths of the plasma current. The primary interest in halo currents is the large force that they can exert on machine components. Two discordant constraints are central to the theory: (1) Halo currents must produce the magnetic field distribution required to maintain plasma force balance—a distribution that depends on the two angular coordinates of a torus. (2) Halo currents must flow along the magnetic field lines in the plasma, which implies a dependence on a linear combination of the two angular coordinates—only one angular coordinate is free. The physics basis of these two constraints is explained as is their application to the calculation of the properties of halo currents, such as their broad toroidal spectrum. Existing codes could be used to (1) provide detailed comparisons with experiments to validate that the critical elements of physics are adequately included, (2) allow more complete predictions for future machines such as ITER, and (3) design shunts and resistive elements to ensure halo currents follow paths that are the least damaging to the machine. The physics of halo currents implies that it may be possible to feedback stabilize resistive wall modes beyond the ideal-wall limit.

  10. Action of an electromagnetic pulse on a plasma with a high level of ion-acoustic turbulence. Field diffusion and subdiffusion

    SciTech Connect (OSTI)

    Ovchinnikov, K. N.; Uryupin, S. A., E-mail: uryupin@sci.lebedev.ru [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

    2013-09-15

    Specific features of the interaction of a relatively weak electromagnetic pulse with a nonisothermal current-carrying plasma in which the electron drift velocity is much higher than the ion-acoustic velocity, but lower than the electron thermal velocity, are studied. If the state of the plasma with ion-acoustic turbulence does not change during the pulse action, the field penetrates into the plasma in the ordinary diffusion regime, but the diffusion coefficient in this case is inversely proportional to the anomalous conductivity. If, during the pulse action, the particle temperatures and the current-driving field change due to turbulent heating, the field penetrates into the plasma in the subdiffusion regime. It is shown how the presence of subdiffusion can be detected by measuring the reflected field.

  11. Nonlinear acoustic wave generation in a three-phase seabed

    E-Print Network [OSTI]

    Kukarkin, A B; Zhileikin, Ya M

    2015-01-01

    Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.

  12. Nonlinear acoustic wave generation in a three-phase seabed

    E-Print Network [OSTI]

    A. B. Kukarkin; N. I. Pushkina; Ya. M. Zhileikin

    2015-03-03

    Generation of an acoustic wave by two pump sound waves is studied in a three-phase marine sediment that consists of a solid frame and the pore water with air bubbles in it. To avoid shock-wave formation the interaction is considered in the frequency range where there is a significant amount of sound velocity dispersion. Nonlinear equations are obtained to describe the interaction of acoustic waves in the presence of air bubbles. An expression for the amplitude of the generated wave is obtained and numerical analysis of its dependence on distance and on the resonance frequency of bubbles is performed.

  13. Quantum-corrected finite entropy of noncommutative acoustic black holes

    E-Print Network [OSTI]

    M. A. Anacleto; F. A. Brito; G. C. Luna; E. Passos; J. Spinelly

    2015-01-31

    In this paper we consider the generalized uncertainty principle in the tunneling formalism via Hamilton-Jacobi method to determine the quantum-corrected Hawking temperature and entropy for 2+1-dimensional noncommutative acoustic black holes. In our results we obtain an area entropy, a correction logarithmic in leading order, a correction term in subleading order proportional to the radiation temperature associated with the noncommutative acoustic black holes and an extra term that depends on a conserved charge. Thus, as in the gravitational case, there is no need to introduce the ultraviolet cut-off and divergences are eliminated.

  14. Quantum-corrected finite entropy of noncommutative acoustic black holes

    E-Print Network [OSTI]

    Anacleto, M A; Luna, G C; Passos, E; Spinelly, J

    2015-01-01

    In this paper we consider the generalized uncertainty principle in the tunneling formalism via Hamilton-Jacobi method to determine the quantum-corrected Hawking temperature and entropy for 2+1-dimensional noncommutative acoustic black holes. In our results we obtain an area entropy, a correction logarithmic in leading order, a correction term in subleading order proportional to the radiation temperature associated with the noncommutative acoustic black holes and an extra term that depends on a conserved charge. Thus, as in the gravitational case, there is no need to introduce the ultraviolet cut-off and divergences are eliminated.

