Powered by Deep Web Technologies
Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

ACI Distinguished Paper Award  

Science Conference Proceedings (OSTI)

Recognizing the best technical paper published in the Journal of Surfactants and Detergents (JSD). ACI Distinguished Paper Award Journals aocs articles detergents fats jaocs journal journals jsd magazine methods oils papers published scientific subscribe

2

ACI/NBB Glycerine Innovation Research Award  

Science Conference Proceedings (OSTI)

ACI/NBB Glycerine Innovation Research Award for research into new applications for glycerine with particular emphasis on commercial viability. ACI/NBB Glycerine Innovation Research Award Biofuels and Bioproducts and Biodiesel algae algal biobased Biodies

3

DOE/NETL's phase II mercury control technology field testing program: preliminary economic analysis of activated carbon injection  

Science Conference Proceedings (OSTI)

Based on results of field testing conducted by the U.S. Department of Energy's National Energy Technology Laboratory (DOE/NETL), this article provides preliminary costs for mercury control via conventional activated carbon injection (ACI), brominated ACI, and conventional ACI coupled with the application of a sorbent enhancement additive (SEA) to coal prior to combustion. The economic analyses are reported on a plant-specific basis in terms of the cost required to achieve low (50%), mid (70%), and high (90%) levels of mercury removal 'above and beyond' the baseline mercury removal achieved by existing emission control equipment. In other words, the levels of mercury control are directly attributable to ACI. Mercury control costs via ACI have been amortized on a current dollar basis. Using a 20-year book life, levelized costs for the incremental increase in cost of electricity (COE), expressed in mills per kilowatt-hour (mills/kWh), and the incremental cost of mercury control, expressed in dollars per pound of mercury removed ($/lb Hg removed), have been calculated for each level of ACI mercury control. For this analysis, the increase in COE varied from 0.14 mills/kWh to 3.92 mills/kWh. Meanwhile, the incremental cost of mercury control ranged from $3810/lb Hg removed to $166 000/lb Hg removed. 13 refs., 4 figs., 3 tabs.

Andrew P. Jones; Jeffrey W. Hoffmann; Dennis N. Smith; Thomas J. Feeley III; James T. Murphy [National Energy Technology Laboratory, Pittsburgh, PA (United States)

2007-02-15T23:59:59.000Z

4

2010 EPRI-Southern Company Services Activated Carbon Mercury Control Workshop Proceedings  

Science Conference Proceedings (OSTI)

The U.S. Environmental Protection Agency (EPA) proposed a maximum achievable control technology ruling for air toxics on March 16, 2011. The proposed rule would impose new emission limits on mercury, acid gases, and particulate matter (as a surrogate for non-mercury metallic pollutants such as arsenic) from coal-fired power plants. These new limits are in addition to already existing mercury emissions limits imposed by many states. Activated carbon injection (ACI) is one of the leading control options to...

2011-04-28T23:59:59.000Z

5

Activated carbon material  

DOE Patents (OSTI)

Activated carbon particles for use as iodine trapping material are impregnated with a mixture of selected iodine and potassium compounds to improve the iodine retention properties of the carbon. The I/K ratio is maintained at less than about 1 and the pH is maintained at above about 8.0. The iodine retention of activated carbon previously treated with or coimpregnated with triethylenediamine can also be improved by this technique. Suitable flame retardants can be added to raise the ignition temperature of the carbon to acceptable standards.

Evans, A. Gary (North Augusta, SC)

1978-01-01T23:59:59.000Z

6

Why Sequence freshwater Actinobacteria belonging to the acI lineage?  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequence freshwater Actinobacteria Sequence freshwater Actinobacteria belonging to the acI lineage? The most abundant freshwater bacterioplankton is one that researchers have been unable to grow for study in the lab, away from its natural habitat. The acI Actinobacteria make up as much as 50 percent of the plankton in freshwater lakes and rivers all over the world but researchers don't know exactly what ecological role the bacteria play and how they influence the carbon cycle. Researchers have also noticed that the bacterial population seems to increase when algal blooms or leaf little are present in the water, so they think that bacteria might have enzymes that can break down plant cell walls. Fluorescence in situ hybridisation (FISH) image of acI Actinobacteria in water from Lake Geirneggsee, Austria

7

Using ACIS on the Chandra X-ray Observatory as a particle radiation monitor II  

E-Print Network (OSTI)

The Advanced CCD Imaging Spectrometer is an instrument on the Chandra X-ray Observatory. CCDs are vulnerable to radiation damage, particularly by soft protons in the radiation belts and solar storms. The Chandra team has implemented procedures to protect ACIS during high-radiation events including autonomous protection triggered by an on-board radiation monitor. Elevated temperatures have reduced the effectiveness of the on-board monitor. The ACIS team has developed an algorithm which uses data from the CCDs themselves to detect periods of high radiation and a flight software patch to apply this algorithm is currently active on-board the instrument. In this paper, we explore the ACIS response to particle radiation through comparisons to a number of external measures of the radiation environment. We hope to better understand the efficiency of the algorithm as a function of the flux and spectrum of the particles and the time-profile of the radiation event.

Grant, C E; Bautz, M W; O'Dell, S L

2012-01-01T23:59:59.000Z

8

Carbon Sequestration Monitoring Activities  

SciTech Connect

In its 'Carbon Sequestration Technology Roadmap and Program Plan 2007' the U.S. Department of Energy (DOE)'s Office of Fossil Energy National Energy Technology Laboratory (NETL) identified as a major objective extended field tests to fully characterize potential carbon dioxide (CO{sub 2}) storage sites and to demonstrate the long-term storage of sequestered carbon (p. 5). Among the challenges in this area are 'improved understanding of CO{sub 2} flow and trapping within the reservoir and the development and deployment of technologies such as simulation models and monitoring systems' (p. 20). The University of Wyoming (UW), following consultations with the NETL, the Wyoming State Geological Survey, and the Governor's office, identified potential for geologic sequestration of impure carbon dioxide (CO{sub 2}) in deep reservoirs of the Moxa Arch. The Moxa Arch is a 120-mile long north-south trending anticline plunging beneath the Wyoming Thrust Belt on the north and bounded on the south by the Uinta Mountains. Several oil and gas fields along the Moxa Arch contain accumulations of natural CO{sub 2}. The largest of these is the La Barge Platform, which encompasses approximately 800 square miles. Several formations may be suitable for storage of impure CO{sub 2} gas, foremost among them the Madison Limestone, Bighorn Dolomite, and Nugget Sandstone. This project responded to the challenges described above by preparing a geological site characterization study on the Moxa Arch. The project included four priority research areas: (A) geological characterization of geologic structure of the Arch, the fault, and fracture patterns of the target formations and caprocks, (B) experimental characterization of carbon dioxide-brine-rock reactions that may occur, (C) optimization of geophysical and numerical models necessary for measurement, monitoring and verification (MMV), and (D) a preliminary performance assessment. Research work to accomplish these goals was coordinated by one administrative task under the direction of Dr. Carol Frost, Professor of Geology and Geophysics (Task 1.0), and one task devoted to designing and creating an interdisciplinary, project-specific carbon cyberinfrastructure to support collaborative carbon dioxide sequestration research among University of Wyoming scientists and their collaborators, performed by Jeff Hammerlinck, Director of the Wyoming Geographic Information Science Center at the University of Wyoming (Task 1.5). The results of these tasks are presented in the Introduction and in Chapter 1, respectively.

Carol Frost

2010-11-30T23:59:59.000Z

9

ACI ecotec GmbH | Open Energy Information  

Open Energy Info (EERE)

ACI ecotec GmbH ACI ecotec GmbH Jump to: navigation, search Name ACI-ecotec GmbH Place Zimmern, Thuringia, Germany Zip 78658 Product Germany-based PV equipment design and manufacturing company. Coordinates 51.007519°, 11.626786° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":51.007519,"lon":11.626786,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

10

EFRC Carbon Capture and Sequestration Activities at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be...

11

Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Credits in Carbon Credits in Carbon Dioxide Sequestration Activities K. Thomas Klasson and Brian H. Davison Oak Ridge National Laboratory * Oak Ridge, Tennessee 37831-6226 Presentation First National Conference on Carbon Sequestration May 14-17, 2001 Washington, DC "The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes." * Managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725 1 Estimation of Carbon Credits in Carbon Dioxide Sequestration Activities

12

Dietary quercetin exacerbates the development of estrogen-induced breast tumors in female ACI rats  

Science Conference Proceedings (OSTI)

Phytoestrogens are plant compounds that structurally mimic the endogenous estrogen 17{beta}-estradiol (E{sub 2}). Despite intense investigation, the net effect of phytoestrogen exposure on the breast remains unclear. The objective of the current study was to examine the effects of quercetin on E{sub 2}-induced breast cancer in vivo. Female ACI rats were given quercetin (2.5 g/kg food) for 8 months. Animals were monitored weekly for palpable tumors, and at the end of the experiment, rats were euthanized, breast tumor and different tissues excised so that they could be examined for histopathologic changes, estrogen metabolic activity and oxidant stress. Quercetin alone did not induce mammary tumors in female ACI rats. However, in rats implanted with E{sub 2} pellets, co-exposure to quercetin did not protect rats from E{sub 2}-induced breast tumor development with 100% of the animals developing breast tumors within 8 months of treatment. No changes in serum quercetin levels were observed in quercetin and quercetin + E{sub 2}-treated groups at the end of the experiment. Tumor latency was significantly decreased among rats from the quercetin + E{sub 2} group relative to those in the E{sub 2} group. Catechol-O-methyltransferase (COMT) activity was significantly downregulated in quercetin-exposed mammary tissue. Analysis of 8-isoprostane F{sub 2{alpha}} (8-iso-PGF{sub 2{alpha}}) levels as a marker of oxidant stress showed that quercetin did not decrease E{sub 2}-induced oxidant stress. These results indicate that quercetin (2.5 g/kg food) does not confer protection against breast cancer, does not inhibit E{sub 2}-induced oxidant stress and may exacerbate breast carcinogenesis in E{sub 2}-treated ACI rats. Inhibition of COMT activity by quercetin may expose breast cells chronically to E{sub 2} and catechol estrogens. This would permit longer exposure times to the carcinogenic metabolites of E{sub 2} and chronic exposure to oxidant stress as a result of metabolic redox cycling to estrogen metabolites, and thus quercetin may exacerbate E{sub 2}-induced breast tumors in female ACI rats.

Singh, Bhupendra [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108 (United States); Mense, Sarah M. [Department of Environmental Health Sciences, Columbia University, New York, NY 10032 (United States); Bhat, Nimee K. [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108 (United States); Putty, Sandeep; Guthiel, William A. [Division of Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108 (United States); Remotti, Fabrizio [Department of Pathology, Columbia University, New York, NY 10032 (United States); Bhat, Hari K., E-mail: bhath@umkc.ed [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108 (United States)

2010-09-01T23:59:59.000Z

13

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

Science Conference Proceedings (OSTI)

The primary objective of the project was to evaluate the long-term feasibility of using activated carbon injection (ACI) options to effectively reduce mercury emissions from Texas electric generation plants in which a blend of lignite and subbituminous coal is fired. Field testing of ACI options was performed on one-quarter of Unit 2 at TXU's Big Brown Steam Electric Station. Unit 2 has a design output of 600 MW and burns a blend of 70% Texas Gulf Coast lignite and 30% subbituminous Powder River Basin coal. Big Brown employs a COHPAC configuration, i.e., high air-to-cloth baghouses following cold-side electrostatic precipitators (ESPs), for particulate control. When sorbent injection is added between the ESP and the baghouse, the combined technology is referred to as TOXECON{trademark} and is patented by the Electric Power Research Institute in the United States. Key benefits of the TOXECON configuration include better mass transfer characteristics of a fabric filter compared to an ESP for mercury capture and contamination of only a small percentage of the fly ash with AC. The field testing consisted of a baseline sampling period, a parametric screening of three sorbent injection options, and a month long test with a single mercury control technology. During the baseline sampling, native mercury removal was observed to be less than 10%. Parametric testing was conducted for three sorbent injection options: injection of standard AC alone; injection of an EERC sorbent enhancement additive, SEA4, with ACI; and injection of an EERC enhanced AC. Injection rates were determined for all of the options to achieve the minimum target of 55% mercury removal as well as for higher removals approaching 90%. Some of the higher injection rates were not sustainable because of increased differential pressure across the test baghouse module. After completion of the parametric testing, a month long test was conducted using the enhanced AC at a nominal rate of 1.5 lb/Macf. During the time that enhanced AC was injected, the average mercury removal for the month long test was approximately 74% across the test baghouse module. ACI was interrupted frequently during the month long test because the test baghouse module was bypassed frequently to relieve differential pressure. The high air-to-cloth ratio of operations at this unit results in significant differential pressure, and thus there was little operating margin before encountering differential pressure limits, especially at high loads. This limited the use of sorbent injection as the added material contributes to the overall differential pressure. This finding limits sustainable injection of AC without appropriate modifications to the plant or its operations. Handling and storage issues were observed for the TOXECON ash-AC mixture. Malfunctioning equipment led to baghouse dust hopper plugging, and storage of the stagnant material at flue gas temperatures resulted in self-heating and ignition of the AC in the ash. In the hoppers that worked properly, no such problems were reported. Economics of mercury control at Big Brown were estimated for as-tested scenarios and scenarios incorporating changes to allow sustainable operation. This project was funded under the U.S. Department of Energy National Energy Technology Laboratory project entitled 'Large-Scale Mercury Control Technology Field Testing Program--Phase II'.

John Pavlish; Jeffrey Thompson; Christopher Martin; Mark Musich; Lucinda Hamre

2009-01-07T23:59:59.000Z

14

The Transport Properties of Activated Carbon Fibers  

DOE R&D Accomplishments (OSTI)

The transport properties of activated isotropic pitch-based carbon fibers with surface area 1000 m{sup 2}/g have been investigated. We report preliminary results on the electrical conductivity, the magnetoresistance, the thermal conductivity and the thermopower of these fibers as a function of temperature. Comparisons are made to transport properties of other disordered carbons.

di Vittorio, S. L.; Dresselhaus, M. S.; Endo, M.; Issi, J-P.; Piraux, L.

1990-07-00T23:59:59.000Z

15

Energy efficient indoor VOC air cleaning with activated carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters Title Energy efficient indoor VOC air cleaning with activated carbon fiber (ACF) filters...

16

Black Carbon Emission from Barbeque Activities during College...  

NLE Websites -- All DOE Office Websites (Extended Search)

Black Carbon Emission from Barbeque Activities during College Football Games Title Black Carbon Emission from Barbeque Activities during College Football Games Publication Type...

