National Library of Energy BETA

Sample records for acids alkalies salts

  1. Salts of alkali metal anions and process of preparing same

    DOE Patents [OSTI]

    Dye, James L.; Ceraso, Joseph M.; Tehan, Frederick J.; Lok, Mei Tak

    1978-01-01

    Compounds of alkali metal anion salts of alkali metal cations in bicyclic polyoxadiamines are disclosed. The salts are prepared by contacting an excess of alkali metal with an alkali metal dissolving solution consisting of a bicyclic polyoxadiamine in a suitable solvent, and recovered by precipitation. The salts have a gold-color crystalline appearance and are stable in a vacuum at -10.degree. C. and below.

  2. Hydroxycarboxylic acids and salts

    SciTech Connect (OSTI)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  3. Electrolyte salts for power sources

    DOE Patents [OSTI]

    Doddapaneni, Narayan; Ingersoll, David

    1995-01-01

    Electrolyte salts for power sources comprising salts of phenyl polysulfonic acids and phenyl polyphosphonic acids. The preferred salts are alkali and alkaline earth metal salts, most preferably lithium salts.

  4. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, Anthony A.

    1985-01-01

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs.

  5. Oxygen production by molten alkali metal salts using multiple absorption-desorption cycles

    DOE Patents [OSTI]

    Cassano, A.A.

    1985-07-02

    A continuous chemical air separation is performed wherein oxygen is recovered with a molten alkali metal salt oxygen acceptor in a series of absorption zones which are connected to a plurality of desorption zones operated in separate parallel cycles with the absorption zones. A greater recovery of high pressure oxygen is achieved at reduced power requirements and capital costs. 3 figs.

  6. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, Luc

    1999-01-01

    A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  7. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, L.

    1999-05-25

    A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  8. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOE Patents [OSTI]

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  9. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite

    DOE Patents [OSTI]

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-24

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  10. Process For The Preparation Of 3,4-Dihyd Roxybutanoic Acid And Salts Thereof

    DOE Patents [OSTI]

    Hollingsworth, Rawle I.

    1994-06-07

    A process for the preparation of 3,4-dihydroxybutanoic acid (1) and salts thereof from a glucose source containing 1,4-linked glucose as a substituent is described. The process uses an alkali metal hdyroxide and hydrogen peroxide to convert the glucose source to (1). The compound (1) is useful as a chemical intermediate to naturally occurring fatty acids and is used to prepare 3,4-dihydroxybutanoic acid-gamma-lactone (2) and furanone (3), particularly stereoisomers of these compounds.

  11. Process for the preparation of 3,4-dihydroxybutanoic acid and salts thereof

    DOE Patents [OSTI]

    Hollingsworth, Rawle I.

    1994-01-01

    A process for the preparation of 3,4-dihydroxybutanoic acid (1) and salts thereof from a glucose source containing 1,4-linked glucose as a substituent is described. The process uses an alkali metal hdyroxide and hydrogen peroxide to convert the glucose source to (1). The compound (1) is useful as a chemical intermediate to naturally occurring fatty acids and is used to prepare 3,4-dihydroxybutanoic acid-gamma-lactone (2) and furanone (3), particularly stereoisomers of these compounds.

  12. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  13. Process for the preparation of 3,4-dihydroxybutanoic acid and salts thereof

    DOE Patents [OSTI]

    Hollingsworth, Rawle I.

    1994-01-01

    A process for the preparation of 3,4-dihydroxybutanoic acid (1) and salts thereof from a glucose source containing 1,4-1inked glucose as a substituent is described. The process uses an alkali metal hdyroxide and hydrogen peroxide to convert the glucose source to (1). The compound (1) is useful as a chemical intermediate to naturally occurring fatty acids and is used to prepare 3,4-dihydroxybutanoic acid-gamma-lactone (2) and furanone (3), particularly stereoisomers of these compounds.

  14. Production of carboxylic acid and salt co-products

    DOE Patents [OSTI]

    Hanchar, Robert J.; Kleff, Susanne; Guettler, Michael V.

    2014-09-09

    This invention provide processes for producing carboxylic acid product, along with useful salts. The carboxylic acid product that is produced according to this invention is preferably a C.sub.2-C.sub.12 carboxylic acid. Among the salts produced in the process of the invention are ammonium salts.

  15. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    SciTech Connect (OSTI)

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid film of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.

  16. Highly Effective Pt-Based Water-Gas Shift Catalysts by Surface Modification with Alkali Hydroxide Salts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kusche, Matthias; Bustillo, Karen; Agel, Friederike; Wasserscheid, Peter

    2015-01-29

    Here, we describe an economical and convenient method to improve the performance of Pt/alumina catalysts for the water–gas shift reaction through surface modification of the catalysts with alkali hydroxides according to the solid catalyst with ionic liquid layer approach. The results are in agreement with our findings reported earlier for methanol steam reforming. This report indicates that alkali doping of the catalyst plays an important role in the observed catalyst activation. In addition, the basic and hygroscopic nature of the salt coating contributes to a significant improvement in the performance of the catalyst. During the reaction, a partly liquid filmmore » of alkali hydroxide forms on the alumina surface, which increases the availability of H2O at the catalytically active sites. Kinetic studies reveal a negligible effect of the KOH coating on the rate dependence of CO and H2O partial pressures. In conclusion, TEM studies indicate an agglomeration of the active Pt clusters during catalyst preparation; restructuring of Pt nanoparticles occurs under reaction conditions, which leads to a highly active and stable system over 240h time on stream. Excessive pore fillings with KOH introduce a mass transfer barrier as indicated in a volcano-shaped curve of activity versus salt loading. The optimum KOH loading was found to be 7.5wt%.« less

  17. In situ formation of coal gasification catalysts from low cost alkali metal salts

    DOE Patents [OSTI]

    Wood, Bernard J.; Brittain, Robert D.; Sancier, Kenneth M.

    1985-01-01

    A carbonaceous material, such as crushed coal, is admixed or impregnated with an inexpensive alkali metal compound, such as sodium chloride, and then pretreated with a stream containing steam at a temperature of 350.degree. to 650.degree. C. to enhance the catalytic activity of the mixture in a subsequent gasification of the mixture. The treatment may result in the transformation of the alkali metal compound into another, more catalytically active, form.

  18. Methanol synthesis using a catalyst combination of alkali or alkaline earth salts and reduced copper chromite for methanol synthesis

    DOE Patents [OSTI]

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1993-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a catalyst combination comprising reduced copper chromite and basic alkali salts or alkaline earth salts. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  19. Production of chlorine from chloride salts

    DOE Patents [OSTI]

    Rohrmann, Charles A. (Kennewick, WA)

    1981-01-01

    A process for converting chloride salts and sulfuric acid to sulfate salts and elemental chlorine is disclosed. A chloride salt and sulfuric acid are combined in a furnace where they react to produce a sulfate salt and hydrogen chloride. Hydrogen chloride from the furnace contacts a molten salt mixture containing an oxygen compound of vanadium, an alkali metal sulfate and an alkali metal pyrosulfate to recover elemental chlorine. In the absence of an oxygen-bearing gas during the contacting, the vanadium is reduced, but is regenerated to its active higher valence state by separately contacting the molten salt mixture with an oxygen-bearing gas.

  20. MgAl2O4 spinel refractory as containment liner for high-temperature alkali salt containing environments

    DOE Patents [OSTI]

    Peascoe-Meisner, Roberta A [Knoxville, TN; Keiser, James R [Oak Ridge, TN; Hemric, James G [Knoxville, TN; Hubbard, Camden R [Oak Ridge, TN; Gorog, J Peter [Kent, WA; Gupta, Amul [Jamestown, NY

    2008-10-21

    A method includes containing a high-temperature alkali salt containing environment using a refractory containment liner containing MgAl.sub.2O.sub.4 spinel. A method, includes forming a refractory brick containing MgAl.sub.2O.sub.4 spinel having an exterior chill zone defined by substantially columnar crystallization and an interior zone defined by substantially equiaxed crystallization; and removing at least a portion of the exterior chill zone from the refractory brick containing MgAl.sub.2O.sub.4 spinel by scalping the refractory brick containing MgAl.sub.2O.sub.4 spinel to define at least one outer surface having an area of substantially equiaxed crystallization. A product of manufacture includes a refractory brick containing MgAl.sub.2O.sub.4 spinel including an interior zone defined by substantially equiaxed crystallization; and at least one outer surface having an area of substantially equiaxed crystallization.

  1. Alkali metal ion battery with bimetallic electrode

    DOE Patents [OSTI]

    Boysen, Dane A; Bradwell, David J; Jiang, Kai; Kim, Hojong; Ortiz, Luis A; Sadoway, Donald R; Tomaszowska, Alina A; Wei, Weifeng; Wang, Kangli

    2015-04-07

    Electrochemical cells having molten electrodes having an alkali metal provide receipt and delivery of power by transporting atoms of the alkali metal between electrode environments of disparate chemical potentials through an electrochemical pathway comprising a salt of the alkali metal. The chemical potential of the alkali metal is decreased when combined with one or more non-alkali metals, thus producing a voltage between an electrode comprising the molten the alkali metal and the electrode comprising the combined alkali/non-alkali metals.

  2. Raman Analysis of Perrhenate and Pertechnetate in Alkali Salts and Borosilicate Glasses

    SciTech Connect (OSTI)

    Gassman, Paul L.; McCloy, John S.; Soderquist, Chuck Z.; Schweiger, Michael J.

    2014-01-03

    Sodium borosilicate glasses containing various concentrations of rhenium or technetium were fabricated, and their vibrational spectra studied using a Raman microscope. Spectra were interpreted with reference to new high resolution measurements of alkali pertechnetates and perrhenates NaReO4, KReO4, NaTcO4, and KTcO4. At low concentrations of ReO4- or TcO4-, glass spectra show weak peaks superimposed on a dominant spectrum of glass characteristic of silicate and borate network vibrations. At high concentrations, sharp peaks characteristic of crystal field splitting and C4h symmetry dominate the spectra of glasses, indicating alkali nearby tetrahedral Re or Tc. Often peaks indicative of both the K and Na pertechnetates/ perrhenates are evident in the Raman spectrum, with the latter being favored at high additions of the source chemical, since Na is more prevalent in the glass and ion exchange takes place. These results have significance to immobilization of nuclear waste containing radioactive 99Tc in glass for ultimate disposal.

  3. Polyimide amic acid salts and polyimide membranes formed therefrom

    DOE Patents [OSTI]

    Ding, Yong; Bikson, Benjamin; Nelson, Joyce Katz; Macheras, James Timothy

    2004-04-06

    The invention relates to preparation and uses of novel polymeric materials, polyimide amic acid salts (PIAAS). The use of these materials for the fabrication of fluid separation membranes is further disclosed.

  4. Direct esterification of ammonium salts of carboxylic acids

    DOE Patents [OSTI]

    Halpern, Yuval

    2003-06-24

    A non-catalytic process for producing esters, the process comprising reacting an ammonium salt of a carboxylic acid with an alcohol and removing ammonia from the reaction mixture. Selectivities for the desired ester product can exceed 95 percent.

  5. Corrosion resistance of stainless steels during thermal cycling in alkali nitrate molten salts.

    SciTech Connect (OSTI)

    Bradshaw, Robert W.; Goods, Steven Howard

    2001-09-01

    The corrosion behavior of three austenitic stainless steels was evaluated during thermal cycling in molten salt mixtures consisting of NaNO{sub 3} and KNO{sub 3}. Corrosion tests were conducted with Types 316, 316L and 304 stainless steels for more than 4000 hours and 500 thermal cycles at a maximum temperature of 565 C. Corrosion rates were determined by chemically descaling coupons. Metal losses ranged from 5 to 16 microns and thermal cycling resulted in moderately higher corrosion rates compared to isothermal conditions. Type 316 SS was somewhat more corrosion resistant than Type 304 SS in these tests. The effect of carbon content on corrosion resistance was small, as 316L SS corroded only slightly slower than 316 SS. The corrosion rates increased as the dissolved chloride content of the molten salt mixtures increased. Chloride concentrations approximating 1 wt.%, coupled with thermal cycling, resulted in linear weight loss kinetics, rather than parabolic kinetics, which described corrosion rates for all other conditions. Optical microscopy and electron microprobe analysis revealed that the corrosion products consisted of iron-chromium spinel, magnetite, and sodium ferrite, organized as separate layers. Microanalysis of the elemental composition of the corrosion products further demonstrated that the chromium content of the iron-chromium spinel layer was relatively high for conditions in which parabolic kinetics were observed. However, linear kinetics were observed when the spinel layer contained relatively little chromium.

  6. Method and system for producing lower alcohols. [Heteropolyatomic lead salt coated with alkali metal formate

    DOE Patents [OSTI]

    Rathke, J.W.; Klingler, R.J.; Heiberger, J.J.

    1983-09-26

    It is an object of the present invention to provide an improved catalyst for the reaction of carbon monoxide with water to produce methanol and other lower alcohols. It is a further object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol from carbon monoxide and water in which a relatively inexpensive catalyst permits the reaction at low pressures. It is also an object to provide a process for the production of methanol in which ethanol is also directly produced. It is another object to provide a process for the production of mixtures of methanol with ethanol and propanol from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. It is likewise an object to provide a system for the catalytic production of lower alcohols from the reaction of carbon monoxide and water at moderate pressure with inexpensive catalysts. In accordance with the present invention, a catalyst is provided for the reaction of carbon monoxide and water to produce lower alcohols. The catalyst includes a lead heteropolyatomic salt in mixture with a metal formate or a precursor to a metal formate.

  7. Dilute acid/metal salt hydrolysis of lignocellulosics

    DOE Patents [OSTI]

    Nguyen, Quang A.; Tucker, Melvin P.

    2002-01-01

    A modified dilute acid method of hydrolyzing the cellulose and hemicellulose in lignocellulosic material under conditions to obtain higher overall fermentable sugar yields than is obtainable using dilute acid alone, comprising: impregnating a lignocellulosic feedstock with a mixture of an amount of aqueous solution of a dilute acid catalyst and a metal salt catalyst sufficient to provide higher overall fermentable sugar yields than is obtainable when hydrolyzing with dilute acid alone; loading the impregnated lignocellulosic feedstock into a reactor and heating for a sufficient period of time to hydrolyze substantially all of the hemicellulose and greater than 45% of the cellulose to water soluble sugars; and recovering the water soluble sugars.

  8. Electrolytic method to make alkali alcoholates using ion conducting alkali electrolyte/separator

    DOE Patents [OSTI]

    Joshi, Ashok V.; Balagopal, Shekar; Pendelton, Justin

    2011-12-13

    Alkali alcoholates, also called alkali alkoxides, are produced from alkali metal salt solutions and alcohol using a three-compartment electrolytic cell. The electrolytic cell includes an anolyte compartment configured with an anode, a buffer compartment, and a catholyte compartment configured with a cathode. An alkali ion conducting solid electrolyte configured to selectively transport alkali ions is positioned between the anolyte compartment and the buffer compartment. An alkali ion permeable separator is positioned between the buffer compartment and the catholyte compartment. The catholyte solution may include an alkali alcoholate and alcohol. The anolyte solution may include at least one alkali salt. The buffer compartment solution may include a soluble alkali salt and an alkali alcoholate in alcohol.

  9. Studies on the production of ultra-clean coal by alkali-acid leaching of low-grade coals

    SciTech Connect (OSTI)

    Nabeel, A.; Khan, T.A.; Sharma, D.K.

    2009-07-01

    The use of low-grade coal in thermal power stations is leading to environmental pollution due to the generation of large amounts of fly ash, bottom ash, and CO{sub 2} besides other pollutants. It is therefore important to clean the coal before using it in thermal power stations, steel plants, or cement industries etc. Physical beneficiation of coal results in only limited cleaning of coal. The increasing environmental pollution problems from the use of coal have led to the development of clean coal technologies. In fact, the clean use of coal requires the cleaning of coal to ultra low ash contents, keeping environmental norms and problems in view and the ever-growing need to increase the efficiency of coal-based power generation. Therefore this requires the adaptation of chemical cleaning techniques for cleaning the coal to obtain ultra clean coal having ultra low ash contents. Presently the reaction conditions for chemical demineralization of low-grade coal using 20% aq NaOH treatment followed by 10% H{sub 2}SO{sub 4} leaching under reflux conditions have been optimized. In order to reduce the concentration of alkali and acid used in this process of chemical demineralization of low-grade coals, stepwise, i.e., three step process of chemical demineralization of coal using 1% or 5% aq NaOH treatment followed by 1% or 5% H{sub 2}SO{sub 4} leaching has been developed, which has shown good results in demineralization of low-grade coals. In order to conserve energy, the alkali-acid leaching of coal was also carried out at room temperature, which gave good results.

  10. Effect of Acid, Alkali, and Steam Explosion Pretreatments on Characteristics of Bio-Oil Produced from Pinewood

    SciTech Connect (OSTI)

    Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian

    2011-06-21

    Bio-oil produced from pinewood by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. Pretreatment prior to the fast pyrolysis process has been shown to alter the structure and chemical composition of biomass. To determine the influence of biomass pretreatments on bio-oil produced during fast pyrolysis, we tested three pretreatment methods: dilute acid, dilute alkali, and steam explosion. Bio-oils were produced from untreated and pretreated pinewood feedstocks in an auger reactor at 450 C. The bio-oils’ physical properties including pH, water content, acid value, density, viscosity, and heating value were measured. Chemical characteristics of the bio-oils were determined by gas chromatographymass spectrometry. Results showed that bio-oil yield and composition were influenced by biomass pretreatment. Of the three pretreatment methods, 1%H2SO4 pretreatment resulted in the highest bio-oil yield and best bio-oil quality.

  11. Closed cycle ion exchange method for regenerating acids, bases and salts

    DOE Patents [OSTI]

    Dreyfuss, Robert M.

    1976-01-01

    A method for conducting a chemical reaction in acidic, basic, or neutral solution as required and then regenerating the acid, base, or salt by means of ion exchange in a closed cycle reaction sequence which comprises contacting the spent acid, base, or salt with an ion exchanger, preferably a synthetic organic ion-exchange resin, so selected that the counter ions thereof are ions also produced as a by-product in the closed reaction cycle, and then regenerating the spent ion exchanger by contact with the by-product counter ions. The method is particularly applicable to closed cycle processes for the thermochemical production of hydrogen.

  12. Effects of setting regulators on the efficiency of an inorganic acid based alkali-free accelerator reacting with a Portland cement

    SciTech Connect (OSTI)

    Maltese, C. . E-mail: Building.lab@mapei.it; Pistolesi, C.; Bravo, A.; Cella, F.; Cerulli, T.; Salvioni, D.

    2007-04-15

    Today, in the field of underground constructions, alkali-free accelerators are commonly employed, during tunnel excavation, to allow flash concrete setting. In this way, the cementitious sprayed material can firmly bond to the tunnel walls, controlling the convergence (the tendency of the section to squeeze). Their efficiency may be related to many parameters like: cement type, setting regulator, concrete composition, working temperature. Nevertheless, the influence of such factors on the accelerator performance has not been clarified yet. The accelerator efficacy is evaluated by real spraying test in job site or, when only laboratory equipment are available, by measuring the final setting times of cement systems admixed with the accelerator. Several alkali-free flash setting admixtures are available on the market. They can be divided into two main categories both containing aluminium sulphate complexes stabilized either by inorganic acids or by organic acids. In this paper, the influence of different setting regulators on the performances of an inorganic acid based alkali-free accelerator was analysed. Portland cement samples were obtained by mixing clinker with gypsum, {alpha}-hemihydrate, {beta}-hemihydrate or anhydrite. The setting regulator instantaneous dissolution rates were evaluated through conductivity measurements. The setting time of cement pastes with and without the accelerator was measured. It was found that the shorter the final setting time (therefore the more efficient is the accelerator) the lower the setting regulator instantaneous dissolution rate. In order to understand this phenomenon, a comparison was performed between accelerated cement paste samples containing the setting regulator with the highest ({beta}-hemihydrate) and the lowest instantaneous dissolution rate (anhydrite). The analytical work included morphological (Environmental Scanning Electron Microscopy-Field Emission Gun - ESEM-FEG), crystal-chemical (X-Ray Powder Diffraction

  13. Method for the safe disposal of alkali metal

    DOE Patents [OSTI]

    Johnson, Terry R.

    1977-01-01

    Alkali metals such as those employed in liquid metal coolant systems can be safely reacted to form hydroxides by first dissolving the alkali metal in relatively inert metals such as lead or bismuth. The alloy thus formed is contacted with a molten salt including the alkali metal hydroxide and possibly the alkali metal carbonate in the presence of oxygen. This oxidizes the alkali metal to an oxide which is soluble within the molten salt. The salt is separated and contacted with steam or steam-CO.sub.2 mixture to convert the alkali metal oxide to the hydroxide. These reactions can be conducted with minimal hydrogen evolution and with the heat of reaction distributed between the several reaction steps.

  14. Method for intercalating alkali metal ions into carbon electrodes

    DOE Patents [OSTI]

    Doeff, M.M.; Ma, Y.; Visco, S.J.; DeJonghe, L.

    1995-08-22

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  15. Method for intercalating alkali metal ions into carbon electrodes

    DOE Patents [OSTI]

    Doeff, Marca M.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard

    1995-01-01

    A low cost, relatively flexible, carbon electrode for use in a secondary battery is described. A method is provided for producing same, including intercalating alkali metal salts such as sodium and lithium into carbon.

  16. Alkali metal nitrate purification

    DOE Patents [OSTI]

    Fiorucci, Louis C. (Hamden, CT); Morgan, Michael J. (Guilford, CT)

    1986-02-04

    A process is disclosed for removing contaminants from impure alkali metal nitrates containing them. The process comprises heating the impure alkali metal nitrates in solution form or molten form at a temperature and for a time sufficient to effect precipitation of solid impurities and separating the solid impurities from the resulting purified alkali metal nitrates. The resulting purified alkali metal nitrates in solution form may be heated to evaporate water therefrom to produce purified molten alkali metal nitrates suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of purified alkali metal nitrates.

  17. Jidong Chlorine and Alkali Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Ltd Place: Tangshan, Hebei Province, China Zip: 63021 Sector: Hydro Product: Chinese chemical products manufacturer whose products including chlorine, alkali, hydrochloric acid...

  18. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOE Patents [OSTI]

    Wai, Chien M.; Smart, Neil G.; Lin, Yuehe

    1998-01-01

    A method of extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent is described. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process.

  19. Extraction of metals and/or metalloids from acidic media using supercritical fluids and salts

    DOE Patents [OSTI]

    Wai, C.M.; Smart, N.G.; Lin, Y.

    1998-06-23

    A method is described for extracting metalloid and metal species from a solid or liquid material by exposing the material to a fluid solvent, particularly supercritical carbon dioxide, containing a chelating agent. The chelating agent forms chelates that are soluble in the fluid to allow removal of the species from the material. In preferred embodiments, the extraction solvent is supercritical carbon dioxide and the chelating agent comprises a trialkyl phosphate, a triaryl phosphate, a trialkylphosphine oxide, a triarylphosphine oxide, or mixtures thereof. The method provides an environmentally benign process for removing contaminants from industrial waste. The method is particularly useful for extracting actinides from acidic solutions, and the process can be aided by the addition of nitrate salts. The chelate and supercritical fluid can be regenerated, and the contaminant species recovered, to provide an economic, efficient process. 7 figs.

  20. Electrochemical cell having an alkali-metal-nitrate electrode

    DOE Patents [OSTI]

    Roche, M.F.; Preto, S.K.

    1982-06-04

    A power-producing secondary electrochemical cell includes a molten alkali metal as the negative-electrode material and a molten-nitrate salt as the positive-electrode material. The molten material in the respective electrodes are separated by a solid barrier of alkali-metal-ion conducting material. A typical cell includes active materials of molten sodium separated from molten sodium nitrate and other nitrates in mixture by a layer of sodium ..beta..'' alumina.

  1. Alkali metal ionization detector

    DOE Patents [OSTI]

    Bauerle, James E.; Reed, William H.; Berkey, Edgar

    1978-01-01

    Variations in the conventional filament and collector electrodes of an alkali metal ionization detector, including the substitution of helical electrode configurations for either the conventional wire filament or flat plate collector; or, the substitution of a plurality of discrete filament electrodes providing an in situ capability for transferring from an operationally defective filament electrode to a previously unused filament electrode without removing the alkali metal ionization detector from the monitored environment. In particular, the helical collector arrangement which is coaxially disposed about the filament electrode, i.e. the thermal ionizer, provides an improved collection of positive ions developed by the filament electrode. The helical filament design, on the other hand, provides the advantage of an increased surface area for ionization of alkali metal-bearing species in a monitored gas environment as well as providing a relatively strong electric field for collecting the ions at the collector electrode about which the helical filament electrode is coaxially positioned. Alternatively, both the filament and collector electrodes can be helical. Furthermore, the operation of the conventional alkali metal ionization detector as a leak detector can be simplified as to cost and complexity, by operating the detector at a reduced collector potential while maintaining the sensitivity of the alkali metal ionization detector adequate for the relatively low concentration of alkali vapor and aerosol typically encountered in leak detection applications.

  2. Methods of recovering alkali metals

    SciTech Connect (OSTI)

    Krumhansl, James L; Rigali, Mark J

    2014-03-04

    Approaches for alkali metal extraction, sequestration and recovery are described. For example, a method of recovering alkali metals includes providing a CST or CST-like (e.g., small pore zeolite) material. The alkali metal species is scavenged from the liquid mixture by the CST or CST-like material. The alkali metal species is extracted from the CST or CST-like material.

  3. Catalyst Of A Metal Heteropoly Acid Salt That Is Insoluble In A Polar Solvent On A Non-Metallic Porous Support And Method Of Making

    DOE Patents [OSTI]

    Wang. Yong (Richland, WA); Peden. Charles H. F. (West Richland, WA); Choi. Saemin (Richland, WA)

    2004-11-09

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  4. Catalyst of a metal heteropoly acid salt that is insoluble in a polar solvent on a non-metallic porous support and method of making

    DOE Patents [OSTI]

    Wang, Yong [Richland, WA; Peden, Charles H. F. [West Richland, WA; Choi, Saemin [Richland, WA

    2002-10-29

    The present invention includes a catalyst having (a) a non-metallic support having a plurality of pores; (b) a metal heteropoly acid salt that is insoluble in a polar solvent on the non-metallic support; wherein at least a portion of the metal heteropoly acid salt is dispersed within said plurality of pores. The present invention also includes a method of depositing a metal heteropoly acid salt that is insoluble in a polar solvent onto a non-metallic support having a plurality of pores. The method has the steps of: (a) obtaining a first solution containing a first precursor of a metal salt cation; (b) obtaining a second solution containing a second precursor of a heteropoly acid anion in a solvent having a limited dissolution potential for said first precursor; (c) impregnating the non-metallic support with the first precursor forming a first precursor deposit within the plurality of pores, forming a first precursor impregnated support; (d) heating said first precursor impregnated support forming a bonded first precursor impregnated support; (e) impregnating the second precursor that reacts with the precursor deposit and forms the metal heteropoly acid salt.

  5. Controlled in-situ dissolution of an alkali metal

    DOE Patents [OSTI]

    Jones, Jeffrey Donald; Dooley, Kirk John; Tolman, David Donald

    2012-09-11

    A method for the controllable dissolution of one or more alkali metals from a vessel containing a one or more alkali metals and/or one or more partially passivated alkali metals. The vessel preferably comprising a sodium, NaK or other alkali metal-cooled nuclear reactor that has been used. The alkali metal, preferably sodium, potassium or a combination thereof, in the vessel is exposed to a treatment liquid, preferably an acidic liquid, more preferably citric acid. Preferably, the treatment liquid is maintained in continuous motion relative to any surface of unreacted alkali metal with which the treatment liquid is in contact. The treatment liquid is preferably pumped into the vessel containing the one or more alkali metals and the resulting fluid is extracted and optionally further processed. Preferably, the resulting off-gases are processed by an off-gas treatment system and the resulting liquids are processed by a liquid disposal system. In one preferred embodiment, an inert gas is pumped into the vessel along with the treatment liquid.

  6. Hydrothermal alkali metal recovery process

    DOE Patents [OSTI]

    Wolfs, Denise Y.; Clavenna, Le Roy R.; Eakman, James M.; Kalina, Theodore

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by treating them with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of an added base to establish a pH during the treatment step that is higher than would otherwise be possible without the addition of the base. During the treating process the relatively high pH facilitates the conversion of water-insoluble alkali metal compounds in the alkali metal residues into water-soluble alkali metal constituents. The resultant aqueous solution containing water-soluble alkali metal constituents is then separated from the residue solids, which consist of the treated particles and any insoluble materials formed during the treatment step, and recycled to the gasification process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preferably, the base that is added during the treatment step is an alkali metal hydroxide obtained by water washing the residue solids produced during the treatment step.

  7. Bimetallic catalysts for CO.sub.2 hydrogenation and H.sub.2 generation from formic acid and/or salts thereof

    DOE Patents [OSTI]

    Hull, Jonathan F.; Himeda, Yuichiro; Fujita, Etsuko; Muckeman, James T.

    2015-08-04

    The invention relates to a ligand that may be used to create a catalyst including a coordination complex is formed by the addition of two metals; Cp, Cp* or an unsubstituted or substituted .pi.-arene; and two coordinating solvent species or solvent molecules. The bimetallic catalyst may be used in the hydrogenation of CO.sub.2 to form formic acid and/or salts thereof, and in the dehydrogenation of formic acid and/or salts thereof to form H.sub.2 and CO.sub.2.

  8. Low temperature oxidation using support molten salt catalysts

    DOE Patents [OSTI]

    Weimer, Alan W.; Czerpak, Peter J.; Hilbert, Patrick M.

    2003-05-20

    Molten salt reactions are performed by supporting the molten salt on a particulate support and forming a fluidized bed of the supported salt particles. The method is particularly suitable for combusting hydrocarbon fuels at reduced temperatures, so that the formation NO.sub.x species is reduced. When certain preferred salts are used, such as alkali metal carbonates, sulfur and halide species can be captured by the molten salt, thereby reducing SO.sub.x and HCl emissions.

  9. Crystallization of rhenium salts in a simulated low-activity...

    Office of Scientific and Technical Information (OSTI)

    This salt phase was analyzed with X-ray diffraction, scanning electron microscopy as well as some of the other aforementioned techniques and identified to be composed of alkali ...

  10. PROCESS OF RECOVERING ALKALI METALS

    DOE Patents [OSTI]

    Wolkoff, J.

    1961-08-15

    A process is described of recovering alkali metal vapor by sorption on activated alumina, activated carbon, dehydrated zeolite, activated magnesia, or Fuller's earth preheated above the vaporization temperature of the alkali metal and subsequent desorption by heating the solvent under vacuum. (AEC)

  11. Purification of alkali metal nitrates

    DOE Patents [OSTI]

    Fiorucci, Louis C.; Gregory, Kevin M.

    1985-05-14

    A process is disclosed for removing heavy metal contaminants from impure alkali metal nitrates containing them. The process comprises mixing the impure nitrates with sufficient water to form a concentrated aqueous solution of the impure nitrates, adjusting the pH of the resulting solution to within the range of between about 2 and about 7, adding sufficient reducing agent to react with heavy metal contaminants within said solution, adjusting the pH of the solution containing reducing agent to effect precipitation of heavy metal impurities and separating the solid impurities from the resulting purified aqueous solution of alkali metal nitrates. The resulting purified solution of alkali metal nitrates may be heated to evaporate water therefrom to produce purified molten alkali metal nitrate suitable for use as a heat transfer medium. If desired, the purified molten form may be granulated and cooled to form discrete solid particles of alkali metal nitrates.

  12. Upgrading platform using alkali metals

    SciTech Connect (OSTI)

    Gordon, John Howard

    2014-09-09

    A process for removing sulfur, nitrogen or metals from an oil feedstock (such as heavy oil, bitumen, shale oil, etc.) The method involves reacting the oil feedstock with an alkali metal and a radical capping substance. The alkali metal reacts with the metal, sulfur or nitrogen content to form one or more inorganic products and the radical capping substance reacts with the carbon and hydrogen content to form a hydrocarbon phase. The inorganic products may then be separated out from the hydrocarbon phase.

  13. Dosimetry using silver salts

    DOE Patents [OSTI]

    Warner, Benjamin P.

    2003-06-24

    The present invention provides a method for detecting ionizing radiation. Exposure of silver salt AgX to ionizing radiation results in the partial reduction of the salt to a mixture of silver salt and silver metal. The mixture is further reduced by a reducing agent, which causes the production of acid (HX) and the oxidized form of the reducing agent (R). Detection of HX indicates that the silver salt has been exposed to ionizing radiation. The oxidized form of the reducing agent (R) may also be detected. The invention also includes dosimeters employing the above method for detecting ionizing radiation.

  14. Hydrothermal alkali metal catalyst recovery process

    DOE Patents [OSTI]

    Eakman, James M.; Clavenna, LeRoy R.

    1979-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles primarily in the form of water soluble alkali metal formates by treating the particles with a calcium or magnesium-containing compound in the presence of water at a temperature between about 250.degree. F. and about 700.degree. F. and in the presence of added carbon monoxide. During the treating process the water insoluble alkali metal compounds comprising the insoluble alkali metal residues are converted into water soluble alkali metal formates. The resultant aqueous solution containing water soluble alkali metal formates is then separated from the treated particles and any insoluble materials formed during the treatment process, and recycled to the gasification process where the alkali metal formates serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. This process permits increased recovery of alkali metal constituents, thereby decreasing the overall cost of the gasification process by reducing the amount of makeup alkali metal compounds necessary.

  15. Evaluation of Alkali Bromide Salts for Potential Pyrochemical Applications

    SciTech Connect (OSTI)

    Prabhat K. Tripathy; Steven D. Herrmann; Guy L. Fredrickson; Tedd E. Lister; Toni Y. Gutknecht

    2013-10-01

    Transient techniques were employed to study the electrochemical behavior, reduction mechanism and transport properties of REBr3 (RE - La, Nd and Gd) in pure LiBr, LiBr-KBr (eutectic) and LiBr-KBr-CsBr (eutectic) melts. Gd(III) showed a reversible single step soluble-insoluble exchange phenomenon in LiBr melt at 973K. Although La (III), Nd(III) and Gd(III) ions showed reversible behavior in eutectic LiBr-KBr melts, these ions showed a combination of temperature dependent reversible and pseudo-reversible behavior. While both La(III) and Gd(III) showed one step reduction, the reduction of Nd(III) was observed to be a two step process. La metal could be electrodeposited from the ternary electrolyte at a temperature of 673K. Various electrochemical measurements suggest that both binary and ternary bromide melts can potentially be used to electrodeposit high purity RE metals at comparatively lower operating temperatures.

  16. Method and composition for testing for the presence of an alkali metal

    DOE Patents [OSTI]

    Guon, Jerold

    1981-01-01

    A method and composition for detecting the presence of an alkali metal on the surface of a body such as a metal plate, tank, pipe or the like is provided. The method comprises contacting the surface with a thin film of a liquid composition comprising a light-colored pigment, an acid-base indicator, and a nonionic wetting agent dispersed in a liquid carrier comprising a minor amount of water and a major amount of an organic solvent selected from the group consisting of the lower aliphatic alcohols, ketones and ethers. Any alkali metal present on the surface in elemental form or as an alkali metal hydroxide or alkali metal carbonate will react with the acid-base indicator to produce a contrasting color change in the thin film, which is readily discernible by visual observation or automatic techniques.

  17. Alkali metal/sulfur battery

    DOE Patents [OSTI]

    Anand, Joginder N.

    1978-01-01

    Alkali metal/sulfur batteries in which the electrolyte-separator is a relatively fragile membrane are improved by providing means for separating the molten sulfur/sulfide catholyte from contact with the membrane prior to cooling the cell to temperatures at which the catholyte will solidify. If the catholyte is permitted to solidify while in contact with the membrane, the latter may be damaged. The improvement permits such batteries to be prefilled with catholyte and shipped, at ordinary temperatures.

  18. SEPARATION OF METAL SALTS BY ADSORPTION

    DOE Patents [OSTI]

    Gruen, D.M.

    1959-01-20

    It has been found that certain metal salts, particularly the halides of iron, cobalt, nickel, and the actinide metals, arc readily absorbed on aluminum oxide, while certain other salts, particularly rare earth metal halides, are not so absorbed. Use is made of this discovery to separate uranium from the rare earths. The metal salts are first dissolved in a molten mixture of alkali metal nitrates, e.g., the eutectic mixture of lithium nitrate and potassium nitrate, and then the molten salt solution is contacted with alumina, either by slurrying or by passing the salt solution through an absorption tower. The process is particularly valuable for the separation of actinides from lanthanum-group rare earths.

  19. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOE Patents [OSTI]

    Knapp, Jr., Furn F.; Lisic, Edward C.; Mirzadeh, Saed; Callahan, Alvin P.

    1994-01-01

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  20. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOE Patents [OSTI]

    Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.

    1994-01-04

    A generator system has been invented for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form. 1 figure.

  1. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOE Patents [OSTI]

    Knapp, Jr., Furn F.; Lisic, Edward C.; Mirzadeh, Saed; Callahan, Alvin P.

    1993-01-01

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  2. Tungsten-188/carrier-free rhenium-188 perrhenic acid generator system

    DOE Patents [OSTI]

    Knapp, F.F. Jr.; Lisic, E.C.; Mirzadeh, S.; Callahan, A.P.

    1993-02-16

    A generator system for providing a carrier-free radioisotope in the form of an acid comprises a chromatography column in tandem fluid connection with an ion exchange column, the chromatography column containing a charge of a radioactive parent isotope. The chromatography column, charged with a parent isotope, is eluted with an alkali metal salt solution to generate the radioisotope in the form of an intermediate solution, which is passed through the ion-exchange column to convert the radioisotope to a carrier-free acid form.

  3. Regenerable activated bauxite adsorbent alkali monitor probe

    DOE Patents [OSTI]

    Lee, Sheldon H. D.

    1992-01-01

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases.

  4. Regenerable activated bauxite adsorbent alkali monitor probe

    DOE Patents [OSTI]

    Lee, S.H.D.

    1992-12-22

    A regenerable activated bauxite adsorber alkali monitor probe for field applications to provide reliable measurement of alkali-vapor concentration in combustion gas with special emphasis on pressurized fluidized-bed combustion (PFBC) off-gas. More particularly, the invention relates to the development of a easily regenerable bauxite adsorbent for use in a method to accurately determine the alkali-vapor content of PFBC exhaust gases. 6 figs.

  5. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, D.F.; Kwan, S.W.

    1997-04-08

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide. 5 figs.

  6. Diamond films treated with alkali-halides

    DOE Patents [OSTI]

    Anderson, David F.; Kwan, Simon W.

    1997-01-01

    A secondary electron emitter is provided and includes a substrate with a diamond film, the diamond film is treated or coated with an alkali-halide.

  7. Process for the disposal of alkali metals

    DOE Patents [OSTI]

    Lewis, Leroy C.

    1977-01-01

    Large quantities of alkali metals may be safely reacted for ultimate disposal by contact with a hot concentrated caustic solution. The alkali metals react with water in the caustic solution in a controlled reaction while steam dilutes the hydrogen formed by the reaction to a safe level.

  8. Method of handling radioactive alkali metal waste

    DOE Patents [OSTI]

    Wolson, Raymond D.; McPheeters, Charles C.

    1980-01-01

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  9. Method of handling radioactive alkali metal waste

    DOE Patents [OSTI]

    Wolson, R.D.; McPheeters, C.C.

    Radioactive alkali metal is mixed with particulate silica in a rotary drum reactor in which the alkali metal is converted to the monoxide during rotation of the reactor to produce particulate silica coated with the alkali metal monoxide suitable as a feed material to make a glass for storing radioactive material. Silica particles, the majority of which pass through a 95 mesh screen or preferably through a 200 mesh screen, are employed in this process, and the preferred weight ratio of silica to alkali metal is 7 to 1 in order to produce a feed material for the final glass product having a silica to alkali metal monoxide ratio of about 5 to 1.

  10. Sandia Energy - Molten Salt Test Loop Melted Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salt Home Renewable Energy Energy News Concentrating Solar Power Solar Molten Salt Test Loop Melted Salt Previous Next Molten Salt Test Loop Melted Salt The Molten Salt Test...

  11. Pyrolytic conversion of plastic and rubber waste to hydrocarbons with basic salt catalysts

    DOE Patents [OSTI]

    Wingfield, Jr., Robert C.; Braslaw, Jacob; Gealer, Roy L.

    1985-01-01

    The invention relates to a process for improving the pyrolytic conversion of waste selected from rubber and plastic to low molecular weight olefinic materials by employing basis salt catalysts in the waste mixture. The salts comprise alkali or alkaline earth compounds, particularly sodium carbonate, in an amount of greater than about 1 weight percent based on the waste feed.

  12. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2007-10-23

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  13. Diode pumped alkali vapor fiber laser

    DOE Patents [OSTI]

    Payne, Stephen A.; Beach, Raymond J.; Dawson, Jay W.; Krupke, William F.