  15. Acoustic cross-correlation flowmeter for solid-gas flow

    DOE Patents [OSTI]

    Sheen, S.H.; Raptis, A.C.

    1984-05-14

    Apparatus for measuring particle velocity in a solid-gas flow within a pipe includes: first and second transmitting transducers for transmitting first and second ultrasonic signals into the pipe at first and second locations, respectively, along the pipe; an acoustic decoupler, positioned between said first and second transmitting transducers, for acoustically isolating said first and second signals from one another; first and second detecting transducers for detecting said first and second signals and for generating first and second detected signals; and means for cross-correlating said first and second output signals.

  16. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOE Patents [OSTI]

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  17. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOE Patents [OSTI]

    Burnett, Greg C. (Livermore, CA); Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  18. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOE Patents [OSTI]

    Burnett, Greg C. (Livermore, CA); Holzrichter, John F. (Berkeley, CA); Ng, Lawrence C. (Danville, CA)

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  19. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOE Patents [OSTI]

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  20. Adjustable direct current and pulsed circuit fault current limiter

    DOE Patents [OSTI]

    Boenig, Heinrich J.; Schillig, Josef B.

    2003-09-23

    A fault current limiting system for direct current circuits and for pulsed power circuit. In the circuits, a current source biases a diode that is in series with the circuits' transmission line. If fault current in a circuit exceeds current from the current source biasing the diode open, the diode will cease conducting and route the fault current through the current source and an inductor. This limits the rate of rise and the peak value of the fault current.

  1. Frequencies of the geodesic acoustic mode and Alfvén gap modes in high-q{sup 2}? plasmas with non-circular cross section

    SciTech Connect (OSTI)

    Fesenyuk, O. P.; Kolesnichenko, Ya. I.; Yakovenko, Yu. V.; National University of Kyiv Mohyla Academy, Vul. Skovorody 2, Kyiv 04070

    2013-12-15

    This work generalizes recent results [O. P. Fesenyuk et al., Plasma Phys. Controlled Fusion 54, 085014 (2012)] to plasmas with elongated cross section. It suggests new expressions for the frequencies of the geodesic acoustic mode and Alfvén gap modes in tokamaks, with a large ratio of the plasma pressure to the magnetic field pressure and a large safety factor (q?1, which takes place in discharges with reversed-shear configuration and, especially, in hollow-current discharges)

  2. Passive Acoustic Detection of Wind Turbine In-Flow Conditions for Active Control and Optimization

    SciTech Connect (OSTI)

    Murray, Nathan E.

    2012-03-12

    Wind is a significant source of energy; however, the human capability to produce electrical energy still has many hurdles to overcome. One of these is the unpredictability of the winds in the atmospheric boundary layer (ABL). The ABL is highly turbulent in both stable and unstable conditions (based on the vertical temperature profile) and the resulting fluctuations can have a dramatic impact on wind turbine operation. Any method by which these fluctuations could be observed, estimated, or predicted could provide a benefit to the wind energy industry as a whole. Based on the fundamental coupling of velocity fluctuations to pressure fluctuations in the nearly incompressible flow in the ABL, This work hypothesizes that a ground-based array of infrasonic pressure transducers could be employed to estimate the vertical wind profile over a height relevant for wind turbines. To analyze this hypothesis, experiments and field deployments were conducted. Wind tunnel experiments were performed for a thick turbulent boundary layer over a neutral or heated surface. Surface pressure and velocity probe measurements were acquired simultaneously. Two field deployments yielded surface pressure data from a 49 element array. The second deployment at the Reese Technology Center in Lubbock, TX, also included data from a smaller aperture, 96-element array and a 200-meter tall meteorological tower. Analysis of the data successfully demonstrated the ability to estimate the vertical velocity profile using coherence data from the pressure array. Also, dynamical systems analysis methods were successful in identifying and tracking a gust type event. In addition to the passive acoustic profiling method, this program also investigated a rapid response Doppler SODAR system, the optimization of wind turbine blades for enhanced power with reduced aeroacoustic noise production, and the implementation of a wireless health monitoring system for the wind turbine blades. Each of these other objectives was met successfully. The use of phase unwrapping applied to SODAR data was found to yield reasonable results for per-pulse measurements. A health monitoring system design analysis was able to demonstrate the ability to use a very small number of sensors to monitor blade health based on the blade's overall structural modes. Most notable was the development of a multi-objective optimization methodology that successfully yielded an aerodynamic blade design that produces greater power output with reduced aerodynamic loading noise. This optimization method could be significant for future design work.

