National Library of Energy BETA

Sample records for acid biorefinery mysab

  1. Myriant Succinic Acid BioRefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    or otherwise restricted information Myriant Succinic Acid BioRefinery DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Mark Shmorhun, Principal Investigator March 25, 2015 2 Goal Statement * Renewable Succinic Acid Production * A high value bio based chemical derived from renewable feedstocks * Validate proposed technology at a demonstration plant located in Lake Providence, LA. * Nameplate Capacity: 30 million lbs/year 3 Myriant's Succinic Acid BioRefinery (MySAB) Lake

  2. Myriant Succinic Acid Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Myriant Succinic Acid Biorefinery Myriant Succinic Acid Biorefinery This American Recovery and Reinvestment Act project will focus on the production of bio-succinic acid from a variety of feedstocks. ibr_arra_myriant.pdf (364.64 KB) More Documents & Publications Commercialization of Bio-Based Chemicals: A Successful Public-Private Partnership EA-1787: Final Environmental Assessment EA-1787: Finding of No Significant Impact

  3. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Salvachua, Davinia; Mohagheghi, Ali; Smith, Holly; Bradfield, Michael F. A.; Nicol, Willie; Black, Brenna A.; Biddy, Mary J.; Dowe, Nancy; Beckham, Gregg T.

    2016-02-02

    Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. Furthermore, SA production from biomass-derived hydrolysates has not yet been fully exploredmore » or developed.« less

  4. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    SciTech Connect (OSTI)

    Donal F. Day

    2009-03-31

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of

  5. Alpena Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alpena Biorefinery March 25, 2015 Demonstration and Market Transformation Technology Area Review Theodora Retsina American Process, Inc. This presentation does not contain any proprietary, confidential, or otherwise restricted information Goal Statement The goal of the AB was to demonstrate a modular, technically successful, and financially viable process of making cellulosic ethanol from woody biomass extract at wood processing facilities. The project objectives and the value proposition of the

  6. Mascoma: Frontier Biorefinery Project

    Broader source: Energy.gov [DOE]

    This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

  7. Elevance Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Elevance biorefinery uses catalyst technology to produce fuels and chemicals from renewable, natural oils.

  8. Alpena Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Alpena Biorefinery Alpena Biorefinery The Alpena Biorefinery will be constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility. ibr_arra_api.pdf (352.76 KB) More Documents & Publications EA-1789: Final Environmental Assessment EA-1789: Finding of No Significant Impact American Process-Alpena Biorefinery Lessons

  9. NREL: Biomass Research - What Is a Biorefinery?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What Is a Biorefinery? A biorefinery is a facility that integrates biomass conversion processes and equipment to produce fuels, power, and chemicals from biomass. The biorefinery...

  10. Integrated Biorefineries: Biofuels, Bioproducts, and Biopower...

    Energy Savers [EERE]

    Biorefineries: Biofuels, Bioproducts, and Biopower Integrated Biorefineries: Biofuels, Bioproducts, and Biopower Achieving national energy and climate goals will require an ...

  11. Bioenergy Impacts: Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET-DSM's Project LIBERTY and Abengoa's Bioenergy Biomass of Kansas are biorefineries that convert corn stover-non-edible corn stalks, stems, and leaves-into cellulosic ethanol, a ...

  12. American Process - Alpena Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sugar is the New Crude® 1 American Process - Alpena Biorefinery Lessons Learned: Theodora Retsina CEO American Process Company History * Conducted over 400 projects, in USA, Canada, Brazil, Europe, Australia * In more than 150 forest industry plants * Performed O&M services 1995 - 2010 * Designed EPC and operated power cogeneration facilities "across the fence" * Designed projects for mill shutdown installations 1999 - 2010 * Invested in biorefinery R&D - Over 48 patents

  13. Economy Through Product Diversity: Integrated Biorefineries

    SciTech Connect (OSTI)

    2010-03-01

    A general discussion of the integrated biorefinery concept, the Biomass Program's related activities and challenges and specific biorefinery projects being funded through the Program.

  14. Economy Through Product Diversity: Integrated Biorefineries ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economy Through Product Diversity: Integrated Biorefineries Economy Through Product Diversity: Integrated Biorefineries Achieving national energy and climate goals will require an...

  15. Albemarle Biorefinery Inc | Open Energy Information

    Open Energy Info (EERE)

    Biorefinery Inc Jump to: navigation, search Name: Albemarle Biorefinery Inc Place: Raleigh, North Carolina Zip: 27612 Product: A subsidiary of DFI Group that focusses on the...

  16. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production September 3, 2014 - 12:05pm Addthis News Media ...

  17. Sapphire Energy - Integrated Algal Biorefinery

    Broader source: Energy.gov (indexed) [DOE]

    Algal Biorefinery EE0002884 March 24 2015 SAPPHIRE CONFIDENTIAL 1 Original project goals (2009) SAPPHIRE CONFIDENTIAL 2 Project objectives Demonstrate the technical and ...

  18. Integrated Biorefineries | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Map Labels The interactive map above highlights biorefinery projects funded by the Bioenergy Technologies Office at pilot, demonstration, and pioneer scales. Adjust the map...

  19. Alpena Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The American Process Inc. (API) Alpena Biorefinery converts the industrial waste stream ... recovery of wood sugars from the mill's liquid waste stream (about 23 dry tons per day). ...

  20. Biomass Program 2007 Accomplishments - Integrated Biorefinery Platform

    SciTech Connect (OSTI)

    none,

    2008-06-01

    This document details the accomplishments of the Biomass Program Integrated Biorefinery Platform in 2007.

  1. Lignol Innovations, Inc. Demonstration-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Lignol Innovations, Inc., biorefinery will produce cellulosic ethanol, high purity lignin, and furfural from hardwoods.

  2. Biochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Conversion Technologies » Biochemical Conversion » Biochemical Conversion - Biorefinery Integration Biochemical Conversion - Biorefinery Integration One of the essential elements in the economical and efficient production of cellulosic biofuels is the development of biorefineries. Similar in concept to traditional petroleum refineries, biorefineries convert various types of biomass feedstock into marketable chemicals, fuels, and products. By taking advantage of

  3. Red Shield Acquisition, LLC, Integrated Biorefinery

    Broader source: Energy.gov [DOE]

    This demonstration-scale biorefinery will produce lignocellulosic sugars for biofuel feedstock from woody biomass.

  4. Flambeau River Biofuels Demonstration-Scale Biorefinery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flambeau River Biofuels Demonstration-Scale Biorefinery Flambeau River Biofuels Demonstration-Scale Biorefinery The Flambeau River biorefinery will be added to an existing pulp and ...

  5. Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery Algenol Biofuels Inc., will create a pilot-scale biorefinery ...

  6. Development of Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefineries » Development of Integrated Biorefineries Development of Integrated Biorefineries The development of the integrated biorefinery was identified as crucial part of achieving alternative fuel production goals. Throughout its stages of development, the integrated biorefinery will utilize input from all of the other platforms as well as the existing biofuels industry. The research and development of feedstocks and the biochemical and thermochemical conversion platforms will

  7. American Process—Alpena Biorefinery Lessons

    Broader source: Energy.gov [DOE]

    Breakout Session 1D—Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) American Process—Alpena Biorefinery Lessons Theodora Retsina, Chief Executive Officer, America Process Inc.

  8. Range Fuels Commercial-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  9. 9003: Biorefinery Assistance Program | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    9003: Biorefinery Assistance Program 9003: Biorefinery Assistance Program Breakout Session 1D-Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) 9003: Biorefinery Assistance Program Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture cassidy_biomass_2014.pdf (418.43 KB) More Documents & Publications Project Finance and Investments Demonstration and Deployment Workshop - Day 1 American

  10. Abengoa Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefineries Abengoa Integrated Biorefineries Demonstration and Deployment Successes Gerson Santos, Executive Vice President, Abengoa b13_santos_ap-2.pdf (2.72 MB) More Documents & Publications 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Biomass IBR Fact Sheet: Abengoa Bioenergy Abengoa IBR Successes

  11. Engineering Cellulases for Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2010-06-27

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  12. NewPage Demonstration-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NewPage Demonstration-Scale Biorefinery NewPage Demonstration-Scale Biorefinery The NewPage biorefinery will be added to an existing pulp and paper mill to create renewable ...

  13. POET-DSM biorefinery in Iowa | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    POET-DSM biorefinery in Iowa POET-DSM biorefinery in Iowa Addthis Cellulosic ethanol biorefinery 1 of 10 Cellulosic ethanol biorefinery The mechanical building (front), solid/liquid separation building (left), and anaerobic digestion building (back) at POET-DSM's Project LIBERTY biorefinery in Emmetsburg, Iowa. Image: Courtesy of POET-DSM Stacking up biomass 2 of 10 Stacking up biomass The biomass stackyard, where corn waste is stored at POET-DSM's Project LIBERTY biorefinery. Image: Courtesy of

  14. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefineries 2011 Biomass Program Platform Peer Review: Integrated ... experts at the U.S. Department of Energy Biomass Programs Integrated Biorefinery ...

  15. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I: ...

  16. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics ...

  17. EERE Energy Impacts: Biorefineries Give Local Farmers Opportunities...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    stock piled outside of POET-DSMs Project LIBERTY cellulosic ethanol biorefinery. ... stover stock piled outside of POET-DSM's Project LIBERTY cellulosic ethanol biorefinery. ...

  18. FOA for the Demonstration of an Integrated Biorefinery System...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications FOA for the Demonstration of an Integrated Biorefinery System: Range Fuels, Inc. FOA for the Demonstration of an Integrated Biorefinery System: ...

  19. Verenium Pilot- and Demonstration-Scale Biorefinery | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Verenium Pilot- and Demonstration-Scale Biorefinery Verenium Pilot- and Demonstration-Scale Biorefinery The Verenium facility will produce ethanol from lignocellulosic agricultural ...

  20. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Environmental Management (EM)

    Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue ...

  1. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Environmental Management (EM)

    Range Fuels, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Range Fuels, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Range Fuels, Inc. ...

  2. Algal Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Research & Development » Algal Biofuels » Algal Integrated Biorefineries Algal Integrated Biorefineries The Algae Program works closely with the Demonstration and Deployment Program on projects that can validate advancements toward commercialization at increasing scales. Integrated biorefineries apply R&D to scale-up facilities to a degree relevant to commercial applications. U.S. Department of Energy funding of this work helps to advance the industry by minimizing the risk of these

  3. Investigation of thermochemical biorefinery sizing and environmental...

    Office of Scientific and Technical Information (OSTI)

    Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs...

  4. United Biorefineries Corp UBC | Open Energy Information

    Open Energy Info (EERE)

    physical & biological research. Involved in the project development of an Integrated Biorefinery Complex utilizing algae and cellulosic-based second generation biofuels technology....

  5. A Biorefinery Goes 'Mod' and Small

    Broader source: Energy.gov [DOE]

    Minnesota-based Easy Energy Systems sells small-scale, easy-to use biorefineries. The company expects to create 100 jobs because of new orders.

  6. Demonstration of Pyrolysis Biorefinery Concept for Biopower,...

    Broader source: Energy.gov (indexed) [DOE]

    Office (BETO) Project Peer Review Demonstration of Pyrolysis Biorefinery Concept for ... plants * Product development and demonstration *4 Biomass Prep and Handling Pyrolysis ...

  7. Fulton Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Sumait, Necy; Cuzens, John; Klann, Richard

    2015-07-24

    Final report on work performed by BlueFire on the deployment of acid hydrolysis technology to convert cellulosic waste materials into renewable fuels, power and chemicals in a production facility to be located in Fulton, Mississippi.

  8. Integrated Biorefineries: Biofuels, Biopower, and Bioproducts

    SciTech Connect (OSTI)

    2013-05-06

    This fact sheet describes integrated biorefineries and the Program's work with them. A crucial step in developing the U.S. bioindustry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other bioproducts.

