Sample records for acid biorefinery mysab

  1. Alpena Biorefinery

    Broader source: Energy.gov [DOE]

    The Alpena Biorefinery will be constructed in Alpena, Michigan, at the Decorative Panels International hardboard manufacturing facility.

  2. Succinic Acid as a Byproduct in a Corn-based Ethanol Biorefinery

    SciTech Connect (OSTI)

    MBI International

    2007-12-31T23:59:59.000Z

    MBI endeavored to develop a process for succinic acid production suitable for integration into a corn-based ethanol biorefinery. The project investigated the fermentative production of succinic acid using byproducts of corn mill operations. The fermentation process was attuned to include raw starch, endosperm, as the sugar source. A clean-not-sterile process was established to treat the endosperm and release the monomeric sugars. We developed the fermentation process to utilize a byproduct of corn ethanol fermentations, thin stillage, as the source of complex nitrogen and vitamin components needed to support succinic acid production in A. succinogenes. Further supplementations were eliminated without lowering titers and yields and a productivity above 0.6 g l-1 hr-1was achieved. Strain development was accomplished through generation of a recombinant strain that increased yields of succinic acid production. Isolation of additional strains with improved features was also pursued and frozen stocks were prepared from enriched, characterized cultures. Two recovery processes were evaluated at pilot scale and data obtained was incorporated into our economic analyses.

  3. Sugar-Based Ethanol Biorefinery: Ethanol, Succinic Acid and By-Product Production

    SciTech Connect (OSTI)

    Donal F. Day

    2009-03-31T23:59:59.000Z

    The work conducted in this project is an extension of the developments itemized in DE-FG-36-04GO14236. This program is designed to help the development of a biorefinery based around a raw sugar mill, which in Louisiana is an underutilized asset. Some technical questions were answered regarding the addition of a biomass to ethanol facility to existing sugar mills. The focus of this work is on developing technology to produce ethanol and valuable by-products from bagasse. Three major areas are addressed, feedstock storage, potential by-products and the technology for producing ethanol from dilute ammonia pre-treated bagasse. Sugar mills normally store bagasse in a simple pile. During the off season there is a natural degradation of the bagasse, due to the composting action of microorganisms in the pile. This has serious implications if bagasse must be stored to operate a bagasse/biorefinery for a 300+ day operating cycle. Deterioration of the fermentables in bagasse was found to be 6.5% per month, on pile storage. This indicates that long term storage of adequate amounts of bagasse for year-round operation is probably not feasible. Lignin from pretreatment seemed to offer a potential source of valuable by-products. Although a wide range of phenolic compounds were present in the effluent from dilute ammonia pretreatment, the concentrations of each (except for benzoic acid) were too low to consider for extraction. The cellulosic hydrolysis system was modified to produce commercially recoverable quantities of cellobiose, which has a small but growing market in the food process industries. A spin-off of this led to the production of a specific oligosaccharide which appears to have both medical and commercial implications as a fungal growth inhibitor. An alternate use of sugars produced from biomass hydrolysis would be to produce succinic acid as a chemical feedstock for other conversions. An organism was developed which can do this bioconversion, but the economics of succinic acid production were such that it could not compete with current commercial practice. To allow recovery of commercial amounts of ethanol from bagasse fermentation, research was conducted on high solids loading fermentations (using S. cerevisiae) with commercial cellulase on pretreated material. A combination of SHF/SSF treatment with fed-batch operation allowed fermentation at 30% solids loading. Supplementation of the fermentation with a small amount of black-strap molasses had results beyond expectation. There was an enhancement of conversion as well as production of ethanol levels above 6.0% w/w, which is required both for efficient distillation as well as contaminant repression. The focus of fermentation development was only on converting the cellulose to ethanol, as this yeast is not capable of fermenting both glucose and xylose (from hemicellulose). In anticipation of the future development of such an organism, we screened the commercially available xylanases to find the optimum mix for conversion of both cellulose and hemicellulose. A different mixture than the spezyme/novozyme mix used in our fermentation research was found to be more efficient at converting both cellulose and hemicellulose. Efforts were made to select a mutant of Pichia stipitis for ability to co-ferment glucose and xylose to ethanol. New mutation technology was developed, but an appropriate mutant has not yet been isolated. The ability to convert to stillage from biomass fermentations were determined to be suitable for anaerobic degradation and methane production. An economic model of a current sugar factory was developed in order to provide a baseline for the cost/benefit analysis of adding cellulosic ethanol production.

  4. 9003: Biorefinery Assistance Program

    Broader source: Energy.gov [DOE]

    Breakout Session 1D—Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) 9003: Biorefinery Assistance Program Chris Cassidy, National Business Renewable Energy Advisor, U.S. Department of Agriculture

  5. Algal Integrated Biorefineries

    Broader source: Energy.gov [DOE]

    The Algae Program works closely with the Demonstration and Deployment Program on projects that can validate advancements toward commercialization at increasing scales. Integrated biorefineries...

  6. Mascoma: Frontier Biorefinery Project

    Broader source: Energy.gov [DOE]

    This project involves the construction and operation of a biorefinery that produces ethanol and other co-products from cellulosic materials through advanced consolidated bioprocessing.

  7. Elevance Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Elevance biorefinery uses catalyst technology to produce fuels and chemicals from renewable, natural oils.

  8. USDA- Repowering Assistance Biorefinery Program (Federal)

    Broader source: Energy.gov [DOE]

    The Repowering Assistance Program provides payments to eligible biorefineries to replace fossil fuels used to produce heat or power to operate the biorefineries with renewable biomass....

  9. Biorefinery Grey Water Analysis | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    options for grey water generated from a biorefinery with fast pyrolysis and hydrotreating Wastewater treatment options for grey water generated from a biorefinery...

  10. Elevance Pilot-Scale Biorefinery

    Broader source: Energy.gov (indexed) [DOE]

    July 2011 Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste Elevance Integrated Biorefinery This project uses Nobel...

  11. Red Shield Acquisition, LLC, Integrated Biorefinery

    Broader source: Energy.gov [DOE]

    This demonstration-scale biorefinery will produce lignocellulosic sugars for biofuel feedstock from woody biomass.

  12. Lignol Innovations, Inc. Demonstration-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Lignol Innovations, Inc., biorefinery will produce cellulosic ethanol, high purity lignin, and furfural from hardwoods.

  13. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries...

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Biorefineries 2011 Biomass Program Platform Peer Review: Integrated Biorefineries "This document summarizes the recommendations and evaluations provided by an...

  14. American Process—Alpena Biorefinery Lessons

    Broader source: Energy.gov [DOE]

    Breakout Session 1D—Building Market Confidence and Understanding I: Integrated Biorefinery (Lessons Learned and Best Practices) American Process—Alpena Biorefinery Lessons Theodora Retsina, Chief Executive Officer, America Process Inc.

  15. Range Fuels Commercial-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The Range Fuels commercial-scale biorefinery will use a variety of feedstocks to create cellulosic ethanol, methanol, and power.

  16. Engineering Cellulases for Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2010-06-27T23:59:59.000Z

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  17. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive Project Review Plenary I:...

  18. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc...

  19. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire Ethanol, Inc. FOA for the Demonstration of an Integrated Biorefinery System: Blue...

  20. DOE Announces $160 Million for Biorefinery Construction and Highlights...

    Energy Savers [EERE]

    for Biorefinery Construction and Highlights New Agricultural Program to Promote Biofuels DOE Announces 160 Million for Biorefinery Construction and Highlights New...

  1. Advanced and Cellulosic Biofuels and Biorefineries: State of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and Politics Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry, Policy and...

  2. Economy Through Product Diversity: Integrated Biorefineries ...

    Broader source: Energy.gov (indexed) [DOE]

    integrated biorefineries capable of efficiently converting a broad range of biomass feedstocks into affordable biofuels, biopower, and other products. ibrfourpager.pdf More...

  3. A Biorefinery Goes 'Mod' and Small

    Broader source: Energy.gov [DOE]

    Minnesota-based Easy Energy Systems sells small-scale, easy-to use biorefineries. The company expects to create 100 jobs because of new orders.

  4. Process Synthesis and Optimization of Biorefinery Configurations

    E-Print Network [OSTI]

    Pham, Viet

    2012-10-19T23:59:59.000Z

    to sustainable development, the concept of biorefineries is gaining an increasing attention. A biorefinery is a processing facility that receives biomass feedstocks and produces one or more chemical products and/or biofuels through a system of physical... policy in every conversion step of the 3 pathways is performed. This preprocessing step reduces the size of the subsequent optimization calculations. 2.2 Problem description The problem can be described as follows: Given a set of biomass...

  5. Multitasking mesoporous nanomaterials for biorefinery applications

    SciTech Connect (OSTI)

    Kandel, Kapil [Ames Laboratory

    2013-05-02T23:59:59.000Z

    Mesoporous silica nanoparticles (MSNs) have attracted great interest for last two decades due to their unique and advantageous structural properties, such as high surface area, pore volume, stable mesostructure, tunable pore size and controllable particle morphology. The robust silica framework provides sites for organic modifications, making MSNs ideal platforms for adsorbents and supported organocatalysts. In addition, the pores of MSNs provide cavities/ channels for incorporation of metal and metal oxide nanoparticle catalysts. These supported metal nanoparticle catalysts benefit from confined local environments to enhance their activity and selectivity for various reactions. Biomass is considered as a sustainable feedstock with potential to replace diminishing fossil fuels for the production of biofuels. Among several strategies, one of the promising methods of biofuel production from biomass is to reduce the oxygen content of the feedstock in order to improve the energy density. This can be achieved by creating C-C bonds between biomass derived intermediates to increase the molecular weight of the final hydrocarbon molecules. In this context, pore size and organic functionality of MSNs are varied to obtain the ideal catalyst for a C-C bond forming reaction: the aldol condensation. The mechanistic aspects of this reaction in supported heterogeneous catalysts are explored. The modification of supported organocatalyst and the effect of solvent on the reaction are rationalized. The significance of two functional surfaces of MSNs is exploited by enzyme immobilization on the external surface and organo catalyst functionalization on the internal surface. Using this bifunctional catalyst, the tandem conversion of small chain alcohols into longer chain hydrocarbon molecules is demonstrated. The ability to incorporate metal and metal oxide nanoparticles in the pores and subsequent functionalization led to develop organic modified magnetic MSNs (OM-MSNs) for applications in microalgae biorefinery. Two different integrated biorefinery systems are highlighted. (i) OM-MSNs are used to harvest microalgae and selectively sequester free fatty acids (FFAs). (ii) OM-MSNs are shown to selectively sequester FFAs and convert them into diesel-range liquid hydrocarbon fuels. A similar MSN supported metal nanoparticle catalyst is demonstrated to transform FFAs into green diesel with even greater activity and selectivity. The incorporation of a different organic functional group into MSN provides a selective adsorbent for separation and purification of ?-tocopherol from microalgae oil. The functional group with electron deficient aromatic rings demonstrated high sequestration capacity and selectivity of {alpha}-tocopherol.

  6. Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing...

    Office of Environmental Management (EM)

    Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game Turning Waste Into Fuel: How the INEOS Biorefinery Is Changing the Clean Energy Game February...

  7. New Biorefinery Will Bring Jobs to Northeastern Oregon | Department...

    Broader source: Energy.gov (indexed) [DOE]

    New Biorefinery Will Bring Jobs to Northeastern Oregon New Biorefinery Will Bring Jobs to Northeastern Oregon August 9, 2010 - 10:00am Addthis A computer-generate image shows the...

  8. Production of levulinic acid in urban biorefineries

    E-Print Network [OSTI]

    Sheldon-Coulson, Garth Alexander

    2011-01-01T23:59:59.000Z

    The energy security of the United States depends, most experts agree, on the development of substitute sources of energy for the transportation sector, which accounts for over 93% of the nation's petroleum consumption. ...

  9. Myriant Succinic Acid BioRefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward a PeacefulDriving Demand What's Working inMyriant

  10. Myriant Succinic Acid Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S i DOEToward a PeacefulDriving Demand What's Working

  11. Biorefinery and Hydrogen Fuel Cell Research

    SciTech Connect (OSTI)

    K.C. Das; Thomas T. Adams; Mark A. Eiteman; John Stickney; Joy Doran Peterson; James R. Kastner; Sudhagar Mani; Ryan Adolphson

    2012-06-12T23:59:59.000Z

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [1] establishment of pyrolysis processing systems and characterization of the product oils for fuel applications, including engine testing of a preferred product and its pro forma economic analysis; [2] extraction of sugars through a novel hotwater extaction process, and the development of levoglucosan (a pyrolysis BioOil intermediate); [3] identification and testing of the use of biochar, the coproduct from pyrolysis, for soil applications; [4] developments in methods of atomic layer epitaxy (for efficient development of coatings as in fuel cells); [5] advancement in fermentation of lignocellulosics, [6] development of algal biomass as a potential substrate for the biorefinery, and [7] development of catalysts from coproducts. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the pyrolysis biooil based diesel fuel supplement, sugar extraction from lignocelluose, use of biochar, production of algal biomass in wastewaters, and the development of catalysts. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The various coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  12. Biorefinery and Carbon Cycling Research Project

    SciTech Connect (OSTI)

    Das, K. C., Adams; Thomas, T; Eiteman, Mark A; Kastner, James R; Mani, Sudhagar; Adolphson, Ryan

    2012-06-08T23:59:59.000Z

    In this project we focused on several aspects of technology development that advances the formation of an integrated biorefinery. These focus areas include: [ 1] pretreatment of biomass to enhance quality of products from thermochemical conversion; [2] characterization of and development of coproduct uses; [3] advancement in fermentation of lignocellulosics and particularly C5 and C6 sugars simultaneously, and [ 4] development of algal biomass as a potential substrate for the biorefinery. These advancements are intended to provide a diverse set of product choices within the biorefinery, thus improving the cost effectiveness of the system. Technical effectiveness was demonstrated in the thermochemical product quality in the form of lower tar production, simultaneous of use of multiple sugars in fermentation, use ofbiochar in environmental (ammonia adsorption) and agricultural applications, and production of algal biomass in wastewaters. Economic feasibility of algal biomass production systems seems attractive, relative to the other options. However, further optimization in all paths, and testing/demonstration at larger scales are required to fully understand the economic viabilities. The coproducts provide a clear picture that multiple streams of value can be generated within an integrated biorefinery, and these include fuels and products.

  13. Technoeconomic analysis of biorefinery based on multistep kinetics and integration of geothermal energy.

    E-Print Network [OSTI]

    Banerjee, Sudhanya

    2012-01-01T23:59:59.000Z

    ??In this work, a technoeconomic study is conducted to assess the feasibility of integrating geothermal energy into a biorefinery for biofuel production. The biorefinery is… (more)

  14. MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials

    SciTech Connect (OSTI)

    None

    2006-02-17T23:59:59.000Z

    The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

  15. FOA for the Demonstration of an Integrated Biorefinery System...

    Office of Environmental Management (EM)

    Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an Integrated Biorefinery System: Abengoa Bioenergy Biomass of Kansas, LLC FOA for the Demonstration of an...

  16. Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pilot-Scale Biorefinery: Sustainable Transport Fuels from Biomass via Integrated Pyrolysis, Catalytic Hydroconversion and Co-processing with Vacuum Gas Oil Raymond G. Wissinger...

  17. Integrated Biorefinery Research Facility: Advancing Biofuels Technology (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-03-01T23:59:59.000Z

    The Integrated Biorefinery Research Facility (IBRF) at the National Renewable Energy Laboratory (NREL) expands NREL's cellulosic ethanol research and development and collaboration capabilities.

  18. ClearFuels-Rentech Pilot-Scale Biorefinery

    Broader source: Energy.gov [DOE]

    The ClearFuels-Rentech pilot-scale biorefinery will use Fisher-Tropsch gas-to-liquids technology to create diesel and jet fuel.

  19. Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery

    Broader source: Energy.gov (indexed) [DOE]

    Integrated Pilot- Scale Biorefinery for Producing Ethanol from Hybrid Algae Algenol Biofuels Inc., together with its partners, will construct an integrated pilot-scale...

  20. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32C:\Documents andINTEGRATED BIOREFINERIES INEOS

  1. Integrated Biorefinery Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy Health andofIan Kalin About32C:\Documents andINTEGRATED BIOREFINERIES

  2. Albemarle Biorefinery Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 SouthWaterBrasilInformation 5-01 EndStatutes:Biorefinery Inc Jump to:

  3. Preprocessing Moist Lignocellulosic Biomass for Biorefinery Feedstocks

    SciTech Connect (OSTI)

    Neal Yancey; Christopher T. Wright; Craig Conner; J. Richard Hess

    2009-06-01T23:59:59.000Z

    Biomass preprocessing is one of the primary operations in the feedstock assembly system of a lignocellulosic biorefinery. Preprocessing is generally accomplished using industrial grinders to format biomass materials into a suitable biorefinery feedstock for conversion to ethanol and other bioproducts. Many factors affect machine efficiency and the physical characteristics of preprocessed biomass. For example, moisture content of the biomass as received from the point of production has a significant impact on overall system efficiency and can significantly affect the characteristics (particle size distribution, flowability, storability, etc.) of the size-reduced biomass. Many different grinder configurations are available on the market, each with advantages under specific conditions. Ultimately, the capacity and/or efficiency of the grinding process can be enhanced by selecting the grinder configuration that optimizes grinder performance based on moisture content and screen size. This paper discusses the relationships of biomass moisture with respect to preprocessing system performance and product physical characteristics and compares data obtained on corn stover, switchgrass, and wheat straw as model feedstocks during Vermeer HG 200 grinder testing. During the tests, grinder screen configuration and biomass moisture content were varied and tested to provide a better understanding of their relative impact on machine performance and the resulting feedstock physical characteristics and uniformity relative to each crop tested.

  4. Controlling Accumulation of Fermentation Inhibitors in Biorefinery Recycle Water Using Microbial Fuel Cells

    SciTech Connect (OSTI)

    Borole, Abhijeet P [ORNL; Mielenz, Jonathan R [ORNL; Leak, David [Imperial College, London; Vishnivetskaya, Tatiana A [ORNL; Hamilton, Choo Yieng [ORNL; Andras, Calin [Imperial College, London

    2009-01-01T23:59:59.000Z

    Background Microbial fuel cells (MFC) and microbial electrolysis cells are electrical devices that treat water using microorganisms and convert soluble organic matter into electricity and hydrogen, respectively. Emerging cellulosic biorefineries are expected to use large amounts of water during production of ethanol. Pretreatment of cellulosic biomass results in production of fermentation inhibitors which accumulate in process water and make the water recycle process difficult. Use of MFCs to remove the inhibitory sugar and lignin degradation products from recycle water is investigated in this study. Results Use of an MFC to reduce the levels of furfural, 5-hydroxymethylfurfural, vanillic acid, 4- hydroxybenzaldehyde and 4-hydroxyacetophenone while simultaneously producing electricity is demonstrated here. An integrated MFC design approach was used which resulted in high power densities for the MFC, reaching up to 3700mW/m2 (356W/m3 net anode volume) and a coulombic efficiency of 69%. The exoelectrogenic microbial consortium enriched in the anode was characterized using a 16S rRNA clone library method. A unique exoelectrogenic microbial consortium dominated by -Proteobacteria (50%), along with -Proteobacteria (28%), -Proteobacteria (14%), -Proteobacteria (6%) and others was identified. The consortium demonstrated broad substrate specificity, ability to handle high inhibitor concentrations (5 to 20mM) with near complete removal, while maintaining long-term stability with respect to power production. Conclusions Use of MFCs for removing fermentation inhibitors has implications for: 1) enabling higher ethanol yields at high biomass loading in cellulosic ethanol biorefineries, 2) improved water recycle and 3) electricity production up to 25% of total biorefinery power needs.

  5. EIS-0407: Abengoa Biorefinery Project Near Hugoton, Kansas

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared an environmental impact statement to assess the potential environmental impacts associated with the proposed action of providing Federal financial assistance to Abengoa Bioenergy Biomass of Kansas, LLC (Abengoa Bioenergy) to support the design, construction, and startup of a commercial-scale integrated biorefinery to be located near the city of Hugoton in Stevens County, southwestern Kansas.

  6. Development of efficient, integrated cellulosic biorefineries : LDRD final report.

    SciTech Connect (OSTI)

    Teh, Kwee-Yan; Hecht, Ethan S.; Shaddix, Christopher R.; Buffleben, George M.; Dibble, Dean C.; Lutz, Andrew E.

    2010-09-01T23:59:59.000Z

    Cellulosic ethanol, generated from lignocellulosic biomass sources such as grasses and trees, is a promising alternative to conventional starch- and sugar-based ethanol production in terms of potential production quantities, CO{sub 2} impact, and economic competitiveness. In addition, cellulosic ethanol can be generated (at least in principle) without competing with food production. However, approximately 1/3 of the lignocellulosic biomass material (including all of the lignin) cannot be converted to ethanol through biochemical means and must be extracted at some point in the biochemical process. In this project we gathered basic information on the prospects for utilizing this lignin residue material in thermochemical conversion processes to improve the overall energy efficiency or liquid fuel production capacity of cellulosic biorefineries. Two existing pretreatment approaches, soaking in aqueous ammonia (SAA) and the Arkenol (strong sulfuric acid) process, were implemented at Sandia and used to generated suitable quantities of residue material from corn stover and eucalyptus feedstocks for subsequent thermochemical research. A third, novel technique, using ionic liquids (IL) was investigated by Sandia researchers at the Joint Bioenergy Institute (JBEI), but was not successful in isolating sufficient lignin residue. Additional residue material for thermochemical research was supplied from the dilute-acid simultaneous saccharification/fermentation (SSF) pilot-scale process at the National Renewable Energy Laboratory (NREL). The high-temperature volatiles yields of the different residues were measured, as were the char combustion reactivities. The residue chars showed slightly lower reactivity than raw biomass char, except for the SSF residue, which had substantially lower reactivity. Exergy analysis was applied to the NREL standard process design model for thermochemical ethanol production and from a prototypical dedicated biochemical process, with process data supplied by a recent report from the National Research Council (NRC). The thermochemical system analysis revealed that most of the system inefficiency is associated with the gasification process and subsequent tar reforming step. For the biochemical process, the steam generation from residue combustion, providing the requisite heating for the conventional pretreatment and alcohol distillation processes, was shown to dominate the exergy loss. An overall energy balance with different potential distillation energy requirements shows that as much as 30% of the biomass energy content may be available in the future as a feedstock for thermochemical production of liquid fuels.

  7. Partnering with Industry to Advance Biofuels, NREL's Integrated Biorefinery Research Facility (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01T23:59:59.000Z

    Fact sheet describing NREL's Integrated Biorefinery Research Facility and its availability to biofuels' industry partners who want to operate, test, and develop biorefining technology and equipment.

  8. ClearFuels-Rentech Integrated Biorefinery Final Report

    SciTech Connect (OSTI)

    Pearson, Joshua [Project Director

    2014-02-26T23:59:59.000Z

    The project Final Report describes the validation of the performance of the integration of two technologies that were proven individually on a pilot scale and were demonstrated as a pilot scale integrated biorefinery. The integrated technologies were a larger scale ClearFuels’ (CF) advanced flexible biomass to syngas thermochemical high efficiency hydrothermal reformer (HEHTR) technology with Rentech’s (RTK) existing synthetic gas to liquids (GTL) technology.