  3. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOE Patents [OSTI]

    Sheen, Shuh-Haw (Naperville, IL); Chien, Hual-Te (Naperville, IL); Raptis, Apostolos C. (Downers Grove, IL)

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  4. Phonon characteristics of high {Tc} superconductors from neutron Doppler broadening measurements

    SciTech Connect (OSTI)

    Trela, W.J.; Kwei, G.H.; Lynn, J.E. [Los Alamos National Lab., NM (United States); Meggers, K. [Univ. of Kiel (Germany)

    1994-12-01

    Statistical information on the phonon frequency spectrum of materials can be measured by neutron transmission techniques if they contain nuclei with low energy resonances, narrow enough to be Doppler-broadened, in their neutron cross sections. The authors have carried out some measurements using this technique for materials of the lanthanum barium cuprate class, La{sub 2{minus}x}Ba{sub x}CuO{sub 4}. Two samples with slightly different concentrations of oxygen, one being superconductive, the other not, were examined. Pure lanthanum cuprate was also measured. Lanthanum, barium and copper all have relatively low energy narrow resonances. Thus it should be possible to detect differences in the phonons carried by different kinds of atom in the lattice. Neutron cross section measurements have been made with high energy resolution and statistical precision on the 59m flight path of LANSCE, the pulsed spallation neutron source at Los Alamos National Laboratory. Measurements on all three materials were made over a range of temperatures from 15K to 300K, with small steps through the critical temperature region near 27K. No significant changes in the mean phonon energy of the lanthanum atoms were observed near the critical temperature of the super-conducting material. It appears however that the mean phonon energy of lanthanum in the superconductor is considerably higher than that in the non-superconductors. The samples used in this series of experiments were too thin in barium and copper to determine anything significant about their phonon spectra.

  5. Coherent population trapping resonances at lower atomic levels of Doppler broadened optical lines

    SciTech Connect (OSTI)

    ?ahin, E; Hamid, R; Çelik, M; Özen, G; Izmailov, A Ch

    2014-11-30

    We have detected and analysed narrow high-contrast coherent population trapping (CPT) resonances, which are induced in absorption of a weak monochromatic probe light beam by counterpropagating two-frequency pump radiation in a cell with rarefied caesium vapour. The experimental investigations have been performed by the example of nonclosed three level ?-systems formed by spectral components of the D{sub 2} line of caesium atoms. The applied method allows one to analyse features of the CPT phenomenon directly at a given low long-lived level of the selected ?-system even in sufficiently complicated spectra of atomic gases with large Doppler broadening. We have established that CPT resonances in transmission of the probe beam exhibit not only a higher contrast but also a much lesser width in comparison with well- known CPT resonances in transmission of the corresponding two-frequency pump radiation. The results obtained can be used in selective photophysics, photochemistry and ultra-high resolution atomic (molecular) spectroscopy. (laser applications and other topics in quantum electronics)

  6. Dynamic Rotor Deformation and Vibration Monitoring Using a Non-Incremental Laser Doppler Distance Sensor

    SciTech Connect (OSTI)

    Pfister, Thorsten; Guenther, Philipp; Dreier, Florian; Czarske, Juergen

    2010-05-28

    Monitoring rotor deformations and vibrations dynamically is an important task for improving the safety and the lifetime as well as the energy efficiency of motors and turbo machines. However, due to the high rotor speed encountered in particular at turbo machines, this requires concurrently a high measurement rate and high accuracy, which can not be fulfilled by most commercially available sensors. To solve this problem, we developed a non-incremental laser Doppler distance sensor (LDDS), which is able to measure simultaneously the in-plane velocity and the out-of-plane position of moving rough solid objects with micrometer precision. In addition, this sensor concurrently offers a high temporal resolution in the microsecond range, because its position uncertainty is in principle independent of the object velocity in contrast to conventional distance sensors, which is a unique feature of the LDDS. Consequently, this novel sensor enables precise and dynamic in-process deformation and vibration measurements on rotating objects, such as turbo machine rotors, even at very high speed. In order to evidence the capability of the LDDS, measurements of rotor deformations (radial expansion), vibrations and wobbling motions are presented at up to 50,000 rpm rotor speed.