    2006-07-26

    A method and apparatus is provided for producing near-diffraction-limited laser light, or amplifying near-diffraction-limited light, in diode pumped alkali vapor photonic-band-gap fiber lasers or amplifiers. Laser light is both substantially generated and propagated in an alkali gas instead of a solid, allowing the nonlinear and damage limitations of conventional solid core fibers to be circumvented. Alkali vapor is introduced into the center hole of a photonic-band-gap fiber, which can then be pumped with light from a pump laser and operated as an oscillator with a seed beam, or can be configured as an amplifier.

  14. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen; Xu, Wu

    2008-01-01

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  15. Electrolytic orthoborate salts for lithium batteries

    DOE Patents [OSTI]

    Angell, Charles Austen [Mesa, AZ; Xu, Wu [Tempe, AZ

    2009-05-05

    Orthoborate salts suitable for use as electrolytes in lithium batteries and methods for making the electrolyte salts are provided. The electrolytic salts have one of the formulae (I). In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably oxalyl, malonyl and succinyl, disulfonic acid residues, sulfoacetic acid residues and halo-substituted alkylenes. The salts are soluble in non-aqueous solvents and polymeric gels and are useful components of lithium batteries in electrochemical devices.

  16. Alternative Waste Forms for Electro-Chemical Salt Waste

    SciTech Connect (OSTI)

    Crum, Jarrod V.; Sundaram, S. K.; Riley, Brian J.; Matyas, Josef; Arreguin, Shelly A.; Vienna, John D.

    2009-10-28

    This study was undertaken to examine alternate crystalline (ceramic/mineral) and glass waste forms for immobilizing spent salt from the Advanced Fuel Cycle Initiative (AFCI) electrochemical separations process. The AFCI is a program sponsored by U.S. Department of Energy (DOE) to develop and demonstrate a process for recycling spent nuclear fuel (SNF). The electrochemical process is a molten salt process for the reprocessing of spent nuclear fuel in an electrorefiner and generates spent salt that is contaminated with alkali, alkaline earths, and lanthanide fission products (FP) that must either be cleaned of fission products or eventually replaced with new salt to maintain separations efficiency. Currently, these spent salts are mixed with zeolite to form sodalite in a glass-bonded waste form. The focus of this study was to investigate alternate waste forms to immobilize spent salt. On a mole basis, the spent salt is dominated by alkali and Cl with minor amounts of alkaline earth and lanthanides. In the study reported here, we made an effort to explore glass systems that are more compatible with Cl and have not been previously considered for use as waste forms. In addition, alternate methods were explored with the hope of finding a way to produce a sodalite that is more accepting of as many FP present in the spent salt as possible. This study was done to investigate two different options: (1) alternate glass families that incorporate increased concentrations of Cl; and (2) alternate methods to produce a mineral waste form.

  17. Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry

    SciTech Connect (OSTI)

    Jayasekharan, T.; Sahoo, N. K.

    2013-02-05

    Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

  18. ELECTROLYTIC REDUCTION OF NITRIC ACID SOLUTIONS

    DOE Patents [OSTI]

    Alter, H.W.; Barney, D.L.

    1958-09-30

    A process is presented for the treatment of radioactivc waste nitric acid solutions. The nitric acid solution is neutralized with an alkali metal hydroxide in an amount sufficient to precipitate insoluble hydroxides, and after separation of the precipitate the solution is electrolyzed to convert the alkali nitrate formed, to alkali hydroxide, gaseous ammonla and oxygen. The solution is then reusable after reducing the volume by evaporating the water and dissolved ammonia.

  19. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation

    SciTech Connect (OSTI)

    Bernal, Susan A.; Provis, John L.; Walkley, Brant; San Nicolas, Rackel; Gehman, John D.; Brice, David G.; Kilcullen, Adam R.; Duxson, Peter; Deventer, Jannie S.J. van

    2013-11-15

    Binders formed through alkali-activation of slags and fly ashes, including ‘fly ash geopolymers’, provide appealing properties as binders for low-emissions concrete production. However, the changes in pH and pore solution chemistry induced during accelerated carbonation testing provide unrealistically low predictions of in-service carbonation resistance. The aluminosilicate gel remaining in an alkali-activated slag system after accelerated carbonation is highly polymerised, consistent with a decalcification mechanism, while fly ash-based binders mainly carbonate through precipitation of alkali salts (bicarbonates at elevated CO{sub 2} concentrations, or carbonates under natural exposure) from the pore solution, with little change in the binder gel identifiable by nuclear magnetic resonance spectroscopy. In activated fly ash/slag blends, two distinct gels (C–A–S–H and N–A–S–H) are formed; under accelerated carbonation, the N–A–S–H gel behaves comparably to fly ash-based systems, while the C–A–S–H gel is decalcified similarly to alkali-activated slag. This provides new scope for durability optimisation, and for developing appropriate testing methodologies. -- Highlights: •C-A-S-H gel in alkali-activated slag decalcifies during accelerated carbonation. •Alkali-activated fly ash gel changes much less under CO{sub 2} exposure. •Blended slag-fly ash binder contains two coexisting gel types. •These two gels respond differently to carbonation. •Understanding of carbonation mechanisms is essential in developing test methods.

  20. Method for removing semiconductor layers from salt substrates

    DOE Patents [OSTI]

    Shuskus, Alexander J.; Cowher, Melvyn E.

    1985-08-27

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  1. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  2. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  3. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOE Patents [OSTI]

    Soung, W.Y.

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide to precipitate silicon constituents, the pH of the resultant solution is increased, preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  4. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a...

  5. METATHESIS OF PLUTONIUM CARRIER LANTHANUM FLUORIDE PRECIPITATE WITH AN ALKALI

    DOE Patents [OSTI]

    Duffield, R.B.

    1960-04-01

    A plutonium fluoride precipitate is converted to plutonium hydroxide by digesting the precipitate with an aqueous alkali metal hydroxide solution.

  6. Alkali resistant optical coatings for alkali lasers and methods of production thereof

    DOE Patents [OSTI]

    Soules, Thomas F; Beach, Raymond J; Mitchell, Scott C

    2014-11-18

    In one embodiment, a multilayer dielectric coating for use in an alkali laser includes two or more alternating layers of high and low refractive index materials, wherein an innermost layer includes a thicker, >500 nm, and dense, >97% of theoretical, layer of at least one of: alumina, zirconia, and hafnia for protecting subsequent layers of the two or more alternating layers of high and low index dielectric materials from alkali attack. In another embodiment, a method for forming an alkali resistant coating includes forming a first oxide material above a substrate and forming a second oxide material above the first oxide material to form a multilayer dielectric coating, wherein the second oxide material is on a side of the multilayer dielectric coating for contacting an alkali.

  7. Computational studies of solid-state alkali conduction in rechargeable alkali-ion batteries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deng, Zhi; Mo, Yifei; Ong, Shyue Ping

    2016-03-25

    The facile conduction of alkali ions in a crystal host is of crucial importance in rechargeable alkali-ion batteries, the dominant form of energy storage today. In this review, we provide a comprehensive survey of computational approaches to study solid-state alkali diffusion. We demonstrate how these methods have provided useful insights into the design of materials that form the main components of a rechargeable alkali-ion battery, namely the electrodes, superionic conductor solid electrolytes and interfaces. We will also provide a perspective on future challenges and directions. Here, the scope of this review includes the monovalent lithium- and sodium-ion chemistries that aremore » currently of the most commercial interest.« less

  8. Alkali metal recovery from carbonaceous material conversion process

    DOE Patents [OSTI]

    Sharp, David W.; Clavenna, LeRoy R.; Gorbaty, Martin L.; Tsou, Joe M.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced in the gasifier or similar reaction zone, alkali metal constitutents are recovered from the particles by withdrawing and passing the particles from the reaction zone to an alkali metal recovery zone in the substantial absence of molecular oxygen and treating the particles in the recovery zone with water or an aqueous solution in the substantial absence of molecular oxygen. The solution formed by treating the particles in the recovery zone will contain water-soluble alkali metal constituents and is recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst. Preventing contact of the particles with oxygen as they are withdrawn from the reaction zone and during treatment in the recovery zone avoids the formation of undesirable alkali metal constituents in the aqueous solution produced in the recovery zone and insures maximum recovery of water-soluble alkali metal constituents from the alkali metal residues.

  9. PRODUCTION OF TRIFLUOROACETIC ACID

    DOE Patents [OSTI]

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  10. Salt Waste Processing Initiatives

    Office of Environmental Management (EM)

    Patricia Suggs Salt Processing Team Lead Assistant Manager for Waste Disposition Project Office of Environmental Management Savannah River Site Salt Waste Processing Initiatives 2 ...

  11. Removal of Retired Alkali Metal Test Systems

    SciTech Connect (OSTI)

    BREHM, W.F.

    2003-01-01

    This paper describes the successful effort to remove alkali metals, alkali metal residues, and piping and structures from retired non-radioactive test systems on the Hanford Site. These test systems were used between 1965 and 1982 to support the Fast Flux Test Facility and the Liquid Metal Fast Breeder Reactor Program. A considerable volume of sodium and sodium-potassium alloy (NaK) was successfully recycled to the commercial sector; structural material and electrical material such as wiring was also recycled. Innovative techniques were used to safely remove NaK and its residues from a test system that could not be gravity-drained. The work was done safely, with no environmental issues or significant schedule delays.

  12. Alkali metal protective garment and composite material

    DOE Patents [OSTI]

    Ballif, III, John L.; Yuan, Wei W.

    1980-01-01

    A protective garment and composite material providing satisfactory heat resistance and physical protection for articles and personnel exposed to hot molten alkali metals, such as sodium. Physical protection is provided by a continuous layer of nickel foil. Heat resistance is provided by an underlying backing layer of thermal insulation. Overlying outer layers of fireproof woven ceramic fibers are used to protect the foil during storage and handling.

  13. Chemical leaching of coal to remove ash, alkali and vanadium

    SciTech Connect (OSTI)

    Smit, F.J.; Huggins, D.K.; Berggren, M.; Anast, K.R.

    1986-04-15

    A process is described for upgrading powdered coal to improve the usefulness thereof as a fuel for internal combustion engines which consists of: (a) pressure-leaching powdered coal having a particle size ranging from about 28 mesh to about 200 mesh in an aqueous caustic solution at a temperature ranging from about 175/sup 0/C, to about 350/sup 0/C., the amount of caustic in the solution ranging from about 5% to about 30% by weight, the amount of coal being sufficient to form a slurry comprising about 10% to 30% by weight of solids, (b) hydrochloric acid leaching the caustic leached coal to dissolve acid-soluble constituents resulting from the caustic leach, (c) pressure leaching the acid-leached coal with a liquid from the group consisting of water and dilute aqueous ammonia to remove sodium and chlorine, and thereafter (d) filtering and washing the pressure leached coal, whereby the coal is characterized by up to about 0.85% by weight of ash, up to about 150 ppm of alkali metals and up to about 4 ppm vanadium.

  14. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOE Patents [OSTI]

    Hitchcock, David C.; Mailhe, Catherine C.; De Jonghe, Lutgard C.

    1986-01-01

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  15. Evaluation of alkali concentration in conditions relevant to...

    Office of Scientific and Technical Information (OSTI)

    Conference: Evaluation of alkali concentration in conditions relevant to oxygennatural gas glass furnaces by laser-induced breakdown spectroscopy. Citation Details In-Document ...

  16. Effect of furnace operating conditions on alkali vaporization...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ALKALI METALS; EVAPORATION; FURNACES; ...

  17. Electrochemical devices utilizing molten alkali metal electrode-reactant

    DOE Patents [OSTI]

    Hitchcock, D.C.; Mailhe, C.C.; De Jonghe, L.C.

    1985-07-10

    Electrochemical cells are provided with a reactive metal to reduce the oxide of the alkali metal electrode-reactant. Cells employing a molten alkali metal electrode, e.g., sodium, in contact with a ceramic electrolyte, which is a conductor of the ions of the alkali metal forming the electrode, exhibit a lower resistance when a reactive metal, e.g., vanadium, is allowed to react with and reduce the alkali metal oxide. Such cells exhibit less degradation of the electrolyte and of the glass seals often used to joining the electrolyte to the other components of the cell under cycling conditions.

  18. Diode-Pumped Alkali Laser: A New Combination

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser-Compton Light Source Technology Short-Pulse Lasers High-Powered Lasers Journal Articles home science photon science directed energy Diode-Pumped Alkali Laser: A ...

  19. Cathode architectures for alkali metal / oxygen batteries

    SciTech Connect (OSTI)

    Visco, Steven J; Nimon, Vitaliy; De Jonghe, Lutgard C; Volfkovich, Yury; Bograchev, Daniil

    2015-01-13

    Electrochemical energy storage devices, such as alkali metal-oxygen battery cells (e.g., non-aqueous lithium-air cells), have a cathode architecture with a porous structure and pore composition that is tailored to improve cell performance, especially as it pertains to one or more of the discharge/charge rate, cycle life, and delivered ampere-hour capacity. A porous cathode architecture having a pore volume that is derived from pores of varying radii wherein the pore size distribution is tailored as a function of the architecture thickness is one way to achieve one or more of the aforementioned cell performance improvements.

  20. Sorption of carboxylic acid from carboxylic salt solutions at pHs close to or above the pK[sub a] of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOE Patents [OSTI]

    King, C.J.; Tung, L.A.

    1992-07-21

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH[sub a] into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. The acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carboxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia. 8 figs.

  1. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK.sub.a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine

    DOE Patents [OSTI]

    King, C. Judson; Tung, Lisa A.

    1992-01-01

    Carboxylic acids are sorbed from aqueous feedstocks at pHs close to or above the acids' pH.sub.a into a strongly basic organic liquid phase or onto a basic solid adsorbent or moderately basic ion exchange resin. the acids are freed from the sorbent phase by treating it with aqueous alkylamine or ammonia thus forming an alkylammonium or ammonium carobxylate which dewatered and decomposed to the desired carboxylic acid and the alkylamine or ammonia.

  2. Analytical chemistry of aluminum salt cake

    SciTech Connect (OSTI)

    Graczyk, D.G.; Essling, A.M.; Huff, E.A.; Smith, F.P.; Snyder, C.T.

    1997-02-01

    Component phases of Al salt cake or products from processing salt cake, resist dissolution, a key first step in most analysis procedures. In this work (analysis support to a study of conversion of salt cake fines to value-added oxide products), analysis methods were adapted or devised for determining leachable salt, total halides (Cl and F), Al metal, and elemental composition. Leaching of salt cake fines was by ultrasonic agitation with deionized water. The leachate was analyzed for anions by ion chromatography and for cations by ICP-atomic emission spectroscopy. Only chloride could be measured in the anions, and charge balances between cations and chloride were near unity, indicating that all major dissolved species were chloride salts. For total halides, the chloride and fluorides components were first decomposed by KOH fusion, and the dissolved chloride and fluoride were measured by ion chromatography. Al metal in the fines was determined by a hydrogen evolution procedure adapted for submilligram quantities of metallic Al: the Al was reacted with HCl in a closed system containing a measured amount of high-purity He. After reaction, the H/He ratio was measured by mass spectroscopy. Recoveries of Al metal standards (about 30mg) averaged 93%. Comparison of the acid evolution with caustic reaction of the Al metal showed virtually identical results, but reaction was faster in the acid medium. Decomposition of the salt cake with mineral acids left residues that had to be dissolved by fusion with Na carbonate. Better dissolution was obtained by fusing the salt cake with Li tetraborate; the resulting solution could be used for accurate Al assay of salt cake materials by classical 8-hydroxyquinolate gravimetry.

  3. Recovery of alkali metal constituents from catalytic coal conversion residues

    DOE Patents [OSTI]

    Soung, Wen Y.

    1984-01-01

    In a coal gasification operation (32) or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein particles containing alkali metal residues are produced, alkali metal constituents are recovered from the particles by contacting them (46, 53, 61, 69) with water or an aqueous solution to remove water-soluble alkali metal constituents and produce an aqueous solution enriched in said constituents. The aqueous solution thus produced is then contacted with carbon dioxide (63) to precipitate silicon constituents, the pH of the resultant solution is increased (81), preferably to a value in the range between about 12.5 and about 15.0, and the solution of increased pH is evaporated (84) to increase the alkali metal concentration. The concentrated aqueous solution is then recycled to the conversion process (86, 18, 17) where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  4. COMPLEX FLUORIDES OF PLUTONIUM AND AN ALKALI METAL

    DOE Patents [OSTI]

    Seaborg, G.T.

    1960-08-01

    A method is given for precipitating alkali metal plutonium fluorides. such as KPuF/sub 5/, KPu/sub 2/F/sub 9/, NaPuF/sub 5/, and RbPuF/sub 5/, from an aqueous plutonium(IV) solution by adding hydrogen fluoride and alkali-metal- fluoride.

  5. Salt transport extraction of transuranium elements from lwr fuel

    DOE Patents [OSTI]

    Pierce, R. Dean; Ackerman, John P.; Battles, James E.; Johnson, Terry R.; Miller, William E.

    1992-01-01

    A process of separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl.sub.2 and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750.degree. C. to about 850.degree. C. to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl.sub.2 having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO.sub.2. The Ca metal and CaCl.sub.2 is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including Mg Cl.sub.2 to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy.

  6. Salt transport extraction of transuranium elements from LWR fuel

    DOE Patents [OSTI]

    Pierce, R.D.; Ackerman, J.P.; Battles, J.E.; Johnson, T.R.; Miller, W.E.

    1992-11-03

    A process is described for separating transuranium actinide values from uranium values present in spent nuclear oxide fuels which contain rare earth and noble metal fission products. The oxide fuel is reduced with Ca metal in the presence of CaCl[sub 2] and a Cu--Mg alloy containing not less than about 25% by weight Mg at a temperature in the range of from about 750 C to about 850 C to precipitate uranium metal and some of the noble metal fission products leaving the Cu--Mg alloy having transuranium actinide metals and rare earth fission product metals and some of the noble metal fission products dissolved therein. The CaCl[sub 2] having CaO and fission products of alkali metals and the alkali earth metals and iodine dissolved therein is separated and electrolytically treated with a carbon electrode to reduce the CaO to Ca metal while converting the carbon electrode to CO and CO[sub 2]. The Ca metal and CaCl[sub 2] is recycled to reduce additional oxide fuel. The Cu--Mg alloy having transuranium metals and rare earth fission product metals and the noble metal fission products dissolved therein is contacted with a transport salt including MgCl[sub 2] to transfer Mg values from the transport salt to the Cu--Mg alloy while transuranium actinide and rare earth fission product metals transfer from the Cu--Mg alloy to the transport salt. Then the transport salt is mixed with a Mg--Zn alloy to transfer Mg values from the alloy to the transport salt while the transuranium actinide and rare earth fission product values dissolved in the salt are reduced and transferred to the Mg--Zn alloy. 2 figs.

  7. Slime-busting Salt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    past issues All Issues submit Slime-busting Salt A potential new treatment gets bacteria deep in their hiding places May 1, 2015 Slime-busting Salt Biofilms are made of...

  8. Ancient Salt Beds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ancient Salt Beds Dr. Jack Griffith The key to the search for life on other planets may go through WIPP's ancient salt beds. In 2008, a team of scientists led by Jack Griffith, from the University of North Carolina, Chapel Hill, retrieved salt samples from the WIPP underground and studied them with a transmission electron microscopy lab at the Lineberger Comprehensive Cancer Center of the University of North Carolina School of Medicine. In examining fluid inclusions in the salt and solid halite

  9. Chemistry control and corrosion mitigation of heat transfer salts for the fluoride salt reactor (FHR)

    SciTech Connect (OSTI)

    Kelleher, B. C.; Sellers, S. R.; Anderson, M. H.; Sridharan, K.; Scheele, R. D.

    2012-07-01

    The Molten Salt Reactor Experiment (MSRE) was a prototype nuclear reactor which operated from 1965 to 1969 at Oak Ridge National Laboratory. The MSRE used liquid fluoride salts as a heat transfer fluid and solvent for fluoride based {sup 235}U and {sup 233}U fuel. Extensive research was performed in order to optimize the removal of oxide and metal impurities from the reactor's heat transfer salt, 2LiF-BeF{sub 2} (FLiBe). This was done by sparging a mixture of anhydrous hydrofluoric acid and hydrogen gas through the FLiBe at elevated temperatures. The hydrofluoric acid reacted with oxides and hydroxides, fluorinating them while simultaneously releasing water vapor. Metal impurities such as iron and chromium were reduced by hydrogen gas and filtered out of the salt. By removing these impurities, the corrosion of reactor components was minimized. The Univ. of Wisconsin - Madison is currently researching a new chemical purification process for fluoride salts that make use of a less dangerous cleaning gas, nitrogen trifluoride. Nitrogen trifluoride has been predicted as a superior fluorinating agent for fluoride salts. These purified salts will subsequently be used for static and loop corrosion tests on a variety of reactor materials to ensure materials compatibility for the new FHR designs. Demonstration of chemistry control methodologies along with potential reduction in corrosion is essential for the use of a fluoride salts in a next generator nuclear reactor system. (authors)

  10. An Overview of Liquid Fluoride Salt Heat Transport Systems

    SciTech Connect (OSTI)

    Holcomb, David Eugene; Cetiner, Sacit M

    2010-09-01

    Heat transport is central to all thermal-based forms of electricity generation. The ever increasing demand for higher thermal efficiency necessitates power generation cycles transitioning to progressively higher temperatures. Similarly, the desire to provide direct thermal coupling between heat sources and higher temperature chemical processes provides the underlying incentive to move toward higher temperature heat transfer loops. As the system temperature rises, the available materials and technology choices become progressively more limited. Superficially, fluoride salts at {approx}700 C resemble water at room temperature being optically transparent and having similar heat capacity, roughly three times the viscosity, and about twice the density. Fluoride salts are a leading candidate heat-transport material at high temperatures. Fluoride salts have been extensively used in specialized industrial processes for decades, yet they have not entered widespread deployment for general heat transport purposes. This report does not provide an exhaustive screening of potential heat transfer media and other high temperature liquids such as alkali metal carbonate eutectics or chloride salts may have economic or technological advantages. A particular advantage of fluoride salts is that the technology for their use is relatively mature as they were extensively studied during the 1940s-1970s as part of the U.S. Atomic Energy Commission's program to develop molten salt reactors (MSRs). However, the instrumentation, components, and practices for use of fluoride salts are not yet developed sufficiently for commercial implementation. This report provides an overview of the current understanding of the technologies involved in liquid salt heat transport (LSHT) along with providing references to the more detailed primary information resources. Much of the information presented here derives from the earlier MSR program. However, technology has evolved over the intervening years, and

  11. Increasing Class C fly ash reduces alkali silica reactivity

    SciTech Connect (OSTI)

    Hicks, J.K.

    2007-07-01

    Contrary to earlier studies, it has been found that incremental additions of Class C fly ash do reduce alkali silica reactivity (ASR), in highly reactive, high alkali concrete mixes. AST can be further reduced by substituting 5% metakaolin or silica fume for the aggregate in concrete mixes with high (more than 30%) Class C fly ash substitution. The paper reports results of studies using Class C fly ash from the Labadie Station plant in Missouri which typically has between 1.3 and 1.45% available alkalis by ASTM C311. 7 figs.

  12. Electrochemical cell utilizing molten alkali metal electrode-reactant

    DOE Patents [OSTI]

    Virkar, Anil V.; Miller, Gerald R.

    1983-11-04

    An improved electrochemical cell comprising an additive-modified molten alkali metal electrode-reactant and/or electrolyte is disclosed. Various electrochemical cells employing a molten alkali metal, e.g., sodium, electrode in contact with a cationically conductive ceramic membrane experience a lower resistance and a lower temperature coefficient of resistance whenever small amounts of selenium are present at the interface of the electrolyte and the molten alkali metal. Further, cells having small amounts of selenium present at the electrolyte-molten metal interface exhibit less degradation of the electrolyte under long term cycling conditions.

  13. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or...

  14. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Wednesday, 29 March 2006 00:00 Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons.

  15. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Characterization of Selective Binding of Alkali Cations with Carboxylate Print Wednesday, 24 September 2008 00:00 During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of

  16. Solvation Structure and Transport Properties of Alkali Cations in Dimethyl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sulfoxide Under Exogenous Static Electric Fields - Joint Center for Energy Storage Research June 14, 2015, Research Highlights Solvation Structure and Transport Properties of Alkali Cations in Dimethyl Sulfoxide Under Exogenous Static Electric Fields Top: Snapshots of molecular dynamics simulations of alkali ions in DMSO at 298 K and zero-applied electric field: (left) Li+ and (right) Cs+. Sulfur atoms are shown in yellow, oxygen atoms in red, and methyl groups in gray. Graph: Average

  17. Alkali metal yttrium neo-pentoxide double alkoxide precursors to alkali metal yttrium oxide nanomaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Boyle, Timothy J.; Neville, Michael L.; Sears, Jeremiah Matthew; Cramer, Roger

    2016-03-15

    In this study, a series of alkali metal yttrium neo-pentoxide ([AY(ONep)4]) compounds were developed as precursors to alkali yttrium oxide (AYO2) nanomaterials. The reaction of yttrium amide ([Y(NR2)3] where R=Si(CH3)3) with four equivalents of H-ONep followed by addition of [A(NR2)] (A=Li, Na, K) or Ao (Ao=Rb, Cs) led to the formation of a complex series of AnY(ONep)3+n species, crystallographically identified as [Y2Li3(μ3-ONep)(μ3-HONep)(μ-ONep)5(ONep)3(HONep)2] (1), [YNa2(μ3-ONep)4(ONep)]2 (2), {[Y2K3(μ3-ONep)3(μ-ONep)4(ONep)2(ηξ-tol)2][Y4K2(μ4-O)(μ3-ONep)8(ONep)4]•ηx-tol]} (3), [Y4K2(μ4-O)(μ3-ONep)8(ONep)4] (3a), [Y2Rb3(μ4-ONep)3(μ-ONep)6] (4), and [Y2Cs4(μ6-O)(μ3-ONep)6(μ3-HONep)2(ONep)2(ηx-tol)4]•tol (5). Compounds 1–5 were investigated as single source precursors to AYOx nanomaterials following solvothermal routes (pyridine, 185 °C for 24h). The final products after thermal processing weremore » found by powder X-ray diffraction experiments to be Y2O3 with variable sized particles based on transmission electron diffraction. Energy dispersive X-ray spectroscopy studies indicated that the heavier alkali metal species were present in the isolated nanomaterials.« less

  18. Two-phase alkali-metal experiments in reduced gravity

    SciTech Connect (OSTI)

    Antoniak, Z.I.

    1986-06-01

    Future space missions envision the use of large nuclear reactors utilizing either a single or a two-phase alkali-metal working fluid. The design and analysis of such reactors require state-of-the-art computer codes that can properly treat alkali-metal flow and heat transfer in a reduced-gravity environment. A literature search of relevant experiments in reduced gravity is reported on here, and reveals a paucity of data for such correlations. The few ongoing experiments in reduced gravity are noted. General plans are put forth for the reduced-gravity experiments which will have to be performed, at NASA facilities, with benign fluids. A similar situation exists regarding two-phase alkali-metal flow and heat transfer, even in normal gravity. Existing data are conflicting and indequate for the task of modeling a space reactor using a two-phase alkali-metal coolant. The major features of past experiments are described here. Data from the reduced-gravity experiments with innocuous fluids are to be combined with normal gravity data from the two-phase alkali-metal experiments. Analyses undertaken here give every expectation that the correlations developed from this data base will provide a valid representation of alkali-metal heat transfer and pressure drop in reduced gravity.

  19. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOE Patents [OSTI]

    Erickson, D.C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power. 1 fig.

  20. Controlled temperature expansion in oxygen production by molten alkali metal salts

    DOE Patents [OSTI]

    Erickson, Donald C.

    1985-06-04

    A continuous process is set forth for the production of oxygen from an oxygen containing gas stream, such as air, by contacting a feed gas stream with a molten solution of an oxygen acceptor to oxidize the acceptor and cyclically regenerating the oxidized acceptor by releasing oxygen from the acceptor wherein the oxygen-depleted gas stream from the contact zone is treated sequentially to temperature reduction by heat exchange against the feed stream so as to condense out entrained oxygen acceptor for recycle to the process, combustion of the gas stream with fuel to elevate its temperature and expansion of the combusted high temperature gas stream in a turbine to recover power.

  1. Vitrification of IFR and MSBR halide salt reprocessing wastes

    SciTech Connect (OSTI)

    Siemer, D.D.

    2013-07-01

    Both of the genuinely sustainable (breeder) nuclear fuel cycles (IFR - Integral Fast Reactor - and MSBR - Molten Salt Breeder Reactor -) studied by the USA's national laboratories would generate high level reprocessing waste (HLRW) streams consisting of a relatively small amount ( about 4 mole %) of fission product halide (chloride or fluoride) salts in a matrix comprised primarily (about 95 mole %) of non radioactive alkali metal halide salts. Because leach resistant glasses cannot accommodate much of any of the halides, most of the treatment scenarios previously envisioned for such HLRW have assumed a monolithic waste form comprised of a synthetic analog of an insoluble crystalline halide mineral. In practice, this translates to making a 'substituted' sodalite ('Ceramic Waste Form') of the IFR's chloride salt-based wastes and fluoroapatite of the MSBR's fluoride salt-based wastes. This paper discusses my experimental studies of an alternative waste management scenario for both fuel cycles that would separate/recycle the waste's halide and immobilize everything else in iron phosphate (Fe-P) glass. It will describe both how the work was done and what its results indicate about how a treatment process for both of those wastes should be implemented (fluoride and chloride behave differently). In either case, this scenario's primary advantages include much higher waste loadings, much lower overall cost, and the generation of a product (glass) that is more consistent with current waste management practices. (author)

  2. Process for improving the energy density of feedstocks using formate salts

    DOE Patents [OSTI]

    Wheeler, Marshall Clayton; van Heiningen, Adriaan R.P.; Case, Paige A.

    2015-09-01

    Methods of forming liquid hydrocarbons through thermal deoxygenation of cellulosic compounds are disclosed. Aspects cover methods including the steps of mixing a levulinic acid salt-containing feedstock with a formic acid salt, exposing the mixture to a high temperature condition to form hydrocarbon vapor, and condensing the hydrocarbon vapor to form liquid hydrocarbons, where both the formic acid salt and the levulinic acid salt-containing feedstock decompose at the high temperature condition and wherein one or more of the mixing, exposing, and condensing steps is carried out a pressure between about vacuum and about 10 bar.

  3. Molten salt electrolyte separator

    DOE Patents [OSTI]

    Kaun, T.D.

    1996-07-09

    The patent describes a molten salt electrolyte/separator for battery and related electrochemical systems including a molten electrolyte composition and an electrically insulating solid salt dispersed therein, to provide improved performance at higher current densities and alternate designs through ease of fabrication. 5 figs.

  4. FUSED SALT PROCESS FOR RECOVERY OF VALUES FROM USED NUCLEAR REACTOR FUELS

    DOE Patents [OSTI]

    Moore, R.H.

    1960-08-01

    A process is given for recovering plutonium from a neutron-irradiated uranium mass (oxide or alloy) by dissolving the mass in an about equimolar alkali metalaluminum double chloride, adding aluminum metal to the mixture obtained at a temperature of between 260 and 860 deg C, and separating a uranium-containing metal phase and a plutonium-chloride- and fission-product chloridecontaining salt phase. Dissolution can be expedited by passing carbon tetrachloride vapors through the double salt. Separation without reduction of plutonium from neutron- bombarded uranium and that of cerium from uranium are also discussed.

  5. Water purification using organic salts

    DOE Patents [OSTI]

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  6. Static SIMS Analysis of Carbonate on Basic Alkali-bearing Surfaces

    SciTech Connect (OSTI)

    Groenewold, Gary Steven; Gianotto, Anita Kay; Cortez, Marnie Michelle; Appelhans, Anthony David; Olsen, J.E.; Shaw, A. D.; Karahan, C.; Avci, R.

    2003-02-01

    Carbonate is a somewhat enigmatic anion in static secondary ion mass spectrometry (SIMS) because abundant ions containing intact CO32- are not detected when analyzing alkaline-earth carbonate minerals common to the geochemical environment. In contrast, carbonate can be observed as an adduct ion when it is bound with alkali cations. In this study, carbonate was detected as the adduct Na2CO3Na+ in the spectra of sodium carbonate, bicarbonate, hydroxide, oxalate, formate and nitrite and to a lesser extent nitrate. The appearance of the adduct Na2CO3Na+ on hydroxide, oxalate, formate and nitrite surfaces was interpreted in terms of these basic surfaces fixing CO2 from the ambient atmosphere. The low abundance of Na2CO3Na+ in the static SIMS spectrum of sodium nitrate, compared with a significantly higher abundance in salts having stronger conjugate bases, suggested that the basicity of the conjugate anions correlated with aggressive CO2 fixation; however, the appearance of Na2CO3Na+ could not be explained simply in terms of solution basicity constants. The oxide molecular ion Na2O+ and adducts NaOHNa+ and Na2ONa+ also constituted part of the carbonate spectral signature, and were observed in spectra from all the salts studied. In addition to the carbonate and oxide ions, a low-abundance oxalate ion series was observed that had the general formula Na2-xHxC2O4Na+, where 0 < x < 2. Oxalate adsorption from the laboratory atmosphere was demonstrated but the oxalate ion series also was likely to be formed from reductive coupling occurring during the static SIMS bombardment event. The remarkable spectral similarity observed when comparing the sodium salts indicated that their surfaces shared common chemical speciation and that the chemistry of the surfaces was very different from the bulk of the particle. Copyright 2003 John Wiley & Sons, Ltd.

  7. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, Shih-Perng

    1997-01-01

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid.

  8. Electrodialysis-based separation process for salt recovery and recycling from waste water

    DOE Patents [OSTI]

    Tsai, S.P.

    1997-07-08

    A method for recovering salt from a process stream containing organic contaminants is provided, comprising directing the waste stream to a desalting electrodialysis unit so as to create a concentrated and purified salt permeate and an organic contaminants-containing stream, and contacting said concentrated salt permeate to a water-splitting electrodialysis unit so as to convert the salt to its corresponding base and acid. 6 figs.

  9. FLUIDIZED BED STEAM REFORMING TECHNOLOGY FOR ORGANIC AND NITRATE SALT SUPERNATE

    SciTech Connect (OSTI)

    Jantzen, C; Michael02 Smith, M

    2007-03-30

    About two decades ago a process was developed at the Savannah River Site (SRS) to remove Cs137 from radioactive high level waste (HLW) supernates so the supernates could be land disposed as low activity waste (LAW). Sodium tetraphenylborate (NaTPB) was used to precipitate Cs{sup 137} as CsTPB. The flowsheet called for destruction of the organic TPB by acid hydrolysis so that the Cs{sup 137} enriched residue could be mixed with other HLW sludge, vitrified, and disposed of in a federal geologic repository. The precipitation process was demonstrated full scale with actual HLW waste and a 2.5 wt% Cs137 rich precipitate containing organic TPB was produced admixed with 240,000 gallons of salt supernate. Organic destruction by acid hydrolysis proved to be problematic and other disposal technologies were investigated. Fluidized Bed Steam Reforming (FBSR), which destroys organics by pyrolysis, is the current baseline technology for destroying the TPB and the waste nitrates prior to vitrification. Bench scale tests were designed and conducted at the Savannah River National Laboratory (SRNL) to reproduce the pyrolysis reactions. The formation of alkali carbonate phases that are compatible with DWPF waste pre-processing and vitrification were demonstrated in the bench scale tests. Test parameters were optimized for a pilot scale FBSR demonstration that was performed at the SAIC Science & Technology Application Research (STAR) Center in Idaho Falls, ID by Idaho National Laboratory (INL) and SRNL in 2003. An engineering scale demonstration was completed by THOR{reg_sign} Treatment Technologies (TTT) and SRNL in 2006 at the Hazen Research, Inc. test facility in Golden, CO. The same mineral carbonate phases, the same organic destruction (>99.99%) and the same nitrate/nitrite destruction (>99.99%) were produced at the bench scale, pilot scale, and engineering scale although different sources of carbon were used during testing.

  10. Amine salts of nitroazoles

    DOE Patents [OSTI]

    Kienyin Lee; Stinecipher, M.M.

    1993-10-26

    Compositions of matter, a method of providing chemical energy by burning said compositions, and methods of making said compositions are described. These compositions are amine salts of nitroazoles. 1 figure.

  11. Electrodialysis technology for salt recovery from aluminum salt cake

    SciTech Connect (OSTI)

    Hryn, J. N.; Krumdick, G.; Graziano, D.; Sreenivasarao, K.

    2000-02-02

    Electrodialysis technology for recovering salt from aluminum salt cake is being developed at Argonne National Laboratory. Salt cake, a slag-like aluminum-industry waste stream, contains aluminum metal, salt (NaCl and KCl), and nonmetallics (primarily aluminum oxide). Salt cake can be recycled by digesting with water and filtering to recover the metal and oxide values. A major obstacle to widespread salt cake recycling is the cost of recovering salt from the process brine. Electrodialysis technology developed at Argonne appears to be a cost-effective approach to handling the salt brines, compared to evaporation or disposal. In Argonne's technology, the salt brine is concentrated until salt crystals are precipitated in the electrodialysis stack; the crystals are recovered downstream. The technology is being evaluated on the pilot scale using Eurodia's EUR 40-76-5 stack.

  12. Upgrading of petroleum oil feedstocks using alkali metals and hydrocarbons

    SciTech Connect (OSTI)

    Gordon, John Howard

    2014-09-09

    A method of upgrading an oil feedstock by removing heteroatoms and/or one or more heavy metals from the oil feedstock composition. This method reacts the oil feedstock with an alkali metal and an upgradant hydrocarbon. The alkali metal reacts with a portion of the heteroatoms and/or one or more heavy metals to form an inorganic phase separable from the organic oil feedstock material. The upgradant hydrocarbon bonds to the oil feedstock material and increases the number of carbon atoms in the product. This increase in the number of carbon atoms of the product increases the energy value of the resulting oil feedstock.

  13. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Salt Lake City Gamma Shield Thunder Exercise Concludes National Nuclear Security Administration (NNSA) and the FBI announced today the completion of the Gamma Shield Thunder counterterrorism table-top exercise at LDS Hospital. The exercise is part of NNSA's Silent Thunder table-top series, which is aimed at giving federal, state and local

    6 th US/German Workshop on Salt Repository Research, Design, and Operation Hotel Pullmann Dresden Newa Dresden September 7 - 9, 2015 September 7- Monday

  14. Salt Selected (FINAL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WHY SALT WAS SELECTED AS A DISPOSAL MEDIUM Waste Isolation Pilot Plant U.S. Department Of Energy Government officials and scientists chose the Waste Isolation Pilot Plant (WIPP) site through a selection process that started in the 1950s. At that time, the National Academy of Sciences conducted a nationwide search for geological formations stable enough to contain radioactive wastes for thousands of years. In 1955, after extensive study, salt deposits were recommended as a promising medium for

  15. Magnetic states of the two-leg-ladder alkali metal iron selenides...

    Office of Scientific and Technical Information (OSTI)

    states of the two-leg-ladder alkali metal iron selenides AFe2Se3 Prev Next Title: Magnetic states of the two-leg-ladder alkali metal iron selenides AFe2Se3 Authors: Luo, ...

  16. Ternary alkali-metal and transition metal or metalloid acetylides as alkali-metal intercalation electrodes for batteries

    DOE Patents [OSTI]

    Nemeth, Karoly; Srajer, George; Harkay, Katherine C; Terdik, Joseph Z

    2015-02-10

    Novel intercalation electrode materials including ternary acetylides of chemical formula: A.sub.nMC.sub.2 where A is alkali or alkaline-earth element; M is transition metal or metalloid element; C.sub.2 is reference to the acetylide ion; n is an integer that is 0, 1, 2, 3 or 4 when A is alkali element and 0, 1, or 2 when A is alkaline-earth element. The alkali elements are Lithium (Li), Sodium (Na), Potassium (K), Rubidium (Rb), Cesium (Cs) and Francium (Fr). The alkaline-earth elements are Berilium (Be), Magnesium (Mg), Calcium (Ca), Strontium (Sr), Barium (Ba), and Radium (Ra). M is a transition metal that is any element in groups 3 through 12 inclusive on the Periodic Table of Elements (elements 21 (Sc) to element 30 (Zn)). In another exemplary embodiment, M is a metalloid element.

  17. Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries

    SciTech Connect (OSTI)

    Doe, RE; Han, R; Hwang, J; Gmitter, AJ; Shterenberg, I; Yoo, HD; Pour, N; Aurbach, D

    2014-01-01

    Herein the first inorganic magnesium salt solution capable of highly reversible magnesium electrodeposition is presented. Synthesized by acid-base reaction of MgCl2 and Lewis acidic compounds such as AlCl3, this salt class demonstrates upwards of 99% Coulombic efficiency, deposition overpotential of <200 mV, and anodic stability of 3.1 V.

  18. Modeling of alkali aggregate reaction effects in concrete dams

    SciTech Connect (OSTI)

    Capra, B.; Bournazel, J.P.; Bourdarot, E.

    1995-12-31

    Alkali Aggregate Reactions (AAR) are difficult to model due to the random distribution of the reactive sites and the imperfect knowledge of these chemical reactions. A new approach, using fracture mechanics and probabilities, capable to describe the anisotropic swelling of a structure is presented.

  19. PVC waterproofing membranes and alkali-aggregated reaction in dams

    SciTech Connect (OSTI)

    Scuero, A.M.