17

Natural gas storage on activated carbon  

SciTech Connect

Natural gas is a good fuel for internal combustion engines, but its low energy density is a significant drawback. The energy density can be increased by adsorption on a high surface area activated carbon. But with usage, some of the constituents in the natural gas composition accumulate on the carbon and reduce its adsorptivity. The adsorption desorption of natural gas on 9LXC activated carbon was investigated to 100 cycles at 21/sup 0/C and pressures of up to 12 MPa. The decrease in the capacity, G, as a function of the number of cycles, N, was found to follow the empirical correlation: G/G /SUB o/ = 1 - 0.085Log(N). Analysis of the activated carbon after 100 cycles showed accumulation of C/sub 4/ and higher hydrocarbons but not of C/sub 2/ and C/sub 3/. For automotive applications, activated carbon appears practical in a narrow pressure range, centering around 7 MPa (1000 psig). The preferred storage is at a pressure of 17 MPa or higher, without the use of activated carbons.

Golovoy, A.; Blais, E.J.

1983-10-01T23:59:59.000Z

18

Nano Structured Activated Carbon for Hydrogen Storge  

Science Conference Proceedings (OSTI)

Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

Israel Cabasso; Youxin Yuan

2013-02-27T23:59:59.000Z

19

Energy Efficient Indoor VOC Air Cleaning with Activated Carbon Fiber (ACF) Filters  

E-Print Network (OSTI)

compound by activated carbon fiber. Carbon 2004, 42(14):of an activated carbon fiber cloth adsorber. Journal ofindoor VOCs activated carbon fibers. Proceedings of IAQ

Sidheswaran, Meera

2012-01-01T23:59:59.000Z

20

Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical drying  

E-Print Network (OSTI)

Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical August 2003) Activated carbon fiber/carbon aerogel (ACF/CA) composites were fabricated by gelling. The ACFs can reinforce the related carbon aerogels when they originally have low mass density and are weak

Liu, Jie

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Nano Structured Activated Carbon for Hydrogen Storge  

SciTech Connect

Development of a nanostructured synthetic carbons materials that have been synthesized by thermal-decomposition of aromatic rich polyether such as poly(ether ether ketone) (PEEK) is reported. These polymers based nanostructured carbons efficacious for gas adsorption and storage and have Brunauer-Emmett-Teller (BET) surface area of more than 3000 m2/g, and with average pore diameter of < 2nm. Surface-area, pore characteristics, and other critical variables for selecting porous materials of high gas adsorption capacities are presented. Analysis of the fragments evolved under various carbonization temperatures, and the correlation between the activation and carbonization temperatures provides a mechanistic perspective of the pore evolution during activation. Correlations between gas (N2 and H2) adsorption capacity and porous texture of the materials have been established. The materials possess excellent hydrogen storage properties, with hydrogen storage capacity up to 7.4 wt% (gravimetric) and ~ 45 g H2 L-1 (volumetric) at -196oC and 6.0 MPa.

Israel Cabasso; Youxin Yuan

2013-02-27T23:59:59.000Z

22

Adsorbed natural gas storage with activated carbon  

SciTech Connect

Despite technical advances to reduce air pollution emissions, motor vehicles still account for 30 to 70% emissions of all urban air pollutants. The Clean Air Act Amendments of 1990 require 100 cities in the United States to reduce the amount of their smog within 5 to 15 years. Hence, auto emissions, the major cause of smog, must be reduced 30 to 60% by 1998. Natural gas con be combusted with less pollutant emissions. Adsorbed natural gas (ANG) uses adsorbents and operates with a low storage pressure which results in lower capital costs and maintenance. This paper describes the production of an activated carbon adsorbent produced from an Illinois coal for ANG.

Sun, Jian; Brady, T.A.; Rood, M.J. [Univ. of Illinois, Urbana, IL (United States)] [and others

1996-12-31T23:59:59.000Z

23

Activated Carbon Composites for Air Separation  

DOE Green Energy (OSTI)

Coal-derived synthesis gas is a potential major source of hydrogen for fuel cells. Oxygen-blown coal gasification is an efficient approach to achieving the goal of producing hydrogen from coal, but a cost-effective means of enriching O2 concentration in air is required. A key objective of this project is to assess the utility of a system that exploits porous carbon materials and electrical swing adsorption to produce an O2-enriched air stream for coal gasification. As a complement to O2 and N2 adsorption measurements, CO2 was used as a more sensitive probe molecule for the characterization of molecular sieving effects. To further enhance the potential of activated carbon composite materials for air separation, work was implemented on incorporating a novel twist into the system; namely the addition of a magnetic field to influence O2 adsorption, which is accompanied by a transition between the paramagnetic and diamagnetic states. The preliminary findings in this respect are discussed.

Baker, Frederick S [ORNL; Contescu, Cristian I [ORNL; Tsouris, Costas [ORNL; Burchell, Timothy D [ORNL

2011-09-01T23:59:59.000Z

24

Production of activated carbon within the indirect gasification process.  

E-Print Network (OSTI)

??III Abstract Activated carbon is one of the most attractive adsorbent which has a wide area of application. One of these areas of application is (more)

Shabanzadeh, Amir

2012-01-01T23:59:59.000Z

25

Kinetics of Diuron Adsorption onto Activated Carbon Fiber  

Science Conference Proceedings (OSTI)

A study was conducted on the adsorption kinetics of diuron from aqueous solutions onto activated carbon fiber. The results showed that the formation of hydrogen bonds between diuron and water, and temperature variations may possibly affect the adsorption ... Keywords: activated carbon fiber, diuron adsorption, kinetic models, hydrogen bonds

Jianhua Xu; Yabing Sun; Zhenyu Li; Jingwei Feng

2011-03-01T23:59:59.000Z

26

Adsorption of DDT by Activated Carbon Fiber Electrode  

Science Conference Proceedings (OSTI)

DDT is detected in many river and lake in Zhejiang Province. As a kind of POPs and priority controlled substances of China, it is necessary to study how to dechlorinate it and treat it. This thesis discusses the absorption of DDT by activated carbon ... Keywords: DDT, activated carbon fiber electrode, adsorption

Yaping Guo; Jun Li; Chunmian Lin; JinRong Chen

2009-10-01T23:59:59.000Z

27

JV Task 90 - Activated Carbon Production from North Dakota Lignite  

Science Conference Proceedings (OSTI)

The Energy & Environmental Research Center (EERC) has pursued a research program for producing activated carbon from North Dakota lignite that can be competitive with commercial-grade activated carbon. As part of this effort, small-scale production of activated carbon was produced from Fort Union lignite. A conceptual design of a commercial activated carbon production plant was drawn, and a market assessment was performed to determine likely revenue streams for the produced carbon. Activated carbon was produced from lignite coal in both laboratory-scale fixed-bed reactors and in a small pilot-scale rotary kiln. The EERC was successfully able to upgrade the laboratory-scale activated carbon production system to a pilot-scale rotary kiln system. The activated carbon produced from North Dakota lignite was superior to commercial grade DARCO{reg_sign} FGD and Rheinbraun's HOK activated coke product with respect to iodine number. The iodine number of North Dakota lignite-derived activated carbon was between 600 and 800 mg I{sub 2}/g, whereas the iodine number of DARCO FGD was between 500 and 600 mg I{sub 2}/g, and the iodine number of Rheinbraun's HOK activated coke product was around 275 mg I{sub 2}/g. The EERC performed both bench-scale and pilot-scale mercury capture tests using the activated carbon made under various optimization process conditions. For comparison, the mercury capture capability of commercial DARCO FGD was also tested. The lab-scale apparatus is a thin fixed-bed mercury-screening system, which has been used by the EERC for many mercury capture screen tests. The pilot-scale systems included two combustion units, both equipped with an electrostatic precipitator (ESP). Activated carbons were also tested in a slipstream baghouse at a Texas power plant. The results indicated that the activated carbon produced from North Dakota lignite coal is capable of removing mercury from flue gas. The tests showed that activated carbon with the greatest iodine number was superior to commercial DARCO FGD for mercury capture. The results of the activated carbon market assessment indicate an existing market for water treatment and an emerging application for mercury control. That market will involve both existing and new coal-fired plants. It is expected that 20% of the existing coal-fired plants will implement activated carbon injection by 2015, representing about 200,000 tons of annual demand. The potential annual demand by new plants is even greater. In the mercury control market, two characteristics are going to dominate the customer's buying habit-performance and price. As continued demonstration testing of activated carbon injection at the various coal-fired power plants progresses, the importance of fuel type and plant configuration on the type of activated carbon best suited is being identified.

Steven Benson; Charlene Crocker; Rokan Zaman; Mark Musich; Edwin Olson

2008-03-31T23:59:59.000Z

28

Activated carbon fibers and engineered forms from renewable resources  

DOE Patents (OSTI)

A method of producing activated carbon fibers (ACFs) includes the steps of providing a natural carbonaceous precursor fiber material, blending the carbonaceous precursor material with a chemical activation agent to form chemical agent-impregnated precursor fibers, spinning the chemical agent-impregnated precursor material into fibers, and thermally treating the chemical agent-impregnated precursor fibers. The carbonaceous precursor material is both carbonized and activated to form ACFs in a single step. The method produces ACFs exclusive of a step to isolate an intermediate carbon fiber.

Baker, Frederick S

2013-02-19T23:59:59.000Z

29

Production and characterization of activated carbons from cereal grains  

SciTech Connect

The term, activated carbon, is a generic name for a family of carbonaceous materials with well-developed porosities and consequently, large adsorptive capacities. Activated carbons are increasingly being consumed worldwide for environmental applications such as separation of volatiles from bulk gases and purification of water and waste-water streams. The global annual production is estimated to be around 300 million kilograms, with a rate of increase of 7% each year. Activated carbons can be prepared from a variety of raw materials. Approximately, 60% of the activated carbons generated in the United States is produced from coal; 20%, from coconut shells; and the remaining 20% from wood and other sources of biomass. The pore structure and properties of activated carbons are influenced by the nature of the starting material and the initial physical and chemical conditioning as well as the process conditions involved in its manufacture. The porous structures of charcoals and activated carbons obtained by the carbonization of kernels have been characterized.

Venkatraman, A.; Walawender, W.P.; Fan, L.T. [Kansas State Univ., Manhattan, KS (United States)

1996-12-31T23:59:59.000Z

30

Adsorption equilibria of propane on activated carbon and molecular sieves  

Science Conference Proceedings (OSTI)

Data of adsorption isotherm of propane on activated carbon (AC), molecular sieve carbon (MSC), MS13X and MS5A at 303K, 328K and 353K are acquired using constant volumetric method. Isosteric heats can be obtained indirectly from the isotherms using the ... Keywords: VOCs, adsorption, equilibrium models, isosteric heats, isotherm

Z. Yaakob; S. K. Kamarudin; I. Kamaruzaman; A. Ibrahim

2008-11-01T23:59:59.000Z

31

Hydrogen storage on activated carbon. Final report  

DOE Green Energy (OSTI)

The project studied factors that influence the ability of carbon to store hydrogen and developed techniques to enhance that ability in naturally occurring and factory-produced commercial carbon materials. During testing of enhanced materials, levels of hydrogen storage were achieved that compare well with conventional forms of energy storage, including lead-acid batteries, gasoline, and diesel fuel. Using the best materials, an electric car with a modern fuel cell to convert the hydrogen directly to electricity would have a range of over 1,000 miles. This assumes that the total allowable weight of the fuel cell and carbon/hydrogen storage system is no greater than the present weight of batteries in an existing electric vehicle. By comparison, gasoline cars generally are limited to about a 450-mile range, and battery-electric cars to 40 to 60 miles. The project also developed a new class of carbon materials, based on polymers and other organic compounds, in which the best hydrogen-storing factors discovered earlier were {open_quotes}molecularly engineered{close_quotes} into the new materials. It is believed that these new molecularly engineered materials are likely to exceed the performance of the naturally occurring and manufactured carbons seen earlier with respect to hydrogen storage.

Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

1994-11-01T23:59:59.000Z

32

Selection and preparation of activated carbon for fuel gas storage  

DOE Green Energy (OSTI)

Increasing the surface acidity of active carbons can lead to an increase in capacity for hydrogen adsorption. Increasing the surface basicity can facilitate methane adsorption. The treatment of carbons is most effective when the carbon source material is selected to have a low ash content i.e., below about 3%, and where the ash consists predominantly of alkali metals alkali earth, with only minimal amounts of transition metals and silicon. The carbon is washed in water or acid and then oxidized, e.g. in a stream of oxygen and an inert gas at an elevated temperature.

Schwarz, James A. (Fayetteville, NY); Noh, Joong S. (Syracuse, NY); Agarwal, Rajiv K. (Las Vegas, NV)

1990-10-02T23:59:59.000Z

33

TESTING GUIDELINES FOR TECHNETIUM-99 ABSORPTION ON ACTIVATED CARBON  

SciTech Connect

CH2M HILL Plateau Remediation Company (CHPRC) is currently evaluating the potential use of activated carbon adsorption for removing technetium-99 from groundwater as a treatment method for the Hanford Site's 200 West Area groundwater pump-and-treat system. The current pump-and-treat system design will include an ion-exchange (IX) system for selective removal of technetium-99 from selected wells prior to subsequent treatment of the water in the central treatment system. The IX resin selected for technetium-99 removal is Purolite A530E. The resin service life is estimated to be approximately 66.85 days at the design technetium-99 loading rate, and the spent resin must be replaced because it cannot be regenerated. The resulting operating costs associated with resin replacement every 66.85 days are estimated at $0.98 million/year. Activated carbon pre-treatment is being evaluated as a potential cost-saving measure to offset the high operating costs associated with frequent IX resin replacement. This document is preceded by the Literature Survey of Technetium-99 Groundwater Pre-Treatment Option Using Granular Activated Carbon (SGW-43928), which identified and evaluated prior research related to technetium-99 adsorption on activated carbon. The survey also evaluated potential operating considerations for this treatment approach for the 200 West Area. The preliminary conclusions of the literature survey are as follows: (1) Activated carbon can be used to selectively remove technetium-99 from contaminated groundwater. (2) Technetium-99 adsorption onto activated carbon is expected to vary significantly based on carbon types and operating conditions. For the treatment approach to be viable at the Hanford Site, activated carbon must be capable of achieving a designated minimum technetium-99 uptake. (3) Certain radionuclides known to be present in 200 West Area groundwater are also likely to adsorb onto activated carbon. (4) Organic solvent contaminants of concern (COCs) will load heavily onto activated carbon and should be removed from groundwater upstream of the activated carbon pre-treatment system. Unless removed upstream, the adsorbed loadings of these organic constituents could exceed the land disposal criteria for carbon.