  9. POET-DSM biorefinery in Iowa | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy UsageAUDITVehicles »Exchange VisitorsforDepartmentPOET-DSM biorefinery in Iowa

  10. IMPROVED BIOREFINERY FOR THE PRODUCTION OF ETHANOL, CHEMICALS, ANIMAL FEED AND BIOMATERIALS FROM SUGAR CANE

    SciTech Connect (OSTI)

    Dr. Donal F. Day

    2009-01-29T23:59:59.000Z

    The Audubon Sugar Institute (ASI) of Louisiana State University’s Agricultural Center (LSU AgCenter) and MBI International (MBI) sought to develop technologies that will lead to the development of a sugar-cane biorefinery, capable of supplying fuel ethanol from bagasse. Technology development focused on the conversion of bagasse, cane-leaf matter (CLM) and molasses into high value-added products that included ethanol, specialty chemicals, biomaterials and animal feed; i.e. a sugar cane-based biorefinery. The key to lignocellulosic biomass utilization is an economically feasible method (pretreatment) for separating the cellulose and the hemicellulose from the physical protection provided by lignin. An effective pretreatment disrupts physical barriers, cellulose crystallinity, and the association of lignin and hemicellulose with cellulose so that hydrolytic enzymes can access the biomass macrostructure (Teymouri et al. 2004, Laureano-Perez, 2005). We chose to focus on alkaline pretreatment methods for, and in particular, the Ammonia Fiber Expansion (AFEX) process owned by MBI. During the first two years of this program a laboratory process was established for the pretreatment of bagasse and CLM using the AFEX process. There was significant improvement of both rate and yield of glucose and xylose upon enzymatic hydrolysis of AFEX-treated bagasse and CLM compared with untreated material. Because of reactor size limitation, several other alkaline pretreatment methods were also co-investigated. They included, dilute ammonia, lime and hydroxy-hypochlorite treatments. Scale-up focused on using a dilute ammonia process as a substitute for AFEX, allowing development at a larger scale. The pretreatment of bagasse by an ammonia process, followed by saccharification and fermentation produced ethanol from bagasse. Simultaneous saccharification and fermentation (SSF) allowed two operations in the same vessel. The addition of sugarcane molasses to the hydrolysate/fermentation process yielded improvements beyond what was expected solely from the addition of sugar. In order to expand the economic potential for building a biorefinery, the conversion of enzyme hydrolysates of AFEX-treated bagasse to succinic acid was also investigated. This program established a solid basis for pre-treatment of bagasse in a manner that is feasible for producing ethanol at raw sugar mills.

  11. Platform Chemicals from an Oilseed Biorefinery

    SciTech Connect (OSTI)

    Tupy, Mike; Schrodi Yann

    2006-11-06T23:59:59.000Z

    The US chemical industry is $460 billion in size where a $150 billion segment of which is non-oxygenated chemicals that is sourced today via petroleum but is addressable by a renewable feedstock if one considers a more chemically reduced feedstock such as vegetable oils. Vegetable oil, due to its chemical functionality, provides a largely untapped opportunity as a renewable chemical source to replace petroleum-derived chemicals and produce platform chemicals unavailable today. This project examined the fertile intersection between the rich building blocks provided by vegetable oils and the enhanced chemical modification capability provided by metathesis chemistry. The technology advanced in this study is the process of ethylene cross-metathesis (referred to as ethenolysis) with vegetable oil and vegetable oil derivatives to manufacture the platform-chemical 9-decenoic acid (or 9DA) and olefin co-products. The project team meet its goals of demonstrating improved catalyst efficiencies of several multiples, deepening the mechanistic understanding of metathesis, synthesis and screening of dozens of new catalysts, designing and modeling commercial processes, and estimating production costs. One demonstrable result of the study was a step change improvement in catalyst turnover number in the ethenolysis of methyl oleate as reported here. We met our key measurable of producing 100 lbs of 9DA at the pilot-scale, which demonstrated ability to scale-up ethenolysis. DOE Project funding had significant positive impact on development of metathetically modified vegetable oils more broadly as the Cargill/Materia partnership, that was able to initiate primarily due to DOE funding, has succeeded in commercializing products, validating metathesis as a platform technology, and expanding a diverse products portfolio in high value and in large volume markets. Opportunities have expanded and business development has gained considerable momentum and enabled further expansion of the Materia/Cargill relationship. This project exceeded expectations and is having immediate impact on DOE success by replacing petroleum products with renewables in a large volume application today.

  12. Institute for Critical Technology and Applied Science Seminar Series Biorefinery -A Sustainable Molecular

    E-Print Network [OSTI]

    Crawford, T. Daniel

    biocatalysis, with principles of green and supramolecular chemistry, we developed building blocksInstitute for Critical Technology and Applied Science Seminar Series Biorefinery - A Sustainable In future research, developing materials, fuels and energy devices from renewable resources would

  13. EA-1705: Construction and Operation of a Proposed Cellulosic Biorefinery, Mascoma Corporation, Kinross Charter Township, Michigan

    Broader source: Energy.gov [DOE]

    The frontier Project consists of the design, construction and operation of a biorefinery producing ethanol and other co-products from cellulosic materials utilizing a proprietary pretreatment and fermentation process.

  14. Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability

    Broader source: Energy.gov [DOE]

    Breakout Session 3B—Integration of Supply Chains III: Algal Biofuels Strategy Second-Generation Biofuels from Multi-Product Biorefineries Combine Economic Sustainability With Environmental Sustainability Martin Sabarsky, Chief Executive Officer, Cellana

  15. Amyris, Inc. Integrated Biorefinery Project Summary Final Report - Public Version

    SciTech Connect (OSTI)

    Gray, David; Sato, Suzanne; Garcia, Fernando; Eppler, Ross; Cherry, Joel

    2014-03-12T23:59:59.000Z

    The Amyris pilot-scale Integrated Biorefinery (IBR) leveraged Amyris synthetic biology and process technology experience to upgrade Amyris’s existing Emeryville, California pilot plant and fermentation labs to enable development of US-based production capabilities for renewable diesel fuel and alternative chemical products. These products were derived semi-synthetically from high-impact biomass feedstocks via microbial fermentation to the 15-carbon intermediate farnesene, with subsequent chemical finishing to farnesane. The Amyris IBR team tested and provided methods for production of diesel and alternative chemical products from sweet sorghum, and other high-impact lignocellulosic feedstocks, at pilot scale. This enabled robust techno-economic analysis (TEA), regulatory approvals, and a basis for full-scale manufacturing processes and facility design.

  16. Proceedings of the Seventh Walnut Council Research Symposium 15GTR-NRS-P-115 BIOREFINERY OPPORTUNITIES FOR FOREST PRODUCTS INDUSTRIES

    E-Print Network [OSTI]

    capabilities to succeed with biorefineries. Most forest products companies already have the first capability the acquisition of woody residues for making new products while minimizing competition for valuable timber companies to look at the overall biorefinery effort and acquire the expertise to move thermal

  17. EA-1850: Flambeau River BioFuels, Inc. Proposed Wood Biomass-to-Liquid Fuel Biorefinery, Park Falls, Wisconsin

    Broader source: Energy.gov [DOE]

    NOTE: This EA has been cancelled. This EA will evaluate the environmental impacts of a proposal to provide federal funding to Flambeau River Biofuels (FRB) to construct and operate a biomass-to-liquid biorefinery in Park Falls, Wisconsin, on property currently used by Flambeau Rivers Paper, LLC (FRP) for a pulp and paper mill and Johnson Timber Corporation's (JTC) Summit Lake Yard for timber storage. This project would design a biorefinery which would produce up to 1,150 barrels per day (bpd) of clean syncrude. The biorefinery would also supply steam to the FRP mill, meeting the majority of the mill's steam demand and reducing or eliminating the need for the existing biomass/coal-fired boiler. The biorefinery would also include a steam turbine generator that will produce "green" electrical power for use by the biorefinery or for sale to the electric utility.

  18. Biomass Biorefinery for the production of Polymers and Fuels

    SciTech Connect (OSTI)

    Dr. Oliver P. Peoples

    2008-05-05T23:59:59.000Z

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  19. Identification and genetic characterization of maize cell wall variation for improved biorefinery feedstock characteristics

    SciTech Connect (OSTI)

    Pauly, Markus [UC Berkeley] [UC Berkeley; Hake, Sarah [USDA Albany] [USDA Albany

    2013-10-31T23:59:59.000Z

    The objectives of this program are to 1) characterize novel maize mutants with altered cell walls for enhanced biorefinery characteristics and 2) find quantitative trait loci (QTLs) related to biorefinery characteristics by taking advantage of the genetic diversity of maize. As a result a novel non-transgenic maize plant (cal1) has been identified, whose stover (leaves and stalk) contain more glucan in their walls leading to a higher saccharification yield, when subjected to a standard enzymatic digestion cocktail. Stacking this trait with altered lignin mutants yielded evene higher saccharification yields. Cal-1 mutants do not show a loss of kernel and or biomass yield when grown in the field . Hence, cal1 biomass provides an excellent feedstock for the biofuel industry.

  20. Simulating Pelletization Strategies to Reduce the Biomass Supply Risk at America’s Biorefineries

    SciTech Connect (OSTI)

    Jacob J. Jacobson; Shane Carnohan; Andrew Ford; Allyson Beall

    2014-07-01T23:59:59.000Z

    Demand for cellulosic ethanol and other advanced biofuels has been on the rise, due in part to federal targets enacted in 2005 and extended in 2007. The industry faces major challenges in meeting these worthwhile and ambitious targets. The challenges are especially severe in the logistics of timely feedstock delivery to biorefineries. Logistical difficulties arise from seasonal production that forces the biomass to be stored in uncontrolled field-side environments. In this storage format physical difficulties arise; transportation is hindered by the low bulk density of baled biomass and the unprotected material can decay leading to unpredictable losses. Additionally, uncertain yields and contractual difficulties can exacerbate these challenges making biorefineries a high-risk venture. Investors’ risk could limit business entry and prevent America from reaching the targets. This paper explores pelletizer strategies to convert the lignocellulosic biomass into a denser form more suitable for storage. The densification of biomass would reduce supply risks, and the new system would outperform conventional biorefinery supply systems. Pelletizer strategies exhibit somewhat higher costs, but the reduction in risk is well worth the extra cost if America is to grow the advanced biofuels industry in a sustainable manner.

  1. Catalytic Hydrothermal Gasification of Lignin-Rich Biorefinery Residues and Algae Final Report

    SciTech Connect (OSTI)

    Elliott, Douglas C.; Neuenschwander, Gary G.; Hart, Todd R.; Rotness, Leslie J.; Zacher, Alan H.; Santosa, Daniel M.; Valkenburt, Corinne; Jones, Susanne B.; Tjokro Rahardjo, Sandra A.

    2009-11-03T23:59:59.000Z

    This report describes the results of the work performed by PNNL using feedstock materials provided by the National Renewable Energy Laboratory, KL Energy and Lignol lignocellulosic ethanol pilot plants. Test results with algae feedstocks provided by Genifuel, which provided in-kind cost share to the project, are also included. The work conducted during this project involved developing and demonstrating on the bench-scale process technology at PNNL for catalytic hydrothermal gasification of lignin-rich biorefinery residues and algae. A technoeconomic assessment evaluated the use of the technology for energy recovery in a lignocellulosic ethanol plant.

  2. EA-1888: Old Town Fuel and Fiber Proposed Demonstration-Scale Integrated Biorefinery in Old Town, Maine

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal by Old Town Fuel and Fiber to install and operate a demonstration-scale integrated biorefinery at their existing pulp mill in Old Town, Maine, demonstrating the production of n-butanol from lignocellulosic (wood) extract.

  3. Preliminary Economics for the Production of Pyrolysis Oil from Lignin in a Cellulosic Ethanol Biorefinery

    SciTech Connect (OSTI)

    Jones, Susanne B.; Zhu, Yunhua

    2009-04-01T23:59:59.000Z

    Cellulosic ethanol biorefinery economics can be potentially improved by converting by-product lignin into high valued products. Cellulosic biomass is composed mainly of cellulose, hemicellulose and lignin. In a cellulosic ethanol biorefinery, cellulose and hemicellullose are converted to ethanol via fermentation. The raw lignin portion is the partially dewatered stream that is separated from the product ethanol and contains lignin, unconverted feed and other by-products. It can be burned as fuel for the plant or can be diverted into higher-value products. One such higher-valued product is pyrolysis oil, a fuel that can be further upgraded into motor gasoline fuels. While pyrolysis of pure lignin is not a good source of pyrolysis liquids, raw lignin containing unconverted feed and by-products may have potential as a feedstock. This report considers only the production of the pyrolysis oil and does not estimate the cost of upgrading that oil into synthetic crude oil or finished gasoline and diesel. A techno-economic analysis for the production of pyrolysis oil from raw lignin was conducted. comparing two cellulosic ethanol fermentation based biorefineries. The base case is the NREL 2002 cellulosic ethanol design report case where 2000 MTPD of corn stover is fermented to ethanol (NREL 2002). In the base case, lignin is separated from the ethanol product, dewatered, and burned to produce steam and power. The alternate case considered in this report dries the lignin, and then uses fast pyrolysis to generate a bio-oil product. Steam and power are generated in this alternate case by burning some of the corn stover feed, rather than fermenting it. This reduces the annual ethanol production rate from 69 to 54 million gallons/year. Assuming a pyrolysis oil value similar to Btu-adjusted residual oil, the estimated ethanol selling price ranges from $1.40 to $1.48 (2007 $) depending upon the yield of pyrolysis oil. This is considerably above the target minimum ethanol selling price of $1.33 for the 2012 goal case process as reported in the 2007 State of Technology Model (NREL 2008). Hence, pyrolysis oil does not appear to be an economically attractive product in this scenario. Further research regarding fast pyrolysis of raw lignin from a cellulosic plant as an end product is not recommended. Other processes, such as high-pressure liquefaction or wet gasification, and higher value products, such as gasoline and diesel from fast pyrolysis oil should be considered in future studies.

  4. Integration of Biorefineries and Nuclear Cogeneration Power Plants - A Preliminary Analysis

    SciTech Connect (OSTI)

    Greene, Sherrell R [ORNL; Flanagan, George F [ORNL; Borole, Abhijeet P [ORNL

    2009-03-01T23:59:59.000Z

    Biomass-based ethanol and nuclear power are two viable elements in the path to U.S. energy independence. Numerous studies suggest nuclear power could provide a practical carbon-free heat source alternative for the production of biomass-based ethanol. In order for this coupling to occur, it is necessary to examine the interfacial requirements of both nuclear power plants and bioethanol refineries. This report describes the proposed characteristics of a small cogeneration nuclear power plant, a biochemical process-based cellulosic bioethanol refinery, and a thermochemical process-based cellulosic biorefinery. Systemic and interfacial issues relating to the co-location of either type of bioethanol facility with a nuclear power plant are presented and discussed. Results indicate future co-location efforts will require a new optimized energy strategy focused on overcoming the interfacial challenges identified in the report.

  5. Integrated Biorefinery Project: Cooperative Research and Development Final Report, CRADA Number CRD-10-390

    SciTech Connect (OSTI)

    Chapeaux, A.; Schell, D.

    2013-06-01T23:59:59.000Z

    The Amyris-NREL CRADA is a sub-project of Amyris?s DOE-funded pilot-scale Integrated Biorefinery (IBR). The primary product of the Amyris IBR is Amyris Renewable Diesel. Secondary products will include lubricants, polymers and other petro-chemical substitutes. Amyris and its project partners will execute on a rapid project to integrate and leverage their collective expertise to enable the conversion of high-impact biomass feedstocks to these advanced, infrastructure-compatible products. The scope of the Amyris-NREL CRADA includes the laboratory development and pilot scale-up of bagasse pretreatment and enzymatic saccharification conditions by NREL for subsequent conversion of lignocellulosic sugar streams to Amyris Diesel and chemical products by Amyris. The CRADA scope also includes a techno-economic analysis of the overall production process of Amyris products from high-impact biomass feedstocks.

  6. Alpena Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S9-0s) All27, 2013 Dr.AlpacaAlpena

  7. Fully Integrated Lignocellulosic Biorefinery with Onsite Production of Enzymes and Yeast

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2010-06-14T23:59:59.000Z

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  8. Final Technical Report: Improvement of Zymomonas mobilis for Commercial Use in Corn-based Biorefineries

    SciTech Connect (OSTI)

    Hitz, William D.

    2010-12-07T23:59:59.000Z

    Between 2007 and 2010 DuPont conducted a program under DOE award DE-FC36-07GO17056 to develop and improve Zymomonas mobilis as an ethanologen for commercial use in biorefineries to produce cellulosic ethanol. This program followed upon an earlier DOE funded program in which DuPont, in collaboration with the National Renewable Energy Laboratory (NREL) had developed a Zymomonas strain in conjunction with the development of an integrated cellulosic ethanol process. In the current project, we sought to maximize the utility of Zymomonas by adding the pathway to allow fermentation of the minor sugar arabinose, improve the utilization of xylose, improve tolerance to process hydrolysate and reduce the cost of producing the ethanologen. We undertook four major work streams to address these tasks, employing a range of approaches including genetic engineering, adaptation, metabolite and pathway analysis and fermentation process development. Through this project, we have developed a series of strains with improved characteristics versus the starting strain, and demonstrated robust scalability to at least the 200L scale. By a combination of improved ethanol fermentation yield and titer as well as reduced seed train costs, we have been able to reduce the capital investment and minimum ethanol selling price (MESP) by approximately 8.5% and 11% respectively vs. our starting point. Furthermore, the new strains we have developed, coupled with the learnings of this program, provide a platform for further strain improvements and advancement of cellulosic ethanol technology.

  9. Integrated cellulosic enzymes hydrolysis and fermentative advanced yeast bioconversion solution ready for biomass biorefineries

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-04T23:59:59.000Z

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  10. Vertical Integration of Biomass Saccharification of Enzymes for Sustainable Cellulosic Biofuel Production in a Biorefinery

    SciTech Connect (OSTI)

    Manoj Kumar, PhD

    2011-05-09T23:59:59.000Z

    Lignocellulosic biomass is the most abundant, least expensive renewable natural biological resource for the production of biobased products and bioenergy is important for the sustainable development of human civilization in 21st century. For making the fermentable sugars from lignocellulosic biomass, a reduction in cellulase production cost, an improvement in cellulase performance, and an increase in sugar yields are all vital to reduce the processing costs of biorefineries. Improvements in specific cellulase activities for non-complexed cellulase mixtures can be implemented through cellulase engineering based on rational design or directed evolution for each cellulase component enzyme, as well as on the reconstitution of cellulase components. In this paper, we will provide DSM's efforts in cellulase research and developments and focus on limitations. Cellulase improvement strategies based on directed evolution using screening on relevant substrates, screening for higher thermal tolerance based on activity screening approaches such as continuous culture using insoluble cellulosic substrates as a powerful selection tool for enriching beneficial cellulase mutants from the large library. We will illustrate why and how thermostable cellulases are vital for economic delivery of bioproducts from cellulosic biomass using biochemical conversion approach.

  11. Top Value-Added Chemicals from Biomass - Volume II—Results of Screening for Potential Candidates from Biorefinery Lignin

    SciTech Connect (OSTI)

    Holladay, John E.; White, James F.; Bozell, Joseph J.; Johnson, David

    2007-10-01T23:59:59.000Z

    This report evaluates lignin’s role as a renewable raw material resource. Opportunities that arise from utilizing lignin fit into one of three categories: 1)power, fuel and syngas (generally near-term opportunities) 2) macromolecules (generally medium-term opportunities) 3) aromatics and miscellaneous monomers (long-term opportunities). Biorefineries will receive and process massive amounts of lignin. For this reason, how lignin can be best used to support the economic health of the biorefinery must be defined. An approach that only considers process heat would be shortsighted. Higher value products present economic opportunities and the potential to significantly increase the amount of liquid transportation fuel available from biomass. In this analysis a list of potential uses of lignin was compiled and sorted into “product types” which are broad classifications (listed above as power—fuel—syngas; macromolecules; and aromatics). In the first “product type” (power—fuel—gasification) lignin is used purely as a carbon source and aggressive means are employed to break down its polymeric structure. In the second “product type” (macromolecules) the opposite extreme is considered and advantage of the macromolecular structure imparted by nature is retained in high-molecular weight applications. The third “product type” (aromatics) lies somewhere between the two extremes and employs technologies that would break up lignin’s macromolecular structure but maintain the aromatic nature of the building block molecules. The individual opportunities were evaluated based on their technical difficulty, market, market risk, building block utility, and whether a pure material or a mixture would be produced. Unlike the “Sugars Top 10” report it was difficult to identify the ten best opportunities, however, the potential opportunities fell nicely into near-, medium- and long-term opportunities. Furthermore, the near-, medium- and long-term opportunities roughly align with the three “product types.” From this analysis a list of technical barriers was developed which can be used to identify research needs. Lignin presents many challenges for use in the biorefinery. Chemically it differs from sugars having a complex aromatic substructure. Unlike cellulose, which has a relatively simple substructure of glucose subunits, lignin has a high degree of variability in its structure which differs both from biomass source and from the recovery process used. In addition to its variability lignin is also reactive and to some degree less stable thermally and oxidatively to other biomass streams. What this means is that integrating a lignin process stream within the biorefinery will require identifying the best method to separate lignin from biomass cost-effectively.

  12. Reactive Distillation for Esterification of Bio-based Organic Acids

    SciTech Connect (OSTI)

    Fields, Nathan; Miller, Dennis J.; Asthana, Navinchandra S.; Kolah, Aspi K.; Vu, Dung; Lira, Carl T.

    2008-09-23T23:59:59.000Z

    The following is the final report of the three year research program to convert organic acids to their ethyl esters using reactive distillation. This report details the complete technical activities of research completed at Michigan State University for the period of October 1, 2003 to September 30, 2006, covering both reactive distillation research and development and the underlying thermodynamic and kinetic data required for successful and rigorous design of reactive distillation esterification processes. Specifically, this project has led to the development of economical, technically viable processes for ethyl lactate, triethyl citrate and diethyl succinate production, and on a larger scale has added to the overall body of knowledge on applying fermentation based organic acids as platform chemicals in the emerging biorefinery. Organic acid esters constitute an attractive class of biorenewable chemicals that are made from corn or other renewable biomass carbohydrate feedstocks and replace analogous petroleum-based compounds, thus lessening U.S. dependence on foreign petroleum and enhancing overall biorefinery viability through production of value-added chemicals in parallel with biofuels production. Further, many of these ester products are candidates for fuel (particularly biodiesel) components, and thus will serve dual roles as both industrial chemicals and fuel enhancers in the emerging bioeconomy. The technical report from MSU is organized around the ethyl esters of four important biorenewables-based acids: lactic acid, citric acid, succinic acid, and propionic acid. Literature background on esterification and reactive distillation has been provided in Section One. Work on lactic acid is covered in Sections Two through Five, citric acid esterification in Sections Six and Seven, succinic acid in Section Eight, and propionic acid in Section Nine. Section Ten covers modeling of ester and organic acid vapor pressure properties using the SPEAD (Step Potential Equilibrium and Dynamics) method.

  13. DOEGO85004_1: Final Non-proprietary Technical Report, Generating Process and Economic Data for Preliminary Design of PureVision Biorefineries DOEGO85004_2: One Original Final Proprietary Technical Report to be mailed to DOE Golden.

    SciTech Connect (OSTI)

    Kadam, Kiran L., Ph.D; Lehrburger, Ed

    2008-01-17T23:59:59.000Z

    The overall objective of the project was to define a two-stage reactive fractionation process for converting corn stover into a solid cellulose stream and two liquid streams containing mostly hemicellulosic sugars and lignin, respectively. Toward this goal, biomass fractionation was conducted using a small continuous pilot unit with a nominal capacity of 100 pounds per day of dry biomass to generate performance data using primarily corn stover as feedstock. In the course of the program, the PureVision process was optimized for efficient hemicellulose hydrolysis in the first stage employing autohydrolysis and delignification in the second stage using sodium hydroxide as a catalyst. The remaining cellulose was deemed to be an excellent substrate for producing fermentation sugars, requiring 40% less enzymes for hydrolysis than conventional pretreatment systems using dilute acid. The fractionated cellulose was also determined to have potential higher-value applications as a pulp product. The lignin coproduct was determined to be substantially lower in molecular weight (MW) compared to lignins produced in the kraft or sulfite pulping processes. This low-MW lignin can be used as a feed and concrete binder and as an intermediate for producing a range of high-value products including phenolic resins. This research adds to the understanding of the biomass conversion area in that a new process was developed in the true spirit of biorefineries. The work completed successfully demonstrated the technical effectiveness of the process at the pilot level indicating the technology is ready to advance to a 2–3 ton per day scale. No technical showstoppers are anticipated in scaling up the PureVision fractionation process to commercial scale. Also, economic feasibility of using the PureVision process in a commercial-scale biorefinery was investigated and the minimum ethanol selling price for the PureVision process was calculated to be $0.94/gal ethanol vs. $1.07/gal ethanol for the NREL process. Thus, the PureVision process is economically attractive. Given its technical and economic feasibility, the project is of benefit to the public in the following ways: 1) it demonstrated a novel biomass fractionation process that can provide domestic supply of renewable transportation fuel from all three biomass components (cellulose, hemicellulose and lignin), 2) the lignin stream from the process has many higher-value applications beyond simply burning the lignin for energy as proposed by competing technologies, 3) it can be deployed in rural areas and create jobs in these areas, and 3) it can add to the nation’s economy and security.