    1995-12-31

    A waterproofing polyvinylchloride (PVC) based geocomposite was installed on two dams subject to alkali-aggregate reaction, to eliminate water intrusion and to protect the facing from further deterioration. The installation system allows drainage of the infiltrated water, thus accomplishing dehydration of the dam body. On one dam, the membrane also provided protection for future slot cutting.

  20. Method of assembling and sealing an alkali metal battery

    DOE Patents [OSTI]

    Elkins, P.E.; Bell, J.E.; Harlow, R.A.; Chase, G.G.

    1983-03-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed there between. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants there through at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed there between. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal there between. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal. 4 figs.

  1. Method of assembling and sealing an alkali metal battery

    DOE Patents [OSTI]

    Elkins, Perry E.; Bell, Jerry E.; Harlow, Richard A.; Chase, Gordon G.

    1983-01-01

    A method of initially assembling and then subsequently hermetically sealing a container portion of an alkali metal battery to a ceramic portion of such a battery is disclosed. Sealing surfaces are formed respectively on a container portion and a ceramic portion of an alkali metal battery. These sealing surfaces are brought into juxtaposition and a material is interposed therebetween. This interposed material is one which will diffuse into sealing relationship with both the container portion and the ceramic portion of the alkali metal battery at operational temperatures of such a battery. A pressure is applied between these sealing surfaces to cause the interposed material to be brought into intimate physical contact with such juxtaposed surfaces. A temporary sealing material which will provide a seal against a flow of alkali metal battery reactants therethrough at room temperatures and is applied over the juxtaposed sealing surfaces and material interposed therebetween. The entire assembly is heated to an operational temperature so that the interposed material diffuses into the container portion and the ceramic portion to form a hermetic seal therebetween. The pressure applied to the juxtaposed sealing surfaces is maintained in order to ensure the continuation of the hermetic seal.

  2. High capacity nickel battery material doped with alkali metal cations

    DOE Patents [OSTI]

    Jackovitz, John F.; Pantier, Earl A.

    1982-05-18

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  3. Fundamental Properties of Salts

    SciTech Connect (OSTI)

    Toni Y Gutknecht; Guy L Fredrickson

    2012-11-01

    Thermal properties of molten salt systems are of interest to electrorefining operations, pertaining to both the Fuel Cycle Research & Development Program (FCR&D) and Spent Fuel Treatment Mission, currently being pursued by the Department of Energy (DOE). The phase stability of molten salts in an electrorefiner may be adversely impacted by the build-up of fission products in the electrolyte. Potential situations that need to be avoided, during electrorefining operations, include (i) fissile elements build up in the salt that might approach the criticality limits specified for the vessel, (ii) electrolyte freezing at the operating temperature of the electrorefiner due to changes in the liquidus temperature, and (iii) phase separation (non-homogenous solution). The stability (and homogeneity) of the phases can be monitored by studying the thermal characteristics of the molten salts as a function of impurity concentration. Simulated salt compositions consisting of the selected rare earth and alkaline earth chlorides, with a eutectic mixture of LiCl-KCl as the carrier electrolyte, were studied to determine the melting points (thermal characteristics) using a Differential Scanning Calorimeter (DSC). The experimental data were used to model the liquidus temperature. On the basis of the this data, it became possible to predict a spent fuel treatment processing scenario under which electrorefining could no longer be performed as a result of increasing liquidus temperatures of the electrolyte.

  4. Process and apparatus for obtaining silicon from fluosilicic acid

    DOE Patents [OSTI]

    Nanis, Leonard; Sanjurjo, Angel

    1988-05-31

    Process for producing low cost, high purity solar grade Si wherein a reduction reaction, preferably the reduction of SiF.sub.4, by an alkali metal (Na preferred) is carried out inside a reaction chamber. The chamber wall and bottom surfaces are configured so as to facilitate the continuous separation of the products of reaction (Si and NaF) and removal of the molten salt by discharging the salt through one or more ports at the bottom of the reaction chamber. Such process is especially useful where it is desirable to discharge the reaction salt products from the reactor and retain silicon within the chamber for later removal.

  5. Gas releases from salt

    SciTech Connect (OSTI)

    Ehgartner, B.; Neal, J.; Hinkebein, T.

    1998-06-01

    The occurrence of gas in salt mines and caverns has presented some serious problems to facility operators. Salt mines have long experienced sudden, usually unexpected expulsions of gas and salt from a production face, commonly known as outbursts. Outbursts can release over one million cubic feet of methane and fractured salt, and are responsible for the lives of numerous miners and explosions. Equipment, production time, and even entire mines have been lost due to outbursts. An outburst creates a cornucopian shaped hole that can reach heights of several hundred feet. The potential occurrence of outbursts must be factored into mine design and mining methods. In caverns, the occurrence of outbursts and steady infiltration of gas into stored product can effect the quality of the product, particularly over the long-term, and in some cases renders the product unusable as is or difficult to transport. Gas has also been known to collect in the roof traps of caverns resulting in safety and operational concerns. The intent of this paper is to summarize the existing knowledge on gas releases from salt. The compiled information can provide a better understanding of the phenomena and gain insight into the causative mechanisms that, once established, can help mitigate the variety of problems associated with gas releases from salt. Outbursts, as documented in mines, are discussed first. This is followed by a discussion of the relatively slow gas infiltration into stored crude oil, as observed and modeled in the caverns of the US Strategic Petroleum Reserve. A model that predicts outburst pressure kicks in caverns is also discussed.

  6. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    th US/German Workshop on Salt Repository Research, Design, and Operation Hotel Pullman Dresden Newa September 7 - 9, 2015 September 7- Monday 08:00-08:30 Registration 08:30-08:50 Welcome by the organizers T. Lautsch, DBE F. Hansen, SNL W. Steininger, PTKA 08:50-09:15 Welcome by BMWi U. Borak, BMWi 09:15-09:30 Welcome by USDOE N. Buschman, US DOE 09:30-10:00 NEA Salt Club J. Mönig, GRS SAFETY CASE ISSUES 10:00-10:30 WIPP recovery F. Hansen, SNL 10:30-11:00 Coffee break and photo event

  7. Electrolytic orthoborate salts for lithium batteries (Patent...

    Office of Scientific and Technical Information (OSTI)

    Electrolytic orthoborate salts for lithium batteries Title: Electrolytic orthoborate salts for lithium batteries Orthoborate salts suitable for use as electrolytes in lithium ...

  8. Sandia Energy - Molten Salt Test Loop Commissioning

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News EC News & Events Concentrating Solar Power Solar Molten Salt Test Loop Commissioning Previous Next Molten Salt Test Loop Commissioning The Molten Salt...

  9. Salt Wells Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Salt Wells Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 2.1 Salt...

  10. Radiolysis of Salts and Long-Term Storage Issues for Both Pure and Impure PuO{sub 2} Materials in Plutonium Storage Containers

    SciTech Connect (OSTI)

    Lav Tandon

    2000-05-01

    The Material Identification and Surveillance (MIS) project sponsored a literature search on the effects of radiation on salts, with focus on alkali chlorides. The goal of the survey was to provide a basis for estimating the magnitude of {alpha} radiation effects on alkali chlorides that can accompany plutonium oxide (PuO{sub 2}) into storage. Chloride radiolysis can yield potentially corrosive gases in plutonium storage containers that can adversely affect long-term stability. This literature search was primarily done to provide a tutorial on this topic, especially for personnel with nonradiation chemistry backgrounds.

  11. Salt repository design approach

    SciTech Connect (OSTI)

    Matthews, S.C.

    1983-01-01

    This paper presents a summary discussion of the approaches that have been and will be taken in design of repository facilities for use with disposal of radioactive wastes in salt formations. Since specific sites have yet to be identified, the discussion is at a general level, supplemented with illustrative examples where appropriate. 5 references, 1 figure.

  12. Energy densification of biomass-derived organic acids

    DOE Patents [OSTI]

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  13. Actinide removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C.; von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Adamson, Martyn G.

    2002-01-01

    A method for removing actinide contaminants (uranium and thorium) from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents are added to precipitate the thorium as thorium oxide and/or the uranium as either uranium oxide or as a diuranate salt. The precipitated materials are filtered, dried and packaged for disposal as radioactive waste. About 90% of the thorium and/or uranium present is removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 0.1 ppm of thorium or uranium.

  14. Metals removal from spent salts

    DOE Patents [OSTI]

    Hsu, Peter C.; Von Holtz, Erica H.; Hipple, David L.; Summers, Leslie J.; Brummond, William A.; Adamson, Martyn G.

    2002-01-01

    A method and apparatus for removing metal contaminants from the spent salt of a molten salt oxidation (MSO) reactor is described. Spent salt is removed from the reactor and analyzed to determine the contaminants present and the carbonate concentration. The salt is dissolved in water, and one or more reagents may be added to precipitate the metal oxide and/or the metal as either metal oxide, metal hydroxide, or as a salt. The precipitated materials are filtered, dried and packaged for disposal as waste or can be immobilized as ceramic pellets. More than about 90% of the metals and mineral residues (ashes) present are removed by filtration. After filtration, salt solutions having a carbonate concentration >20% can be spray-dried and returned to the reactor for re-use. Salt solutions containing a carbonate concentration <20% require further clean-up using an ion exchange column, which yields salt solutions that contain less than 1.0 ppm of contaminants.

  15. Process for carbonaceous material conversion and recovery of alkali metal catalyst constituents held by ion exchange sites in conversion residue

    DOE Patents [OSTI]

    Sharp, David W.

    1980-01-01

    In a coal gasification operation or similar conversion process carried out in the presence of an alkali metal-containing catalyst wherein solid particles containing alkali metal residues are produced, alkali metal constituents are recovered for the particles by contacting or washing them with an aqueous solution containing calcium or magnesium ions in an alkali metal recovery zone at a low temperature, preferably below about 249.degree. F. During the washing or leaching process, the calcium or magnesium ions displace alkali metal ions held by ion exchange sites in the particles thereby liberating the ions and producing an aqueous effluent containing alkali metal constituents. The aqueous effluent from the alkali metal recovery zone is then recycled to the conversion process where the alkali metal constituents serve as at least a portion of the alkali metal constituents which comprise the alkali metal-containing catalyst.

  16. Lithological influence of aggregate in the alkali-carbonate reaction

    SciTech Connect (OSTI)

    Lopez-Buendia, A.M. . E-mail: angel.lopez@aidico.es; Climent, V. . E-mail: vcliment@grupogla.com; Verdu, P.

    2006-08-15

    The reactivity of carbonate rock with the alkali content of cement, commonly called alkali-carbonate reaction (ACR), has been investigated. Alkali-silica reaction (ASR) can also contribute in the alkali-aggregate reaction (AAR) in carbonate rock, mainly due to micro- and crypto-crystalline quartz or clay content in carbonate aggregate. Both ACR and ASR can occur in the same system, as has been also evidenced on this paper. Carbonate aggregate samples were selected using lithological reactivity criteria, taking into account the presence of dedolomitization, partial dolomitization, micro- and crypto-crystalline quartz. Selected rocks include calcitic dolostone with chert (CDX), calcitic dolostone with dedolomitization (CDD), limestone with chert (LX), marly calcitic dolostone with partial dolomitization (CD), high-porosity ferric dolostone with clays (FD). To evaluate the reactivity, aggregates were studied using expansion tests following RILEM AAR-2, AAR-5, a modification using LiOH AAR-5Li was also tested. A complementary study was done using petrographic monitoring with polarised light microscopy on aggregates immersed in NaOH and LiOH solutions after different ages. SEM-EDAX has been used to identify the presence of brucite as a product of dedolomitization. An ACR reaction showed shrinkage of the mortar bars in alkaline solutions explained by induced dedolomitization, while an ASR process typically displayed expansion. Neither shrinkage nor expansion was observed when mortar bars were immersed in solutions of lithium hydroxide. Carbonate aggregate classification with AAR pathology risk has been elaborated based on mechanical behaviours by expansion and shrinkage. It is proposed to be used as a petrographic method for AAR diagnosis to complement the RILEM AAR1 specifically for carbonate aggregate. Aggregate materials can be classified as I (non-reactive), II (potentially reactive), and III (probably reactive), considering induced dedolomitization ACR

  17. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  18. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic properties is possible by exploiting strongly interacting or "correlated" electrons. Now a team of researchers from the University of Kiel in Germany and the ALS has found a novel,

  19. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Print During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of selective ion interactions in biology; there are many others also vital to life. The existence of these interactions

  20. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Print During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of selective ion interactions in biology; there are many others also vital to life. The existence of these interactions

  1. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Print During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of selective ion interactions in biology; there are many others also vital to life. The existence of these interactions

  2. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Print During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of selective ion interactions in biology; there are many others also vital to life. The existence of these interactions

  3. Characterization of Selective Binding of Alkali Cations with Carboxylate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Characterization of Selective Binding of Alkali Cations with Carboxylate Print During its lifetime, a cell spends a considerable fraction of its energy pumping sodium and calcium out and potassium in. This balancing process is similar to that found in the coils of the DNA double helix, where specific ions nestle and help stabilize this macromolecule. These are only two examples of selective ion interactions in biology; there are many others also vital to life. The existence of these interactions

  4. Conversion of alkali metal sulfate to the carbonate

    DOE Patents [OSTI]

    Sheth, Atul C. (Woodridge, IL)

    1982-01-01

    A process for converting potassium sulfate to potassium carbonate in which a mixture of potassium sulfate and calcium oxide are reacted at a temperature in the range of between about 700.degree. C. and about 800.degree. C. with a gaseous mixture having a minor amount of hydrogen and/or carbon monoxide in a diluent with the calcium oxide being present in an amount not greater than about 20 percent by weight of the potassium sulfate to produce an aqueous mixture of potassium sulfide, potassium bisulfide, potassium hydroxide and calcium sulfide and a gaseous mixture of steam and hydrogen sulfide. The potassium and calcium salts are quenched to produce an aqueous slurry of soluble potassium salts and insoluble calcium salts and a gaseous mixture of steam and hydrogen sulfide. The insoluble calcium salts are then separated from the aqueous solution of soluble potassium salts. The calcium salts are dried to produce calcium sulfide, calcium bisulfide and steam, and then, the calcium sulfide and calcium bisulfide are converted to the oxide and recycled. The soluble potassium salts are carbonated to produce potassium carbonate which is concentrated and the precipitated crystals separated. The sulfur-containing compounds are further treated.

  5. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOE Patents [OSTI]

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  6. Nucleic acids encoding metal uptake transporters and their uses

    DOE Patents [OSTI]

    Schroeder, Julian I.; Antosiewicz, Danuta M.; Schachtman, Daniel P.; Clemens, Stephan

    1999-01-01

    The invention provides LCT1 nucleic acids which encode metal ion uptake transporters. The invention also provides methods of modulating heavy metal and alkali metal uptake in plants. The methods involve producing transgenic plants comprising a recombinant expression cassette containing an LCT1 nucleic acid linked to a plant promoter.

  7. Crystallized alkali-silica gel in concrete from the late 1890s

    SciTech Connect (OSTI)

    Peterson, Karl . E-mail: cee@mtu.edu; Gress, David . E-mail: dlgress@unh.edu; Van Dam, Tom . E-mail: cee@mtu.edu; Sutter, Lawrence . E-mail: cee@mtu.edu

    2006-08-15

    The Elon Farnsworth Battery, a concrete structure completed in 1898, is in an advanced state of disrepair. To investigate the potential for rehabilitation, cores were extracted from the battery. Petrographic examination revealed abundant deposits of alkali silica reaction products in cracks associated with the quartz rich metasedimentary coarse aggregate. The products of the alkali silica reaction are variable in composition and morphology, including both amorphous and crystalline phases. The crystalline alkali silica reaction products are characterized by quantitative X-ray energy dispersive spectrometry (EDX) and X-ray diffraction (XRD). The broad extent of the reactivity is likely due to elevated alkali levels in the cements used.

  8. Salt Repository Research,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Salt Repository Research, Design, and Operation La Fonda Hotel Santa Fe, New Mexico September 7 - 11, 2014 Please join us Sunday September 7, 2014 for a welcome and reception at the La Fonda Hotel hosted by Sandia National Laboratories beginning at 6:00 PM. Day 1 Technical Agenda September 8 - Monday 08:00-08:45 Sign-in and distribution of meeting materials 08:45-09:45 Welcome addresses H.C. Pape (BMWi) US-DOE Offices Highlights of US/German Collaboration F. Hansen (SNL) W. Steininger (PTKA)

  9. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1982-02-09

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  10. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, Ian D.; Poris, Jaime; Huggins, Robert A.

    1983-01-01

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400.degree.-500.degree. C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell (10) which may be operated at temperatures between about 100.degree.-170.degree. C. Cell (10) comprises an electrolyte (16), which preferably includes lithium nitrate, and a lithium or lithium alloy electrode (12).

  11. Molten salt lithium cells

    DOE Patents [OSTI]

    Raistrick, I.D.; Poris, J.; Huggins, R.A.

    1980-07-18

    Lithium-based cells are promising for applications such as electric vehicles and load-leveling for power plants since lithium is very electropositive and light weight. One type of lithium-based cell utilizes a molten salt electrolyte and is operated in the temperature range of about 400 to 500/sup 0/C. Such high temperature operation accelerates corrosion problems and a substantial amount of energy is lost through heat transfer. The present invention provides an electrochemical cell which may be operated at temperatures between about 100 to 170/sup 0/C. The cell is comprised of an electrolyte, which preferably includes lithium nitrate, and a lithium or lithium alloy electrode.

  12. Electrolyte salts for nonaqueous electrolytes

    DOE Patents [OSTI]

    Amine, Khalil; Zhang, Zhengcheng; Chen, Zonghai

    2012-10-09

    Metal complex salts may be used in lithium ion batteries. Such metal complex salts not only perform as an electrolyte salt in a lithium ion batteries with high solubility and conductivity, but also can act as redox shuttles that provide overcharge protection of individual cells in a battery pack and/or as electrolyte additives to provide other mechanisms to provide overcharge protection to lithium ion batteries. The metal complex salts have at least one aromatic ring. The aromatic moiety may be reversibly oxidized/reduced at a potential slightly higher than the working potential of the positive electrode in the lithium ion battery. The metal complex salts may also be known as overcharge protection salts.

  13. Tuning of the Metal-Insulator Transition via Alkali Adsorption

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tulane University: 2016 Energy Expo Tulane University: 2016 Energy Expo September 9, 2016 9:00AM to 5:00PM EDT Location: 1200 Louisiana Street, Houston, TX 77002 Attendees: Morgan McKnight

    Tuning of the Metal-Insulator Transition via Alkali Adsorption Print Turning a material from an insulator to a metal, or vice versa, by light irradiation, exposure to electric or magnetic fields, or applying small changes in temperature, pressure, or doping-such intriguing control of a material's electronic

  14. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, L.A.; Sales, B.C.; Franco, S.C.S.

    1994-03-29

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications. 6 figures.

  15. Alkali-lead-iron phosphate glass and associated method

    DOE Patents [OSTI]

    Boatner, Lynn A.; Sales, Brian C.; Franco, Sofia C. S.

    1994-01-01

    A glass composition and method of preparation utilizes a mixture consisting of phosphorus oxide within the range of about 40 to 49 molar percent, lead oxide within the range of about 10 to 25 molar percent, iron oxide within the range of about 10 to 17 molar percent and an alkali oxide within the range of about 23 to 30 molar percent. The glass resulting from the melting and subsequent solidifying of the mixture possesses a high degree of durability and a coefficient of thermal expansion as high as that of any of a number of metals. Such features render this glass highly desirable in glass-to-metal seal applications.

  16. Cubic Ionic Conductor Ceramics for Alkali Ion Batteries - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cuban Missile Crisis Cuban Missile Crisis Cuba Reconnaissance reveals Soviet missiles in Cuba. The United States blockades Cuba for 13 days until the Soviet Union agrees to remove its missiles Portal

    Advanced Materials Advanced Materials Find More Like This Return to Search Cubic Ionic Conductor Ceramics for Alkali Ion Batteries Brookhaven National Laboratory Contact BNL About This Technology Publications: PDF Document Publication Ionic conduction in cubic Na3TiP3O9N, a secondary Na-ion

  17. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect (OSTI)

    Baroch, C.J.; Grant, P.J.

    1995-10-01

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. There is considerable interest in developing processes that remove or destroy the nitrate wastes. Electrodialysis-Ion Exchange (EDIX) is a possible process that should be more cost effective in treating aqueous waste steams. This report describes the EDIX process.

  18. Electrodialysis-ion exchange for the separation of dissolved salts

    SciTech Connect (OSTI)

    Baroch, C.J.; Grant, P.J.

    1995-12-31

    The Department of Energy generates and stores a significant quantity of low level, high level, and mixed wastes. As some of the DOE facilities are decontaminated and decommissioned, additional and possibly different forms of wastes will be generated. A significant portion of these wastes are aqueous streams containing acids, bases, and salts, or are wet solids containing inorganic salts. Some of these wastes are quite dilute solutions, whereas others contain large quantities of nitrates either in the form of dissolved salts or acids. Many of the wastes are also contaminated with heavy metals, radioactive products, or organics. Some of these wastes are in storage because a satisfactory treatment and disposal processes have not been developed. This report describes the process of electrodialysis-ion exchange (EDIX) for treating aqueous wastes streams consisting of nitrates, sodium, organics, heavy metals, and radioactive species.

  19. Batteries using molten salt electrolyte

    DOE Patents [OSTI]

    Guidotti, Ronald A.

    2003-04-08

    An electrolyte system suitable for a molten salt electrolyte battery is described where the electrolyte system is a molten nitrate compound, an organic compound containing dissolved lithium salts, or a 1-ethyl-3-methlyimidazolium salt with a melting temperature between approximately room temperature and approximately 250.degree. C. With a compatible anode and cathode, the electrolyte system is utilized in a battery as a power source suitable for oil/gas borehole applications and in heat sensors.

  20. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-11-11

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  1. Electrochromic Salts, Solutions, and Devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky, T. Mark

    2008-10-14

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  2. Electrochromic salts, solutions, and devices

    DOE Patents [OSTI]

    Burrell, Anthony K.; Warner, Benjamin P.; McClesky,7,064,212 T. Mark

    2006-06-20

    Electrochromic salts. Electrochromic salts of dicationic viologens such as methyl viologen and benzyl viologen associated with anions selected from bis(trifluoromethylsulfonyl)imide, bis(perfluoroethylsulfonyl)imide, and tris(trifluoromethylsulfonyl)methide are produced by metathesis with the corresponding viologen dihalide. They are highly soluble in molten quarternary ammonium salts and together with a suitable reductant provide electrolyte solutions that are used in electrochromic windows.

  3. Solar ponds in hydrometallurgy and salt production

    SciTech Connect (OSTI)

    Lesino, G.; Saravia, L. )

    1991-01-01

    The possibilities of using solar ponds in the mining industry are explored. Their advantages are identified from an economic point of view and the main technical points for proper operation are discussed. A short account is given of the hydrometallurgical and salt production processes of interest from the point of view of solar ponds. Solar ponds can provide a working environment for many mineral processing systems, not only as a source of energy, but also as a large basin maintained at nearly constant temperature where different operations can be performed. Examples are described for applications in the production of sodium sulfate, boric acid, copper, potassium chloride, and sodium borate.

  4. Synthesis and studies on microhardness of alkali zinc borate glasses

    SciTech Connect (OSTI)

    Subhashini, Bhattacharya, Soumalya Shashikala, H. D. Udayashankar, N. K.

    2014-04-24

    The mixed alkali effect on zinc borate glasses have been reported. The glass systems of nominal composition 10Zn+xLi{sub 2}O+yNa{sub 2}O+80B{sub 2}O{sub 3} (x = y = 0, 5, 10, 15 mol%) were prepared using standard melt quenching method. The structural, physical and mechanical properties of the samples have been studied using X-ray diffraction(XRD), density measurement and Vickers hardness measurement, respectively. A consistent increase in the density was observed, which explains the role of the modifiers (Li{sub 2}O and Na{sub 2}O) in the network modification of borate structure. The molar volume is decreasing linearly with the alkali concentration, which is attributed to the conversion of tetrahedral boron (BO{sub 4/2}){sup −} into (BO{sub 3/2}){sup −}. The microhardness studies reveals the anisotropy nature of the material. It further confirms that the samples belong to hard glass category.

  5. Molten Metal Treatment by Salt Fluxing with Low Environmental Emissions

    SciTech Connect (OSTI)

    Yogeshwar Sahai

    2007-07-31

    Abstract: Chlorine gas is traditionally used for fluxing of aluminum melt for removal of alkali and alkaline earth elements. However this results in undesirable emissions of particulate matter and gases such as HCl and chlorine, which are often at unacceptable levels. Additionally, chlorine gas is highly toxic and its handling, storage, and use pose risks to employees and the local community. Holding of even minimal amounts of chlorine necessitates extensive training for all plant employees. Fugitive emissions from chlorine usage within the plant cause accelerated corrosion of plant equipment. The Secondary Aluminum Maximum Achievable Control Technology (MACT) under the Clean Air Act, finalized in March 2000 has set very tough new limits on particulate matter (PM) and total hydrogen chloride emissions from aluminum melting and holding furnaces. These limits are 0.4 and 0.1 lbs per ton of aluminum for hydrogen chloride and particulate emissions, respectively. Assuming new technologies for meeting these limits can be found, additional requirements under the Clean Air Act (Prevention of Significant Deterioration and New Source Review) trigger Best Available Control Technology (BACT) for new sources with annual emissions (net emissions not expressed per ton of production) over specified amounts. BACT currently is lime coated bag-houses for control of particulate and HCl emissions. These controls are expensive, difficult to operate and maintain, and result in reduced American competitiveness in the global economy. Solid salt fluxing is emerging as a viable option for the replacement of chlorine gas fluxing, provided emissions can be consistently maintained below the required levels. This project was a cooperative effort between the Ohio State University and Alcoa to investigate and optimize the effects of solid chloride flux addition in molten metal for alkali impurity and non-metallic inclusion removal minimizing dust and toxic emissions and maximizing energy

  6. Thermodynamic Properties Of Alkali Species In Coal Based Combined Cycle Power Systems

    SciTech Connect (OSTI)

    Willenborg, W.; Wolf, K.J.; Fricke, C.; Moeller, M.; Prikhodovsky, A.; Hilpert, K.; Singheiser, L.

    2002-09-20

    The aim of this project is to support the development of a concept for a successful alkali removal. Two strategies are possible: optimizing the alkali retention potential of the coal ash slag in the combustion chamber and the liquid slag separators and separate alkali removal with solid sorbents (getters) at temperatures below 1450 C. Therefore in a first step the alkali partial pressure over coal ash slag should be determined in order to get information about the retention potential of the slag. The influence of additives on the retention potential of the slag should be investigated. The measurements should show if the alkali partial pressure over the slag is generally low enough in case of thermodynamic equilibrium. In case of too high alkali partial pressures a separate alkali removal is needed. Therefore in a second step commercial sorbent materials should be investigated concerning their sorption potential for alkalis. To get information about the influence of getter components on the sorption potential some mixtures of pure components, predicted by thermodynamic modeling to be most effective, should be investigated.

  7. DOE - Office of Legacy Management -- Salt_Lake

    Office of Legacy Management (LM)

    Salt_Lake Salt Lake City Sites ut_map Salt Lake City Disposal Site Salt Lake City Processing Site Last Updated: 12/14/2015

  8. Plant salt-tolerance mechanisms

    SciTech Connect (OSTI)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selection and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.

  9. Plant salt-tolerance mechanisms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Deinlein, Ulrich; Stephan, Aaron B.; Horie, Tomoaki; Luo, Wei; Xu, Guohua; Schroeder, Julian I.

    2014-06-01

    Crop performance is severely affected by high salt concentrations in soils. To engineer more salt-tolerant plants it is crucial to unravel the key components of the plant salt-tolerance network. Here we review our understanding of the core salt-tolerance mechanisms in plants. Recent studies have shown that stress sensing and signaling components can play important roles in regulating the plant salinity stress response. We also review key Na+ transport and detoxification pathways and the impact of epigenetic chromatin modifications on salinity tolerance. In addition, we discuss the progress that has been made towards engineering salt tolerance in crops, including marker-assisted selectionmore » and gene stacking techniques. We also identify key open questions that remain to be addressed in the future.« less

  10. The nature of the active phase in the heteropolyacid catalyst H{sub 4}PVMo{sub 11}O{sub 40} {center_dot} 32H{sub 2}O used for the selective oxidation of isobutyric acid

    SciTech Connect (OSTI)

    Ilkenhans, T.; Herzog, B.; Braun, T.

    1995-05-01

    The structural changes of the title compound during heating and under conditions of catalytic conversion of isobutyric acid to methacrylic acid were followed in situ by powder X-ray diffraction under continuous control of its activity. The results were verified by a postmortem phase analysis of practical supported catalyst samples used in kinetic reactors. The activity of the catalyst is correlated with its dehydrated form. A new cubic phase of a water-free vanadyl salt of the heteropolyacid (HPA) was found to be connected to a maximum conversion. This phase is isostructural to the unsubstituted anhydrous alkali-3-HPA salts and is metastable at ambient conditions with respect to rehydration. The catalyst material as a whole is metastable at any temperature above the onset of conversion with respect to a partially reversible decomposition into MoO{sub 3} and amorphous other components. Restructuring into crystalline forms of HPA is possible from the deactivated material upon dissolution and recrystallization at 323 K. In Situ UV-VIS data and X-ray diffraction show the complete self-reorganization of the MoO{sub 3} phase and the amorphous V and P compounds into new Keggin anions indicating the possible living nature of the catalyst under reaction conditions which enable extended lifetimes beyond the stability limits found in the present in situ X-ray diffraction experiments. 32 refs., 16 figs., 3 tabs.

  11. Structural Interactions within Lithium Salt Solvates: Acyclic...

    Office of Scientific and Technical Information (OSTI)

    Structural Interactions within Lithium Salt Solvates: Acyclic Carbonates and Esters Citation Details In-Document Search Title: Structural Interactions within Lithium Salt Solvates: ...

  12. Enterprise Assessments Salt Waste Processing Facility Construction...

    Office of Environmental Management (EM)

    Salt Waste Processing Facility Construction Quality and Fire Protection Systems Follow-up Review at the Savannah River Site - January 2016 Enterprise Assessments Salt Waste ...

  13. Alkali-silica reaction and its effectes on concrete

    SciTech Connect (OSTI)

    Stark, D.

    1995-12-31

    Alkali-silica reactivity (ASR) has resulted in cracking of concrete in numerous dams in the United States and elsewhere. Many of these dams were constructed prior to the initial discovery of ASR in California in the late 1930`s, thus no special precautions could have been taken to prevent its development Since that time, ASR has been identified in all types of structures located in many parts of the world. Voluminous research has been carried out to better characterize its development, to more completely understand the mechanisms of expansion and distress, and to design means to mitigate its development in new and existing construction. Based on this work, this paper describes the nature of ASR, its effects on concrete, and means to control its development, with special reference to dams.

  14. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan

    SciTech Connect (OSTI)

    1991-12-01

    Since 1987, Westinghouse Hanford Company has been a major contractor to the U.S. Department of Energy-Richland Operations Office and has served as co-operator of the 3718-F Alkali Metal Treatment and Storage Facility, the waste management unit addressed in this closure plan. The closure plan consists of a Part A Dangerous waste Permit Application and a RCRA Closure Plan. An explanation of the Part A Revision (Revision 1) submitted with this document is provided at the beginning of the Part A section. The closure plan consists of 9 chapters and 5 appendices. The chapters cover: introduction; facility description; process information; waste characteristics; groundwater; closure strategy and performance standards; closure activities; postclosure; and references.

  15. Influence of lithium hydroxide on alkali-silica reaction

    SciTech Connect (OSTI)

    Bulteel, D.; Garcia-Diaz, E.; Degrugilliers, P.

    2010-04-15

    Several papers show that the use of lithium limits the development of alkali-silica reaction (ASR) in concrete. The aim of this study is to improve the understanding of lithium's role on the alteration mechanism of ASR. The approach used is a chemical method which allowed a quantitative measurement of the specific degree of reaction of ASR. The chemical concrete sub-system used, called model reactor, is composed of the main ASR reagents: reactive aggregate, portlandite and alkaline solution. Different reaction degrees are measured and compared for different alkaline solutions: NaOH, KOH and LiOH. Alteration by ASR is observed with the same reaction degrees in the presence of NaOH and KOH, accompanied by the consumption of hydroxyl concentration. On the other hand with LiOH, ASR is very limited. Reaction degree values evolve little and the hydroxyl concentration remains about stable. These observations demonstrate that lithium ions have an inhibitor role on ASR.

  16. A light water excess heat reaction suggests that cold fusion may be alkali-hydrogen fusion

    SciTech Connect (OSTI)

    Bush, R.T. )

    1992-09-01

    This paper reports that Mills and Kneizys presented data in support of a light water excess heat reaction obtained with an electrolytic cell highly reminiscent of the Fleischmann-Pons cold fusion cell. The claim of Mills and Kneizys that their excess heat reaction can be explained on the basis of a novel chemistry, which supposedly also explains cold fusion, is rejected in favor of their reaction being, instead, a light water cold fusion reaction. It is the first known light water cold fusion reaction to exhibit excess heat, it may serve as a prototype to expand our understanding of cold fusion. From this new reactions are deduced, including those common to past cold fusion studies. This broader pattern of nuclear reactions is typically seen to involve a fusion of the nuclides of the alkali atoms with the simplest of the alkali-type nuclides, namely, protons, deuterons, and tritons. Thus, the term alkali-hydrogen fusion seems appropriate for this new type of reaction with three subclasses: alkali-hydrogen fusion, alkali-deuterium fusion, and alkali-tritium fusion. A new three-dimensional transmission resonance model (TRM) is sketched. Finally, preliminary experimental evidence in support of the hypothesis of a light water nuclear reaction and alkali-hydrogen fusion is reported. Evidence is presented that appears to strongly implicate the transmission resonance phenomenon of the new TRM.

  17. Breakdown of ionic character of molecular alkali bromides in inner-valence photoionization

    SciTech Connect (OSTI)

    Karpenko, A. Iablonskyi, D.; Kettunen, J. A.; Cao, W.; Huttula, M.; Aksela, H.; Urpelainen, S.

    2014-05-28

    The inner-valence region of alkali bromide XBr (X=Li, Na, K, Rb) vapours has been studied experimentally by means of synchrotron radiation excited photoelectron spectroscopy. Experimental spectra were analyzed by comparing them with available theoretical results and previous experiments. Ionic character of alkali bromides is seen to change in the inner-valence region with increasing atomic number of the alkali atom. A mechanism involving mixing between Br 4s and Rb 4p orbitals has been suggested to account for the fine structure observed in inner-valence ionization region of RbBr.

  18. Improved Recovery Boiler Performance Through Control of Combustion, Sulfur, and Alkali Chemistry

    SciTech Connect (OSTI)

    Baxter, Larry L.

    2008-06-09

    This project involved the following objectives: 1. Determine black liquor drying and devolatilization elemental and total mass release rates and yields. 2. Develop a public domain physical/chemical kinetic model of black liquor drop combustion, including new information on drying and devolatilization. 3. Determine mechanisms and rates of sulfur scavenging in recover boilers. 4. Develop non-ideal, public-domain thermochemistry models for alkali salts appropriate for recovery boilers 5. Develop data and a one-dimensional model of a char bed in a recovery boiler. 6. Implement all of the above in comprehensive combustion code and validate effects on boiler performance. 7. Perform gasification modeling in support of INEL and commercial customers. The major accomplishments of this project corresponding to these objectives are as follows: 1. Original data for black liquor and biomass data demonstrate dependencies of particle reactions on particle size, liquor type, gas temperature, and gas composition. A comprehensive particle submodel and corresponding data developed during this project predicts particle drying (including both free and chemisorbed moisture), devolatilization, heterogeneous char oxidation, char-smelt reactions, and smelt oxidation. Data and model predictions agree, without adjustment of parameters, within their respective errors. The work performed under these tasks substantially exceeded the original objectives. 2. A separate model for sulfur scavenging and fume formation in a recovery boiler demonstrated strong dependence on both in-boiler mixing and chemistry. In particular, accurate fume particle size predictions, as determined from both laboratory and field measurements, depend on gas mixing effects in the boilers that lead to substantial particle agglomeration. Sulfur scavenging was quantitatively predicted while particle size required one empirical mixing factor to match data. 3. Condensed-phase thermochemistry algorithms were developed for salt

  19. Remediated Nitrate Salt Drums Background

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Providing Additional Pressure Relief to the Remediated Nitrate Salt Drums Background After the radiological event on February 14, 2014 at the Waste Isolation Pilot Plant (WIPP), Department of Energy (DOE) scientists from several national laboratories conducted extensive experiments and modeling studies to determine what caused the drum to breach. These investigations indicated that an incompatible mixture of nitrate salts and an organic absorbent created the conditions that resulted in an

  20. Modeling Solute Thermokinetics in LiCI-KCI Molten Salt for Nuclear Waste Separation

    SciTech Connect (OSTI)

    Morgan, Dane; Eapen, Jacob

    2013-10-01

    Recovery of actinides is an integral part of a closed nuclear fuel cycle. Pyrometallurgical nuclear fuel recycling processes have been developed in the past for recovering actinides from spent metallic and nitride fuels. The process is essentially to dissolve the spent fuel in a molten salt and then extract just the actinides for reuse in a reactor. Extraction is typically done through electrorefining, which involves electrochemical reduction of the dissolved actinides and plating onto a cathode. Knowledge of a number of basic thermokinetic properties of salts and salt-fuel mixtures is necessary for optimizing present and developing new approaches for pyrometallurgical waste processing. The properties of salt-fuel mixtures are presently being studied, but there are so many solutes and varying concentrations that direct experimental investigation is prohibitively time consuming and expensive (particularly for radioactive elements like Pu). Therefore, there is a need to reduce the number of required experiments through modeling of salt and salt-fuel mixture properties. This project will develop first-principles-based molecular modeling and simulation approaches to predict fundamental thermokinetic properties of dissolved actinides and fission products in molten salts. The focus of the proposed work is on property changes with higher concentrations (up to 5 mol%) of dissolved fuel components, where there is still very limited experimental data. The properties predicted with the modeling will be density, which is used to assess the amount of dissolved material in the salt; diffusion coefficients, which can control rates of material transport during separation; and solute activity, which determines total solubility and reduction potentials used during electrorefining. The work will focus on La, Sr, and U, which are chosen to include the important distinct categories of lanthanides, alkali earths, and actinides, respectively. Studies will be performed using LiCl-KCl salt

  1. Electrochemical destruction of organic acids

    SciTech Connect (OSTI)

    Gendes, J.D.; Hartsough, D.; Super, J.D.

    1994-12-31

    An electrochemical process for removing organic acids from an aqueous waste stream has been characterized. Biological treatment of aqueous organic acid waste streams has been the typical means of degrading organic acids, and the resultant biosludge is landfilled. In the electrochemical approach, aqueous organic acids may be efficiently converted to useful fuel in a one or two electron process. The possible reactions occurring are outlined here. The electrolysis of the sodium salts of acetic, propionic, and butyric acids has been studied both as single component solutions and mixtures. The reaction products as well as relative rates of destruction of the acid salts were measured. The effect of experimental variables such as current density, temperature, and anode material on the current efficiency and product distribution was investigated. Electrode stability due to platinum corrosion was identified as the major limitation to the process.

  2. Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure and method of processing

    DOE Patents [OSTI]

    Brown, Jr., Jesse J.; Hirschfeld, Deidre A.; Li, Tingkai

    1993-12-07

    Alkali corrosion resistant coatings and ceramic foams having superfine open cell structure are created using sol-gel processes. The processes have particular application in creating calcium magnesium zirconium phosphate, CMZP, coatings and foams.

  3. A Study of Novel Hexavalent Phosphazene Salts as Draw Solutes in Forward Osmosis

    SciTech Connect (OSTI)

    Mark L. Stone; Aaron D. Wilson; Mason K. Harrup; Frederick F. Stewart

    2013-03-01

    Two novel multi-valent salts based on phosphazene chemistry have been synthesized and characterized as forward osmosis (FO) draw solutes. Commercially obtained hexachlorocyclotriphosphazene was reacted with the sodium salt of 4-ethylhydroxybenzoate to yield hexa(4-ethylcarboxylatophenoxy)phosphazene. Hydrolysis, followed by and neutralization with NaOH or LiOH, of the resulting acidic moieties yielded water soluble sodium and lithium phosphazene salts, respectively. Degrees of dissociation were determined through osmometry over the range of 0.05-0.5 m, giving degrees of 3.08-4.95 per mole, suggesting a high osmotic potential. The Li salt was found to be more ionized in solution than the sodium salt, and this was reflected in FO experiments where the Li salt gave higher initial fluxes (~ 7 L/m2h) as compared to the sodium salt (~6 L/m2h) at identical 0.07 m draw solution concentrations at 30 °C. Longer term experiments revealed no detectable degradation of the salts; however some hydrolysis of the cellulose acetate membrane was observed, presumably due to the pH of the phosphazene salt draw solution (pH = ~8).