BYRNES ME

2010-09-08T23:59:59.000Z

34

Carbon Nanotube Materials for Substrate Enhanced Control of Catalytic Activity  

DOE Green Energy (OSTI)

Carbon SWNTs are attractive materials for supporting electrocatalysts. The properties of SWNTs are highly tunable and controlled by the nanotube's circumferential periodicity and their surface chemistry. These unique characteristics suggest that architectures constructed from these types of carbon support materials would exhibit interesting and useful properties. Here, we expect that the structure of the carbon nanotube support will play a major role in stabilizing metal electrocatalysts under extreme operating conditions and suppress both catalyst and support degradation. Furthermore, the chemical modification of the carbon nanotube surfaces can be expected to alter the interface between the catalyst and support, thus, enhancing the activity and utilization of the electrocatalysts. We plan to incorporate discrete reaction sites into the carbon nanotube lattice to create intimate electrical contacts with the catalyst particles to increase the metal catalyst activity and utilization. The work involves materials synthesis, design of electrode architectures on the nanoscale, control of the electronic, ionic, and mass fluxes, and use of advanced optical spectroscopy techniques.

Heben, M.; Dillon, A. C.; Engtrakul, C.; Lee, S.-H.; Kelley, R. D.; Kini, A. M.

2007-05-01T23:59:59.000Z

35

Activated carbon fiber composite material and method of making  

DOE Patents (OSTI)

An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

2000-01-01T23:59:59.000Z

36

Activated carbon fiber composite material and method of making  

DOE Patents (OSTI)

An activated carbon fiber composite for separation and purification, or catalytic processing of fluids is described. The activated composite comprises carbon fibers rigidly bonded to form an open, permeable, rigid monolith capable of being formed to near-net-shape. Separation and purification of gases are effected by means of a controlled pore structure that is developed in the carbon fibers contained in the composite. The open, permeable structure allows the free flow of gases through the monolith accompanied by high rates of adsorption. By modification of the pore structure and bulk density the composite can be rendered suitable for applications such as gas storage, catalysis, and liquid phase processing.

Burchell, Timothy D. (Oak Ridge, TN); Weaver, Charles E. (Knoxville, TN); Chilcoat, Bill R. (Knoxville, TN); Derbyshire, Frank (Lexington, KY); Jagtoyen, Marit (Lexington, KY)

2001-01-01T23:59:59.000Z

37

A comparison of the electrochemical behavior of carbon aerogels and activated carbon fiber cloths  

SciTech Connect

Electrochemical capacitative behavior of carbon aerogels and commercial carbon fiber cloths was studied in 5M KOH, 3M sulfuric acid, and 0.5M tetrethylammonium tetrafluoroborate/propylene carbonate electrolytes. The resorcinol-formaldehyde based carbon aerogels with a range of denisty (0.2-0.85 g/cc) have open-cell structures with ultrafine pore sizes (5-50 nm), high surface area (400-700 m{sup 2}/g), and a solid matrix composed of interconnected particles or fibers with characteristic diameters of 10 nm. The commercial fiber cloths in the density range 0.2-04g/cc have high surface areas (1000-2500 m{sup 2}/g). The volumetric capacitances of high-density aerogels are shown to be comparable to or exceeding those from activated carbon fibers. Electrochemical behavior of these materials in various electrolytes is compared and related to their physical properties.

Tran, T.D.; Alviso, C.T.; Hulsey, S.S.; Nielsen, J.K.; Pekala, R.W.

1996-05-10T23:59:59.000Z

38

EFRC Carbon Capture and Sequestration Activities at NERSC  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Carbon Capture and EFRC Carbon Capture and Sequestration Activities at NERSC EFRC Carbon Capture and Sequestration Activities at NERSC Why it Matters: Carbon dioxide (CO2) gas is considered to be present in only trace proportions in our atmosphere but it has a leading role in the cast of greenhouse gases, with a thermal radiative effect nearly three times as large as the next biggest contributor. Energy related processes are the biggest sources of atmospheric CO2, especially the burning of fossil fuels and the production of hydrogen from methane. Since both human-caused CO2 concentrations and global average temperatures have been increasing steadily since the mid-20th century it could very well be that our energy future depends on our ability to effectively remove CO2

39

Potential of Malaysian activated carbon in dual purpose adsorption system  

Science Conference Proceedings (OSTI)

The adsorption capability of some locally produced activated charcoal (coconut shell) samples with methanol were taken under laboratory conditions. An experimental test rig was set up; data obtained from the experiments were fitted to Dubinin-Radushkevitch ... Keywords: Malaysian activated carbon, adsorption properties, coefficient of performance (COP), dual purpose system

M. A. Alghoul; M. Y. Sulaiman; K. Sopian; M. Yahya; Azami Zaharim

2008-11-01T23:59:59.000Z

40

A General Methodology for Evaluation of Carbon Sequestration Activities and Carbon Credits  

SciTech Connect

A general methodology was developed for evaluation of carbon sequestration technologies. In this document, we provide a method that is quantitative, but is structured to give qualitative comparisons despite changes in detailed method parameters, i.e., it does not matter what ''grade'' a sequestration technology gets but a ''better'' technology should receive a better grade. To meet these objectives, we developed and elaborate on the following concepts: (1) All resources used in a sequestration activity should be reviewed by estimating the amount of greenhouse gas emissions for which they historically are responsible. We have done this by introducing a quantifier we term Full-Cycle Carbon Emissions, which is tied to the resource. (2) The future fate of sequestered carbon should be included in technology evaluations. We have addressed this by introducing a variable called Time-adjusted Value of Carbon Sequestration to weigh potential future releases of carbon, escaping the sequestered form. (3) The Figure of Merit of a sequestration technology should address the entire life-cycle of an activity. The figures of merit we have developed relate the investment made (carbon release during the construction phase) to the life-time sequestration capacity of the activity. To account for carbon flows that occur during different times of an activity we incorporate the Time Value of Carbon Flows. The methodology we have developed can be expanded to include financial, social, and long-term environmental aspects of a sequestration technology implementation. It does not rely on global atmospheric modeling efforts but is consistent with these efforts and could be combined with them.

Klasson, KT

2002-12-23T23:59:59.000Z

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Adsorption near ambient temperatures of methane, carbon tetrafluoride, and sulfur hexafluoride on commercial activated carbons  

SciTech Connect

The adsorption isotherms for CH{sub 4}, CF{sub 4}, and SF{sub 6} are measured at three or four temperatures near ambient on three commercial activated carbons. The data are reduced using a virial-type equation of adsorption. Using this equation, isosteric heats of adsorption are calculated. It is shown that this fundamental thermodynamic quantity provides a basis for differentiating between the carbons` micropore structures.

Jagiello, J.; Bandosz, T.J.; Putyera, K.; Schwarz, J.A. [Syracuse Univ., NY (United States). Dept. of Chemical Engineering and Materials Science

1995-11-01T23:59:59.000Z

42

Carbon-based Supercapacitors Produced by Activation of Graphene  

Science Conference Proceedings (OSTI)

Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

Y Zhu; S Murali; M Stoller; K Ganesh; W Cai; P Ferreira; A Pirkle; R Wallace; K Cychosz; et al.

2011-12-31T23:59:59.000Z

43

Carbon-Based Supercapacitors Produced by Activation of Graphene  

DOE Green Energy (OSTI)

Supercapacitors, also called ultracapacitors or electrochemical capacitors, store electrical charge on high-surface-area conducting materials. Their widespread use is limited by their low energy storage density and relatively high effective series resistance. Using chemical activation of exfoliated graphite oxide, we synthesized a porous carbon with a Brunauer-Emmett-Teller surface area of up to 3100 square meters per gram, a high electrical conductivity, and a low oxygen and hydrogen content. This sp{sup 2}-bonded carbon has a continuous three-dimensional network of highly curved, atom-thick walls that form primarily 0.6- to 5-nanometer-width pores. Two-electrode supercapacitor cells constructed with this carbon yielded high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes. The processes used to make this carbon are readily scalable to industrial levels.

Zhu, Y.; Su, D.; Murali, S.; Stoller, M.D.; Ganesh, K.J.; Cai, W.; Ferreira, P.J.; Pirkle, A.; Wallace, R.M.; Cychosz, K.A., Thommes, M.; Stach, E.A.; Ruoff, R.S.

2011-06-24T23:59:59.000Z

44

Tc-99 Adsorption on Selected Activated Carbons - Batch Testing Results  

Science Conference Proceedings (OSTI)

CH2M HILL Plateau Remediation Company (CHPRC) is currently developing a 200-West Area groundwater pump-and-treat system as the remedial action selected under the Comprehensive Environmental Response, Compensation, and Liability Act Record of Decision for Operable Unit (OU) 200-ZP-1. This report documents the results of treatability tests Pacific Northwest National Laboratory researchers conducted to quantify the ability of selected activated carbon products (or carbons) to adsorb technetium-99 (Tc-99) from 200-West Area groundwater. The Tc-99 adsorption performance of seven activated carbons (J177601 Calgon Fitrasorb 400, J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, J177612 Norit GAC830, J177613 Norit GAC830, and J177617 Nucon LW1230) were evaluated using water from well 299-W19-36. Four of the best performing carbons (J177606 Siemens AC1230AWC, J177609 Carbon Resources CR-1240-AW, J177611 General Carbon GC20X50, and J177613 Norit GAC830) were selected for batch isotherm testing. The batch isotherm tests on four of the selected carbons indicated that under lower nitrate concentration conditions (382 mg/L), Kd values ranged from 6,000 to 20,000 mL/g. In comparison. Under higher nitrate (750 mg/L) conditions, there was a measureable decrease in Tc-99 adsorption with Kd values ranging from 3,000 to 7,000 mL/g. The adsorption data fit both the Langmuir and the Freundlich equations. Supplemental tests were conducted using the two carbons that demonstrated the highest adsorption capacity to resolve the issue of the best fit isotherm. These tests indicated that Langmuir isotherms provided the best fit for Tc-99 adsorption under low nitrate concentration conditions. At the design basis concentration of Tc 0.865 g/L(14,700 pCi/L), the predicted Kd values from using Langmuir isotherm constants were 5,980 mL/g and 6,870 mL/g for for the two carbons. These Kd values did not meet the target Kd value of 9,000 mL/g. Tests conducted to ascertain the effects of changing pH showed that at pH values of 6.5 and 7.5, no significant differences existed in Tc-adsorption performance for three of the carbons, but the fourth carbon performed better at pH 7.5. When the pH was increased to 8.5, a slight decline in performance was observed for all carbons. Tests conducted to ascertain the temperature effect on Tc-99 adsorption indicated that at 21 C, 27 C, and 32 C there were no significant differences in Tc-99 adsorption for three of the carbons. The fourth carbon showed a noticeable decline in Tc-99 adsorption performance with increasing temperature. The presence of volatile organic compounds (VOCs) in the source water did not significantly affect Tc-99 adsorption on either of two carbons tested. Technetium-99 adsorption differed by less than 15% with or without VOCs present in the test water, indicating that Tc-99 adsorption would not be significantly affected if VOCs were removed from the water prior to contact with carbon.

Mattigod, Shas V.; Wellman, Dawn M.; Golovich, Elizabeth C.; Cordova, Elsa A.; Smith, Ronald M.

2010-12-01T23:59:59.000Z

45

Production Scale-Up or Activated Carbons for Ultracapacitors  

DOE Green Energy (OSTI)

Transportation use accounts for 67% of the petroleum consumption in the US. Electric and hybrid vehicles are promising technologies for decreasing our dependence on petroleum, and this is the objective of the FreedomCAR & Vehicle Technologies Program. Inexpensive and efficient energy storage devices are needed for electric and hybrid vehicle to be economically viable, and ultracapacitors are a leading energy storage technology being investigated by the FreedomCAR program. The most important parameter in determining the power and energy density of a carbon-based ultracapacitor is the amount of surface area accessible to the electrolyte, which is primarily determined by the pore size distribution. The major problems with current carbons are that their pore size distribution is not optimized for liquid electrolytes and the best carbons are very expensive. TDA Research, Inc. (TDA) has developed methods to prepare porous carbons with tunable pore size distributions from inexpensive carbohydrate based precursors. The use of low-cost feedstocks and processing steps greatly lowers the production costs. During this project with the assistance of Maxwell Technologies, we found that an impurity was limiting the performance of our carbon and the major impurity found was sulfur. A new carbon with low sulfur content was made and found that the performance of the carbon was greatly improved. We also scaled-up the process to pre-production levels and we are currently able to produce 0.25 tons/year of activated carbon. We could easily double this amount by purchasing a second rotary kiln. More importantly, we are working with MeadWestvaco on a Joint Development Agreement to scale-up the process to produce hundreds of tons of high quality, inexpensive carbon per year based on our processes.

Dr. Steven D. Dietz

2007-01-10T23:59:59.000Z

46

Waste management activities and carbon emissions in Africa  

Science Conference Proceedings (OSTI)

This paper summarizes research into waste management activities and carbon emissions from territories in sub-Saharan Africa with the main objective of quantifying emission reductions (ERs) that can be gained through viable improvements to waste management in Africa. It demonstrates that data on waste and carbon emissions is poor and generally inadequate for prediction models. The paper shows that the amount of waste produced and its composition are linked to national Gross Domestic Product (GDP). Waste production per person is around half that in developed countries with a mean around 230 kg/hd/yr. Sub-Saharan territories produce waste with a biogenic carbon content of around 56% (+/-25%), which is approximately 40% greater than developed countries. This waste is disposed in uncontrolled dumps that produce large amounts of methane gas. Greenhouse gas (GHG) emissions from waste will rise with increasing urbanization and can only be controlled through funding mechanisms from developed countries.

Couth, R. [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa); Trois, C., E-mail: troisc@ukzn.ac.za [University of KwaZulu-Natal, CRECHE, School of Civil Engineering, Survey and Construction, Durban 4041 (South Africa)

2011-01-15T23:59:59.000Z

47

Preparation of activated carbons from macadamia nut shell and coconut shell by air activation  

Science Conference Proceedings (OSTI)

A novel, three-step process for the production of high-quality activated carbons from macadamia nut shell and coconut shell charcoals is described. In this process the charcoal is (1) heated to a high temperature (carbonized), (2) oxidized in air following a stepwise heating program from low (ca. 450 K) to high (ca. 660 K) temperatures (oxygenated), and (3) heated again in an inert environment to a high temperature (activated). By use of this procedure, activated carbons with surface areas greater than 1,000 m{sub 2}/g are manufactured with an overall yield of 15% (based on the dry shell feed). Removal of carbon mass by the development of mesopores and macropores is largely responsible for increases in the surface area of the carbons above 600 m{sub 2}/g. Thus, the surface area per gram of activated carbon can be represented by an inverse function of the yield for burnoffs between 15 and 60%. These findings are supported by mass-transfer calculations and pore-size distribution measurements. A kinetic model for gasification of carbon by oxygen, which provides for an Eley-Rideal type reaction of a surface oxide with oxygen in air, fits the measured gasification rates reasonably well over the temperature range of 550--660 K.

Tam, M.S.; Antal, M.J. Jr.