  9. Thermochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Biorefinery Integration Thermochemical Conversion - Biorefinery Integration Fuels Synthesis Fuels can be produced from bio-oils using processes similar to those found in a petroleum refinery, including hydrotreating and hydrocracking to create green gasoline, an alternative to alcohol-based ethanol fuels. Some types of bio-oils can even be fully integrated into petroleum refining stream and infrastructure. The conversion of biomass derived syngas to products is typically an exothermic process,

  10. Biorefinery Grant Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery Grant Announcement Biorefinery Grant Announcement February 28, 2007 - 10:28am Addthis Prepared Remarks for Energy Secretary Bodman Thank you all for coming. In his State of the Union address last month, President Bush set forth an aggressive plan to reduce America's consumption of gasoline over the next ten years. The President's "20 in 10" initiative would increase the amount of renewable and alternative fuels used in the transportation sector to 35 billion gallons a year

  11. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BIOREFINERIES INEOS New Planet Bioenergy began production at its Indian River Bioenergy Center in Vero Beach, FL, in July 2013. Cost-shared funding from the Bioenergy Technologies Office contributed to the construction of this pioneer-scale plant, which converts waste biomass materials into 8 million gallons of cellulosic ethanol and produces 6 MW of power annually. Photo: INEOS Bio Integrated Biorefineries: Reducing Investment Risk in Novel Technology Achieving national energy and climate goals

  12. Integrated Biorefinery Lessons Learned and Best Practices

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefinery Lessons Learned and Best Practices - Breakout Session 1 Session Moderator: Glenn Doyle U.S. Department of Energy Bioenergy Technologies Office July 29 th , 2014 2 | Bioenergy Technologies Office Session Agenda Lessons Learned and Best Practices Presentations * BETO's Integrated Biorefineries - Glenn Doyle, Technology Manager, DOE * USDA Loan Guarantee Programs - Chris Cassidy, National Business Renewable Energy Advisor, USDA * American Process, Inc. pilot plant - Theodora

  13. Integrated Biorefinery Research Facility | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integrated Biorefinery Research Facility NREL's Integrated Biorefinery Research Facility (IBRF) enables researchers and industry partners to develop, test, evaluate, and demonstrate processes and technologies for the production of bio-based products and fuels. Interior of industrial, two-story building with high-bay, piping, and large processing equipment. Three workers in hard hats. In addition to the facility itself, NREL's world-renowned expert staff works with IBRF partners at every stage of

  14. Multitasking mesoporous nanomaterials for biorefinery applications

    SciTech Connect (OSTI)

    Kandel, Kapil

    2013-01-01

    in microalgae biorefinery. Two different integrated biorefinery systems are highlighted. (i) OM-MSNs are used to harvest microalgae and selectively sequester free fatty acids (FFAs). (ii) OM-MSNs are shown to selectively sequester FFAs and convert them into diesel-range liquid hydrocarbon fuels. A similar MSN supported metal nanoparticle catalyst is demonstrated to transform FFAs into green diesel with even greater activity and selectivity. The incorporation of a different organic functional group into MSN provides a selective adsorbent for separation and purification of α-tocopherol from microalgae oil. The functional group with electron deficient aromatic rings demonstrated high sequestration capacity and selectivity of {alpha}-tocopherol.

  15. Integrated Biorefinery Research Facility (IBRF I-II) (Post CD...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug 2011 PDF icon 000521 & ...

  16. Nationwide: The Nations First Commercial-Scale Biorefineries

    Broader source: Energy.gov [DOE]

    EERE's investment aids in the creation of the first commercial-scale biorefineries in the United States.

  17. Integrated Biorefinery Lessons Learned and Best Practices | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Integrated Biorefinery Lessons Learned and Best Practices Integrated Biorefinery Lessons Learned and Best Practices Breakout Session 1D-Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) Integrated Biorefinery Lessons Learned and Best Practices Glenn Doyle, Technology Manager, Bioenergy Technologies Office, U.S. Department of Energy doyle_biomass_2014.pdf (1.01 MB) More Documents & Publications Demonstration and Deployment

  18. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated ... renewable biomass feedstocks to sustainable and fungible transportation fuels * ...

  19. Solazyme Pilot-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solazyme Pilot-Scale Biorefinery Solazyme Pilot-Scale Biorefinery The Solazyme integrated biorefinery will use a heterotrophic algal oil biomanufacturing process to create biofuels. ibr_arra_solazyme.pdf (305.49 KB) More Documents & Publications CX-005693: Categorical Exclusion Determination Algae Biofuels Technology 2016 National Algal Biofuels Technology Review

  20. Biorefinery and Carbon Cycling Research Project

    SciTech Connect (OSTI)

    Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

    2012-06-08

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  1. Biorefinery and Hydrogen Fuel Cell Research

    SciTech Connect (OSTI)

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  2. Economy Through Product Diversity: Integrated Biorefineries

    Broader source: Energy.gov [DOE]

    Achieving national energy and climate goals will require an economically viable and environmentally sustainable U.S. bioindustry. A crucial step in developing this industry is to establish integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other products.

  3. 2009 Integrated Biorefinery Platform Review Report

    SciTech Connect (OSTI)

    Ferrell, John

    2009-12-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program‘s Integrated Biorefinery (IBR) platform review meeting, held on February 18–19, 2009, at the Westin National Harbor, National Harbor, Maryland.

  4. 2013 Peer Review Presentations—Integrated Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Bioenergy Technologies Office hosted its 2013 Project Peer Review on May 20–24, 2015, at the Hilton Mark Center in Alexandria, Virginia. The presentations from integrated biorefineries session are available to view and download below. For detailed session descriptions and presentation titles, view the 2013 Project Peer Review Program Booklet.

  5. Recovery Act : Heterogeneous Feed Biorefinery Project

    SciTech Connect (OSTI)

    Schofield, Richard

    2015-03-15

    To overcome the hurdles associated with introducing a new technology, Enerkem applied to the US DOE for grant assistance with its Pontotoc, Mississippi, biorefinery under the DOE’s Demonstration of Integrated Biorefinery Operations FOA. Consistent with Enerkem’s strategic approach, the project proposed uses post sorted municipal solid waste blended with other forest residue. The proposed biorefinery is to be located within the boundaries of a working landfill, thus simplifying many aspects of environmental permitting while also reducing feedstock acquisition and transportation costs. An economic impact analysis was conducted using an adaptation of the US Department of Energy’s JEDI (Jobs and Economic Development Impact) model for an ethanol-producing biorefinery. The JEDI model, which does not have a thermochemical processing option, had to be configured to reflect a biomass feedstock and was thus adapted by Enerkem to account for the unique feedstock requirements and operations of the Project. According to this model, development, construction, and 2 years of operation of the biorefinery require an investment of approximately $140 million. Also, a construction period of 18 months will create significant direct and indirect employment. Indirect employment includes steel manufacturers, construction materials manufacturers, material shipping, equipment manufacturers and fabrication, etc. During the construction phase of the Project, 210 total jobs are expected to be created, including 145 direct jobs and 72 indirect or induced jobs. During the operating period, 131 jobs would be created, 95 of which are direct. It is anticipated that the project will create at least 10 new jobs (included in the above figures and in addition to the JEDI data) in the sorting and recycling sector, since the project will require operations in sorting MSW since valuable ferrous, nonferrous and recyclable plastic materials will be sorted from MSW as part of the process that isolates

  6. MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials

    SciTech Connect (OSTI)

    2006-02-17

    The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

  7. To the Biorefinery: Delievered Forestland and Agricultural Resources Factsheet

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Biorefinery: Delivered Forestland and Agricultural Resources It can be challenging and costly to trans- port biomass feedstock supplies from the roadside, or farmgate, to a biorefinery. Given the geographic dispersion and low- bulk density of cellulosic feedstocks, cost- effective scaling of commercial biorefinery operations requires overcoming many challenges. The Biomass Research and Development Board's Feedstock Logistics Interagency Working Group identified four primary barriers related

  8. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project Review | Department of Energy 4 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I: Progress in Advanced Biofuels 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Gerson Santos-Leon, Executive Vice President, Abengoa santos-leon_biomass_2014.pdf (4.68 MB) More Documents & Publications Abengoa IBR Successes Applicant

  9. Five Things to Know about Biorefinery Investments | Department...

    Office of Environmental Management (EM)

    Also, three new companies were awarded contracts to construct biorefineries to produce "drop-in" biofuels for the military and private sector last month. Energy Department-funded ...

  10. Nationwide: The Nation's First Commercial-Scale Biorefineries...

    Broader source: Energy.gov (indexed) [DOE]

    EERE supports 25 integrated biorefineries that are specifically focused on producing cellulosic ethanol, drop-in hydrocarbon biofuel, and bioproducts. As of July 2013, INEOS opened ...

  11. Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01

    The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

  12. ClearFuels-Rentech Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The ClearFuels-Rentech pilot-scale biorefinery will use Fisher-Tropsch gas-to-liquids technology to create diesel and jet fuel.

  13. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cellana Inc. 2014 Second-Generation Biofuels from Multi-Product Biorefineries Combine ... commercial-scale quantities of advanced biofuels. 4. To the extent that the prices of ...

  14. Second-Generation Biofuels from Multi-Product Biorefineries Combine...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Second-Generation Biofuels from Multi-Product ...

  15. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery Operations to Fuel Ethanol Award Number: DE-EE0002875 March 23, 2015 ... to refine cellulosic biomass into fuel ethanol and co-products Create an ...

  16. Integrated Biorefinery for conversion of Biomass to Ethanol,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat March 25, 2015 ... Louis MO Subsidiary of Abengoa SA, Spain Ethanol facilities in Nebraska, Kansas, New ...

  17. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The nation's third commercial-scale cellulosic ethanol biorefinery celebrates its grand ... The plant will produce cellulosic ethanol from non-edible corn stalks, stems, and leaves ...

  18. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Environmental Management (EM)

    Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an ...

  19. 2014 DOE Biomass Program Integrated Biorefinery Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review DOE Award No. DE-FC36-07GO17028 April 16, 2014 Principal Investigator - Gerson Santos-Leon Project Director - Joseph Bradford Abengoa Bioenergy Biomass of Kansas, LLC The following contains proprietary and confidential information that may not be released to persons outside the US Department of Energy 2 2 2014 ABBK Comprehensive Project Review Table of Contents Abengoa Bioenergy Background General Overview 1 Company

  20. U.S. Department of Energy Small-Scale Biorefineries Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Small-Scale Biorefineries Project Overview U.S. Department of Energy Small-Scale Biorefineries Project Overview A chart indicating round one and round two selections for the U.S. Department of Energy Small-Scale Biorefineries Project Overview. U.S. Department of Energy Small-Scale Biorefineries Project Overview (31.45 KB) More Documents & Publications U.S. Department of Energy Small-Scale Biorefineries: Project Overview

  1. U.S. Department of Energy Small-Scale Biorefineries: Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Small-Scale Biorefineries: Project Overview U.S. Department of Energy Small-Scale Biorefineries: Project Overview Chart that shows which small-scale biorefineries were approved to receive DOE funding in 2008, a summary of their fields of focus, their cost share, and how much DOE is investing in them. small_scale_biorefinery_overview.pdf (37.32 KB) More Documents & Publications U.S. Department of Energy Small-Scale Biorefineries Project Overview

  2. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect (OSTI)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  3. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Integrated Biorefineries 2011 Biomass Program Platform Peer Review: Integrated Biorefineries "This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Programs Integrated Biorefinery Platform Review meeting, held on February 1...3, 2011, at the U.S. Department of Energy, Washington, D.C." 2011_ibr_review.pdf (2.52 MB) More Documents & Publications 2011

  4. New Biorefinery Will Bring Jobs to Northeastern Oregon

    Broader source: Energy.gov [DOE]

    In northeastern Oregon, ZeaChem, a Colorado-based biofuel company, recently broke ground on a 250,000 gallon integrated cellulosic biorefinery. The technology development project is expected to be operating in 2011.