  14. The Integrated Biorefinery: Conversion of Corn Fiber to Value-added Chemicals

    SciTech Connect (OSTI)

    Susanne Kleff

    2007-03-24T23:59:59.000Z

    This presentation provides a summary of Michigan Biotechnology Institute's efforts to employ the corn fiber fraction of a dry grind ethanol plant as a feedstock to produce succinic acid which has potential as a building block intermediate for a wide range of commodity chemicals.

  15. Investigation of thermochemical biorefinery sizing and environmental sustainability impacts for conventional supply system and distributed pre-processing supply system designs

    SciTech Connect (OSTI)

    David J. Muth, Jr.; Matthew H. Langholtz; Eric C. D. Tan; Jacob J. Jacobson; Amy Schwab; May M. Wu; Andrew Argo; Craig C. Brandt; Kara G. Cafferty; Yi-Wen Chiu; Abhijit Dutta; Laurence M. Eaton; Erin M. Searcy

    2014-08-01T23:59:59.000Z

    The 2011 US Billion-Ton Update estimates that by 2030 there will be enough agricultural and forest resources to sustainably provide at least one billion dry tons of biomass annually, enough to displace approximately 30% of the country's current petroleum consumption. A portion of these resources are inaccessible at current cost targets with conventional feedstock supply systems because of their remoteness or low yields. Reliable analyses and projections of US biofuels production depend on assumptions about the supply system and biorefinery capacity, which, in turn, depend upon economic value, feedstock logistics, and sustainability. A cross-functional team has examined combinations of advances in feedstock supply systems and biorefinery capacities with rigorous design information, improved crop yield and agronomic practices, and improved estimates of sustainable biomass availability. A previous report on biochemical refinery capacity noted that under advanced feedstock logistic supply systems that include depots and pre-processing operations there are cost advantages that support larger biorefineries up to 10 000 DMT/day facilities compared to the smaller 2000 DMT/day facilities. This report focuses on analyzing conventional versus advanced depot biomass supply systems for a thermochemical conversion and refinery sizing based on woody biomass. The results of this analysis demonstrate that the economies of scale enabled by advanced logistics offsets much of the added logistics costs from additional depot processing and transportation, resulting in a small overall increase to the minimum ethanol selling price compared to the conventional logistic supply system. While the overall costs do increase slightly for the advanced logistic supply systems, the ability to mitigate moisture and ash in the system will improve the storage and conversion processes. In addition, being able to draw on feedstocks from further distances will decrease the risk of biomass supply to the conversion facility.

  16. Strategic Biorefinery Analysis: Analysis of Biorefineries

    SciTech Connect (OSTI)

    Lynd, L. R.; Wyman, C.; Laser, M.; Johnson, D.; Landucci, R.

    2005-10-01T23:59:59.000Z

    Subcontract report prepared by Dartmouth College that identifies and discusses the advantages of producing ethanol in a biomass refinery as compared to a single-product facility.

  17. Integrated Biorefinery Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indianaof Energy2-02DepartmentCONFERENCE

  18. National Geo-Database for Biofuel Simulations and Regional Analysis of Biorefinery Siting Based on Cellulosic Feedstock Grown on Marginal Lands

    SciTech Connect (OSTI)

    Izaurralde, Roberto C.; Zhang, Xuesong; Sahajpal, Ritvik; Manowitz, David H.

    2012-04-01T23:59:59.000Z

    The goal of this project undertaken by GLBRC (Great Lakes Bioenergy Research Center) Area 4 (Sustainability) modelers is to develop a national capability to model feedstock supply, ethanol production, and biogeochemical impacts of cellulosic biofuels. The results of this project contribute to sustainability goals of the GLBRC; i.e. to contribute to developing a sustainable bioenergy economy: one that is profitable to farmers and refiners, acceptable to society, and environmentally sound. A sustainable bioenergy economy will also contribute, in a fundamental way, to meeting national objectives on energy security and climate mitigation. The specific objectives of this study are to: (1) develop a spatially explicit national geodatabase for conducting biofuel simulation studies and (4) locate possible sites for the establishment of cellulosic ethanol biorefineries. To address the first objective, we developed SENGBEM (Spatially Explicit National Geodatabase for Biofuel and Environmental Modeling), a 60-m resolution geodatabase of the conterminous USA containing data on: (1) climate, (2) soils, (3) topography, (4) hydrography, (5) land cover/ land use (LCLU), and (6) ancillary data (e.g., road networks, federal and state lands, national and state parks, etc.). A unique feature of SENGBEM is its 2008-2010 crop rotation data, a crucially important component for simulating productivity and biogeochemical cycles as well as land-use changes associated with biofuel cropping. ARRA support for this project and to the PNNL Joint Global Change Research Institute enabled us to create an advanced computing infrastructure to execute millions of simulations, conduct post-processing calculations, store input and output data, and visualize results. These computing resources included two components installed at the Research Data Center of the University of Maryland. The first resource was 'deltac': an 8-core Linux server, dedicated to county-level and state-level simulations and PostgreSQL database hosting. The second resource was the DOE-JGCRI 'Evergreen' cluster, capable of executing millions of simulations in relatively short periods. ARRA funding also supported a PhD student from UMD who worked on creating the geodatabases and executing some of the simulations in this study. Using a physically based classification of marginal lands, we simulated production of cellulosic feedstocks from perennial mixtures grown on these lands in the US Midwest. Marginal lands in the western states of the US Midwest appear to have significant potential to supply feedstocks to a cellulosic biofuel industry. Similar results were obtained with simulations of N-fertilized perennial mixtures. A detailed spatial analysis allowed for the identification of possible locations for the establishment of 34 cellulosic ethanol biorefineries with an annual production capacity of 5.6 billion gallons. In summary, we have reported on the development of a spatially explicit national geodatabase to conduct biofuel simulation studies and provided simulation results on the potential of perennial cropping systems to serve as feedstocks for the production of cellulosic ethanol. To accomplish this, we have employed sophisticated spatial analysis methods in combination with the process-based biogeochemical model EPIC. The results of this study will be submitted to the USDOE Bioenergy Knowledge Discovery Framework as a way to contribute to the development of a sustainable bioenergy industry. This work provided the opportunity to test the hypothesis that marginal lands can serve as sources of cellulosic feedstocks and thus contribute to avoid potential conflicts between bioenergy and food production systems. This work, we believe, opens the door for further analysis on the characteristics of cellulosic feedstocks as major contributors to the development of a sustainable bioenergy economy.

  19. Integrated Corn-Based Biorefinery

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

  20. Commercializing Biorefineries The Path Forward

    E-Print Network [OSTI]

    of Plant Existing Wet & Dry Mill ImprovementsExisting Wet & Dry Mill Improvements Agricultural Residue-based industry with cellulosic- feedstocks to stand alone facilities. Help industry build first-of-a-kind plants Cost-share industrial-scale validation of technology & economics Feedstock development focus on pulp

  1. Herbert Sixta Professor of Biorefineries

    E-Print Network [OSTI]

    Kaski, Samuel

    of 2000. The consumption of natural fibers, consisting of cotton (78-83%), wool (4%), flax, hemp, jute-made cellulosics (viscose, Lyocell, Acetate filaments and staple fibers), natural fibers (cotton, wool, flax, hemp

  2. Alpena Biorefinery | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy Cooperation |South42.2 (April 2012) 1 Documentation and Approval Inspection Report27,Alpena

  3. Analysis of Integrated Tropical Biorefineries

    E-Print Network [OSTI]

    the integration of an anaerobic digester into each biochemical platform technology. The combustion of biogas not rely on biogas combustion to be thermally self- sufficient. However, their output of excess electricity

  4. Integrated Biorefineries | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataCombined HeatInformation Resources Information

  5. Solazyme Pilot-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage » SearchEnergyDepartmentScoping Study |4 SolarPVSolar Viewed asat the costfor11

  6. Integrated Biorefineries | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFunInfrared Land Surface EmissivityInstrillmentDOE/CE-0180Research &

  7. Sapphire Energy - Integrated Algal Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l LPROJECTS IN7 RoadmapProgram 2013:Safety2PaulSanyo Electric:

  8. Integrated Biorefineries | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen OwnedofDepartment of Energy4thOnSuccess,Department of EnergyAs a

  9. EFFECT OF ANATOMICAL FRACTIONATION ON THE ENZYMATIC HYDROLYSIS OF ACID AND ALKALINE PRETREATED CORN STOVER

    SciTech Connect (OSTI)

    K. B. Duguid; M. D. Montross; C. W. Radtke; C. L. Crofcheck; L. M. Wendt; S. A. Shearer

    2009-11-01T23:59:59.000Z

    Due to concerns with biomass collection systems and soil sustainability there are opportunities to investigate the optimal plant fractions to collect for conversion. An ideal feedstock would require low severity pretreatment to release a maximum amount of sugar during enzymatic hydrolysis. Corn stover fractions were separated by hand and analyzed for glucan, xylan, acid soluble lignin, acid insoluble lignin, and ash composition. The stover fractions were also pretreated with either 0, 0.4, or 0.8% NaOH for 2 hours at room temperature, washed, autoclaved and saccharified. In addition, acid pretreated samples underwent simultaneous saccharification and fermentation (SSF) to ethanol. In general, the two pretreatments produced similar trends with cobs, husks, and leaves responding best to the pretreatments, the tops of stalks responding slightly less, and the bottom of the stalks responding the least. For example, corn husks pretreated with 0.8% NaOH released over 90% (standard error of 3.8%) of the available glucan, while only 45% (standard error of 1.1%) of the glucan was produced from identically treated stalk bottoms. Estimates of the theoretical ethanol yield using acid pretreatment followed by SSF were 65% (standard error of 15.9%) for husks and 29% (standard error of 1.8%) for stalk bottoms. This suggests that integration of biomass collection systems to remove sustainable feedstocks could be integrated with the processes within a biorefinery to minimize overall ethanol production costs.

  10. Southern Pine Based on Biorefinery Center

    SciTech Connect (OSTI)

    Ragauskas, Arthur J; Singh, Preet

    2014-01-10T23:59:59.000Z

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: • The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; • The conversion of extracted woodchips to linerboard and bleach grade pulps; and • The efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  11. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production...

    Office of Environmental Management (EM)

    our transportation fueling options," said Secretary Ernest Moniz. "Home-grown biofuels have the potential to further increase our energy security, stimulate rural economic...

  12. Systematic synthesis of sustainable biorefineries: A review

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    of biomass including first, second and third generation of biofuels such as bioethanol, biodiesel, hydrogen sector due to their compatibility with the supply chain of the crude based fuels as well the forest industry, cooking oil, lignocelluslosic raw materials or algae. However, there are also concerns

  13. On the systematic synthesis of sustainable biorefineries

    E-Print Network [OSTI]

    Grossmann, Ignacio E.

    of biomass including first, second and third generation of biofuels such as bioethanol, biodiesel, hydrogen to their compatibility with the supply chain of the crude based fuels as well as with the current automobiles, which can in the second generation of biofuels, which use waste from the forest industry, cooking oil, lignocelluslosic

  14. A Second-Generation Dry Mill Biorefinery

    Broader source: Energy.gov [DOE]

    This fact sheet summarizes a U.S. Department of Energy Biomass Program research and development project.

  15. Biochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartment ofEnergyEnergyBetter

  16. Biorefinery Grant Announcement | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: Top Five EEREDepartmentFebruary 4, 2014Biogas andManaged byThe Preface

  17. NREL: Biomass Research - Integrated Biorefinery Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National Nuclearover two yearsNPResults giveSimulatorandPhoto

  18. Project LIBERTY Biorefinery Starts Cellulosic Ethanol Production |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | Department ofThatGrid3 Program

  19. Range Fuels Biorefinery Groundbreaking | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15,2015 | DepartmentLoansDepartment of EnergyEvent

  20. United Biorefineries Corp UBC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov PtyInformation UC 19-6-401 et seq.NorthUniopolis, Ohio: EnergyIncJump

  1. Retrofitting analysis of integrated bio-refineries

    E-Print Network [OSTI]

    Cormier, Benjamin R.

    2007-04-25T23:59:59.000Z

    for biomass for purpose use (U.S. Department of Energy 2004) 14 There are also other platforms such as biogas, carbon-rich chains, plant products and bio-oil which are beyond the scope of this work. Biogas platform is the decomposition... Thailand 74 Mexico 9 Germany 71 Nicaragua 8 Ukraine 66 Mauritius 6 Canada 61 Zimbabwe 6 Poland 53 Kenya 3 Indonesia 42 Swaziland 3 Argentina 42 Others 338 Total 10770 Many countries try to reduce petroleum imports...

  2. Development of Integrated Biorefineries | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergy CooperationRequirements Matrix U.S. Department of|ALDeterminationsDepartmentJon T.

  3. Economy Through Product Diversity: Integrated Biorefineries

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program - LibbyofThisStatement Tuesday, SeptemberofEbony MeeksMuscleInc.

  4. Sandia National Laboratories: future lignocellulosic biorefineries

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia,evaluatingfull module characterization HelioVoltphysics offuture

  5. Thermochemical Conversion - Biorefinery Integration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyThe Sun and Its Energy (11 activities)TheofThermal-

  6. NREL: Biomass Research - What Is a Biorefinery?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwardsPublicationsConversionPilotWhat Is

  7. NREL: Sustainable NREL - Integrated Biorefinery Research Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData and Resources NREL resourceEnergy Systems

  8. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    SciTech Connect (OSTI)

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01T23:59:59.000Z

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  9. Plant fatty acid hydroxylases

    DOE Patents [OSTI]

    Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Lexington, KY)

    2001-01-01T23:59:59.000Z

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  10. Cleavage of nucleic acids

    DOE Patents [OSTI]

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Waunakee, WI); Lyamichev, Victor I. (Madison, WI); Brow; Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2010-11-09T23:59:59.000Z

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  11. Cleavage of nucleic acids

    DOE Patents [OSTI]

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor L. (Madison, WI); Brow, Mary Ann D. (Madison, WI); Dahlberg, James E. (Madison, WI)

    2007-12-11T23:59:59.000Z

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  12. Nucleic acid detection compositions

    DOE Patents [OSTI]

    Prudent, James R. (Madison, WI); Hall, Jeff G. (Madison, WI); Lyamichev, Victor I. (Madison, WI); Brow, Mary Ann (Madison, WI); Dahlberg, James L. (Madison, WI)

    2008-08-05T23:59:59.000Z

    The present invention relates to means for the detection and characterization of nucleic acid sequences, as well as variations in nucleic acid sequences. The present invention also relates to methods for forming a nucleic acid cleavage structure on a target sequence and cleaving the nucleic acid cleavage structure in a site-specific manner. The structure-specific nuclease activity of a variety of enzymes is used to cleave the target-dependent cleavage structure, thereby indicating the presence of specific nucleic acid sequences or specific variations thereof.

  13. Process for the preparation of lactic acid and glyceric acid

    DOE Patents [OSTI]

    Jackson, James E [Haslett, MI; Miller, Dennis J [Okemos, MI; Marincean, Simona [Dewitt, MI

    2008-12-02T23:59:59.000Z

    Hexose and pentose monosaccharides are degraded to lactic acid and glyceric acid in an aqueous solution in the presence of an excess of a strongly anionic exchange resin, such as AMBERLITE IRN78 and AMBERLITE IRA400. The glyceric acid and lactic acid can be separated from the aqueous solution. Lactic acid and glyceric acid are staple articles of commerce.

  14. STANDARD OPERATING PROCEDURE ACIDS CONTAINING PHOSPHOROUS

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    12.1 STANDARD OPERATING PROCEDURE for ACIDS CONTAINING PHOSPHOROUS Location(s): ___________________________________________________ Chemical(s): Hypophosphorous acid, methylphosphonic acid, phosphonic acid, phosphoric acid, phosphorous

  15. Microorganisms for producing organic acids

    DOE Patents [OSTI]

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-09-30T23:59:59.000Z

    Organic acid-producing microorganisms and methods of using same. The organic acid-producing microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid, acrylic acid, propionic acid, lactic acid, and others. Further modifications to the microorganisms increase production of such organic acids as 3-hydroxypropionic acid, lactate, and others. Methods of producing such organic acids as 3-hydroxypropionic acid, lactate, and others with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers are also provided.

  16. Separation Nanotechnology of Diethylenetriaminepentaacetic Acid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Nanotechnology of Diethylenetriaminepentaacetic Acid Bonded Magnetic Nanoparticles for Spent Nuclear Fuel. Separation Nanotechnology of Diethylenetriaminepentaacetic Acid Bonded...

  17. Reversible Acid Gas Capture

    ScienceCinema (OSTI)

    Dave Heldebrant

    2012-12-31T23:59:59.000Z

    Pacific Northwest National Laboratory scientist David Heldebrant demonstrates how a new process called reversible acid gas capture works to pull carbon dioxide out of power plant emissions.

  18. EMSL - Nuclei acid structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet...

  19. Nuclei acid structure | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conditions showed a temporary pH decrease, with a concomitant increase in formic acid during exponential growth. Fermentation experiments performed outside of the magnet...

  20. Controlling acid rain

    E-Print Network [OSTI]

    Fay, James A.

    1983-01-01T23:59:59.000Z

    High concentrations of sulfuric and nitric acid in raTn fn the northeastern USA are caused by the large scale combustion of fossil fuels within this region. Average precipitation acidity is pH 4.2, but spatial and temporal ...

  1. (Acid rain workshop)

    SciTech Connect (OSTI)

    Turner, R.S.

    1990-12-05T23:59:59.000Z

    The traveler presented a paper entitled Susceptibility of Asian Ecosystems to Soil-Mediated Acid Rain Damage'' at the Second Workshop on Acid Rain in Asia. The workshop was organized by the Asian Institute of Technology (Bangkok, Thailand), Argonne National Laboratory (Argonne, Illinois), and Resource Management Associates (Madison, Wisconsin) and was sponsored by the US Department of Energy, the United Nations Environment Program, the United Nations Economic and Social Commission for Asia and the Pacific, and the World Bank. Papers presented on the first day discussed how the experience gained with acid rain in North America and Europe might be applied to the Asian situation. Papers describing energy use projections, sulfur emissions, and effects of acid rain in several Asian countries were presented on the second day. The remaining time was allotted to discussion, planning, and writing plans for a future research program.

  2. Fatty Acid Carcass Mapping

    E-Print Network [OSTI]

    Turk, Stacey N.

    2010-01-14T23:59:59.000Z

    FATTY ACID CARCASS MAPPING A Thesis by STACEY NICOLE TURK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May 2008... Major Subject: Animal Science FATTY ACID CARCASS MAPPING A Thesis by STACEY NICOLE TURK Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE...

  3. The utilization of tricarboxylic acid cycle acids and the uptake of succinic acid by Neurospora crassa

    E-Print Network [OSTI]

    Gilliland, Patti Lynn

    2012-06-07T23:59:59.000Z

    THE UTILIZATION OF TRICARBOXYLIC ACID CYCLE ACIDS AND THE UPTAKE OF SUCCINIC ACID BY NEUROSPORA CRASSA A Thesis by PATTI LYNN GILLILAND Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement... for the degree of MASTER OF SCIENCE August 1978 Ma) or Subject: Microbiology THE UTILIZATION OF TRICARBOXYLIC ACID CYCLE ACIDS AND THE UPTAKE OF SUCCINIC ACID BY NEUROSPORA CRASSA A Thesis by PATTI LYNN GILLILAND Approved as to style and content by...

  4. Focus Sheet | Hydrofluoric Acid Health hazards of hydrofluoric acid

    E-Print Network [OSTI]

    Wilcock, William

    Focus Sheet | Hydrofluoric Acid Health hazards of hydrofluoric acid Hydrofluoric acid (HF characterized by weight loss, brittle bones, anemia, and general ill health. Safe use If possible, avoid working to exposures. #12;Focus Sheet | Hydrofluoric Acid Environmental Health and Safety Environmental Programs Office

  5. Optical high acidity sensor

    DOE Patents [OSTI]

    Jorgensen, Betty S. (Jemez Springs, NM); Nekimken, Howard L. (Los Alamos, NM); Carey, W. Patrick (Lynnwood, WA); O'Rourke, Patrick E. (Martinez, GA)

    1997-01-01T23:59:59.000Z

    An apparatus and method for determining acid concentrations in solutions having acid concentrations of from about 0.1 Molar to about 16 Molar is disclosed. The apparatus includes a chamber for interrogation of the sample solution, a fiber optic light source for passing light transversely through the chamber, a fiber optic collector for receiving the collimated light after transmission through the chamber, a coating of an acid resistant polymeric composition upon at least one fiber end or lens, the polymeric composition in contact with the sample solution within the chamber and having a detectable response to acid concentrations within the range of from about 0.1 Molar to about 16 Molar, a measurer for the response of the polymeric composition in contact with the sample solution, and, a comparer of the measured response to predetermined standards whereby the acid molarity of the sample solution within the chamber can be determined. Preferably, a first lens is attached to the end of the fiber optic light source, the first lens adapted to collimate light from the fiber optic light source, and a second lens is attached to the end of the fiber optic collector for focusing the collimated light after transmission through the chamber.

  6. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    SciTech Connect (OSTI)

    Arceo, Elena; Ellman, Jonathan; Bergman, Robert

    2010-05-03T23:59:59.000Z

    An alternative biomass-based route to benzoic acid from the renewable starting materials quinic acid and shikimic acid is described. Benzoic acid is obtained selectively using a highly efficient, one-step formic acid-mediated deoxygenation method.

  7. Synthesis of acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, Luc (Lakewood, CO)

    2003-06-24T23:59:59.000Z

    A process of preparing an acid addition salt of delta-aminolevulinc acid comprising: a) dissolving a lower alkyl 5-bromolevulinate and hexamethylenetetramine in a solvent selected from the group consisting of water, ethyl acetate, chloroform, acetone, ethanol, tetrahydrofuran and acetonitrile, to form a quaternary ammonium salt of the lower alkyl 5-bromolevulinate; and b) hydrolyzing the quaternary ammonium salt with an inorganic acid to form an acid addition salt of delta-aminolevulinic acid.

  8. Plant fatty acid hydroxylase

    DOE Patents [OSTI]

    Somerville, Chris (Portola Valley, CA); van de Loo, Frank (Lexington, KY)

    2000-01-01T23:59:59.000Z

    The present invention relates to the identification of nucleic acid sequences and constructs, and methods related thereto, and the use of these sequences and constructs to produce genetically modified plants for the purpose of altering the composition of plant oils, waxes and related compounds.

  9. Fatty acid-producing hosts

    DOE Patents [OSTI]

    Pfleger, Brian F; Lennen, Rebecca M

    2013-12-31T23:59:59.000Z

    Described are hosts for overproducing a fatty acid product such as a fatty acid. The hosts include an exogenous nucleic acid encoding a thioesterase and, optionally, an exogenous nucleic acid encoding an acetyl-CoA carboxylase, wherein an acyl-CoA synthetase in the hosts are functionally delected. The hosts prefereably include the nucleic acid encoding the thioesterase at an intermediate copy number. The hosts are preferably recominantly stable and growth-competent at 37.degree. C. Methods of producing a fatty acid product comprising culturing such hosts at 37.degree. C. are also described.

  10. Acidizing of Sandstone Reservoirs Using HF and Organic Acids

    E-Print Network [OSTI]

    Yang, Fei

    2012-10-19T23:59:59.000Z

    Mud acid, which is composed of HCl and HF, is commonly used to remove the formation damage in sandstone reservoirs. However, many problems are associated with HCl, especially at high temperatures. Formic-HF acids have served as an alternative...

  11. acid docosahexaenoic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 38 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  12. acid aspartic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 20 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  13. acid caffeic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 11 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  14. acid succinic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    simulated the laser heating of the succinic acid (this data is still simulation is that infrared heating generates about 10-15 more succinic acid molecules bound to the analyte...

  15. acid benzoic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 24 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  16. acid propanoic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 9 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  17. acid oleic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 31 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  18. Acid Placement in Acid Jetting Treatments in Long Horizontal Wells

    E-Print Network [OSTI]

    Sasongko, Hari

    2012-07-16T23:59:59.000Z

    In the Middle East, extended reach horizontal wells (on the order of 25,000 feet of horizontal displacement) are commonly acid stimulated by jetting acid out of drill pipe. The acid is jetted onto the face of the openhole wellbore as the drill pipe...

  19. Acid placement and coverage in the acid jetting process

    E-Print Network [OSTI]

    Mikhailov, Miroslav I.

    2009-05-15T23:59:59.000Z

    Many open-hole acid treatments are being conducted by pumping acid through jetting ports placed at the end of coiled tubing or drill pipe. The filter-cake on the bore-hole is broken by the jet; the acid-soluble material is dissolved, creating...