1999-11-01T23:59:59.000Z

48

Production of charcoal and activated carbon at elevated pressure  

SciTech Connect

With its wide range of properties, charcoal finds many commercial applications for domestic cooking, refining of metals (steel, copper, bronze, nickel, aluminum and electro-manganese), production of chemicals (carbon disulfide, calcium carbide, silicon carbide, sodium cyanide, carbon black, fireworks, gaseous chemicals, absorbents, soil conditioners and pharmaceuticals), as well as production of activated carbon and synthesis gas. In 1991, the world production of charcoal was 22.8 million cubic meters (3.8 million metric tons) as shown in Table 1. Brazil is the world`s largest charcoal producer --- 5.9 million cubic meters or one million metric tons was produced in 1991, most of which is used in steel and iron industry. African countries produced 45% of the world total amount of charcoal, where 86% of the wood-based energy is for domestic use, most of which is inefficiently used. Charcoal is produced commercially in kilns with a 25% to 30% yield by mass on a 7 to 12 day operating cycle. Until recently, the highest yield of good quality charcoal reported in the literature was 38%. In this paper, and ASME code rated experimental system is presented for producing charcoal and activated carbon from biomass.

Dai, Xiangfeng; Norberg, N.; Antal, M.J. Jr. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

1995-12-31T23:59:59.000Z

49

WSRC-TR-97-0100 Controlled Low Strength Materials (CLSM), Reported by ACI  

Office of Scientific and Technical Information (OSTI)

WSRC-TR-97-0100 WSRC-TR-97-0100 Controlled Low Strength Materials (CLSM), Reported by ACI Committee 229 r by N. Rajendran Westinghouse Savannah River Company Savannah River Site Aiken, South Carolina 29808 DOE Contract No. DE-AC09-96SR18500 This paper was prepared in connection with work done under the above contract number with the U. S. Department of Energy. By acceptance of this paper, the publisher and/or recipient acknowledges the U. S. Government's right to retain a nonexclusive, royalty-free license in and to any copyright covering this paper, along with the right to reproduce and to authorize others to reproduce all or part of the copyrighted paper. DISCLAIMER This q o r t was prepared as an account of work sponsored by an agency of-the United state^ GovemmenL Neither the

50

System and method for coproduction of activated carbon and steam/electricity  

Science Conference Proceedings (OSTI)

A system and method for producing activated carbon comprising carbonizing a solid carbonaceous material in a carbonization zone of an activated carbon production apparatus (ACPA) to yield a carbonized product and carbonization product gases, the carbonization zone comprising carbonaceous material inlet, char outlet and carbonization gas outlet; activating the carbonized product via activation with steam in an activation zone of the ACPA to yield activated carbon and activation product gases, the activation zone comprising activated carbon outlet, activation gas outlet, and activation steam inlet; and utilizing process gas comprising at least a portion of the carbonization product gases or a combustion product thereof; at least a portion of the activation product gases or a combustion product thereof; or a combination thereof in a solid fuel boiler system that burns a solid fuel boiler feed with air to produce boiler-produced steam and flue gas, the boiler upstream of an air heater within a steam/electricity generation plant, said boiler comprising a combustion zone, a boiler-produced steam outlet and at least one flue gas outlet.

Srinivasachar, Srivats (Sturbridge, MA); Benson, Steven (Grand Forks, ND); Crocker, Charlene (Newfolden, MN); Mackenzie, Jill (Carmel, IN)

2011-07-19T23:59:59.000Z

51

An active carbon catalyst prevents coke formation from asphaltenes during the hydrocracking of vacuum residue  

SciTech Connect

Active carbons were prepared by the steam activation of a brown coal char. The active carbon with mesopores showed greater adsorption selectivity for asphaltenes. The active carbon was effective at suppressing coke formation, even with the high hydrocracking conversion of vacuum residue. The analysis of the change in the composition of saturates, aromatics, resins, and asphaltenes in the cracked residue with conversion demonstrated the ability of active carbon to restrict the transformation of asphaltenes to coke. The active carbon that was richer in mesopores was presumably more effective at providing adsorption sites for the hydrocarbon free-radicals generated initially during thermal cracking to prevent them from coupling and polycondensing.

Fukuyama, H.; Terai, S. [Toyo Engineering Corp., Chiba (Japan). Technological Research Center

2007-07-01T23:59:59.000Z

52

Physicochemical factors affecting ethanol adsorption by activated carbon  

SciTech Connect

Powder and granular activated charcoal were evaluated for ethanol adsorptivity from aqueous mixtures using an adsorption isotherm. Ethanol adsorption capacity was more pronounced at 25C as compared to 5, 15, and 40C. When pH of the ethanol-buffer mixture (0.09 ionic strength) was changed from acidic (2.3) to neutral and then to alkaline (11.2), ethanol adsorption was decreased. Increasing ionic strength of the ethanol-buffer mixtures from 0.05 to 0.09 enhanced ethanol adsorption but a further increase to 0.14 showed no significant effect. Ethanol adsorption was more efficient from an aqueous ethanol mixture as compared to semidefined and nondefined fermentation worts, respectively. Heating granular charcoal to 400C for 1 hour and 600C for 3 hours in N2 increased ethanol adsorptivity and heating to 1000C (1 hour) in CO2 decreased it when ethanol was removed from dilute solutions by simple pass adsorption in a carbon packed column. Granular charcoal was superior to powdered charcoal and an inverse relationship was noted between the weight of the granular carbon bed in the column and ethanol adsorbed/g carbon. Decreasing the column feed flow rate from 7.5 to 2.0 liter aqueous ethanol/min increased the adsorption rate. 16 references.

Bradley, K.J.; Hamdy, M.K.; Toledo, R.T.

1987-03-01T23:59:59.000Z

53

Eighth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete  

Science Conference Proceedings (OSTI)

The nine papers in this CD are collected by the U. S. Advisory Committee for presentation at the Eighth CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag, and Natural Pozzolans in Concrete, May 2329, 2004, Las Vegas, Nevada. They are being published by EPRI, Palo Alto, CA to make them available to all attendees, and other interested people, in a compact form for future reference and use.

2004-05-05T23:59:59.000Z

54

Carbon Dioxide Information Analysis Center: FY 1991 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

Cushman, R.M.; Stoss, F.W.

1992-06-01T23:59:59.000Z

55

Carbon Dioxide Information Analysis Center: FY 1992 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIACs staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1991 to September 30, 1992. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. As analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, fact sheets, specialty publications, and reprints is provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also described.

Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Tennessee Univ., Knoxville, TN (United States). Energy, Environment and Resources Center

1993-03-01T23:59:59.000Z

56

Carbon Dioxide Information Analysis Center: FY 1991 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory's Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specially publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC's staff also provides technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC's staff. This report provides an account of the activities accomplished by CDIAC during the period October 1, 1990 to September 30, 1991. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC's response to those inquiries. An analysis and description of the preparation and distribution of numeric data packages, computer model packages, technical reports, newsletters, factsheets, specially publications, and reprints is provided. Comments and descriptions of CDIAC's information management systems, professional networking, and special bilateral agreements are also described.

Cushman, R.M.; Stoss, F.W.

1992-06-01T23:59:59.000Z

57

Impacts of Low-NOX Combustion and Activated Carbon Injection on Particulate Control Device Performance  

Science Conference Proceedings (OSTI)

This report summarizes the results of a computational fluid dynamics (CFD) model study of the re-entrainment of carbon from the hoppers of a typical utility electrostatic precipitator (ESP). During earlier phases of this study, hopper re-entrainment was identified as the principle mechanism responsible for the low collection efficiency of carbon by ESPs. This statement was found to be true for both unburned carbon from the boiler and activated carbon injected for mercury control. The results indicate tha...

2008-03-31T23:59:59.000Z

58

Carbon activation process for increased surface accessibility in electrochemical capacitors  

DOE Patents (OSTI)

A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm.sup.3 is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350.degree. C. for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

Doughty, Daniel H. (Albuquerque, NM); Eisenmann, Erhard T. (Belpre, OH)

2001-01-01T23:59:59.000Z

59

The Reactive Light Yellow Dye Wastewater Treatment by Sewage Sludge-Based Activated Carbon  

Science Conference Proceedings (OSTI)

The paper is aim to discuss the dye wastewater treatment by sewage sludge-based adsorbent. The adsorbent derived from sewage sludge, which produced through phosphoric acid-microwave method, and commercia activated carbon (ACC) were tested in the process ... Keywords: Sewage Sludge-based Activated Carbon (ACSS), the Reactive Light Yellow, Dye Wastewater, Adsorption

Yang Lijun; Dai Qunwei

2011-02-01T23:59:59.000Z

60

Understanding the Adsorption of Polycyclic Aromatic Hydrocarbons from Aqueous Phase onto Activated Carbon.  

E-Print Network (OSTI)

??Non-competitive adsorption of polycyclic aromatic hydrocarbons (PAHs) from water onto activated carbon was studied alongside the performance of CO2-activated petroleum coke as a low-cost adsorbent. (more)

Awoyemi, Ayodeji

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Production of Activated Carbon Fibers and Engineered Forms ...  

Carbon fibers are currently produced from non-renewable fossil sources, namely coal, oil, and natural gas, through energy-intensive processes.

62

Postcombustion measures for cleaner solid fuels combustion: activated carbons for toxic pollutants removal from flue gases  

SciTech Connect

In this work the efficiency of postcombustion measures (i.e., activated carbon utilization) to achieve cleaner solid fuels combustion was evaluated. Thus, two commercial activated carbons (Calgon F400 and RWE active coke) were tested for removing toxic polluting compounds (Hg, PCBs, PCDD/Fs) from the gas phase. The effects of the pore structure and surface chemistry of the activated carbons tested were investigated, along with the sorption temperature and sulfur addition in carbon matrix. Experiments were realized in a bench-scale adsorption unit and in a commercial solid fuels-fired hot water boiler. The results showed that both activated carbons tested are suitable for the removal of toxic compounds (i.e., Hg, PCBs, PCDD/Fs) from the gas phase. Due to differences in Hg adsorptive capacity and adsorption rate, which are attributed to the diversified pore structure and surface chemistry of the activated carbons, RWE active coke is, presumably, more suitable for continuous Hg removal (i.e., activated carbon injection), while Calgon F400 is more suitable for batch one (packed column). For both activated carbons, Hg adsorption capacity was reduced with temperature increase, while it was enhanced by the presence of sulfur. Oxygen surface functional groups seem to be involved in Hg adsorption mechanism. Lactones are believed to act as potential active sites for mercury adsorption, while phenols may act as inhibitors. The removal of PCBs and PCDD/Fs from the gas phase seems not to be a problem for the activated carbons tested, regardless of their pore structure or surface chemistry. 61 refs., 23 figs., 8 tabs.

G. Skodras; I. Diamantopoulou; P. Natas; A. Palladas; G.P. Sakellaropoulos [Aristotle University of Thessaloniki, Thessaloniki (Greece). Chemical Process Engineering Laboratory, Department of Chemical Engineering

2005-12-01T23:59:59.000Z

63

Phosphorous transient enhanced diffusion suppression and activation enhancement with cluster carbon co-implantation  

SciTech Connect

Carbon co-implantation is well known as an effective method for suppressing boron/phosphorous transient enhanced diffusion (TED). Germanium pre-amorphization implantation (PAI) is usually applied prior to carbon co-implantation for suppressing channeling tail of dopants. In this study, cluster carbon was applied instead of the combination of germanium PAI and monomer carbon co-implantation prior to phosphorous implantation. Dependence of phosphorous activation and TED on amorphous layer thickness, carbon dose, carbon distribution and substrate temperature have been investigated. Cluster carbon implantation enables thick amorphous layer formation and TED suppression at the same time and low temperature implantation enhances the ability of amorphous layer formation so that shallow junction and low Rs can be achieved without Ge implantation.

Nakashima, Yoshiki; Hamamoto, Nariaki; Nagayama, Tsutomu; Koga, Yuji; Umisedo, Sei; Kawamura, Yasunori; Hashimoto, Masahiro; Onoda, Hiroshi [Nissin Ion Equipment Co., Ltd., 575 Kuze Tonoshiro-cho, Minami-ku, Kyoto, 601-8205 (Japan)

2012-11-06T23:59:59.000Z

64

Relation Between the Adsorbed Quantity and the Immersion Enthalpy in Catechol Aqueous Solutions on Activated Carbons  

E-Print Network (OSTI)

Abstract: An activated carbon, Carbochem TM PS230, was modified by chemical and thermal treatment in flow of H2, in order to evaluate the influence of the activated carbon chemical characteristics in the adsorption of the catechol. The catechol adsorption in aqueous solution was studied along with the effect of the pH solution in the adsorption process of modified activated carbons and the variation of immersion enthalpy of activated carbons in the aqueous solutions of catechol. The interaction solid-solution is characterized by adsorption isotherms analysis, at 298 K and pH 7, 9 and 11 in order to evaluate the adsorption value above and below that of the catechol pKa. The adsorption capacity of carbons increases when the solution pH decreases. The retained amount increases slightly in the reduced carbon to maximum adsorption pH and diminishes in the oxidized carbon. Similar conclusions are obtained from the immersion enthalpies, whose values increase with the solute quantity retained. In granular activated carbon (CAG), the immersion enthalpies obtained are between 21.5 and 45.7 Jg ?1 for catechol aqueous solutions in a range of 20 at 1500 mgL ?1.

Juan Carlos Moreno-pirajn; Diego Blanco; Liliana Giraldo

2011-01-01T23:59:59.000Z

65

Enhancing As sup 5+ removal by a Fe sup 2+ -treated activated carbon  

SciTech Connect

The effectiveness of pretreating an activated carbon with iron-salt solution to improve its arsenic removal capacity was studied. Various factors such as type and concentration of salt, pH, and treating time were thoroughly investigated for their effects on the improvement of removal capacity. An effort was made to identify the optimal pretreatment conditions. A ten-fold increase, over the untreated activated carbon, in removal can be achieved under the optimal pretreatment procedure. The enhancement in removal by treatment occurs by adsorption of ferrous ions and formation of arsenate complexes. Ferrous salts can also be used to regenerate the activated carbon.

Huang, C.P.; Vane, L.M.

1989-09-01T23:59:59.000Z

66

Synthesis of a high-yield activated carbon by air gasification of macadamia nut shell charcoal  

Science Conference Proceedings (OSTI)

Macadamia nut shell charcoal was heated in an inert environment to temperatures above 1000 K (carbonized), reacted with oxygen (Po{sub 2} = 2.68--11.3 kPa) at temperatures between 525 and 586 K (oxygenated), and heated again in an inert environment to temperatures above 1000 K (activated) to produce an activated carbon. Carbons produced by this process possess surface areas and iodine numbers in the range of 400--550. Overall yields of these carbons (based on the dry, raw macadamia nut shell feed) ranged from 24 to 30 wt %. Under the conditions employed in this work, the rates of chemisorption and gasification were not mass transfer limited. Initially, the gasification reaction was first-order with respect to oxygen concentration but became independent of oxygen concentration as the surface sites of the carbon became saturated with oxygen.