  5. Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Policy and Politics | Department of Energy and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Afternoon Plenary Introduction Brent Erickson, Executive Vice President, BIO b13_erickson_day2-apintro.pdf (2.18 MB) More Documents & Publications Biomass 2013 Agenda Biomass 2012 Agenda U.S. Biofuels Industry: Mind the Gap

  6. DOE Announces $160 Million for Biorefinery Construction and Highlights New

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agricultural Program to Promote Biofuels | Department of Energy 60 Million for Biorefinery Construction and Highlights New Agricultural Program to Promote Biofuels DOE Announces $160 Million for Biorefinery Construction and Highlights New Agricultural Program to Promote Biofuels February 22, 2006 - 12:11pm Addthis Funding Paves the Way for Diversifying America's Energy Mix DECATUR, IL - Energy Secretary Samuel W. Bodman, today announced $160 million in cost-shared funding over three years to

  7. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Integrated Biorefineries:Biofuels, Biopower, and Bioproducts Integrated Biorefineries:Biofuels, Biopower, and Bioproducts The U.S. goal to produce 21 billion gallons of advanced biofuels by 2022 creates an urgent need to bridge the gap between promising research and commercial large-scale production of advanced biofuels. ibr_portfolio_overview.pdf (1.07 MB) More Documents & Publications Biochemical Conversion: Using Hydrolysis, Fermentation, and Catalysis to Make Fuels and

  8. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ethanol, Inc. | Department of Energy Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. Award No. DE-FC36-07GO17025 (14.26 MB) More Documents & Publications FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty,

  9. Controlling Accumulation of Fermentation Inhibitors in Biorefinery Recycle Water Using Microbial Fuel Cells

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Mielenz, Jonathan R; Leak, David; Vishnivetskaya, Tatiana A; Hamilton, Choo Yieng; Andras, Calin

    2009-01-01

    Background Microbial fuel cells (MFC) and microbial electrolysis cells are electrical devices that treat water using microorganisms and convert soluble organic matter into electricity and hydrogen, respectively. Emerging cellulosic biorefineries are expected to use large amounts of water during production of ethanol. Pretreatment of cellulosic biomass results in production of fermentation inhibitors which accumulate in process water and make the water recycle process difficult. Use of MFCs to remove the inhibitory sugar and lignin degradation products from recycle water is investigated in this study. Results Use of an MFC to reduce the levels of furfural, 5-hydroxymethylfurfural, vanillic acid, 4- hydroxybenzaldehyde and 4-hydroxyacetophenone while simultaneously producing electricity is demonstrated here. An integrated MFC design approach was used which resulted in high power densities for the MFC, reaching up to 3700mW/m2 (356W/m3 net anode volume) and a coulombic efficiency of 69%. The exoelectrogenic microbial consortium enriched in the anode was characterized using a 16S rRNA clone library method. A unique exoelectrogenic microbial consortium dominated by -Proteobacteria (50%), along with -Proteobacteria (28%), -Proteobacteria (14%), -Proteobacteria (6%) and others was identified. The consortium demonstrated broad substrate specificity, ability to handle high inhibitor concentrations (5 to 20mM) with near complete removal, while maintaining long-term stability with respect to power production. Conclusions Use of MFCs for removing fermentation inhibitors has implications for: 1) enabling higher ethanol yields at high biomass loading in cellulosic ethanol biorefineries, 2) improved water recycle and 3) electricity production up to 25% of total biorefinery power needs.

  10. Membranes Key to Biorefinery Success | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Miming living organisms processes for biorefineries Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Miming living organisms processes for biorefineries Jimmy Lopez 2015.09.10 Membranes play a key role in the human body, filtering out bacteria and viruses and also ensuring cells absorb essential nutrients. They are

  11. FOA for the Demonstration of an Integrated Biorefinery System: Abengoa

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bioenergy Biomass of Kansas, LLC | Department of Energy Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC. Award No. DE-FC36-07GO17028, Part 1 (1.38 MB) Award No. DE-FC36-07GO17028, Part 2 (1.66 MB) Abengoa, Mod No. M001 Contract No. DE-FC36-07GO17028 (1.57 MB) More Documents & Publications

  12. Biomass Program 2007 Peer Review - Integrated Biorefinery Platform Summary

    SciTech Connect (OSTI)

    none,

    2009-10-27

    This document discloses the comments provided by a review panel at the U.S. Department of Energy Office of the Biomass Program Peer Review held on November 15-16, 2007 in Baltimore, MD and the Integrated Biorefinery Platform Review held on August 13-15, 2007 in Golden, Colorado.

  13. EIS-0407: Abengoa Biorefinery Project Near Hugoton, Kansas

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an environmental impact statement to assess the potential environmental impacts associated with the proposed action of providing Federal financial assistance to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton in Stevens County, southwestern Kansas.

  14. Pilot-Scale MixotrophicAlgae Integrated Biorefinery(IBR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Mixotrophic Algae Integrated Biorefinery (IBR) March 23-27, 2015 Technology Area: Demonstration and Market Transformation Principal Investigator: Toby Ahrens Organization: BioProcess Algae This presentation does not contain any proprietary, confidential, or otherwise restricted information AGENDA * Project Overview * Project Approach * Technical Progress and Accomplishments * Project Relevance * Future Work 2 BIOPROCESS ALGAE BACKGROUND 3 Integrated production since 2009 Option to

  15. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    SciTech Connect (OSTI)

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

    2010-09-01

    Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data

  16. Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Game | Department of Energy Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game February 9, 2011 - 1:40pm Addthis Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Paul Bryan Biomass Program Manager, Office of Energy Efficiency & Renewable Energy How does it work? Vegetative and agricultural waste reacts with oxygen to produce synthesis

  17. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  18. Secretaries Chu and Vilsack Announce More Than $600 Million Investment in Advanced Biorefinery Projects

    Broader source: Energy.gov [DOE]

    Private company investment brings total to nearly $1.3 billion for 19 biorefinery projects to create jobs and new markets for rural America

  19. ClearFuels-Rentech Integrated Biorefinery Final Report

    SciTech Connect (OSTI)

    Pearson, Joshua

    2014-02-26

    The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.

  20. NREL Report Provides Documentation of the Advanced Biorefinery Landscape

    Broader source: Energy.gov [DOE]

    The National Renewable Energy Laboratory (NREL) released a report in January 2015 on the status of the non-starch ethanol and renewable hydrocarbon biofuels industry in the United States. The report, “2013 Survey of Non-Starch Ethanol and Renewable Hydrocarbon Biofuels Producers,” is the first of its kind to provide publically available, open source documentation on the state of the advanced biorefinery landscape.

  1. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTEGRATED BIOREFINERIES 2011 Platform Review Report An Independent Evaluation of Platform Activities for FY 2010 and FY 2011 Review Date February 1-3, 2011 February 2012 Department of Energy Washington, D.C. 20585 Dear Colleague: This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the U.S. Department of Energy Biomass Program's Integrated Biorefnery Platform Review meeting, held on February 1-3, 2011, at the U.S. Department of

  2. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    SciTech Connect (OSTI)

    Dr. Donal F. Day

    2009-01-29

    /fermentation process yielded improvements beyond what was expected solely from the addition of sugar. In order to expand the economic potential for building a biorefinery, the conversion of enzyme hydrolysates of AFEX-treated bagasse to succinic acid was also investigated. This program established a solid basis for pre-treatment of bagasse in a manner that is feasible for producing ethanol at raw sugar mills.

  3. Jobs and Economic Development Impact (JEDI) User Reference Guide: Fast Pyrolysis Biorefinery Model

    SciTech Connect (OSTI)

    Zhang, Y.; Goldberg, M.

    2015-02-01

    This guide -- the JEDI Fast Pyrolysis Biorefinery Model User Reference Guide -- was developed to assist users in operating and understanding the JEDI Fast Pyrolysis Biorefinery Model. The guide provides information on the model's underlying methodology, as well as the parameters and data sources used to develop the cost data utilized in the model. This guide also provides basic instruction on model add-in features and a discussion of how the results should be interpreted. Based on project-specific inputs from the user, the JEDI Fast Pyrolysis Biorefinery Model estimates local (e.g., county- or state-level) job creation, earnings, and output from total economic activity for a given fast pyrolysis biorefinery. These estimates include the direct, indirect and induced economic impacts to the local economy associated with the construction and operation phases of biorefinery projects.Local revenue and supply chain impacts as well as induced impacts are estimated using economic multipliers derived from the IMPLAN software program. By determining the local economic impacts and job creation for a proposed biorefinery, the JEDI Fast Pyrolysis Biorefinery Model can be used to field questions about the added value biorefineries might bring to a local community.

  4. U.S. Department of Energy Selects First Round of Small-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Projects for Up to $114 Million in Federal Funding | Department of Energy First Round of Small-Scale Biorefinery Projects for Up to $114 Million in Federal Funding U.S. Department of Energy Selects First Round of Small-Scale Biorefinery Projects for Up to $114 Million in Federal Funding January 29, 2008 - 10:53am Addthis Ten percent commercial-scale biorefineries will help the nation meet new Renewable Fuels Standard WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman

  5. DOE Announces up to $200 Million in Funding for Biorefineries | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy up to $200 Million in Funding for Biorefineries DOE Announces up to $200 Million in Funding for Biorefineries May 1, 2007 - 12:45pm Addthis Small- and full-scale projects total up to $585 million to advance President Bush's Twenty in Ten Initiative WASHINGTON, DC - U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE will provide up to $200 million, over five years (FY'07-'11) to support the development of small-scale cellulosic biorefineries in the

  6. EA-1705: Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan

    Broader source: Energy.gov [DOE]

    The frontier Project consists of the design, construction and operation of a biorefinery producing ethanol and other co-products from cellulosic materials utilizing a proprietary pretreatment and fermentation process.

  7. Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

  8. DOE Selects 3 Small-Scale Biorefinery Projects for up to $86 Million of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Federal Funding in Maine, Tennessee and Kentucky | Department of Energy 3 Small-Scale Biorefinery Projects for up to $86 Million of Federal Funding in Maine, Tennessee and Kentucky DOE Selects 3 Small-Scale Biorefinery Projects for up to $86 Million of Federal Funding in Maine, Tennessee and Kentucky April 18, 2008 - 10:49am Addthis Projects Demonstrate Continued Commitment to Advancing Development of Sustainable, Cost-Competitive Cellulosic Ethanol ALEXANDRIA, VA. - U.S. Department of

  9. Amyris, Inc. Integrated Biorefinery Project Summary Final Report - Public Version

    SciTech Connect (OSTI)

    Gray, David; Sato, Suzanne; Garcia, Fernando; Eppler, Ross; Cherry, Joel

    2014-03-12

    The Amyris pilot-scale Integrated Biorefinery (IBR) leveraged Amyris synthetic biology and process technology experience to upgrade Amyris’s existing Emeryville, California pilot plant and fermentation labs to enable development of US-based production capabilities for renewable diesel fuel and alternative chemical products. These products were derived semi-synthetically from high-impact biomass feedstocks via microbial fermentation to the 15-carbon intermediate farnesene, with subsequent chemical finishing to farnesane. The Amyris IBR team tested and provided methods for production of diesel and alternative chemical products from sweet sorghum, and other high-impact lignocellulosic feedstocks, at pilot scale. This enabled robust techno-economic analysis (TEA), regulatory approvals, and a basis for full-scale manufacturing processes and facility design.

  10. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  11. FOA for the Demonstration of an Integrated Biorefinery System: POET Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Liberty, LLC | Department of Energy POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty, LLC FOA for the Demonstration of an Integrated Biorefinery System: POET Project Liberty, LLC. Award No. DE-FC36-07GO17026, Part 1 (8.63 MB) Award No. DE-FC36-07GO17026, Part 2 (8.26 MB) Technology Investment Agreement (TIA) Award No. DE-FO36-08GO18121 (7.39 MB) More Documents & Publications FOA for the Demonstration of an Integrated

  12. Biomass Biorefinery for the production of Polymers and Fuels

    SciTech Connect (OSTI)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  13. Energy Department Requests Information on Understanding Scale-Up and Operational Challenges for Integrated Biorefinery Optimization

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy’s (EERE’s) Bioenergy Technologies Office (BETO) seeks feedback from industry, academia, research laboratories, government agencies, and other stakeholders that will help BETO better understand capabilities, as well as barriers and opportunities, for the operation of integrated biorefineries to produce biofuels, biochemicals, and bioproducts.

  14. Grand Opening of Abengoa’s Biorefinery: Nation’s Third Commercial-Scale Facility

    Broader source: Energy.gov [DOE]

    The nation’s third commercial-scale cellulosic ethanol biorefinery celebrates its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its kind to use a proprietary enzymatic hydrolysis process which turns cellulosic biomass into fermentable sugars that are then converted into transportation fuels.

  15. EERE Energy Impacts: Biorefineries Give Local Farmers Opportunities for Additional Income

    Broader source: Energy.gov [DOE]

    Selling corn stover—the non-edible corn stalks, husks, and leaves of a corn plant—after the corn harvest has generated a new revenue stream for many farmers. Biorefineries buy the corn plant residue from farmers and turn it into cellulosic ethanol, allowing farmers to "add revenue without adding acres."