  20. Emerging Energy-Efficiency and Greenhouse Gas Mitigation Technologies for the Pulp and Paper Industry

    E-Print Network [OSTI]

    Kong, Lingbo

    2014-01-01T23:59:59.000Z

    of pulp mill-based integrated biorefinery with hemicellulosePilot stage Other Integrated Biorefinery Commercial statusintegrated forest biorefinery..

  1. Investigating acid rain

    SciTech Connect (OSTI)

    Not Available

    1981-01-01T23:59:59.000Z

    A report is given of an address by Kathleen Bennett, Assistant Administrator of Air, Noise and Radiation, Environmental Protection Agency which was presented to the US Senate Committee on the Environment and Public Works. Bennet explained that in view of the many unknowns about acid rain, and the possible substantial cost burden of additional controls, EPA is proceeding with its program to investigate this environmental malady over a 10-year period. The three major areas of the research program are (1) transport, transformation, and deposition processes, (2) effects of acid deposition, and (3) assessments and policy studies. Other issues discussed were global transboundary air pollution and Senate amendments addressing long-range transport. (JMT)

  2. Pantothenic acid biosynthesis in zymomonas

    DOE Patents [OSTI]

    Tao, Luan; Tomb, Jean-Francois; Viitanen, Paul V.

    2014-07-01T23:59:59.000Z

    Zymomonas is unable to synthesize pantothenic acid and requires this essential vitamin in growth medium. Zymomonas strains transformed with an operon for expression of 2-dehydropantoate reductase and aspartate 1-decarboxylase were able to grow in medium lacking pantothenic acid. These strains may be used for ethanol production without pantothenic acid supplementation in seed culture and fermentation media.

  3. Nationwide: The Nation's First Commercial-Scale Biorefineries...

    Broader source: Energy.gov (indexed) [DOE]

    that are specifically focused on producing cellulosic ethanol, drop-in hydrocarbon biofuel, and bioproducts. As of July 2013, INEOS opened the nation's first...

  4. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial...

    Office of Environmental Management (EM)

    its grand opening on October 17, 2014, in Hugoton, Kansas. The Abengoa Bioenergy Biomass of Kansas (ABBK) facility is the first of its kind to use a proprietary enzymatic...

  5. NREL: Biomass Research - Projects in Integrated Biorefinery Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    monitoring and operation control systems. NREL is focused on integrating all the biomass conversion unit operations. With extensive knowledge of the individual unit...

  6. Sustainable bioethanol production combining biorefinery principles and intercropping

    E-Print Network [OSTI]

    on starch (from grain) fermentation, but in the present study that is regarded as a too important food. Nitrogen fertilization is responsible for more than 85 % of the greenhouse gas emissions from wheat grain-wheat intercropping, conversion yields obtained in laboratory experiments show that wet oxidation is an efficient

  7. Swedish University of Agricultural Sciences Biorefinery research at SBT

    E-Print Network [OSTI]

    . Lestander ) Bioenergy combine and sustainable forest management SLU and UmU, LTU, SP, SFA (S. Xiong, H) Mare Purum Sweden-Finland Chemical, biological, and spectroscopic studies of flows in biologic-Reyes) ·Bioenergy 2020+ GmbH, Austria ·DBFZ ­ Deutsches BiomasseForschungsZentrum, Germany ·SLU ­ Sveriges

  8. The new Integrated Biorefinery Research Facility (IBRF) offers an unprecedented

    E-Print Network [OSTI]

    by the National Renewable Energy Laboratory Hawaiian hybrid initiative fueled by NREL NREL researchers to test of renew- able fuels by 2022. Stage II includes adding the second pretreatment and high solids enzymatic of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. Energy

  9. The Wood-Based Biorefinery in a Petroleum Depleted World

    E-Print Network [OSTI]

    Chatterjee, Avik P.

    3 Year Old Willow #12;14 14 Woody Biomass Feedstocks Sustainably harvested low value wood from, Sustainable Bioproducts: Fuels, Chemicals, Materials Renewable Resources to "Green" Bio-Products Woody Biomass Feedstock #12;5 5 Spindletop at Beaumont, TX Circa late 1890's Birth of the Petroleum Industry in Texas

  10. Financing Advanced Biofuels, Biochemicals And Biopower In Integrated Biorefineries

    Broader source: Energy.gov [DOE]

    Afternoon Plenary Session: Current Trends in the Advanced Bioindustry Bioenergy Project Finance Mechanisms—Mark Riedy, Counsel, Kilpatrick, Townsend & Stockton LLP

  11. Integrated Biorefinery Research Facility (IBRF I-II) (Post CD...

    Office of Environmental Management (EM)

    Procurement Training A Design-Builder's Perspective: Anaerobic Digestion, Forest County Potawatomi Community - A Case Study Independent Oversight Activity Report,...

  12. Modeling Tomorrow's Biorefinery--the NREL Biochemical Pilot Plant

    SciTech Connect (OSTI)

    Not Available

    2008-03-01T23:59:59.000Z

    Brochure describing the capabilities of NREL's Biochemical Pilot Plant. In this facility, researchers test ideas for creating high-value products from cellulosic biomass.

  13. Lignin Valorization: Improving Lignin Processing in the Biorefinery

    SciTech Connect (OSTI)

    Ragauskas, Arthur [Georgia Institute of Technology, Atlanta; Beckham, Gregg [National Renewable Energy Laboratory (NREL); Biddy, Mary J [National Renewable Energy Laboratory (NREL); Chandra, Richard [University of British Columbia, Vancouver; Chen, Fang [University of North Texas; Davis, Dr. Mark F. [National Renewable Energy Laboratory (NREL); Davison, Brian H [ORNL; Dixon, Richard [University of North Texas; Gilna, Paul [ORNL; Keller, Martin [ORNL; Langan, Paul [ORNL; Naskar, Amit K [ORNL; Saddler, Jack N [University of British Columbia, Vancouver; Tschaplinski, Timothy J [ORNL; Tuskan, Gerald A [ORNL; Wyman, Charles E, [University of California, Riverside; Harber, Karen S [ORNL

    2014-01-01T23:59:59.000Z

    Research and development activities directed toward commercial production of cellulosic ethanol have created the opportunity to dramatically increase the transformation of lignin to value-added products. Here we highlight recent advances in this lignin valorization effort. Discovery of genetic variants in native populations of bioenergy crops and direct manipulation of biosynthesis pathways have produced lignin feedstocks with favorable properties for recovery and downstream conversion. Advances in analytical chemistry and computational modeling detail the structure of the modified lignin and direct bioengineering strategies for future targeted properties. Refinement of biomass pretreatment technologies has further facilitated lignin recovery, and this coupled with genetic engineering will enable new uses for this biopolymer, including low-cost carbon fibers, engineered plastics and thermoplastic elastomers, polymeric foams, fungible fuels, and commodity chemicals.

  14. NREL Report Provides Documentation of the Advanced Biorefinery...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in January 2015 on the status of the non-starch ethanol and renewable hydrocarbon biofuels industry in the United States. The report, 2013 Survey of Non-Starch Ethanol and...

  15. Five Things to Know about Biorefinery Investments | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES ANDIndustrialEnergyFinal FY8 of 864 1.0 EXECUTIVECharging |Things to

  16. Flambeau River Biofuels Demonstration-Scale Biorefinery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat PumpRecordFederal Registry CommentsOverviewEnergy Flambeau River Biofuels

  17. Integrated Biorefineries:Biofuels, Biopower, and Bioproducts | Department

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA,Fermi NationalBusiness PlanPostingOctoberof Energy U.S. goal to

  18. Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergy Auditor

  19. Nationwide: The Nation's First Commercial-Scale Biorefineries |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAXBalanced Scorecard Federal2 to:DieselEnergyHydrogenRegistration is

  20. Grand Opening of Abengoa's Biorefinery: Nation's Third Commercial-Scale

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG | Department of EnergyGeothermalGoing Off theUpdate Workshop |Facility |

  1. Pilot Integrated Cellulosic Biorefinery Operations to Fuel Ethanol

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2 DOE Hydrogen and Office(BETO) IBR

  2. Pilot-Scale MixotrophicAlgae Integrated Biorefinery(IBR)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe2 DOE Hydrogen and Office(BETO)

  3. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustionImprovement Awardflash2007-42attachment1.pdfmodule(EE) | DepartmentFeedstock 2011

  4. DOE Announces $160 Million for Biorefinery Construction and Highlights New

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmart GridThird QuarterintoCurrent JuneEfficiency |

  5. Wiki-based Techno Economic Analysis of a Lignocellulosic Biorefinery -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP SignInWho do IWhyWhy:

  6. 2014 DOE Biomass Program Integrated Biorefinery Project Comprehensive

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013 issue ofOffice | Department

  7. NREL Biorefinery Analysis Process Models | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of InspectorConcentrating Solar Powerstories onFocus Area EnergyMohawkaccrediationNASA-SurfaceNEPA

  8. Economy Through Product Diversity: Integrated Biorefineries | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in Review: TopEnergyIDIQ Contract ESPC IDIQ ContractConsumerofofDepartmentEcoCAR

  9. 2011 Biomass Program Platform Peer Review: Integrated Biorefineries |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition#EnergyFaceoff1 1Electricity2009Department of

  10. Advanced and Cellulosic Biofuels and Biorefineries: State of the Industry,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment of EnergyAdministrative2| DepartmentEnergyPolicy and Politics |

  11. Algenol Biofuels Inc., Integrated Pilot-Scale Biorefinery | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartment ofEnergy Natural Gas:Austin, T X S ummary oAlgalEnergy Algenol

  12. Demonstration and Deployment Successes: Sapphire Integrated Algal Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeat Pump Models | Department1 Prepared1217 Release NotesFinal Report |DEMONSTRATION

  13. FOA for the Demonstration of an Integrated Biorefinery System: Abengoa

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department ofof Energy Offers TrainingFax Name Number NumberFOA

  14. NREL Report Provides Documentation of the Advanced Biorefinery Landscape |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: AlternativeEnvironment, SafetyWaterMary LandrieuNEET Mission NEET MissionReports) | Department

  15. Solazyme Pilot-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from the GridwiseSite Management GuideReliabilityDepartment ofSolarReserve,Solazyme

  16. Nanoparticle Technology for Biorefinery of Non-Food Source Feedstocks |

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |EnergyonSupport0.pdf5 OPAM SEMIANNUALNASCAR Green Gets FirstNafeesa Hunt Owens About

  17. Sandia National Laboratories: simulate critical factors in the biorefinery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1developmentturbineredox-active perovskiteremovingsensors andsilicon

  18. Integrated Biorefinery Lessons Learned and Best Practices | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indianaof Energy2-02DepartmentCONFERENCE ofEnergy

  19. Integration of Nutrient and Water Recycling for Sustainable Algal Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.IndianaofPilot

  20. NREL: Biomass Research - Capabilities in Integrated Biorefinery Processes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions and Achievements of Women |hitsAwards andAnalyses Capabilities

  1. NewPage Demonstration-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F S iPartnership Program |Million DOEYellow

  2. UOP Pilot-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energyof Energy8, UNITED DEPARTMENTUOP Pilot-Scale

  3. Verenium Pilot- and Demonstration-Scale Biorefinery | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of| Department of Energy Ventilation System to Improve SavannahFleets

  4. acid acetic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of asphaltene deposition that occurs during acid treatments of oil reservoirs. Asphaltenes are present to some degree in most hydrocarbons. Due to the molecular weight of the...

  5. Production of Butyric Acid and Butanol from Biomass

    SciTech Connect (OSTI)

    David E. Ramey; Shang-Tian Yang

    2005-08-25T23:59:59.000Z

    Environmental Energy Inc has shown that BUTANOL REPLACES GASOLINE - 100 pct and has no pollution problems, and further proved it is possible to produce 2.5 gallons of butanol per bushel corn at a production cost of less than $1.00 per gallon. There are 25 pct more Btu-s available and an additional 17 pct more from hydrogen given off, from the same corn when making butanol instead of ethanol that is 42 pct more Btu-s more energy out than it takes to make - that is the plow to tire equation is positive for butanol. Butanol is far safer to handle than gasoline or ethanol. Butanol when substituted for gasoline gives better gas mileage and does not pollute as attested to in 10 states. Butanol should now receive the same recognition as a fuel alcohol in U.S. legislation as ethanol. There are many benefits to this technology in that Butanol replaces gasoline gallon for gallon as demonstrated in a 10,000 miles trip across the United States July-August 2005. No modifications at all were made to a 1992 Buick Park Avenue; essentially your family car can go down the road on Butanol today with no modifications, Butanol replaces gasoline. It is that simple. Since Butanol replaces gasoline more Butanol needs to be made. There are many small farms across America which can grow energy crops and they can easily apply this technology. There is also an abundance of plant biomass present as low-value agricultural commodities or processing wastes requiring proper disposal to avoid pollution problems. One example is in the corn refinery industry with 10 million metric tons of corn byproducts that pose significant environmental problems. Whey lactose presents another waste management problem, 123,000 metric tons US, which can now be turned into automobile fuel. The fibrous bed bioreactor - FBB - with cells immobilized in the fibrous matrix packed in the reactor has been successfully used for several organic acid fermentations, including butyric and propionic acids with greatly increased reactor productivity, final product concentration, and product yield. Other advantages of the FBB include efficient and continuous operation without requiring repeated inoculation, elimination of cell lag phase, good long-term stability, self cleaning and easier downstream processing. The excellent reactor performance of the FBB can be attributed to the high viable cell density maintained in the bioreactor as a result of the unique cell immobilization mechanism within the porous fibrous matrix Since Butanol replaces gasoline in any car today - right now, its manufacturing from biomass is the focus of EEI and in the long term production of our transportation fuel from biomass will stabilize the cost of our fuel - the underpinning of all commerce. As a Strategic Chemical Butanol has a ready market as an industrial solvent used primarily as paint thinner which sells for twice the price of gasoline and is one entry point for the Company into an established market. However, butanol has demonstrated it is an excellent replacement for gasoline-gallon for gallon. The EEI process has made the economics of producing butanol from biomass for both uses very compelling. With the current costs for gasoline at $3.00 per gallon various size farmstead turn-key Butanol BioRefineries are proposed for 50-1,000 acre farms, to produce butanol as a fuel locally and sold locally. All butanol supplies worldwide are currently being produced from petroleum for $1.50 per gallon and selling for $3.80 wholesale. With the increasing price of gasoline it becomes feasible to manufacture and sell Butanol as a clean-safe replacement for gasoline. Grown locally - sold locally at gas prices. A 500 acre farm at 120 bushels corn per acre would make $150,000 at $2.50 per bushel for its corn, when turned into 150,000 gallons Butanol per year at 2.5 gallons per bushel the gross income would be $430,000. Butanol-s advantage is the fact that no other agricultural product made can be put directly into your gas tank without modifying your car. The farmer making and selling locally has no overhead for shippi

  6. Acidic gas capture by diamines

    DOE Patents [OSTI]

    Rochelle, Gary (Austin, TX); Hilliard, Marcus (Missouri City, TX)

    2011-05-10T23:59:59.000Z

    Compositions and methods related to the removal of acidic gas. In particular, the present disclosure relates to a composition and method for the removal of acidic gas from a gas mixture using a solvent comprising a diamine (e.g., piperazine) and carbon dioxide. One example of a method may involve a method for removing acidic gas comprising contacting a gas mixture having an acidic gas with a solvent, wherein the solvent comprises piperazine in an amount of from about 4 to about 20 moles/kg of water, and carbon dioxide in an amount of from about 0.3 to about 0.9 moles per mole of piperazine.

  7. Carbonic Acid Pretreatment of Biomass

    SciTech Connect (OSTI)

    G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

    2003-05-31T23:59:59.000Z

    This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

  8. Metabolism of Thioctic Acid in Algae

    E-Print Network [OSTI]

    Grisebach, Hans; Fuller, R.C.; Calvin, M.

    1956-01-01T23:59:59.000Z

    METABOLISM OF THlOCTlC ACID IN ALGAE TWO-WEEK LOAN COPY ThisMETABOLISM OF THIOCTIC ACID IN ALGAE Hans Grisebach, R. , C.METABOLISM OF THIOCTIC ACID IN ALGAE Hans Grisebach, R. C.

  9. Solvent extraction of inorganic acids

    E-Print Network [OSTI]

    Ysrael, Miguel Curie

    1965-01-01T23:59:59.000Z

    the solution by a sim?. le process that is economically =ttrsctlve is of con- sider. ble interest~ Dilute "olution; of hydrochloric, nitric and sul- furic acid d; occur in many processes either alone or toga- th: r . 'he use of li. , uid-li~uid extraction...~~ram for hexyl c~rbitol- water-nitric acid 17 ~ Distribution die, r m for hoxl'' ca:-bitol- watcr-sulfur'c acid Table 1. . 'xperimental d ta of amyl alcohol-water-!!Cl Pa, e 33 2. Experimental data of isoamyl alcohol-water- HC1 34 3 ~ Cxperimental data...

  10. Naphthenic acid corrosion literature survey

    SciTech Connect (OSTI)

    Babaian-Kibala, E. [Nalco/Exxon Energy Chemicals, Sugar Land, TX (United States); Nugent, M.J. [Tosco Refining Co., Linden, NJ (United States)

    1999-11-01T23:59:59.000Z

    Naphthenic acid corrosion is a growing concern for refineries processing crudes containing high levels of naphthenic acid. Due to this concern initiatives in place to better understand the mechanism of corrosion for mitigating the corrosion. During the 1996 Fall Corrosion Group, organized existing literature relevant to the literature search. Committee Week, NACE International many refineries have and evaluate methods T-8 Refining Industry a task group, T-8-22, to perform a review and compilation of naphthenic acid corrosion. This paper provides a summary of the literature research.

  11. acetic acid solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  12. arachidonic acid activation: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  13. acid inertness studies: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  14. acid activated montmorillonite: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  15. acid amide hydrolase: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been studied....

  16. acid chelation phototherapeutic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  17. acid phosphatase activity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  18. acetic acid solution: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  19. acetic acid operational: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  20. acid phosphatase activities: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  1. acid sphingomyelinase activity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  2. acids decreases fibrinolysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  3. arachidonic acid activates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  4. acid decarboxylase activity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  5. acid activates nrf2: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  6. acid processing activity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  7. ascorbic acid enhances: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  8. acid cupric chloride: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In the present study, bonding among formic, acetic and benzoic acids, sulfuric acid, ammonia, acetic, and benzoic acids with free and hydrated sulfuric acid has been...

  9. In vivo incorporation of unnatural amino acids

    DOE Patents [OSTI]

    Schultz, Peter G. (La Jolla, CA); Wang, Lei (San Diego, CA); Anderson, John Christopher (San Diego, CA); Chin, Jason W. (Cambridge, GB); Liu, David R. (Lexington, MA); Magliery, Thomas J. (North Haven, CT); Meggers, Eric L. (Philadelphia, PA); Mehl, Ryan Aaron (Lancaster, PA); Pastrnak, Miro (San Diego, CA); Santoro, Stephen William (Cambridge, MA); Zhang, Zhiwen (San Diego, CA)

    2012-05-08T23:59:59.000Z

    The invention provides methods and compositions for in vivo incorporation of unnatural amino acids. Also provided are compositions including proteins with unnatural amino acids.

  10. Carbonic Acid Shows Promise in Geology, Biology

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Surprising Secrets of Carbonic Acid Probing the Surprising Secrets of Carbonic Acid Berkeley Lab Study Holds Implications for Geological and Biological Processes October 23,...

  11. Mineralogical transformations controlling acid mine drainage...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineralogical transformations controlling acid mine drainage chemistry. Mineralogical transformations controlling acid mine drainage chemistry. Abstract: The role of Fe(III)...

  12. EA-1789: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Construction and Operation of a Proposed Cellulosic Biorefinery, Alpena Prototype Biorefinery, Alpena, Michigan

  13. Seasonalepisodic control of acid deposition

    E-Print Network [OSTI]

    Fay, James A.

    1988-01-01T23:59:59.000Z

    This report contains the climatological, technical and economic factors for episodic and seasonal control of emissions in existing power plants. Analyzing a large data set of acid deposition for the years 1982-85, we find ...

  14. Asphaltene damage in matrix acidizing

    E-Print Network [OSTI]

    Hinojosa, Roberto Antonio

    2012-06-07T23:59:59.000Z

    This work addresses the problem of asphaltene deposition that occurs during acid treatments of oil reservoirs. Asphaltenes are present to some degree in most hydrocarbons. Due to the molecular weight of the components these asphaltenes are more...

  15. Controlling acid rain : policy issues

    E-Print Network [OSTI]

    Fay, James A.

    1983-01-01T23:59:59.000Z

    The policy and regulatory ramifications of U.S. acid rain control programs are examined; particularly, the alternative of a receptor-oriented strategy as constrasted to emission-oriented proposals (e.g., the Mitchell bill) ...

  16. Nitrate and Prussic Acid Poisoning

    E-Print Network [OSTI]

    Stichler, Charles; Reagor, John C.

    2001-09-05T23:59:59.000Z

    Nitrate and prussic acid poisoning in cattle are noninfectious conditions that can kill livestock. This publication explains the causes and symptoms of these conditions as well as preventive measures and sampling and testing steps....

  17. Factors controlling naphthenic acid corrosion

    SciTech Connect (OSTI)

    Turnbull, A. [National Physical Lab., Teddington (United Kingdom); Slavcheva, E. [Bulgarian Academy of Sciences, Sofia (Bulgaria); Shone, B. [Ty Isa, Nr Mold (United Kingdom)

    1998-11-01T23:59:59.000Z

    A laboratory study was conducted to elucidate the influence of chemical and physical parameters on corrosion of type 1018 carbon steel (CS, UNS G10180) and 5% Cr-0.5% Mo steel in oils containing naphthenic acids (NAs) for application to crude oil refinery systems. Effects of test duration, temperature, and acid concentration were assessed for a range of single acids of varying carbon numbers and for NA mixtures in mineral oil (MO) and in heavy vacuum gas oil (HGVO). In addition, a limited study of the effect of hydrogen sulfide (H{sub 2}S) addition to the acid-oil mixture was conducted. Use of the total acid number (TAN) as a measure of corrosiveness of a crude oil was discredited further. For the same TAN value, molecular size and structure of the acid were shown to have an important influence. Tests conducted in HGVO showed lower corrosion rates than in MO, suggesting inhibition caused by S species in the oil or the steric hindrance of naphtheno-aromatic acids. In oil containing the mixture of NAs, the corrosion rate of type 1018 CS was lower than that for 5% Cr-0.5% Mo steel. The 0.1% H{sub 2}S that passed through the acid-oil mixtures had an inhibiting effect on corrosion. Predicting corrosiveness of a crude oil from the measurement of TAN, distribution of NA composition, and S content and form was particularly challenging. The simple tests used were informative, but further work will be required to establish a standard test method that can provide an adequate ranking of crudes.

  18. Acid sorption regeneration process using carbon dioxide

    DOE Patents [OSTI]

    King, C. Judson (Kensington, CA); Husson, Scott M. (Anderson, SC)

    2001-01-01T23:59:59.000Z

    Carboxylic acids are sorbed from aqueous feedstocks onto a solid adsorbent in the presence of carbon dioxide under pressure. The acids are freed from the sorbent phase by a suitable regeneration method, one of which is treating them with an organic alkylamine solution thus forming an alkylamine-carboxylic acid complex which thermally decomposes to the desired carboxylic acid and the alkylamine.

  19. Succinic acid production by Anaerobiospirillum succiniciproducens

    E-Print Network [OSTI]

    , succinic acid has been produced commercially by chemical processes. Recently, however, fermentative of bacteria produce succinic acid as a fermentation end product,4 7 few species can produce it as the major 10 Previous studies showed that A. succiniciproducens produces succinic acid and acetic acid

  20. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOE Patents [OSTI]

    Ohlrogge, John B. (Okemos, MI); Cahoon, Edgar B. (Lansing, MI); Shanklin, John (Upton, NY); Somerville, Christopher R. (Okemos, MI)

    1995-01-01T23:59:59.000Z

    The present invention relates to a process for producing lipids containing the fatty acid petroselinic acid in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a .omega.12 desaturase from another species which does normally accumulate petroselinic acid.

  1. Method for production of petroselinic acid and OMEGA12 hexadecanoic acid in transgenic plants

    DOE Patents [OSTI]

    Ohlrogge, J.B.; Cahoon, E.B.; Shanklin, J.; Somerville, C.R.