Dai, X.; Antal, M.J. Jr. [Univ. of Hawaii at Manoa, Honolulu, HI (United States)

1999-09-01T23:59:59.000Z

67

Mercury Emissions from Curing Concretes that Contain Fly Ash and Activated Carbon Sorbents  

Science Conference Proceedings (OSTI)

This report presents new laboratory data on the release of mercury from concrete containing fly ash and powdered activated carbon sorbents used to capture mercury. The concretes studied in this project were made with fly ashes from lignite and subbituminous coal, including fly ashes containing powdered activated carbon (PAC). Minute quantities of mercury were emitted from five concretes during the standard 28-day curing process and throughout an additional 28 days of curing for two of these concretes. Ge...

2006-09-07T23:59:59.000Z

68

Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags  

SciTech Connect

Accelerated carbonation is induced in pastes and mortars produced from alkali silicate-activated granulated blast furnace slag (GBFS)-metakaolin (MK) blends, by exposure to CO{sub 2}-rich gas atmospheres. Uncarbonated specimens show compressive strengths of up to 63 MPa after 28 days of curing when GBFS is used as the sole binder, and this decreases by 40-50% upon complete carbonation. The final strength of carbonated samples is largely independent of the extent of metakaolin incorporation up to 20%. Increasing the metakaolin content of the binder leads to a reduction in mechanical strength, more rapid carbonation, and an increase in capillary sorptivity. A higher susceptibility to carbonation is identified when activation is carried out with a lower solution modulus (SiO{sub 2}/Na{sub 2}O ratio) in metakaolin-free samples, but this trend is reversed when metakaolin is added due to the formation of secondary aluminosilicate phases. High-energy synchrotron X-ray diffractometry of uncarbonated paste samples shows that the main reaction products in alkali-activated GBFS/MK blends are C-S-H gels, and aluminosilicates with a zeolitic (gismondine) structure. The main crystalline carbonation products are calcite in all samples and trona only in samples containing no metakaolin, with carbonation taking place in the C-S-H gels of all samples, and involving the free Na{sup +} present in the pore solution of the metakaolin-free samples. Samples containing metakaolin do not appear to have the same availability of Na{sup +} for carbonation, indicating that this is more effectively bound in the presence of a secondary aluminosilicate gel phase. It is clear that claims of exceptional carbonation resistance in alkali-activated binders are not universally true, but by developing a fuller mechanistic understanding of this process, it will certainly be possible to improve performance in this area.

Bernal, Susan A., E-mail: susana.bernal@gmail.co [Materials Engineering Department, Composite Materials Group, CENM, Universidad del Valle, Cali (Colombia); Mejia de Gutierrez, Ruby [Materials Engineering Department, Composite Materials Group, CENM, Universidad del Valle, Cali (Colombia); Provis, John L., E-mail: jprovis@unimelb.edu.a [Department of Chemical and Biomolecular Engineering, University of Melbourne, Victoria 3010 (Australia); Rose, Volker [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2010-06-15T23:59:59.000Z

69

Low pressure storage of natural gas on activated carbon  

DOE Green Energy (OSTI)

The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

Wegrzyn, J.; Wiesmann, H.; Lee, T.

1992-12-31T23:59:59.000Z

70

Low pressure storage of natural gas on activated carbon  

DOE Green Energy (OSTI)

The introduction of natural gas to the transportation energy sector offers the possibility of displacing imported oil with an indigenous fuel. The barrier to the acceptance of natural gas vehicles (NGV) is the limited driving range due to the technical difficulties of on-board storage of a gaseous fuel. In spite of this barrier, compressed natural gas (CNG) vehicles are today being successfully introduced into the market place. The purpose of this work is to demonstrate an adsorbent natural gas (ANG) storage system as a viable alternative to CNG storage. It can be argued that low pressure ANG has reached near parity with CNG, since the storage capacity of CNG (2400 psi) is rated at 190 V/V, while low pressure ANG (500 psi) has reached storage capacities of 180 V/V in the laboratory. A program, which extends laboratory results to a full-scale vehicle test, is necessary before ANG technology will receive widespread acceptance. The objective of this program is to field test a 150 V/V ANG vehicle in FY 1994. As a start towards this goal, carbon adsorbents have been screened by Brookhaven for their potential use in a natural gas storage system. This paper reports on one such carbon, trade name Maxsorb, manufactured by Kansai Coke under an Amoco license.

Wegrzyn, J.; Wiesmann, H.; Lee, T.

1992-01-01T23:59:59.000Z

71

A Study of Activated Carbon Re-Entrainment from Electrostatic Precipitators  

Science Conference Proceedings (OSTI)

This report describes the research and findings from a study of the ability of several coal-fired units to capture carbon species, in particular, powdered activated carbon (PAC) injection for mercury capture, by various configurations of electrostatic precipitators (ESPs) and associated ductwork. The varied nature of the units studied offers a range of examples, indicating potential problems, solutions, and the projected performance of other units by association. Wide variations in ESP collection efficie...

2010-06-30T23:59:59.000Z

72

Chemical and biological systems for regenerating activated carbon contaminated with high explosives  

SciTech Connect

Activated carbon has been used as a substrate for efficiently removing high explosives (HEs) from aqueous and gaseous waste streams. Carbon that is saturated with HEs, however, constitutes a solid waste and is currently being stored because appropriate technologies for its treatment are not available. Because conventional treatment strategies (i.e., incineration, open burning) are not safe or will not be in compliance with future regulations, new and cost-effective methods are required for the elimination of this solid waste. Furthermore, because the purchase of activated carbon and its disposal after loading with HEs will be expensive, an ideal treatment method would result in the regeneration of the carbon thereby permitting its reuse. Coupling chemical and biological treatment systems, such as those described below, will effectively meet these technical requirements. The successful completion of this project will result in the creation of engineered commercial systems that will present safe and efficient methods for reducing the quantities of HE-laden activated carbon wastes that are currently in storage or are generated as a result of demilitarization activities. Biological treatment of hazardous wastes is desirable because the biodegradation process ultimately leads to the mineralization (e.g., conversion to carbon dioxide, nitrogen gas, and water) of parent compounds and has favorable public acceptance. These methods will also be cost- effective because they will not require large expenditures of energy and will permit the reuse of the activated carbon. Accordingly, this technology will have broad applications in the private sector and will be a prime candidate for technology transfer.

Knezovich, J.P.; Daniels, J.I. [Lawrence Livermore National Lab., CA (United States); Stenstrom, M.K.; Heilmann, H.M. [Univ. of California, Los Angeles, CA (United States). Civil and Engineering Dept.

1994-12-01T23:59:59.000Z

73

Computer: Bit Slices of a Life http://www.columbia.edu/acis/history/computer.html 1 of 466 2/27/2004 10:42 AM  

E-Print Network (OSTI)

Mexico to Washington, where I had the resources of the Library of Congress and of the Smithsonian within privilege, and a very great pleasure. --Washington, D.C. [1999] [-viii-] PREFACE to first edition THIS BOOK://www.columbia.edu/acis/history/computer.html 7 of 466 2/27/2004 10:42 AM [end of second edition] [-xii-] 56 A Very Different Washington 503

Yang, Junfeng

74

Perchlorate ion (C104) removal using an electrochemically induced catalytic reaction on modified activated carbon  

E-Print Network (OSTI)

Perchlorate is known to adversely affect the thyroid gland functions including iodide take up, thus perchlorate should be removed from drinking water. Bituminous coal-based activated carbon (AC) has been used for perchlorate removal in past years. Virgin carbon and carbon modified by oxidation with HNO3, NaOH and H2O2 were examined in this study for their ability to remove perchlorate by reduction or adsorption mechanisms. Surface functional groups formed on the modified AC (MAC) were examined with diffuse reflectance infrared spectrometry. Inhibition of perchlorate removal onto MAC by various anions ( - Cl , - 3 NO , and - 2 4 SO ) and solution pH (4.5, 7.2 and 10.5) were examined to characterize the MACs before an electrochemical reaction was performed. Surface functional groups were increased by oxidation. Groups that were found on the carbon include, but are not limited to lactone, quinine, carboxylate, and nitrogenoxygen groups. The effect of pH on removal of perchlorate by MAC was greatly affected by the change in the zero point charge (ZPC) induced on the carbon by modification. Virgin carbon also experienced difficulty in removing perchlorate when solution pH was above the ZPC. Anion inhibition varied with the modification process. - 3 NO inhibited perchlorate removal only by the virgin carbon. The other anions showed no major effects on the removal efficiency of perchlorate by the carbons. Electrochemical processes did not show favorable results in removal of perchlorate. The dominant mechanism of perchlorate removal during desorption tests was adsorption onto the carbon surfaces via ion exchange.

Langille, Meredith Caitlyn

2006-12-01T23:59:59.000Z

75

Effect of Temperature on Biological Activated Carbon Performance  

Science Conference Proceedings (OSTI)

This experiment investigated the removal of CODMn, UV254, nitrate nitrogen and turbidity by the biological activated charcoal (BAC) reactor in the temperature of 4-18C and 19 to 26C. The result showed that the CODMn removal ability of BAC was limited ... Keywords: BAC, Nitrate nitrogen, turbidity, UV254

Yang Shidong; Liu Zhidong; Cui Fengguo; Zhang Lanhe

2011-08-01T23:59:59.000Z

76

Oxygen Reduction Activity of PtxNi1-x Alloy Nanoparticles on Multiwall Carbon Nanotubes  

E-Print Network (OSTI)

PtxNi1 - x nanoparticles (Pt:Ni; 1:0, 4:1, 3:1 and 0.7:1) of ~5 nm, were synthesized on carboxylic acid-functionalized multiwall carbon nanotubes (PtxNi1 - x NPs/MWNT). The oxygen reduction reaction (ORR) activity measurements ...

Kim, Junhyung

77

Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon  

E-Print Network (OSTI)

]. It is apparent that the LDF kinetic model is applicable for a wide variety of adsorbate­adsorbent systemsAdsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon are of fundamental importance in applications of adsorbents in real situations. The adsorption/desorption char

Thomas, Mark

78

Activated carbon: Utilization excluding industrial waste treatment. (Latest citations from the Compendex database). Published Search  

SciTech Connect

The bibliography contains citations concerning the commercial use and theoretical studies of activated carbon. Topics include performance evaluations in water treatment processes, preparation and regeneration techniques, materials recovery, and pore structure studies. Adsorption characteristics for specific materials are discussed. Studies pertaining specifically to industrial waste treatment are excluded. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-06-01T23:59:59.000Z

79

Sorption of metal ions from multicomponent aqueous solutions by activated carbons produced from waste  

SciTech Connect

Activated carbons produced by thermal treatment of a mixture of sunflower husks, low-grade coal, and refinery waste were studied as adsorbents of transition ion metals from aqueous solutions of various compositions. The optimal conditions and the mechanism of sorption, as well as the structure of the sorbents, were studied.

Tikhonova, L.P.; Goba, V.E.; Kovtun, M.F.; Tarasenko, Y.A.; Khavryuchenko, V.D.; Lyubchik, S.B.; Boiko, A.N. [National Academy of Science Ukraine, Kiev (Ukraine). Institute of Coal Chemistry

2008-08-15T23:59:59.000Z

80

Thermodynamic properties of adsorbed mixtures of benzene and cyclohexane on graphitized carbon and activated charcoal at 30/degree/c  

SciTech Connect

Experimental data at 30/degree/C are reported for the adsorption of mixtures of benzene and cyclohexane on two types of carbon surface: graphitized carbon and activated charcoal. The properties of the adsorbed solution approach those of bulk liquid at vapor saturation for graphitized carbon, but not for activated charcoal. The mixtures adsorbed on graphitized carbon are nonideal, and the deviations from ideality increase with surface coverage. For activated charcoal, the adsorbed mixtures are nearly ideal at all coverages. Mixture behavior for both adsorbents can be predicted without using experimental data for the adsorbed mixtures. 11 refs.

Myers, A.L.; Minka, C.; Ou, D.Y.

1982-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES IN 383 NEARBY GALAXIES. I. THE SOURCE CATALOG  

SciTech Connect

The Chandra data archive is a treasure for various studies, and in this paper we exploit this valuable resource to study the X-ray point source populations in nearby galaxies. By 2007 December 14, 383 galaxies within 40 Mpc with isophotal major axis above 1 arcmin had been observed by 626 public ACIS observations, most of which were for the first time analyzed by this survey to study the X-ray point sources. Uniform data analysis procedures are applied to the 626 ACIS observations and lead to the detection of 28,099 point sources, which belong to 17,599 independent sources. These include 8700 sources observed twice or more and 1000 sources observed 10 times or more, providing us a wealth of data to study the long-term variability of these X-ray sources. Cross-correlation of these sources with galaxy isophotes led to 8519 sources within the D{sub 25} isophotes of 351 galaxies, 3305 sources between the D{sub 25} and 2D{sub 25} isophotes of 309 galaxies, and additionally 5735 sources outside 2D{sub 25} isophotes of galaxies. This survey has produced a uniform catalog, by far the largest, of 11,824 X-ray point sources within 2D{sub 25} isophotes of 380 galaxies. Contamination analysis using the log N-log S relation shows that 74% of sources within 2D{sub 25} isophotes above 10{sup 39} erg s{sup -1}, 71% of sources above 10{sup 38} erg s{sup -1}, 63% of sources above 10{sup 37} erg s{sup -1}, and 56% of all sources are truly associated with galaxies. Meticulous efforts have identified 234 X-ray sources with galactic nuclei of nearby galaxies. This archival survey leads to 300 ultraluminous X-ray sources (ULXs) with L{sub X} (0.3-8 keV) {>=} 2 x 10{sup 39} erg s{sup -1}within D{sub 25} isophotes, 179 ULXs between D{sub 25} and 2D{sub 25} isophotes, and a total of 479 ULXs within 188 host galaxies, with about 324 ULXs truly associated with host galaxies based on the contamination analysis. About 4% of the sources exhibited at least one supersoft phase, and 70 sources are classified as ultraluminous supersoft sources with L{sub X} (0.3-8 keV) {>=} 2 x 10{sup 38} erg s{sup -1}. With a uniform data set and good statistics, this survey enables future works on various topics, such as X-ray luminosity functions for the ordinary X-ray binary populations in different types of galaxies, and X-ray properties of galactic nuclei.