  16. EA-1865: Department of Energy Loan Guarantee to Kior, Inc., for Biorefinery Facilities in Georgia, Mississippi, and Texas

    Broader source: Energy.gov [DOE]

    This EA will evaluate the environmental impacts of a proposal to issue a Federal loan guarantee to Kior, Inc., for biorefinery facilities in Georgia, Mississippi, and Texas. This EA is on hold.

  17. Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics

    SciTech Connect (OSTI)

    Pauly, Markus; Hake, Sarah

    2013-10-31

    The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and or biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.

  18. Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Shane Carnohan; Andrew Ford; Allyson Beall

    2014-07-01

    Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner.

  19. Demonstration of Integrated Biorefinery Operations for Producing Biofuels and Chemical / Material Products

    SciTech Connect (OSTI)

    Rushton, Michael

    2011-09-01

    Lignol’s project involved the design, construction and operation of a 10% demonstration scale cellulosic ethanol biorefinery in Grand Junction Colorado in partnership with Suncor Energy. The preconstruction phase of the project was well underway when the collapse in energy prices coupled with a significant global economic downturn hit in the end 2008. Citing economic uncertainty, the project was suspended by Suncor. Lignol, with the support of the DOE continued to develop the project by considering relocating the biorefinery to sites that were more favorable in term of feedstock availability, existing infrastructure and potential partners Extended project development activities were conducted at three lead sites which offered certain key benefits to the overall biorefinery project. This work included feedstock availability studies, technical site assessment, engineering, plant design and pilot scale biorefining of feedstocks of interest. The project generated significant operational data on the bioconversion of woody feedstocks into cellulosic ethanol and lignin-based biochemicals. The project also highlighted the challenges faced by technology developers in attracting capital investment in first of kind renewable fuels solutions. The project was concluded on August 29 2011.

  20. Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks

    SciTech Connect (OSTI)

    Pruski, Marek; Trewyn, Brian; Lee, Young-Jin; Lin, Victor S.-Y.

    2013-01-22

    The goal of this proposed work is to develop and optimize the synthesis of mesoporous nanoparticle materials that are able to selectively sequester fatty acids from hexane extracts from algae, and to catalyze their transformation, as well as waste oils, into biodiesel. The project involves studies of the interactions between the functionalized MSN surface and the sequestering molecules. We investigate the mechanisms of selective extraction of fatty acids and conversion of triglycerides and fatty acids into biodiesel by the produced nanoparticles. This knowledge is used to further improve the properties of the mesoporous nanoparticle materials for both tasks. Furthermore, we investigate the strategies for scaling the synthesis of the catalytic nanomaterials up from the current pilot plant scale to industrial level, such that the biodiesel obtained with this technology can successfully compete with food crop-based biodiesel and petroleum diesel.

  1. The Impact of Biomass Feedstock Supply Variability on the Delivered Price to a Biorefinery in the Peace River Region of Alberta, Canada

    SciTech Connect (OSTI)

    Stephen, Jamie; Sokhansanj, Shahabaddine; Bi, X.T.; Sowlati, T.; Kloeck, T.; Townley-Smith, Lawrence; Stumborg, Mark

    2010-01-01

    Agricultural residue feedstock availability in a given region can vary significantly over the 20 25 year lifetime of a biorefinery. Since delivered price of biomass feedstock to a biorefinery is related to the distance travelled and equipment optimization, and transportation distance increases as productivity decreases, productivity is a primary determinant of feedstock price. Using the Integrated Biomass Supply Analysis and Logistics (IBSAL) modeling environment and a standard round bale harvest and delivery scenario, harvest and delivery price were modelled for minimum, average, and maximum yields at four potential biorefinery sites in the Peace River region of Alberta, Canada. Biorefinery capacities ranged from 50,000 to 500,000 tonnes per year. Delivery cost is a linear function of transportation distance and can be combined with a polynomial harvest function to create a generalized delivered cost function for agricultural residues. The range in delivered cost is substantial and is an important consideration for the operating costs of a biorefinery.

  2. Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae Final Report

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Santosa, Daniel M.; Valkenburt, Corinne; Jones, Susanne B.; Tjokro Rahardjo, Sandra A.

    2009-11-03

    This report describes the results of the work performed by PNNL using feedstock materials provided by the National Renewable Energy Laboratory, KL Energy and Lignol lignocellulosic ethanol pilot plants. Test results with algae feedstocks provided by Genifuel, which provided in-kind cost share to the project, are also included. The work conducted during this project involved developing and demonstrating on the bench-scale process technology at PNNL for catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae. A technoeconomic assessment evaluated the use of the technology for energy recovery in a lignocellulosic ethanol plant.

  3. Continuous Succinic Acid Production by Actinobacillus succinogenes on Xylose-Enriched Hydrolysate

    SciTech Connect (OSTI)

    Bradfield, Michael F. A.; Mohagheghi, Ali; Salvachua, Davinia; Smith, Holly; Black, Brenna A.; Dowe, Nancy; Beckham, Gregg T.; Nicol, Willie

    2015-11-14

    Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream processing appropriate to the desired end use, making overall process development, along with selection of appropriate target molecules, crucial to the integrated biorefinery. Succinic acid (SA), a high-value target molecule, can be biologically produced from sugars and has the potential to serve as a platform chemical for various chemical and polymer applications. However, the feasibility of microbial SA production at industrially relevant productivities and yields from lignocellulosic biorefinery streams has not yet been reported.

  4. Continuous Succinic Acid Production by Actinobacillus succinogenes on Xylose-Enriched Hydrolysate

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bradfield, Michael F. A.; Mohagheghi, Ali; Salvachua, Davinia; Smith, Holly; Black, Brenna A.; Dowe, Nancy; Beckham, Gregg T.; Nicol, Willie

    2015-11-14

    Bio-manufacturing of high-value chemicals in parallel to renewable biofuels has the potential to dramatically improve the overall economic landscape of integrated lignocellulosic biorefineries. However, this will require the generation of carbohydrate streams from lignocellulose in a form suitable for efficient microbial conversion and downstream processing appropriate to the desired end use, making overall process development, along with selection of appropriate target molecules, crucial to the integrated biorefinery. Succinic acid (SA), a high-value target molecule, can be biologically produced from sugars and has the potential to serve as a platform chemical for various chemical and polymer applications. However, the feasibility ofmore » microbial SA production at industrially relevant productivities and yields from lignocellulosic biorefinery streams has not yet been reported.« less

  5. EA-1888: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, Maine

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal by Old Town Fuel and Fiber to install and operate a demonstration-scale integrated biorefinery at their existing pulp mill in Old Town, Maine, demonstrating the production of n-butanol from lignocellulosic (wood) extract.

  6. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling

  7. Departments of Energy, Navy, and Agriculture Invest $210 million in Three Commercial Biorefineries to Produce Drop-in Biofuel for the Military

    Broader source: Energy.gov [DOE]

    In 2014, the U.S. Departments of Energy, Navy, and Agriculture announced that Emerald Biofuels, Fulcrum Energy, and Red Rock Biofuels have been awarded contracts to construct biorefineries capable...

  8. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    SciTech Connect (OSTI)

    Greene, Sherrell R; Flanagan, George F; Borole, Abhijeet P

    2009-03-01

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  9. Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390

    SciTech Connect (OSTI)

    Chapeaux, A.; Schell, D.

    2013-06-01

    The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

  10. Understanding Potential Air Emissions from a Cellulosic Biorefinery Producing Renewable Diesel Blendstock.

    SciTech Connect (OSTI)

    Zhang, Yimin; Heath, Garvin A.; Renzaglia, Jason; Thomas, Mae

    2015-06-22

    The Energy Independence and Security Act of 2007, through the Renewable Fuel Standard (RFS), mandates increased use of biofuels, including cellulosic biofuels. The RFS is expected to spur the development of advanced biofuel technologies (e.g., new and innovative biofuel conversion pathways) as well as the construction of biorefineries (refineries that produce biofuels) using these technologies. To develop sustainable cellulosic biofuels, one of the goals of the Bioenergy Technologies Office (BETO) at the Department of Energy is to minimize air pollutants from the entire biofuel supply chain, as stated in their 2014 Multi-Year Program Plan (2014). Although biofuels in general have been found to have lower life cycle greenhouse gas (GHG) emissions compared to petroleum fuels on an energy basis, biomass feedstock production, harvesting, transportation, processing and conversion are expected to emit a wide range of other air pollutants (e.g., criteria air pollutants, hazardous air pollutants), which could affect the environmental benefits of biofuels when displacing petroleum fuels. While it is important for policy makers, air quality planners and regulators, biofuel developers, and investors to understand the potential implications on air quality from a growing biofuel industry, there is a general lack of information and knowledge about the type, fate and magnitude of potential air pollutant emissions from the production of cellulosic biofuels due to the nascent stage of this emerging industry. This analysis assesses potential air pollutant emissions from a hypothetical biorefinery, selected by BETO for further research and development, which uses a biological conversion process of sugars to hydrocarbons to produce infrastructural-compatible renewable diesel blendstock from cellulosic biomass.

  11. Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via microbial fuel cell

    SciTech Connect (OSTI)

    Borole, Abhijeet P; Hamilton, Choo Yieng; Schell, Daniel J

    2012-01-01

    A biorefinery process typically uses about 4-10 times as much water as the amount of biofuel generated. The wastewater produced in a biorefinery process contains residual sugars, 5-furfural, phenolics, and other pretreatment and fermentation byproducts. Treatment of the wastewater can reduce the need for fresh water and potentially add to the environmental benefits of the process. Use of microbial fuel cells (MFCs) for conversion of the various organics present in a post-fermentation biorefinery stream is reported here. The organic loading was varied over a wide range to assess removal efficiency, coulombic efficiency and power production. A coulombic efficiency of 40% was observed for a low loading of 1% (0.66 g/L) and decreased to 1.8% for the undiluted process stream (66.4 g/L organic loading). A maximum power density of 1180 mW/m2 was observed at a loading of 8%. Excessive loading was found to result in poor electrogenic performance. The results indicate that operation of an MFC at an intermediate loading using dilution and recirculation of the process stream can enable effective treatment with bioenergy recovery.

  12. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis and Catalytic Hydroconversion - Wastewater Cleanup by Catalytic Hydrothermal Gasification

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Olarte, Mariefel V.; Hart, Todd R.

    2015-06-19

    DOE-EE Bioenergy Technologies Office has set forth several goals to increase the use of bioenergy and bioproducts derived from renewable resources. One of these goals is to facilitate the implementation of the biorefinery. The biorefinery will include the production of liquid fuels, power and, in some cases, products. The integrated biorefinery should stand-alone from an economic perspective with fuels and power driving the economy of scale while the economics/profitability of the facility will be dependent on existing market conditions. UOP LLC proposed to demonstrate a fast pyrolysis based integrated biorefinery. Pacific Northwest National Laboratory (PNNL) has expertise in an important technology area of interest to UOP for use in their pyrolysis-based biorefinery. This CRADA project provides the supporting technology development and demonstration to allow incorporation of this technology into the biorefinery. PNNL developed catalytic hydrothermal gasification (CHG) for use with aqueous streams within the pyrolysis biorefinery. These aqueous streams included the aqueous phase separated from the fast pyrolysis bio-oil and the aqueous byproduct streams formed in the hydroprocessing of the bio-oil to finished products. The purpose of this project was to demonstrate a technically and economically viable technology for converting renewable biomass feedstocks to sustainable and fungible transportation fuels. To demonstrate the technology, UOP constructed and operated a pilot-scale biorefinery that processed one dry ton per day of biomass using fast pyrolysis. Specific objectives of the project were to: The anticipated outcomes of the project were a validated process technology, a range of validated feedstocks, product property and Life Cycle data, and technical and operating data upon which to base the design of a full-scale biorefinery. The anticipated long-term outcomes from successful commercialization of the technology were: (1) the replacement of a significant

  13. Fully Integrated Lignocellulosic Biorefinery with Onsite Production of Enzymes and Yeast

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2010-06-14

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  14. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-09

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  15. Final Technical Report: Improvement of Zymomonas mobilis for Commercial Use in Corn-based Biorefineries

    SciTech Connect (OSTI)

    Hitz, William D.