    1995-07-04T23:59:59.000Z

    The present invention relates to a process for producing lipids containing the fatty acid, petroselinic acid, in plants. The production of petroselinic acid is accomplished by genetically transforming plants which do not normally accumulate petroselinic acid with a gene for a {omega}12 desaturase from another species which does normally accumulate petroselinic acid. 19 figs.

  2. New syntheses of aminoalkylphosphonic acids

    E-Print Network [OSTI]

    DeBardeleben, John Frederick

    2012-06-07T23:59:59.000Z

    NEW SYNTHESES OF AMINOALKYLPHOSPHON1C ACIDS A Thesis by John Frederick DeBardeleben, Jr. Su'bmitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE August 196$ Major Subject: Chemistry NEW SYNTHESES OF AMINOALKYLPHOSPHONIC ACIDS A Thesis BY John Frederick DeBardeleben, Jr. Approved as to style and content hy: (Chairman of Committee) iJ C wc+'. A-c-~-' & (Head of Department...

  3. Acid Catalysis in Modern Organic

    E-Print Network [OSTI]

    Snyder, Scott A.

    catalyst for organic synthesis". That is the starting sentence of this book by Yamamoto and Ishihara, which follows their earlier book "Lewis Acids in Organic Synthesis (2000)", and covers the new developments book that should be available in every well-equipped chemistry library. It will certainly be helpful

  4. HYDROFLUORIC ACID FIRST AID INSTRUCTIONS

    E-Print Network [OSTI]

    Jalali. Bahram

    with large amounts of cool running water. Immediately washing off the acid is of primary importance. 2.Remove Immediately flush eyes for at least 15 minutes with copious cool flowing water. 2 If only one eye is affected by a glass of milk or milk of magnesia. 3 Call 911 for immediate medical assistance. REMEMBER, ALL PERSONNEL

  5. E-Print Network 3.0 - acid acetylsalicylic acid Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acids are kept in storage cabinets under the fume hood... in the plastic box. 3. Place filters in hood, add 50% (approximate concentration) HCl acid (Fisher, certified ACS......

  6. E-Print Network 3.0 - acid methoxyacetic acid Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acids are kept in storage cabinets under the fume hood... in the plastic box. 3. Place filters in hood, add 50% (approximate concentration) HCl acid (Fisher, certified ACS......

  7. E-Print Network 3.0 - acidic alpha-amino acids Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acids are kept in storage cabinets under the fume hood... in the plastic box. 3. Place filters in hood, add 50% (approximate concentration) HCl acid (Fisher, certified ACS......

  8. E-Print Network 3.0 - acid sorbic acid Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acids are kept in storage cabinets under the fume hood... in the plastic box. 3. Place filters in hood, add 50% (approximate concentration) HCl acid (Fisher, certified ACS......

  9. E-Print Network 3.0 - acid dichloroacetic acid Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acids are kept in storage cabinets under the fume hood... in the plastic box. 3. Place filters in hood, add 50% (approximate concentration) HCl acid (Fisher, certified ACS......

  10. E-Print Network 3.0 - acid n-glycolylneuraminic acid Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acids are kept in storage cabinets under the fume hood... in the plastic box. 3. Place filters in hood, add 50% (approximate concentration) HCl acid (Fisher, certified ACS......

  11. E-Print Network 3.0 - acids organic acids Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the decomposition of organic material, is the primary source of acidity in unpolluted rainwater. NOTE: Parts per... A ACID RAIN Audrey Gibson ATOC 3500 Thursday, April ......

  12. E-Print Network 3.0 - acid propionic acid Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by Explorit Topic List Advanced Search Sample search results for: acid propionic acid Page: << < 1 2 3 4 5 > >> 1 Biodegradation 9: 463473, 1998. 1998 Kluwer Academic...

  13. E-Print Network 3.0 - acid linoleic acid Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FAs (linolenic, linoleic) - - monounsaturated FAs (oleic acid) - olive, canola - hydrogenation... Biol 458 Lecture 6 & 7 Fatty Acids 1 A. Introduction to acyl lipids...

  14. Modeling of Acid Fracturing in Carbonate Reservoirs

    E-Print Network [OSTI]

    Al Jawad, Murtada s

    2014-06-05T23:59:59.000Z

    The acid fracturing process is a thermal, hydraulic, mechanical, and geochemical (THMG)-coupled phenomena in which the behavior of these variables are interrelated. To model the flow behavior of an acid into a fracture, mass and momentum balance...

  15. acidization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 7 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  16. Fuel cell electrolyte membrane with acidic polymer

    DOE Patents [OSTI]

    Hamrock, Steven J. (Stillwater, MN); Larson, James M. (Saint Paul, MN); Pham, Phat T. (Little Canada, MN); Frey, Matthew H. (Cottage Grove, MN); Haugen, Gregory M. (Edina, MN); Lamanna, William M. (Stillwater, MN)

    2009-04-14T23:59:59.000Z

    An electrolyte membrane is formed by an acidic polymer and a low-volatility acid that is fluorinated, substantially free of basic groups, and is either oligomeric or non-polymeric.

  17. Recovery of mercury from acid waste residues

    DOE Patents [OSTI]

    Greenhalgh, W.O.

    1987-02-27T23:59:59.000Z

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and thence quenching the reactivity of the nitric acid prior to nitration of the mercury metal. 1 fig.

  18. Recovery of mercury from acid waste residues

    DOE Patents [OSTI]

    Greenhalgh, Wilbur O. (Richland, WA)

    1989-01-01T23:59:59.000Z

    Mercury can be recovered from nitric acid-containing fluids by reacting the fluid with aluminum metal to produce mercury metal, and then quenching the reactivity of the nitric acid prior to nitration of the mercury metal.

  19. amino acid intake: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    protein intake (PDI) and net portal appearance rate of amino acids by continuous infusion of para-aminohippuric acid via the mesenteric catheter. The amino-acid appearance...

  20. Reactions Between Water Soluble Organic Acids and Nitrates in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reactions Between Water Soluble Organic Acids and Nitrates in Atmospheric Aerosols: Recycling of Nitric Acid and Formation of Reactions Between Water Soluble Organic Acids and...

  1. acid synthase impacts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acid utilization and glucose oxidation. Glucose... Adhikari, Sean 2006-10-30 246 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  2. Unnatural reactive amino acid genetic code additions

    DOE Patents [OSTI]

    Deiters, Alexander; Cropp, T. Ashton; Chin, Jason W.; Anderson, J. Christopher; Schultz, Peter G.

    2014-08-26T23:59:59.000Z

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, orthogonal pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  3. Organic Acid Production by Filamentous Fungi

    E-Print Network [OSTI]

    -being. Indeed, organic acid fermentations are often not even identified as fungal bioprocesses, having been Aspergillus niger in aerated stirred-tank-reactors can convert glucose to citric acid with greater than 80 lipolytica, and related yeast species, may be in use commercially to produce citric acid (Lopez-Garcia, 2002

  4. Unnatural reactive amino acid genetic code additions

    DOE Patents [OSTI]

    Deiters, Alexander (La Jolla, CA); Cropp, T. Ashton (Bethesda, MD); Chin, Jason W. (Cambridge, GB); Anderson, J. Christopher (San Francisco, CA); Schultz, Peter G. (La Jolla, CA)

    2011-08-09T23:59:59.000Z

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNAsyn-thetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  5. Unnatural reactive amino acid genetic code additions

    DOE Patents [OSTI]

    Deiters, Alexander; Cropp, Ashton T; Chin, Jason W; Anderson, Christopher J; Schultz, Peter G

    2013-05-21T23:59:59.000Z

    This invention provides compositions and methods for producing translational components that expand the number of genetically encoded amino acids in eukaryotic cells. The components include orthogonal tRNAs, orthogonal aminoacyl-tRNA synthetases, pairs of tRNAs/synthetases and unnatural amino acids. Proteins and methods of producing proteins with unnatural amino acids in eukaryotic cells are also provided.

  6. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, L.

    1999-05-25T23:59:59.000Z

    A process is disclosed for preparing an acid addition salt of delta-aminolevulinic acid comprising. The process involves dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing the alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  7. Synthesis of an acid addition salt of delta-aminolevulinic acid from 5-bromo levulinic acid esters

    DOE Patents [OSTI]

    Moens, Luc (Lakewood, CO)

    1999-01-01T23:59:59.000Z

    A process of preparing an acid addition salt of delta-aminolevulinic acid comprising: dissolving a lower alkyl 5-bromolevulinate and an alkali metal diformylamide in an organic solvent selected from the group consisting of acetonitrile, methanol, tetrahydrofuran, 2-methyltetrahydrofuran and methylformate or mixtures thereof to form a suspension of an alkyl 5-(N,N-diformylamino) levulinate ester; and hydrolyzing said alkyl 5-(N,N-diformylamino) levulinate with an inorganic acid to form an acid addition salt of delta-amino levulinic acid.

  8. ARM - Lesson Plans: Acid Rain

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC : XDCResearch Related InformationAcid Rain Outreach Home Room News

  9. Thermal Stability Of Formohydroxamic Acid

    SciTech Connect (OSTI)

    Fondeur, F. F.; Rudisill, T. S.

    2011-10-21T23:59:59.000Z

    The thermal stability of formohydroxamic acid (FHA) was evaluated to address the potential for exothermic decomposition during storage and its use in the uranium extraction process. Accelerating rate calorimetry showed rapid decomposition at a temperature above 65 {degree}?C; although, the rate of pressure rise was greater than two orders of magnitude less than the lower bound for materials which have no explosive properties with respect to transportation. FHA solutions in water and nitric acid did not reach runaway conditions until 150 {degree}?C. Analysis by differential scanning calorimetry showed that FHA melted at 67 {degree}?C and thermally decomposed at 90 {degree}?C with an enthalpy of -1924 J/g. The energics of the FHA thermal decomposition are comparable to those measured for aqueous solutions of hydroxylamine nitrate. Solid FHA should be stored in a location where the temperature does not exceed 20-25 {degree}?C. As a best practice, the solid material should be stored in a climate-controlled environment such as a refrigerator or freezer. FHA solutions in water are not susceptible to degradation by acid hydrolysis and are the preferred way to handle FHA prior to use.

  10. CHAPTER 13. ACID RAIN Acid rain was discovered in the 19th century by Robert Angus

    E-Print Network [OSTI]

    Jacob, Daniel J.

    247 CHAPTER 13. ACID RAIN Acid rain was discovered in the 19th century by Robert Angus Smith, a pharmacist from Manchester (England), who measured high levels of acidity in rain falling over industrial decline of fish populations in the lakes of southern Norway and traced the problem to acid rain. Similar

  11. Fate of Acids in Clouds 1. Combination with bases dissolved in clouds: acids neutralized

    E-Print Network [OSTI]

    Schofield, Jeremy

    problems. E#11;ects of Acid Rain 1. Vegetation: SO 2 is toxic to plants #15; Leaves damaged below pH 3 rain { Athens and Rome cathedrals and statues: pollution leads to acid rain #15; SteelFate of Acids in Clouds 1. Combination with bases dissolved in clouds: acids neutralized NH 3 (g

  12. Radioiodinated fatty acid analogs for myocardial imaging

    SciTech Connect (OSTI)

    Ruyan, M.K.

    1993-01-01T23:59:59.000Z

    Fatty acids are the preferred substrate for the normoxic heart. About sixty percent of the energy required by the myocardium is provided by fatty acid [beta]-oxidation. Many scientists have focused on the alterations in fatty acid metabolism in the ischemic heart for the development of radiolabelled fatty acids for functional imaging of the heart. Three main categories of compounds were synthesized: tetrazoles (1 and 2), glycidic and [alpha]-methylene acids (3-5), and analogs of oleic acid (6,7 and 7A). The tetrazole group has a similar pKa and size to that of a carboxyl group; however, such fatty acid analogs cannot undergo normal fatty acid metabolism. Glycidic and [alpha]-methylene analogs are potential irreversible inhibitors of fatty acid metabolism. Oleic acid analogs were investigated to assess the affect of stereochemical consequences on biodistribution. The key intermediates in the synthesis of the target compounds were [omega]-nitrophenyl alkylcarboxylic acids and alcohols, which were made using a variety of cross-coupling reactions. The Wittig reaction, which was used in the synthesis of tetrazole 1 and glycidic acid 3, gave low yields of the cross-coupled products. The remaining target compounds were synthesized by condensation of appropriate RCu (CN) ZnI and substituted benzyl bromides or by Pd[sup II] catalyzed cross-coupling of substituted arylhalides with suitable alkynes. The latter two reactions produced much higher yields of the desired products. All of the target compounds were radiolabeled with [sup 125]I by various Cu(I) catalyzed radioiodine exchange procedures and were then subjected to tissue biodistribution (TD) studies in rats. Except for the 15-(4-iodophenyl)-2-methylene-pentadecanoic acid (5), all of the fatty acid analogs failed to surpass clinically-used 15-(4-iodophenyl)pentadecanoic acid (IPPA) in their ability to be taken up and retained by the rat myocardium.

  13. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOE Patents [OSTI]

    Sopchak, David A. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Graff, Robert T. (Modesto, CA)

    2010-12-21T23:59:59.000Z

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  14. Micro-electro-mechanical systems phosphoric acid fuel cell

    DOE Patents [OSTI]

    Sopchak, David A. (Livermore, CA); Morse, Jeffrey D. (Martinez, CA); Upadhye, Ravindra S. (Pleasanton, CA); Kotovsky, Jack (Oakland, CA); Graff, Robert T. (Modesto, CA)

    2010-08-17T23:59:59.000Z

    A phosphoric acid fuel cell system comprising a porous electrolyte support, a phosphoric acid electrolyte in the porous electrolyte support, a cathode electrode contacting the phosphoric acid electrolyte, and an anode electrode contacting the phosphoric acid electrolyte.

  15. acid bacteria isolates: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acids are solids not liquids. They sublime under vacuum to compare the strengths of solid acids with liquid acids therefore led us to obtain a measure of acidity in dilute...

  16. acid bacteria isolated: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acids are solids not liquids. They sublime under vacuum to compare the strengths of solid acids with liquid acids therefore led us to obtain a measure of acidity in dilute...

  17. Double stranded nucleic acid biochips

    DOE Patents [OSTI]

    Chernov, Boris; Golova, Julia

    2006-05-23T23:59:59.000Z

    This invention describes a new method of constructing double-stranded DNA (dsDNA) microarrays based on the use of pre-synthesized or natural DNA duplexes without a stem-loop structure. The complementary oligonucleotide chains are bonded together by a novel connector that includes a linker for immobilization on a matrix. A non-enzymatic method for synthesizing double-stranded nucleic acids with this novel connector enables the construction of inexpensive and robust dsDNA/dsRNA microarrays. DNA-DNA and DNA-protein interactions are investigated using the microarrays.

  18. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, C.R.; Niemeyer, C.M.; Smith, C.L.; Sano, Takeshi; Hnatowich, D.J.; Rusckowski, M.

    1996-10-01T23:59:59.000Z

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products. 5 figs.

  19. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, Charles R. (Boston, MA); Niemeyer, Christof M. (Bremen, DE); Smith, Cassandra L. (Boston, MA); Sano, Takeshi (Boston, MA); Hnatowich, Donald J. (Brookline, MA); Rusckowski, Mary (Southborough, MA)

    1999-10-12T23:59:59.000Z

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  20. Self-assembling multimeric nucleic acid constructs

    DOE Patents [OSTI]

    Cantor, Charles R. (Boston, MA); Niemeyer, Christof M. (Bremen, DE); Smith, Cassandra L. (Boston, MA); Sano, Takeshi (Boston, MA); Hnatowich, Donald J. (Brookline, MA); Rusckowski, Mary (Southborough, MA)

    1996-01-01T23:59:59.000Z

    The invention is directed to constructs and compositions containing multimeric forms of nucleic acid. Multimeric nucleic acids comprise single-stranded nucleic acids attached via biotin to streptavidin and bound with a functional group. These constructs can be utilized in vivo to treat or identify diseased tissue or cells. Repeated administrations of multimeric nucleic acid compositions produce a rapid and specific amplification of nucleic acid constructs and their attached functional groups. For treatment purposes, functional groups may be toxins, radioisotopes, genes or enzymes. Diagnostically, labeled multimeric constructs may be used to identify specific targets in vivo or in vitro. Multimeric nucleic acids may also be used in nanotechnology and to create self-assembling polymeric aggregates such as membranes of defined porosity, microcircuits and many other products.

  1. Testing of organic acids in engine coolants

    SciTech Connect (OSTI)

    Weir, T.W. [ARCO Chemical Co., Newtown Square, PA (United States)

    1999-08-01T23:59:59.000Z

    The effectiveness of 30 organic acids as inhibitors in engine coolants is reported. Tests include glassware corrosion of coupled and uncoupled metals. FORD galvanostatic and cyclic polarization electrochemistry for aluminum pitting, and reserve alkalinity (RA) measurements. Details of each test are discussed as well as some general conclusions. For example, benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In benzoic acid inhibits coupled metals well but is ineffective on cast iron when uncoupled. In general, the organic acids provide little RA when titrated to a pH of 5.5, titration to a pH of 4.5 can result in precipitation of the acid. Trends with respect to acid chain length are reported also.

  2. Co-Solvent Enhanced Production of Platform Fuel Precursors From Lignocellulosic Biomass

    E-Print Network [OSTI]

    Cai, Charles Miao-Zi

    2014-01-01T23:59:59.000Z

    flow diagram for an integrated biorefinery to produce fuelflow diagram for an integrated biorefinery to produce fuelaffordable integrated turn-key biorefinery would be hugely

  3. Carboxylic acid accelerated formation of diesters

    DOE Patents [OSTI]

    Tustin, G.C.; Dickson, T.J.

    1998-04-28T23:59:59.000Z

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0 and 80 C in the substantial absence of a hydrogenation or carbonylation catalyst.

  4. Organic Phosphoric Acid of the Soil.

    E-Print Network [OSTI]

    Fraps, G. S. (George Stronach)

    1911-01-01T23:59:59.000Z

    TEXAS AGRICULTURAL EXPERIMENT STATIONS BULLETIN NO. +6CT /36 CHEMICAL SECTION, FEBRUARY, 191 1 I TECHNICAL BULLETIN Organic Phosphoric Acid of the Soil BY G. S. FRAPS, Chemist POSTOFFICE College Station, Brazos County, 'Texas. ,\\ustin... . ................................................ introduction 5 .............................. hmmonia-Soluble Phosphoric Acid 5 ................ Solubility of Phosphates in Ammonia 6 I Fixation of Phosphoric Acid from Ammonia .......... 7 Effect of Ratio of Soil to Solvent in Extraction of Phos- I I...

  5. Acid rain information book. Draft final report

    SciTech Connect (OSTI)

    None

    1980-12-01T23:59:59.000Z

    Acid rain is one of the most widely publicized environmental issues of the day. The potential consequences of increasingly widespread acid rain demand that this phenomenon be carefully evaluated. Reveiw of the literature shows a rapidly growing body of knowledge, but also reveals major gaps in understanding that need to be narrowed. This document discusses major aspects of the acid rain phenomenon, points out areas of uncertainty, and summarizes current and projected research by responsible government agencies and other concerned organizations.

  6. Carboxylic acid accelerated formation of diesters

    DOE Patents [OSTI]

    Tustin, Gerald Charles (Kingsport, TN); Dickson, Todd Jay (Kingsport, TN)

    1998-01-01T23:59:59.000Z

    This invention pertains to accelerating the rate of formation of 1,1-dicarboxylic esters from the reaction of an aldehyde with a carboxylic acid anhydride or a ketene in the presence of a non-iodide containing a strong Bronsted acid catalyst by the addition of a carboxylic acid at about one bar pressure and between about 0.degree. and 80.degree. C. in the substantial absence of a hydrogenation or carbonylation catalyst.

  7. Novel Regenerated Solvent Extraction Processes for the Recovery of Carboxylic Acids or Ammonia from Aqueous Solutions Part I. Regeneration of Amine-Carboxylic Acid Extracts

    E-Print Network [OSTI]

    Poole, L.J.

    2008-01-01T23:59:59.000Z

    production of citric acid by fermentation, recovery of theof Citric Acid from Aqueous Fermentation Solutions byof citric acid was 1.1.1 Lactic Acid Currently, fermentation

  8. Acid Doped Membranes for High Temperature PEMFC

    Broader source: Energy.gov [DOE]

    Presentation on Acid Doped Membranes for High Temperature PEMFC to the High Temperature Membrane Working Group, May 25, 2004 in Philadelphia, PA.

  9. Organic acid-tolerant microorganisms and uses thereof for producing organic acids

    DOE Patents [OSTI]

    Pfleger, Brian Frederick; Begemann, Matthew Brett

    2014-05-06T23:59:59.000Z

    Organic acid-tolerant microorganisms and methods of using same. The organic acid-tolerant microorganisms comprise modifications that reduce or ablate AcsA activity or AcsA homolog activity. The modifications increase tolerance of the microorganisms to such organic acids as 3-hydroxypropionic acid (3HP), acrylic acid, and propionic acid. Further modifications to the microorganisms such as increasing expression of malonyl-CoA reductase and/or acetyl-CoA carboxylase provide or increase the ability of the microorganisms to produce 3HP. Methods of generating an organic acid with the modified microorganisms are provided. Methods of using acsA or homologs thereof as counter-selectable markers include replacing acsA or homologs thereof in cells with genes of interest and selecting for the cells comprising the genes of interest with amounts of organic acids effective to inhibit growth of cells harboring acsA or the homologs.

  10. E-Print Network 3.0 - acid eicosapentaenoic acid Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample search results for: acid eicosapentaenoic acid Page: << < 1 2 3 4 5 > >> 1 Fish or Fish Oil in the Diet and Heart Attacks MAURICE E. STANSBY Summary: . Further...

  11. E-Print Network 3.0 - acids eicosapentaenoic acid Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sample search results for: acids eicosapentaenoic acid Page: << < 1 2 3 4 5 > >> 1 Fish or Fish Oil in the Diet and Heart Attacks MAURICE E. STANSBY Summary: . Further...

  12. 2006 DOE Hydrogen Program Poly (p-phenylene Sulfonic Acid)s with...

    Broader source: Energy.gov (indexed) [DOE]

    2006 DOE Hydrogen Program Poly (p-phenylene Sulfonic Acid)s with Frozen-in Free Volume for use in High Temperature Fuel Cells 2006 DOE Hydrogen Program Poly (p-phenylene Sulfonic...

  13. 2006 DOE Hydrogen Program Poly (p-phenylene Sulfonic Acid)s with...

    Broader source: Energy.gov (indexed) [DOE]

    Poly(p-phenylene Sulfonic Acid)s with Frozen-in Free Volume for use in High Temperature Fuel Cells Morton Litt and Peter Pintauro Case Western Reserve University Cleveland, Ohio...

  14. acid-dependent ribonucleic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 40 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  15. Decomposition Studies of Triphenylboron, Diphenylborinic Acid and Phenylboric Acid in Aqueous Alkaline Solutions Containing Copper

    SciTech Connect (OSTI)

    Crawford, C.L. [Westinghouse Savannah River Company, AIKEN, SC (United States); Peterson, R. A.

    1997-02-11T23:59:59.000Z

    This report documents the copper-catalyzed chemical kinetics of triphenylboron, diphenylborinic acid and phenylboric acid (3PB, 2PB and PBA) in aqueous alkaline solution contained in carbon-steel vessels between 40 and 70 degrees C.

  16. BNL Citric Acid Technology: Pilot Scale Demonstration

    SciTech Connect (OSTI)

    FRANCIS, A J; DODGE,; J, C; GILLOW, J B; FORRESTER, K E

    1999-09-24T23:59:59.000Z

    The objective of this project is to remove toxic metals such as lead and cadmium from incinerator ash using the Citric Acid Process developed at Brookhaven National Laboratory. In this process toxic metals in bottom ash from the incineration of municipal solid waste were first extracted with citric acid followed by biodegradation of the citric acid-metal extract by the bacterium Pseudomonas fluorescens for metals recovery. The ash contained the following metals: Al, As, Ba, Ca, Cd, Cr, Cu, Fe, Mg, Mn, Ni, Pb, Se, Sr, Ti, and Zn. Optimization of the Citric Acid Process parameters which included citric acid molarity, contact time, the impact of mixing aggressiveness during extraction and pretreatment showed lead and cadmium removal from incinerator ash of >90%. Seeding the treated ash with P. fluorescens resulted in the removal of residual citric acid and biostabilization of any leachable lead, thus allowing it to pass EPA?s Toxicity Characteristic Leaching Procedure. Biodegradation of the citric acid extract removed >99% of the lead from the extract as well as other metals such as Al, Ca, Cu, Fe, Mg, Mn, Ti, and Zn. Speciation of the bioprecipitated lead by Extended X-ray Absorption Fine Structure at the National Synchrotron Light Source showed that the lead is predominantly associated with the phosphate and carboxyl functional groups in a stable form. Citric acid was completely recovered (>99%) from the extract by sulfide precipitation technique and the extraction efficiency of recovered citric acid is similar to that of the fresh citric acid. Recycling of the citric acid should result in considerable savings in the overall treatment cost. We have shown the potential application of this technology to remove and recover the metal contaminants from incinerator ash as well as from other heavy metal bearing wastes (i.e., electric arc furnace dust from steel industry) or soils. Information developed from this project is being applied to demonstrate the remediation of lead paint contaminated soils on Long Island.