Liu Jifeng [National Astronomical Observatories of China, 20 Datun Rd, Chaoyang, Beijing 100012 (China); Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 (United States)

2011-01-15T23:59:59.000Z

82

The Quiescent X-Ray Spectrum of the Neutron Star in Cen X-4 Observed with Chandra/ACIS-S  

E-Print Network (OSTI)

We report on spectral and intensity variability analysis from a Chandra/ACIS-S observation of the transient, type-I X-ray bursting low-mass X-ray binary Cen X-4. The quiescent X-ray spectrum during this observation is statistically identical to one observed previously with Beppo/SAX, and close, but not identical, to one observed previously with ASCA. The X-ray spectrum is best described as a pure Hydrogen atmosphere thermal spectrum plus a power-law component that dominates the spectrum above 2 keV. The best-fit radius of the neutron star is r=12.9+/-2.6 (d/1.2 kpc) km if the interstellar absorption is fixed at the value implied by the optical reddening. Allowing the interstellar absorption to be a free parameter yields r=19+45-10 (d/1.2 kpc) km (90% confidence). The thermal spectrum from the neutron star surface is inconsistent with a solar metallicity. We find a 3sigma upper-limit of root-mean-square variability <18% (0.2-2.0 keV; 0.0001-1 Hz) during the observation. On the other hand, the 0.5-10.0 keV luminosity decreased by 40+/-8% in the 4.9 years between the Asca and Chandra observations. This variability can be attributed to the power-law component. Moreover, we limit the variation in thermal temperature to <10% over these 4.9 years. The stability of the thermal temperature and emission area radius supports the interpretation that the quiescent thermal emission is due to the hot neutron star core.

Robert E. Rutledge; Lars Bildsten; Edward F. Brown; George G. Pavlov; Vyacheslav E. Zavlin

2000-12-19T23:59:59.000Z

83

Low pressure storage of methane on interlayered clays for potential vehicular applications. [Comparison with activated carbon  

SciTech Connect

Inexpensive, high surface area sorbents were prepared by treating naturally occurring hectorite and bentonite clays with aluminum chlorohydroxide, zirconium chlorohydroxide, or silica-sol solutions. Data were obtained comparing these interlayered clays with activated carbons and zeolites as sorbents for the low pressure storage of methane onboard natural gas powered vehicles. Methane sorption at pressures up to 7 MPa (1000 psig) resembled a Langmuir-type curve with a saturation sorption equal to about six micromoles of methane per square meter of surface area. Even at low pressures, methane sorption capacity was largely determined by surface area. At 2.2 MPa (300 psig), the best interlayered clay sorbed less than one-third the methane sorbed by an equal volume of Witco grade 9JXC activated carbon. Both the activated carbons and interlayered clays exhibited excellent release-on-demand capability. Driving ranges were calculated for a 2500-lb automobile equipped with three, 35-liter fuel tanks filled with sorbent and pressurized to 3.6 MPa (500 psig) with methane. Enough methane was stored with the best interlayered clay to travel 41 km (25 mi). With 9JXC carbon, one could travel 82 km (51 mi). The same vehicle equipped with high pressure (2400 psig) fuel tanks having the same volume but containing no sorbent would have a 190 km (118 mi) range.

Innes, R.A.; Lutinski, F.E.; Occelli, M.L.; Kennedy, J.V.

1984-07-01T23:59:59.000Z

84

Development of a CO2 Sequestration Module by Integrating Mineral Activation and Aqueous Carbonation  

SciTech Connect

Mineral carbonation is a promising concept for permanent CO{sub 2} sequestration due to the vast natural abundance of the raw materials and the permanent storage of CO{sub 2} in solid form as carbonates. The sequestration of CO{sub 2} through the employment of magnesium silicates--olivine and serpentine--is beyond the proof of concept stage. For the work done in this project, serpentine was chosen as the feedstock mineral due to its abundance and availability. Although the reactivity of olivine is greater than that of serpentine, physical and chemical treatments have been shown to increase greatly the reactivity of serpentine. The primary drawback to mineral carbonation is reaction kinetics. To accelerate the carbonation, aqueous processes are preferred, where the minerals are first dissolved in solution. In aqueous carbonation, the key step is the dissolution rate of the mineral, where the mineral dissolution reaction is likely to be surface-controlled. The relatively low reactivity of serpentine has warranted research into physical and chemical treatments that have been shown to greatly increase its reactivity. The use of sulfuric acid as an accelerating medium for the removal of magnesium from serpentine has been investigated. To accelerate the dissolution process, the mineral can be ground to very fine particle size, <37 {micro}m, but this is a very energy-intensive process. Previous work in our laboratory showed that chemical surface activation helps to dissolve magnesium from the serpentine (of particle size {approx} 100 {micro}m) and that the carbonation reaction can be conducted under mild conditions (20 C and 4.6 MPa) compared to previous studies that required >185 C, >13 MPa, and <37 {micro}m particle size. This work also showed that over 70% of the magnesium can be extracted at ambient temperature, leaving an amorphous silica with surface area of about 330 m{sup 2}/g. The overall objective of this research program is to optimize the active carbonation process to design an integrated CO{sub 2} sequestration module. A parametric study was conducted to optimize conditions for mineral activation, in which serpentine and sulfuric acid were reacted. The study focused on the effects of varying the acid concentration, particle size, and reaction time. The reaction yield was as high as 48% with a 5 M acid concentration, with lower values directly corresponding to lower acid concentrations. Significant improvements in the removal of moisture, as well as in the dissolution, can be realized with comminution of particles to a D{sub 50} less than 125 ?m. A minimum threshold of 3 M concentration of sulfuric acid was found to exist in terms of removal of moisture from serpentine. The effect of reaction time was insignificant. The treated serpentine had low BET surface areas. Results demonstrated that acid concentration provided primary control on the dissolution via the removal of water, which is closely correlated with the extraction of magnesium from serpentine. Single-variable experimentation demonstrated dissolution enhancements with increased reaction time and temperature. An increase in magnesium dissolution of 46% and 70%, relative to a baseline test, occurred for increased reaction time and temperature, respectively. In addition to the challenges presented by the dissolution of serpentine, another challenge is the subsequent carbonation of the magnesium ions. A stable hydration sphere for the magnesium ion reduces the carbonation kinetics by obstructing the formation of the carbonation products. Accordingly, this research has evaluated the solubility of carbon dioxide in aqueous solution, the interaction between the dissociation products of carbon dioxide, and the carbonation potential of the magnesium ion.

George Alexander; Parvana Aksoy; John Andresen; Mercedes Maroto-Valer; Harold Schobert

2006-08-14T23:59:59.000Z

85

Aligned carbon nanotube with electro-catalytic activity for oxygen reduction reaction  

DOE Patents (OSTI)

A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is then introduced to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes over the substrate with a catalytically active transition metal incorporated throughout the nanotubes.

Liu, Di-Jia (Naperville, IL); Yang, Junbing (Westmont, IL); Wang, Xiaoping (Naperville, IL)

2010-08-03T23:59:59.000Z

86

Field Testing of Activated Carbon Injection Options for Mercury Control at TXU's Big Brown Station  

NLE Websites -- All DOE Office Websites (Extended Search)

Field TesTing oF AcTivATed cArbon Field TesTing oF AcTivATed cArbon injecTion opTions For Mercury conTrol AT TXu's big brown sTATion Background The 2005 Clean Air Mercury Rule will require significant reductions in mercury emissions from coal-fired power plants. Lignite coal is unique because of its highly variable ash content (rich in alkali and alkaline-earth elements), high moisture levels, low chlorine content, and high calcium content. Unique to Texas lignite coals are relatively high iron and selenium concentrations. When combusting Texas lignite coals, up to 80 percent of the mercury in the flue gas is present as elemental mercury, which is not readily captured by downstream pollution control devices. To better understand the factors that influence mercury control at units firing

87

Solution-reactor-produced Mo-99 using activated carbon to remore I-131  

SciTech Connect

The production of {sup 99}Mo in a solution reactor was explored. Activated charcoal was used to filter the {sup 131}I contaminant from an irradiated fuel solution. Gamma spectroscopy confirmed that the activated carbon trapped a significant amount of {sup 131}I, as well as notable amounts of {sup 133}Xe, {sup 105}Rb, and {sup 140}Ba; the carbon trapped a diminutive amount of {sup 99}Mo. The results promote the idea of solution-reactor-produced {sup 99}Mo. Solution reactors are favorable both energetically and environmentally. A solution reactor could provide enough {sup 99}Mo/{sup 99m}Te to support both the current and future radiopharmaceutical needs of the U.S.

Kitten, S.; Cappiello, C.

1998-06-01T23:59:59.000Z

88

PERGAMON Carbon 38 (2000) 17571765 High temperature hydrogen sulfide adsorption on activated  

E-Print Network (OSTI)

directly, as in a traditional H , 23.1% CO, 5.8% CO , 6.6% H O, 0.5% H S, and2 2 2 2 coal-fired power plant was activated using coal-fired power plants. With improved gas turbine tech- steam by replacing the N flow temperature was examined as a2 function of carbon surface chemistry (oxidation, thermal desorption, and metal

Cal, Mark P.

89

Mercury Leachability From Concretes That Contain Fly Ashes and Activated Carbon Sorbents  

Science Conference Proceedings (OSTI)

This report presents new laboratory data on the leaching of mercury from concrete that contains fly ash and powdered activated carbon (PAC) sorbents used to capture mercury. The concretes studied during this project were made with fly ashes from lignite and subbituminous coal, including fly ashes containing PAC. Only very low levels of mercuryless than 5 parts per trillionwere leached from the fly ash concretes in both 18-hour and 7-day laboratory leach tests.

2007-07-18T23:59:59.000Z

90

OFF-GAS MERCURY CONTROL USING SULFUR-IMPREGNATED ACTIVATED CARBON TEST RESULTS  

SciTech Connect

Several laboratory and pilot-scale tests since the year 2000 have included demonstrations of off-gas mercury control using fixed bed, sulfur-impregnated activated carbon. These demonstrations have included operation of carbon beds with gas streams containing a wide range of mercury and other gas species concentrations representing off-gas from several U.S. Department of Energy (DOE) mixed waste treatment processes including electrical resistance heated (joule-heated) glass melters, fluidized bed calciners, and fluidized bed steam reformers. Surrogates of various DOE mixed waste streams (or surrogates of offgas from DOE mixed waste streams) including INL sodium bearing waste (SBW), liquid low activity waste (LAW) from the Pacific Northwest National Laboratory, and liquid waste from Savannah River National Laboratory (Tank 48H waste) have been tested. Test results demonstrate mercury control efficiencies up to 99.999%, high enough to comply with the Hazardous Waste (HWC) Combustor Maximum Achievable Control Technology (MACT) standards even when the uncontrolled off-gas mercury concentrations exceed 400,000 ug/dscm (at 7% O2), and confirm carbon bed design parameters for such high efficiencies. Results of several different pilot-scale and engineering-scale test programs performed over several years are presented and compared.

Nick Soelberg

2007-05-01T23:59:59.000Z

91

Preparation of Activated Carbon from Oil Sands Coke by Chemical and Physical Activation Techniques.  

E-Print Network (OSTI)

??Oil sands coke is a by-product resulting from the upgrading of heavy crude bitumen to light synthetic oil. This research investigates the preparation of activated (more)

Morshed, Golam

2012-01-01T23:59:59.000Z

92

On the reactive adsorption of ammonia on activated carbons modified by impregnation with inorganic compounds  

SciTech Connect

Ammonia adsorption was studied under dynamic conditions, at room temperature, on activated carbons of different origins (coal-based, wood-based and coconut-shell-based carbons) before and after their impregnation with various inorganic compounds including metal chlorides, metal oxides and polycations. The role of humidity was evaluated by running tests in both dry and moist conditions. Adsorbents were analyzed before and after exposure to ammonia by thermal analyses, sorption of nitrogen, potentiometric titration, X-ray diffraction and FTIR spectroscopy. Results of breakthrough tests show significant differences in terms of adsorption capacity depending on the parent carbon, the impregnates and the experimental conditions. It is found that surface chemistry governs ammonia adsorption on the impregnated carbons. More precisely, it was demonstrated that a proper combination of the surface pH, the strength, type and amount of functional groups present on the adsorbents' surface is a key point in ammonia uptake. Water can have either positive or negative effects on the performance of adsorbents. It can enhance NH{sub 3} adsorption capacity since it favors ammonia dissolution and thus enables reaction between ammonium ions and carboxylic groups from the carbons' surface. On the other hand, water can also reduce the performance from the strength of adsorption standpoint. It promotes dissolution of ammonia and that ammonia is first removed from the system when the adsorbent bed is purged with air. Ammonia, besides adsorption by van der Waals forces and dissolution in water, is also retained on the surface via reactive mechanisms such as acid-base reactions (Bronsted and Lewis) or complexation. Depending on the materials used and the experimental conditions, 6-47% ammonia adsorbed is strongly retained on the surface even when the bed is purged with air.

Bandosz, T.J.; Petit, C. [CUNY City College, New York, NY (United States). Dept. of Chemistry

2009-10-15T23:59:59.000Z

93

THE CHEMISTRY OF THE REACTION OF URANIUM HEXAFLUORIDE WITH ACTIVATED CARBON  

SciTech Connect

The effects of temperature, time and other variables on the rate and extent of reaction between UF/sub 6/ and various types, grades and particle sizes of commercial activated carbon have been studied experimentally. It is shown that both hydrolysis and reduction of the UF/sub 6/ occur, the latter more slowly than the former. Reduction leads to the formation of a mixture of fluorocarbons ranging from CF/sub 4/ to a wax-like maternial volatile only above 250 deg C. There is also evidence for the adsorption of UF/sub 6/ on an undetermined substrate. (auth)

Wilson, T.P.; Schuman, S.C.; Simons, E.L.

1946-04-12T23:59:59.000Z

94

Solution-reactor-produced-{sup 99}Mo using activated carbon to remove {sup 131}I  

SciTech Connect

This research explores the idea of producing {sup 99}Mo in a solution reactor. The Solution High Energy Burst Assembly (SHEBA), located at the Los Alamos Critical Assembly Facility, was used to facilitate this study. The goal of this study was to build on work previously completed and to investigate a possible mode of radioactive contaminant removal prior to a {sup 99}Mo extraction process. Prior experiments, performed using SHEBA and a single-step sorption process, showed a significant amount of {sup 131}I present along with the {sup 99}Mo on the alumina that was used to isolate the {sup 99}Mo. A high concentration of {sup 131}I and/or other contaminants present in a sample prohibits the Food and Drug Administration from approving an extraction of that nature for radiopharmaceutical use. However, if it were possible to remove the {sup 131}I and other contaminants prior to a {sup 99}Mo extraction, a simple column extraction process might be feasible. Activated charcoal was used to try to filter the {sup 131}I contaminant from an irradiated fuel solution. Gamma spectroscopy confirmed that the activated carbon trapped a significant amount of the {sup 131}I, as well as notable amounts of {sup 133}Xe, {sup 105}Rb, and {sup 140}Ba. Most importantly, the carbon traps a diminutive amount of {sup 99}Mo.