  4. Detection of alkali-silica reaction swelling in concrete by staining

    DOE Patents [OSTI]

    Guthrie, Jr., George D.; Carey, J. William

    1998-01-01

    A method using concentrated aqueous solutions of sodium cobaltinitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na--K--Ca--Si gels are identified by yellow staining, and alkali-poor, Ca--Si gels are identified by pink staining.

  5. Detection of alkali-silica reaction swelling in concrete by staining

    DOE Patents [OSTI]

    Guthrie, G.D. Jr.; Carey, J.W.

    1998-04-14

    A method using concentrated aqueous solutions of sodium cobalt nitrite and rhodamine B is described which can be used to identify concrete that contains gels formed by the alkali-silica reaction (ASR). These solutions present little health or environmental risk, are readily applied, and rapidly discriminate between two chemically distinct gels; K-rich, Na-K-Ca-Si gels are identified by yellow staining, and alkali-poor, Ca-Si gels are identified by pink staining.

  6. Solvation structure and transport properties of alkali cations in dimethyl sulfoxide under exogenous static electric fields

    SciTech Connect (OSTI)

    Kerisit, Sebastien; Vijayakumar, M. E-mail: karl.mueller@pnnl.gov; Han, Kee Sung; Mueller, Karl T. E-mail: karl.mueller@pnnl.gov

    2015-06-14

    A combination of molecular dynamics simulations and pulsed field gradient nuclear magnetic resonance spectroscopy is used to investigate the role of exogenous electric fields on the solvation structure and dynamics of alkali ions in dimethyl sulfoxide (DMSO) and as a function of temperature. Good agreement was obtained, for select alkali ions in the absence of an electric field, between calculated and experimentally determined diffusion coefficients normalized to that of pure DMSO. Our results indicate that temperatures of up to 400 K and external electric fields of up to 1 V nm{sup −1} have minimal effects on the solvation structure of the smaller alkali cations (Li{sup +} and Na{sup +}) due to their relatively strong ion-solvent interactions, whereas the solvation structures of the larger alkali cations (K{sup +}, Rb{sup +}, and Cs{sup +}) are significantly affected. In addition, although the DMSO exchange dynamics in the first solvation shell differ markedly for the two groups, the drift velocities and mobilities are not significantly affected by the nature of the alkali ion. Overall, although exogenous electric fields induce a drift displacement, their presence does not significantly affect the random diffusive displacement of the alkali ions in DMSO. System temperature is found to have generally a stronger influence on dynamical properties, such as the DMSO exchange dynamics and the ion mobilities, than the presence of electric fields.

  7. Kenaf Bast Fibers—Part I: Hermetical Alkali Digestion

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shi, Jinshu; Shi, Sheldon Q.; Barnes, H. Michael; Horstemeyer, Mark; Wang, Jinwu; Hassan, El-Barbary M.

    2011-01-01

    The objective of this study was to develop a hermetical alkali digestion process to obtain single cellulosic fibers from kenaf bast. Kenaf bast were hermetically digested into single fiber using a 5% sodium hydroxide solution for one hour at four different temperatures (80 ° C, 110 ° C, 130 ° C, and 160 ° C). The hermetical digestion process used in this study produced fibers with high cellulose content (84.2–92.3%) due to the removal of lignin and hemicelluloses. The surface hardness and elastic modulus of the fibers digested at 130 ° C and 160 ° C were improved significantlymore » compared with those digested at 80 ° C. The tensile modulus and tensile strength of the individual fibers reduced as the digestion temperature increased from 110 ° C to 160 ° C. Micropores were generated in fiber cell wall when the fibers were digested at 130 ° C and 160 ° C. The studies on the composites that were made from polypropylene reinforced with the digested fibers indicated that the compatibility between the digested fibers and polypropylene matrix was poor.« less

  8. Barium oxide, calcium oxide, magnesia, and alkali oxide free glass

    DOE Patents [OSTI]

    Lu, Peizhen Kathy; Mahapatra, Manoj Kumar

    2013-09-24

    A glass composition consisting essentially of about 10-45 mole percent of SrO; about 35-75 mole percent SiO.sub.2; one or more compounds from the group of compounds consisting of La.sub.2O.sub.3, Al.sub.2O.sub.3, B.sub.2O.sub.3, and Ni; the La.sub.2O.sub.3 less than about 20 mole percent; the Al.sub.2O.sub.3 less than about 25 mole percent; the B.sub.2O.sub.3 less than about 15 mole percent; and the Ni less than about 5 mole percent. Preferably, the glass is substantially free of barium oxide, calcium oxide, magnesia, and alkali oxide. Preferably, the glass is used as a seal in a solid oxide fuel/electrolyzer cell (SOFC) stack. The SOFC stack comprises a plurality of SOFCs connected by one or more interconnect and manifold materials and sealed by the glass. Preferably, each SOFC comprises an anode, a cathode, and a solid electrolyte.

  9. Microfabricated alkali vapor cell with anti-relaxation wall coating

    SciTech Connect (OSTI)

    Straessle, R.; Ptremand, Y.; Briand, D.; Rooij, N. F. de; Pellaton, M.; Affolderbach, C.; Mileti, G.

    2014-07-28

    We present a microfabricated alkali vapor cell equipped with an anti-relaxation wall coating. The anti-relaxation coating used is octadecyltrichlorosilane and the cell was sealed by thin-film indium-bonding at a low temperature of 140?C. The cell body is made of silicon and Pyrex and features a double-chamber design. Depolarizing properties due to liquid Rb droplets are avoided by confining the Rb droplets to one chamber only. Optical and microwave spectroscopy performed on this wall-coated cell are used to evaluate the cell's relaxation properties and a potential gas contamination. Double-resonance signals obtained from the cell show an intrinsic linewidth that is significantly lower than the linewidth that would be expected in case the cell had no wall coating but only contained a buffer-gas contamination on the level measured by optical spectroscopy. Combined with further experimental evidence this proves the presence of a working anti-relaxation wall coating in the cell. Such cells are of interest for applications in miniature atomic clocks, magnetometers, and other quantum sensors.

  10. Method of treating alkali metal sulfide and carbonate mixtures

    DOE Patents [OSTI]

    Kohl, Arthur L.; Rennick, Robert D.; Savinsky, Martin W.

    1978-01-01

    A method of removing and preferably recovering sulfur values from an alkali metal sulfide and carbonate mixture comprising the steps of (1) introducing the mixture in an aqueous medium into a first carbonation zone and reacting the mixture with a gas containing a major amount of CO.sub.2 and a minor amount of H.sub.2 S; (2) introducing the resultant product from step 1 into a stripping zone maintained at subatmospheric pressure, and contacting this product with steam to produce a gaseous mixture, comprising H.sub.2 S and water vapor, and a liquor of reduced sulfide content; (3) introducing the liquor of reduced sulfide content into a second carbonation zone, and reacting the liquor with substantially pure gaseous CO.sub.2 in an amount sufficient to precipitate bicarbonate crystals and produce an offgas containing CO.sub.2 and H.sub.2 S for use in step 1; (4) recovering the bicarbonate crystals from step 3, and thermally decomposing the crystals to produce an alkaline metal carbonate product and a substantially pure CO.sub.2 offgas for use in step 3.

  11. Salt site performance assessment activities

    SciTech Connect (OSTI)

    Kircher, J.F.; Gupta, S.K.

    1983-01-01

    During this year the first selection of the tools (codes) for performance assessments of potential salt sites have been tentatively selected and documented; the emphasis has shifted from code development to applications. During this period prior to detailed characterization of a salt site, the focus is on bounding calculations, sensitivity and with the data available. The development and application of improved methods for sensitivity and uncertainty analysis is a focus for the coming years activities and the subject of a following paper in these proceedings. Although the assessments to date are preliminary and based on admittedly scant data, the results indicate that suitable salt sites can be identified and repository subsystems designed which will meet the established criteria for protecting the health and safety of the public. 36 references, 5 figures, 2 tables.

  12. Process and apparatus for obtaining silicon from fluosilicic acid

    DOE Patents [OSTI]

    Nanis, Leonard; Sanjurjo, Angel

    1986-04-22

    An apparatus for producing low cost, high purity solar grade Si wherein a reduction reaction, preferably the reduction of SiF.sub.4, by an alkali metal (Na preferred) is carried out inside a reaction chamber. The chamber wall and bottom surfaces are formed of graphite and configured with drainage channels so as to facilitate the continuous separation of the products of reaction (Si and NaF) and removal of the molten salt by discharging the salt through one or more ports at the bottom of the reaction chamber. Such process is especially useful where it is desirable to discharge the reaction salt products from the reactor and retain silicon within the chamber for later removal.

  13. Savannah River Site - Salt Waste Processing Facility: Briefing...

    Office of Environmental Management (EM)

    Facility: Briefing on the Salt Waste Processing Facility Independent Technical Review Savannah River Site - Salt Waste Processing Facility: Briefing on the Salt Waste Processing ...

  14. Adsorption of superplasticizer admixtures on alkali-activated slag pastes

    SciTech Connect (OSTI)

    Palacios, M. Houst, Y.F.; Bowen, P.; Puertas, F.

    2009-08-15

    Alkali-activated slag (AAS) binders are obtained by a manufacturing process less energy-intensive than ordinary Portland cement (OPC) and involves lower greenhouse gasses emission. These alkaline cements allow the production of high mechanical strength and durable concretes. In the present work, the adsorption of different superplasticizer admixtures (naphthalene-based, melamine-based and a vinyl copolymer) on the slag particles in AAS pastes using alkaline solutions with different pH values have been studied in detail. The effect of the superplasticizers on the yield stress and plastic viscosity of the AAS and OPC pastes have been also evaluated. The results obtained allowed us to conclude that the adsorption of the superplasticizers on AAS pastes is independent of the pH of the alkaline solutions used and lower than on OPC pastes. However, the effect of the admixtures on the rheological parameters depends directly on the type and dosage of the superplasticizer as well as of the binder used and, in the case of the AAS, on the pH of the alkaline activator solution. In 11.7-pH NaOH-AAS pastes the dosages of the superplasticizers required to attain similar reduction in the yield stress are ten-fold lower than for Portland cement. In this case the superplasticizers studied show a fluidizing effect considerably higher in 11.7-pH NaOH-AAS pastes than in OPC pastes. In 13.6-pH NaOH-AAS pastes, the only admixture observed to affect the rheological parameters is the naphthalene-based admixture due to its higher chemical stability in such extremely alkaline media.

  15. Alternative Electrochemical Salt Waste Forms, Summary of FY11-FY12 Results

    SciTech Connect (OSTI)

    Riley, Brian J.; Mccloy, John S.; Crum, Jarrod V.; Lepry, William C.; Rodriguez, Carmen P.; Windisch, Charles F.; Matyas, Josef; Westman, Matthew P.; Rieck, Bennett T.; Lang, Jesse B.; Olszta, Matthew J.; Pierce, David A.

    2014-03-26

    The Fuel Cycle Research and Development Program, sponsored by the U.S. Department of Energy Office of Nuclear Energy, is currently investigating alternative waste forms for wastes generated from nuclear fuel processing. One such waste results from an electrochemical separations process, called the “Echem” process. The Echem process utilizes a molten KCl-LiCl salt to dissolve the fuel. This process results in a spent salt containing alkali, alkaline earth, lanthanide halides and small quantities of actinide halides, where the primary halide is chloride with a minor iodide fraction. Pacific Northwest National Laboratory (PNNL) is concurrently investigating two candidate waste forms for the Echem spent-salt: high-halide minerals (i.e., sodalite and cancrinite) and tellurite (TeO2)-based glasses. Both of these candidates showed promise in fiscal year (FY) 2009 and FY2010 with a simplified nonradioactive simulant of the Echem waste. Further testing was performed on these waste forms in FY2011 and FY2012 to assess the possibility of their use in a sustainable fuel cycle. This report summarizes the combined results from FY2011 and FY2012 efforts.

  16. Solar on Salt Lake City Convention Center

    Broader source: Energy.gov [DOE]

    This photograph features the Calvin L. Rampton Salt Palace Convention Center, which will soon become a solar power-producing giant. Salt Lake County and its project partners announced plans to...

  17. Salt Stress in Desulfovibrio vulgaris Hildenborough: An integratedgenomics approach

    SciTech Connect (OSTI)

    Mukhopadhyay, Aindrila; He, Zhili; Alm, Eric J.; Arkin, Adam P.; Baidoo, Edward E.; Borglin, Sharon C.; Chen, Wenqiong; Hazen, Terry C.; He, Qiang; Holman, Hoi-Ying; Huang, Katherine; Huang, Rick; Hoyner,Dominique C.; Katz, Natalie; Keller, Martin; Oeller, Paul; Redding,Alyssa; Sun, Jun; Wall, Judy; Wei, Jing; Yang, Zamin; Yen, Huei-Che; Zhou, Jizhong; Keasling Jay D.

    2005-12-08

    The ability of Desulfovibrio vulgaris Hildenborough to reduce, and therefore contain, toxic and radioactive metal waste has made all factors that affect the physiology of this organism of great interest. Increased salinity is an important and frequent fluctuation faced by D. vulgaris in its natural habitat. In liquid culture, exposure to excess salt resulted in striking elongation of D. vulgaris cells. Using data from transcriptomics, proteomics, metabolite assays, phospholipid fatty acid profiling, and electron microscopy, we used a systems approach to explore the effects of excess NaCl on D. vulgaris. In this study we demonstrated that import of osmoprotectants, such as glycine betaine and ectoine, is the primary mechanism used by D. vulgaris to counter hyperionic stress. Several efflux systems were also highly up-regulated, as was the ATP synthesis pathway. Increases in the levels of both RNA and DNA helicases suggested that salt stress affected the stability of nucleic acid base pairing. An overall increase in the level of branched fatty acids indicated that there were changes in cell wall fluidity. The immediate response to salt stress included up-regulation of chemotaxis genes, although flagellar biosynthesis was down-regulated. Other down-regulated systems included lactate uptake permeases and ABC transport systems. The results of an extensive NaCl stress analysis were compared with microarray data from a KCl stress analysis, and unlike many other bacteria, D. vulgaris responded similarly to the two stresses. Integration of data from multiple methods allowed us to develop a conceptual model for the salt stress response in D. vulgaris that can be compared to those in other microorganisms.

  18. Salt Wells Geothermal Project | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Salt Wells Geothermal Project Project Location Information Coordinates 39.580833333333,...

  19. The direct observation of alkali vapor species in biomass combustion and gasification

    SciTech Connect (OSTI)

    French, R.J.; Dayton, D.C.; Milne, T.A.

    1994-01-01

    This report summarizes new data from screening various feedstocks for alkali vapor release under combustion conditions. The successful development of a laboratory flow reactor and molecular beam, mass spectrometer interface is detailed. Its application to several herbaceous and woody feedstocks, as well as a fast-pyrolysis oil, under 800 and 1,100{degrees}C batch combustion, is documented. Chlorine seems to play a large role in the facile mobilization of potassium. Included in the report is a discussion of relevant literature on the alkali problem in combustors and turbines. Highlighted are the phenomena identified in studies on coal and methods that have been applied to alkali speciation. The nature of binding of alkali in coal versus biomass is discussed, together with the implications for the ease of release. Herbaceous species and many agricultural residues appear to pose significant problems in release of alkali species to the vapor at typical combustor temperatures. These problems could be especially acute in direct combustion fired turbines, but may be ameliorated in integrated gasification combined cycles.

  20. Molten salt processing of mixed wastes with offgas condensation

    SciTech Connect (OSTI)

    Cooper, J.F.; Brummond, W.; Celeste, J.; Farmer, J.; Hoenig, C.; Krikorian, O.H.; Upadhye, R. ); Gay, R.L.; Stewart, A.; Yosim, S. . Energy Systems Group)

    1991-05-13

    We are developing an advanced process for treatment of mixed wastes in molten salt media at temperatures of 700--1000{degrees}C. Waste destruction has been demonstrated in a single stage oxidation process, with destruction efficiencies above 99.9999% for many waste categories. The molten salt provides a heat transfer medium, prevents thermal surges, and functions as an in situ scrubber to transform the acid-gas forming components of the waste into neutral salts and immobilizes potentially fugitive materials by a combination of particle wetting, encapsulation and chemical dissolution and solvation. Because the offgas is collected and assayed before release, and wastes containing toxic and radioactive materials are treated while immobilized in a condensed phase, the process avoids the problems sometimes associated with incineration processes. We are studying a potentially improved modification of this process, which treats oxidizable wastes in two stages: pyrolysis followed by catalyzed molten salt oxidation of the pyrolysis gases at ca. 700{degrees}C. 15 refs., 5 figs., 1 tab.

  1. Brine Migration Experimental Studies for Salt Repositories

    Broader source: Energy.gov [DOE]

    Experiments were used to examine water content in Permian salt samples including impact of variation in thermal regime on water content of evaporites and other mineral species, behavior of brine inclusions in salt, and evolution of the gas/liquid brine/salt system.

  2. The use of performance parameters in monitoring the safety of dams experiencing alkali-aggregate reaction

    SciTech Connect (OSTI)

    Veesaert, C.J.; LaBoon, J.H.

    1995-12-31

    As the Bureau of Reclamation (Reclamation) moves away from design and construction of new water resource projects toward optimizing the management of existing water resource projects, monitoring the condition of high risk structures such as dams becomes very important. To address this need, Reclamation has developed a logical approach of monitoring the safety of a dam over time. This approach analyzes visual and instrumentation performance parameters unique to each dam, Performance parameters specify the expected performance (behavior) of both embankment and concrete dams, including those concrete dams effected by alkali-aggregate reaction. This paper presents an overview of the concept of performance parameters in monitoring the safety of dams, which have experienced alkali-aggregate reaction. Three case studies are presented to illustrate the use of performance parameters in monitoring a dam`s behavior over time, relative to the effects of alkali-aggregate reaction.

  3. Synergistic capture mechanisms for alkali and sulfur species from combustion. Final report

    SciTech Connect (OSTI)

    Peterson, T.W.; Shadman, F.; Wendt, J.O.L.; Mwabe, P.O.

    1994-02-01

    Experimental work was carried out on a 17 kW, 600 cm long, gas laboratory combustor, to investigate the post flame reactive capture of alkali species by kaolinite. Emphasis was on alkali/sorbent interactions occurring in flue gas at temperatures above the alkali dewpoint and on the formation of water insoluble reaction products. Time-temperature studies were carried out by injecting kaolinite at different axial points along the combustor. The effect of chlorine and sulfur on alkali capture was investigated by doping the flame with SO{sub 2} and Cl{sub 2} gases to simulate coal flame environments. Particle time and temperature history was kept as close as possible to that which would ordinarily be found in a practical boiler. Experiments designed to extract apparent initial reaction rates were carried using a narrow range, 1-2 {mu}m modal size sorbent, while, a coarse, multi size sorbent was used to investigate the governing transport mechanisms. The capture reaction has been proposed to be between alkali hydroxide and activated kaolinite, and remains so in the presence of sulfur and chlorine. The presence of sulfur reduces sodium capture by under 10% at 1300{degree}C. Larger reductions at lower temperatures are attributed to the elevated dewpoint of sodium ({approximately}850{degree}C) with subsequent reduction in sorbent residence time in the alkali gas phase domain. Chlorine reduces sodium capture by 30% across the temperature range covered by the present experiments. This result has been linked to thermodynamic equilibria between sodium hydroxide, sodium chloride and water.

  4. Thermophysical properties of reconsolidating crushed salt.

    SciTech Connect (OSTI)

    Bauer, Stephen J.; Urquhart, Alexander

    2014-03-01

    Reconsolidated crushed salt is being considered as a backfilling material placed upon nuclear waste within a salt repository environment. In-depth knowledge of thermal and mechanical properties of the crushed salt as it reconsolidates is critical to thermal/mechanical modeling of the reconsolidation process. An experimental study was completed to quantitatively evaluate the thermal conductivity of reconsolidated crushed salt as a function of porosity and temperature. The crushed salt for this study came from the Waste Isolation Pilot Plant (WIPP). In this work the thermal conductivity of crushed salt with porosity ranging from 1% to 40% was determined from room temperature up to 300oC, using two different experimental methods. Thermal properties (including thermal conductivity, thermal diffusivity and specific heat) of single-crystal salt were determined for the same temperature range. The salt was observed to dewater during heating; weight loss from the dewatering was quantified. The thermal conductivity of reconsolidated crushed salt decreases with increasing porosity; conversely, thermal conductivity increases as the salt consolidates. The thermal conductivity of reconsolidated crushed salt for a given porosity decreases with increasing temperature. A simple mixture theory model is presented to predict and compare to the data developed in this study.

  5. Theory of magic optical traps for Zeeman-insensitive clock transitions in alkali-metal atoms

    SciTech Connect (OSTI)

    Derevianko, Andrei

    2010-05-15

    Precision measurements and quantum-information processing with cold atoms may benefit from trapping atoms with specially engineered, 'magic' optical fields. At the magic trapping conditions, the relevant atomic properties remain immune to strong perturbations by the trapping fields. Here we develop a theoretical analysis of magic trapping for especially valuable Zeeman-insensitive clock transitions in alkali-metal atoms. The involved mechanism relies on applying a magic bias B field along a circularly polarized trapping laser field. We map out these B fields as a function of trapping laser wavelength for all commonly used alkalis. We also highlight a common error in evaluating Stark shifts of hyperfine manifolds.

  6. REDUCTION OF ACIDITY OF NITRIC ACID SOLUTIONS BY USE OF FORMALDEHYDE

    DOE Patents [OSTI]

    Healy, T.V.

    1958-05-20

    A continuous method is described of concentrating by evaporation and reducing the nitrate ion content of an aqueous solution of metallic salts containing nitric acid not in excess of 8N. It consists of heating the solution and then passing formaldehyde into the heated solution to bring about decomposition of the nitric acid. The evolved gases containing NO are contacted countercurrently with an aqueous metal salt solution containing nitric acid in excess of 8N so as to bring about decomposition of the nitric acid and lower the normality to at least 8N, whereupon it is passed into the body of heated solution.

  7. Photosensitive dissolution inhibitors and resists based on onium salt carboxylates

    DOE Patents [OSTI]

    Dentinger, Paul M.; Simison, Kelby L.

    2005-11-29

    A photoresist composition that employs onium salt carboxylates as thermally stable dissolution inhibitors. The photoresist composition can be either an onium carboxylate salt with a phenolic photoresist, such as novolac, or an onium cation protected carboxylate-containing resin such as an acrylic/acrylic acid copolymer. The onium carboxylate can be an onium cholate, wherein the onium cholate is an iodonium cholate. Particularly preferred iodonium cholates are alkyloxyphenylphenyl iodonium cholates and most particularly preferred is octyloxyphenyphenyl iodonium cholate. The photoresist composition will not create nitrogen or other gaseous byproducts upon exposure to radiation, does not require water for photoactivation, has acceptable UV radiation transmission characteristics, and is thermally stable at temperatures required for solvent removal.

  8. Preconceptual design of a salt splitting process using ceramic membranes

    SciTech Connect (OSTI)

    Kurath, D.E.; Brooks, K.P.; Hollenberg, G.W.; Clemmer, R.; Balagopal, S.; Landro, T.; Sutija, D.P.

    1997-01-01

    Inorganic ceramic membranes for salt splitting of radioactively contaminated sodium salt solutions are being developed for treating U. S. Department of Energy tank wastes. The process consists of electrochemical separation of sodium ions from the salt solution using sodium (Na) Super Ion Conductors (NaSICON) membranes. The primary NaSICON compositions being investigated are based on rare- earth ions (RE-NaSICON). Potential applications include: caustic recycling for sludge leaching, regenerating ion exchange resins, inhibiting corrosion in carbon-steel tanks, or retrieving tank wastes; reducing the volume of low-level wastes volume to be disposed of; adjusting pH and reducing competing cations to enhance cesium ion exchange processes; reducing sodium in high-level-waste sludges; and removing sodium from acidic wastes to facilitate calcining. These applications encompass wastes stored at the Hanford, Savannah River, and Idaho National Engineering Laboratory sites. The overall project objective is to supply a salt splitting process unit that impacts the waste treatment and disposal flowsheets and meets user requirements. The potential flowsheet impacts include improving the efficiency of the waste pretreatment processes, reducing volume, and increasing the quality of the final waste disposal forms. Meeting user requirements implies developing the technology to the point where it is available as standard equipment with predictable and reliable performance. This report presents two preconceptual designs for a full-scale salt splitting process based on the RE-NaSICON membranes to distinguish critical items for testing and to provide a vision that site users can evaluate.

  9. BLENDING ANALYSIS FOR RADIOACTIVE SALT WASTE PROCESSING FACILITY

    SciTech Connect (OSTI)

    Lee, S.

    2012-05-10

    Savannah River National Laboratory (SRNL) evaluated methods to mix and blend the contents of the blend tanks to ensure the contents are properly blended before they are transferred from the blend tank such as Tank 21 and Tank 24 to the Salt Waste Processing Facility (SWPF) feed tank. The tank contents consist of three forms: dissolved salt solution, other waste salt solutions, and sludge containing settled solids. This paper focuses on developing the computational model and estimating the operation time of submersible slurry pump when the tank contents are adequately blended prior to their transfer to the SWPF facility. A three-dimensional computational fluid dynamics approach was taken by using the full scale configuration of SRS Type-IV tank, Tank 21H. Major solid obstructions such as the tank wall boundary, the transfer pump column, and three slurry pump housings including one active and two inactive pumps were included in the mixing performance model. Basic flow pattern results predicted by the computational model were benchmarked against the SRNL test results and literature data. Tank 21 is a waste tank that is used to prepare batches of salt feed for SWPF. The salt feed must be a homogeneous solution satisfying the acceptance criterion of the solids entrainment during transfer operation. The work scope described here consists of two modeling areas. They are the steady state flow pattern calculations before the addition of acid solution for tank blending operation and the transient mixing analysis during miscible liquid blending operation. The transient blending calculations were performed by using the 95% homogeneity criterion for the entire liquid domain of the tank. The initial conditions for the entire modeling domain were based on the steady-state flow pattern results with zero second phase concentration. The performance model was also benchmarked against the SRNL test results and literature data.

  10. Quantum Calculations on Salt Bridges with Water: Potentials, Structure, and Properties

    SciTech Connect (OSTI)

    Liao, Sing; Green, Michael E.

    2011-01-01

    Salt bridges are electrostatic links between acidic and basic amino acids in a protein; quantum calculations are used here to determine the energetics and other properties of one form of these species, in the presence of water molecules. The acidic groups are carboxylic acids (aspartic and glutamic acids); proteins have two bases with pK above physiological pH: one, arginine, with a guanidinium basic group, the other lysine, which is a primary amine. Only arginine is modeled here, by ethyl guanidinium, while propionic acid is used as a model for either carboxylic acid. The salt bridges are accompanied by 0-12 water molecules; for each of the 13 systems, the energy-bond distance relation, natural bond orbitals (NBO), frequency calculations allowing thermodynamic corrections to room temperature, and dielectric constant dependence, were all calculated. The water molecules were found to arrange themselves in hydrogen bonded rings anchored to the oxygens of the salt bridge components. This was not surprising in itself, but it was found that the rings lead to a periodicity in the energy, and to a 'water addition' rule. The latter shows that the initial rings, with four oxygen atoms, become five member rings when an additional water molecule becomes available, with the additional water filling in at the bond with the lowest Wiberg index, as calculated using NBO. The dielectric constant dependence is the expected hyperbola, and the fit of the energy to the inverse dielectric constant is determined. There is an energy periodicity related to ring formation upon addition of water molecules. When 10 water molecules have been added, all spaces near the salt bridge are filled, completing the first hydration shell, and a second shell starts to form. The potentials associated with salt bridges depend on their hydration, and potentials assigned without regard to local hydration are likely to cause errors as large as or larger than kBT, thus suggesting a serious problem if these

  11. Salt restrains maturation in subsalt plays

    SciTech Connect (OSTI)

    Mello, U.T. ); Anderson, R.N.; Karner, G.D. . Lamont-Doherty Earth Observatory)

    1994-01-31

    The thermal positive anomaly associated with the top of salt diapirs has attracted significant attention in modifying the temperature structure and history of a sedimentary basin. Here the authors explore the role of the negative thermal anomaly beneath salt in modifying the maturation history of the source rocks in subsalt sediments. Organic matter maturation is believed to follow temperature dependent chemical reactions. Therefore, any temperature anomaly associated with salt masses affects the nearby maturation of potential source rocks. The level of maturity of source rocks close to salt diapirs will differ from that predicted based on regional trends. The impact of the thermal anomaly on a given point will depend on the duration and distance of the thermal anomaly to this particular point. Consequently, the maturation history of source rocks in salt basins is closely related to the salt motion history, implying that a transient thermal analysis is necessary to evaluate the sure impact on maturation of the thermal anomalies associated with salt diapirism. The paper describes vitrinite kinetics, salt in evolving basins, correlation of salt and temperature, salt dome heat drains, and restrained maturation.

  12. Method for inhibiting alkali metal corrosion of nickel-containing alloys

    DOE Patents [OSTI]

    DeVan, Jackson H.; Selle, James E.

    1983-01-01

    Structural components of nickel-containing alloys within molten alkali metal systems are protected against corrosion during the course of service by dissolving therein sufficient aluminum, silicon, or manganese to cause the formation and maintenance of a corrosion-resistant intermetallic reaction layer created by the interaction of the molten metal, selected metal, and alloy.

  13. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, Marca M.; Peng, Marcus Y.; Ma, Yanping; Visco, Steven J.; DeJonghe, Lutgard C.

    1996-01-01

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M.sub.x Z.sub.y Mn.sub.(1-y) O.sub.2, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell.

  14. High temperature alkali corrosion of ceramics in coal gas: Final report

    SciTech Connect (OSTI)

    Pickrell, G.R.; Sun, T.; Brown, J.J. Jr.

    1994-12-31

    There are several ceramic materials which are currently being considered for use as structural elements in coal combustion and coal conversion systems because of their thermal and mechanical properties. These include alumina (refractories, membranes, heat engines); silicon carbide and silicon nitride (turbine engines, internal combustion engines, heat exchangers, particulate filters); zirconia (internal combustion engines, turbine engines, refractories); and mullite and cordierite (particulate filters, refractories, heat exchangers). High temperature alkali corrosion has been known to cause premature failure of ceramic components used in advanced high temperature coal combustion systems such as coal gasification and clean-up, coal fired gas turbines, and high efficiency heat engines. The objective of this research is to systematically evaluate the alkali corrosion resistance of the most commonly used structural ceramics including silicon carbide, silicon nitride, cordierite, mullite, alumina, aluminum titanate, and zirconia. The study consists of identification of the alkali reaction products and determination of the kinetics of the alkali reactions as a function of temperature and time. 145 refs., 29 figs., 12 tabs.

  15. Alkali slurry ozonation to produce a high capacity nickel battery material

    DOE Patents [OSTI]

    Jackovitz, John F.; Pantier, Earl A.

    1984-11-06

    A high capacity battery material is made, consisting essentially of hydrated Ni(II) hydroxide, and about 5 wt. % to about 40 wt. % of Ni(IV) hydrated oxide interlayer doped with alkali metal cations selected from potassium, sodium and lithium cations.

  16. Secondary cell with orthorhombic alkali metal/manganese oxide phase active cathode material

    DOE Patents [OSTI]

    Doeff, M.M.; Peng, M.Y.; Ma, Y.; Visco, S.J.; DeJonghe, L.C.

    1996-09-24

    An alkali metal manganese oxide secondary cell is disclosed which can provide a high rate of discharge, good cycling capabilities, good stability of the cathode material, high specific energy (energy per unit of weight) and high energy density (energy per unit volume). The active material in the anode is an alkali metal and the active material in the cathode comprises an orthorhombic alkali metal manganese oxide which undergoes intercalation and deintercalation without a change in phase, resulting in a substantially linear change in voltage with change in the state of charge of the cell. The active material in the cathode is an orthorhombic structure having the formula M{sub x}Z{sub y}Mn{sub (1{minus}y)}O{sub 2}, where M is an alkali metal; Z is a metal capable of substituting for manganese in the orthorhombic structure such as iron, cobalt or titanium; x ranges from about 0.2 in the fully charged state to about 0.75 in the fully discharged state, and y ranges from 0 to 60 atomic %. Preferably, the cell is constructed with a solid electrolyte, but a liquid or gelatinous electrolyte may also be used in the cell. 11 figs.

  17. Dissolution of HTGR TRISO beads by the alkali fluoride fusion method

    SciTech Connect (OSTI)

    Byster, S.E.

    1980-07-01

    The alkali fluoride fusion method for the dissolution of HTGR TRISO fuel beads offers significant time advantage over other commonly used fusion procedures when applied to samples weighing less than three grams. The method is straightforward, utilizes standard analytical laboratory equipment, and yields solutions which may be utilized by customary procedures.

  18. NOVEL REFRACTORY MATERIALS FOR HIGH ALKALI, HIGH TEMPERATURE ENVIRONMENTS

    SciTech Connect (OSTI)

    Hemrick, James Gordon; Smith, Jeffrey D; O'Hara, Kelley; Rodrigues-Schroer, Angela; Colavito,

    2012-08-01

    A project was led by Oak Ridge National Laboratory (ORNL) in collaboration with a research team comprised of the academic institution Missouri University of Science and Technology (MS&T), and the industrial company MINTEQ International, Inc. (MINTEQ), along with representatives from the aluminum, chemical, glass, and forest products industries. The project was to address the need for new innovative refractory compositions by developing a family of novel MgO-Al 2O3, MgAl2O4, or other similar spinel structured or alumina-based unshaped refractory compositions (castables, gunnables, shotcretes, etc.) utilizing new aggregate materials, bond systems, protective coatings, and phase formation techniques (in-situ phase formation, altered conversion temperatures, accelerated reactions, etc). This family of refractory compositions would then be tailored for use in high-temperature, high-alkaline industrial environments like those found in the aluminum, chemical, forest products, glass, and steel industries. Both practical refractory development experience and computer modeling techniques were used to aid in the design of this new family of materials. The newly developed materials were expected to offer alternative material choices for high-temperature, high-alkali environments that were capable of operating at higher temperatures (goal of increasing operating temperature by 100-200oC depending on process) or for longer periods of time (goal of twice the life span of current materials or next process determined service increment). This would lead to less process down time, greater energy efficiency for associated manufacturing processes (more heat kept in process), and materials that could be installed/repaired in a more efficient manner. The overall project goal was a 5% improvement in energy efficiency (brought about through a 20% improvement in thermal efficiency) resulting in a savings of 3.7 TBtu/yr (7.2 billion ft3 natural gas) by the year 2030. Additionally, new

  19. SEPARATION OF INORGANIC SALTS FROM ORGANIC SOLUTIONS

    DOE Patents [OSTI]

    Katzin, L.I.; Sullivan, J.C.

    1958-06-24

    A process is described for recovering the nitrates of uranium and plutonium from solution in oxygen-containing organic solvents such as ketones or ethers. The solution of such salts dissolved in an oxygen-containing organic compound is contacted with an ion exchange resin whereby sorption of the entire salt on the resin takes place and then the salt-depleted liquid and the resin are separated from each other. The reaction seems to be based on an anion formation of the entire salt by complexing with the anion of the resin. Strong base or quaternary ammonium type resins can be used successfully in this process.

  20. Granular Salt Summary: Reconsolidation Principles and Applications

    SciTech Connect (OSTI)

    Hansen, Frank; Popp, Till; Wieczorek, Klaus; Stuehrenberg, Dieter

    2014-07-01

    The purposes of this paper are to review the vast amount of knowledge concerning crushed salt reconsolidation and its attendant hydraulic properties (i.e., its capability for fluid or gas transport) and to provide a sufficient basis to understand reconsolidation and healing rates under repository conditions. Topics covered include: deformation mechanisms and hydro-mechanical interactions during reconsolidation; the experimental data base pertaining to crushed salt reconsolidation; transport properties of consolidating granulated salt and provides quantitative substantiation of its evolution to characteristics emulating undisturbed rock salt; and extension of microscopic and laboratory observations and data to the applicable field scale.

  1. Multiphase Flow and Cavern Abandonment in Salt

    SciTech Connect (OSTI)

    Ehgartner, Brian; Tidwell, Vince

    2001-02-13

    This report will explore the hypothesis that an underground cavity in gassy salt will eventually be gas filled as is observed on a small scale in some naturally occurring salt inclusions. First, a summary is presented on what is known about gas occurrences, flow mechanisms, and cavern behavior after abandonment. Then, background information is synthesized into theory on how gas can fill a cavern and simultaneously displace cavern fluids into the surrounding salt. Lastly, two-phase (gas and brine) flow visualization experiments are presented that demonstrate some of the associated flow mechanisms and support the theory and hypothesis that a cavity in salt can become gas filled after plugging and abandonment

  2. Noncentrosymmetric salt inclusion oxides: Role of salt lattices and counter ions in bulk polarity

    SciTech Connect (OSTI)

    West, J. Palmer; Hwu, Shiou-Jyh

    2012-11-15

    The synthesis and structural features of a newly emerged class of salt-inclusion solids (SISs) are reviewed. The descriptive chemistry with respect to the role of ionic salt and its correlation with bulk noncentrosymmetricity and polarity of the covalent oxide lattice in question is discussed by means of structure analysis. These unprecedented discoveries have opened doors to novel materials synthesis via the utilities of salt-inclusion chemistry (SIC) that are otherwise known as the molten-salt approach. The result of these investigations prove that the bulk acentricity, or cancellation of which, can be accounted for from the perspective of ionic and/or salt lattices. Highlights: Black-Right-Pointing-Pointer Synthesis and structure of newly emerged salt-inclusion solids are reviewed. Black-Right-Pointing-Pointer Salt lattice and its symmetry correlation with polar framework are discussed. Black-Right-Pointing-Pointer Preservation of acentricity is accounted for from the perspective of ionic and salt lattices.

  3. Esterification of fermentation-derived acids via pervaporation

    DOE Patents [OSTI]

    Datta, R.; Tsai, S.P.

    1998-03-03

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture. 2 figs.

  4. Esterification of fermentation-derived acids via pervaporation

    DOE Patents [OSTI]

    Datta, Rathin; Tsai, Shih-Perng

    1998-01-01

    A low temperature method for esterifying ammonium- and amine-containing salts is provided whereby the salt is reacted with an alcohol in the presence of heat and a catalyst and then subjected to a dehydration and deamination process using pervaporation. The invention also provides for a method for producing esters of fermentation derived, organic acid salt comprising first cleaving the salt into its cationic part and anionic part, mixing the anionic part with an alcohol to create a mixture; heating the mixture in the presence of a catalyst to create an ester; dehydrating the now heated mixture; and separating the ester from the now-dehydrated mixture.

  5. Nitrate Salt Surrogate Blending Scoping Test Plan

    SciTech Connect (OSTI)

    Anast, Kurt Roy

    2015-11-13

    Test blending equipment identified in the “Engineering Options Assessment Report: Nitrate Salt Waste Stream Processing”. Determine if the equipment will provide adequate mixing of zeolite and surrogate salt/Swheat stream; optimize equipment type and operational sequencing; impact of baffles and inserts on mixing performance; and means of validating mixing performance

  6. Metal salt catalysts for enhancing hydrogen spillover

    DOE Patents [OSTI]

    Yang, Ralph T; Wang, Yuhe

    2013-04-23

    A composition for hydrogen storage includes a receptor, a hydrogen dissociating metal doped on the receptor, and a metal salt doped on the receptor. The hydrogen dissociating metal is configured to spill over hydrogen to the receptor, and the metal salt is configured to increase a rate of the spill over of the hydrogen to the receptor.

  7. Protic Salt Polymer Membranes | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Protic Salt Polymer Membranes Protic Salt Polymer Membranes A presentation to the High Temperature Membranes Working Group meeting, May 19, 2006. More Documents & Publications Design and Development of High-Performance Polymer Fuel Cell Membranes High Temperature Membrane with HUmidification-Independent Cluster Structure Poly(cyclohexadiene)-Based Polymer Electrolyte Membranes for Fuel Cell Applications

  8. Solar Policy Environment: Salt Lake

    Office of Energy Efficiency and Renewable Energy (EERE)

    The overall objective of the “Solar Salt Lake” (SSL) team is to develop a fully-scoped city and county-level implementation plan that will facilitate at least an additional ten megawatts of solar photovoltaic (PV) installations in the government, commercial, industrial, and residential sectors by 2015. To achieve this aggressive goal, the program strategy includes a combination of barrier identification, research, and policy analysis that utilizes the input of various stakeholders. Coupled with these activities will be the development and implementation of pilot installations in the government and residential sectors, and broad outreach to builders and potential practitioners of solar energy products in the process. In this way, while creating mechanisms to enable a demand for solar, SSL will also facilitate capacity building for suppliers, thereby helping to ensure long-term sustainability for the regional market.

  9. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    SciTech Connect (OSTI)

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  10. Evaluation of Salt Coolants for Reactor Applications

    SciTech Connect (OSTI)

    Williams, David F

    2008-01-01

    Molten fluorides were initially developed for use in the nuclear industry as the high-temperature fluid fuel for the Molten Salt Reactor (MSR). The U.S. Department of Energy Office of Nuclear Energy is exploring the use of molten salts as primary and secondary coolants in a new generation of solid-fueled, thermal-spectrum, hightemperature reactors. This paper provides a review of relevant properties for use in evaluation and ranking of salt coolants for high-temperature reactors. Nuclear, physical, and chemical properties were reviewed, and metrics for evaluation are recommended. Chemical properties of the salt were examined to identify factors that affect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented.