  17. Further Investigation of Fluoboric Acid in Sandstone Acidizing Using ^(11)B and ^(19)F NMR

    E-Print Network [OSTI]

    Pituckchon, Arpajit

    2014-05-01T23:59:59.000Z

    Although fluoboric acid (HBF_(4)) has long been known as one of the low-damaging acid treatments for clayey sandstone formations, little is known of its chemistry which could explain the mixed results of fluoboric acid in actual field application. A...

  18. Producing dicarboxylic acids using polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2013-10-29T23:59:59.000Z

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing a dicarboxylic acid (diacid). Such diacids include diketide-diacids and triketide-diacids. The invention includes recombinant nucleic acid encoding the PKS, and host cells comprising the PKS. The invention also includes methods for producing the diacids.

  19. Electrostatic precipitation of condensed acid mist

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This project addresses the acid mist that is formed by condensation of sulfuric acid vapor in flue gas from coal-fired utility boilers. An acid mist can be formed whenever the flue gas temperature approaches the prevailing acid dew point. This commonly occurs when the gas is subjected to rapid adiabatic cooling in a wet scrubber system for flue gas desulfurization. Acid mists can also sometimes result from unexpected temperature excursions caused by air inleakage, load cycling, and start-up operations. A wet electrostatic precipitator (WESP) is the best control option for acid mist. The mist would blind a fabric filter and attach glass fiber fabrics. A wet ESP is required because the acid would quickly corrode the plates in a conventional dry ESP. The wet ESP also offers the advantages of no rapping reentrainment and no sensitivity to fly ash resistivity. Therefore, this program has been structured around the use of a compact, wet ESP to control acid mist emissions. Progress to date is discussed. 7 refs., 1 fig.

  20. Electrostatic precipitation of condensed acid mist

    SciTech Connect (OSTI)

    Not Available

    1990-01-01T23:59:59.000Z

    This project addresses the acid mist that is formed by condensation of sulfuric acid vapor in flue gas from coal-fired utility boilers. An acid mist can be formed whenever the flue gas temperature approaches the prevailing acid dew point. This commonly occurs when the gas is subjected to rapid adiabatic cooling in a wet scrubber system for flue gas desulfurization. Acid mists can also sometimes result from unexpected temperature excursions caused by air inleakage, load cycling, and start-up operations. A wet electrostatic precipitator (WESP) is the best control option for acid mist. The mist would blind a fabric filter and attack glass fiber fabrics. A wet ESP is required because the acid would quickly corrode the plates in a conventional dry ESP. The wet ESP also offers the advantages of no rapping reentrainment and no sensitivity to fly ash resistivity. Therefore, this program has been structured around the use of a compact, wet ESP to control acid mist emissions. 7 refs.

  1. Nanoparticles modified with multiple organic acids

    DOE Patents [OSTI]

    Cook, Ronald Lee (Lakewood, CO); Luebben, Silvia DeVito (Golden, CO); Myers, Andrew William (Arvada, CO); Smith, Bryan Matthew (Boulder, CO); Elliott, Brian John (Superior, CO); Kreutzer, Cory (Brighton, CO); Wilson, Carolina (Arvada, CO); Meiser, Manfred (Aurora, CO)

    2007-07-17T23:59:59.000Z

    Surface-modified nanoparticles of boehmite, and methods for preparing the same. Aluminum oxyhydroxide nanoparticles are surface modified by reaction with selected amounts of organic acids. In particular, the nanoparticle surface is modified by reactions with two or more different carboxylic acids, at least one of which is an organic carboxylic acid. The product is a surface modified boehmite nanoparticle that has an inorganic aluminum oxyhydroxide core, or part aluminum oxyhydroxide core and a surface-bonded organic shell. Organic carboxylic acids of this invention contain at least one carboxylic acid group and one carbon-hydrogen bond. One embodiment of this invention provides boehmite nanoparticles that have been surface modified with two or more acids one of which additional carries at least one reactive functional group. Another embodiment of this invention provides boehmite nanoparticles that have been surface modified with multiple acids one of which has molecular weight or average molecular weight greater than or equal to 500 Daltons. Yet, another embodiment of this invention provides boehmite nanoparticles that are surface modified with two or more acids one of which is hydrophobic in nature and has solubility in water of less than 15 by weight. The products of the methods of this invention have specific useful properties when used in mixture with liquids, as filler in solids, or as stand-alone entities.

  2. Nitrates and Prussic Acid in Forages

    E-Print Network [OSTI]

    Provin, Tony; Pitt, John L.

    2003-01-06T23:59:59.000Z

    When nitrates and prussic acid accumulate in forage, the feed may not be safe for livestock consumption. Learn the symptoms of nitrate and prussic acid poisoning and which plants are most likely to pose a risk to livestock. Also learn sampling...

  3. Amino acid analogs for tumor imaging

    DOE Patents [OSTI]

    Goodman, M.M.; Shoup, T.

    1998-10-06T23:59:59.000Z

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  4. Amino acid analogs for tumor imaging

    DOE Patents [OSTI]

    Goodman, M.M.; Shoup, T.

    1998-09-15T23:59:59.000Z

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is [{sup 18}F]-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an {alpha}-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of {alpha}-aminoisobutyric acid.

  5. Amino acid analogs for tumor imaging

    DOE Patents [OSTI]

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-09-15T23:59:59.000Z

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  6. Amino acid analogs for tumor imaging

    DOE Patents [OSTI]

    Goodman, Mark M. (Atlanta, GA); Shoup, Timothy (Decatur, GA)

    1998-10-06T23:59:59.000Z

    The invention provides novel amino acid compounds of use in detecting and evaluating brain and body tumors. These compounds combine the advantageous properties of 1-amino-cycloalkyl-1-carboxylic acids, namely, their rapid uptake and prolonged retention in tumors with the properties of halogen substituents, including certain useful halogen isotopes including fluorine-18, iodine-123, iodine-125, iodine-131, bromine-75, bromine-76, bromine-77 and bromine-82. In one aspect, the invention features amino acid compounds that have a high specificity for target sites when administered to a subject in vivo. Preferred amino acid compounds show a target to non-target ratio of at least 5:1, are stable in vivo and substantially localized to target within 1 hour after administration. An especially preferred amino acid compound is ›.sup.18 F!-1-amino-3-fluorocyclobutane-1-carboxylic acid (FACBC). In another aspect, the invention features pharmaceutical compositions comprised of an .alpha.-amino acid moiety attached to either a four, five, or a six member carbon-chain ring. In addition, the invention features analogs of .alpha.-aminoisobutyric acid.

  7. Naphthenic acid corrosion by Venezuelan crudes

    SciTech Connect (OSTI)

    Hopkinson, B.E.; Penuela, L.E. [Lagoven, S.A., Judibana (Venezuela). Amuay Refinery

    1997-09-01T23:59:59.000Z

    Venezuelan crudes can contain levels of naphthenic acids that cause corrosion in distillation units designed for sweet crudes. This naphthenic acid corrosion can be mitigated in several ways, the most common of which is selective alloying. This paper will provide information from field experience on how various refineries worldwide have upgraded materials to run Venezuelan crudes in a cost effective way.

  8. Naphthenic acid corrosion in crude distillation units

    SciTech Connect (OSTI)

    Piehl, R.L.

    1988-01-01T23:59:59.000Z

    This paper summarizes corrosion experience in crude distillation units processing highly naphthenic California crude oils. Correlations have been developed relating corrosion rates to temperature and total acid number. There is a threshold acid number in the range of 1.5 to 2 mg KOH/g below which corrosion is minimal. High concentrations of hydrogen sulfide may raise this threshold value.

  9. Metabolic Flux Analysis for Succinic Acid Production by Recombinant Escherichia

    E-Print Network [OSTI]

    ; Samuelov et al., 1991). Escherichia coli produces several metabolic products by fermentation: acetic acid the final succinic acid concentration obtained was 9.5 g/L and the ratio of succinic acid to acetic acid being expended on the production of succinic acid by microbial fermentation using renewable feedstocks

  10. Surfactant Screening to Alter the Wettability and Aid in Acidizing Carbonate Formations

    E-Print Network [OSTI]

    Yadhalli Shivaprasad, Arun Kumar

    2013-02-26T23:59:59.000Z

    , known as high temperature organic acids (HTO acids), have been found to be useful in acidizing subterranean formations at temperatures up to 400oF. Some of these acids are oxalic acid, malonic acid, pimelic acid, succinic acid, glutaric acid, adipic... acid and their mixtures. In addition to creating wormholes in carbonate formations, HTO acids can remove carbonate scale at high temperatures and cause very low corrosion to the tubing and casing. 6 1.2 Role of Surfactants in Acidizing 1...

  11. Difunctional carboxylic acid anions in oilfield waters

    SciTech Connect (OSTI)

    MacGowan, D.B.; Surdam, R.C.

    1988-01-01T23:59:59.000Z

    Recent models of porosity enhancement during sandstone diagenesis have called upon the metal complexing ability of difunctional carboxylic acid anions in subsurface waters to explain aluminosilicate dissolution. Although carboxylic acid anions have been known to exist in oilfield waters since the turn of the century, until now the existence of significant concentrations of difunctional carboxylic acid anions has not been documented. Data from this study show that difunctional carboxylic acid anions can exist in concentrations up to 2640 ppm, and can account for nearly 100% of the organic acid anions in some oilfield waters. Formation water samples with exceptionally high concentrations of difunctional carboxylic acid anions are found in reservoirs which are at maximum levels of thermal exposure, and which are presently in the 80-100/sup 0/C thermal window. Plagioclase dissolution experiments performed with natural oilfield waters and artificial solutions indicate that waters with high difunctional acid anion concentrations are capable, by organo-metallic complexation, of being apparently oversaturated with respect to total aluminum concentrations compared to the inorganic solubility of kaolinite by several orders of magnitude. Dissolution experiments simulating a specific geologic environment (Stevens Sandstone, southern San Joaquin Basin, California; using natural oilfield waters and Stevens Sandstone core samples), produced plagioclase and calcite dissolution textures similar to those noted in well cores from the Stevens Sandstone, as well as raising total aluminum concentrations in these experimental solutions several orders of magnitude over the solubility of kaolinite.

  12. Experimental Study of Acid Fracture Conductivity of Austin Chalk Formation

    E-Print Network [OSTI]

    Nino Penaloza, Andrea

    2013-05-01T23:59:59.000Z

    Acid fracture conductivity and the effect of key variables in the etching process during acid fracturing can be assessed at the laboratory scale. This is accomplished by using an experimental apparatus that simulates acid injection fluxes comparable...

  13. Experimental High Velocity Acid Jetting in Limestone Carbonates

    E-Print Network [OSTI]

    Holland, Christopher

    2014-04-30T23:59:59.000Z

    Acid jetting is a well stimulation technique that is used in carbonate reservoirs. It typically involves injecting acid down hole at high flow rates through small orifices which cause high velocities of acid to strike the borehole wall...

  14. acid-base imbalance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    acid generates a material (PE-C02H Deutch, John 59 Acid-Based Synthesis of Monodisperse Rare-Earth-Doped Colloidal SiO2 Spheres Materials Science Websites Summary: Acid-Based...

  15. aqueous tartaric acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with limited success.2,3 During the last decade, attention to sulfuric acid anodizing and boric-sulfuric acid Paris-Sud XI, Universit de 255 Si isotope systematics of acidic...

  16. Production of Succinic Acid for Lignocellulosic Hydrolysates

    SciTech Connect (OSTI)

    Davison, B.H.; Nghiem, J.

    2002-06-01T23:59:59.000Z

    The purpose of this Cooperative Research and Development Agreement (CRADA) is to add and test new metabolic activities to existing microbial catalysts for the production of succinic acid from renewables. In particular, they seek to add to the existing organism the ability to utilize xylose efficiently and simultaneously with glucose in mixtures of sugars or to add succinic acid production to another strain and to test the value of this new capability for production of succinic acid from industrial lignocellulosic hydrolyasates. The Contractors and Participant are hereinafter jointly referred to as the 'Parties'. Research to date in succinic acid fermentation, separation and genetic engineering has resulted in a potentially economical process based on the use of an Escherichia coli strain AFP111 with suitable characteristics for the production of succinic acid from glucose. Economic analysis has shown that higher value commodity chemicals can be economically produced from succinic acid based on repliminary laboratory findings and predicted catalytic parameters. The initial target markets include succinic acid itself, succinate salts, esters and other derivatives for use as deicers, solvents and acidulants. The other commodity products from the succinic acid platform include 1,4-butanediol, {gamma}-butyrolactone, 2-pyrrolidinone and N-methyl pyrrolidinone. Current economic analyses indicate that this platform is competitive with existing petrochemical routes, especially for the succinic acid and derivatives. The report presents the planned CRADA objectives followed by the results. The results section has a combined biocatalysis and fermentation section and a commercialization section. This is a nonproprietary report; additional proprietary information may be made available subject to acceptance of the appropriate proprietary information agreements.

  17. Naphthenic acid corrosion in refinery settings

    SciTech Connect (OSTI)

    Babaian-Kibala, E. (Nalco Chemical Co., Sugar Land, TX (United States)); Craig, H.L. Jr. (Mobil Research and Development Corp., Paulsboro, NJ (United States)); Rusk, G.L. (Mobil Oil Co., Torrance, CA (United States)); Blanchard, K.V.; Rose, T.J.; Uehlein, B.L. (Nalco Chemical Co., Paulsboro, NJ (United States)); Quinter, R.C. (Sun Co., Newtown Square, PA (United States)); Summers, M.A. (Sun Co., Marcus Hook, PA (United States))

    1993-04-01T23:59:59.000Z

    Naphthenic acid corrosion has been a problem in the refining industry for many years. Recently interest in this problem has grown because crudes that contain naphthenic acid are being recovered from areas which were not known to produce this type of crude, such as china, India, and Africa. New techniques for identifying naphthenic acid corrosion and chemical treatments for preventing this attack are presented. Refinery case studies include stream analysis, failure analysis, and inhibitor use. Laboratory tests to show the effect of hydrogen sulfide and phosphorus-based inhibitors are discussed.

  18. E-Print Network 3.0 - acid rain compliance Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    produces salt and water. 2. Acid rain... is rain that is slightly acidic due to pollution in the air. Acid rain greatly affects the ecosystems... is acid ... Source:...

  19. E-Print Network 3.0 - acidic potassium permanganate Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University General Guidelines Summary: acid Aminoalkanoic acids with 6 or fewer carbon atoms and the ammonium, sodium and potassium salts... of these acids. Amino acids...

  20. Experimental Investigation for the Effects of the Core Geometry on the Optimum Acid Flux in Carbonate Acidizing

    E-Print Network [OSTI]

    Jin, Xiao

    2013-11-21T23:59:59.000Z

    Previous matrix acidizing experimental research showed that there exists an optimum acid interstitial velocity (Vi-opt) that results in the minimum volume of acid used while providing the best stimulation results. There are already several...

  1. Acid Initiation of Ammonia-Borane Dehydrogenation for Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acid Initiation of Ammonia-Borane Dehydrogenation for Hydrogen Storage. Acid Initiation of Ammonia-Borane Dehydrogenation for Hydrogen Storage. Abstract: An abstract for this...

  2. Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Surface Acidic Sites in Mesoporous-Silica-Supported Tungsten Oxide Catalysts Using Solid State NMR and Quantum Characterizing Surface Acidic Sites in Mesoporous-Silica-Supported...

  3. Lewis Acid-Base Interactions between Polysulfides and Metal Organic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lewis Acid-Base Interactions between Polysulfides and Metal Organic Framework in Lithium Sulfur Batteries. Lewis Acid-Base Interactions between Polysulfides and Metal Organic...

  4. amino acid pattern: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acid Sequence Analysis Pradipta Maji and Sankar K. Pal, Fellow, IEEE Abstract--In most pattern recognition algorithms, amino acids feature space. It is designed using an amino...

  5. amino acid selective: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acid Sequence Analysis Pradipta Maji and Sankar K. Pal, Fellow, IEEE Abstract--In most pattern recognition algorithms, amino acids feature space. It is designed using an amino...

  6. amino acid selection: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acid Sequence Analysis Pradipta Maji and Sankar K. Pal, Fellow, IEEE Abstract--In most pattern recognition algorithms, amino acids feature space. It is designed using an amino...

  7. amino acid mutations: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acid Sequence Analysis Pradipta Maji and Sankar K. Pal, Fellow, IEEE Abstract--In most pattern recognition algorithms, amino acids feature space. It is designed using an amino...

  8. amino acid recognition: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Acid Sequence Analysis Pradipta Maji and Sankar K. Pal, Fellow, IEEE Abstract--In most pattern recognition algorithms, amino acids feature space. It is designed using an amino...

  9. amino acid insertion: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    their distribution in known structures with experimental data such as amino acid transfer free energy scales (water to membrane center and water Senes, Alessandro 2 Amino Acid...

  10. Selective Removal of Lanthanides from Natural Waters, Acidic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate. Selective Removal of Lanthanides from Natural Waters, Acidic Streams and Dialysate. Abstract: The...

  11. adenylic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preservation A Rauramaa A Tommila J Ltd, Espoo Reseach Centre, PO Box 44, 02271 Espoo, Finland Formic acid is known to improve silage hygienic quality. Formic acid based...

  12. acid rain program: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preservation A Rauramaa A Tommila J Ltd, Espoo Reseach Centre, PO Box 44, 02271 Espoo, Finland Formic acid is known to improve silage hygienic quality. Formic acid based...

  13. Formation of iron complexs from trifluoroacetic acid based liquid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of iron complexs from trifluoroacetic acid based liquid chromatography mobile phases as interference ions in liquid Formation of iron complexs from trifluoroacetic acid based...

  14. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with covalently-bound hexafluoroisopropanol groups. Hydrogen-bond acidic functionalized carbon nanotubes (CNTs) with...

  15. Membrane Stresses Induced by Overproduction of Free Fatty Acids...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli. Membrane Stresses Induced by Overproduction of Free Fatty Acids in Escherichia coli. Abstract:...

  16. Electrodeposition From Acidic Solutions of Nickel Bis(benzenedithiolat...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    From Acidic Solutions of Nickel Bis(benzenedithiolate) Produces a Hydrogen-Evolving Ni-S Film on Glassy Carbon Electrodeposition From Acidic Solutions of Nickel...

  17. acid bacteria inducing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: The Fate of Amino Acid in Soil Experiments: Bacteria, Roots and Fungi Melissa Campbell Clark of amino acid in soil using radioactive isotopes, however many experiments...

  18. acid bacteria enhance: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    de 4 The Fate of Amino Acid in Soil Experiments: Bacteria, Roots and Fungi Melissa Campbell Environmental Sciences and Ecology Websites Summary: The Fate of Amino Acid in...

  19. acid biosynthesis revealed: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: bioavailability of aluminum triggered by in- dustrialization and acid rain 20. The presence of organic acidsThe Metabolism of Aluminum Citrate and...

  20. acid biosynthesis inhibitors: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: bioavailability of aluminum triggered by in- dustrialization and acid rain 20. The presence of organic acidsThe Metabolism of Aluminum Citrate and...

  1. abscisic acid biosynthesis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: bioavailability of aluminum triggered by in- dustrialization and acid rain 20. The presence of organic acidsThe Metabolism of Aluminum Citrate and...

  2. aspartic acid racemization: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rate of racemization for amino acids preserved in planktonic foraminifera climate change. Keywords: amino acid racemization, Quaternary geochronology, Arctic Ocean, planktonic...

  3. acid neutralization capacity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: itself against acidification and is used to monitor the effect of acid rain on watersheds. From 1993MASTERS REPORT ANALYSIS AND MODELING OF ACID...

  4. acid neutralizing capacity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: itself against acidification and is used to monitor the effect of acid rain on watersheds. From 1993MASTERS REPORT ANALYSIS AND MODELING OF ACID...

  5. acid levels metabolic: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: bioavailability of aluminum triggered by in- dustrialization and acid rain 20. The presence of organic acidsThe Metabolism of Aluminum Citrate and...

  6. acid function biosynthesis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: bioavailability of aluminum triggered by in- dustrialization and acid rain 20. The presence of organic acidsThe Metabolism of Aluminum Citrate and...

  7. acid biosynthesis leads: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: bioavailability of aluminum triggered by in- dustrialization and acid rain 20. The presence of organic acidsThe Metabolism of Aluminum Citrate and...

  8. acid biosynthesis synthesis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: bioavailability of aluminum triggered by in- dustrialization and acid rain 20. The presence of organic acidsThe Metabolism of Aluminum Citrate and...

  9. acid biosynthesis genes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: bioavailability of aluminum triggered by in- dustrialization and acid rain 20. The presence of organic acidsThe Metabolism of Aluminum Citrate and...

  10. Effects of Fuel Dilution with Biodiesel on Lubricant Acidity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion Effects of Fuel Dilution with Biodiesel on Lubricant Acidity, Oxidation and Corrosion...

  11. Effects of Continuous Triiodothyronine Infusion on Citric Acid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Continuous Triiodothyronine Infusion on Citric Acid Cycle in the Normal Immature Swine Heart under Extracorporeal Effects of Continuous Triiodothyronine Infusion on Citric Acid...

  12. Studying Cellulose Fiber Structure by SEM, XRD, NMR and Acid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Studying Cellulose Fiber Structure by SEM, XRD, NMR and Acid Hydrolysis. Abstract: Cotton linters were partially hydrolyzed in dilute acid and the morphology of remaining...

  13. acid adenine dinucleotide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Theoretical Determination of One-Electron Oxidation Potentials for Nucleic Acid Bases Brian T potentials for N-methyl substituted nucleic acid bases guanine, adenine, cytosine,...

  14. acid increases expression: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that are especially sensitive to increasing nutrient Gotelli, Nicholas J. 378 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  15. acid isopropyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 192 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  16. acid vinyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 280 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  17. acid inhibits production: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences and Ecology Websites Summary: Animals excrete three main nitrogen products, ammonia, urea and uric acid (Fig. 1), as well as some and amino acids. The term ammonia...

  18. acid monoethyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 180 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  19. acid copolymeric hydrogels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 278 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  20. acid hydrolysis: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 213 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  1. acid synthase type: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 328 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  2. acid ester prodrugs: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 194 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  3. acid allyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 239 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  4. acid phenylethyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 180 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  5. acrylic acid esters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 242 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  6. acid dimethyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 227 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  7. acid decarboxylase expression: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the expressions. Anna Sthl; Petra Sundstrm; Kristina Hk 2005-01-01 180 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  8. acid phosphatase 5a: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 193 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  9. acid based hydrogels: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mix of multiple different monomers. These silicone are themselves a complex mix of water, boric acid, hyaluronic acid and other constituents including surfactants suitable surface...

  10. acid propyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 191 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  11. acid phenethyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    stable thermodynamically and hydration free energies obtained Yu, Fangqun 178 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  12. acid synthase activity: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    use Rippe, Karsten 53 Z .Comparative Biochemistry and Physiology Part B 128 2001 445 450 Purification and characterization of the fatty acid Chemistry Websites Summary: fatty acid...

  13. Systems Virology Identifies a Mitochondrial Fatty Acid Oxidation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fatty Acid Oxidation Enyzme, Dodecenoyl Coenzyme A Delta Isomerase, Required for Systems Virology Identifies a Mitochondrial Fatty Acid Oxidation Enyzme, Dodecenoyl Coenzyme...

  14. Lactic acid fermentation of crude sorghum extract

    SciTech Connect (OSTI)

    Samuel, W.A.; Lee, Y.Y.; Anthony, W.B.