Kitten, S.; Cappiello, C. [Los Alamos National Lab., NM (United States)

1998-09-01T23:59:59.000Z

95

A Chandra/ACIS Study of 30 Doradus II. X-ray Point Sources in the Massive Star Cluster R136 and Beyond  

E-Print Network (OSTI)

We have studied the X-ray point source population of the 30 Doradus star-forming complex in the Large Magellanic Cloud using high-spatial-resolution X-ray images and spatially-resolved spectra obtained with the Advanced CCD Imaging Spectrometer (ACIS) aboard the Chandra X-ray Observatory. Here we describe the X-ray sources in a 17 ? 17 ? field centered on R136, the massive star cluster at the center of the main 30 Dor nebula. We detect 20 of the 32 Wolf-Rayet stars in the ACIS field. R136 is resolved at the subarcsecond level into almost 100 X-ray sources, including many typical O3O5 stars as well as a few bright X-ray sources previously reported. Over two orders of magnitude of scatter in LX is seen among R136 O stars, suggesting that X-ray emission in the most massive stars depends critically on the details of wind properties and binarity of each system, rather than reflecting the widely-reported characteristic value LX/Lbol ? 10 ?7. Such a canonical ratio may exist for single massive stars in R136, but our data are too shallow to confirm this relationship. Through this and future X-ray studies of 30 Doradus, the complete life cycle of a massive stellar cluster can be revealed. Subject headings: HII regions ? Magellanic Clouds ? open clusters and associations: individual (R 136) ? X-rays: individual (30 Doradus) ?stars: Wolf-Rayet ? X-rays: stars 1.

Leisa K. Townsley; Patrick S. Broos; Eric D. Feigelson; Gordon P. Garmire; Konstantin V

2006-01-01T23:59:59.000Z

96

Biofiltration of benzene contaminated air streams using compost-activated carbon filter media  

Science Conference Proceedings (OSTI)

Three laboratory-scale biofilter columns were operated for 81 days to investigate the removal of benzene from a waste gas stream. The columns contain a mixture of yard waste and sludge compost as biomedia. Different amounts of granular activated carbon (GAC) are mixed with the compost in two of the three columns to evaluate the extent to which biofilter performance can be enhanced. The effects of different operating conditions on the performance of the removal of benzene from air were evaluated. More than 90% removal efficiency was observed for an influent benzene concentration of about 75 ppm and an air flow rate of 0.3 L/min. in all 3 columns under steady-state conditions. Under most cases of shock loading conditions, such as a sudden increase in the air flow rate, or the benzene concentration in the influent, the biofilters containing GAC provided higher removal efficiencies and more stable operation than the biofilter containing compost only.

Zhu, L.; Kocher, W.M. [Cleveland State Univ., OH (United States). Civil Engineering Dept.; Abumaizar, R.J. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Mechanical Engineering

1998-12-31T23:59:59.000Z

97

Polymer flotation and activated carbon adsorption treatment for in situ tar sand process water  

SciTech Connect

Tar sand deposits in the United States are estimated to exceed thirty billion barrels, and offer long term potential for satisfying future energy needs. At present there is no commercial scale tar sand extraction industry in the United States, although several bench and pilot scale research projects have been completed. Three of the larger field scale experiments were completed by the Department of Energy (DOE) at a site near Vernal, Utah. The first two of these efforts involved in situ combustion while the third used steam drive. This paper reviews some of the flotation configurations which were used to generate a large (350 L) volume of treated effluent as well as describing some toxicology and analytical chemistry protocols used to characterize these fluids. Additional emphasis is placed upon a series of activated carbon adsorption experiments undertaken to detoxify the flotation effluents.

Mc Ternan, W.F.; Kocornik, D.J.; Nolan, B.T.; Blanton, W.E.; Boardman, G.D.

1985-01-01T23:59:59.000Z

98

Comparison of equilibria and kinetics of high surface area activated carbon produced from different precursors and by different chemical treatments  

Science Conference Proceedings (OSTI)

Activated carbons prepared by chemical activation of coal and macadamia nutshell precursors with KOH and ZnCl{sub 2} have been studied in terms of their equilibrium and dynamic characteristics. These characteristics were then related to the micropore properties: surface area, volume, and half-width. Volumetric techniques were used for equilibria characterization and an FT-IR batch adsorber for dynamics. Carbons activated by KOH resulted in a more microporous structure, while those activated by zinc chloride were more mesoporous. High surface area samples were further studied in terms of their methane adsorption uptake. It was found that nutshell-derived activated carbons have a higher adsorption capacity per unit mass than those derived from coal; however, this was offset by lower particle density (mass/volume). High-pressure (2 GPa) pelletization of the carbons used for dynamic testing had a detrimental effect on capacity, presumably from pore collapse. Dynamic characteristics were found to be rather similar between the samples, with those treated with KOH displaying slower adsorption time scales.

Ahmadpour, A.; King, B.A.; Do, D.D. [Univ. of Queensland, St. Lucia, Queensland (Australia)

1998-04-01T23:59:59.000Z

99

Microfluidic sieve using intertwined, free-standing carbon nanotube mesh as active medium  

DOE Patents (OSTI)

A microfluidic sieve having a substrate with a microfluidic channel, and a carbon nanotube mesh. The carbon nanotube mesh is formed from a plurality of intertwined free-standing carbon nanotubes which are fixedly attached within the channel for separating, concentrating, and/or filtering molecules flowed through the channel. In one embodiment, the microfluidic sieve is fabricated by providing a substrate having a microfluidic channel, and growing the intertwined free-standing carbon nanotubes from within the channel to produce the carbon nanotube mesh attached within the channel.

Bakajin, Olgica (San Leandro, CA); Noy, Aleksandr (Belmont, CA)

2007-11-06T23:59:59.000Z

100

Carbon-Supported IrNi Core-Shell Nanoparticles: Synthesis Characterization and Catalytic Activity  

Science Conference Proceedings (OSTI)

We synthesized carbon-supported IrNi core-shell nanoparticles by chemical reduction and subsequent thermal annealing in H{sub 2}, and verified the formation of Ir shells on IrNi solid solution alloy cores by various experimental methods. The EXAFS analysis is consistent with the model wherein the IrNi nanoparticles are composed of two-layer Ir shells and IrNi alloy cores. In situ XAS revealed that the Ir shells completely protect Ni atoms in the cores from oxidation or dissolution in an acid electrolyte under elevated potentials. The formation of Ir shell during annealing due to thermal segregation is monitored by time-resolved synchrotron XRD measurements, coupled with Rietveld refinement analyses. The H{sub 2} oxidation activity of the IrNi nanoparticles was found to be higher than that of a commercial Pt/C catalyst. This is predominantly due to Ni-core-induced Ir shell contraction that makes the surface less reactive for IrOH formation, and the resulting more metallic Ir surface becomes more active for H{sub 2} oxidation. This new class of core-shell nanoparticles appears promising for application as hydrogen anode fuel cell electrocatalysts.

K Sasaki; K Kuttiyiel; L Barrio; D Su; A Frenkel; N Marinkovic; D Mahajan; R Adzic

2011-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Activated carbon: Utilization excluding industrial waste treatment. (Latest citations from the EI Compendex*plus database). Published Search  

SciTech Connect

The bibliography contains citations concerning the commercial use and theoretical studies of activated carbon. Topics include performance evaluations in water treatment processes, preparation and regeneration techniques, materials recovery, and pore structure studies. Adsorption characteristics for specific materials are discussed. Studies pertaining specifically to industrial waste treatment are excluded. (Contains 250 citations and includes a subject term index and title list.)

Not Available

1993-11-01T23:59:59.000Z

102

Commercial Activated Carbon for the Catalytic Production of Hydrogen via the Sulfur-Iodine Thermochemical Water Splitting Cycle  

DOE Green Energy (OSTI)

Eight activated carbon catalysts were examined for their catalytic activity to decompose hydroiodic acid (HI) to produce hydrogen; a key reaction in the sulfur-iodine (S-I) thermochemical water splitting cycle. Activity was examined under a temperature ramp from 473 to 773 K. No statistically significant correlation was found between catalyst sample properties and catalytic activity. Four of the eight samples were examined for one week of continuous operation at 723 K. All samples appeared to be stable over the period of examination.

Daniel M. Ginosar; Lucia M. Petkovic; Kyle C. Burch

2011-07-01T23:59:59.000Z

103

New Carbon Activation Process for Increased Surface Accessibility in Electrochemical Capacitors  

DOE Patents (OSTI)

A process for making carbon film or powder suitable for double capacitor electrodes having a capacitance of up to about 300 F/cm{sup 3} is disclosed. This is accomplished by treating in aqueous nitric acid for a period of about 5 to 15 minutes thin carbon films obtained by carbonizing carbon-containing polymeric material having a high degree of molecular directionality, such as polyimide film, then heating the treated carbon film in a non-oxidizing atmosphere at a non-graphitizing temperature of at least 350 C for about 20 minutes, and repeating alternately the nitric acid step and the heating step from 7 to 10 times. Capacitors made with this carbon may find uses ranging from electronic devices to electric vehicle applications.

Doughty, Daniel H.; Eisenmann, Erhard T.

1999-03-16T23:59:59.000Z

104

Carbon dioxide adsorption and activation on Ceria (110): A density functional theory study  

E-Print Network (OSTI)

Ceria (CeO2) is a promising catalyst for the reduction of carbon dioxide (CO2) to liquid fuels and commodity chemicals, in part because of its high oxygen storage capacity, yet the fundamentals of CO2 adsorption and initial activation on CeO2 surfaces remain largely unknown. We use density functional theory, corrected for onsite Coulombic interactions (DFT+U), to explore various adsorption sites and configurations for CO2 on stoichiometric and reduced CeO2 (110). Our model of reduced CeO2 (110) contains oxygen vacancies at the topmost atomic layer and undergoes surface reconstruction upon introduction of these vacancies. We find that CO2 adsorption on reduced CeO2 (110) is thermodynamically favored over the corresponding adsorption on stoichiometric CeO2 (110). The most stable adsorption configuration consists of CO2 adsorbed parallel to the reduced CeO2 (110) surface, with the molecule situated near the site of the oxygen vacancy. Structural changes in the CO2 molecule are also observed upon adsorption, so t...

Cheng, Zhuo; Lo, Cynthia S

2012-01-01T23:59:59.000Z

105

Thermal removal of mercury in spent powdered activated carbon from TOXECON process  

SciTech Connect

This research developed and demonstrated a technology to liberate Hg adsorbed onto powdered activated carbon (PAC) by the TOXECON process using pilot-scale high temperature air slide (HTAS) and bench-scale thermogravimetric analyzer (TGA). The HTAS removed 65, 83, and 92% of Hg captured with PAC when ran at 900{sup o}F, 1,000{sup o}F, and 1,200 {sup o}F, respectively, while the TGA removed 46 and 100% of Hg at 800 {sup o}F and 900{sup o}F, respectively. However, addition of CuO-Fe{sub 2}O{sub 3} mixture and CuCl catalysts enhanced Hg removal and PAC regeneration at lower temperatures. CuO-Fe{sub 2}O{sub 3} mixture performed better than CuCl in PAC regeneration. Scanning electron microscopy images and energy dispersive X-ray analysis show no change in PAC particle aggregation or chemical composition. Thermally treated sorbents had higher surface area and pore volume than the untreated samples indicating regeneration. The optimum temperature for PAC regeneration in the HTAS was 1,000{sup o}F. At this temperature, the regenerated sorbent had sufficient adsorption capacity similar to its virgin counterpart at 33.9% loss on ignition. Consequently, the regenerated PAC may be recycled back into the system by blending it with virgin PAC.

Okwadha, G.D.O.; Li, J.; Ramme, B.; Kollakowsky, D.; Michaud, D. [University of Wisconsin, Milwaukee, WI (United States)

2009-10-15T23:59:59.000Z

106

Chandra ACIS Survey of M33 (ChASeM33): X-ray Imaging Spectroscopy of M33SNR21, the brightest X-ray Supernova Remnant in M33  

E-Print Network (OSTI)

We present and interpret new X-ray data for M33SNR21, the brightest X-ray supernova remnant (SNR) in M33. The SNR is in seen projection against (and appears to be interacting with) the bright Hii region NGC592. Data for this source were obtained as part of the Chandra ACIS Survey of M33 (ChASeM33) 1

Terrance J. Gaetz; William P. Blair; John P. Hughes; P. Frank Winkler; Knox S. Long; Thomas G; Benjamin Williams; Richard J. Edgar; Parviz Ghavamian; Paul P. Plucinsky; Manami Sasaki; Robert P. Kirshner; Miguel Avillez; Dieter Breitschwerdt

2007-01-01T23:59:59.000Z

107

Valuation of carbon capture and sequestration under Greenhouse gas regulations: CCS as an offsetting activity  

SciTech Connect

When carbon capture and sequestration is conducted by entities that are not regulated, it could be counted as an offset that is fungible in the market or sold to a voluntary market. This paper addresses the complications that arise in accounting for carbon capture and sequestration as an offset, and methodologies that exist for accounting for CCS in voluntary and compliance markets. (author)

Lokey, Elizabeth

2009-08-15T23:59:59.000Z

108

Modeling the heat and mass transfers in temperature-swing adsorption of volatile organic compounds onto activated carbons  

Science Conference Proceedings (OSTI)

A theoretical model was built to simulate the adsorption of volatile organic compounds (VOCs) onto activated carbons in a fixed bed. This model was validated on a set of experimental data obtained for the adsorption of acetone, ethyl formate, and dichloromethane onto five commercial activated carbons. The influence of operating conditions was modeled with various VOC contents at the inlet of the adsorber and superficial velocities of the gas-phase from 0.14 to 0.28 m.s{sup -1}. Breakthrough times and maximum temperature rises were computed with a coefficient of determination of 0.988 and 0.901, respectively. The simulation was then extended to the adsorption of mixtures of VOCs. From the comparison of simulation and experimental results, the advantage of accounting for dispersions of heat and mass is shown and the importance in taking into account the temperature effect on the equilibrium data is demonstrated. 29 refs., 6 figs., 1 tab.