  7. Laser Doppler field sensor for high resolution flow velocity imaging without camera

    SciTech Connect (OSTI)

    Voigt, Andreas; Bayer, Christian; Shirai, Katsuaki; Buettner, Lars; Czarske, Juergen

    2008-09-20

    In this paper we present a laser sensor for highly spatially resolved flow imaging without using a camera. The sensor is an extension of the principle of laser Doppler anemometry (LDA). Instead of a parallel fringe system, diverging and converging fringes are employed. This method facilitates the determination of the tracer particle position within the measurement volume and leads to an increased spatial and velocity resolution compared to conventional LDA. Using a total number of four fringe systems the flow is resolved in two spatial dimensions and the orthogonal velocity component. Since no camera is used, the resolution of the sensor is not influenced by pixel size effects. A spatial resolution of 4 {mu}m in the x direction and 16 {mu}m in the y direction and a relative velocity resolution of 1x10{sup -3} have been demonstrated up to now. As a first application we present the velocity measurement of an injection nozzle flow. The sensor is also highly suitable for applications in nano- and microfluidics, e.g., for the measurement of flow rates.

  8. Range, Doppler and astrometric observables computed from Time Transfer Functions: a survey

    E-Print Network [OSTI]

    A. Hees; S. Bertone; C. Le Poncin-Lafitte; P. Teyssandier

    2014-12-10

    Determining range, Doppler and astrometric observables is of crucial interest for modelling and analyzing space observations. We recall how these observables can be computed when the travel time of a light ray is known as a function of the positions of the emitter and the receiver for a given instant of reception (or emission). For a long time, such a function--called a reception (or emission) time transfer function--has been almost exclusively calculated by integrating the null geodesic equations describing the light rays. However, other methods avoiding such an integration have been considerably developped in the last twelve years. We give a survey of the analytical results obtained with these new methods up to the third order in the gravitational constant $G$ for a mass monopole. We briefly discuss the case of quasi-conjunctions, where higher-order enhanced terms must be taken into account for correctly calculating the effects. We summarize the results obtained at the first order in $G$ when the multipole structure and the motion of an axisymmetric body is taken into account. We present some applications to on-going or future missions like Gaia and Juno. We give a short review of the recent works devoted to the numerical estimates of the time transfer functions and their derivatives.

  9. Pulsed UCN production using a Doppler shifter at J-PARC

    E-Print Network [OSTI]

    Imajo, S; Kitaguchi, M; Iwashia, Y; Yamada, N L; Hino, M; Oda, T; Ino, T; Shimizu, H M; Yamashita, S; Katayama, R

    2015-01-01

    We have constructed a Doppler-shifter-type pulsed ultra-cold neutron (UCN) source at the Materials and Life Science Experiment Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). Very-cold neutrons (VCNs) with 136-$\\mathrm{m/s}$ velocity in a neutron beam supplied by a pulsed neutron source are decelerated by reflection on a m=10 wide-band multilayer mirror, yielding pulsed UCN. The mirror is fixed to the tip of a 2,000-rpm rotating arm moving with 68-$\\mathrm{m/s}$ velocity in the same direction as the VCN. The repetition frequency of the pulsed UCN is $8.33~\\mathrm{Hz}$ and the time width of the pulse at production is $4.4~\\mathrm{ms}$. In order to increase the UCN flux, a supermirror guide, wide-band monochromatic mirrors, focus guides, and a UCN extraction guide have been newly installed or improved. The count rate of the output neutrons with longitudinal wavelengths longer than $58~\\mathrm{nm}$ is $1.6 \\times 10^{2}~\\mathrm{cps}$, while that of the true UCNs is $80~\\mathrm{cps}$ at ...