    1980-04-01T23:59:59.000Z

    Crude extract from sweet sorghum supplemented with vetch juice was utilized as the carbohydrate source for fermentative production of lactic acid. Fermentation of media containing 7% (w/v) total sugar was completed in 60-80 hours by Lactobacillus plantarum, product yield averaging 85%. Maximum acid production rates were dependent on pH, initial substrate distribution, and concentration, the rates varying from 2 to 5 g/liter per hour. Under limited medium supplementation the lactic acid yield was lowered to 67%. The fermented ammoniated product contained over eight times as much equivalent crude protein (N x 6.25) as the original medium. Unstructured kinetic models were developed for cell growth, lactic acid formation, and substrate consumption in batch fermentation. With the provision of experimentally determined kinetic parameters, the proposed models accurately described the fermentation process. 15 references.

  15. A Direct, Biomass-Based Synthesis of Benzoic Acid: Formic Acid-Mediated Deoxygenation of the Glucose-Derived Materials Quinic Acid and Shikimic Acid

    E-Print Network [OSTI]

    2010-01-01T23:59:59.000Z

    R.G.B and J.A.E. ). Keywords: biomass · carboxylic acids ·10.1002/cssc.201000111 A Direct, Biomass-Based Synthesis ofaro- matic compounds from biomass resources could provide a

  16. Electrostatic control of acid mist emissions

    SciTech Connect (OSTI)

    Dahlin, R S [Southern Research Inst., Birmingham, AL (United States)] [Southern Research Inst., Birmingham, AL (United States); Brown, T D [USDOE Pittsburgh Energy Technology Center, PA (United States)] [USDOE Pittsburgh Energy Technology Center, PA (United States)

    1991-01-01T23:59:59.000Z

    This paper describes a two-phased study of the control of acid mist emissions using a compact, wet electrostatic precipitator (WESP). The goal of the study was to determine the degree of acid mist control that could be achieved when a compact WESP is used to replace or augment the mist eliminators in a flue gas desulfurization (FGD) system. Phase I of the study examined the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase II, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the model to project the performance of a retrofitted WESP.

  17. Phosphonic acid based ion exchange resins

    DOE Patents [OSTI]

    Horwitz, E.P.; Alexandratos, S.D.; Gatrone, R.C.; Chiarizia, R.

    1994-01-25T23:59:59.000Z

    An ion exchange resin is described for extracting metal ions from a liquid waste stream. An ion exchange resin is prepared by copolymerizing a vinylidene diphosphonic acid with styrene, acrylonitrile and divinylbenzene. 9 figures.

  18. 3D characterization of acidized fracture surfaces

    E-Print Network [OSTI]

    Malagon Nieto, Camilo

    2007-09-17T23:59:59.000Z

    generated by the profilometer identified hydrodynamic channels that could not be identified by the naked eye in acidized surfaces. The plots clarified the existence of rock heterogeneities and revealed how the processes of dissolution function in chalk rock...

  19. NH Acid Rain Control Act (New Hampshire)

    Broader source: Energy.gov [DOE]

    The Act is implemented under New Hampshire's acid deposition control program established under the Rules to Control Air Pollution in Chapter Env-A 400. The goal of the Act is to reduce emissions...

  20. Methods for analyzing nucleic acid sequences

    SciTech Connect (OSTI)

    Korlach, Jonas (Ithaca, NY); Webb, Watt W. (Ithaca, NY); Levene, Michael (Ithaca, NY); Turner, Stephen (Ithaca, NY); Craighead, Harold G. (Ithaca, NY); Foquet, Mathieu (Ithaca, NY)

    2011-05-17T23:59:59.000Z

    The present invention is directed to a method of sequencing a target nucleic acid. The method provides a complex comprising a polymerase enzyme, a target nucleic acid molecule, and a primer, wherein the complex is immobilized on a support Fluorescent label is attached to a terminal phosphate group of the nucleotide or nucleotide analog. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The time duration of the signal from labeled nucleotides or nucleotide analogs that become incorporated is distinguished from freely diffusing labels by a longer retention in the observation volume for the nucleotides or nucleotide analogs that become incorporated than for the freely diffusing labels.

  1. Long range transport of acid rain precursors

    E-Print Network [OSTI]

    Fay, James A.

    1983-01-01T23:59:59.000Z

    A model of the long range transport of primary and secondary pollutants derived by Fay and Rosenzweig (1) is applied to the problem of the transport of acid rain precursors. The model describes the long term average (annual ...

  2. Heterogeneous Reactions of Epoxides in Acidic Media

    E-Print Network [OSTI]

    Lal, Vinita

    2012-02-14T23:59:59.000Z

    Epoxides have been recently identified as one of the intermediate species in the gas phase oxidation of alkenes. This study investigates the reaction of isoprene oxide and alpha-pinene oxide with sulfuric acid to identify the potential of epoxides...

  3. Plant response to leonardite and humic acid

    E-Print Network [OSTI]

    Duval, John Robert

    1996-01-01T23:59:59.000Z

    Leonardite and humic acid have been reported to improve plant growth by many investigators in very controlled settings. The objectives of this study were twofold. First, to determine if the use of leonardite as a fertilizer supplement improved crop...

  4. NO reduction using sublimation of cyanuric acid

    DOE Patents [OSTI]

    Perry, R.A.

    1996-05-21T23:59:59.000Z

    A method of reducing the NO content of a gas stream comprises contacting the gas stream with an amount of HNCO at a temperature effective for heat-induced decomposition of cyanuric acid, said amount and temperature being effective for the resultant lowering of the NO content of the gas stream, said cyanuric acid being particulate and having a particle size of less than 90 {micro}m. 1 fig.

  5. Amplification of trace amounts of nucleic acids

    DOE Patents [OSTI]

    Church, George M. (Brookline, MA); Zhang, Kun (Brighton, MA)

    2008-06-17T23:59:59.000Z

    Methods of reducing background during amplification of small amounts of nucleic acids employ careful analysis of sources of low level contamination. Ultraviolet light can be used to reduce nucleic acid contaminants in reagents and equipment. "Primer-dimer" background can be reduced by judicious design of primers. We have shown clean signal-to-noise with as little as starting material as one single human cell (.about.6 picogram), E. coli cell (.about.5 femtogram) or Prochlorococcus cell (.about.3 femtogram).

  6. Relative reactivities of solid benzoic acids

    E-Print Network [OSTI]

    Warwas, Edwin James

    2012-06-07T23:59:59.000Z

    RELATIVE REACTIVITIES OF SOLID BENZOIC ACIDS A Thesis By EDWIN J, WARWAS Submitted to the Graduate College of the Texas A8rM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE January 1967' Major... Subject: Chemistry RELATIVE REACTIVITIES OF SOLID BENZOIC ACIDS A Thesis By EDWIN J. WARWAS Submitted to the Graduate College of the Texas ASSAM University in partial fulfillment of the requirements for the degree of MAST ER OF S CIENCE January...

  7. Primer on lead-acid storage batteries

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

  8. Elastic electron scattering from formic acid

    SciTech Connect (OSTI)

    Trevisan, Cynthia S.; Orel, Ann E.; Rescigno, Thomas N.

    2006-07-31T23:59:59.000Z

    Following our earlier study on the dynamics of low energy electron attachment to formic acid, we report the results of elastic low-energy electron collisions with formic acid. Momentum transfer and angular differential cross sections were obtained by performing fixed-nuclei calculations employing the complex Kohn variational method. We make a brief description of the technique used to account for the polar nature of this polyatomic target and compare our results with available experimental data.

  9. PREDICTING TEMPERATURE BEHAVIOR IN CARBONATE ACIDIZING TREATMENTS

    E-Print Network [OSTI]

    Tan, Xuehao

    2010-01-16T23:59:59.000Z

    PREDICTING TEMPERATURE BEHAVIOR IN CARBONATE ACIDIZING TREATMENTS A Thesis by XUEHAO TAN Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree... of MASTER OF SCIENCE May 2009 Major Subject: Petroleum Engineering PREDICTING TEMPERATURE BEHAVIOR IN CARBONATE ACIDIZING TREATMENTS A Thesis by XUEHAO TAN Submitted to the Office of Graduate Studies of Texas A&M University...

  10. Biologically produced acid precipitable polymeric lignin

    DOE Patents [OSTI]

    Crawford, Don L. (Moscow, ID); Pometto, III, Anthony L. (Moscow, ID)

    1984-01-01T23:59:59.000Z

    A water soluble, acid precipitable polymeric degraded lignin (APPL), having a molecular weight of at least 12,000 daltons, and comprising, by percentage of total weight, at least three times the number of phenolic hydroxyl groups and carboxylic acid groups present in native lignin. The APPL may be modified by chemical oxidation and reduction to increase its phenolic hydroxyl content and reduce the number of its antioxidant inhibitory side chains, thereby improving antioxidant properties.

  11. Electrostatic precipitation of condensed acid mist

    SciTech Connect (OSTI)

    Dahlin, R.S.

    1989-11-01T23:59:59.000Z

    Southern Research Institute is developing a compact, wet electrostatic precipitator (WESP) to control acid mist missions from high-sulfur coal combustion. The WESP is being developed as a retrofit technology for existing coal-fired power plants, particularly those equipped with wet flue gas desulfurization (FGD) scrubbers. Acid mist emissions can be a significant problem at these facilities because the sulfuric acid vapor in the flue gas is converted to a very fine mist that is not collected in the scrubber system. Conventional mist eliminators are not adequate in this application due to the very fine size of the mist droplets. The potential for corrosion also makes it difficult to use a fabric filter or a conventional, dry ESP in this application. Therefore, this research project has been structured around the development of a compact WESP that could be retrofit on top of an existing scrubber or within an existing flue gas duct. This paper describes the development and testing of a prototype WESP for the utility acid mist application. Testing was conducted with combustion of sulfur-doped gas to simulate the acid mist alone, and with a combination of coal and sulfur-doped gas to simulate the mixture of acid mist and fly ash downstream from a scrubber. The performance of the WESP test unit was modeled using two different cylindrical-geometry computer models: a current-seeking'' model and a current-specific'' model. 8 refs., 15 figs., 7 tabs.

  12. E-Print Network 3.0 - acids amino acids Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University Collection: Biology and Medicine 77 CHE 427627 THE ORGANIC CHEMISTRY OF BIOLOGICAL MOLECULES Summary: macromolecules: carbohydrates, amino acids, nucleic...

  13. E-Print Network 3.0 - acid amino acid Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    State University Collection: Biology and Medicine 77 CHE 427627 THE ORGANIC CHEMISTRY OF BIOLOGICAL MOLECULES Summary: macromolecules: carbohydrates, amino acids, nucleic...

  14. The inability of rats to synthesize linoleic acid from cis-2-octenoic acid

    E-Print Network [OSTI]

    Anderson, Robert Eugene

    2012-06-07T23:59:59.000Z

    THE INABILITY OF RATS TO SYNTHESI2E LINOLEIC ACID FROM CIS-2-OCTENOIC ACID A Thesis Robert Eugene Anderson Submitted to the Graduate College of the Texas A g: M University in partia1 fulfillment of the requirerents for the degree of MASTER... OF SCIENCE January 1965 Major Subjeot: Bioohemistry THE INABILITY OF RATS TQ SYNTHESIEE LINOLEIC ACID FROM CIS-2E)CTENOIC ACID A Thesis Robert, Eugene Anderson Approved as to style and content by: Chair n of Committee)~ (Head of Depart~ant, Member...

  15. Effects of Acid Additives on Spent Acid Flowback through Carbonate Cores

    E-Print Network [OSTI]

    Nasir, Ehsaan Ahmad

    2012-07-16T23:59:59.000Z

    Limestone and the non-emulsifying agent M-NEA the worst for Texas Cream Chalk for spent acid recovery after gas flowback....

  16. E-Print Network 3.0 - acid-amino acid conjugates Sample Search...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    amino acids is reported with the incorporation of one example into a ... Source: Beal, Peter A. - Department of Chemistry, University of Utah Collection: Chemistry 13 An...

  17. Electrostatic precipitation of condensed acid mist

    SciTech Connect (OSTI)

    Dahlin, R.S.

    1991-04-01T23:59:59.000Z

    This report deals with the second part (Phase 2) of a two-phased study of the control of acid mist emissions using a compact, wet electrostatic precipitator (WESP). The goal of the study was to determine the degree of acid mist control that could be achieved when a compact WESP was used to replace or augment the mist eliminators in a flue gas desulfurization (FGD) system. Phase 1 of the study examined the electrical operation of a lab-scale WESP collecting an acid mist from a coal combustion pilot plant equipped with a spray chamber. The results of this study were used to develop and validate a computer model of the WESP. In Phase 2, measurements were made at two utility scrubber installations to determine the loadings of acid mist, fly ash, and scrubber carryover. These measurements were used as input to the computer model to project the performance of retrofitted WESPs at both of the utility test sites. Phase 1 results showed that excellent electrical operating conditions could be achieved, but very high loadings of acid mist or the fine fly ash tended to degrade electrical operation because of space charge suppression of the corona current. Measurements made at the utility sites under Phase 2 showed that acid mist accounted for 40 to 57% of the total particulate mass, while fly ash and scrubber solids accounted for 40 to 55% and 1.0 to 3.4%. Impactor samples from both test sites showed an increase in acid content with decreasing particle size. 9 refs., 14 figs., 13 tabs.

  18. Energy densification of biomass-derived organic acids

    DOE Patents [OSTI]

    Wheeler, M. Clayton; van Walsum, G. Peter; Schwartz, Thomas J.; van Heiningen, Adriaan

    2013-01-29T23:59:59.000Z

    A process for upgrading an organic acid includes neutralizing the organic acid to form a salt and thermally decomposing the resulting salt to form an energy densified product. In certain embodiments, the organic acid is levulinic acid. The process may further include upgrading the energy densified product by conversion to alcohol and subsequent dehydration.

  19. Correlation between Fibroin Amino Acid Sequence and Physical Silk Properties*

    E-Print Network [OSTI]

    Â?urovec, Michal

    moth (Ephe- stia kuehniella), and Indian meal moth (Plodia inter- punctella). The amino acid repeats

  20. Transcription factor-based biosensors for detecting dicarboxylic acids

    DOE Patents [OSTI]

    Dietrich, Jeffrey; Keasling, Jay

    2014-02-18T23:59:59.000Z

    The invention provides methods and compositions for detecting dicarboxylic acids using a transcription factor biosensor.

  1. Sulfuric acid deposition from stratospheric geoengineering with sulfate aerosols

    E-Print Network [OSTI]

    Robock, Alan

    aerosols can potentially result in an increase in acid deposition. [4] Acid rain has been studiedSulfuric acid deposition from stratospheric geoengineering with sulfate aerosols Ben Kravitz,1 Alan limit of hydration of all sulfate aerosols into sulfuric acid. For annual injection of 5 Tg of SO2

  2. System for agitating the acid in a lead-acid battery

    DOE Patents [OSTI]

    Weintraub, Alvin (Schenectady, NY); MacCormack, Robert S. (Glenville, NY)

    1987-01-01T23:59:59.000Z

    A system and method for agitating the acid in a large lead-sulfuric acid storage battery of the calcium type. An air-lift is utilized to provide the agitation. The air fed to the air-lift is humidified prior to being delivered to the air-lift.

  3. Evaluation of acid fracturing based on the "acid fracture number" concept

    E-Print Network [OSTI]

    Alghamdi, Abdulwahab

    2006-08-16T23:59:59.000Z

    Acid fracturing is one of the preferred methods to stimulate wells in carbonate reservoirs. It consists of injecting an acid solution at high enough pressure to break down the formation and to propagate a two-wing crack away from the wellbore...

  4. Sulfuric acid-sulfur heat storage cycle

    DOE Patents [OSTI]

    Norman, John H. (LaJolla, CA)

    1983-12-20T23:59:59.000Z

    A method of storing heat is provided utilizing a chemical cycle which interconverts sulfuric acid and sulfur. The method can be used to levelize the energy obtained from intermittent heat sources, such as solar collectors. Dilute sulfuric acid is concentrated by evaporation of water, and the concentrated sulfuric acid is boiled and decomposed using intense heat from the heat source, forming sulfur dioxide and oxygen. The sulfur dioxide is reacted with water in a disproportionation reaction yielding dilute sulfuric acid, which is recycled, and elemental sulfur. The sulfur has substantial potential chemical energy and represents the storage of a significant portion of the energy obtained from the heat source. The sulfur is burned whenever required to release the stored energy. A particularly advantageous use of the heat storage method is in conjunction with a solar-powered facility which uses the Bunsen reaction in a water-splitting process. The energy storage method is used to levelize the availability of solar energy while some of the sulfur dioxide produced in the heat storage reactions is converted to sulfuric acid in the Bunsen reaction.

  5. Asthmatic responses to airborne acid aerosols

    SciTech Connect (OSTI)

    Ostro, B.D.; Lipsett, M.J.; Wiener, M.B.; Selner, J.C. (California Department of Health Services, Berkeley (USA))

    1991-06-01T23:59:59.000Z

    Controlled exposure studies suggest that asthmatics may be more sensitive to the respiratory effects of acidic aerosols than individuals without asthma. This study investigates whether acidic aerosols and other air pollutants are associated with respiratory symptoms in free-living asthmatics. Daily concentrations of hydrogen ion (H+), nitric acid, fine particulates, sulfates and nitrates were obtained during an intensive air monitoring effort in Denver, Colorado, in the winter of 1987-88. A panel of 207 asthmatics recorded respiratory symptoms, frequency of medication use, and related information in daily diaries. We used a multiple regression time-series model to analyze which air pollutants, if any, were associated with health outcomes reported by study participants. Airborne H+ was found to be significantly associated with several indicators of asthma status, including moderate or severe cough and shortness of breath. Cough was also associated with fine particulates, and shortness of breath with sulfates. Incorporating the participants' time spent outside and exercise intensity into the daily measure of exposure strengthened the association between these pollutants and asthmatic symptoms. Nitric acid and nitrates were not significantly associated with any respiratory symptom analyzed. In this population of asthmatics, several outdoor air pollutants, particularly airborne acidity, were associated with daily respiratory symptoms.

  6. E-Print Network 3.0 - acid analysis including Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    predict the relative acid strength of a set... section. Findings Our analysis led to the identification of four distinct mental models of acid and acid... models of acid and acid...

  7. Water and UV degradable lactic acid polymers

    DOE Patents [OSTI]

    Bonsignore, P.V.; Coleman, R.D.

    1994-11-01T23:59:59.000Z

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer were selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide where the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures to an agricultural site is also disclosed.

  8. Water and UV degradable lactic acid polymers

    DOE Patents [OSTI]

    Bonsignore, Patrick V. (Joliet, IL); Coleman, Robert D. (Wheaton, IL)

    1994-01-01T23:59:59.000Z

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene and polyethylene glycols, propylene and polypropylene glycols, P-dioxanone, 1,5 dioxepan-2-one, 1,4 -oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2% by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  9. Water and UV degradable lactic acid polymers

    DOE Patents [OSTI]

    Bonsignore, P.V.; Coleman, R.D.

    1996-10-08T23:59:59.000Z

    A water and UV light degradable copolymer is described made from monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  10. Water and UV degradable lactic acid polymers

    DOE Patents [OSTI]

    Bonsignore, Patrick V. (Joliet, IL); Coleman, Robert D. (Wheaton, IL)

    1996-01-01T23:59:59.000Z

    A water and UV light degradable copolymer of monomers of lactic acid and a modifying monomer selected from the class consisting of ethylene glycol, propylene glycol, P-dioxanone, 1,5 dioxepan-2-one, 1,4-oxathialan-2-one, 1,4-dioxide and mixtures thereof. These copolymers are useful for waste disposal and agricultural purposes. Also disclosed is a water degradable blend of polylactic acid or modified polylactic acid and high molecular weight polyethylene oxide wherein the high molecular weight polyethylene oxide is present in the range of from about 2 by weight to about 50% by weight, suitable for films. A method of applying an active material selected from the class of seeds, seedlings, pesticides, herbicides, fertilizers and mixtures thereof to an agricultural site is also disclosed.

  11. IMPROVED PROCESSES TO REMOVE NAPHTHENIC ACIDS

    SciTech Connect (OSTI)

    Aihua Zhang; Qisheng Ma; William A. Goddard; Yongchun Tang

    2004-04-28T23:59:59.000Z

    In the first year of this project, we have established our experimental and theoretical methodologies for studies of the catalytic decarboxylation process. We have developed both glass and stainless steel micro batch type reactors for the fast screening of various catalysts with reaction substrates of model carboxylic acid compounds and crude oil samples. We also developed novel product analysis methods such as GC analyses for organic acids and gaseous products; and TAN measurements for crude oil. Our research revealed the effectiveness of several solid catalysts such as NA-Cat-1 and NA-Cat-2 for the catalytic decarboxylation of model compounds; and NA-Cat-5{approx}NA-Cat-9 for the acid removal from crude oil. Our theoretical calculations propose a three-step concerted oxidative decarboxylation mechanism for the NA-Cat-1 catalyst.

  12. Photoenhanced anaerobic digestion of organic acids

    DOE Patents [OSTI]

    Weaver, Paul F. (Golden, CO)

    1990-01-01T23:59:59.000Z

    A process is described for rapid conversion of organic acids and alcohols anaerobic digesters into hydrogen and carbon dioxide, the optimal precursor substrates for production of methane. The process includes addition of photosynthetic bacteria to the digester and exposure of the bacteria to radiant energy (e.g., solar energy). The process also increases the pH stability of the digester to prevent failure of the digester. Preferred substrates for photosynthetic bacteria are the organic acid and alcohol waste products of fermentative bacteria. In mixed culture with methanogenic bacteria or in defined co-culture with non-aceticlastic methanogenic bacteria, photosynthetic bacteria are capable of facilitating the conversion or organic acids and alcohols into methane with low levels of light energy input.

  13. Formic acid fuel cells and catalysts

    DOE Patents [OSTI]

    Masel, Richard I.; Larsen, Robert; Ha, Su Yun

    2010-06-22T23:59:59.000Z

    An exemplary fuel cell of the invention includes a formic acid fuel solution in communication with an anode (12, 134), an oxidizer in communication with a cathode (16, 135) electrically linked to the anode, and an anode catalyst that includes Pd. An exemplary formic acid fuel cell membrane electrode assembly (130) includes a proton-conducting membrane (131) having opposing first (132) and second surfaces (133), a cathode catalyst on the second membrane surface, and an anode catalyst including Pd on the first surface.

  14. Acid mine water aeration and treatment system

    DOE Patents [OSTI]

    Ackman, Terry E. (Finleyville, PA); Place, John M. (Bethel Park, PA)

    1987-01-01T23:59:59.000Z

    An in-line system is provided for treating acid mine drainage which basically comprises the combination of a jet pump (or pumps) and a static mixer. The jet pump entrains air into the acid waste water using a Venturi effect so as to provide aeration of the waste water while further aeration is provided by the helical vanes of the static mixer. A neutralizing agent is injected into the suction chamber of the jet pump and the static mixer is formed by plural sections offset by 90 degrees.

  15. Effect of Conjugated Linoleic Acid or Oleic Acid Addition on Fatty Acid Composition Profiles of Poultry Meat

    E-Print Network [OSTI]

    Shin, Dae Keun

    2011-08-08T23:59:59.000Z

    on the omega-6 fatty acid accumulation in broiler chicken breast and thigh meat. Eight broilers from each treatment were processed at 4 and 6 weeks of age, respectively. Regarding the diets containing five different fat sources, broiler chickens fed CLA...

  16. A method to attenuate U(VI) mobility in acidic waste plumes using humic acids

    SciTech Connect (OSTI)

    Wan, J.; Dong, W.; Tokunaga, T.K.

    2011-02-01T23:59:59.000Z

    Acidic uranium (U) contaminated plumes have resulted from acid-extraction of plutonium during the Cold War and from U mining and milling operations. A sustainable method for in-situ immobilization of U under acidic conditions is not yet available. Here, we propose to use humic acids (HAs) for in-situ U immobilization in acidic waste plumes. Our laboratory batch experiments show that HA can adsorb onto aquifer sediments rapidly, strongly and practically irreversibly. Adding HA greatly enhanced U adsorption capacity to sediments at pH below 5.0. Our column experiments using historically contaminated sediments from the Savannah River Site under slow flow rates (120 and 12 m/y) show that desorption of U and HA were non-detectable over 100 pore-volumes of leaching with simulated acidic groundwaters. Upon HA-treatment, 99% of the contaminant [U] was immobilized at pH < 4.5, compared to 5% and 58% immobilized in the control columns at pH 3.5 and 4.5, respectively. These results demonstrated that HA-treatment is a promising in-situ remediation method for acidic U waste plumes. As a remediation reagent, HAs are resistant to biodegradation, cost effective, nontoxic, and easily introducible to the subsurface.