  11. Experimental techniques to determine salt formation and deposition in supercritical water oxidation reactors

    SciTech Connect (OSTI)

    Chan, J.P.C.; LaJeunesse, C.A.; Rice, S.F.

    1994-08-01

    Supercritical Water Oxidation (SCWO) is an emerging technology for destroying aqueous organic waste. Feed material, containing organic waste at concentrations typically less than 10 wt % in water, is pressurized and heated to conditions above water`s critical point where the ability of water to dissolve hydrocarbons and other organic chemicals is greatly enhanced. An oxidizer, is then added to the feed. Given adequate residence time and reaction temperature, the SCWO process rapidly produces innocuous combustion products. Organic carbon and nitrogen in the feed emerge as CO{sub 2} and N{sub 2}; metals, heteroatoms, and halides appear in the effluent as inorganic salts and acids. The oxidation of organic material containing heteroatoms, such as sulfur or phosphorous, forms acid anions. In the presence of metal ions, salts are formed and precipitate out of the supercritical fluid. In a tubular configured reactor, these salts agglomerate, adhere to the reactor wall, and eventually interfere by causing a flow restriction in the reactor leading to an increase in pressure. This rapid precipitation is due to an extreme drop in salt solubility that occurs as the feed stream becomes supercritical. To design a system that can accommodate the formation of these salts, it is important to understand the deposition process quantitatively. A phenomenological model is developed in this paper to predict the time that reactor pressure begins to rise as a function of the fluid axial temperature profile and effective solubility curve. The experimental techniques used to generate effective solubility curves for one salt of interest, Na{sub 2}SO{sub 4}, are described, and data is generated for comparison. Good correlation between the model and experiment is shown. An operational technique is also discussed that allows the deposited salt to be redissolved in a single phase and removed from the affected portion of the reactor. This technique is demonstrated experimentally.

  12. Remediated Nitrate Salt Drums Safety Update | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Safety Update Remediated Nitrate Salt Drums Safety Update Topic: Mr. Nickless, Environmental Management Los Alamos, Provided a presentation on the status of the Nitrate Salt waste at Los Alamos.

  13. Underground Salt Haul Truck Fire at the Waste Isolation Pilot...

    Office of Environmental Management (EM)

    Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant February 5, 2014 March 2014 Salt Haul Truck Fire at the Waste Isolation Pilot Plant Salt Haul Truck Fire at the ...

  14. Petrography study of two siliceous limestones submitted to alkali-silica reaction

    SciTech Connect (OSTI)

    Monnin, Y. . E-mail: monnin@ensm-douai.fr; Degrugilliers, P.; Bulteel, D.; Garcia-Diaz, E.

    2006-08-15

    This study presents the contribution of petrography to the comprehension of the alkali-silica reaction mechanism applied to two siliceous limestones. A petrography study was made on the two aggregates before reaction to define their relative proportions and types of reactive silica and to observe their distribution in the microstructure. Then a model reactor, constituted by the reactive siliceous limestone aggregate, portlandite and NaOH, was used to measure the swelling due to reaction of the silica with alkalis and the free expansion of the aggregates. The volume evolution between both aggregates was very different and could be explained by the preliminary petrographic study. It appears that the swelling of the aggregates is conditioned by the microstructure of the carbonated matrix, the quantity and the distribution of the reactive silica.

  15. Evaluation of the physi- and chemisorption of hydrogen in alkali (Na, Li) doped fullerenes

    SciTech Connect (OSTI)

    Ward, Patrick A.; Teprovich, Jr., Jospeph A.; Compton, Robert N.; Schwartz, Viviane; Veith, Gabriel M.; Zidan, Ragiay

    2015-01-11

    Here, alkali doped fullerenes synthesized by two different solvent assisted mixing techniques are compared for their hydrogen uptake activity. In this study we investigated the interaction of hydrogen with alkali doped fullerenes via physisorption. In addition, we present the first mass spectrometric evidence for the formation of C60H60 via chemisorption. Hydrogen physisorption isotherms up to 1 atm at temperatures ranging from 77-303 K were measured demonstrating an increase in hydrogen uptake versus pure C60 and increased isosteric heats of adsorption for the lithium doped fullerene Li12C60. However, despite these improvements the low amount of physisorbed hydrogen at 1 atm and 77 K in these materials suggests that fullerenes do not possess enough accessible surface area to effectively store hydrogen due to their close packed crystalline nature.

  16. Evaluation of the physi- and chemisorption of hydrogen in alkali (Na, Li) doped fullerenes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ward, Patrick A.; Teprovich, Jr., Jospeph A.; Compton, Robert N.; Schwartz, Viviane; Veith, Gabriel M.; Zidan, Ragiay

    2015-01-11

    Here, alkali doped fullerenes synthesized by two different solvent assisted mixing techniques are compared for their hydrogen uptake activity. In this study we investigated the interaction of hydrogen with alkali doped fullerenes via physisorption. In addition, we present the first mass spectrometric evidence for the formation of C60H60 via chemisorption. Hydrogen physisorption isotherms up to 1 atm at temperatures ranging from 77-303 K were measured demonstrating an increase in hydrogen uptake versus pure C60 and increased isosteric heats of adsorption for the lithium doped fullerene Li12C60. However, despite these improvements the low amount of physisorbed hydrogen at 1 atm andmore » 77 K in these materials suggests that fullerenes do not possess enough accessible surface area to effectively store hydrogen due to their close packed crystalline nature.« less

  17. An Aqueous Redox Flow Battery Based on Neutral Alkali Metal Ferri/ferrocyanide and Polysulfide Electrolytes

    SciTech Connect (OSTI)

    Wei, Xiaoliang; Xia, Gordon; Kirby, Brent W.; Thomsen, Edwin C.; Li, Bin; Nie, Zimin; Graff, Gordon L.; Liu, Jun; Sprenkle, Vincent L.; Wang, Wei

    2015-11-13

    Aiming to explore low-cost redox flow battery systems, a novel iron-polysulfide (Fe/S) flow battery has been demonstrated in a laboratory cell. This system employs alkali metal ferri/ferrocyanide and alkali metal polysulfides as the redox electrolytes. When proper electrodes, such as pretreated graphite felts, are used, 78% energy efficiency and 99% columbic efficiency are achieved. The remarkable advantages of this system over current state-of-the-art redox flow batteries include: 1) less corrosive and relatively environmentally benign redox solutions used; 2) excellent energy and utilization efficiencies; 3) low cost for redox electrolytes and cell components. These attributes can lead to significantly reduced capital cost and make the Fe/S flow battery system a promising low-cost energy storage technology. The major drawbacks of the present cell design are relatively low power density and possible sulfur species crossover. Further work is underway to address these concerns.

  18. Evaluation of the physi- and chemisorption of hydrogen in alkali (Na, Li) doped fullerenes

    SciTech Connect (OSTI)

    Ward, Patrick; Teprovich, Jospeph A.; Compton, Robert; Affholter, Kathleen A; Schwartz, Viviane; Veith, Gabriel M; Zidan, Ragiay

    2015-01-01

    Alkali doped fullerenes synthesized by two different solvent assisted mixing techniques are compared for their hydrogen uptake activity. In this study we investigated the interaction of hydrogen with alkali doped fullerenes via physisorption. In addition, we present the first mass spectrometric evidence for the formation of C60H60 via chemisorption. Hydrogen physisorption isotherms up to 1 atm at temperatures ranging from 77-303 K were measured demonstrating an increase in hydrogen uptake versus pure C60 and increased isosteric heats of adsorption for the lithium doped fullerene Li12C60. However, despite these improvements the low amount of physisorbed hydrogen at 1 atm and 77 K in these materials suggests that fullerenes do not possess enough accessible surface area to effectively store hydrogen due to their close packed crystalline nature.

  19. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOE Patents [OSTI]

    Tierney, John W.; Wender, Irving; Palekar, Vishwesh M.

    1995-01-01

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100.degree.-160.degree. C. and the pressure range of 40-65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H.sub.2 /CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  20. Alkali or alkaline earth metal promoted catalyst and a process for methanol synthesis using alkali or alkaline earth metals as promoters

    DOE Patents [OSTI]

    Tierney, J.W.; Wender, I.; Palekar, V.M.

    1995-01-31

    The present invention relates to a novel route for the synthesis of methanol, and more specifically to the production of methanol by contacting synthesis gas under relatively mild conditions in a slurry phase with a heterogeneous catalyst comprising reduced copper chromite impregnated with an alkali or alkaline earth metal. There is thus no need to add a separate alkali or alkaline earth compound. The present invention allows the synthesis of methanol to occur in the temperature range of approximately 100--160 C and the pressure range of 40--65 atm. The process produces methanol with up to 90% syngas conversion per pass and up to 95% methanol selectivity. The only major by-product is a small amount of easily separated methyl formate. Very small amounts of water, carbon dioxide and dimethyl ether are also produced. The present catalyst combination also is capable of tolerating fluctuations in the H[sub 2]/CO ratio without major deleterious effect on the reaction rate. Furthermore, carbon dioxide and water are also tolerated without substantial catalyst deactivation.

  1. Second international conference on alkali-aggregate reactions in hydroelectric plants and dams

    SciTech Connect (OSTI)

    1995-12-31

    This document is the report of the Second International Conference on Alkali-Aggregate Reactions in Hydroelectric Plants and Dams. This conference was held in October 1995 in Chattanooga, TN and sponsored by the Tennessee Valley Authority. Thirty five papers were presented, with technical sessions covering: (1) The TVA experience, (2) AAR in Hydroelectric Powerplants, (3) AAR in Dams and Spillways, and (4) Long-term management of AAR. Additionally, there were several workshop sessions.

  2. Deetherification process

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.

    1985-01-01

    Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  3. Resin catalysts and method of preparation

    DOE Patents [OSTI]

    Smith, Jr., Lawrence A.

    1986-01-01

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  4. Resin catalysts and method of preparation

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1986-12-16

    Heat stabilized catalyst compositions are prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  5. Deetherification process

    DOE Patents [OSTI]

    Smith, L.A. Jr.

    1985-11-05

    Ethers such as isobutyl tertiary butyl ether are dissociated into their component alcohols and isoolefins by heat stabilized catalyst compositions prepared from nuclear sulfonic acid, for example, macroporous crosslinked polyvinyl aromatic compounds containing sulfonic acid groups are neutralized with a metal of Al, Fe, Zn, Cu, Ni, ions or mixtures and alkali, alkaline earth metals or ammonium ions by contacting the resin containing the sulfonic acid with aqueous solutions of the metals salts and alkali, alkaline earth metal or ammonium salts. The catalysts have at least 50% of the sulfonic acid groups neutralized with metal ions and the balance of the sulfonic acid groups neutralized with alkali, alkaline earth ions or ammonium ions.

  6. 2016 US/German Workshop on Salt Repository Research, Design,...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    USGerman Workshop on Salt Repository Research, Design, and Operation - Sandia Energy ... Workshop on Salt Repository Research, Design, and Operation HomeStationary Power...

  7. Voluntary Protection Program Onsite Review, Parsons Corp., Salt...

    Office of Environmental Management (EM)

    Corp., Salt Waste Processing Facility Construction Project - May 2014 Voluntary Protection Program Onsite Review, Parsons Corp., Salt Waste Processing Facility Construction Project...

  8. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir...

    U.S. Energy Information Administration (EIA) Indexed Site

    Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 20072008 with selected updates Salt Cavern ...

  9. DOE - Office of Legacy Management -- Penn Salt Manufacturing...

    Office of Legacy Management (LM)

    Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from...

  10. BLM Fact Sheet- Ormat Technologies Salt Wells Geothermal Energy...

    Open Energy Info (EERE)

    Ormat Technologies Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Ormat Technologies Salt Wells...

  11. Isotopic Analysis- Fluid At Salt Wells Area (Shevenell & Garside...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Isotopic Analysis- Fluid Activity Date 2002 -...

  12. Compound and Elemental Analysis At Salt Wells Area (Shevenell...

    Open Energy Info (EERE)

    At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Compound and Elemental Analysis Activity Date...

  13. Conceptual Model At Salt Wells Area (Faulds, Et Al., 2011) |...

    Open Energy Info (EERE)

    At Salt Wells Area (Faulds, Et Al., 2011) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Conceptual Model Activity Date 2011 Usefulness...

  14. Savannah River Site - Salt Waste Processing Facility Independent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site - Salt Waste Processing Facility Independent Technical Review Full Document and Summary Versions are available for download PDF icon Savannah River Site - Salt ...

  15. Sandia Energy - Molten Nitrate Salt Initial Flow Testing is a...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nitrate Salt Initial Flow Testing is a Tremendous Success Home Renewable Energy News Concentrating Solar Power Solar Molten Nitrate Salt Initial Flow Testing is a Tremendous...

  16. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources (Redirected from Salt Lake City, UT) Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map...

  17. Salt Lake County, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Creek Valley, Utah Magna, Utah Midvale, Utah Millcreek, Utah Mount Olympus, Utah Murray, Utah Riverton, Utah Salt Lake City, Utah Sandy, Utah South Jordan, Utah South Salt...

  18. Assessment of Nuclear Safety Culture at the Salt Waste Processing...

    Office of Environmental Management (EM)

    Oversight Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility ... of Nuclear Safety Culture at the Salt Waste Processing Facility Project Table of ...

  19. Construction of Salt Waste Processing Facility (SWPF) | Department...

    Office of Environmental Management (EM)

    of Salt Waste Processing Facility (SWPF) Construction of Salt Waste Processing Facility (SWPF) Presentation from the 2015 DOE National Cleanup Workshop by Frank Sheppard, Project ...

  20. Review of the Savannah River Site Salt Waste Processing Facility...

    Office of Environmental Management (EM)

    Independent Oversight Review of the Savannah River Site Salt Waste Processing Facility ... and Component SWGR Switch Gear SWPF Salt Waste Processing Facility TSRs Technical Safety ...

  1. Sandia Energy - Molten Salt Test Loop Pump Installed

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Energy News Concentrating Solar Power Solar Energy Storage Systems Molten Salt Test Loop Pump Installed Previous Next Molten Salt Test Loop Pump Installed The pump was...

  2. Savannah River Site - Salt Waste Processing Facility Independent...

    Office of Environmental Management (EM)

    SALT WASTE PROCESSING FACILITY INDEPENDENT TECHNICAL REVIEW November 22, 2006 Conducted ... Leader SPD-SWPF-217 SPD-SWPF-217: Salt Waste Processing Facility Independent Technical ...

  3. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Environmental Management (EM)

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report ... of Energy Washington, D.C. SRS Salt Waste Processing Facility Technology Readiness ...

  4. Project Profile: Deep Eutectic Salt Formulations Suitable as...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics ...

  5. Molten salt heat transfer fluids and thermal storage technology...

    Office of Scientific and Technical Information (OSTI)

    Molten salt heat transfer fluids and thermal storage technology. Citation Details In-Document Search Title: Molten salt heat transfer fluids and thermal storage technology. No ...

  6. Sandia Energy - 2015 VIII MECHANICAL BEHAVIOR OF SALT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VIII MECHANICAL BEHAVIOR OF SALT Home Stationary Power Nuclear Fuel Cycle Nuclear Energy Workshops 2015 VIII MECHANICAL BEHAVIOR OF SALT 2015 VIII MECHANICAL BEHAVIOR OF...

  7. THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project...

    Office of Scientific and Technical Information (OSTI)

    THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project GNOME Citation Details In-Document Search Title: THE ENVIRONMENT CREATED BY A NUCLEAR EXPLOSION IN SALT. Project ...

  8. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar Power Plants Development of Molten-Salt Heat Trasfer Fluid Technology for Parabolic Trough Solar ...

  9. Novel Molten Salts Thermal Energy Storage for Concentrating Solar...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation This presentation ...

  10. Geothermal Literature Review At Salt Wells Area (Faulds, Et Al...

    Open Energy Info (EERE)

    Salt Wells Area (Faulds, Et Al., 2011) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Salt Wells Area (Faulds,...

  11. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container...

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the ...

  12. Salt Waste Processing Facility Fact Sheet | Department of Energy

    Office of Environmental Management (EM)

    Waste Management Tank Waste and Waste Processing Salt Waste Processing Facility Fact Sheet Salt Waste Processing Facility Fact Sheet Nuclear material production operations at ...

  13. Remediated Nitrate Salt Drums Storage at Los Alamos National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory As a part of its national security ...

  14. Independent Oversight Review, Savannah River Site Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    August 2013 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - August 2013 August 2013 Review of the Savannah River Site Salt Waste Processing...

  15. Magnetotellurics At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Magnetotellurics At Salt Wells Area (Bureau of...

  16. Single-stage separation and esterification of cation salt carboxylates using electrodeionization

    DOE Patents [OSTI]

    Lin, YuPo J.; Henry, Michael; Hestekin, Jamie; Snyder, Seth W.; St. Martin, Edward J.

    2006-11-28

    A method of and apparatus for continuously making an organic ester from a lower alcohol and an organic acid is disclosed. An organic acid or salt is introduced or produced in an electrode ionization (EDI) stack with a plurality of reaction chambers each formed from a porous solid ion exchange resin wafer interleaved between anion exchange membranes or an anion exchange membrane and a cation exchange membrane or an anion exchange membrane and a bipolar exchange membranes. At least some reaction chambers are esterification chambers and/or bioreactor chambers and/or chambers containing an organic acid or salt. A lower alcohol in the esterification chamber reacts with an anion to form an organic ester and water with at least some of the water splitting with the ions leaving the chamber to drive the reaction.

  17. Examination of Liquid Fluoride Salt Heat Transfer

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L

    2014-01-01

    The need for high efficiency power conversion and energy transport systems is increasing as world energy use continues to increase, petroleum supplies decrease, and global warming concerns become more prevalent. There are few heat transport fluids capable of operating above about 600oC that do not require operation at extremely high pressures. Liquid fluoride salts are an exception to that limitation. Fluoride salts have very high boiling points, can operate at high temperatures and low pressures and have very good heat transfer properties. They have been proposed as coolants for next generation fission reactor systems, as coolants for fusion reactor blankets, and as thermal storage media for solar power systems. In each case, these salts are used to either extract or deliver heat through heat exchange equipment, and in order to design this equipment, liquid salt heat transfer must be predicted. This paper discusses the heat transfer characteristics of liquid fluoride salts. Historically, heat transfer in fluoride salts has been assumed to be consistent with that of conventional fluids (air, water, etc.), and correlations used for predicting heat transfer performance of all fluoride salts have been the same or similar to those used for water conventional fluids an, water, etc). A review of existing liquid salt heat transfer data is presented, summarized, and evaluated on a consistent basis. Less than 10 experimental data sets have been found in the literature, with varying degrees of experimental detail and measured parameters provided. The data has been digitized and a limited database has been assembled and compared to existing heat transfer correlations. Results vary as well, with some data sets following traditional correlations; in others the comparisons are less conclusive. This is especially the case for less common salt/materials combinations, and suggests that additional heat transfer data may be needed when using specific salt eutectics in heat transfer

  18. SODIUM ALUMINOSILICATE FOULING AND CLEANING OF DECONTAMINATED SALT SOLUTION COALESCERS

    SciTech Connect (OSTI)

    Poirier, M; Thomas Peters, T; Fernando Fondeur, F; Samuel Fink, S

    2008-10-28

    During initial non-radioactive operations at the Modular Caustic Side Solvent Extraction Unit (MCU), the pressure drop across the decontaminated salt solution coalescer reached {approx}10 psi while processing {approx}1250 gallons of salt solution, indicating possible fouling or plugging of the coalescer. An analysis of the feed solution and the 'plugged coalescer' concluded that the plugging was due to sodium aluminosilicate solids. MCU personnel requested Savannah River National Laboratory (SRNL) to investigate the formation of the sodium aluminosilicate solids (NAS) and the impact of the solids on the decontaminated salt solution coalescer. Researchers performed developmental testing of the cleaning protocols with a bench-scale coalescer container 1-inch long segments of a new coalescer element fouled using simulant solution. In addition, the authors obtained a 'plugged' Decontaminated Salt Solution coalescer from non-radioactive testing in the MCU and cleaned it according to the proposed cleaning procedure. Conclusions from this testing include the following: (1) Testing with the bench-scale coalescer showed an increase in pressure drop from solid particles, but the increase was not as large as observed at MCU. (2) Cleaning the bench-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (11 g of bayerite if all aluminum is present in that form or 23 g of sodium aluminosilicate if all silicon is present in that form). (3) Based on analysis of the cleaning solutions from bench-scale test, the 'dirt capacity' of a 40 inch coalescer for the NAS solids tested is calculated as 450-950 grams. (4) Cleaning the full-scale coalescer with nitric acid reduced the pressure drop and removed a large amount of solid particles (60 g of aluminum and 5 g of silicon). (5) Piping holdup in the full-scale coalescer system caused the pH to differ from the target value. Comparable hold-up in the facility could lead to less effective

  19. Salt Lake City- High Performance Buildings Requirement

    Broader source: Energy.gov [DOE]

    Salt Lake City's mayor issued an executive order in July 2005 requiring that all public buildings owned and controlled by the city be built or renovated to meet the requirements of LEED "silver"...

  20. Director, Salt Waste Processing Facility Project Office

    Broader source: Energy.gov [DOE]

    This position is located within The Department of Energy (DOE) Savannah River (SR) Operations Office, Salt Waste Processing Facility Project Office (SWPFPO). SR is located in Aiken, South Carolina....

  1. Liquid salt environment stress-rupture testing

    DOE Patents [OSTI]

    Ren, Weiju; Holcomb, David E.; Muralidharan, Govindarajan; Wilson, Dane F.

    2016-03-22

    Disclosed herein are systems, devices and methods for stress-rupture testing selected materials within a high-temperature liquid salt environment. Exemplary testing systems include a load train for holding a test specimen within a heated inert gas vessel. A thermal break included in the load train can thermally insulate a load cell positioned along the load train within the inert gas vessel. The test specimen can include a cylindrical gage portion having an internal void filled with a molten salt during stress-rupture testing. The gage portion can have an inner surface area to volume ratio of greater than 20 to maximize the corrosive effect of the molten salt on the specimen material during testing. Also disclosed are methods of making a salt ingot for placement within the test specimen.

  2. Salt Selection for the LS-VHTR

    SciTech Connect (OSTI)

    Williams, D.F.; Clarno, K.T.

    2006-07-01

    Molten fluorides were initially developed for use in the nuclear industry as the high temperature fluid-fuel for a Molten Salt Reactor (MSR). The Office of Nuclear Energy is exploring the use of molten fluorides as a primary coolant (rather than helium) in an Advanced High Temperature Reactor (AHTR) design, also know as the Liquid-Salt cooled Very High Temperature Reactor (LS-VHTR). This paper provides a review of relevant properties for use in evaluation and ranking of candidate coolants for the LS-VHTR. Nuclear, physical, and chemical properties were reviewed and metrics for evaluation are recommended. Chemical properties of the salt were examined for the purpose of identifying factors that effect materials compatibility (i.e., corrosion). Some preliminary consideration of economic factors for the candidate salts is also presented. (authors)

  3. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, William A.; Upadhye, Ravindra S.; Pruneda, Cesar O.

    1995-01-01

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor.

  4. Molten salt destruction of energetic waste materials

    DOE Patents [OSTI]

    Brummond, W.A.; Upadhye, R.S.; Pruneda, C.O.

    1995-07-18

    A molten salt destruction process is used to treat and destroy energetic waste materials such as high explosives, propellants, and rocket fuels. The energetic material is pre-blended with a solid or fluid diluent in safe proportions to form a fluid fuel mixture. The fuel mixture is rapidly introduced into a high temperature molten salt bath. A stream of molten salt is removed from the vessel and may be recycled as diluent. Additionally, the molten salt stream may be pumped from the reactor, circulated outside the reactor for further processing, and delivered back into the reactor or cooled and circulated to the feed delivery system to further dilute the fuel mixture entering the reactor. 4 figs.

  5. Electrochemical assembly of organic molecules by the reduction of iodonium salts

    DOE Patents [OSTI]

    Dirk, Shawn M.; Howell, Stephen W.; Wheeler, David R.

    2009-06-23

    Methods are described for the electrochemical assembly of organic molecules on silicon, or other conducting or semiconducting substrates, using iodonium salt precursors. Iodonium molecules do not assemble on conducting surfaces without a negative bias. Accordingly, the iodonium salts are preferred for patterning applications that rely on direct writing with negative bias. The stability of the iodonium molecule to acidic conditions allows them to be used with standard silicon processing. As a directed assembly process, the use of iodonium salts provides for small features while maintaining the ability to work on a surface and create structures on a wafer level. Therefore, the process is amenable for mass production. Furthermore, the assembled monolayer (or multilayer) is chemically robust, allowing for subsequent chemical manipulations and the introduction of various molecular functionalities for various chemical and biological applications.

  6. Thermal Characterization of Molten Salt Systems

    SciTech Connect (OSTI)

    Toni Y. Gutknecht; Guy L. Fredrickson

    2011-09-01

    The phase stability of molten salts in an electrorefiner (ER) may be adversely affected by the buildup of sodium, fission products, and transuranics in the electrolyte. Potential situations that need to be avoided are the following: (1) salt freezing due to an unexpected change in the liquidus temperature, (2) phase separation or non-homogeneity of the molten salt due to the precipitation of solids or formation of immiscible liquids, and (3) any mechanism that can result in the separation and concentration of fissile elements from the molten salt. Any of these situations would result in an off-normal condition outside the established safety basis for electrorefiner (ER) operations. The stability (and homogeneity) of the phases can potentially be monitored through the thermal characterization of the salts, which can be a function of impurity concentration. This report describes the experimental results of typical salts compositions, which consist of chlorides of potassium, lithium, strontium, samarium, praseodymium, lanthanum, barium, cerium, cesium, neodymium, sodium and gadolinium chlorides as a surrogate for both uranium and plutonium, used for the processing of used nuclear fuels.

  7. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOE Patents [OSTI]

    Lee, Kien-yin; Coburn, Michael D.

    1985-01-01

    Ethylenediamine salt of 5-nitrotetrazole and preparation. This salt has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol % of ammonium nitrate, is close to the CO.sub.2 -balanced composition of 90 mol %, and has a relatively low melting point of 110.5 C. making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C. and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  8. Ammonia Solubility in High Concentration Salt Solutions

    SciTech Connect (OSTI)

    HEDENGREN, D.C.

    2000-02-01

    Solubility data for ammonia in water and various dilute solutions are abundant in the literature. However, there is a noticeable lack of ammonia solubility data for high salt, basic solutions of various mixtures of salts including those found in many of the Hanford Washington underground waste tanks. As a result, models based on solubility data for dilute salt solutions have been used to extrapolate to high salt solutions. These significant extrapolations need to be checked against actual laboratory data. Some indirect vapor measurements have been made. A more direct approach is to determine the ratio of solubility of ammonia in water to its solubility in high salt solutions. In various experiments, pairs of solutions, one of which is water and the other a high salt solution, are allowed to come to equilibrium with a common ammonia vapor pressure. The ratio of concentrations of ammonia in the two solutions is equal to the ratio of the respective ammonia solubilities (Henry's Law constants) at a given temperature. This information can then be used to refine the models that predict vapor space compositions of ammonia. Ammonia at Hanford is of concern because of its toxicity in the environment and its contribution to the flammability of vapor space gas mixtures in waste tanks.

  9. Treatment of Remediated Nitrate Salts | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Treatment of Remediated Nitrate Salts Treatment of Remediated Nitrate Salts Topic: Plan for remediation the nitrate salt waste from the 3706 campaign that is currently stored at Material Disposal Area G, presenter was David Funk, LANS. Nitrate Salts - November 18, 2015 (1 MB

  10. Effect of Sodium Carboxymethyl Celluloses on Water-catalyzed Self-degradation of 200-degree C-heated Alkali-Activated Cement

    SciTech Connect (OSTI)

    Sugama T.; Pyatina, T.

    2012-05-01

    We investigated the usefulness of sodium carboxymethyl celluloses (CMC) in promoting self-degradation of 200°C-heated sodium silicate-activated slag/Class C fly ash cementitious material after contact with water. CMC emitted two major volatile compounds, CO2 and acetic acid, creating a porous structure in cement. CMC also reacted with NaOH from sodium silicate to form three water-insensitive solid reaction products, disodium glycolate salt, sodium glucosidic salt, and sodium bicarbonate. Other water-sensitive solid reaction products, such as sodium polysilicate and sodium carbonate, were derived from hydrolysates of sodium silicate. Dissolution of these products upon contact with water generated heat that promoted cement’s self-degradation. Thus, CMC of high molecular weight rendered two important features to the water-catalyzed self-degradation of heated cement: One was the high heat energy generated in exothermic reactions in cement; the other was the introduction of extensive porosity into cement.

  11. Influence of impurities on the creep of salt from the Palo Duro Basin

    SciTech Connect (OSTI)

    Hansen, F.D.; Senseny, P.E.; Pfeifle, T.W.; Vogt, T.J.

    1987-05-01

    Twelve triaxial compression creep tests were performed on salt specimens from the Woods-Holtzclaw well in the Palo Duro Basin to assess the influence of impurities on creep deformation. Four nominal impurity levels were initially selected for investigation: pure salt, salt containing 10% anhydrite, salt containing 10% mud, and salt containing 20% mud. Subsequent petrological measurements show these idealized categories do not exist. Composition of the samples was measured by methods of wet chemistry coupled with ethylene diaminetetraacetic acid (EDTA) digestion and point counting on full-size polished sections. Overall, the 12 specimens comprise 71.6--96.6% halite, 2.4--7.5% anhydrite, and 0.2--24.7% clay. Nine of the 12 specimens are similar to many other tested specimens from the Lower San Andres Unit 5. They range from 90--97% halite and average 94% with a standard deviation of 2%. The remaining 6% impurities are disseminated clay and anhydrite. The other three specimens from the Lower San Andres Unit 4 contain large amounts (average 20%) of uniformly distributed clays and average only 75% halite. 11 refs., 21 figs., 5 tabs.

  12. Bio-liquefaction/solubilization of lignitic humic acids by white-rot fungus (Phanerochaete chrysosporium)

    SciTech Connect (OSTI)

    Elbeyli, I.Y.; Palantoken, A.; Piskin, S.; Peksel, A.; Kuzu, H.

    2006-08-15

    Humic acid samples obtained from lignite were liquefied/solubilized by using white-rot fungus, and chemical characterization of the products was investigated by FTIR and GC-MS techniques. Prior to the microbial treatment, raw lignite was oxidized with hydrogen peroxide and nitric acid separately, and then humic acids were extracted by alkali solution. The prepared humic acid samples were placed on the agar surface of the fungus and liquid products formed by microbial affects were collected. The products were analyzed and the chemical properties were compared. The results show that oxidation agent and oxidation degree affect composition of the liquid products formed by microbial attack.

  13. Liquid fuel molten salt reactors for thorium utilization (Journal Article)

    Office of Scientific and Technical Information (OSTI)

    | SciTech Connect Journal Article: Liquid fuel molten salt reactors for thorium utilization Citation Details In-Document Search This content will become publicly available on April 8, 2017 Title: Liquid fuel molten salt reactors for thorium utilization Molten salt reactors (MSRs) represent a class of reactors that use liquid salt, usually fluoride- or chloride-based, as either a coolant with a solid fuel (such as fluoride salt-cooled high temperature reactors) or as a combined coolant and

  14. Intrinsic differences in atomic ordering of calcium (alumino)silicate hydrates in conventional and alkali-activated cements

    SciTech Connect (OSTI)

    White, Claire E.; Daemen, Luke L.; Hartl, Monika; Page, Katharine

    2015-01-15

    The atomic structures of calcium silicate hydrate (C–S–H) and calcium (–sodium) aluminosilicate hydrate (C–(N)–A–S–H) gels, and their presence in conventional and blended cement systems, have been the topic of significant debate over recent decades. Previous investigations have revealed that synthetic C–S–H gel is nanocrystalline and due to the chemical similarities between ordinary Portland cement (OPC)-based systems and low-CO{sub 2} alkali-activated slags, researchers have inferred that the atomic ordering in alkali-activated slag is the same as in OPC–slag cements. Here, X-ray total scattering is used to determine the local bonding environment and nanostructure of C(–A)–S–H gels present in hydrated tricalcium silicate (C{sub 3}S), blended C{sub 3}S–slag and alkali-activated slag, revealing the large intrinsic differences in the extent of nanoscale ordering between C–S–H derived from C{sub 3}S and alkali-activated slag systems, which may have a significant influence on thermodynamic stability, and material properties at higher length scales, including long term durability of alkali-activated cements.

  15. Accurate potential energy, dipole moment curves, and lifetimes of vibrational states of heteronuclear alkali dimers

    SciTech Connect (OSTI)

    Fedorov, Dmitry A.; Varganov, Sergey A.; Derevianko, Andrei

    2014-05-14

    We calculate the potential energy curves, the permanent dipole moment curves, and the lifetimes of the ground and excited vibrational states of the heteronuclear alkali dimers XY (X, Y = Li, Na, K, Rb, Cs) in the X{sup 1}?{sup +} electronic state using the coupled cluster with singles doubles and triples method. All-electron quadruple-? basis sets with additional core functions are used for Li and Na, and small-core relativistic effective core potentials with quadruple-? quality basis sets are used for K, Rb, and Cs. The inclusion of the coupled cluster non-perturbative triple excitations is shown to be crucial for obtaining the accurate potential energy curves. A large one-electron basis set with additional core functions is needed for the accurate prediction of permanent dipole moments. The dissociation energies are overestimated by only 14 cm{sup ?1} for LiNa and by no more than 114 cm{sup ?1} for the other molecules. The discrepancies between the experimental and calculated harmonic vibrational frequencies are less than 1.7 cm{sup ?1}, and the discrepancies for the anharmonic correction are less than 0.1 cm{sup ?1}. We show that correlation between atomic electronegativity differences and permanent dipole moment of heteronuclear alkali dimers is not perfect. To obtain the vibrational energies and wave functions the vibrational Schrdinger equation is solved with the B-spline basis set method. The transition dipole moments between all vibrational states, the Einstein coefficients, and the lifetimes of the vibrational states are calculated. We analyze the decay rates of the vibrational states in terms of spontaneous emission, and stimulated emission and absorption induced by black body radiation. In all studied heteronuclear alkali dimers the ground vibrational states have much longer lifetimes than any excited states.

  16. Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags

    SciTech Connect (OSTI)

    Bernal, Susan A.; Mejia de Gutierrez, Ruby; Provis, John L.; Rose, Volker

    2010-06-15

    Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

  17. Method of extracting coal from a coal refuse pile

    DOE Patents [OSTI]

    Yavorsky, Paul M.

    1991-01-01

    A method of extracting coal from a coal refuse pile comprises soaking the coal refuse pile with an aqueous alkali solution and distributing an oxygen-containing gas throughout the coal refuse pile for a time period sufficient to effect oxidation of coal contained in the coal refuse pile. The method further comprises leaching the coal refuse pile with an aqueous alkali solution to solubilize and extract the oxidized coal as alkali salts of humic acids and collecting the resulting solution containing the alkali salts of humic acids. Calcium hydroxide may be added to the solution of alkali salts of humic acid to form precipitated humates useable as a low-ash, low-sulfur solid fuel.

  18. DuraLith Alkali-Aluminosilicate Geopolymer Waste Form Testing for Hanford Secondary Waste

    SciTech Connect (OSTI)

    Gong, W. L.; Lutz, Werner; Pegg, Ian L.

    2011-07-21

    The primary objective of the work reported here was to develop additional information regarding the DuraLith alkali aluminosilicate geopolymer as a waste form for liquid secondary waste to support selection of a final waste form for the Hanford Tank Waste Treatment and Immobilization Plant secondary liquid wastes to be disposed in the Integrated Disposal Facility on the Hanford Site. Testing focused on optimizing waste loading, improving waste form performance, and evaluating the robustness of the waste form with respect to waste variability.

  19. Oxygen-consuming chlor alkali cell configured to minimize peroxide formation

    DOE Patents [OSTI]

    Chlistunoff, Jerzy B.; Lipp, Ludwig; Gottesfeld, Shimshon

    2006-08-01

    Oxygen-consuming zero gap chlor-alkali cell was configured to minimize peroxide formation. The cell included an ion-exchange membrane that divided the cell into an anode chamber including an anode and a cathode chamber including an oxygen gas diffusion cathode. The cathode included a single-piece of electrically conducting graphitized carbon cloth. Catalyst and polytetrafluoroethylene were attached to only one side of the cloth. When the cathode was positioned against the cation exchange membrane with the catalyst side away from the membrane, electrolysis of sodium chloride to chlorine and caustic (sodium hydroxide) proceeded with minimal peroxide formation.

  20. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; Rawn, Claudia J.; Richardson, Jim

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Ymore » and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single-crystal growth methods structural systematics, and thermal expansion properties of the present series of alkali rare-earth double phosphates, as determined by X-ray and neutron diffraction methods, are treated here.« less

  1. Structural and Crystal Chemical Properties of Alkali Rare-earth Double Phosphates

    SciTech Connect (OSTI)

    Farmer, James Matthew; Boatner, Lynn A.; Chakoumakos, Bryan C.; Rawn, Claudia J.; Richardson, Jim

    2016-01-01

    When appropriately activated, alkali rare-earth double phosphates of the form: M3RE(PO4)2 (where M denotes an alkali metal and RE represents either a rare-earth element or Y or Sc) are of interest for use as inorganic scintillators for radiation detection at relatively long optical emission wavelengths. These compounds exhibit layered crystal structures whose symmetry properties depend on the relative sizes of the rare-earth and alkali-metal cations. Single-crystal X-ray and powder neutron diffraction methods were used here to refine the structures of the series of rare-earth double phosphate compounds: K3RE(PO4)2 with RE = Lu, Er, Ho, Dy, Gd, Nd, Ce, plus Y and Sc - as well as the compounds: A3Lu(PO4)2, with A = Rb, and Cs. The double phosphate K3Lu(PO4)2 was reported and structurally refined previously. This material had a hexagonal unit cell at room temperature with the Lu ion six-fold coordinated with oxygen atoms of the surrounding phosphate groups. Additionally two lower-temperature phases were observed for K3Lu(PO4)2. The first phase transition to a monoclinic P21/m phase occurred at ~230 K, and the Lu ion retained its six-fold coordination. The second K3Lu(PO4)2 phase transition occurred at ~130 K. The P21/m space group symmetry was retained, however, one of the phosphate groups rotated to increase the oxygen coordination number of Lu from six to seven. This structure then became isostructural with the room-temperature form of the compound K3Yb(PO4)2 reported here that also exhibits an additional high-temperature phase which occurs at T = 120 °C with a transformation to hexagonal P-3 space group symmetry and a Yb-ion coordination number reduction from seven to six. This latter result was confirmed using EXAFS. The single

  2. Half metallic ferromagnetism in alkali metal nitrides MN (M = Rb, Cs): A first principles study

    SciTech Connect (OSTI)

    Murugan, A. Rajeswarapalanichamy, R. Santhosh, M. Sudhapriyanga, G.; Kanagaprabha, S.

    2014-04-24

    The structural, electronic and elastic properties of two alkali metal nitrides (MN: M= Rb, Cs) are investigated by the first principles calculations based on density functional theory using the Vienna ab-initio simulation package. At ambient pressure the two nitrides are stable in ferromagnetic state with CsCl structure. The calculated lattice parameters are in good agreement with the available results. The electronic structure reveals that these materials are half metallic in nature. A pressure-induced structural phase transition from CsCl to ZB phase is observed in RbN and CsN.

  3. Characterization of the molten salt reactor experiment fuel and flush salts

    SciTech Connect (OSTI)

    Williams, D.F.; Peretz, F.J.

    1996-05-01

    Wise decisions about the handling and disposition of spent fuel from the Molten Salt Reactor Experiment (MSRE) must be based upon an understanding of the physical, chemical, and radiological properties of the frozen fuel and flush salts. These {open_quotes}static{close_quotes} properties can be inferred from the extensive documentation of process history maintained during reactor operation and the knowledge gained in laboratory development studies. Just as important as the description of the salt itself is an understanding of the dynamic processes which continue to transform the salt composition and govern its present and potential physicochemical behavior. A complete characterization must include a phenomenological characterization in addition to the typical summary of properties. This paper reports on the current state of characterization of the fuel and flush salts needed to support waste management decisions.

  4. Corrosion of aluminides by molten nitrate salt

    SciTech Connect (OSTI)

    Tortorelli, P.F.; Bishop, P.S.

    1990-01-01

    The corrosion of titanium-, iron-, and nickel-based aluminides by a highly aggressive, oxidizing NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} has been studied at 650{degree}C. It was shown that weight changes could be used to effectively evaluate corrosion behavior in the subject nitrate salt environments provided these data were combined with salt analyses and microstructural examinations. The studies indicated that the corrosion of relatively resistant aluminides by these nitrate salts proceeded by oxidation and a slow release from an aluminum-rich product layer into the salt at rates lower than that associated with many other types of metallic materials. The overall corrosion process and resulting rate depended on the particular aluminide being exposed. In order to minimize corrosion of nickel or iron aluminides, it was necessary to have aluminum concentrations in excess of 30 at. %. However, even at a concentration of 50 at. % Al, the corrosion resistance of TiAl was inferior to that of Ni{sub 3}Al and Fe{sub 3}Al. At higher aluminum concentrations, iron, nickel, and iron-nickel aluminides exhibited quite similar weight changes, indicative of the principal role of aluminum in controlling the corrosion process in NaNO{sub 3}(-KNO{sub 3})-Na{sub 2}O{sub 2} salts. 20 refs., 5 figs., 3 tabs.