    2010-12-07

    Between 2007 and 2010 DuPont conducted a program under DOE award DE-FC36-07GO17056 to develop and improve Zymomonas mobilis as an ethanologen for commercial use in biorefineries to produce cellulosic ethanol. This program followed upon an earlier DOE funded program in which DuPont, in collaboration with the National Renewable Energy Laboratory (NREL) had developed a Zymomonas strain in conjunction with the development of an integrated cellulosic ethanol process. In the current project, we sought to maximize the utility of Zymomonas by adding the pathway to allow fermentation of the minor sugar arabinose, improve the utilization of xylose, improve tolerance to process hydrolysate and reduce the cost of producing the ethanologen. We undertook four major work streams to address these tasks, employing a range of approaches including genetic engineering, adaptation, metabolite and pathway analysis and fermentation process development. Through this project, we have developed a series of strains with improved characteristics versus the starting strain, and demonstrated robust scalability to at least the 200L scale. By a combination of improved ethanol fermentation yield and titer as well as reduced seed train costs, we have been able to reduce the capital investment and minimum ethanol selling price (MESP) by approximately 8.5% and 11% respectively vs. our starting point. Furthermore, the new strains we have developed, coupled with the learnings of this program, provide a platform for further strain improvements and advancement of cellulosic ethanol technology.

  16. Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-04

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  17. Effect of fed-batch vs. continuous mode of operation on microbial fuel cell performance treating biorefinery wastewater

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pannell, Tyler C.; Goud, R. Kannaiah; Schell, Daniel J.; Borole, Abhijeet P.

    2016-05-01

    Bioelectrochemical systems have been shown to treat low-value biorefinery streams while recovering energy, however, low current densities and anode conversion efficiencies (ACE) limit their application. A bioanode was developed via enrichment of electroactive biofilm under fed-batch and continuous feeding conditions using corn stover-derived waste stream. The continuously-fed MFC exhibited a current density of 5.8±0.06 A/m2 and an ACE of 39%±4. The fed-batch MFC achieved a similar current density and an ACE of 19.2%, however, its performance dropped after 36 days of operation to 1.1 A/m2 and 0.5%, respectively. In comparison, the ACE of the continuously-fed MFC remained stable achieving anmore » ACE of 30% ± 3 after 48 days of operation. An MFC treating a biorefinery stream post fuel separation achieved a current density of 10.7±0.1 A/m2 and an ACE of 57% ± 9 at an organic loading of 12.5 g COD/L-day. Characterization of the microbial communities indicate higher abundance of Firmicutes and Proteobacteria and lower abundance of Bacteriodetes and a higher level of Geobacter spp. (1.4% vs. 0.2%) in continuously-fed MFC vs. fed-batch MFC. Finally, the results demonstrate that limiting substrate to the equivalent maximum current that the anode can generate, maintains MFC performance over a long term for high strength wastewaters, such as those generated in the biorefinery.« less

  18. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a networkmore » of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.« less

  19. Strategic supply system design - a holistic evaluation of operational and production cost for a biorefinery supply chain

    SciTech Connect (OSTI)

    Lamers, Patrick; Tan, Eric C.D.; Searcy, Erin M.; Scarlata, Christopher J.; Cafferty, Kara G.; Jacobson, Jacob J.

    2015-08-20

    Pioneer cellulosic biorefineries across the United States rely on a conventional feedstock supply system based on one-year contracts with local growers, who harvest, locally store, and deliver feed-stock in low-density format to the conversion facility. While the conventional system is designed for high biomass yield areas, pilot scale operations have experienced feedstock supply shortages and price volatilities due to reduced harvests and competition from other industries. Regional supply dependency and the inability to actively manage feedstock stability and quality, provide operational risks to the biorefinery, which translate into higher investment risk. The advanced feedstock supply system based on a network of depots can mitigate many of these risks and enable wider supply system benefits. This paper compares the two concepts from a system-level perspective beyond mere logistic costs. It shows that while processing operations at the depot increase feedstock supply costs initially, they enable wider system benefits including supply risk reduction (leading to lower interest rates on loans), industry scale-up, conversion yield improvements, and reduced handling equipment and storage costs at the biorefinery. When translating these benefits into cost reductions per liter of gasoline equivalent (LGE), we find that total cost reductions between -$0.46 to -$0.21 per LGE for biochemical and -$0.32 to -$0.12 per LGE for thermochemical conversion pathways are possible. Naturally, these system level benefits will differ between individual actors along the feedstock supply chain. Further research is required with respect to depot sizing, location, and ownership structures.

  20. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed preprocessing supply system designs

    SciTech Connect (OSTI)

    Muth, jr., David J.; Langholtz, Matthew H.; Tan, Eric; Jacobson, Jacob; Schwab, Amy; Wu, May; Argo, Andrew; Brandt, Craig C.; Cafferty, Kara; Chiu, Yi-Wen; Dutta, Abhijit; Eaton, Laurence M.; Searcy, Erin

    2014-03-31

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the

  1. Top Value-Added Chemicals from Biomass - Volume II„Results of Screening for Potential Candidates from Biorefinery Lignin

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Top Value-Added Chemicals from Biomass Volume II-Results of Screening for Potential Candidates from Biorefinery Lignin 1 JE Holladay 2 JJ Bozell 1 JF White 3 D Johnson 1 Pacific Northwest National Laboratory 2 University of Tennessee 3 National Renewable Energy Laboratory October 2007 Prepared for the U.S. Department of Energy under Contract DE-AC05-76RL01830 PNNL-16983 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the

  2. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    SciTech Connect (OSTI)

    Borole, Abhijeet P.

    2015-08-25

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  3. Sustainable and efficient pathways for bioenergy recovery from low-value process streams via bioelectrochemical systems in biorefineries

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borole, Abhijeet P.

    2015-01-01

    Conversion of biomass into bioenergy is possible via multiple pathways resulting in production of biofuels, bioproducts and biopower. Efficient and sustainable conversion of biomass, however, requires consideration of many environmental and societal parameters in order to minimize negative impacts. Integration of multiple conversion technologies and inclusion of upcoming alternatives such as bioelectrochemical systems can minimize these impacts and improve conservation of resources such as hydrogen, water and nutrients via recycle and reuse. This report outlines alternate pathways integrating microbial electrolysis in biorefinery schemes to improve energy efficiency while evaluating environmental sustainability parameters.

  4. Top Value-Added Chemicals from Biomass - Volume IIResults of Screening for Potential Candidates from Biorefinery Lignin

    SciTech Connect (OSTI)

    Holladay, John E.; White, James F.; Bozell, Joseph J.; Johnson, David

    2007-10-01

    This report evaluates lignins role as a renewable raw material resource. Opportunities that arise from utilizing lignin fit into one of three categories: 1)power, fuel and syngas (generally near-term opportunities) 2) macromolecules (generally medium-term opportunities) 3) aromatics and miscellaneous monomers (long-term opportunities). Biorefineries will receive and process massive amounts of lignin. For this reason, how lignin can be best used to support the economic health of the biorefinery must be defined. An approach that only considers process heat would be shortsighted. Higher value products present economic opportunities and the potential to significantly increase the amount of liquid transportation fuel available from biomass. In this analysis a list of potential uses of lignin was compiled and sorted into product types which are broad classifications (listed above as powerfuelsyngas; macromolecules; and aromatics). In the first product type (powerfuelgasification) lignin is used purely as a carbon source and aggressive means are employed to break down its polymeric structure. In the second product type (macromolecules) the opposite extreme is considered and advantage of the macromolecular structure imparted by nature is retained in high-molecular weight applications. The third product type (aromatics) lies somewhere between the two extremes and employs technologies that would break up lignins macromolecular structure but maintain the aromatic nature of the building block molecules. The individual opportunities were evaluated based on their technical difficulty, market, market risk, building block utility, and whether a pure material or a mixture would be produced. Unlike the Sugars Top 10 report it was difficult to identify the ten best opportunities, however, the potential opportunities fell nicely into near-, medium- and long-term opportunities. Furthermore, the near-, medium- and long-term opportunities roughly align with the three

  5. Recovery Act. Demonstration of a Pilot Integrated Biorefinery for the Efficient, Direct Conversion of Biomass to Diesel Fuel

    SciTech Connect (OSTI)

    Schuetzle, Dennis; Tamblyn, Greg; Caldwell, Matt; Hanbury, Orion; Schuetzle, Robert; Rodriguez, Ramer; Johnson, Alex; Deichert, Fred; Jorgensen, Roger; Struble, Doug

    2015-05-12

    The Renewable Energy Institute International, in collaboration with Greyrock Energy and Red Lion Bio-Energy (RLB) has successfully demonstrated operation of a 25 ton per day (tpd) nameplate capacity, pilot, pre-commercial-scale integrated biorefinery (IBR) plant for the direct production of premium, “drop-in”, synthetic fuels from agriculture and forest waste feedstocks using next-generation thermochemical and catalytic conversion technologies. The IBR plant was built and tested at the Energy Center, which is located in the University of Toledo Medical Campus in Toledo, Ohio.

  6. Departments of the Navy, Energy and Agriculture Invest in Construction of Three Biorefineries to Produce Drop-In Biofuel for Military

    Office of Energy Efficiency and Renewable Energy (EERE)

    As part of a 2011 Presidential directive, the Departments of Navy, Energy, and Agriculture announced today that three companies have been awarded contracts to construct and commission biorefineries capable of producing “drop-in” biofuels to meet the transportation needs of the military and private sector.

  7. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect (OSTI)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential

  8. DOEGO85004_1: Final Non-proprietary Technical Report, Generating Process and Economic Data for Preliminary Design of PureVision Biorefineries DOEGO85004_2: One Original Final Proprietary Technical Report to be mailed to DOE Golden.

    SciTech Connect (OSTI)

    Kadam, Kiran L., Ph.D; Lehrburger, Ed

    2008-01-17

    The overall objective of the project was to define a two-stage reactive fractionation process for converting corn stover into a solid cellulose stream and two liquid streams containing mostly hemicellulosic sugars and lignin, respectively. Toward this goal, biomass fractionation was conducted using a small continuous pilot unit with a nominal capacity of 100 pounds per day of dry biomass to generate performance data using primarily corn stover as feedstock. In the course of the program, the PureVision process was optimized for efficient hemicellulose hydrolysis in the first stage employing autohydrolysis and delignification in the second stage using sodium hydroxide as a catalyst. The remaining cellulose was deemed to be an excellent substrate for producing fermentation sugars, requiring 40% less enzymes for hydrolysis than conventional pretreatment systems using dilute acid. The fractionated cellulose was also determined to have potential higher-value applications as a pulp product. The lignin coproduct was determined to be substantially lower in molecular weight (MW) compared to lignins produced in the kraft or sulfite pulping processes. This low-MW lignin can be used as a feed and concrete binder and as an intermediate for producing a range of high-value products including phenolic resins. This research adds to the understanding of the biomass conversion area in that a new process was developed in the true spirit of biorefineries. The work completed successfully demonstrated the technical effectiveness of the process at the pilot level indicating the technology is ready to advance to a 2–3 ton per day scale. No technical showstoppers are anticipated in scaling up the PureVision fractionation process to commercial scale. Also, economic feasibility of using the PureVision process in a commercial-scale biorefinery was investigated and the minimum ethanol selling price for the PureVision process was calculated to be $0.94/gal ethanol vs. $1.07/gal ethanol for the

  9. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil Raymond G. Wissinger Manager, Renewable Energy & Chemicals Development UOP, LLC This presentation does not contain any proprietary, confidential, or otherwise restricted information © Copyright 2015 UOP LLC, a Honeywell Company 2 File Number Goal Statement * Demonstrate a technically and economically viable approach for converting

  10. The Integrated Biorefinery: Conversion of Corn Fiber to Value-added Chemicals

    SciTech Connect (OSTI)

    Susanne Kleff

    2007-03-24

    This presentation provides a summary of Michigan Biotechnology Institute's efforts to employ the corn fiber fraction of a dry grind ethanol plant as a feedstock to produce succinic acid which has potential as a building block intermediate for a wide range of commodity chemicals.

  11. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the

  12. Conceptual design assessment for the co-firing of bio-refinery supplied lignin project. Quarterly report, June 23--July 1, 2000

    SciTech Connect (OSTI)

    Berglund, T.; Ranney, J.T.; Babb, C.L.