  10. Pulsed UCN production using a Doppler shifter at J-PARC

    E-Print Network [OSTI]

    S. Imajo; K. Mishima; M. Kitaguchi; Y. Iwashia; N. L. Yamada; M. Hino; T. Oda; T. Ino; H. M. Shimizu; S. Yamashita; R. Katayama

    2015-07-26

    We have constructed a Doppler-shifter-type pulsed ultra-cold neutron (UCN) source at the Materials and Life Science Experiment Facility (MLF) of the Japan Proton Accelerator Research Complex (J-PARC). Very-cold neutrons (VCNs) with 136-$\\mathrm{m/s}$ velocity in a neutron beam supplied by a pulsed neutron source are decelerated by reflection on a m=10 wide-band multilayer mirror, yielding pulsed UCN. The mirror is fixed to the tip of a 2,000-rpm rotating arm moving with 68-$\\mathrm{m/s}$ velocity in the same direction as the VCN. The repetition frequency of the pulsed UCN is $8.33~\\mathrm{Hz}$ and the time width of the pulse at production is $4.4~\\mathrm{ms}$. In order to increase the UCN flux, a supermirror guide, wide-band monochromatic mirrors, focus guides, and a UCN extraction guide have been newly installed or improved. The count rate of the output neutrons with longitudinal wavelengths longer than $58~\\mathrm{nm}$ is $1.6 \\times 10^{2}~\\mathrm{cps}$, while that of the true UCNs is $80~\\mathrm{cps}$ at an equivalent beampower of $1~\\mathrm{MW}$. The spatial density at production is $1.4~\\mathrm{UCN/cm^{3}}$. This new UCN source enables us to research and develop apparatus necessary for the investigation of the neutron electric dipole moment (nEDM).

  11. In-field use of laser Doppler vibrometer on a wind turbine blade

    SciTech Connect (OSTI)

    Rumsey, M.; Hurtado, J.; Hansche, B.

    1998-12-31

    One of our primary goals was to determine how well a laser Doppler vibrometer (LDV) could measure the structural dynamic response of a wind turbine that was parked in the field. We performed a series of preliminary tests in the lab to determine the basic limitations of the LDV for this application. We then instrumented an installed parked horizontal axis wind turbine with accelerometers to determine the natural frequencies, damping, and mode shapes of the wind turbine and rotor as a baseline for the LDV and our other tests. We also wanted to determine if LDV modal information could be obtained from a naturally (wind) excited wind turbine. We compared concurrently obtained accelerometer and LDV data in an attempt to assess the quality of the LDV data. Our test results indicate the LDV can be successfully used in the field environment of an installed wind turbine, but with a few restrictions. We were successful in obtaining modal information from a naturally (wind) excited wind turbine in the field, but the data analysis requires a large number of averaged data sets to obtain reasonable results. An ultimate goal of this continuing project is to develop a technique that will monitor the health of a structure, detect damage, and hopefully predict an impending component failure.

  12. Detonation wave profiles measured in plastic bonded explosives using 1550 nm photon doppler velocimetry (PDV)

    SciTech Connect (OSTI)

    Gustavsen, Richard L [Los Alamos National Laboratory; Bartram, Brian D [Los Alamos National Laboratory; Sanchez, Nathaniel (nate) J [Los Alamos National Laboratory

    2009-01-01

    We present detonation wave profiles measured in two TATB based explosives and two HMX based explosives. Profiles were measured at the interface of the explosive and a Lithium-Fluoride (LiF) window using 1550 nm Photon Doppler Velocimetry (PDV). Planar detonations were produced by impacting the explosive with a projectile launched in a gas-gun. The impact state was varied to produce varied distance to detonation, and therefore varied support of the Taylor wave following the Chapman-Jouget (CJ) or sonic state. Profiles from experiments with different support should be the same between the Von-Neumann (VN) spike and CJ state and different thereafter. Comparison of profiles with differing support, therefore, allows us to estimate reaction zone lengths. For the TATB based explosive, a reaction zone length of {approx} 3.9 mm, 500 ns was measured in EDC-35, and a reaction zone length of {approx} 6.3 mm, 800 ns was measured in PBX 9502 pre-cooled to -55 C. The respective VN spike state was 2.25 {+-} 0.05 km/s in EDC-35 and 2.4 {+-} 0.1 km/s in the cooled PBX 9502. We do not believe we have resolved either the VN spike state (> 2.6 km/s) nor the reaction zone length (<< 50 ns) in the HMX based explosives.