  5. Ethylenediamine salt of 5-nitrotetrazole and preparation

    DOE Patents [OSTI]

    Lee, K.; Coburn, M.D.

    1984-05-17

    The ethylenediamine salt of 5-nitrotetrazole has been found to be useful as an explosive alone and in eutectic mixtures with ammonium nitrate and/or other explosive compounds. Its eutectic with ammonium nitrate has been demonstrated to behave in a similar manner to a monomolecular explosive such as TNT, and is less sensitive than the pure salt. Moreover, this eutectic mixture, which contains 87.8 mol% of ammonium nitrate, is close to the CO/sub 2/-balanced composition of 90 mol%, and has a relatively low melting point of 110.5 C making it readily castable. The ternary eutectic system containing the ethylenediamine salt of 5-nitrotetrazole, ammonium nitrate and ethylenediamine dinitrate has a eutectic temperature of 89.5 C and gives a measured detonation pressure of 24.8 GPa, which is 97.6% of the calculated value. Both the pure ethylenediamine salt and its known eutectic compounds behave in substantially ideal manner. Methods for the preparation of the salt are described.

  6. SEPARATION PROCESS FOR THORIUM SALTS

    DOE Patents [OSTI]

    Bridger, G.L.; Whatley, M.E.; Shaw, K.G.

    1957-12-01

    A process is described for the separation of uranium, thorium, and rare earths extracted from monazite by digesting with sulfuric acid. By carefully increasing the pH of the solution, stepwise, over the range 0.8 to 5.5, a series of selective precipitations will be achieved, with the thorium values coming out at lower pH, the rare earths at intermediate pH and the uranium last. Some mixed precipitates will be obtained, and these may be treated by dissolving in HNO/sub 3/ and contacting with dibutyl phosphate, whereby thorium or uranium are taken up by the organic phase while the rare earths preferentially remain in the aqueous solution.

  7. Alkali metal vapor removal from pressurized fluidized-bed combustor flue gas. Quarterly report, April-June 1980

    SciTech Connect (OSTI)

    Johnson, I.; Swift, W.M.; Lee, S.H.D.; Boyd, W.A.

    1980-07-01

    In the application of pressurized fluidized-bed combustors (PFBC) to the generation of electricity, hot corrosion of gas turbine components by alkali metal compounds is a potential problem. The objective of this investigation is to develop a method for removing these gaseous alkali metal compounds from the high-pressure high-temperature gas from a PFBC before the gas enters the gas turbine. A granular-bed filter, using either diatomaceous earth or activated bauxite as the bed material, is the concept currently being studied. Results are presented for the testing of diatomaceous earth for alkali vapor sorption at 800/sup 0/C and 9-atm pressure, using a simulated flue gas. Activated bauxite sorbent can be regenerated by leaching with water, and the kinetics of the leaching is under study.

  8. Relative electrochemical stability of lithium and aluminum salts and their solvents

    SciTech Connect (OSTI)

    Ciemiecki, K.T.; Auborn, J.J.

    1983-10-01

    The stability series were determined by cyclic voltammetric measurements at platinum electrodes in dry acetonitrile. These results are applicable to the electrochemical synthesis of new organic electrodes and to the development of an ambient temperature rechargeable battery. Cyclic voltammetry was also used to establish electrochemical windows for a class of room temperature chloroaluminate molten salts from which aluminum can be reversibly electrodeposited. Enhancement of oxidative stability by increased Lewis acidity was observed in both the melts and the more conventional electrolytes.

  9. Brine flow in heated geologic salt.

    SciTech Connect (OSTI)

    Kuhlman, Kristopher L.; Malama, Bwalya

    2013-03-01

    This report is a summary of the physical processes, primary governing equations, solution approaches, and historic testing related to brine migration in geologic salt. Although most information presented in this report is not new, we synthesize a large amount of material scattered across dozens of laboratory reports, journal papers, conference proceedings, and textbooks. We present a mathematical description of the governing brine flow mechanisms in geologic salt. We outline the general coupled thermal, multi-phase hydrologic, and mechanical processes. We derive these processes' governing equations, which can be used to predict brine flow. These equations are valid under a wide variety of conditions applicable to radioactive waste disposal in rooms and boreholes excavated into geologic salt.

  10. 3718-F Alkali Metal Treatment and Storage Facility Closure Plan. Revision 1

    SciTech Connect (OSTI)

    1992-11-01

    The Hanford Site, located northwest of the city of Richland, Washington, houses reactors, chemical-separation systems, and related facilities used for the production of special nuclear materials, as well as for activities associated with nuclear energy development. The 300 Area of the Hanford Site contains reactor fuel manufacturing facilities and several research and development laboratories. The 3718-F Alkali Metal Treatment and Storage Facility (3718-F Facility), located in the 300 Area, was used to store and treat alkali metal wastes. Therefore, it is subject to the regulatory requirements for the storage and treatment of dangerous wastes. Closure will be conducted pursuant to the requirements of the Washington Administrative Code (WAC) 173-303-610 (Ecology 1989) and 40 CFR 270.1. Closure also will satisfy the thermal treatment facility closure requirements of 40 CFR 265.381. This closure plan presents a description of the 3718-F Facility, the history of wastes managed, and the approach that will be followed to close the facility. Only hazardous constituents derived from 3718-F Facility operations will be addressed.

  11. Optically pumped alkali laser and amplifier using helium-3 buffer gas

    DOE Patents [OSTI]

    Beach, Raymond J.; Page, Ralph; Soules, Thomas; Stappaerts, Eddy; Wu, Sheldon Shao Quan

    2010-09-28

    In one embodiment, a laser oscillator is provided comprising an optical cavity, the optical cavity including a gain medium including an alkali vapor and a buffer gas, the buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Additionally, an optical excitation source is provided. Furthermore, the laser oscillator is capable of outputting radiation at a first frequency. In another embodiment, an apparatus is provided comprising a gain medium including an alkali vapor and a buffer gas including .sup.3He gas, wherein if .sup.4He gas is also present in the buffer gas, the ratio of the concentration of the .sup.3He gas to the .sup.4He gas is greater than 1.37.times.10.sup.-6. Other embodiments are also disclosed.

  12. Hydration of a low-alkali CEM III/B-SiO{sub 2} cement (LAC)

    SciTech Connect (OSTI)

    Lothenbach, Barbara; Le Saout, Gwenn; Ben Haha, Mohsen; Figi, Renato; Wieland, Erich

    2012-02-15

    The hydration of a low-alkali cement based on CEM III/B blended with 10 wt.% of nanosilica has been studied. The nanosilica reacted within the first days and 90% of the slag reacted within 3.5 years. C-S-H (Ca/Si {approx} 1.2, Al/Si {approx} 0.12), calcite, hydrotalcite, ettringite and possibly straetlingite were the main hydrates. The pore water composition revealed ten times lower alkali concentrations than in Portland cements. Reducing conditions (HS{sup -}) and a pH value of 12.2 were observed. Between 1 month and 3.5 years of hydration more hydrates were formed due to the ongoing slag reaction but no significant differences in the composition of the pore solution or solid phase assemblage were observed. On the basis of thermodynamic calculations it is predicted that siliceous hydrogarnet could form in the long-term and, in the presence of siliceous hydrogarnet, also thaumasite. Nevertheless, even after 3.5 year hydration, neither siliceous hydrogarnet nor thaumasite have been observed.

  13. Investigation of anti-Relaxation coatings for alkali-metal vapor cells using surface science techniques

    SciTech Connect (OSTI)

    Seltzer, S. J.; Michalak, D. J.; Donaldson, M. H.; Balabas, M. V.; Barber, S. K.; Bernasek, S. L.; Bouchiat, M.-A.; Hexemer, A.; Hibberd, A. M.; Jackson Kimball, D. F.; Jaye, C.; Karaulanov, T.; Narducci, F. A.; Rangwala, S. A.; Robinson, H. G.; Shmakov, A. K.; Voronov, D. L.; Yashchuk, V. V.; Pines, A.; Budker, D.

    2010-10-11

    Many technologies based on cells containing alkali-metal atomic vapor benefit from the use of antirelaxation surface coatings in order to preserve atomic spin polarization. In particular, paraffin has been used for this purpose for several decades and has been demonstrated to allow an atom to experience up to 10?000 collisions with the walls of its container without depolarizing, but the details of its operation remain poorly understood. We apply modern surface and bulk techniques to the study of paraffin coatings in order to characterize the properties that enable the effective preservation of alkali spin polarization. These methods include Fourier transform infrared spectroscopy, differential scanning calorimetry, atomic force microscopy, near-edge x-ray absorption fine structure spectroscopy, and x-ray photoelectron spectroscopy. We also compare the light-induced atomic desorption yields of several different paraffin materials. Experimental results include the determination that crystallinity of the coating material is unnecessary, and the detection of C=C double bonds present within a particular class of effective paraffin coatings. Further study should lead to the development of more robust paraffin antirelaxation coatings, as well as the design and synthesis of new classes of coating materials.

  14. Fast Spectrum Molten Salt Reactor Options

    SciTech Connect (OSTI)

    Gehin, Jess C; Holcomb, David Eugene; Flanagan, George F; Patton, Bruce W; Howard, Rob L; Harrison, Thomas J

    2011-07-01

    During 2010, fast-spectrum molten-salt reactors (FS-MSRs) were selected as a transformational reactor concept for light-water reactor (LWR)-derived heavy actinide disposition by the Department of Energy-Nuclear Energy Advanced Reactor Concepts (ARC) program and were the subject of a preliminary scoping investigation. Much of the reactor description information presented in this report derives from the preliminary studies performed for the ARC project. This report, however, has a somewhat broader scope-providing a conceptual overview of the characteristics and design options for FS-MSRs. It does not present in-depth evaluation of any FS-MSR particular characteristic, but instead provides an overview of all of the major reactor system technologies and characteristics, including the technology developments since the end of major molten salt reactor (MSR) development efforts in the 1970s. This report first presents a historical overview of the FS-MSR technology and describes the innovative characteristics of an FS-MSR. Next, it provides an overview of possible reactor configurations. The following design features/options and performance considerations are described including: (1) reactor salt options-both chloride and fluoride salts; (2) the impact of changing the carrier salt and actinide concentration on conversion ratio; (3) the conversion ratio; (4) an overview of the fuel salt chemical processing; (5) potential power cycles and hydrogen production options; and (6) overview of the performance characteristics of FS-MSRs, including general comparative metrics with LWRs. The conceptual-level evaluation includes resource sustainability, proliferation resistance, economics, and safety. The report concludes with a description of the work necessary to begin more detailed evaluation of FS-MSRs as a realistic reactor and fuel cycle option.

  15. High Temperature Fluoride Salt Test Loop

    SciTech Connect (OSTI)

    Aaron, Adam M.; Cunningham, Richard Burns; Fugate, David L.; Holcomb, David Eugene; Kisner, Roger A.; Peretz, Fred J.; Robb, Kevin R.; Wilson, Dane F.; Yoder, Jr, Graydon L.

    2015-12-01

    Effective high-temperature thermal energy exchange and delivery at temperatures over 600°C has the potential of significant impact by reducing both the capital and operating cost of energy conversion and transport systems. It is one of the key technologies necessary for efficient hydrogen production and could potentially enhance efficiencies of high-temperature solar systems. Today, there are no standard commercially available high-performance heat transfer fluids above 600°C. High pressures associated with water and gaseous coolants (such as helium) at elevated temperatures impose limiting design conditions for the materials in most energy systems. Liquid salts offer high-temperature capabilities at low vapor pressures, good heat transport properties, and reasonable costs and are therefore leading candidate fluids for next-generation energy production. Liquid-fluoride-salt-cooled, graphite-moderated reactors, referred to as Fluoride Salt Reactors (FHRs), are specifically designed to exploit the excellent heat transfer properties of liquid fluoride salts while maximizing their thermal efficiency and minimizing cost. The FHR s outstanding heat transfer properties, combined with its fully passive safety, make this reactor the most technologically desirable nuclear power reactor class for next-generation energy production. Multiple FHR designs are presently being considered. These range from the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) [1] design originally developed by UC-Berkeley to the Small Advanced High-Temperature Reactor (SmAHTR) and the large scale FHR both being developed at ORNL [2]. The value of high-temperature, molten-salt-cooled reactors is also recognized internationally, and Czechoslovakia, France, India, and China all have salt-cooled reactor development under way. The liquid salt experiment presently being developed uses the PB-AHTR as its focus. One core design of the PB-AHTR features multiple 20 cm diameter, 3.2 m long fuel channels

  16. Salt Lake City | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Salt Lake City Gamma Shield Thunder Exercise Concludes National Nuclear Security Administration (NNSA) and the FBI announced today the completion of the Gamma Shield Thunder counterterrorism table-top exercise at LDS Hospital. The exercise is part of NNSA's Silent Thunder table-top series, which is aimed at giving federal, state and local

  17. Hybrid Molten Salt Reactor (HMSR) System Study

    SciTech Connect (OSTI)

    Woolley, Robert D; Miller, Laurence F

    2014-04-01

    Can the hybrid system combination of (1) a critical fission Molten Salt Reactor (MSR) having a thermal spectrum and a high Conversion Ratio (CR) with (2) an external source of high energy neutrons provide an attractive solution to the world's expanding demand for energy? The present study indicates the answer is an emphatic yes.

  18. Salt repository project closeout status report

    SciTech Connect (OSTI)

    1988-06-01

    This report provides an overview of the scope and status of the US Department of Energy (DOE`s) Salt Repository Project (SRP) at the time when the project was terminated by the Nuclear Waste Policy Amendments Act of 1987. The report reviews the 10-year program of siting a geologic repository for high-level nuclear waste in rock salt formations. Its purpose is to aid persons interested in the information developed during the course of this effort. Each area is briefly described and the major items of information are noted. This report, the three salt Environmental Assessments, and the Site Characterization Plan are the suggested starting points for any search of the literature and information developed by the program participants. Prior to termination, DOE was preparing to characterize three candidate sites for the first mined geologic repository for the permanent disposal of high-level nuclear waste. The sites were in Nevada, a site in volcanic tuff; Texas, a site in bedded salt (halite); and Washington, a site in basalt. These sites, identified by the screening process described in Chapter 3, were selected from the nine potentially acceptable sites shown on Figure I-1. These sites were identified in accordance with provisions of the Nuclear Waste Policy Act of 1982. 196 refs., 21 figs., 11 tabs.

  19. Accelerators for Subcritical Molten-Salt Reactors

    SciTech Connect (OSTI)

    Johnson, Roland

    2011-08-03

    Accelerator parameters for subcritical reactors have usually been based on using solid nuclear fuel much like that used in all operating critical reactors as well as the thorium burning accelerator-driven energy amplifier proposed by Rubbia et al. An attractive alternative reactor design that used molten salt fuel was experimentally studied at ORNL in the 1960s, where a critical molten salt reactor was successfully operated using enriched U235 or U233 tetrafluoride fuels. These experiments give confidence that an accelerator-driven subcritical molten salt reactor will work better than conventional reactors, having better efficiency due to their higher operating temperature, having the inherent safety of subcritical operation, and having constant purging of volatile radioactive elements to eliminate their accumulation and potential accidental release in dangerous amounts. Moreover, the requirements to drive a molten salt reactor can be considerably relaxed compared to a solid fuel reactor, especially regarding accelerator reliability and spallation neutron targetry, to the point that much of the required technology exists today. It is proposed that Project-X be developed into a prototype commercial machine to produce energy for the world by, for example, burning thorium in India and nuclear waste from conventional reactors in the USA.

  20. BLM Fact Sheet- Vulcan Power Company Salt Wells Geothermal Energy...

    Open Energy Info (EERE)

    Vulcan Power Company Salt Wells Geothermal Energy Project Jump to: navigation, search OpenEI Reference LibraryAdd to library Report: BLM Fact Sheet- Vulcan Power Company Salt Wells...

  1. Tank 41-H salt level fill history 1985 to 1987

    SciTech Connect (OSTI)

    Ross, R.H.

    1996-05-16

    The fill rate of the evaporator drop waste tank (i.e., salt tank) at Savannah River Site contained in the Waste Management Technology (WMT) monthly data record is based upon a simple formula that apportioned 10 percent of the evaporator output concentrate to the salt fill volume. Periodically, the liquid level of the salt tank would be decanted below the salt level surface and a visual inspection of the salt profile would be accomplished. The salt volume of the drop tank would then be corrected, if necessary, based upon the visual elevation of the salt formation. This correction can erroneously indicate an excess amount of salt fill occurred in a short time period. This report established the correct fill history for Tank 41H.

  2. Completing Salt Waste Processing Facility is an EM Priority and...

    Office of Environmental Management (EM)

    Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup Progress Completing Salt Waste Processing Facility is an EM Priority and Key to SRS Cleanup ...

  3. Savannah River Site Cuts Ribbon for New Salt Waste Processing...

    Office of Environmental Management (EM)

    Savannah River Site Cuts Ribbon for New Salt Waste Processing Facility Savannah River Site Cuts Ribbon for New Salt Waste Processing Facility June 30, 2016 - 12:55pm Addthis DOE ...

  4. Salt Waste Disposal at the Savannah River Site | Department of...

    Office of Environmental Management (EM)

    Salt Waste Disposal at the Savannah River Site Salt Waste Disposal at the Savannah River Site Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal ...

  5. File:Salt2.pdf | Open Energy Information

    Open Energy Info (EERE)

    Salt2.pdf Jump to: navigation, search File File history File usage Metadata File:Salt2.pdf Size of this preview: 463 599 pixels. Other resolution: 464 600 pixels. Go to page...

  6. Process for loading weak-acid ion exchange resin with uranium

    DOE Patents [OSTI]

    Notz, Karl J.

    1976-01-01

    A method for loading ion exchange resins is described. The process comprises contacting a weak acid cation exchange resin in the ammonium form with a uranyl fluoride salt solution.

  7. Energy Efficient Buildings, Salt Lake County, Utah

    SciTech Connect (OSTI)

    Barnett, Kimberly

    2012-04-30

    Executive Summary Salt Lake County's Solar Photovoltaic Project - an unprecedented public/private partnership Salt Lake County is pleased to announce the completion of its unprecedented solar photovoltaic (PV) installation on the Calvin R. Rampton Salt Palace Convention Center. This 1.65 MW installation will be one the largest solar roof top installations in the country and will more than double the current installed solar capacity in the state of Utah. Construction is complete and the system will be operational in May 2012. The County has accomplished this project using a Power Purchase Agreement (PPA) financing model. In a PPA model a third-party solar developer will finance, develop, own, operate, and maintain the solar array. Salt Lake County will lease its roof, and purchase the power from this third-party under a long-term Power Purchase Agreement contract. In fact, this will be one of the first projects in the state of Utah to take advantage of the recent (March 2010) legislation which makes PPA models possible for projects of this type. In addition to utilizing a PPA, this solar project will employ public and private capital, Energy Efficiency and Conservation Block Grants (EECBG), and public/private subsidized bonds that are able to work together efficiently because of the recent stimulus bill. The project also makes use of recent changes to federal tax rules, and the recent re-awakening of private capital markets that make a significant public-private partnership possible. This is an extremely innovative project, and will mark the first time that all of these incentives (EECBG grants, Qualified Energy Conservation Bonds, New Markets tax credits, investment tax credits, public and private funds) have been packaged into one project. All of Salt Lake County's research documents and studies, agreements, and technical information is available to the public. In addition, the County has already shared a variety of information with the public through webinars

  8. Electric dipole polarizabilities at imaginary frequencies for hydrogen, the alkali-metal, alkaline-earth, and noble gas atoms

    SciTech Connect (OSTI)

    Derevianko, Andrei Porsev, Sergey G. Babb, James F.

    2010-05-15

    The electric dipole polarizabilities evaluated at imaginary frequencies for hydrogen, the alkali-metal atoms, the alkaline-earth atoms, and the noble gases are tabulated along with the resulting values of the atomic static polarizabilities, the atom-surface interaction constants, and the dispersion (or van der Waals) constants for the homonuclear and the heteronuclear diatomic combinations of the atoms.

  9. Ultralow-power local laser control of the dimer density in alkali-metal vapors through photodesorption

    SciTech Connect (OSTI)

    Jha, Pankaj K.; Scully, Marlan O. [Texas A and M University, College Station, Texas 77843 (United States); Princeton University, Princeton, New Jersey 08544 (United States); Dorfman, Konstantin E. [Texas A and M University, College Station, Texas 77843 (United States); University of California, Irvine, Irvine, California 92697 (United States); Yi Zhenhuan; Yuan Luqi; Welch, George R. [Texas A and M University, College Station, Texas 77843 (United States); Sautenkov, Vladimir A. [Texas A and M University, College Station, Texas 77843 (United States); Joint Institute of High Temperature, RAS, Moscow 125412 (Russian Federation); Rostovtsev, Yuri V. [University of North Texas, Denton, Texas 76203 (United States); Zheltikov, Aleksei M. [Texas A and M University, College Station, Texas 77843 (United States); M.V. Lomonosov Moscow State University, Moscow 119992 (Russian Federation)

    2012-08-27

    Ultralow-power diode-laser radiation is employed to induce photodesorption of cesium from a partially transparent thin-film cesium adsorbate on a solid surface. Using resonant Raman spectroscopy, we demonstrate that this photodesorption process enables an accurate local optical control of the density of dimer molecules in alkali-metal vapors.

  10. Rheological properties of water-coal slurries based on brown coal in the presence of sodium lignosulfonates and alkali

    SciTech Connect (OSTI)

    D.P. Savitskii; A.S. Makarov; V.A. Zavgorodnii

    2009-07-01

    The effect of the oxidized surface of brown coal on the structural and rheological properties of water-coal slurries was found. The kinetics of structure formation processes in water-coal slurries based on as-received and oxidized brown coal was studied. The effect of lignosulfonate and alkali additives on the samples of brown coal was considered.

  11. PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Salt Lake City Corporation (Solar Market Pathways) PROJECT PROFILE: Salt Lake City Corporation (Solar Market Pathways) Title: Wasatch Solar Project WASATCH solar logo.png Funding Opportunity: Solar Market Pathways SunShot Subprogram: Soft Costs Location: Salt Lake City, UT Amount Awarded: $600,000 Awardee Cost Share: $164,645 Salt Lake City and its partners are developing a comprehensive long-term solar deployment strategy, which includes an analysis of the value of

  12. Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design and Feasibility | Department of Energy Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility Project Profile: Modular and Scalable Baseload Molten Salt Plant Conceptual Design and Feasibility eSolar logo eSolar, under the Baseload CSP FOA, designed a 100-MW, 75% capacity factor, molten salt power tower plant, based around a molten salt receiver and heliostat field module with a nominal thermal rating of 50 MWth. They used a modular approach, which can be

  13. Method for preparing salt solutions having desired properties

    DOE Patents [OSTI]

    Ally, Moonis R.; Braunstein, Jerry

    1994-01-01

    The specification discloses a method for preparing salt solutions which exhibit desired thermodynamic properties. The method enables prediction of the value of the thermodynamic properties for single and multiple salt solutions over a wide range of conditions from activity data and constants which are independent of concentration and temperature. A particular application of the invention is in the control of salt solutions in a process to provide a salt solution which exhibits the desired properties.

  14. Prediction of heat capacities of solid inorganic salts from group...

    Office of Scientific and Technical Information (OSTI)

    Subject: 36 MATERIALS SCIENCE; 99 MATHEMATICS, COMPUTERS, INFORMATION SCIENCE, MANAGEMENT, LAW, MISCELLANEOUS; SALTS; SPECIFIC HEAT; OXIDES; FLUORIDES; CHLORIDES; ANIONS; CATIONS; ...

  15. Combinations of fluorinated solvents with imide salts or methide salts for electrolytes

    DOE Patents [OSTI]

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Lei, Norman; Guerrero-Zavala, Guillermo; Kwong, Kristie W

    2015-11-10

    Provided are electrochemical cells and electrolytes used to build such cells. The electrolytes include imide salts and/or methide salts as well as fluorinated solvents capable of maintaining single phase solutions at between about -30.degree. C. to about 80.degree. C. The fluorinated solvents, such as fluorinated carbonates, fluorinated esters, and fluorinated esters, are less flammable than their non-fluorinated counterparts and improve safety characteristics of cells containing these solvents. The amount of fluorinated solvents in electrolytes may be between about 30% and 80% by weight not accounting weight of the salts. Linear and cyclic imide salts, such as LiN(SO.sub.2CF.sub.2CF.sub.3).sub.2, and LiN(SO.sub.2CF.sub.3).sub.2, as well as methide salts, such as LiC(SO.sub.2CF.sub.3).sub.3 and LiC(SO.sub.2CF.sub.2CF.sub.3).sub.3, may be used in these electrolytes. Fluorinated alkyl groups enhance solubility of these salts in the fluorinated solvents. In some embodiments, the electrolyte may also include a flame retardant, such as a phosphazene, and/or one or more ionic liquids.

  16. In-Drift Precipitates/Salts Model

    SciTech Connect (OSTI)

    P. Mariner

    2004-11-09

    This report documents the development and validation of the in-drift precipitates/salts (IDPS) model. The IDPS model is a geochemical model designed to predict the postclosure effects of evaporation and deliquescence on the chemical composition of water within the Engineered Barrier System (EBS) in support of the Total System Performance Assessment for the License Application (TSPA-LA). Application of the model in support of TSPA-LA is documented in ''Engineered Barrier System: Physical and Chemical Environment Model'' (BSC 2004 [DIRS 169860]). Technical Work Plan for: Near-Field Environment and Transport In-Drift Geochemistry Model Report Integration (BSC 2004 [DIRS 171156]) is the technical work plan (TWP) for this report. It called for a revision of the previous version of the report (BSC 2004 [DIRS 167734]) to achieve greater transparency, readability, data traceability, and report integration. The intended use of the IDPS model is to estimate and tabulate, within an appropriate level of confidence, the effects of evaporation, deliquescence, and potential environmental conditions on the pH, ionic strength, and chemical compositions of water and minerals on the drip shield or other location within the drift during the postclosure period. Specifically, the intended use is as follows: (1) To estimate, within an appropriate level of confidence, the effects of evaporation and deliquescence on the presence and composition of water occurring within the repository during the postclosure period (i.e., effects on pH, ionic strength, deliquescence relative humidity, total concentrations of dissolved components in the system Na-K-H-Mg-Ca-Al-Cl-F-NO{sub 3}-SO{sub 4}-Br-CO{sub 3}-SiO{sub 2}-CO{sub 2}-O{sub 2}-H{sub 2}O, and concentrations of the following aqueous species that potentially affect acid neutralizing capacity: HCO{sub 3}{sup -}, CO{sub 3}{sup 2-}, OH{sup -}, H{sup +}, HSO{sub 4}{sup -}, Ca{sup 2+}, Mg{sup 2+}, CaHCO{sub 3}{sup +}, MgHCO{sub 3}{sup +}, HSiO{sub 3

  17. EIA - Natural Gas Pipeline Network - Salt Cavern Storage Reservoir

    U.S. Energy Information Administration (EIA) Indexed Site

    Configuration Salt Cavern Storage Reservoir Configuration About U.S. Natural Gas Pipelines - Transporting Natural Gas based on data through 2007/2008 with selected updates Salt Cavern Underground Natural Gas Storage Reservoir Configuration Salt Cavern Underground Natural Gas Storage Reservoir Configuration Source: PB Energy Storage Services Inc.

  18. SOLUTION MINING IN SALT DOMES OF THE GULF COAST EMBAYMENT

    SciTech Connect (OSTI)

    Griswold, G. B.

    1981-02-01

    Following a description of salt resources in the salt domes of the gulf coast embayment, mining, particularly solution mining, is described. A scenario is constructed which could lead to release of radioactive waste stored in a salt dome via inadvertent solution mining and the consequences of this scenario are analyzed.

  19. The effects of lithium hydroxide solution on alkali silica reaction gels created with opal

    SciTech Connect (OSTI)

    Mitchell, Lyndon D.; Beaudoin, James J.; Grattan-Bellew, Patrick

    2004-04-01

    The reaction of Nevada opal with calcium hydroxide, potassium hydroxide and lithium hydroxide solutions was investigated. In addition, opal was exposed to a combined solution of these three hydroxides. The progress of the three reactions was followed using X-ray diffraction (XRD), {sup 29}Si nuclear magnetic resonance (NMR) and scanning electron microscopy (SEM). The XRD results indicated the presence of a low-angle peak exclusive to the lithium-based reactions. The NMR results suggested a change in the silicate structure in the presence of lithium. These techniques indicated that the reaction of the alkali with the opal starting material is inhibited and perhaps stopped in the presence of lithium hydroxide. SEM revealed that the morphology of the reaction products on the surface of the reacted opal grains is markedly different invariably. It was concluded that evidence to support the theory of a protective layer exists and that the nature of the layer varies with ion type.

  20. Energy conservation in the primary aluminum and chlor-alkali industries

    SciTech Connect (OSTI)

    Not Available

    1980-10-01

    The primary aluminum and chlor-alkali industries together use nearly 13% of the electrical energy consumed by US industry. As part of its mission to promote energy conservation in basic US industries, the DOE surveys the present technological status of the major electrochemical industries and evaluates promising technological innovations that may lead to reduced energy requirements. This study provides technical and economic analyses in support of a government program of research and development in advanced electrolytic technology. This program is intended to supplement the development efforts directed toward energy savings by private industry. Sections II and III of this report cover aluminum and chlorine production processes only, since these two industries represent over 90% of the electrical energy requirements of all electrolytic industries in the United States. Section IV examines barriers to accelerated research and development by the electrolytic industries, and makes suggestions for government actions to overcome these barriers.

  1. Microstructural Changes Due to Alkali-Silica Reaction during Standard Mortar Test

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Shin, Jun-Ho; Struble, Leslie; Kirkpatrick, R.

    2015-12-01

    The microstructural development of mortar bars with silica glass aggregate undergoing alkali-silica reaction (ASR) under the conditions of American Society for Testing and Materials (ASTM) Standard Test C1260 was analyzed using scanning electron microscopy and qualitative X-ray microanalysis. Cracking in the aggregate, the hydrated paste, and the paste-aggregate interface was important in the development of the microstructure. Cracks were characterized according to their location, their relationship to other cracks, and whether they are filled with ASR gel. Expansion of the bars was approximately 1% at 12 days and 2% at 53 days. They fell apart by 63 days. The barsmore » contained two zones, an inner region that was undergoing ASR and an outer and much more highly damaged zone that extended further inward over time. Evidence of ASR was present even during the period when specimens were immersed in water, prior to immersion in NaOH solution.« less

  2. Finite element analysis of three TVA dams with alkali-aggregate reaction

    SciTech Connect (OSTI)

    Grenoble, B.A.; Meisenheimer, J.K.; Wagner, C.D.; Newell, V.A.

    1995-12-31

    Three large Tennessee Valley Authority (TVA) dams are currently experiencing problems caused by alkali-aggregate reaction (AAR). Since the fall of 1990, engineers in Stone & Webster`s Denver, Colorado office have been working with TVA to evaluate how AAR is affecting the dams and to identify measures for controlling the adverse effects of the concrete growth. This paper provides an overview of how finite element analysis is being used to understand the affects of AAR on these structures and to evaluate alternatives for minimizing the adverse effects of the concrete growth. Work on Hiwassee Dam is essentially complete, while that on the Chickamauga and Fontana Projects is still in progress. Consequently, this paper will focus primarily on Hiwassee Dam. The ongoing work on the other two projects will only be discussed briefly.

  3. Ion Segregation and Deliquescence of Alkali Halide Nanocrystals on SiO2

    SciTech Connect (OSTI)

    Arima, Kenta; Jiang, Peng; Lin, Deng-Sung; Verdaguer, Albert; Salmeron, Miquel

    2009-08-11

    The adsorption of water on alkali halide (KBr, KCl, KF, NaCl) nanocrystals on SiO{sub 2} and their deliquescence was investigated as a function of relative humidity (RH) from 8% to near saturation by scanning polarization force microscopy. At low humidity, water adsorption solvates ions at the surface of the crystals and increases their mobility. This results in a large increase in the dielectric constant, which is manifested in an increase in the electrostatic force and in an increase in the apparent height of the nanocrystals. Above 58% RH, the diffusion of ions leads to Ostwald ripening, where larger nanocrystals grow at the expense of the smaller ones. At the deliquescence point, droplets were formed. For KBr, KCl, and NaCl, the droplets exhibit a negative surface potential relative to the surrounding region, which is indicative of the preferential segregation of anions to the air/solution interface.

  4. Silicate species of water glass and insights for alkali-activated green cement

    SciTech Connect (OSTI)

    Jansson, Helén; Bernin, Diana; Ramser, Kerstin

    2015-06-15

    Despite that sodium silicate solutions of high pH are commonly used in industrial applications, most investigations are focused on low to medium values of pH. Therefore we have investigated such solutions in a broad modulus range and up to high pH values (∼14) by use of infrared (IR) spectroscopy and silicon nuclear magnetic resonance ({sup 29}Si-NMR). The results show that the modulus dependent pH value leads to more or less charged species, which affects the configurations of the silicate units. This in turn, influences the alkali-activation process of low CO{sub 2} footprint cements, i.e. materials based on industrial waste or by-products.

  5. The development of high-performance alkali-hybrid polarized He3 targets for electron scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Jaideep T.; Dolph, Peter A.M.; Tobias, William Al; Averett, Todd D.; Kelleher, Aiden; Mooney, K. E.; Nelyubin, Vladimir V.; Wang, Yunxiao; Zheng, Yuan; Cates, Gordon D.

    2015-05-01

    We present the development of high-performance polarized ³He targets for use in electron scattering experiments that utilize the technique of alkali-hybrid spin-exchange optical pumping. We include data obtained during the characterization of 24 separate target cells, each of which was constructed while preparing for one of four experiments at Jefferson Laboratory in Newport News, Virginia. The results presented here document dramatic improvement in the performance of polarized ³He targets, as well as the target properties and operating parameters that made those improvements possible. Included in our measurements were determinations of the so-called X-factors that quantify a temperature-dependent and as-yet poorly understood spin-relaxation mechanism that limits the maximum achievable ³He polarization to well under 100%. The presence of this spin-relaxation mechanism was clearly evident in our data. We also present results from a simulation of the alkali-hydrid spin-exchange optical pumping process that was developed to provide guidance in the design of these targets. Good agreement with actual performance was obtained by including details such as off-resonant optical pumping. Now benchmarked against experimental data, the simulation is useful for the design of future targets. Included in our results is a measurement of the K- ³He spin-exchange rate coefficientmore » $$k^\\mathrm{K}_\\mathrm{se} = \\left ( 7.46 \\pm 0.62 \\right )\\!\\times\\!10^{-20}\\ \\mathrm{cm^3/s}$$ over the temperature range 503 K to 563 K.« less

  6. Six-Membered-Ring Malonatoborate-Based Lithium Salts as Electrolytes for Lithium Ion Batteries

    SciTech Connect (OSTI)

    Yang, Li; Zhang, Hanjun; Driscoll, Peter; Lucht, Brett; Kerr, John

    2011-09-30

    A new class of lithium salts of malonatoborate anions has been synthesized. These six-membered-ring salts provided slightly lower ionic conductivity than that of LiBOB and LiBF4. Nevertheless, compared with LiBOB and LiPF6, the lowered ring strains in the malonatoborate structures and reduced numbers of fluorine atoms in the molecules was found to enhance the thermal and water stabilities and compatibilities of these salts with ether solvents. Small amount LiDMMDFB when used as an additive, was found to stabilize LiPF6 in carbonate electrolytes at 80°C for one month. Employing LiMDFB as the electrolyte in Li/Li cells and full cells, large interfacial impedances were observed on lithium metal and the cathode. Moreover, the large impedances are at least partially attributed to the acidic hydrogen atoms in the malonate structure. This issue can be addressed by replacing the acidic atoms with methyl groups.

  7. Climate Action Champions: Salt Lake City, UT | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Salt Lake City, UT Climate Action Champions: Salt Lake City, UT Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the “Crossroads of the West,” Salt Lake City today is a major economic center in the Great Basin and a hub of tourism. │ Photo courtesy of University of Utah Department of Mathematics. Salt Lake City, the capital of Utah, blends snowy mountain ranges with an urban downtown. Known historically as the

  8. WIPP Shares Expertise with Salt Club Members | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Shares Expertise with Salt Club Members WIPP Shares Expertise with Salt Club Members November 26, 2013 - 12:00pm Addthis Carlsbad Field Office’s Abe Van Luik, third from right, examines rock salt taken from the Morsleben mine in Germany. Carlsbad Field Office's Abe Van Luik, third from right, examines rock salt taken from the Morsleben mine in Germany. CARLSBAD, N.M. - EM's Carlsbad Field Office (CBFO) participated in the second meeting of the Nuclear Energy Agency's (NEA) Salt Club and the

  9. Supplemental Cooling for Nitrate Salt Waste

    SciTech Connect (OSTI)

    Goldberg, Mitchell S.

    2015-08-19

    In July 2015, Los Alamos National Laboratory completed installation of a supplemental cooling system in the structure where remediated nitrate salt waste drums are stored. Although the waste currently is in a safe configuration and is monitored daily,controlling the temperature inside the structure adds another layer of protection for workers, the public,and the environment.This effort is among several layers of precautions designed to secure the waste.

  10. Advanced heat exchanger development for molten salts

    SciTech Connect (OSTI)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  11. Stationary phase deposition based on onium salts

    DOE Patents [OSTI]

    Wheeler, David R.; Lewis, Patrick R.; Dirk, Shawn M.; Trudell, Daniel E.

    2008-01-01

    Onium salt chemistry can be used to deposit very uniform thickness stationary phases on the wall of a gas chromatography column. In particular, the stationary phase can be bonded to non-silicon based columns, especially microfabricated metal columns. Non-silicon microfabricated columns may be manufactured and processed at a fraction of the cost of silicon-based columns. In addition, the method can be used to phase-coat conventional capillary columns or silicon-based microfabricated columns.

  12. Molten salt battery having inorganic paper separator

    DOE Patents [OSTI]

    Walker, Jr., Robert D.

    1977-01-01

    A high temperature secondary battery comprises an anode containing lithium, a cathode containing a chalcogen or chalcogenide, a molten salt electrolyte containing lithium ions, and a separator comprising a porous sheet comprising a homogenous mixture of 2-20 wt.% chrysotile asbestos fibers and the remainder inorganic material non-reactive with the battery components. The non-reactive material is present as fibers, powder, or a fiber-powder mixture.

  13. Advanced heat exchanger development for molten salts

    SciTech Connect (OSTI)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet material in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.

  14. Advanced heat exchanger development for molten salts

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sabharwall, Piyush; Clark, Denis; Glazoff, Michael; Zheng, Guiqiu; Sridharan, Kumar; Anderson, Mark

    2014-12-01

    This study addresses present work concerned with advanced heat exchanger development for molten salt in nuclear and non nuclear thermal systems. The molten salt systems discussed herein use alloys, such as Hastelloy N and 242, which show corrosion resistance to molten salt at nominal operating temperatures up to 700°C. These alloys were diffusion welded, and the corresponding information is presented. Test specimens were prepared for exposing diffusion welds to molten salt environments. Hastelloy N and 242 were found to be weldable by diffusion welding, with ultimate tensile strengths about 90% of base metal values. Both diffusion welds and sheet materialmore » in Hastelloy N were corrosion tested in?58 mol% KF and 42 mol% ZrF4 at 650, 700, and 850°C for 200, 500, and 1,000 hours. Corrosion rates found were similar between welded and nonwelded materials, typically <10 mils per year. For materials of construction, nickel and alloys with dense nickel coatings are effectively inert to corrosion in fluorides, but not so in chlorides. Hence, additional testing of selected alloys for resistance to intergranular corrosion is needed, as is a determination of corrosion rate as a function of contaminant type and alloy composition with respect to chromium and carbon to better define the optimal chromium and carbon composition, independent of galvanic or differential solubility effects. Also presented is the division of the nuclear reactor and high temperature components per ASME standards, along with design requirements for a subcritical Rankine power cycle heat exchanger that has to overcome pressure difference of about 17 MPa.« less

  15. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, Lawrence J.; Christensen, Dana C.

    1984-01-01

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium from electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  16. Pyrochemical process for extracting plutonium from an electrolyte salt

    DOE Patents [OSTI]

    Mullins, L.J.; Christensen, D.C.

    1982-09-20

    A pyrochemical process for extracting plutonium from a plutonium-bearing salt is disclosed. The process is particularly useful in the recovery of plutonium for electrolyte salts which are left over from the electrorefining of plutonium. In accordance with the process, the plutonium-bearing salt is melted and mixed with metallic calcium. The calcium reduces ionized plutonium in the salt to plutonium metal, and also causes metallic plutonium in the salt, which is typically present as finely dispersed metallic shot, to coalesce. The reduced and coalesced plutonium separates out on the bottom of the reaction vessel as a separate metallic phase which is readily separable from the overlying salt upon cooling of the mixture. Yields of plutonium are typically on the order of 95%. The stripped salt is virtually free of plutonium and may be discarded to low-level waste storage.