    2000-07-27

    The Conceptual Design Assessment for the Co-Firing of Bio-Refinery Supplied Lignin Project was successfully kicked off on July 23, 2000 during a meeting at the TVA-PPI facility in Muscle Shoals, AL. An initial timeline for the study was distributed, issues of concern were identified and a priority actions list was developed. Next steps include meeting with NETL to discuss de-watering and lignin fuel testing, the development of the mass balance model and ethanol facility design criteria, providing TVA-Colbert with preliminary lignin fuel analysis and the procurement of representative feed materials for the pilot and bench scale testing of the hydrolysis process.

  13. Strategic Biorefinery Analysis: Analysis of Biorefineries

    SciTech Connect (OSTI)

    Lynd, L. R.; Wyman, C.; Laser, M.; Johnson, D.; Landucci, R.

    2005-10-01

    Subcontract report prepared by Dartmouth College that identifies and discusses the advantages of producing ethanol in a biomass refinery as compared to a single-product facility.

  14. Understanding the impact of flow rate and recycle on the conversion of a complex biorefinery stream using a flow-through microbial electrolysis cell

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lewis, Alex J.; Borole, Abhijeet P.

    2016-06-16

    We investigated the effect of flow rate and recycle on the conversion of a biomass-derived pyrolysis aqueous phase in amicrobial electrolysis cell (MEC) to demonstrate production of renewable hydrogen in biorefinery. A continuous MEC operation was investigated under one-pass and recycle conditions usingthe complex, biomass-derived, fermentable, mixed substrate feed at a constant concentration of 0.026 g/L,while testing flow rates ranging from 0.19 to 3.6 mL/min. This corresponds to an organic loading rate (OLR) of 0.54₋10 g/L-day. Mass transfer issues observed at low flow rates were alleviated using high flow rates.Increasing the flow rate to 3.6 mL/min (3.7 min HRT) duringmore » one-pass operation increased the hydrogen productivity 3-fold, but anode conversion efficiency (ACE) decreased from 57.9% to 9.9%. Recycle of the anode liquid helped to alleviate kinetic limitations and the ACE increased by 1.8-fold and the hydrogen productivity by 1.2-fold compared to the one-pass condition at the flow rate of 3.6 mL/min (10 g/L-d OLR). High COD removal was also achieved under recycle conditions, reaching 74.2 1.1%, with hydrogen production rate of 2.92 ± 0.51 L/L-day. This study demonstrates the advantages of combining faster flow rates with a recycle process to improve rate of hydrogen production from a switchgrass-derived stream in the biorefinery.« less

  15. Gasification of Biorefinery Residues

    SciTech Connect (OSTI)

    2006-04-01

    This project is addressing syngas clean-up by developing a better understanding of the chemical mechanisms and kinetics of trace product formation in biomass gasification.

  16. Integrated Biorefinery Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Concept Development Commercial Viability Technical Viability Concept Proof Commercial Sustainability Information Resources Office of Biomass Program, Web Site: http:...

  17. Combined Dilute Acid and Solvent Based Pretreatment of Agricultural Wastes for Efficient Lignocellulosic Fractionation and Biofuels Production

    SciTech Connect (OSTI)

    Brodeur, G.; Ramakrishnan, S.; Wilson, C.; Telotte, J.; Collier, J.; Stickel, J.

    2013-01-01

    A true biorefinery for processing lignocellulosic biomass should achieve maximum utilization of all major constituents (cellulose, hemicellulose, & lignin) within the feedstock. In this work a combined pretreatment process of dilute acid (DA) and N-methyl morpholine N-oxide (NMMO) is described that allows for both fractionation and subsequent complete hydrolysis of the feedstocks (corn stover and sugarcane bagasse). During this multi-step processing, the dilute acid pretreatment solubilizes the majority (>90%) of the hemicellulosic fraction, while the NMMO treatment yields a cellulosic fraction that is completely digestible within 48 hours at low enzyme loadings. With both the cellulosic and hemicellulosic fractions being converted into separate, dissolved sugar fractions, the remaining portion is nearly pure lignin. When used independently, DA and NMMO pretreatments are only able to achieve ~80% and ~45% cellulosic conversion, respectively. Mass balance calculations along with experimental results are used to illustrate the feasibility of separation and recycling of NMMO.

  18. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations and Postgre

  19. USDA- Repowering Assistance Biorefinery Program

    Broader source: Energy.gov [DOE]

    The reimbursement amounts vary and are determined by the availability of funds, the project scope, and the ability of the proposed project to meet all the scoring criteria. In particular reimburs...

  20. UOP Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    This project by UOP will leverage two commercially proven core technologies, pyrolysis and hydroconversion, into an integrated platform.

  1. Solazyme Pilot-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    In Solazyme's process, algae grow efficiently in the dark in industrial fermentation vessels to very high cell densities. They ingest and metabolize carbon substrates provided in ...

  2. Integrated Corn-Based Biorefinery

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

  3. Integrated Biorefineries | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research & Development Demonstration & Market Transformation Integrated ... funded by the Bioenergy Technologies Office at pilot, demonstration, and pioneer scales. ...

  4. Hydroxycarboxylic acids and salts

    SciTech Connect (OSTI)

    Kiely, Donald E; Hash, Kirk R; Kramer-Presta, Kylie; Smith, Tyler N

    2015-02-24

    Compositions which inhibit corrosion and alter the physical properties of concrete (admixtures) are prepared from salt mixtures of hydroxycarboxylic acids, carboxylic acids, and nitric acid. The salt mixtures are prepared by neutralizing acid product mixtures from the oxidation of polyols using nitric acid and oxygen as the oxidizing agents. Nitric acid is removed from the hydroxycarboxylic acids by evaporation and diffusion dialysis.

  5. Characterization of Lignin Derived from Water-only and Dilute Acid Flowthrough Pretreatment of Poplar Wood at Elevated Temperatures

    SciTech Connect (OSTI)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    Background: Flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. Results: In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. Conclusions: Elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  6. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    SciTech Connect (OSTI)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL), recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change during

  7. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    SciTech Connect (OSTI)

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositional ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.

  8. Acid distribution in phosphoric acid fuel cells

    SciTech Connect (OSTI)

    Okae, I.; Seya, A.; Umemoto, M.

    1996-12-31

    Electrolyte acid distribution among each component of a cell is determined by capillary force when the cell is not in operation, but the distribution under the current load conditions had not been clear so far. Since the loss of electrolyte acid during operation is inevitable, it is necessary to store enough amount of acid in every cell. But it must be under the level of which the acid disturbs the diffusion of reactive gases. Accordingly to know the actual acid distribution during operation in a cell is very important. In this report, we carried out experiments to clarify the distribution using small single cells.

  9. Fatty acid analogs

    DOE Patents [OSTI]

    Elmaleh, David R.; Livni, Eli

    1985-01-01

    In one aspect, a radioactively labeled analog of a fatty acid which is capable of being taken up by mammalian tissue and which exhibits an in vivo beta-oxidation rate below that with a corresponding radioactively labeled fatty acid.

  10. Mixed Acid Oxidation

    SciTech Connect (OSTI)

    Pierce, R.A.

    1999-10-26

    Several non-thermal processes have been developed to destroy organic waste compounds using chemicals with high oxidation potentials. These efforts have focused on developing technologies that work at low temperatures, relative to incineration, to overcome many of the regulatory issues associated with obtaining permits for waste incinerators. One such technique with great flexibility is mixed acid oxidation. Mixed acid oxidation, developed at the Savannah River Site, uses a mixture of an oxidant (nitric acid) and a carrier acid (phosphoric acid). The carrier acid acts as a non-volatile holding medium for the somewhat volatile oxidant. The combination of acids allows appreciable amounts of the concentrated oxidant to remain in the carrier acid well above the oxidant''s normal boiling point.

  11. PRODUCTION OF TRIFLUOROACETIC ACID

    DOE Patents [OSTI]

    Haworth, W.N.; Stacey, M.

    1949-07-19

    A method is given for the production of improved yields of trifluoroacetic acid. The compound is prepared by oxidizing m-aminobenzotrifluoride with an alkali metal or alkaline earth metal permanganate at a temperature in the range of 80 deg C to 100 deg C while dissolved ln a mixture of water with glacial acetic acid and/or trifluoroacetic acid. Preferably a mixture of water and trifluoroacetic acid ls used as the solvent.

  12. Plant fatty acid hydroxylases

    DOE Patents [OSTI]

    Somerville, Chris; Broun, Pierre; van de Loo, Frank

    2001-01-01

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  13. Cleavage of nucleic acids

    DOE Patents [OSTI]

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2000-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  14. Cleavage of nucleic acids

    DOE Patents [OSTI]

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor L.; Brow, Mary Ann D.; Dahlberg, James E.

    2007-12-11

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  15. Nucleic acid detection assays

    DOE Patents [OSTI]

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James E.

    2005-04-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  16. Nucleic acid detection compositions

    DOE Patents [OSTI]

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann; Dahlberg, James L.

    2008-08-05

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  17. Cleavage of nucleic acids

    DOE Patents [OSTI]

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow; Mary Ann D.; Dahlberg, James E.

    2010-11-09

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  18. Range Fuels Biorefinery Groundbreaking | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and state legislators who exhibit the kind of leadership you've shown in developing America's new energy future. ... Range Fuels are blending science and technology in order to ...

  19. Economy Through Product Diversity: Integrated Biorefineries ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Achieving national energy and climate goals will require an economically viable and environmentally sustainable U.S. bioindustry. A crucial step in developing this industry is to ...

  20. Economy Through Product Diversity: Integrated Biorefineries

    Energy Savers [EERE]

    broad range of biomass feedstocks into affordable biofuels, biopower, and other products. ... produce 21 billion gallons of advanced biofuels in 2022. This target creates an urgent ...

  1. NREL: Biomass Research - Integrated Biorefinery Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The IBRF's 27,000-ft2, high-bay biochemical conversion pilot ... into end-to-end process integration and evaluation tests ... for staged feedstock pre-processing operations in one vessel ...

  2. Integrated Biorefineries: Biofuels, Bioproducts, and Biopower | Department

    Energy Savers [EERE]

    | Department of Energy Solar Panel Maker Scales Up, Lowering Costs while Creating Jobs Innovative Solar Panel Maker Scales Up, Lowering Costs while Creating Jobs May 16, 2011 - 12:41pm Addthis The end of Abound Solar’s PV manufacturing line | Photo Courtesy of Abound Solar The end of Abound Solar's PV manufacturing line | Photo Courtesy of Abound Solar Minh Le Minh Le Deputy Director, Solar Energy Technologies Office It's one thing to call solar energy a "growth industry,"

  3. Southern Pine Based on Biorefinery Center

    SciTech Connect (OSTI)

    Ragauskas, Arthur J; Singh, Preet

    2014-01-10

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: • The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; • The conversion of extracted woodchips to linerboard and bleach grade pulps; and • The efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  4. USDA - Biorefinery Assistance Program | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    must be an advanced biofuels Eligible advanced biofuels include: Biofuel derived from cellulose, hemicellulose, or lignin, or other fuels derived from cellulose Biofuel derived...

  5. NewPage Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  6. Flambeau River Biofuels Demonstration-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wisconsin (NewPage Corporation in Wisconsin Rapids and Flambeau River Papers, LLC in Park Falls). NewPage and Flambeau River have demonstrated successful collaboration on...

  7. NREL: Biomass Research - Capabilities in Integrated Biorefinery...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    U.S. Department of Energy. A yellow ladder is connected to the side of the right tank. A man at the far end of the room examines the pipes that lead to the tanks. In the...

  8. NREL: Sustainable NREL - Integrated Biorefinery Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Efficiency Features Natural ventilation through operable windows Daylighting Open air cubicles LED lights with lighting control system Sustainability Features Composting and ...

  9. Biorefinery Optimization Workshop | Department of Energy

    Energy Savers [EERE]

    Ma r c h 2 0 1 5 B I OE N E R G Y T E C H N OL OG I E S OF F I C E M u l t i - Y e a r P r o g r a m P l a n EXECUTIVE SUMMARY The Bioenergy Technologies Office is one of the 10 technology development offices within the Office of Energy Efficiency and Renewable Energy at the U.S. Department of Energy. This Multi-Year Program Plan (MYPP) sets forth the goals and structure of the Bioenergy Technologies Office (the Office). It identifies the research, development, and demonstration (RD&D), and

  10. DuPont Cellulosic Ethanol Biorefinery Opening

    Broader source: Energy.gov [DOE]

    The DuPont cellulosic ethanol facility, opening in Nevada, Iowa, on October 30, will be the largest cellulosic ethanol plant in the world. The U.S. Department of Energy Bioenergy Technologies Office Director, Jonathan Male, alongside senior government officials, DuPont leaders and staff, and local farmers will attend the grand opening ceremony and plant tour.