  13. Geothermal Energy: Current abstracts

    SciTech Connect (OSTI)

    Ringe, A.C. (ed.)

    1988-02-01

    This bulletin announces the current worldwide information available on the technologies required for economic recovery of geothermal energy and its use as direct heat or for electric power production. (ACR)

  14. Energy transport by acoustic modes of harmonic Lisa Harris

    E-Print Network [OSTI]

    Theil, Florian

    Energy transport by acoustic modes of harmonic lattices Lisa Harris , Jani Lukkarinen , Stefan vector, k = 0. To derive equations that describe the macroscopic energy transport we introduce the Wigner concentrating to k = 0. A simple consequence of our result is the complete characterization of energy transport

  15. Numerical Study of Acoustic Modes in Ducted Shear Flow

    E-Print Network [OSTI]

    Rienstra, Sjoerd W.

    Numerical Study of Acoustic Modes in Ducted Shear Flow Gregory G. Vilenski & Sjoerd W. Rienstra mean flow inside a duct is studied numerically. For isentropic flow in a circular duct with zero swirl 26, 2007 #12;1 Introduction Normal mode analysis of small-amplitude disturbances in an annular duct

  16. Acoustic Modes in a Ducted Shear Flow Gregory Vilenski

    E-Print Network [OSTI]

    Eindhoven, Technische Universiteit

    Acoustic Modes in a Ducted Shear Flow Gregory Vilenski Sjoerd W. Rienstra Eindhoven University but sheared mean flow inside a duct is considered. For isentropic flow in a circular duct with zero swirl = dimensional inner duct radius d = dimensional outer duct radius = dimensional frequency m = circumferential

  17. Mitigation of Acoustic Resonance using Electrically Shunted Loudspeakers

    E-Print Network [OSTI]

    Fleming, Andrew J.

    motivated a diverse literature on the active control of low-frequency reverberant noise. The field of non the dissipation of acoustic energy. The designed electrical impedance that effectively renders the speaker to an experimental duct system. The paper is concluded in Section 4. E-mail: andrew.fleming@newcastle.edu.au Smart

  18. Quasi-normal acoustic oscillations in the Michel flow

    E-Print Network [OSTI]

    Eliana Chaverra; Manuel D. Morales; Olivier Sarbach

    2015-06-09

    We study spherical and nonspherical linear acoustic perturbations of the Michel flow, which describes the steady radial accretion of a perfect fluid into a nonrotating black hole. The dynamics of such perturbations are governed by a scalar wave equation on an effective curved background geometry determined by the acoustic metric, which is constructed from the spacetime metric and the particle density and four-velocity of the fluid. For the problem under consideration in this article the acoustic metric has the same qualitative features as an asymptotically flat, static and spherically symmetric black hole, and thus it represents a natural astrophysical analogue black hole. As for the case of a scalar field propagating on a Schwarzschild background, we show that acoustic perturbations of the Michel flow exhibit quasi-normal oscillations. Based on a new numerical method for determining the solutions of the radial mode equation, we compute the associated frequencies and analyze their dependency on the radii of the event and sonic horizons and the angular momentum number. Our results for the fundamental frequencies are compared to those obtained from an independent numerical Cauchy evolution, finding good agreement between the two approaches. When the radius of the sonic horizon is large compared to the event horizon radius, we find that the quasi-normal frequencies scale approximately like the surface gravity associated with the sonic horizon.

  19. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  20. A Gasdynamic-Acoustic Model of a Bird Scare Gun

    E-Print Network [OSTI]

    Rienstra, Sjoerd W.

    A Gasdynamic-Acoustic Model of a Bird Scare Gun by S.W. Rienstra A contribution to Mathematical, CA). Published by Cambridge University Press, 2000. 1 Introduction A bird scare gun is a relatively. It appears that the gun produces a louder bang when the pipe is longer. This hints, of course, at a possible