  17. Development of a polylactic acid (PLA) polymer with an acid-sensitive N-ethoxybenzylimidazole (NEBI) crosslinker as a drug delivery system

    E-Print Network [OSTI]

    Hang, Leibniz Fangtinq

    2012-01-01T23:59:59.000Z

    of a Polylactic Acid (PLA) Polymer with an Acid-Sensitive N-of Poly-lactic Acid (PLA) and N- ethoxybenzylimidazoles (2 Poly-lactic Acid (PLA) and Functionalized Derivatives of

  18. Myristic acid participation in cholesterol metabolism

    E-Print Network [OSTI]

    Sidelman, Zvi

    1967-01-01T23:59:59.000Z

    . 5 3170 7217 10382 , 43 1. 4 1456 4147 5603 . 35 1360 1914 3274 . 70 868 790 1658 1. 0 2103 3060 5163 . 68 1137 4045 5182 . 28 29 Table D. Liver cholesterol radioactivity as effected by the addition of myristic and linoleic acids to a 2g...

  19. Corrosion free phosphoric acid fuel cell

    DOE Patents [OSTI]

    Wright, Maynard K. (Bethel Park, PA)

    1990-01-01T23:59:59.000Z

    A phosphoric acid fuel cell with an electrolyte fuel system which supplies electrolyte via a wick disposed adjacent a cathode to an absorbent matrix which transports the electrolyte to portions of the cathode and an anode which overlaps the cathode on all sides to prevent corrosion within the cell.

  20. Heterogeneous organic acid uptake on soot surfaces

    E-Print Network [OSTI]

    Levitt, Nicholas Paul

    2009-05-15T23:59:59.000Z

    observed the interaction between a number of carboxylic acids and soot from different fuel sources and formation mechanisms. A low pressure fast flow reactor was used to control the contact between the solid phase soot and gas phase organics, while chemical...

  1. The thermodynamic properties of some aminophosphonic acids

    E-Print Network [OSTI]

    Austin, James Richard

    1967-01-01T23:59:59.000Z

    constant differ by at least three pK units. 1 1. Samuel Glasstone, An Introduction to Electrochemistry, D. Van Nostrand Co. , Inc. , New York, Chapter 9, $25, (1954-). Each amino acid investigated satisfied the afore- said condition in that there were...

  2. Improved Processes to Remove Naphthenic Acids

    SciTech Connect (OSTI)

    Aihua Zhang; Qisheng Ma; Kangshi Wang; Yongchun Tang; William A. Goddard

    2005-12-09T23:59:59.000Z

    In the past three years, we followed the work plan as we suggested in the proposal and made every efforts to fulfill the project objectives. Based on our large amount of creative and productive work, including both of experimental and theoretic aspects, we received important technical breakthrough on naphthenic acid removal process and obtained deep insight on catalytic decarboxylation chemistry. In detail, we established an integrated methodology to serve for all of the experimental and theoretical work. Our experimental investigation results in discovery of four type effective catalysts to the reaction of decarboxylation of model carboxylic acid compounds. The adsorption experiment revealed the effectiveness of several solid materials to naphthenic acid adsorption and acidity reduction of crude oil, which can be either natural minerals or synthesized materials. The test with crude oil also received promising results, which can be potentially developed into a practical process for oil industry. The theoretical work predicted several possible catalytic decarboxylation mechanisms that would govern the decarboxylation pathways depending on the type of catalysts being used. The calculation for reaction activation energy was in good agreement with our experimental measurements.

  3. Preparation of Some Substituted Terephthalic Acids

    E-Print Network [OSTI]

    Benin, Vladimir

    , with the dilithiation of 2,5-dibromotoluene with t-BuLi at ­78 8C, followed by reaction with dry ice and subsequent acid (3) is esterified,[9] then side-chain brominated with NBS, to produce dimethyl 2

  4. Producing a trimethylpentanoic acid using hybrid polyketide synthases

    DOE Patents [OSTI]

    Katz, Leonard; Fortman, Jeffrey L; Keasling, Jay D

    2014-10-07T23:59:59.000Z

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing trimethylpentanoic acid. The present invention also provides for a host cell comprising the PKS and when cultured produces the trimethylpentanoic acid. The present invention also provides for a method of producing the trimethylpentanoic acid, comprising: providing a host cell of the present invention, and culturing said host cell in a suitable culture medium such that the trimethylpentanoic acid is produced, optionally isolating the trimethylpentanoic acid, and optionally, reducing the isolated trimethylpentanoic acid into a trimethylpentanol or an iso-octane.

  5. Effect of fulvic acid on the kinetics of aluminum fluoride complexation in acidic waters

    SciTech Connect (OSTI)

    Plankey, B.J.; Patterson, H.H.

    1988-12-01T23:59:59.000Z

    Both fluoride ion and fulvic acid are important aluminum binding ligands present in soil and surface waters. As such they play a role in the speciation and toxicity of natural waters that have increased aluminum concentration due to acid precipitation. We report here a kinetic study of aluminum complexation in the presence of both of these naturally occurring ligands. An overall mechanism has been identified and rate constants have been obtained for several of the reactions involved. We find that an a priori model of the two ligands in competition for aluminum is incorrect. In fact, the rate of fluoride ion consumption is increased by the presence of fulvic acid. Evidence is presented that this effect is due to several equilibria, some of which involve mixed-ligand species. The important equilibria in this three-component system are identified and discussed, as are aluminum speciation and toxicity in acidic waters.

  6. Investigating the Effect of Oil Saturation on Acid Propagation during Matrix Acidization of Carbonate Rocks

    E-Print Network [OSTI]

    Kumar, Rahul Pradeep

    2014-01-02T23:59:59.000Z

    The existence of an optimum injection rate for wormhole propagation, and face dissolution at low injection rates during matrix acidizing are well established. However, little has been documented that describes how the presence of residual oil...

  7. Modeling Acid Transport and Non-Uniform Etching in a Stochastic Domain in Acid Fracturing

    E-Print Network [OSTI]

    Mou, Jianye

    2010-10-12T23:59:59.000Z

    Success of acid fracturing depends on uneven etching along the fracture surfaces caused by heterogeneities such as variations in local mineralogy and variations in leakoff behavior. The heterogeneities tend to create channeling characteristics...

  8. Acidizing Dolomite Reservoirs Using HCL Acid Prepared with Seawater: Problems and Solutions

    E-Print Network [OSTI]

    Arensman, Dennis G

    2014-04-28T23:59:59.000Z

    with seawater and no scale inhibitors. Scale inhibitors were also tested for effectiveness in reducing calcium sulfate scale during acidizing. Static jar tests of three phosphonate-based, two sulphonated polymer-based, and one polyacrylic-based scale...

  9. A study of the distribution of fatty acids in the system: cottonseed oil-oleic acid-isopropanol-water

    E-Print Network [OSTI]

    Lamb, Frank E

    1948-01-01T23:59:59.000Z

    STUDY OF THE DISTHIBUTION OF FATTY ACIDS IN THE SYSTEM: COTTONSEED OIL - OLEIC ACID - ISOFHOPANOL - WATER A Thesis By Frank E. Lamb January 1948 A STUDY QF TNE DISTRIBUTION OF FATTY ACIDS IN TRE SYSTEM: COTTONSEED OII, - OIEIC ACID - ISOPROPANOL...A STDDY OF THI' DISTBIRliTION OF FATTY ACIDS IN THE SYSTEM: COTTONSFED OIL - OLEIC ACID - ISOPBOPANOL - YlATEB A Thesis Frank E. Lomb January 1948 Approval as to style and content recommended: Head ' t Te epartm nt of hem cal Engineer ng A...

  10. Evaluation of Basic Parameters for Packaging, Storage and Transportation of Biomass Material from Field to Biorefinery

    E-Print Network [OSTI]

    Paliwal, Richa

    2012-02-14T23:59:59.000Z

    for biofuels primarily because it is a renewable _________________ This thesis follows the style of Biomass and Bioenergy. 2 and sustainable resource. Secondly, it has a low sulfur content and a positive impact on the environment[1]. Biomass energy...

  11. Optimization of Supply Chain Management and Facility Location Selection for a Biorefinery

    E-Print Network [OSTI]

    Bowling, Ian Michael

    2012-02-14T23:59:59.000Z

    . al. (2004) systematically investigated several bioenergy processing alternatives to quantify the specific cost of CO2 emissions 19 reduction of each method. The method attempts to discover which method brings about the greatest CO2 reduction...

  12. "Solvent Usage in Biorefineries Biphasic Dehydration of Xylose to Furfural" Maheen Khan

    E-Print Network [OSTI]

    Mountziaris, T. J.

    to biofuels (specifically jet fuel). One of the steps involves converting xylose (a sugar derived from wood. Furfural is a platform molecule for conversion to biofuels. The furfural is extracted into the organic

  13. A Process Integration Approach to the Strategic Design and Scheduling of Biorefineries

    E-Print Network [OSTI]

    Elms, Rene ?Davina

    2011-02-22T23:59:59.000Z

    ) Analogous to the refining of oil into its constituent components, biomass feedstocks are refined into what are referred to as building block components for direct use or conversion into subsequent products. (Kamm & Kamm, 2004, Kamm et al., 2006) Biomass... feedstocks include trees, grasses, agricultural crops, agricultural residues, animal wastes, and municipal solid waste. The building blocks components of these feedstocks are carbohydrates, lignin, proteins, fats, and in smaller quantities, special...

  14. Bioconversion and Biorefineries of the Future Linda L. Lasure, Pacific Northwest National Laboratory

    E-Print Network [OSTI]

    residues, waste wood and forest trimmings and dedicated energy crops such as switchgrass (Panicum virgatum Laboratory Min Zhang, National Renewable Energy Laboratory Contents I. Introduction a. Sources and nature-scale impacts on energy and GHG mitigation a. Example I: Ethanol from corn stover in the USA i. Energy from corn

  15. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01T23:59:59.000Z

    A Genome May Reduce Your Carbon Footprint. The Plant Genome,reduce the lifecycle carbon footprint of biofuels. Hence, in

  16. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01T23:59:59.000Z

    Criteria for Sustainable Biofuel Production, Version 2.0.sustainability concepts in biofuel supply chain management:of switchgrass-for-biofuel systems. Biomass & Bioenergy,

  17. R&D Needs for Integrated Biorefineries: The 30x30 Vision (Presentation)

    SciTech Connect (OSTI)

    Dayton, D. C.

    2007-03-27T23:59:59.000Z

    Presentation on progress and possible scenarios towards meeting the 30x30 initiative proposed by President Bush

  18. Drought-tolerant Biofuel Crops could be a Critical Hedge for Biorefineries

    E-Print Network [OSTI]

    Morrow, III, William R.

    2013-01-01T23:59:59.000Z

    impact study of the EU Biofuels Mandate. 2010: p. 1-125.Indirect Emissions from Biofuels: How Important? Science,of U.S. Croplands for Biofuels Increases Greenhouse Gases

  19. DOE Selects 3 Small-Scale Biorefinery Projects for up to $86...

    Office of Environmental Management (EM)

    VA. "These projects will help pioneer the next generation of non-food based biofuels that will power our cars and trucks and help meet President Bush's goal to stop...

  20. DOE Selects 3 Small-Scale Biorefinery Projects for up to $86 Million of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofThe U.S. Department of Energy

  1. DOE to Provide up to $40 Million in Funding for Small-Scale Biorefinery

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomentheATLANTA, GA - U.S. Department ofTheEnergy StrengthensDevelopmentProjects in

  2. Integrated Biorefinery Research Facility (IBRF I-II) (Post CD-4), EERE, Aug

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelinesProvedDecemberInitiatives Initiatives Through a variety ofthe Supportingand2011 |

  3. Follow-up Audit of the Department of Energy's Financial Assistance for Integrated Biorefinery Projects

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf Flash2006-14.pdfattachment.pdf6.pdf5.pdfFluorescent LightingFormerDate:

  4. DOE Announces up to $200 Million in Funding for Biorefineries | Department

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems EngineeringDepartmentSmartDepartment of Energy 2010 Federal Energyof Energy

  5. Conceptual Design of Biorefineries Through the Synthesis of Optimal Chemical-reaction Pathways

    E-Print Network [OSTI]

    Pennaz, Eric James

    2011-10-21T23:59:59.000Z

    . If no data is available, the constraint must be either approximated or ignored. Toxicity is also included as the safety factor for each compound: -log(LC50s), #1; s #2; S (22.../mol) (25c) The operating temperature is again restricted: 300 ? Toper s ? 1000, #1; s #2; S (25d) Toxicity is also again included as the safety factor for each pathway: -log...

  6. EA-1628: Construction and Operation of a Proposed Lignocellulosic Biorefinery, Emmetsburg, Iowa

    Broader source: Energy.gov [DOE]

    This EA evaluated the potential environmental impacts of a DOE proposal to provide financial assistance (the Proposed Action) to POET Project LIBERTY, LLC (POET) for the construction and operation...

  7. U.S. Department of Energy Small-Scale Biorefineries: Project Overview

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment ofEnergy.pdfApplications: Heating CoolingJanuarySmall-Scale

  8. FOA for the Demonstration of an Integrated Biorefinery System: Blue Fire

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department ofof Energy Offers TrainingFax Name Number NumberFOAEthanol,

  9. FOA for the Demonstration of an Integrated Biorefinery System: POET Project

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department ofof Energy Offers TrainingFax Name Number

  10. FOA for the Demonstration of an Integrated Biorefinery System: Range Fuels,

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector General Office of Audit|Department ofof Energy Offers TrainingFax Name NumberInc. | Department

  11. DOE-DOD-USDA Joint Initiative to use DPA to support US Biorefineries

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96 4.87CBECS Public Use Data0 0 0 0 0RailUpdated(SHOPP)F|

  12. U.S. Department of Energy Selects First Round of Small-Scale Biorefinery

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeed Families"ofTravisD.ofProjects

  13. U.S. Department of Energy Small-Scale Biorefineries: Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment of EnergyTheDepartmentFeedContractor | Department ofDepartment

  14. Integrated Biorefinery for conversion of Biomass to Ethanol, Synthesis Gas, and Heat

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensionalthe U.S.Indianaof Energy2-02DepartmentCONFERENCEOffice(BETO)

  15. Biomass Program Perspectives on Anaerobic Digestion and Fuel Cell Integration at Biorefineries

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up fromDepartmentTie Ltd: ScopeDepartment1, 2011 (BETO)and Fuel09Biomass Program

  16. U.S. Department of Energy Small-Scale Biorefineries Project Overview |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energy Usage »of EnergyTheTwo New Energy AmericanOffice ofThe activitiesworkDepartment

  17. Waste-based Biorefineries A talk by Dr. C. M. van Loosdrecht

    E-Print Network [OSTI]

    Jacobs, Laurence J.

    material in the form of energy (biogas). This is however a low value and non-desired option. Minimizing diversity of chemicals in waste urges to develop processes which convert these chemicals into basic building conversion process, producing preferably an insoluble compound. These processes will have to be designed

  18. High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell (Phosphoric Acid) Manufacturing R&D High Temperature Fuel Cell (Phosphoric Acid) Manufacturing R&D Presented at the NREL Hydrogen and Fuel Cell Manufacturing R&D Workshop...

  19. acid methyl esters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 (> 170 o C). Each fraction was analyzed composition of fatty acid ethyl esters using gas chromatography (GC). The result showed that the yield medium chain fatty acid ethyl...

  20. acidic antigenic fractions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 (> 170 o C). Each fraction was analyzed composition of fatty acid ethyl esters using gas chromatography (GC). The result showed that the yield medium chain fatty acid ethyl...

  1. acid methyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 (> 170 o C). Each fraction was analyzed composition of fatty acid ethyl esters using gas chromatography (GC). The result showed that the yield medium chain fatty acid ethyl...

  2. An antibacterial hydroxy fusidic acid analogue from Acremonium crotocinigenum

    E-Print Network [OSTI]

    Griffith, Gareth

    against a panel of multidrug-resistant (MDR) and methicillin-resistant Staphylococcus aureus (MRSA reserved. Keywords: Acremonium crotocinigenum; Fusidane triterpene; Fusidic acid; Antibacterial; MRSA; MDR, fusidic acid, a widely used therapeutic for methicillin-resistant Staphylococcus aureus (MRSA) infections

  3. TRL Acid and Solvent Wet Processing Rules and Guidelines

    E-Print Network [OSTI]

    Reif, Rafael

    : General rules and guidelines for wet chemical processing in TRL. Author: KFlo hood and when transporting or handling chemicals. An acid-proof apron, sleeveTRL Acid and Solvent Wet Processing Rules and Guidelines Purpose

  4. Nucleic acid based fluorescent sensor for copper detection

    DOE Patents [OSTI]

    Lu, Yi; Liu, Juewen

    2013-04-02T23:59:59.000Z

    A nucleic acid enzyme responsive to copper, comprising an oligonucleotide comprising a nucleotide sequence of SEQ ID NO:1, wherein the nucleic acid enzyme is not self-cleaving.

  5. Study of Acid Response of Qatar Carbonate Rocks

    E-Print Network [OSTI]

    Wang, Zhaohong

    2012-02-14T23:59:59.000Z

    reservoirs. Recently papers published from industry discussed the techniques, planning, and optimization of acid stimulation for Qatar carbonate. To the best of author’s knowledge, no study has focused on the acid reaction to Qatar carbonates. The lack...

  6. Development and testing of an advanced acid fracture conductivity apparatus

    E-Print Network [OSTI]

    Zou, ChunLei

    2006-08-16T23:59:59.000Z

    wells. Acid fracturing is a standard practice to increase the production rate and to improve ultimate recovery in carbonate reservoirs. There have been successful cases in most carbonate reservoirs around the world. However acid fracture performance...

  7. acid binding proteins: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The adipocyte fatty acid-binding protein aP2 regulates systemic glucose (more) Shum, Bennett Oh Vic 2007-01-01 2 Fatty acid-binding protein in bovine skeletal muscle Texas A&M...

  8. acid dopac binds: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The adipocyte fatty acid-binding protein aP2 regulates systemic glucose (more) Shum, Bennett Oh Vic 2007-01-01 2 Fatty acid-binding protein in bovine skeletal muscle Texas A&M...

  9. Determination of Total Lipids as Fatty Acid Methyl Esters (FAME...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will be replaced by an ester bond between the fatty acid and a methyl group, producing methyl esters of the fatty acids (FAME) and free glycerol. 1.4 The FAME are then...

  10. Lubrication from mixture of boric acid with oils and greases

    DOE Patents [OSTI]

    Erdemir, A.

    1995-07-11T23:59:59.000Z

    Lubricating compositions are disclosed including crystalline boric acid and a base lubricant selected from oils, greases and the like. The lubricity of conventional oils and greases can also be improved by adding concentrates of boric acid.

  11. acid mononucleotide adenylyltransferase: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 14 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  12. aminoadipic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 7 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  13. aminocaproic acid eaca: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 7 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  14. acid hydrazone dpktch: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 11 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  15. aminolevulinic acid dehydratase: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 18 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  16. aminobutyric acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 36 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  17. acid controls expression: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  18. aminolevulinic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 12 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  19. acid riboside salvage: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 30 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  20. anf 4-hydroxyhomocitric acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 15 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  1. acid dioxygenase hpd: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 37 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  2. acid ascorbyl palmitate: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 27 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  3. acid dehydratase alad: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 15 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  4. acetoacetic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 8 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  5. acid lna taqman: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 46 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  6. amygdalic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 8 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  7. acid phosphoribosyltransferase 1-deficient: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 19 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  8. adipic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 11 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  9. acid dmsa renography: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 8 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  10. anthranilic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 10 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  11. aminocaproic acids: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 7 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  12. acid glycosaminoglycan mucopolysaccharide: Topics by E-print...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 34 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  13. acidic oligosaccharides paos: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 40 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  14. aminobutyric acids: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 36 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  15. asparaginic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 17 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  16. arsonic acids: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 10 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  17. anthraquinonic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 12 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  18. aristolochic acid nephropathy: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 28 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  19. acetylsalicylic acid: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 11 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  20. acid decarboxylase hgad65: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    by USDA and U of I researchers Illinois at Urbana-Champaign, University of 32 Controlling acid rain MIT - DSpace Summary: High concentrations of sulfuric and nitric acid in raTn fn...

  1. acid catabolism evidence: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Index 21 Allowance trading activity and state regulatory rulings : evidence from the U.S. Acid Rain Program MIT - DSpace Summary: The U.S. Acid Rain Program is one of the first,...

  2. The Effect of Heterogeneity on Matrix Acidizing of Carbonate Rocks

    E-Print Network [OSTI]

    Keys, Ryan S.

    2010-07-14T23:59:59.000Z

    In matrix acidizing, the goal is to dissolve minerals in the rock to increase well productivity. This is accomplished by injecting an application-specific solution of acid into the formation at a pressure between the pore pressure and fracture...

  3. Choline for neutralizing naphthenic acid in fuel and lubricating oils

    SciTech Connect (OSTI)

    Ries, D.G.; Roof, G.L.

    1986-07-15T23:59:59.000Z

    A method is described of neutralizing at least a portion of the naphthenic acids present in fuel and lubricating oils which contain naphthenic acids which comprises treating these oils with a neutralizing amount of choline.

  4. acid ethyl esters: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 241 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  5. acid ethyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 241 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  6. ascorbic acid treatment: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Both the free F. Dickens; H. E. H. Jonest; H. B. Waynforth 1968-01-01 173 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  7. acid hydrolysis monosaccharide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 221 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  8. acid increases iodide: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on this diet when compared to the fat... Kelly, Peter B. 2013-10-04 183 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  9. acidic sulfate solutions: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (3-5). Despite the clear importance of the ion atmosphere Das, Rhiju 80 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  10. acids increase haptoglobin: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on this diet when compared to the fat... Kelly, Peter B. 2013-10-04 153 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  11. arachidonic acid increases: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on this diet when compared to the fat... Kelly, Peter B. 2013-10-04 209 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  12. acetic acid increases: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on this diet when compared to the fat... Kelly, Peter B. 2013-10-04 296 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  13. acid dehydrogenase complexes: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ternary terbium p-aminobenzoic acid complexes Gao, Song 23 The distribution of boron and boric acid complexes in the sea Texas A&M University - TxSpace Summary: LIBRARY A a m...

  14. acid dehydrogenase complex: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ternary terbium p-aminobenzoic acid complexes Gao, Song 23 The distribution of boron and boric acid complexes in the sea Texas A&M University - TxSpace Summary: LIBRARY A a m...

  15. acid dibutyl ester: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 181 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  16. acid synthase expression: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 321 ANTIBODY PURIFICATION USING CAPRYLIC ACID In mildly acidic conditions, the addition of short-chain...

  17. Method for removing fluoride contamination from nitric acid

    SciTech Connect (OSTI)

    Howerton, W.B.; Pruett, D.J.

    1982-07-13T23:59:59.000Z

    Fluoride ions are removed from nitric acid solution by contacting the vaporized solution with alumina or zirconium.

  18. Production of hydroxylated fatty acids in genetically modified plants

    DOE Patents [OSTI]

    Somerville, Chris (Portola Valley, CA); Broun, Pierre (Burlingame, CA); van de Loo, Frank (Weston, AU); Boddupalli, Sekhar S. (Manchester, MI)

    2011-08-23T23:59:59.000Z

    This invention relates to plant fatty acyl hydroxylases. Methods to use conserved amino acid or nucleotide sequences to obtain plant fatty acyl hydroxylases are described. Also described is the use of cDNA clones encoding a plant hydroxylase to produce a family of hydroxylated fatty acids in transgenic plants. In addition, the use of genes encoding fatty acid hydroxylases or desaturases to alter the level of lipid fatty acid unsaturation in transgenic plants is described.

  19. acid transporter hpat1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSPORT AND GEOCHEMICAL EVOLUTION OF ACID MINE DRAINAGE THROUGH Environmental Management and Restoration Websites Summary: SIMULATING TRANSPORT AND GEOCHEMICAL...

  20. acid transporters eaat-1: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    TRANSPORT AND GEOCHEMICAL EVOLUTION OF ACID MINE DRAINAGE THROUGH Environmental Management and Restoration Websites Summary: SIMULATING TRANSPORT AND GEOCHEMICAL...