  11. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solazyme, Inc. Peoria, IL Pilot Algae UOP, LLC Kapolei, HI Pilot Thermo - Pyrolysis ZeaChem, Inc. Boardman, OR Pilot Thermo - Pyrolysis Elevance* Boilingbrook, IL...

  12. Integrated Biorefinery Process | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    At the February 12, 2009 quarterly joint Web conference of DOE's Biomass and Clean Cities ... Quarterly Biomass ProgramClean Cities States Web Conference: January 21, 2010 The Current ...

  13. A Second-Generation Dry Mill Biorefinery

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

  14. EA-1787: Finding of No Significant Impact | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Documents & Publications EA-1787: Final Environmental Assessment Myriant Succinic Acid Biorefinery Commercialization of Bio-Based Chemicals: A Successful Public-Private Partnership...

  15. Demonstration and Deployment Workshop Day 1 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lessons Learned, Challenges, and Future Needs danddworkshopspaeth.pdf (2.32 MB) More Documents & Publications Myriant Succinic Acid Biorefinery 2013 Peer Review ...

  16. Nucleic acid detection kits

    DOE Patents [OSTI]

    Hall, Jeff G.; Lyamichev, Victor I.; Mast, Andrea L.; Brow, Mary Ann; Kwiatkowski, Robert W.; Vavra, Stephanie H.

    2005-03-29

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof. The present invention further relates to methods and devices for the separation of nucleic acid molecules based on charge. The present invention also provides methods for the detection of non-target cleavage products via the formation of a complete and activated protein binding region. The invention further provides sensitive and specific methods for the detection of nucleic acid from various viruses in a sample.

  17. Process for the preparation of lactic acid and glyceric acid

    DOE Patents [OSTI]

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  18. Characterization of lignin derived from water-only and dilute acid flowthrough pretreatment of poplar wood at elevated temperatures

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhang, Libing; Yan, Lishi; Wang, Zheming; Laskar, Dhrubojyoti D.; Swita, Marie S.; Cort, John R.; Yang, Bin

    2015-12-01

    In this study, flowthrough pretreatment of biomass has high potential to valorize lignin derivatives to high-value products, which is vital to enhance the economy of biorefinery plants. Comprehensive understanding of lignin behaviors and solubilization chemistry in aqueous pretreatment such as water-only and dilute acid flowthrough pretreatment is of fundamental importance to achieve the goal of providing flexible platform for lignin utilization. In this study, the effects of flowthrough pretreatment conditions on lignin separation from poplar wood were reported as well as the characteristics of three sub-sets of lignin produced from the pretreatment, including residual lignin in pretreated solid residues (ReL),more » recovered insoluble lignin in pretreated liquid (RISL), and recovered soluble lignin in pretreatment liquid (RSL). Both the water-only and 0.05% (w/w) sulfuric acid pretreatments were performed at temperatures from 160 to 270°C on poplar wood in a flowthrough reactor system for 2-10 min. Results showed that water-only flowthrough pretreatment primarily removed syringyl (S units). Increased temperature and/or the addition of sulfuric acid enhanced the removal of guaiacyl (G units) compared to water-only pretreatments at lower temperatures, resulting in nearly complete removal of lignin from the biomass. Results also suggested that more RISL was recovered than ReL and RSL in both dilute acid and water-only flowthrough pretreatment at elevated temperatures. NMR spectra of the RISL revealed significant β-O-4 cleavage, α-β deoxygenation to form cinnamyl-like end groups, and slight β-5 repolymerization in both water-only and dilute acid flowthrough pretreatments. In conclusion, elevated temperature and/or dilute acid greatly enhanced lignin removal to almost 100% by improving G unit removal besides S unit removal in flowthrough system. A new lignin chemistry transformation pathway was proposed and revealed the complexity of lignin structural change

  19. Microorganisms for producing organic acids

    SciTech Connect (OSTI)

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  20. Acid-Catalyzed Algal Biomass Pretreatment for Integrated Lipid and Carbohydrate-Based Biofuels Production

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Laurens, L. M. L.; Nagle, N.; Davis, R.; Sweeney, N.; Van Wychen, S.; Lowell, A.; Pienkos, P. T.

    2014-11-12

    One of the major challenges associated with algal biofuels production in a biorefinery-type setting is improving biomass utilization in its entirety, increasing the process energetic yields and providing economically viable and scalable co-product concepts. We demonstrate the effectiveness of a novel, integrated technology based on moderate temperatures and low pH to convert the carbohydrates in wet algal biomass to soluble sugars for fermentation, while making lipids more accessible for downstream extraction and leaving a protein-enriched fraction behind. We studied the effect of harvest timing on the conversion yields, using two algal strains; Chlorella and Scenedesmus, generating biomass with distinctive compositionalmore » ratios of protein, carbohydrate, and lipids. We found that the late harvest Scenedesmus biomass had the maximum theoretical biofuel potential at 143 gasoline gallon equivalent (GGE) combined fuel yield per dry ton biomass, followed by late harvest Chlorella at 128 GGE per ton. Our experimental data show a clear difference between the two strains, as Scenedesmus was more successfully converted in this process with a demonstrated 97 GGE per ton. Our measurements indicated a release of >90% of the available glucose in the hydrolysate liquors and an extraction and recovery of up to 97% of the fatty acids from wet biomass. Techno-economic analysis for the combined product yields indicates that this process exhibits the potential to improve per-gallon fuel costs by up to 33% compared to a lipids-only process for one strain, Scenedesmus, grown to the mid-point harvest condition.« less

  1. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Menlo Park, CA); Eggeman, Timothy J. (Lakewood, CO)

    2011-11-01

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  2. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  3. Recovery of organic acids

    DOE Patents [OSTI]

    Verser, Dan W. (Golden, CO); Eggeman, Timothy J. (Lakewood, CO)

    2009-10-13

    A method is disclosed for the recovery of an organic acid from a dilute salt solution in which the cation of the salt forms an insoluble carbonate salt. A tertiary amine and CO.sub.2 are introduced to the solution to form the insoluble carbonate salt and a complex between the acid and an amine. A water immiscible solvent, such as an alcohol, is added to extract the acid/amine complex from the dilute salt solution to a reaction phase. The reaction phase is continuously dried and a product between the acid and the solvent, such as an ester, is formed.

  4. Mutant fatty acid desaturase

    DOE Patents [OSTI]

    Shanklin, John; Cahoon, Edgar B.

    2004-02-03

    The present invention relates to a method for producing mutants of a fatty acid desaturase having a substantially increased activity towards fatty acid substrates with chains containing fewer than 18 carbons relative to an unmutagenized precursor desaturase having an 18 carbon atom chain length substrate specificity. The method involves inducing one or more mutations in the nucleic acid sequence encoding the precursor desaturase, transforming the mutated sequence into an unsaturated fatty acid auxotroph cell such as MH13 E. coli, culturing the cells in the absence of supplemental unsaturated fatty acids, thereby selecting for recipient cells which have received and which express a mutant fatty acid desaturase with an elevated specificity for fatty acid substrates having chain lengths of less than 18 carbon atoms. A variety of mutants having 16 or fewer carbon atom chain length substrate specificities are produced by this method. Mutant desaturases produced by this method can be introduced via expression vectors into prokaryotic and eukaryotic cells and can also be used in the production of transgenic plants which may be used to produce specific fatty acid products.

  5. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect (OSTI)

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  6. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  7. Method for isolating nucleic acids

    SciTech Connect (OSTI)

    Hurt, Jr., Richard Ashley; Elias, Dwayne A.

    2015-09-29

    The current disclosure provides methods and kits for isolating nucleic acid from an environmental sample. The current methods and compositions further provide methods for isolating nucleic acids by reducing adsorption of nucleic acids by charged ions and particles within an environmental sample. The methods of the current disclosure provide methods for isolating nucleic acids by releasing adsorbed nucleic acids from charged particles during the nucleic acid isolation process. The current disclosure facilitates the isolation of nucleic acids of sufficient quality and quantity to enable one of ordinary skill in the art to utilize or analyze the isolated nucleic acids for a wide variety of applications including, sequencing or species population analysis.

  8. Optical high acidity sensor

    DOE Patents [OSTI]

    Jorgensen, B.S.; Nekimken, H.L.; Carey, W.P.; O`Rourke, P.E.

    1997-07-22

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber. 10 figs.

  9. Optical high acidity sensor

    DOE Patents [OSTI]

    Jorgensen, Betty S.; Nekimken, Howard L.; Carey, W. Patrick; O'Rourke, Patrick E.

    1997-01-01

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

  10. Plant fatty acid hydroxylase

    DOE Patents [OSTI]

    Somerville, Chris; van de Loo, Frank

    2000-01-01

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  11. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, Luc

    2003-06-24

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  12. Fatty acid-producing hosts

    DOE Patents [OSTI]

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  13. Acid diffusion through polyaniline membranes

    SciTech Connect (OSTI)

    Su, T.M.; Huang, S.C.; Conklin, J.A.

    1995-12-01

    Polyaniline membranes in the undoped (base) and doped (acid) forms are studied for their utility as pervaporation membranes. The separation of water from mixtures of propionic acid, acetic acid and formic acid have been demonstrated from various feed compositions. Doped polyaniline displays an enhanced selectivity of water over these organic acids as compared with undoped polyaniline. For as-cast polyaniline membranes a diffusion coefficient (D) on the order of 10{sup -9} cm{sup 2}/sec has been determined for the flux of protons through the membranes using hydrochloric acid.

  14. Lubrication with boric acid additives

    DOE Patents [OSTI]

    Erdemir, Ali

    2000-01-01

    Self-lubricating resin compositions including a boric acid additive and a synthetic polymer including those thermoset materials.

  15. Carboxylic acid sorption regeneration process

    DOE Patents [OSTI]

    King, C.J.; Poole, L.J.

    1995-05-02

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine. 10 figs.

  16. Carboxylic acid sorption regeneration process

    DOE Patents [OSTI]

    King, C. Judson; Poole, Loree J.

    1995-01-01

    Carboxylic acids are sorbed from aqueous feedstocks into an organic liquid phase or onto a solid adsorbent. The acids are freed from the sorbent phase by treating it with aqueous alkylamine thus forming an alkylammonium carboxylate which is dewatered and decomposed to the desired carboxylic acid and the alkylamine.

  17. Pantothenic acid biosynthesis in zymomonas

    DOE Patents [OSTI]

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  18. Composition for nucleic acid sequencing

    DOE Patents [OSTI]

    Korlach, Jonas; Webb, Watt W.; Levene, Michael; Turner, Stephen; Craighead, Harold G.; Foquet, Mathieu

    2008-08-26

    The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site. A plurality of labelled types of nucleotide analogs are provided proximate to the active site, with each distinguishable type of nucleotide analog being complementary to a different nucleotide in the target nucleic acid sequence. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand at the active site, where the nucleotide analog being added is complementary to the nucleotide of the target nucleic acid at the active site. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The steps of providing labelled nucleotide analogs, polymerizing the growing nucleic acid strand, and identifying the added nucleotide analog are repeated so that the nucleic acid strand is further extended and the sequence of the target nucleic acid is determined.

  19. Invasive cleavage of nucleic acids

    DOE Patents [OSTI]

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    2002-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  20. Invasive cleavage of nucleic acids

    DOE Patents [OSTI]

    Prudent, James R.; Hall, Jeff G.; Lyamichev, Victor I.; Brow, Mary Ann D.; Dahlberg, James E.

    1999-01-01

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  1. Synthesis of amino acids

    DOE Patents [OSTI]

    Davis, J.W. Jr.