  17. Liquid Fluoride Salt Experimentation Using a Small Natural Circulation Cell

    SciTech Connect (OSTI)

    Yoder Jr, Graydon L; Heatherly, Dennis Wayne; Williams, David F; Elkassabgi, Yousri M.; Caja, Joseph; Caja, Mario; Jordan, John; Salinas, Roberto

    2014-04-01

    A small molten fluoride salt experiment has been constructed and tested to develop experimental techniques for application in liquid fluoride salt systems. There were five major objectives in developing this test apparatus: Allow visual observation of the salt during testing (how can lighting be introduced, how can pictures be taken, what can be seen) Determine if IR photography can be used to examine components submerged in the salt Determine if the experimental configuration provides salt velocity sufficient for collection of corrosion data for future experimentation Determine if a laser Doppler velocimeter can be used to quantify salt velocities. Acquire natural circulation heat transfer data in fluoride salt at temperatures up to 700oC All of these objectives were successfully achieved during testing with the exception of the fourth: acquiring velocity data using the laser Doppler velocimeter. This paper describes the experiment and experimental techniques used, and presents data taken during natural circulation testing.

  18. Polymeric salt bridges for conducting electric current in microfluidic devices

    DOE Patents [OSTI]

    Shepodd, Timothy J.; Tichenor, Mark S.; Artau, Alexander

    2009-11-17

    A "cast-in-place" monolithic microporous polymer salt bridge for conducting electrical current in microfluidic devices, and methods for manufacture thereof is disclosed. Polymeric salt bridges are formed in place in capillaries or microchannels. Formulations are prepared with monomer, suitable cross-linkers, solvent, and a thermal or radiation responsive initiator. The formulation is placed in a desired location and then suitable radiation such as UV light is used to polymerize the salt bridge within a desired structural location. Embodiments are provided wherein the polymeric salt bridges have sufficient porosity to allow ionic migration without bulk flow of solvents therethrough. The salt bridges form barriers that seal against fluid pressures in excess of 5000 pounds per square inch. The salt bridges can be formulated for carriage of suitable amperage at a desired voltage, and thus microfluidic devices using such salt bridges can be specifically constructed to meet selected analytical requirements.

  19. RESULTS OF ROUTINE STRIP EFFLUENT HOLD TANK AND DECONTAMINATED SALT SOLUTION HOLD TANK SAMPLES FROM MODULAR CAUSTIC-SIDE SOLVENT EXTRACTION UNIT DURING MACROBATCH 3 OPERATIONS

    SciTech Connect (OSTI)

    Peters, T.; Fink, S.

    2011-06-10

    Strip Effluent Hold Tank (SEHT) and Decontaminated Salt Solution Hold Tank (DSSHT) samples from several of the 'microbatches' of Integrated Salt Disposition Project (ISDP) Salt Batch ('Macrobatch') 3 have been analyzed for {sup 238}Pu, {sup 90}Sr, {sup 137}Cs, and by Inductively Coupled Plasma Emission Spectroscopy (ICPES). The results indicate good decontamination performance within process design expectations. While the data set is sparse, the results of this set and the previous set of results for Macrobatch 3 samples indicate consistent operations. However, the Decontamination Factors for plutonium and strontium removal have declined in Macrobatch 3, compared to Macrobatch 2. This may be due to the differences in the Pu concentration or the bulk chemical concentrations in the feed material. SRNL is considering the possible reasons for this decline. The DSSHT samples show continued presence of titanium, likely from leaching of the monosodium titanate in ARP. During operation of the ISDP, quantities of salt waste are processed through the Actinide Removal Process (ARP) and MCU in batches of {approx}3800 gallons. Monosodium titanate (MST) is used in ARP to adsorb actinides and strontium from the salt waste and the waste slurry is then filtered prior to sending the clarified salt solution to MCU. The MCU uses solvent extraction technology to extract cesium from salt waste and concentrate cesium in an acidic aqueous stream (Strip Effluent - SE), leaving a decontaminated caustic salt aqueous stream (Decontaminated Salt Solution - DSS). Sampling occurs in the Decontaminated Salt Solution Hold Tank (DSSHT) and Strip Effluent Hold Tank (SEHT) in the MCU process. The MCU sample plan requires that batches be sampled and analyzed for plutonium and strontium content by Savannah River National Lab (SRNL) to determine MST effectiveness. The cesium measurement is used to monitor cesium removal effectiveness and the inductively coupled plasma emission spectroscopy (ICPES) is

  20. Waste Isolation Pilot Plant Salt Decontamination Testing

    SciTech Connect (OSTI)

    Rick Demmer; Stephen Reese

    2014-09-01

    On February 14, 2014, americium and plutonium contamination was released in the Waste Isolation Pilot Plant (WIPP) salt caverns. At the request of WIPP’s operations contractor, Idaho National Laboratory (INL) personnel developed several methods of decontaminating WIPP salt, using surrogate contaminants and also americium (241Am). The effectiveness of the methods is evaluated qualitatively, and to the extent possible, quantitatively. One of the requirements of this effort was delivering initial results and recommendations within a few weeks. That requirement, in combination with the limited scope of the project, made in-depth analysis impractical in some instances. Of the methods tested (dry brushing, vacuum cleaning, water washing, strippable coatings, and mechanical grinding), the most practical seems to be water washing. Effectiveness is very high, and it is very easy and rapid to deploy. The amount of wastewater produced (2 L/m2) would be substantial and may not be easy to manage, but the method is the clear winner from a usability perspective. Removable surface contamination levels (smear results) from the strippable coating and water washing coupons found no residual removable contamination. Thus, whatever is left is likely adhered to (or trapped within) the salt. The other option that shows promise is the use of a fixative barrier. Bartlett Nuclear, Inc.’s Polymeric Barrier System (PBS) proved the most durable of the coatings tested. The coatings were not tested for contaminant entrapment, only for coating integrity and durability.

  1. Zirconium crosslinked gel compositions, methods of preparation and application in enhanced oil recovery

    SciTech Connect (OSTI)

    Shu, P.; Wszolek, M.

    1987-06-30

    This patent describes an aqueous crosslinking composition useful in the preparation of an aqueous crosslinkable gelling composition, the aqueous crosslinking composition comprising: (a) a water-soluble zirconium (IV) compound; )b) a water-soluble salt selected from the group consisting of an alkali metal or alkaline earth metal sulfate an alkali metal or alkaline earth metal salt of acetic, propionic or butyric acid and mixtures; and (c) water.

  2. An Overview of Liquid Fluoride Salt Heat Transport Technology

    SciTech Connect (OSTI)

    Cetiner, Mustafa Sacit; Holcomb, David Eugene

    2010-01-01

    Liquid fluoride salts are a leading candidate heat transport medium for high-temperature applications. This report provides an overview of the current status of liquid salt heat transport technology. The report includes a high-level, parametric evaluation of liquid fluoride salt heat transport loop performance to allow intercomparisons between heat-transport fluid options as well as providing an overview of the properties and requirements for a representative loop. Much of the information presented here derives from the earlier molten salt reactor program and a significant advantage of fluoride salts, as high temperature heat transport media is their consequent relative technological maturity. The report also includes a compilation of relevant thermophysical properties of useful heat transport fluoride salts. Fluoride salts are both thermally stable and with proper chemistry control can be relatively chemically inert. Fluoride salts can, however, be highly corrosive depending on the container materials selected, the salt chemistry, and the operating procedures used. The report also provides an overview of the state-of-the-art in reduction-oxidation chemistry control methodologies employed to minimize salt corrosion as well as providing a general discussion of heat transfer loop operational issues such as start-up procedures and freeze-up vulnerability.

  3. Salt disposal of heat-generating nuclear waste.

    SciTech Connect (OSTI)

    Leigh, Christi D.; Hansen, Francis D.

    2011-01-01

    This report summarizes the state of salt repository science, reviews many of the technical issues pertaining to disposal of heat-generating nuclear waste in salt, and proposes several avenues for future science-based activities to further the technical basis for disposal in salt. There are extensive salt formations in the forty-eight contiguous states, and many of them may be worthy of consideration for nuclear waste disposal. The United States has extensive experience in salt repository sciences, including an operating facility for disposal of transuranic wastes. The scientific background for salt disposal including laboratory and field tests at ambient and elevated temperature, principles of salt behavior, potential for fracture damage and its mitigation, seal systems, chemical conditions, advanced modeling capabilities and near-future developments, performance assessment processes, and international collaboration are all discussed. The discussion of salt disposal issues is brought current, including a summary of recent international workshops dedicated to high-level waste disposal in salt. Lessons learned from Sandia National Laboratories' experience on the Waste Isolation Pilot Plant and the Yucca Mountain Project as well as related salt experience with the Strategic Petroleum Reserve are applied in this assessment. Disposal of heat-generating nuclear waste in a suitable salt formation is attractive because the material is essentially impermeable, self-sealing, and thermally conductive. Conditions are chemically beneficial, and a significant experience base exists in understanding this environment. Within the period of institutional control, overburden pressure will seal fractures and provide a repository setting that limits radionuclide movement. A salt repository could potentially achieve total containment, with no releases to the environment in undisturbed scenarios for as long as the region is geologically stable. Much of the experience gained from United

  4. Salt tectonics in the southern North Sea, Netherlands

    SciTech Connect (OSTI)

    Remmelts, G. )

    1993-09-01

    Large parts of the southern North Sea are underlain by Upper Permian Zechstein salt. A vast amount of this sequence, originally more than 1000 m thick, has migrated into salt structures. Many hydrocarbon accumulations are related to these structures. The formation of the salt structures may have created structural traps or (by influencing the sedimentation pattern) stratigraphic traps. Salt generally acts as a seal, but depletion of salt can create migration routes into higher strata for hydrocarbons originating from underlying source rocks. The thermal conductivity of the salt can influence the maturity of source rocks in its direct vicinity. Salt structures are formed almost exclusively by Zechstein salt. Minor movement occurred in Triassic evaporites. The development of salt structures is influenced strongly by regional tectonics. Basement faulting probably triggered the salt movement. The dominant structural grain is reflected in the orientation and location of the salt structures. Periods of increased growth rates coincide with tectonic phases. Long walls of salt formed in the northern area where the Triassic north-south orientated faults (which were rejuvenated in Late Jurassic) predominate. Toward the south, the northwest-southeast direction of the Late Jurassic interferes with the north-south trend and gradually becomes the dominant direction. This is reflected in the shortening of the north-south salt structures and eventually in the change in their orientation. Average vertical growth rates have been calculated to be around 0.005-0.035 mm/yr. When correction for suberosion and erosion processes could be quantified and applied to the growth rates, they were significantly higher.

  5. Tank 37H Salt Removal Batch Process and Salt Dissolution Mixing Study

    SciTech Connect (OSTI)

    Kwon, K.C.

    2001-09-18

    Tank 30H is the receipt tank for concentrate from the 3H Evaporator. Tank 30H has had problems, such as cooling coil failure, which limit its ability to receive concentrate from the 3H Evaporator. SRS High Level Waste wishes to use Tank 37H as the receipt tank for the 3H Evaporator concentrate. Prior to using Tank 37H as the 3H Evaporator concentrate receipt tank, HLW must remove 50 inches of salt cake from the tank. They requested SRTC to evaluate various salt removal methods for Tank 37H. These methods include slurry pumps, Flygt mixers, the modified density gradient method, and molecular diffusion.

  6. Direct Grout Stabilization of High Cesium Salt Waste: Salt Alternative Phase III Feasibility Study

    SciTech Connect (OSTI)

    Langton, C.A.

    1998-12-07

    The direct grout alternative is a viable option for treatment/stabilization and disposal of salt waste containing Cs-137 concentrations of 1-3 Ci/gal. The composition of the direct grout salt solution is higher in sodium salts and contains up to a few hundred ppm Cs-137 more than the current reference salt solution. However it is still similar to the composition of the current reference salt solution. Consequently, the processing, setting, and leaching properties (including TCLP for Cr and Hg) of the direct grout and current saltstone waste forms are very similar. The significant difference between these waste solutions is that the high cesium salt solution will contain between 1 and 3 Curies of Cs-137 per gallon compared to a negligible amount in the current salt solution. This difference will require special engineering and shielding for a direct grout processing facility and disposal units to achieve acceptable radiation exposure conditions. The Cs-137 concentration in the direct grout salt solution will also affect the long-term curing temperature of the waste form since 4.84 Watts of energy are generated per 1000 Ci of Cs-137. The temperature rise of the direct grout during long-term curing has been calculated by A. Shaddy, SRTC.1 The effect of curing temperature on the strength, leaching and physical durability of the direct grout saltstone is described in this report. At the present time, long term curing at 90 degrees C appears to be unacceptable because of cracking which will affect the structural integrity as evaluated in the immersion test. (The experiments conducted in this feasibility study do not address the effect of cracking on leaching of contaminants other than Cr, Hg, and Cs.) No cracking of the direct grout or reference saltstone waste forms was observed for samples cured at 70 degrees C. At the present time the implications of waste form cracking at elevated curing temperatures has not been fully addressed. The direct grout falls within the

  7. Electrolytic orthoborate salts for lithium batteries (Patent...

    Office of Scientific and Technical Information (OSTI)

    In this formula anionic orthoborate groups are capped with two bidentate chelating groups, Y1 and Y2. Certain preferred chelating groups are dibasic acid residues, most preferably ...

  8. Methods of use of calcium hexa aluminate refractory linings and/or chemical barriers in high alkali or alkaline environments

    DOE Patents [OSTI]

    McGowan, Kenneth A; Cullen, Robert M; Keiser, James R; Hemrick, James G; Meisner, Roberta A

    2013-10-22

    A method for improving the insulating character/and or penetration resistance of a liner in contact with at least one of an alkali and/or alkaline environments is provided. The method comprises lining a surface that is subject to wear by an alkali environment and/or an alkaline environment with a refractory composition comprising a refractory aggregate consisting essentially of a calcium hexa aluminate clinker having the formula CA.sub.6, wherein C is equal to calcium oxide, wherein A is equal to aluminum oxide, and wherein the hexa aluminate clinker has from zero to less than about fifty weight percent C.sub.12A.sub.7, and wherein greater than 98 weight percent of the calcium hexa aluminate clinker having a particle size ranging from -20 microns to +3 millimeters, for forming a liner of the surface. This method improves the insulating character/and or penetration resistance of the liner.

  9. The role of alumina on performance of alkali-activated slag paste exposed to 50 °C

    SciTech Connect (OSTI)

    Jambunathan, N.; Sanjayan, J.G.; Pan, Z.; Li, G.; Liu, Y.; Korayem, A.H.; Duan, W.H.; Collins, F.

    2013-12-15

    The strength and microstructural evolution of two alkali-activated slags, with distinct alumina content, exposed to 50 °C have been investigated. These two slags are ground-granulated blast furnace slag (containing 13% (wt.) alumina) and phosphorous slag (containing 3% (wt.) alumina). They were hydrated in the presence of a combination of sodium hydroxide and sodium silicate solution at different ratios. The microstructure of the resultant slag pastes was assessed by X-ray diffraction, differential thermogravimetric analysis, and scanning electron microscopy. The results obtained from these techniques reveal the presence of hexagonal hydrates: CAH{sub 10} and C{sub 4}AH{sub 13} in all alkali-activated ground-granulated blast-furnace slag pastes (AAGBS). These hydrates are not observed in pastes formed by alkali-activated ground phosphorous slag (AAGPS). Upon exposure to 50 °C, the aforementioned hydration products of AAGBS pastes convert to C{sub 3}AH{sub 6}, leading to a rapid deterioration in the strength of the paste. In contrast, no strength loss was detected in AAGPS pastes following exposure to 50 °C. -- Highlights: •Strength of alkali-activated slag (AAS) pastes after exposure to 50 °C is studied. •AAS pastes with high alumina content lose strength after the exposure. •C{sub 4}AH{sub 13} and CAH{sub 10} form in these AAS pastes. •Conversion of these calcium alumina hydrates is associated with the strength loss. •AAS pastes with low alumina content maintain its strength after the exposure.

  10. Supai salt karst features: Holbrook Basin, Arizona

    SciTech Connect (OSTI)

    Neal, J.T.

    1994-12-31

    More than 300 sinkholes, fissures, depressions, and other collapse features occur along a 70 km (45 mi) dissolution front of the Permian Supai Formation, dipping northward into the Holbrook Basin, also called the Supai Salt Basin. The dissolution front is essentially coincident with the so-called Holbrook Anticline showing local dip reversal; rather than being of tectonic origin, this feature is likely a subsidence-induced monoclinal flexure caused by the northward migrating dissolution front. Three major areas are identified with distinctive attributes: (1) The Sinks, 10 km WNW of Snowflake, containing some 200 sinkholes up to 200 m diameter and 50 m depth, and joint controlled fissures and fissure-sinks; (2) Dry Lake Valley and contiguous areas containing large collapse fissures and sinkholes in jointed Coconino sandstone, some of which drained more than 50 acre-feet ({approximately}6 {times} 10{sup 4} m{sup 3}) of water overnight; and (3) the McCauley Sinks, a localized group of about 40 sinkholes 15 km SE of Winslow along Chevelon Creek, some showing essentially rectangular jointing in the surficial Coconino Formation. Similar salt karst features also occur between these three major areas. The range of features in Supai salt are distinctive, yet similar to those in other evaporate basins. The wide variety of dissolution/collapse features range in development from incipient surface expression to mature and old age. The features began forming at least by Pliocene time and continue to the present, with recent changes reportedly observed and verified on airphotos with 20 year repetition. The evaporate sequence along interstate transportation routes creates a strategic location for underground LPG storage in leached caverns. The existing 11 cavern field at Adamana is safely located about 25 miles away from the dissolution front, but further expansion initiatives will require thorough engineering evaluation.

  11. Examination of the concrete from an old Portuguese dam: Texture and composition of alkali-silica gel

    SciTech Connect (OSTI)

    Fernandes, Isabel Noronha, Fernando Teles, Madalena

    2007-11-15

    Exudations and pop-outs were identified in the interior galleries of a large dam built in the 1960s. The samples collected were examined by a Scanning Electron Microscope. A dense material with a smooth surface and drying shrinkage cracks or a spongy texture were observed in the samples. The semi-quantitative composition was obtained by energy dispersive spectrometry (EDS) and it was concluded that this material corresponds to alkali-silica gel, composed of SiO{sub 2}-Na{sub 2}O-K{sub 2}O-CaO. A viscous white product in contact with an aggregate particle in a cone sampled from a pop-out was observed through use of the scanning electron microscope and it has characteristics similar to the gel present in the exudations and cavities. Reference is made to the potential alkali reactivity of the aggregate present in the concrete. The texture and composition of the products probably resulting from an alkali-silica reaction are presented, set out in ternary diagrams, and discussed.

  12. Experimental studies of actinides in molten salts

    SciTech Connect (OSTI)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  13. Genomic insights into salt adaptation in a desert poplar

    SciTech Connect (OSTI)

    Ma, Tao; Wang, Junyi; Zhou, Gongke; Yue, Zhen; Hu, Quanjun; Chen, Yan; Liu, Bingbing; Qiu, Qiang; Wang, Zhuo; Zhang, Jian; Wang, Kun; Jaing, Dechun; Gou, Caiyun; Yu, Lili; Zhan, Dongliang; Zhou, Ran; Luo, Wenchun; Ma, Hui; Yang, Yongzhi; Pan, Shengkai; Fang, Dongming; Luo, Yadan; Wang, Xia; Wang, Gaini; Wang, Juan; Wang, Qian; Lu, Xu; Chen, Zhe; Liu, Jinchao; Lu, Yao; Yin, Ye; Yang, Huanming; Abbott, Richard; Wu, Yuxia; Wan, Dongshi; Li, Jia; Yin, Tongming; Yin, Tongming; Lascoux, Martin; DiFazio, Steven P; Tuskan, Gerald A; Wang, Jun; Jianquan, Liu

    2013-01-01

    Despite the high economic and ecological importance of forests, our knowledge of the genomic evolution of trees under salt stress remains very limited. Here we report the genome sequence of the desert poplar, Populus euphratica, which exhibits high tolerance to sa lt stress. Its genome is very similar and collinear to that of the closely related mesophytic congener, P trichocarpa. However, we find that several gene families likely to be involved in tolerance to salt stress contain significantly more gene copies within the P euphratica lineage. Furthermore, genes showing evidence of positive selection are significantly enriched in functional categories related to salt stress. Some of these genes, and others within the same categories, are significantly upregulated under salt stress relative to their expression in another salt-sensitive poplar. Our results provide an important background for understanding tree adaptation to salt stress and facilitating the genetic improvement of cultivated poplars for saline soils.

  14. Monitoring, Modeling, and Diagnosis of Alkali-Silica Reaction in Small Concrete Samples

    SciTech Connect (OSTI)

    Agarwal, Vivek; Cai, Guowei; Gribok, Andrei V.; Mahadevan, Sankaran

    2015-09-01

    Assessment and management of aging concrete structures in nuclear power plants require a more systematic approach than simple reliance on existing code margins of safety. Structural health monitoring of concrete structures aims to understand the current health condition of a structure based on heterogeneous measurements to produce high-confidence actionable information regarding structural integrity that supports operational and maintenance decisions. This report describes alkali-silica reaction (ASR) degradation mechanisms and factors influencing the ASR. A fully coupled thermo-hydro-mechanical-chemical model developed by Saouma and Perotti by taking into consideration the effects of stress on the reaction kinetics and anisotropic volumetric expansion is presented in this report. This model is implemented in the GRIZZLY code based on the Multiphysics Object Oriented Simulation Environment. The implemented model in the GRIZZLY code is randomly used to initiate ASR in a 2D and 3D lattice to study the percolation aspects of concrete. The percolation aspects help determine the transport properties of the material and therefore the durability and service life of concrete. This report summarizes the effort to develop small-size concrete samples with embedded glass to mimic ASR. The concrete samples were treated in water and sodium hydroxide solution at elevated temperature to study how ingress of sodium ions and hydroxide ions at elevated temperature impacts concrete samples embedded with glass. Thermal camera was used to monitor the changes in the concrete sample and results are summarized.

  15. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders

    SciTech Connect (OSTI)

    Provis, John L.; Myers, Rupert J.; White, Claire E.; Rose, Volker; Deventer, Jannie S.J. van

    2012-06-15

    Durability of alkali-activated binders is of vital importance in their commercial application, and depends strongly on microstructure and pore network characteristics. X-ray microtomography ({mu}CT) offers, for the first time, direct insight into microstructural and pore structure characteristics in three dimensions. Here, {mu}CT is performed on a set of sodium metasilicate-activated fly ash/slag blends, using a synchrotron beamline instrument. Segmentation of the samples into pore and solid regions is then conducted, and pore tortuosity is calculated by a random walker method. Segmented porosity and diffusion tortuosity are correlated, and vary as a function of slag content (slag addition reduces porosity and increases tortuosity), and sample age (extended curing gives lower porosity and higher tortuosity). This is particularly notable for samples with {>=} 50% slag content, where a space-filling calcium (alumino)silicate hydrate gel provides porosity reductions which are not observed for the sodium aluminosilicate ('geopolymer') gels which do not chemically bind water of hydration.

  16. Cellular morphology of organic-inorganic hybrid foams based on alkali alumino-silicate matrix

    SciTech Connect (OSTI)

    Verdolotti, Letizia; Capasso, Ilaria; Lavorgna, Marino; Liguori, Barbara; Caputo, Domenico; Iannace, Salvatore

    2014-05-15

    Organic-inorganic hybrid foams based on an alkali alumino-silicate matrix were prepared by using different foaming methods. Initially, the synthesis of an inorganic matrix by using aluminosilicate particles, activated through a sodium silicate solution, was performed at room temperature. Subsequently the viscous paste was foamed by using three different methods. In the first method, gaseous hydrogen produced by the oxidization of Si powder in an alkaline media, was used as blowing agent to generate gas bubbles in the paste. In the second method, the porous structure was generated by mixing the paste with a meringue type of foam previously prepared by whipping, under vigorous stirring, a water solution containing vegetal proteins as surfactants. In the third method, a combination of these two methods was employed. The foamed systems were consolidated for 24 hours at 40C and then characterized by FTIR, X-Ray diffraction, scanning electron microscopy (SEM) and compression tests. Low density foams (?500 Kg/m{sup 3}) with good cellular structure and mechanical properties were obtained by combining the meringue approach with the use of the chemical blowing agent based on Si.

  17. Integrated demonstration of molten salt oxidation with salt recycle for mixed waste treatment

    SciTech Connect (OSTI)

    Hsu, P.C.

    1997-11-01

    Molten Salt Oxidation (MSO) is a thermal, nonflame process that has the inherent capability of completely destroying organic constituents of mixed wastes, hazardous wastes, and energetic materials while retaining inorganic and radioactive constituents in the salt. For this reason, MSO is considered a promising alternative to incineration for the treatment of a variety of organic wastes. Lawrence Livermore National Laboratory (LLNL) has prepared a facility and constructed an integrated pilot-scale MSO treatment system in which tests and demonstrations are performed under carefully controlled (experimental) conditions. The system consists of a MSO processor with dedicated off-gas treatment, a salt recycle system, feed preparation equipment, and equipment for preparing ceramic final waste forms. This integrated system was designed and engineered based on laboratory experience with a smaller engineering-scale reactor unit and extensive laboratory development on salt recycle and final forms preparation. In this paper we present design and engineering details of the system and discuss its capabilities as well as preliminary process demonstration data. A primary purpose of these demonstrations is identification of the most suitable waste streams and waste types for MSO treatment.

  18. Molecular dynamics study of saltsolution interface: Solubility and surface charge of salt in water

    SciTech Connect (OSTI)

    Kobayashi, Kazuya; Liang, Yunfeng E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Matsuoka, Toshifumi E-mail: matsuoka@earth.kumst.kyoto-u.ac.jp; Sakka, Tetsuo

    2014-04-14

    The NaCl saltsolution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl saltsolution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a saltsolution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules.

  19. Salt Lake County Residential Solar Financing Study | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Information Resources » Salt Lake County Residential Solar Financing Study Salt Lake County Residential Solar Financing Study As part of our engagement with the National Renewable Energy Laboratories conducting the Salt Lake County Solar America Residential Finance Study, we have drafted this report summarizing the tools and mechanisms available for residential solar projects. These include the financial incentives available, possible financing models that could be used in the County, and a

  20. Delivery system for molten salt oxidation of solid waste

    DOE Patents [OSTI]

    Brummond, William A. (Livermore, CA); Squire, Dwight V. (Livermore, CA); Robinson, Jeffrey A. (Manteca, CA); House, Palmer A. (Walnut Creek, CA)

    2002-01-01

    The present invention is a delivery system for safety injecting solid waste particles, including mixed wastes, into a molten salt bath for destruction by the process of molten salt oxidation. The delivery system includes a feeder system and an injector that allow the solid waste stream to be accurately metered, evenly dispersed in the oxidant gas, and maintained at a temperature below incineration temperature while entering the molten salt reactor.

  1. Independent Oversight Assessment, Salt Waste Processing Facility Project -

    Office of Environmental Management (EM)

    January 2013 | Department of Energy Salt Waste Processing Facility Project - January 2013 Independent Oversight Assessment, Salt Waste Processing Facility Project - January 2013 January 2013 Assessment of Nuclear Safety Culture at the Salt Waste Processing Facility Project The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security (HSS), conducted an independent assessment of nuclear safety culture at the

  2. Enterprise Assessments Review of the Savannah River Site Salt Waste

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing Facility Construction Quality and Startup Test Plans - June 2015 | Department of Energy Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June 2015 June 2015 Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans The Office of Nuclear Safety and Environmental

  3. Project Profile: Advanced Nitrate Salt Central Receiver Power Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Nitrate Salt Central Receiver Power Plant Project Profile: Advanced Nitrate Salt Central Receiver Power Plant Abengoa logo Abengoa, under the Baseload CSP FOA, demonstrated a 100-megawatt electrical (MWe) central receiver plant using nitrate salt as the receiver coolant, thermal storage medium, and heat transport fluid in the steam generator. Approach Photo of two lit towers surrounded by much smaller blue flat plates that are mounted on the ground. Abengoa planned to

  4. Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Transfer Fluids | Department of Energy Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Project Profile: Deep Eutectic Salt Formulations Suitable as Advanced Heat Transfer Fluids Halotechnics logo Halotechnics, under the Thermal Storage FOA, is conducting high-throughput, combinatorial research and development of salt formulations for use as highly efficient heat transfer fluids (HTFs). Approach Robotic high-throughput screening methods typically used in the

  5. Project Profile: Molten Salt-Carbon Nanotube Thermal Storage | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Molten Salt-Carbon Nanotube Thermal Storage Project Profile: Molten Salt-Carbon Nanotube Thermal Storage TEES logo Texas Engineering Experiment Station (TEES), under the Thermal Storage FOA, created a composite thermal energy storage material by embedding nanoparticles in a molten salt base material. Approach Graphic of a chart with dots and horizontal lines. TEES measured the specific heat using modulated digital scanning calorimetry and created a system performance and economic

  6. Project Profile: Novel Molten Salts Thermal Energy Storage for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Generation | Department of Energy Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project Profile: Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Alabama logo The University of Alabama, under the Thermal Storage FOA, is developing thermal energy storage (TES) media consisting of low melting point (LMP) molten salt with high TES density for sensible heat storage systems. Approach They will conduct

  7. DOE Issues Salt Waste Determination for the Savannah River Site |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Salt Waste Determination for the Savannah River Site DOE Issues Salt Waste Determination for the Savannah River Site January 18, 2006 - 10:49am Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today issued the waste determination for the treatment and stabilization of low activity salt-waste at the Savannah River Site allowing for significant reductions in environmental and health risks posed by the material. Stored in forty-nine underground tanks,

  8. Test Proposal Document for Phased Field Thermal Testing in Salt |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Test Proposal Document for Phased Field Thermal Testing in Salt Test Proposal Document for Phased Field Thermal Testing in Salt The document summarizes how a new round of staged thermal field testing will help to augment the safety case for disposal of heat generating nuclear waste in salt. The objectives of the proposed test plan are to: (1) address features, events, and processes (FEPs), (2) build scientific and public confidence, (3) foster international

  9. DOE - Office of Legacy Management -- Penn Salt Manufacturing Co Whitemarsh

    Office of Legacy Management (LM)

    Research Laboratories - PA 20 Penn Salt Manufacturing Co Whitemarsh Research Laboratories - PA 20 FUSRAP Considered Sites Site: PENN SALT MANUFACTURING CO., WHITEMARSH RESEARCH LABORATORIES (PA.20) Eliminated from further consideration under FUSRAP Designated Name: Not Designated Alternate Name: Penn Salt Company PA.20-1 Location: Philiadelphia , Pennsylvania PA.20-1 Evaluation Year: 1987 PA.20-1 Site Operations: Conducted process studies for recovery of uranium from fluoride scrap. PA.20-1

  10. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plan | Department of Energy Nitrate Salt Bearing Waste Container Isolation Plan Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container Isolation Plan The purpose of this document is to provide the Plan required by the New Mexico Environment Department Administrative Order 05-20001 issued on May 20, 2014 to the U. S. Department of Energy and Nuclear Waste Partnership LLC. The Order, at paragraph 22, requires the Permittees to submit a WIPP Nitrate Salt Bearing Waste Container

  11. Independent Oversight Review, Savannah River Site Salt Waste Processing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facility - April 2014 | Department of Energy Salt Waste Processing Facility - April 2014 Independent Oversight Review, Savannah River Site Salt Waste Processing Facility - April 2014 April 2014 Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Fire Protection Systems The U.S. Department of Energy (DOE) Office of Enforcement and Oversight (Independent Oversight), within the Office of Health, Safety and Security, conducted an independent review of the

  12. Evaluation of Salt Coolants for Reactor Applications (Journal...

    Office of Scientific and Technical Information (OSTI)

    Some preliminary consideration of economic factors for the candidate salts is also presented. Authors: Williams, David F 1 + Show Author Affiliations ORNL Publication Date: ...

  13. Remediated Nitrate Salt Drums Storage at Los Alamos National Laboratory

    Broader source: Energy.gov [DOE]

    In addition to the remediated nitrate salt (RNS) waste at the Laboratory, similar drums are underground at WIPP and at Waste Control Specialists (WCS) in Andrews, Texas.

  14. Summary - Salt Waste Processing Facility Design at the Savannah...

    Office of Environmental Management (EM)

    of the Salt Waste Processing Facility Design at the Savannah River Site (SRS) Why ... and disposal in grout vaults. Parsons to design, construct, commission and initially ...

  15. ,"Underground Natural Gas Storage - Salt Cavern Storage Fields...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Underground Natural Gas Storage - Salt Cavern Storage Fields",8,"Monthly","42016","01151994" ,"Release ...

  16. Voluntary Protection Program Onsite Review, Salt Waste Processing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Team conducted its review during February 5 - 14, 2013 to determine whether Parsons ... Voluntary Protection Program Onsite Review, Parsons Corporation Salt Waste Processing ...

  17. Accelerator-driven subcritical fission in molten salt core: Closing...

    Office of Scientific and Technical Information (OSTI)

    Accelerator-driven subcritical fission in molten salt core: Closing the nuclear fuel cycle for green nuclear energy Citation Details In-Document Search Title: Accelerator-driven ...

  18. Salt Waste Processing Facility (SWPF) System Turnover from Constructio...

    Office of Environmental Management (EM)

    Facility (SWPF) System Turnover from Construction to Commissioning Salt Waste Processing Facility (SWPF) System Turnover from Construction to Commissioning The SWPF Project ...

  19. Radiometrics At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Radiometrics At Salt Wells Area (Henkle, Et Al., 2005) Exploration Activity...

  20. Development Wells At Salt Wells Area (Nevada Bureau of Mines...

    Open Energy Info (EERE)

    (Nevada Bureau of Mines and Geology, 2009) Exploration Activity Details Location Salt Wells Geothermal Area Exploration Technique Development Drilling Activity Date 2005 - 2005...

  1. Savannah River Site Salt Waste Processing Facility Technology...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Savannah River Site Salt Waste Processing Facility Technology Readiness Assessment Report Full Document and Summary Versions are available for download PDF icon Savannah River Site ...

  2. Accident Investigation of the February 5, 2014, Underground Salt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accident Investigation of the February 5, 2014, Underground Salt Haul Truck Fire at the Waste Isolation Pilot Plant, Carlsbad NM March 26, 2014 Accident Investigation of the ...

  3. Enterprise Assessments Review of the Savannah River Site Salt...

    Energy Savers [EERE]

    and Startup Test Plans - June 2015 Enterprise Assessments Review of the Savannah River Site Salt Waste Processing Facility Construction Quality and Startup Test Plans - June ...

  4. Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating...

    Office of Scientific and Technical Information (OSTI)

    Concentrating Solar Power Systems Final Report Citation Details In-Document Search Title: Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems ...

  5. Coupled Thermal-Hydrological-Mechanical Processes in Salt, Hot...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    pressure solution and dislocation creep, with both terms dependent on effective stress to account for the effects of porosity. This provides insight into granular salt...

  6. Salt Lake City, Utah: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Salt Lake City, Utah: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.7607793, -111.8910474 Show Map Loading map... "minzoom":false,"mapping...

  7. BLM Approves Salt Wells Geothermal Energy Projects | Open Energy...

    Open Energy Info (EERE)

    Energy Projects Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Approves Salt Wells Geothermal Energy Projects Abstract Abstract unavailable....

  8. Liquid Salt Heat Exchanger Technology for VHTR Based Applications...

    Office of Scientific and Technical Information (OSTI)

    The third task focuses integral testing of flowing liquid salts in a heat transfer... Country of Publication: United States Language: English Subject: 21 SPECIFIC NUCLEAR ...

  9. Water Sampling At Salt Wells Area (Shevenell & Garside, 2003...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Shevenell & Garside, 2003) Exploration Activity Details...

  10. Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) ...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Salt Wells Area (Coolbaugh, Et Al., 2006) Exploration Activity Details...

  11. Salt River Electric- Residential Energy Efficiency Rebate Programs

    Broader source: Energy.gov [DOE]

    Salt River Electric serves as the rural electric provider in Kentucky's Bullitt, Nelson, Spencer, and Washington counties. Residential customers are eligible for a variety of cash incentives for...

  12. Analysis of SPR salt cavern remedial leach program 2013. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Title: Analysis of SPR salt cavern remedial leach program 2013. The storage caverns of the US Strategic Petroleum Reserve (SPR) exhibit creep behavior resulting in reduction of ...

  13. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, R.K.; LaCamera, A.F.; Troup, R.L.; Ray, S.P.; Hosler, R.B.

    1999-08-17

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride. 4 figs.

  14. Molten salt bath circulation design for an electrolytic cell

    DOE Patents [OSTI]

    Dawless, Robert K.; LaCamera, Alfred F.; Troup, R. Lee; Ray, Siba P.; Hosler, Robert B.

    1999-01-01

    An electrolytic cell for reduction of a metal oxide to a metal and oxygen has an inert anode and an upwardly angled roof covering the inert mode. The angled roof diverts oxygen bubbles into an upcomer channel, thereby agitating a molten salt bath in the upcomer channel and improving dissolution of a metal oxide in the molten salt bath. The molten salt bath has a lower velocity adjacent the inert anode in order to minimize corrosion by substances in the bath. A particularly preferred cell produces aluminum by electrolysis of alumina in a molten salt bath containing aluminum fluoride and sodium fluoride.

  15. Salt Waste Processing Facility, Line Management Review Board Charter

    Broader source: Energy.gov [DOE]

    The Line Management Review Board (LMRB) serves an important oversight function to monitor the readiness processes and associated deliverables for the Salt Waste Processing Facility (SWPF). The...

  16. Salt Waste Processing Facility, Line Management Review Board...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Line Management Review Board Charter Salt Waste Processing Facility, Line Management Review Board Charter The Line Management Review Board (LMRB) serves an important oversight ...

  17. Product Recovery from HTGR Reactor Fuel Processing Salt Official...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Demonstration of Fuel and Fission Product Recovery from HTGR Reactor Fuel Processing Salt ... HTGR, MST, CST Retention: Permanent Demonstration of Fuel and Fission Product Recovery ...

  18. Controlled Source Frequency-Domain Magnetics At Salt Wells Area...

    Open Energy Info (EERE)

    At Salt Wells Area (Montgomery, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Controlled Source Frequency-Domain Magnetics At...

  19. Waste Isolation Pilot Plant Nitrate Salt Bearing Waste Container

    Office of Environmental Management (EM)

    Nitrate Salt Bearing Waste Container Isolation Plan Prepared in Response to New Mexico ... (DOE) and Nuclear Waste Partnership LLC (NWP), collectively referred to as the Permittees. ...

  20. Lithium Salt-doped, Gelled Polymer Electrolyte with a Nanoporous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Lithium Salt-doped, Gelled Polymer Electrolyte with a ... electrolyte material for use in lithium ion batteries that exhibits better ion ...

  1. Method for the production of uranium chloride salt

    DOE Patents [OSTI]

    Westphal, Brian R.; Mariani, Robert D.

    2013-07-02

    A method for the production of UCl.sub.3 salt without the use of hazardous chemicals or multiple apparatuses for synthesis and purification is provided. Uranium metal is combined in a reaction vessel with a metal chloride and a eutectic salt- and heated to a first temperature under vacuum conditions to promote reaction of the uranium metal with the metal chloride for the production of a UCl.sub.3 salt. After the reaction has run substantially to completion, the furnace is heated to a second temperature under vacuum conditions. The second temperature is sufficiently high to selectively vaporize the chloride salts and distill them into a condenser region.

  2. Project Profile: Novel Molten Salts Thermal Energy Storage for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Novel Molten Salts Thermal Energy Storage for Concentrating Solar Power Generation Project ... They will conduct detailed tests using a laboratory-scale TES system to: Graphic of a ...

  3. Salt Wells Geothermal Energy Projects Environmental Impact Statement...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Energy Projects Environmental Impact Statement Abstract Abstract unavailable....

  4. ENEL Salt Wells Geothermal Facility | Open Energy Information

    Open Energy Info (EERE)

    Salt Wells Geothermal Facility Sector Geothermal energy Location Information Location Churchill, NV Coordinates 39.651603422063, -118.49778413773 Loading map......

  5. Analysis of SPR salt cavern remedial leach program 2013. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Analysis of SPR salt cavern remedial leach program 2013. Citation Details In-Document ... Sponsoring Org: USDOE National Nuclear Security Administration (NNSA) Country of ...

  6. Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrolytes Inexpensive, Nonfluorinated Anions for Lithium Salts and Ionic Liquids for Lithium Battery Electrolytes 2010 DOE Vehicle Technologies and Hydrogen Programs Annual...

  7. Exploratory Well At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Exploratory Well At Salt Wells Area (Bureau of Land Management,...

  8. Ethanol production with dilute acid hydrolysis using partially dried lignocellulosics

    DOE Patents [OSTI]

    Nguyen, Quang A.; Keller, Fred A.; Tucker, Melvin P.

    2003-12-09

    A process of converting lignocellulosic biomass to ethanol, comprising hydrolyzing lignocellulosic materials by subjecting dried lignocellulosic material in a reactor to a catalyst comprised of a dilute solution of a strong acid and a metal salt to lower the activation energy (i.e., the temperature) of cellulose hydrolysis and ultimately obtain higher sugar yields.

  9. Introducing improved structural properties and salt dependence into a coarse-grained model of DNA

    SciTech Connect (OSTI)

    Snodin, Benedict E. K. Mosayebi, Majid; Schreck, John S.; Romano, Flavio; Doye, Jonathan P. K.; Randisi, Ferdinando; ulc, Petr; Ouldridge, Thomas E.; Tsukanov, Roman; Nir, Eyal; Louis, Ard A.

    2015-06-21

    We introduce an extended version of oxDNA, a coarse-grained model of deoxyribonucleic acid (DNA) designed to capture the thermodynamic, structural, and mechanical properties of single- and double-stranded DNA. By including explicit major and minor grooves and by slightly modifying the coaxial stacking and backbone-backbone interactions, we improve the ability of the model to treat large (kilobase-pair) structures, such as DNA origami, which are sensitive to these geometric features. Further, we extend the model, which was previously parameterised to just one salt concentration ([Na{sup +}] = 0.5M), so that it can be used for a range of salt concentrations including those corresponding to physiological conditions. Finally, we use new experimental data to parameterise the oxDNA potential so that consecutive adenine bases stack with a different strength to consecutive thymine bases, a feature which allows a more accurate treatment of systems where the flexibility of single-stranded regions is important. We illustrate the new possibilities opened up by the updated model, oxDNA2, by presenting results from simulations of the structure of large DNA objects and by using the model to investigate some salt-dependent properties of DNA.

  10. Laboratory investigation of crushed salt consolidation and fracture healing

    SciTech Connect (OSTI)

    Not Available

    1987-01-01

    A laboratory test program was conducted to investigate the consolidation behavior of crushed salt and fracture healing in natural and artificial salt. Crushed salt is proposed for use as backfill in a nuclear waste repository in salt. Artificial block salt is proposed for use in sealing a repository. Four consolidation tests were conducted in a hydrostatic pressure vessel at a maximum pressure of 2500 psi (17.2 MPa) and at room temperature. Three 1-month tests were conducted on salt obtained from the Waste Isolation Pilot Plant and one 2-month test was conducted on salt from Avery Island. Permeability was obtained using argon and either a steady-state or transient method. Initial porosities ranged from 0.26 to 0.36 and initial permeabilities from 2000 to 50,000 md. Final porosities and permeabilities ranged from 0.05 to 0.19 and from <10/sup -5/ md to 110 md, respectively. The lowest final porosity (0.05) and permeability (<10/sup -5/ md) were obtained in a 1-month test in which 2.3% moisture was added to the salt at the beginning of the test. The consolidation rate was much more rapid than in any of the dry salt tests. The fracture healing program included 20 permeability tests conducted on fractured and unfractured samples. The tests were conducted in a Hoek cell at hydrostatic pressures up to 3000 psi (20.6 MPa) with durations up to 8 days. For the natural rock salt tested, permeability was strongly dependent on confining pressure and time. The effect of confining pressure was much weaker in the artificial salt. In most cases the combined effects of time and pressure were to reduce the permeability of fractured samples to the same order of magnitude (or less) as the permeability measured prior to fracturing.

  11. Adsorbent Alkali Conditioning for Uranium Adsorption from Seawater. Adsorbent Performance and Technology Cost Evaluation

    SciTech Connect (OSTI)

    Tsouris, Costas; Mayes, Richard T.; Janke, Christopher James; Dai, Sheng; Das, S.; Liao, W. -P.; Kuo, Li-Jung; Wood, Jordana; Gill, Gary; Byers, Maggie Flicker; Schneider, Eric

    2015-09-30

    The Fuel Resources program of the Fuel Cycle Research and Development program of the Office of Nuclear Energy (NE) is focused on identifying and implementing actions to assure that nuclear fuel resources are available in the United States. An immense source of uranium is seawater, which contains an estimated amount of 4.5 billion tonnes of dissolved uranium. This unconventional resource can provide a price cap and ensure centuries of uranium supply for future nuclear energy production. NE initiated a multidisciplinary program with participants from national laboratories, universities, and research institutes to enable technical breakthroughs related to uranium recovery from seawater. The goal is to develop advanced adsorbents to reduce the seawater uranium recovery technology cost and uncertainties. Under this program, Oak Ridge National Laboratory (ORNL) has developed a new amidoxime-based adsorbent of high surface area, which tripled the uranium capacity of leading Japanese adsorbents. Parallel efforts have been focused on the optimization of the physicochemical and operating parameters used during the preparation of the adsorbent for deployment. A set of parameters that need to be optimized are related to the conditioning of the adsorbent with alkali solution, which is necessary prior to adsorbent deployment. Previous work indicated that alkali-conditioning parameters significantly affect the adsorbent performance. Initiated in 2014, this study had as a goal to determine optimal parameters such as base type and concentration, temperature, and duration of conditioning that maximize the uranium adsorption performance of amidoxime functionalized adsorbent, while keeping the cost of uranium production low. After base-treatment at various conditions, samples of adsorbent developed at ORNL were tested in this study with batch simulated seawater solution of 8-ppm uranium concentration, batch seawater spiked with uranium nitrate at 75-100 ppb uranium, and continuous

  12. Treatment of plutonium process residues by molten salt oxidation

    SciTech Connect (OSTI)

    Stimmel, J.; Wishau, R.; Ramsey, K.B.; Montoya, A.; Brock, J.; Heslop, M.; Wernly, K.

    1999-04-01

    Molten Salt Oxidation (MSO) is a thermal process that can remove more than 99.999% of the organic matrix from combustible {sup 238}Pu material. Plutonium processing residues are injected into a molten salt bed with an excess of air. The salt (sodium carbonate) functions as a catalyst for the conversion of the organic material to carbon dioxide and water. Reactive species such as fluorine, chlorine, bromine, iodine, sulfur, phosphorous and arsenic in the organic waste react with the molten salt to form the corresponding neutralized salts, NaF, NaCl, NaBr, NaI, Na{sub 2}SO{sub 4}, Na{sub 3}PO{sub 4} and NaAsO{sub 2} or Na{sub 3}AsO4. Plutonium and other metals react with the molten salt and air to form metal salts or oxides. Saturated salt will be recycled and aqueous chemical separation will be used to recover the {sup 238}Pu. The Los Alamos National Laboratory system, which is currently in the conceptual design stage, will be scaled down from current systems for use inside a glovebox.

  13. Role of acid catalysis in dimethyl ether conversion processes

    SciTech Connect (OSTI)

    Tartamella, T.L.; Lee, S.

    1996-12-31

    Acidity plays an important role in the conversion of methanol and dimethyl ether (DME) to hydrocarbons and oxygenates. In the conversion to hydrocarbons over zeolite catalyst, Broensted acidity is the main contributor to the first hydrocarbon formed. Here, acidity is also an important factor in determining olefin, paraffin, and aromatic content in the final product distribution. Catalyst life has also been found to be related to acidity content in zeolites. DME conversion to oxygenates is especially dependent on high acidity catalysts. Superacids like BF{sub 3}, HF-BF{sub 3}, and CF{sub 3}COOH have been used in the past for conversion of DME in carbonylation reactions to form methyl acetate and acetic acid at high pressures. Recently, heteropoly acids and their corresponding metal substituted salts have been used to convert DME to industrially important petrochemicals resulting in shorter reaction times and without the use of harsh operating conditions.

  14. Technical review of Molten Salt Oxidation

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The process was reviewed for destruction of mixed low-level radioactive waste. Results: extensive development work and scaleup has been documented on coal gasification and hazardous waste which forms a strong experience base for this MSO process; it is clearly applicable to DOE wastes such as organic liquids and low-ash wastes. It also has potential for processing difficult-to-treat wastes such as nuclear grade graphite and TBP, and it may be suitable for other problem waste streams such as sodium metal. MSO operating systems may be constructed in relatively small units for small quantity generators. Public perceptions could be favorable if acceptable performance data are presented fairly; MSO will likely require compliance with regulations for incineration. Use of MSO for offgas treatment may be complicated by salt carryover. Figs, tabs, refs.

  15. Disposal of NORM waste in salt caverns

    SciTech Connect (OSTI)

    Veil, J.A.; Smith, K.P.; Tomasko, D.; Elcock, D.; Blunt, D.; Williams, G.P.

    1998-07-01

    Some types of oil and gas production and processing wastes contain naturally occurring radioactive materials (NORM). If NORM is present at concentrations above regulatory levels in oil field waste, the waste requires special disposal practices. The existing disposal options for wastes containing NORM are limited and costly. This paper evaluates the legality, technical feasibility, economics, and human health risk of disposing of NORM-contaminated oil field wastes in salt caverns. Cavern disposal of NORM waste is technically feasible and poses a very low human health risk. From a legal perspective, there are no fatal flaws that would prevent a state regulatory agency from approving cavern disposal of NORM. On the basis of the costs charged by caverns currently used for disposal of nonhazardous oil field waste (NOW), NORM waste disposal caverns could be cost competitive with existing NORM waste disposal methods when regulatory agencies approve the practice.

  16. A new family of salts for lithium secondary batteries

    SciTech Connect (OSTI)

    Baril, D.; Beranger, S.; Ravet, N.; Michot, C.; Armand, M.

    2000-07-01

    A novel family of salts suitable for lithium battery application was synthesized and characterized. These salts have a large delocalized anion whose charge is spread over a single SO{sub 2} and a phenyl ring. Remarkable properties were obtained for the lithium N-(3-trifluoromethyl phenyl) trifluoromethanesulfonamide salt or LiTFPTS. The electrochemical stability window is around 4.0 V and its conductivity in solid poly(ethylene oxide) or PEO is close to the one of the lithium perchlorate salt. Calorimetric analysis also showed that LiTFPTS behaves as a plasticizer since it hinders, to a certain extent, the PEO crystallization when it is used in a solid polymer matrix. Above all, its synthesis is quite straightforward and leads to potentially inexpensive salts as the starting amines are made commercially on a large scale.

  17. Parametric study of natural circulation flow in molten salt fuel in molten salt reactor

    SciTech Connect (OSTI)

    Pauzi, Anas Muhamad; Cioncolini, Andrea; Iacovides, Hector

    2015-04-29

    The Molten Salt Reactor (MSR) is one of the most promising system proposed by Generation IV Forum (GIF) for future nuclear reactor systems. Advantages of the MSR are significantly larger compared to other reactor system, and is mainly achieved from its liquid nature of fuel and coolant. Further improvement to this system, which is a natural circulating molten fuel salt inside its tube in the reactor core is proposed, to achieve advantages of reducing and simplifying the MSR design proposed by GIF. Thermal hydraulic analysis on the proposed system was completed using a commercial computation fluid dynamics (CFD) software called FLUENT by ANSYS Inc. An understanding on theory behind this unique natural circulation flow inside the tube caused by fission heat generated in molten fuel salt and tube cooling was briefly introduced. Currently, no commercial CFD software could perfectly simulate natural circulation flow, hence, modeling this flow problem in FLUENT is introduced and analyzed to obtain best simulation results. Results obtained demonstrate the existence of periodical transient nature of flow problem, hence improvements in tube design is proposed based on the analysis on temperature and velocity profile. Results show that the proposed system could operate at up to 750MW core power, given that turbulence are enhanced throughout flow region, and precise molten fuel salt physical properties could be defined. At the request of the authors and the Proceedings Editor the name of the co-author Andrea Cioncolini was corrected from Andrea Coincolini. The same name correction was made in the Acknowledgement section on page 030004-10 and in reference number 4. The updated article was published on 11 May 2015.

  18. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions

    SciTech Connect (OSTI)

    Choi, Jun-Ho; Lim, Sohee; Chon, Bonghwan; Cho, Minhaeng; Kim, Heejae; Kim, Seongheun

    2015-05-28

    The vibrational frequency, frequency fluctuation dynamics, and transition dipole moment of the OD stretch mode of HDO molecule in aqueous solutions are strongly dependent on its local electrostatic environment and hydrogen-bond network structure. Therefore, the time-resolved vibrational spectroscopy the OD stretch mode has been particularly used to investigate specific ion effects on water structure. Despite prolonged efforts to understand the interplay of OD vibrational dynamics with local water hydrogen-bond network and ion aggregate structures in high salt solutions, still there exists a gap between theory and experiment due to a lack of quantitative model for accurately describing OD stretch frequency in high salt solutions. To fill this gap, we have performed numerical simulations of Raman scattering and IR absorption spectra of the OD stretch mode of HDO in highly concentrated NaCl and KSCN solutions and compared them with experimental results. Carrying out extensive quantum chemistry calculations on not only water clusters but also ion-water clusters, we first developed a distributed vibrational solvatochromic charge model for the OD stretch mode in aqueous salt solutions. Furthermore, the non-Condon effect on the vibrational transition dipole moment of the OD stretch mode was fully taken into consideration with the charge response kernel that is non-local polarizability density. From the fluctuating OD stretch mode frequencies and transition dipole vectors obtained from the molecular dynamics simulations, the OD stretch Raman scattering and IR absorption spectra of HDO in salt solutions could be calculated. The polarization effect on the transition dipole vector of the OD stretch mode is shown to be important and the asymmetric line shapes of the OD stretch Raman scattering and IR absorption spectra of HDO especially in highly concentrated NaCl and KSCN solutions are in quantitative agreement with experimental results. We anticipate that this

  19. Catalytic conversion of cellulose to fuels and chemicals using boronic acids

    DOE Patents [OSTI]

    Raines, Ronald; Caes, Benjamin; Palte, Michael

    2015-10-20

    Methods and catalyst compositions for formation of furans from carbohydrates. A carbohydrate substrate is heating in the presence of a 2-substituted phenylboronic acid (or salt or hydrate thereof) and optionally a magnesium or calcium halide salt. The reaction is carried out in a polar aprotic solvent other than an ionic liquid, an ionic liquid or a mixture thereof. Additional of a selected amount of water to the reaction can enhance the yield of furans.

  20. Pebble Fuel Handling and Reactivity Control for Salt-Cooled High...

    Office of Scientific and Technical Information (OSTI)

    and Reactivity Control for Salt-Cooled High Temperature Reactors Citation Details In-Document Search Title: Pebble Fuel Handling and Reactivity Control for Salt-Cooled High ...

  1. Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005) | Open...

    Open Energy Info (EERE)

    Salt Wells Area (Henkle, Et Al., 2005) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Soil Sampling At Salt Wells Area (Henkle, Et Al., 2005)...

  2. Slim Holes At Salt Wells Area (Combs, Et Al., 1999) | Open Energy...

    Open Energy Info (EERE)

    Salt Wells Area (Combs, Et Al., 1999) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Salt Wells Area (Combs, Et Al., 1999)...

  3. Thermal Gradient Holes At Salt Wells Area (Bureau of Land Management...

    Open Energy Info (EERE)

    Salt Wells Area (Bureau of Land Management, 2009) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Thermal Gradient Holes At Salt Wells Area...

  4. Fluoroalkyl containing salts combined with fluorinated solvents for electrolytes

    DOE Patents [OSTI]

    Tikhonov, Konstantin; Yip, Ka Ki; Lin, Tzu-Yuan; Erickson, Michael Jason

    2015-04-21

    Provided are electrochemical cells and electrolytes used to build such cells. An electrolyte may include a fluoroalkyl-substituted LiPF.sub.6 salt or a fluoroalkyl-substituted LiBF.sub.4 salt. In some embodiments, at least one fluorinated alkyl of the salt has a chain length of from 1 to 8 or, more specifically, between about 2 and 8. These fluorinated alkyl groups, in particular, relatively large fluorinated alkyl groups improve solubility of these salts in fluorinated solvents that are less flammable than, for example, conventional carbonate solvents. At the same time, the size of fluoroalkyl-substituted salts should be limited to ensure adequate concentration of the salt in an electrolyte and low viscosity of the electrolyte. In some embodiments, the concentration of a fluoroalkyl-substituted salt is at least about 0.5M. Examples of fluorinated solvents include various fluorinated esters, fluorinated ethers, and fluorinated carbonates, such a 1-methoxyheptafluoropropane, methyl nonafluorobutyl ether, ethyl nonafluorobutyl ether, 1,1,1,2,2,3,4,5,5,5-decafluoro-3-methoxy-4-(trifluoromethyl)-pentane, 3-ethoxy-1,1,1,2,3,4,4,5,5,6,6,6-dodecafluoro-2-trifluoromethyl-hexane, and 1,1,1,2,3,3-hexafluoro-4-(1,1,2,3,3,3-hexafluoropropoxy)-pentane.

  5. Fast Thorium Molten Salt Reactors Started with Plutonium

    SciTech Connect (OSTI)

    Merle-Lucotte, E.; Heuer, D.; Le Brun, C.; Brissot, R.; Liatard, E.; Meplan, O.; Nuttin, A.

    2006-07-01

    One of the pending questions concerning Molten Salt Reactors based on the {sup 232}Th/{sup 233}U fuel cycle is the supply of the fissile matter, and as a consequence the deployment possibilities of a fleet of Molten Salt Reactors, since {sup 233}U does not exist on earth and is not yet produced in the current operating reactors. A solution may consist in producing {sup 233}U in special devices containing Thorium, in Pressurized Water or Fast Neutrons Reactors. Two alternatives to produce {sup 233}U are examined here: directly in standard Molten Salt Reactors started with Plutonium as fissile matter and then operated in the Th/{sup 233}U cycle; or in dedicated Molten Salt Reactors started and fed with Plutonium as fissile matter and Thorium as fertile matter. The idea is to design a critical reactor able to burn the Plutonium and the minor actinides presently produced in PWRs, and consequently to convert this Plutonium into {sup 233}U. A particular reactor configuration is used, called 'unique channel' configuration in which there is no moderator in the core, leading to a quasi fast neutron spectrum, allowing Plutonium to be used as fissile matter. The conversion capacities of such Molten Salt Reactors are excellent. For Molten Salt Reactors only started with Plutonium, the assets of the Thorium fuel cycle turn out to be quickly recovered and the reactor's characteristics turn out to be equivalent to Molten Salt Reactors operated with {sup 233}U only. Using a combination of Molten Salt Reactors started or operated with Plutonium and of Molten Salt Reactors started with {sup 233}U, the deployment capabilities of these reactors fully satisfy the condition of sustainability. (authors)

  6. Addendum to Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Wilson, Guy

    2009-10-06

    The purpose of this addendum is to graphically publish data which indicate moisture in leakage and corrosion may have occurred during heating of the tanks at the Molten Salt Reactor Experiment (MSRE) for and during hydrofluorination, fluorination and transfer of uranium. Corrosion, especially by hydrofluoric acid, is not expected to occur uniformly over the tank and piping inner surfaces and therefore is not easily measured by nondestructive techniques that can measure only limited areas. The rate of corrosion exponentially escalates with both temperature and moisture. The temperature, pressure, and concentration data in this addendum indicate periods when elevated corrosion rates were likely to have been experienced. This data was not available in time to be considered as part of the evaluation that was the focus of the report. Pressure and temperature data were acquired via the LabView{trademark} Software, while concentration data was acquired from the Fourier Transform InfraRed (FTIR) system.

  7. Sol-gel processing with inorganic metal salt precursors

    DOE Patents [OSTI]

    Hu, Zhong-Cheng

    2004-10-19

    Methods for sol-gel processing that generally involve mixing together an inorganic metal salt, water, and a water miscible alcohol or other organic solvent, at room temperature with a macromolecular dispersant material, such as hydroxypropyl cellulose (HPC) added. The resulting homogenous solution is incubated at a desired temperature and time to result in a desired product. The methods enable production of high quality sols and gels at lower temperatures than standard methods. The methods enable production of nanosize sols from inorganic metal salts. The methods offer sol-gel processing from inorganic metal salts.

  8. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, Hung-Sui; Geng, Lin; Skotheim, Terje A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity.

  9. Electrolyte materials containing highly dissociated metal ion salts

    DOE Patents [OSTI]

    Lee, H.S.; Geng, L.; Skotheim, T.A.

    1996-07-23

    The present invention relates to metal ion salts which can be used in electrolytes for producing electrochemical devices, including both primary and secondary batteries, photoelectrochemical cells and electrochromic displays. The salts have a low energy of dissociation and may be dissolved in a suitable polymer to produce a polymer solid electrolyte or in a polar aprotic liquid solvent to produce a liquid electrolyte. The anion of the salts may be covalently attached to polymer backbones to produce polymer solid electrolytes with exclusive cation conductivity. 2 figs.

  10. Experimental Investigation of Two-Phase Flow in Rock Salt

    SciTech Connect (OSTI)

    Malama, Bwalya; Howard, Clifford L.

    2014-07-01

    This Test Plan describes procedures for conducting laboratory scale flow tests on intact, damaged, crushed, and consolidated crushed salt to measure the capillary pressure and relative permeability functions. The primary focus of the tests will be on samples of bedded geologic salt from the WIPP underground. However, the tests described herein are directly applicable to domal salt. Samples being tested will be confined by a range of triaxial stress states ranging from atmospheric pressure up to those approximating lithostatic. Initially these tests will be conducted at room temperature, but testing procedures and equipment will be evaluated to determine adaptability to conducting similar tests under elevated temperatures.

  11. Gradient zone boundary control in salt gradient solar ponds

    DOE Patents [OSTI]

    Hull, John R.

    1984-01-01

    A method and apparatus for suppressing zone boundary migration in a salt gradient solar pond includes extending perforated membranes across the pond at the boundaries, between the convective and non-convective zones, the perforations being small enough in size to prevent individual turbulence disturbances from penetrating the hole, but being large enough to allow easy molecular diffusion of salt thereby preventing the formation of convective zones in the gradient layer. The total area of the perforations is a sizable fraction of the membrane area to allow sufficient salt diffusion while preventing turbulent entrainment into the gradient zone.

  12. Engineering Evaluation of Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiement for the Oak Ridge National Laboratory

    SciTech Connect (OSTI)

    Carlberg, Jon A.; Roberts, Kenneth T.; Kollie, Thomas G.; Little, Leslie E.; Brady, Sherman D.

    2009-09-30

    This evaluation was performed by Pro2Serve in accordance with the Technical Specification for an Engineering Evaluation of the Proposed Alternative Salt Transfer Method for the Molten Salt Reactor Experiment at the Oak Ridge National Laboratory (BJC 2009b). The evaluators reviewed the Engineering Evaluation Work Plan for Molten Salt Reactor Experiment Residual Salt Removal, Oak Ridge National Laboratory, Oak Ridge, Tennessee (DOE 2008). The Work Plan (DOE 2008) involves installing a salt transfer probe and new drain line into the Fuel Drain Tanks and Fuel Flush Tank and connecting them to the new salt transfer line at the drain tank cell shield. The probe is to be inserted through the tank ball valve and the molten salt to the bottom of the tank. The tank would then be pressurized through the Reactive Gas Removal System to force the salt into the salt canisters. The Evaluation Team reviewed the work plan, interviewed site personnel, reviewed numerous documents on the Molten Salt Reactor (Sects. 7 and 8), and inspected the probes planned to be used for the transfer. Based on several concerns identified during this review, the team recommends not proceeding with the salt transfer via the proposed alternate salt transfer method. The major concerns identified during this evaluation are: (1) Structural integrity of the tanks - The main concern is with the corrosion that occurred during the fluorination phase of the uranium removal process. This may also apply to the salt transfer line for the Fuel Flush Tank. Corrosion Associated with Fluorination in the Oak Ridge National Laboratory Fluoride Volatility Process (Litman 1961) shows that this problem is significant. (2) Continued generation of Fluorine - Although the generation of Fluorine will be at a lower rate than experienced before the uranium removal, it will continue to be generated. This needs to be taken into consideration regardless of what actions are taken with the salt. (3) More than one phase of material

  13. Adsorption of fulvic acid on goethite

    SciTech Connect (OSTI)

    Filius, J.D.; Lumsdon, D.G.; Meeussen, J.C.L.; Hiemstra, T.; Riemsduk, W.H. van

    2000-01-01

    The adsorption of fulvic acid by goethite was determined experimentally as a function of concentration, pH, and ionic strength. The data were described with the CD-MUSIC model of Hiemstra and Van Riemsdijk (1996), which allows the distribution of charge of the bound fulvate molecule over a surface region. Simultaneously, the concentration, pH, and salt dependency of the binding of fulvic acid can be described. Using the same parameters, the basic charging behavior of the goethite in the absence of fulvic acid could be described well. The surface species used in the model indicate that inner sphere coordination of carboxylic groups of the fulvate molecule is important at low pH, whereas at high pH the outer sphere coordination with reactive groups of the fulvate molecule with high proton affinity is important.

  14. Extraction chemistry of fermentation product carboxylic acid

    SciTech Connect (OSTI)

    Kertes, A.S.; King, C.J.

    1986-02-01

    Within the framework of a program aiming to improve the existing extractive recovery technology of fermentation products, the state of the art is critically reviewed. The acids under consideration are propionic, lactic, pyruvic, succinic, fumaric, maleic, malic, itaconic, tartaric, citric, and isocitric, all obtained by the aerobic fermentation of glucose via the glycolytic pathway and glyoxylate bypass. With no exception, it is the undissociated monomeric acid that is extracted into carbon-bonded and phosphorus-bonded oxygen donor extractants. In the organic phase, the acids are usually dimerized. The extractive transfer process obeys the Nernst law, and the measured partition coefficients range from about 0.003 for aliphatic hydrocarbons to about 2 to 3 for aliphatic alcohols and ketones to about 10 or more for organophosphates. Equally high distribution ratios are measured when long-chain tertiary amines are employed as extractants, forming bulky salts preferentially soluble in the organic phase. 123 references.

  15. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; Bartsch, Richard A.

    2014-04-23

    Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable groupmore » are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.« less

  16. Desulfurization of Illinois coals with hydroperoxides of vegetable oils and alkali. Technical report, September 1--November 30, 1995

    SciTech Connect (OSTI)

    Smith, G.V.; Gaston, R.D.; Song, R.; Cheng, J.; Shi, F.; Wang, Y.

    1995-12-31

    Organic sulfur is removed from coals by treatment with aqueous base, air, and vegetable oils with minimal loss of BTU. Such results were revealed during exploratory experiments on an ICCI funded project to remove organic sulfur from Illinois coals with hydroperoxides of vegetable oils. In fact, prewashing IBC-108 coal with dilute alkali prior to treating with linseed oil and air results in 26% removal of sulfur. This new method will be investigated by treating coals with alkali, impregnating coals with polyunsaturated oils, converting the oils to their hydroperoxides, and heating. Since these oils are relatively inexpensive and easily applied, this project could lead to a cost effective method for removing organic sulfur from coals. Moreover the oils are environmentally safe; they will produce no noxious products and will improve burning qualities of the solid products. During this first quarter the selection of base for pretreatment and extraction (Task 1) has been completed. NaOH is better than NH{sub 4}OH for the pretreatment and Na{sub 2}CO{sub 3} is better than NaOH for the oil extraction. About 40% of sulfur is removed from IBC-108 coal using 5% NaOH for pretreatment followed by linseed oil oxidation in air and Na{sub 2}CO{sub 3} extraction.

  17. Compliant alkali silicate sealing glass for solid oxide fuel cell applications: thermal cycle stability and chemical compatibility

    SciTech Connect (OSTI)

    Chou, Y. S.; Thomsen, Edwin C.; Williams, Riley T.; Choi, Jung-Pyung; Canfield, Nathan L.; Bonnett, Jeff F.; Stevenson, Jeffry W.; Shyam, Amit; Lara-Curzio, E.

    2011-03-01

    An alkali silicate glass (SCN-1) is currently being evaluated as a candidate sealing glass for solid oxide fuel (SOFC) applications. The glass containing ~17 mole% alkalis (K2O and Na2O) remains vitreous and compliant during SOFC operation, unlike conventional SOFC sealing glasses, which experience substantial devitrification after the sealing process. The non-crystallizing compliant sealing glass has lower glass transition and softening temperatures since the microstructure remains glassy without significant crystallite formation, and hence can relieve or reduce residual stresses and also has the potential for crack healing. Sealing approaches based on compliant glass will also need to satisfy all the mechanical, thermal, chemical, physical, and electrical requirements for SOFC applications, not only in bulk properties but also at sealing interfaces. In this first of a series of papers we will report the thermal cycle stability of the glass when sealed between two SOFC components, i.e., a NiO/YSZ anode supported YSZ bilayer and a coated ferritic stainless steel interconnect material. High temperature leak rates were monitored versus thermal cycles between 700-850oC using back pressures ranging from 0.2 psi to 1.0 psi. Isothermal stability was also evaluated in a dual environment consisting of flowing dilute H2 fuel versus ambient air. In addition, chemical compatibility at the alumina and YSZ interfaces was examined with scanning electron microscopy and energy dispersive spectroscopy. The results shed new light on the topic of SOFC glass seal development.

  18. Alkali metal cation complexation by 1,3-alternate, mono-ionisable calix[4]arene-benzocrown-6 compounds

    SciTech Connect (OSTI)

    Surowiec, Malgorzata A.; Custelcean, Radu; Surowiec, Kazimierz; Bartsch, Richard A.

    2014-04-23

    Alkali metal cation extraction behavior for two series of 1,3-alternate, mono-ionizable calix[4]arene-benzocrown-6 compounds is examined. In Series 1, the proton-ionizable group is a substituent on the benzo group of the polyether ring that directs it away from the crown ether cavity. In Series 2, the proton-ionizable group is attached to one para position in the calixarene framework, thus positioning it over the crown ether ring. Competitive solvent extraction of alkali metal cations from aqueous solutions into chloroform shows high Cs+ efficiency and selectivity. Single-species extraction pH profiles of Cs+ for Series 1 and 2 ligands with the same proton-ionizable group are very similar. Thus, association of Cs+ with the calixcrown ring is more important than the the proton-ionizable group’s position in relation to the crown ether cavity. Solid-state structures are presented for two unionized ligands from Series 2, as is a crystal containing two different ionized ligand–Cs+ complexes.

  19. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update (EIA)

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin ... Major Tight Gas Plays, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  20. Salt Fog Testing Iron-Based Amorphous Alloys

    SciTech Connect (OSTI)

    Rebak, Raul B.; Aprigliano, Louis F.; Day, S. Daniel; Farmer, Joseph C.

    2007-07-01

    Iron-based amorphous alloys are hard and highly corrosion resistant, which make them desirable for salt water and other applications. These alloys can be produced as powder and can be deposited as coatings on any surface that needs to be protected from the environment. It was of interest to examine the behavior of these amorphous alloys in the standard salt-fog testing ASTM B 117. Three different amorphous coating compositions were deposited on 316L SS coupons and exposed for many cycles of the salt fog test. Other common engineering alloys such as 1018 carbon steel, 316L SS and Hastelloy C-22 were also tested together with the amorphous coatings. Results show that amorphous coatings are resistant to rusting in salt fog. Partial devitrification may be responsible for isolated rust spots in one of the coatings. (authors)

  1. Apparatus and method for making metal chloride salt product

    DOE Patents [OSTI]

    Miller, William E. (Naperville, IL); Tomczuk, Zygmunt (Homer Glen, IL); Richmann, Michael K. (Carlsbad, NM)

    2007-05-15

    A method of producing metal chlorides is disclosed in which chlorine gas is introduced into liquid Cd. CdCl.sub.2 salt is floating on the liquid Cd and as more liquid CdCl.sub.2 is formed it separates from the liquid Cd metal and dissolves in the salt. The salt with the CdCl.sub.2 dissolved therein contacts a metal which reacts with CdCl.sub.2 to form a metal chloride, forming a mixture of metal chloride and CdCl.sub.2. After separation of bulk Cd from the salt, by gravitational means, the metal chloride is obtained by distillation which removes CdCl.sub.2 and any Cd dissolved in the metal chloride.

  2. Transfer Lines to Connect Liquid Waste Facilities and Salt Waste...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... of tank waste at SRS. SWPF will separate the salt waste into a low-volume, high radioactivity fraction for vitrification in the Defense Waste Processing Facility (DWPF) and ...

  3. Expected brine movement at potential nuclear waste repository salt sites

    SciTech Connect (OSTI)

    McCauley, V.S.; Raines, G.E.

    1987-08-01

    The BRINEMIG brine migration code predicts rates and quantities of brine migration to a waste package emplaced in a high-level nuclear waste repository in salt. The BRINEMIG code is an explicit time-marching finite-difference code that solves a mass balance equation and uses the Jenks equation to predict velocities of brine migration. Predictions were made for the seven potentially acceptable salt sites under consideration as locations for the first US high-level nuclear waste repository. Predicted total quantities of accumulated brine were on the order of 1 m/sup 3/ brine per waste package or less. Less brine accumulation is expected at domal salt sites because of the lower initial moisture contents relative to bedded salt sites. Less total accumulation of brine is predicted for spent fuel than for commercial high-level waste because of the lower temperatures generated by spent fuel. 11 refs., 36 figs., 29 tabs.

  4. Development of Molten-Salt Heat Trasfer Fluid Technology for...

    Office of Environmental Management (EM)

    molt en-salt HTF CSP plant show an LCOE of below 0.12kWhe (real 2009 ), w it h a 10% ITC Innovat ive Technology Solut ions f or Sustainability ABENGOA SOLAR Phase 1 Conclusions ...

  5. Salt River Electric Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    River Electric Coop Corp Jump to: navigation, search Name: Salt River Electric Coop Corp Place: Kentucky References: EIA Form EIA-861 Final Data File for 2010 - File1a1 EIA Form...

  6. Salt Wells, Eight Mile Flat | Open Energy Information

    Open Energy Info (EERE)

    Eight Mile Flat Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells, Eight Mile Flat Abstract Abstract unavailable. Author Nevada Bureau...

  7. Molten salt electrolyte battery cell with overcharge tolerance

    DOE Patents [OSTI]

    Kaun, Thomas D.; Nelson, Paul A.

    1989-01-01

    A molten salt electrolyte battery having an increased overcharge tolerance employs a negative electrode with two lithium alloy phases of different electrochemical potential, one of which allows self-discharge rates which permits battery cell equalization.

  8. Oxidation of aqueous pollutants using ultrasound: Salt-induced enhancement

    SciTech Connect (OSTI)

    Seymour, J.D.; Gupta, R.B.

    1997-09-01

    Ultrasound can be used to oxidize aqueous pollutants; however, due to economic reasons, higher oxidation/destruction rates are needed. This study reports enhancements of reaction rates by the addition of sodium chloride salt. Using 20 kHz ultrasound, large salt-induced enhancements are observed--6-fold for chlorobenzene, 7-fold for p-ethylphenol, and 3-fold for phenol oxidation. The reaction rate enhancements are proportional to the diethyl ether--water partitioning coefficient of the pollutants. It appears that the majority of oxidation reactions occur in the bubble-bulk interface region. The addition of salt increases the ionic strength of the aqueous phase which drives the organic pollutants toward the bubble-bulk interface. A first order reaction rate equation is proposed which can represent the observed enhancement with a good accuracy. A new sonochemical-waste-oxidation process is proposed utilizing the salt-induced enhancement.

  9. Molten Salt Heat Transfer Fluid (HTF) - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Find More Like This Return to Search Molten Salt Heat Transfer Fluid (HTF) Sandia National ... Sandia has developed a heat transfer fluid (HTF) for use at elevated temperatures that has ...

  10. Aksaray And Ecemis Faults - Diapiric Salt Relationships- Relevance...

    Open Energy Info (EERE)

    To The Hydrocarbon Exploration In The Tuz Golu (Salt Lake) Basin, Central Anatolia, Turkey Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article:...

  11. Basis for Section 3116 Determination for Salt Waste Disposal...

    Office of Environmental Management (EM)

    WD-2005-001 January 2006 Basis for Section 3116 Determination for Salt Waste Disposal at ......... 28 4.0 THE WASTE DOES NOT REQUIRE PERMANENT ISOLATION IN A ...

  12. Salt Wells Geothermal Exploratory Drilling Program EA(DOI-BLM...

    Open Energy Info (EERE)

    Exploratory Drilling Program EA (DOI-BLM-NV-C010-2009-0006-EA) Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Salt Wells Geothermal Exploratory...

  13. Category:Salt Lake City, UT | Open Energy Information

    Open Energy Info (EERE)

    UT Jump to: navigation, search Go Back to PV Economics By Location Media in category "Salt Lake City, UT" The following 16 files are in this category, out of 16 total....

  14. Surface Indicators of Geothermal Activity at Salt Wells, Nevada...

    Open Energy Info (EERE)

    of geothermal fluids. An example is provided by the Salt Wells geothermal system in Churchill County, Nevada, USA, where surface features define a 9-km-long area that matches the...

  15. BLM Approves Salt Wells Geothermal Plant in Churchill County...

    Open Energy Info (EERE)

    Plant in Churchill County Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: BLM Approves Salt Wells Geothermal Plant in Churchill County Abstract...

  16. Current and proposed regulations for salt water disposal wells

    SciTech Connect (OSTI)

    Moody, T.

    1994-09-01

    In recent years, all aspects of hydrocarbon exploration and production (E & P) activities have drawn closer scrutiny in terms of existing and potential impairment of the environment. In addition to drilling, production, and transportation activities, the USEPA has focused on the nature of E & P generated wastes, and the subsequent management of both hazardous and nonhazardous E & P wastes. Approximately 98% of all of the volume of wastes generated by E & P activities is salt water associated with the recovery of hydrocarbons. By far the majority of this waste is disposed of in class II salt water disposal wells. Due to the tremendous volume of salt water generated, the USEPA continues to reevaluate the federal class II salt water injection well program, offering comments, revising its interpretation of existing regulations, and promulgating new regulations. The purpose of the presentation will be to provide a review of existing class II federal regulations, and to provide an overview of potential or newly promulgated regulations.

  17. Effect of simultaneous electrical and thermal treatment on the performance of bulk heterojunction organic solar cell blended with organic salt

    SciTech Connect (OSTI)

    Sabri, Nasehah Syamin; Yap, Chi Chin; Yahaya, Muhammad; Salleh, Muhamad Mat

    2013-11-27

    This work presents the influence of simultaneous electrical and thermal treatment on the performance of organic solar cell blended with organic salt. The organic solar cells were composed of indium tin oxide as anode, poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]: (6,6)-phenyl-C61 butyric acid methyl ester: tetrabutylammonium hexafluorophosphate blend as organic active layer and aluminium as cathode. The devices underwent a simultaneous fixed-voltage electrical and thermal treatment at different temperatures of 25, 50 and 75 °C. It was found that photovoltaic performance improved with the thermal treatment temperature. Accumulation of more organic salt ions in the active layer leads to broadening of p-n doped regions and hence higher built-in electric field across thin intrinsic layer. The simultaneous electrical and thermal treatment has been shown to be able to reduce the electrical treatment voltage.

  18. Liquid Salt Heat Exchanger Technology for VHTR Based Applications

    SciTech Connect (OSTI)

    Anderson, Mark; Sridhara, Kumar; Allen, Todd; Peterson, Per

    2012-10-11

    The objective of this research is to evaluate performance of liquid salt fluids for use as a heat carrier for transferring high-temperature process heat from the very high-temperature reactor (VHTR) to chemical process plants. Currently, helium is being considered as the heat transfer fluid; however, the tube size requirements and the power associated with pumping helium may not be economical. Recent work on liquid salts has shown tremendous potential to transport high-temperature heat efficiently at low pressures over long distances. This project has two broad objectives: To investigate the compatibility of Incoloy 617 and coated and uncoated SiC ceramic composite with MgCl2-KCl molten salt to determine component lifetimes and aid in the design of heat exchangers and piping; and, To conduct the necessary research on the development of metallic and ceramic heat exchangers, which are needed for both the helium-to-salt side and salt-to-process side, with the goal of making these heat exchangers technologically viable. The research will consist of three separate tasks. The first task deals with material compatibility issues with liquid salt and the development of techniques for on-line measurement of corrosion products, which can be used to measure material loss in heat exchangers. Researchers will examine static corrosion of candidate materials in specific high-temperature heat transfer salt systems and develop an in situ electrochemical probe to measure metallic species concentrations dissolved in the liquid salt. The second task deals with the design of both the intermediate and process side heat exchanger systems. Researchers will optimize heat exchanger design and study issues related to corrosion, fabrication, and thermal stresses using commercial and in-house codes. The third task focuses integral testing of flowing liquid salts in a heat transfer/materials loop to determine potential issues of using the salts and to capture realistic behavior of the salts in a

  19. Mechanochemical Preparation of Phosphonium Salts and Phosphorus Ylides -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Industrial Technologies Industrial Technologies Find More Like This Return to Search Mechanochemical Preparation of Phosphonium Salts and Phosphorus Ylides Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Researchers at Iowa State University and Ames Laboratory have developed a unique, solvent-free mechanochemical preparation method to prepare phosphonium salts and phosphorous ylides. The phosphorous ylides are then utilized in carrying

  20. Pyrochemical investigations into recovering plutonium from americium extraction salt residues

    SciTech Connect (OSTI)

    Fife, K.W.; West, M.H.

    1987-05-01

    Progress into developing a pyrochemical technique for separating and recovering plutonium from spent americium extraction waste salts has concentrated on selective chemical reduction with lanthanum metal and calcium metal and on the solvent extraction of americium with calcium metal. Both techniques are effective for recovering plutonium from the waste salt, although neither appears suitable as a separation technique for recycling a plutonium stream back to mainline purification processes. 17 refs., 13 figs., 2 tabs.