    1979-09-21

    A method is described for synthesizing amino acids preceding through novel intermediates of the formulas: R/sub 1/R/sub 2/C(OSOC1)CN, R/sub 1/R/sub 2/C(C1)CN and (R/sub 1/R/sub 2/C(CN)O)/sub 2/SO wherein R/sub 1/ and R/sub 2/ are each selected from hydrogen and monovalent hydrocarbon radicals of 1 to 10 carbon atoms. The use of these intermediates allows the synthesis steps to be exothermic and results in an overall synthesis method which is faster than the synthesis methods of the prior art.

  2. Nucleic Acid Detection Methods

    DOE Patents [OSTI]

    Smith, Cassandra L.; Yaar, Ron; Szafranski, Przemyslaw; Cantor, Charles R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3'-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated.

  3. Nucleic acid detection methods

    DOE Patents [OSTI]

    Smith, C.L.; Yaar, R.; Szafranski, P.; Cantor, C.R.

    1998-05-19

    The invention relates to methods for rapidly determining the sequence and/or length a target sequence. The target sequence may be a series of known or unknown repeat sequences which are hybridized to an array of probes. The hybridized array is digested with a single-strand nuclease and free 3{prime}-hydroxyl groups extended with a nucleic acid polymerase. Nuclease cleaved heteroduplexes can be easily distinguish from nuclease uncleaved heteroduplexes by differential labeling. Probes and target can be differentially labeled with detectable labels. Matched target can be detected by cleaving resulting loops from the hybridized target and creating free 3-hydroxyl groups. These groups are recognized and extended by polymerases added into the reaction system which also adds or releases one label into solution. Analysis of the resulting products using either solid phase or solution. These methods can be used to detect characteristic nucleic acid sequences, to determine target sequence and to screen for genetic defects and disorders. Assays can be conducted on solid surfaces allowing for multiple reactions to be conducted in parallel and, if desired, automated. 18 figs.

  4. Ozone and acid rain

    SciTech Connect (OSTI)

    Not Available

    1987-10-09

    The roles of ozone and other oxidizing agents are discussed. The major polluting emissions are SO/sub 2/, NO, and volatile organic chemicals. In the usual ambient concentrations, these substances are relatively harmless. However, when SO/sub 2/ and NO are oxidized, they are converted into more acid, more toxic, substances. Oxidants, including OH, H/sub 2/O/sub 2/, HO/sub 2/, and organic peroxides, arise out of complex photochemistry that involves the ozone, the nitrogen oxides, and volatile organic chemicals. Were SO/sub 2/ the only pollutant, most of it would escape unchanged to the western Atlantic Ocean where it would be so diluted as to have no effect. At present about 35 percent of the SO/sub 2/ produced in the United States leaves the continent. In contrast, because of higher rates of reaction with oxidants, most of the NO is converted into nitric acid and deposited on land. The nitrogen oxides are involved in the production of ozone, some of which is naturally present. But particularly in urban settings where concentrations of NO/sub x/ are elevated and volatile organic chemicals such as those in gasoline are present, ozone concentrations may rise to levels deleterious to health. The Environmental Protection Agency has set standards for levels not to be exceeded, but nearly half of urban communities are not in compliance. The NO/sub x/ involved in the formation of urban ozone comes mostly from vehicular emissions.

  5. Electrochemical destruction of organic acids

    SciTech Connect (OSTI)

    Gendes, J.D.; Hartsough, D.; Super, J.D.

    1994-12-31

    An electrochemical process for removing organic acids from an aqueous waste stream has been characterized. Biological treatment of aqueous organic acid waste streams has been the typical means of degrading organic acids, and the resultant biosludge is landfilled. In the electrochemical approach, aqueous organic acids may be efficiently converted to useful fuel in a one or two electron process. The possible reactions occurring are outlined here. The electrolysis of the sodium salts of acetic, propionic, and butyric acids has been studied both as single component solutions and mixtures. The reaction products as well as relative rates of destruction of the acid salts were measured. The effect of experimental variables such as current density, temperature, and anode material on the current efficiency and product distribution was investigated. Electrode stability due to platinum corrosion was identified as the major limitation to the process.

  6. Acidic gas capture by diamines

    DOE Patents [OSTI]

    Rochelle, Gary; Hilliard, Marcus

    2011-05-10

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  7. Carbonic Acid Pretreatment of Biomass

    SciTech Connect (OSTI)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic

  8. Carbonic Acid Retreatment of Biomass

    SciTech Connect (OSTI)

    Baylor university

    2003-06-01

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for

  9. Production of Butyric Acid and Butanol from Biomass

    SciTech Connect (OSTI)

    David E. Ramey; Shang-Tian Yang

    2005-08-25

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased

  10. Functional nucleic acid probes and uses thereof

    DOE Patents [OSTI]

    Nilsen-Hamilton, Marit

    2006-10-03

    The present invention provides functional nucleic acid probes, and methods of using functional nucleic acid probes, for binding a target to carry out a desired function. The probes have at least one functional nucleic acid, at least one regulating nucleic acid, and at least one attenuator. The functional nucleic acid is maintained in an inactive state by the attenuator and activated by the regulating nucleic acid only in the presence of a regulating nucleic acid target. In its activated state the functional nucleic acid can bind to its target to carry out a desired function, such as generating a signal, cleaving a nucleic acid, or catalyzing a reaction.

  11. Comparison of silatrane, phosphonic acid, and carboxylic acid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells Authors: Brennan, B.J., Llansola Portoles, M.J., Liddell, P.A., Moore, T.A., Moore, A.L., and Gust, D. Title: Comparison of silatrane, phosphonic acid, and...

  12. PRODUCTION OF TRIFLUOROACETIC ACID COMPOUNDS

    DOE Patents [OSTI]

    Haworth, W.N.; Stacey, M.

    1949-08-30

    A process is described for the preparation of trifluoroacetic acid. Acetone vapor diluted wlth nitrogen and fluorine also diluted with nltrogen are fed separately at a temperature of about 210 deg C into a reaction vessel containing a catalyst mass selected from-the group consisting of silver and gold. The temperature in the reaction vessel is maintained in the range of 200 deg to 250 deg C. The reaction product, trifluoroacetyl fluoride, is absorbed in aqueous alkali solution. Trifluoroacetic acid is recovered from the solution by acidification wlth an acid such as sulfuric followed by steam distillation.

  13. Phosphonic acid based exchange resins

    DOE Patents [OSTI]

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1995-09-12

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 10 figs.

  14. Phosphonic acid based exchange resins

    DOE Patents [OSTI]

    Horwitz, E. Philip; Alexandratos, Spiro D.; Gatrone, Ralph C.; Chiarizia, Ronato

    1995-01-01

    An ion exchange resin for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene.

  15. Nucleic acid arrays and methods of synthesis

    DOE Patents [OSTI]

    Sabanayagam, Chandran R.; Sano, Takeshi; Misasi, John; Hatch, Anson; Cantor, Charles

    2001-01-01

    The present invention generally relates to high density nucleic acid arrays and methods of synthesizing nucleic acid sequences on a solid surface. Specifically, the present invention contemplates the use of stabilized nucleic acid primer sequences immobilized on solid surfaces, and circular nucleic acid sequence templates combined with the use of isothermal rolling circle amplification to thereby increase nucleic acid sequence concentrations in a sample or on an array of nucleic acid sequences.

  16. Photodissociation dynamics of hydroxybenzoic acids

    SciTech Connect (OSTI)

    Yang Yilin; Dyakov, Yuri; Lee, Y. T.; Ni, Chi-Kung; Sun Yilun; Hu Weiping

    2011-01-21

    Aromatic amino acids have large UV absorption cross-sections and low fluorescence quantum yields. Ultrafast internal conversion, which transforms electronic excitation energy to vibrational energy, was assumed to account for the photostability of amino acids. Recent theoretical and experimental investigations suggested that low fluorescence quantum yields of phenol (chromophore of tyrosine) are due to the dissociation from a repulsive excited state. Radicals generated from dissociation may undergo undesired reactions. It contradicts the observed photostability of amino acids. In this work, we explored the photodissociation dynamics of the tyrosine chromophores, 2-, 3- and 4-hydroxybenzoic acid in a molecular beam at 193 nm using multimass ion imaging techniques. We demonstrated that dissociation from the excited state is effectively quenched for the conformers of hydroxybenzoic acids with intramolecular hydrogen bonding. Ab initio calculations show that the excited state and the ground state potential energy surfaces change significantly for the conformers with intramolecular hydrogen bonding. It shows the importance of intramolecular hydrogen bond in the excited state dynamics and provides an alternative molecular mechanism for the photostability of aromatic amino acids upon irradiation of ultraviolet photons.

  17. Beyond Ketonization: Selective Conversion of Carboxylic Acids...

    Office of Scientific and Technical Information (OSTI)

    Title: Beyond Ketonization: Selective Conversion of Carboxylic Acids to Olefins over Balanced Lewis Acid-base Pairs Dwindling petroleum reserves combined with increased energy ...

  18. In vivo incorporation of unnatural amino acids

    DOE Patents [OSTI]

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2012-05-08

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  19. In vivo incorporation of unnatural amino acids

    DOE Patents [OSTI]

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2011-10-04

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  20. In vivo incorporation of unnatural amino acids

    DOE Patents [OSTI]

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2011-03-29

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  1. In vivo incorporation of unnatural amino acids

    DOE Patents [OSTI]

    Schultz, Peter G.; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Stephen William; Zhang, Zhiwen

    2012-02-14

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  2. In vivo incorporation of unnatural amino acids

    DOE Patents [OSTI]

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric; Mehl, Ryan Aaron; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2008-05-06

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  3. Acid soluble, pepsin resistant platelet aggregating material

    DOE Patents [OSTI]

    Schneider, Morris D.

    1982-08-31

    Acid soluble, pepsin resistant, platelet aggregating material isolated from equine arterial tissue by extraction with dilute aqueous acid, method of isolation and use to control bleeding.

  4. In vivo incorporation of unnatural amino acids

    DOE Patents [OSTI]

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason W.; Liu, David R.; Magliery, Thomas J.; Meggers, Eric; Mehl, Ryan Aaron; Pastrnak, Miro

    2009-12-29

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids

  5. In vivo incorporation of unnatural amino acids

    DOE Patents [OSTI]

    Schultz, Peter; Wang, Lei; Anderson, John Christopher; Chin, Jason William; Liu, David R.; Magliery, Thomas J.; Meggers, Eric L.; Mehl, Ryan A.; Pastrnak, Miro; Santoro, Steven William; Zhang, Zhiwen

    2006-05-16

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  6. Thermal Stability of Acetohydroxamic Acid/Nitric Acid Solutions

    SciTech Connect (OSTI)

    Rudisill, T.S.

    2002-03-13

    The transmutation of transuranic actinides and long-lived fission products in spent commercial nuclear reactor fuel has been proposed as one element of the Advanced Accelerator Applications Program. Preparation of targets for irradiation in an accelerator-driven subcritical reactor would involve dissolution of the fuel and separation of uranium, technetium, and iodine from the transuranic actinides and other fission products. The UREX solvent extraction process is being developed to reject and isolate the transuranic actinides in the acid waste stream by scrubbing with acetohydroxamic acid (AHA). To ensure that a runaway reaction will not occur between nitric acid and AHA, an analogue of hydroxyl amine, thermal stability tests were performed to identify if any processing conditions could lead to a runaway reaction.

  7. Acid sorption regeneration process using carbon dioxide

    DOE Patents [OSTI]

    King, C. Judson; Husson, Scott M.

    2001-01-01

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  8. DOE Announces $160 Million for Biorefinery Construction and Highlights...

    Office of Environmental Management (EM)

    ... Tomorrow, February 23, 2006, Secretary Bodman will visit GT Solar Manufacturing Company in Merrimack, New Hampshire to promote the Solar American Initiative and to highlight solar ...

  9. 2011 Biomass Program Platform Peer Review. Integrated Biorefineries

    SciTech Connect (OSTI)

    Rossmeissl, Neil

    2012-02-01

    This document summarizes the recommendations and evaluations provided by an independent external panel of experts at the 2011 U.S. Department of Energy Biomass Program’s IBR Platform Review meeting.

  10. Agricultural Mixed Waster Biorefinery Using Thermal Conversion Process

    SciTech Connect (OSTI)

    2006-08-01

    This Congressionally-mandated project is supporting efforts to develop a demonstration facility that will use the patented Thermal Conversion Process (TCP) to produce fuel, power and chemicals from poultry waste and agricultural wastes such as animal and vegetable grease and wastewater sludge.