Sylvain Giraudet; Pascaline Pre; Pierre Le Cloirec [Ecole des Mines de Nantes, Nantes (France)

2009-02-15T23:59:59.000Z

109

Modeling polychlorinated biphenyl mass transfer after amendment of contaminated sediment with activated carbon  

SciTech Connect

The sorption kinetics and concentration of polychlorinated biphenyls (PCBs) in historically polluted sediment is modeled to assess a remediation strategy based on in situ PCB sequestration by mixing with activated carbon (AC). The authors extend their evaluation of a model based on intraparticle diffusion by including a biomimetic semipermeable membrane device (SPMD) and a first-order degradation rate for the aqueous phase. The model predictions are compared with the previously reported experimental PCB concentrations in the bulk water phase and in SPMDs. The simulated scenarios comprise a marine and a freshwater sediment, four PCB congeners, two AC grain sizes, four doses of AC, and comparison with laboratory experiments. The modeling approach distinguishes between two different sediment particles types: a light-density fraction representing carbonaceous particles such as charcoal, coal, coke, cenospheres, or wood, and a heavy-density fraction representing the mineral phase with coatings of organic matter. A third particle type in the numerical model is AC. The model qualitatively reproduces the observed shifts in the PCB distribution during repartitioning after AC amendment but overestimates the overall effect of the treatment in reducing aqueous and SPMD concentrations of PCBs by a factor of 2-6. For the AC application in sediment, competitive sorption of the various solutes apparently requires a reduction by a factor of 16 of the literature values for the AC-water partitioning coefficient measured in pure aqueous systems. With this correction, model results and measurements agree within a factor of 3. After AC amendment is homogeneously mixed into the sediment and then left undisturbed, aqueous PCB concentrations tend toward the same reduction after 5 years. 19 refs., 5 figs., 4 tabs.

David Werner; Upal Ghosh; Richard G. Luthy [University of Newcastle upon Tyne, Newcastle (United Kingdom)

2006-07-01T23:59:59.000Z

110

Development of a CO2 Sequestration Module by Integrating Mineral Activation and Aqueous Carbonation  

Science Conference Proceedings (OSTI)

Mineral carbonation is a promising concept for permanent CO{sub 2} sequestration due to the vast natural abundance of the raw materials and the permanent storage of CO{sub 2} in solid form as carbonates. The sequestration of CO{sub 2} through the employment of magnesium silicates--olivine and serpentine--is beyond the proof of concept stage. For the work done in this project, serpentine was chosen as the feedstock mineral due to its abundance and availability. Although the reactivity of olivine is greater than that of serpentine, physical and chemical treatments have been shown to increase greatly the reactivity of serpentine. The primary drawback to mineral carbonation is reaction kinetics. To accelerate the carbonation, aqueous processes are preferred, where the minerals are first dissolved in solution. In aqueous carbonation, the key step is the dissolution rate of the mineral, where the mineral dissolution reaction is likely to be surface-controlled. The relatively low reactivity of serpentine has warranted research into physical and chemical treatments that have been shown to greatly increase its reactivity. The use of sulfuric acid as an accelerating medium for the removal of magnesium from serpentine has been investigated. To accelerate the dissolution process, the mineral can be ground to very fine particle size, 185 C, >13 MPa, and control on the dissolution via the removal of water, which is closely correlated with the extraction of magnesium from serpentine. Single-variable experimentation demonstrated dissolution enhancements with increased reaction time and temperature. An increase in magnesium dissolution of 46% and 70%, relative to a baseline test, occurred for increased reaction time and temperature, respectively. In addition to the challenges presented by the dissolution of serpentine, another challenge is the subsequent carbonation of the magnesium ions. A stable hydration sphere for the magnesium ion reduces the carbonation kinetics by obstructing the formation of the carbonation products. Accordingly, this research has evaluated the solubility of carbon dioxide in aqueous solution, the interaction between the dissociation products of carbon dioxide, and the carbonation potential of the magnesium ion.

George Alexander; Parvana Aksoy; John Andresen; Mercedes Maroto-Valer; Harold Schobert

2006-08-14T23:59:59.000Z

111

Removal of RDX and HMX from an artificial groundwater by granular activated carbon  

E-Print Network (OSTI)

Granular activated carbon (GAC) adsorption was efficient at removing high explosive contaminants such as Hexahydro-1,3,5-trinitro-1,3,5-tririne (RDX) and Octahydro-1,3,5,7-tetrritro-1,3,5,7-tetruocine (HMX) from an artificial groundwater (AGW). A completely mixed batch reactor (CMBR) system was selected for all rate and isotherm experiments. A number of rate and isotherm experiments were conducted to measure performance in the removal of RDX and HMX using GAC depending on dissolved oxygen, natural organic matter (NOM) preloading and GAC pretreatment. The investigation of competitive adsorption of RDX and Cr(VI) on GAC was conducted. In addition, IAST model predictions were made for RDX and HMX bisolute isotherms. When oxygen was excluded in the experimental system, there was enhancement in the removal of RDX from AGW using Fe[] pretreated GAC. However, in spite of this enhancement, it was still lower than the level of removal using virgin GAC as discussed below. According to the screening experiment results, dissolved Fe[]alone could not chemically reduce RDX. Despite expectations to the contrary based on the screening results, there was indeed some increase in the removal of RDX by Fe[] pretreated GAC under anaerobic conditions. It was suspected that in regard to the removal of RDX using GAC, there may have been chemical reactions occurring between RDX and the chemically reduced GAC surface under anaerobic conditions. Overall, the sorption capacity of GAC for RDX and HMX decreased as preloaded humid acid concentration increased. GAC procreated with a strong reluctant such as Fe[] or dithionite did not result in the enhancement of RDX removal from AGW compared with isotherms of virgin GAC under both aerobic and anaerobic conditions. Experimental values showed that for RDX, the single-solute isotherm data, bisolute isotherm data in the presence of Cr(VI) exhibited similar results. This suggests that the presence of Cr(VI) had negligible effect on RDX removal by GAC, indicating that competitive effects between RDX and Cr(VI) were minimal. Also, Cr(VI) removal was not significantly affected by the presence of RDX. IAST model predicted that the presence of HMX would reduce the adsorption of RDX compared to the single-solute isotherm of RDX. In the same manner, similar effects were obtained for HMX.

Im, Jeong Ran

1999-01-01T23:59:59.000Z

112

Effects of adsorbed water vapor on the Wheeler kinetic rate constant and kinetic adsorption capacity for activated carbon adsorbents  

SciTech Connect

Activated carbon plays a key role reducing organic vapor emissions to the environment from synthetic chemical manufacturing, pesticide manufacturing, in odor control, for removal of contaminant vapors during remediation of hazardous waste sites, and as an adsorption matrix for collection of organic vapors from ambient air in occupational and environmental settings to assess exposure. The Wheeler dynamic adsorption model has been evaluated under laboratory conditions and has shown potential for predicting activated carbon bed penetration. Water vapor is a normal constituent of ambient air that is present at concentrations 1-2 orders of magnitude greater than the concentrations of potentially toxic air contaminants. Many investigations have shown that adsorbed water vapor can reduce the breakthrough-time of activated charcoal beds. The effect of adsorbed water vapor on the predictive power of the Wheeler model has not been evaluated. The research evaluated the effect of water vapor adsorbed on activated charcoal on the subsequent adsorption of four air contaminants, carbon tetrachloride, 1,1,1-trichloroethane, 1,1,2-trichloroethylene, and 1-propanol. The adsorbent used in this research had a large surface area, 1200 m[sup 2]/g and that 95% of the surface area was associated with micropores (pores with diameters less than 2 micrometers). Kinetic adsorption capacities for all four adsorbates were not affected by the presence of water vapor except for some observed enhancement. The kinetic trial data suggest that the primary effect of adsorbed water vapor was to reduce the effective pore radius of the smaller mesopores thus restricting pore diffusion. This results in an increase in the critical bed capacity with shorter breakthrough times for adsorbent beds.

Hall, T.A.

1992-01-01T23:59:59.000Z

113

POTENTIAL USE OF ACTIVATED CARBON TO RECOVER TC-99 FROM 200 WEST AREA GROUNDWATER AS AN ALTERNATIVE TO MORE EXPENSIVE RESINS HANFORD SITE RICHLAND WASNINGTON  

SciTech Connect

Recent treatability testing performed on groundwater at the 200-ZP-1 Operable Unit at the Hanford Site in Richland, Washington, has shown that Purolite{reg_sign} A530E resin very effectively removes Tc-99 from groundwater. However, this resin is expensive and cannot be regenerated. In an effort to find a less expensive method for removing Tc-99 from the groundwater, a literature search was performed. The results indicated that activated carbon may be used to recover technetium (as pertechnetate, TCO{sub 4}{sup -}) from groundwater. Oak Ridge National Laboratory used activated carbon in both batch adsorption and column leaching studies. The adsorption study concluded that activated carbon absorbs TCO{sub 4}{sup -} selectively and effectively over a wide range of pH values and from various dilute electrolyte solutions (< 0.01 molarity). The column leaching studies confirmed a high adsorption capacity and selectivity of activated carbon for TCO{sub 4}{sup -}. Since activated carbon is much less expensive than Purolite A530E resin, it has been determined that a more extensive literature search is warranted to determine if recent studies have reached similar conclusions, and, if so, pilot testing of 200-ZP-1 groundwater wi11 likely be implemented. It is possible that less expensive, activated carbon canisters could be used as pre-filters to remove Tc-99, followed by the use of the more expensive Purolite A530E resin as a polishing step.

BYRNES ME; ROSSI AJ; TORTOSO AC

2009-12-03T23:59:59.000Z

114

Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays  

SciTech Connect

Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

2011-01-01T23:59:59.000Z

115

EXPOS ET MISE AU POINT BIBLIOGRAPHIQUE LA FORMATION DES PARTICULES DE CARBONE DANS LES FLAMMES  

E-Print Network (OSTI)

des fours, qu'ils soient aciéristes, verriers, ou cimentiers. On sait que le rayonnement des flammes d'hydro cristaux de noir d'acéty- lène peut être due à la présence d'atomes interstitiels d'hydrogène, car on trouve généralement 1 % d'hydro- gène dans les dépôts de carbone-suie. Pour certains auteurs la structure

Paris-Sud XI, Université de

116

Carbon Dioxide Information Analysis Center and World Data Center-A for atmospheric trace gases: FY 1993 activities  

SciTech Connect

During the course of a fiscal year, Oak Ridge National Laboratory`s Carbon Dioxide Information Analysis Center (CDIAC) distributes thousands of specialty publications-numeric data packages (NDPs), computer model packages (CMPs), technical reports, public communication publications, newsletters, article reprints, and reference books-in response to requests for information related to global environmental issues, primarily those pertaining to climate change. CDIAC`s staff also provide technical responses to specific inquiries related to carbon dioxide (CO{sub 2}), other trace gases, and climate. Hundreds of referrals to other researchers, policy analysts, information specialists, or organizations are also facilitated by CDIAC`s staff. This report provides an account of the activities accomplished by CDIAC (including World Data Center-A for Atmospheric Trace Gases) during the period October 1, 1992, to September 30, 1993. An organizational overview of CDIAC and its staff is supplemented by a detailed description of inquiries received and CDIAC`s response to those inquiries. An analysis and description of the preparation and distribution of NDPS, CMPS, technical reports, newsletters, fact sheets, specialty publications, and reprints are provided. Comments and descriptions of CDIAC`s information management systems, professional networking, and special bilateral agreements are also presented.

Cushman, R.M. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center; Stoss, F.W. [Oak Ridge National Lab., TN (United States). Carbon Dioxide Information Analysis Center]|[Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment, and Resources Center

1994-01-01T23:59:59.000Z

117

Effects of aging and oxidation of palladized iron embedded in activated carbon on the dechlorination of 2-chlorobiphenyl  

Science Conference Proceedings (OSTI)

Reactive activated carbon (RAC) impregnated with palladized iron has been developed to effectively treat polychlorinated biphenyls (PCBs) in the environment by coupling adsorption and dechlorination of PCBs. In this study, we addressed the dechlorination reactivity and capacity of RAC toward aqueous 2-chlorobiphenyl (2-ClBP), and its aging and longevity under various oxidizing environments. RAC containing 14.4% Fe and 0.68% Pd used in this study could adsorb 122.6 mg 2-ClBP/g RAC, and dechlorinate 56.5 mg 2-ClBP/g RAC which corresponds to 12% (yield) of its estimated dechlorination capacity. Due to Fe0 oxidation to form oxide passivating layers, Fe{sub 2}O{sub 3}/Fe{sub 3}O{sub 4} (oxide-water interface) and FeOOH/FeO (oxide-metal interface), RAC reactivity decreased progressively over aging under N{sub 2} tab.

Hyeok Choi; Souhail R. Al-Abed; Shirish Agarwal [U.S. Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Laboratory

2009-06-15T23:59:59.000Z

118

Removal of Mercury from SBW Vitrification Off-Gas by Activated Carbon  

SciTech Connect

Radioactive, acidic waste stored at the Idaho Nuclear Technology and Engineering Center (INTEC) have been previously converted into a dry, granular solid at the New Waste Calcining Facility (NWCF). As an alternative to calcination, direct vitrification of the waste, as well as the calcined solids in an Idaho Waste Vitrification Facility (IWVF) is being considered to prepare the waste for final disposal in a federal repository. The remaining waste to be processed is Sodium-Bearing Waste (SBW). Off-gas monitoring during NWCF operations have indicated that future mercury emissions may exceed the proposed Maximum Achievable Control Technology (MACT) limit of 130 ug/dscm (micrograms/dry standard cubic meter) @ 7% O2 for existing Hazardous Waste Combustors (HWC) if modifications are not made. Carbon monoxide and hydrocarbon emissions may also exceed the MACT limits. Off-gas models have predicted that mercury levels in the off-gas from SBW vitrification will exceed the proposed MACT limit of 45 ug/dscm @ 7% O2 for new HWCs. NO2/44% H2O.

Deldebbio, John Anthony; Watson, T. T.; Kirkham, Robert John

2001-09-01T23:59:59.000Z

119

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

120

PERGAMON Carbon 38 (2000) 17671774 High temperature hydrogen sulfide adsorption on activated  

E-Print Network (OSTI)

.e. an activation energy is required for chemi- cal adsorption to occur and once that energy is supplied and gas-phase regeneration experiments were [1] Cal MP, Strickler BW, Lizzio AA. High temperature hydro, PA: US Department of Energy/Federal removal requirement set at one of the DOE's IGCC plants. Energy

Cal, Mark P.

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Gaseous mercury release during steam curing of aerated concretes that contain fly ash and activated carbon sorbent  

Science Conference Proceedings (OSTI)

Gaseous mercury released from aerated concrete during both presteam curing at 25{sup o}C and steam curing at 80{sup o}C was measured in controlled laboratory experiments. Mercury release originated from two major components in the concrete mixture: (1) class F coal fly ash and (2) a mixture of the fly ash and powdered activated carbon onto which elemental mercury was adsorbed. Mercury emitted during each curing cycle was collected on iodated carbon traps in a purge-and-trap arrangement and subsequently measured by cold-vapor atomic fluorescence spectrometry. Through 3 h of presteam curing, the release of mercury from the freshly prepared mixture was less than 0.03 ng/kg of concrete. Releases of total mercury over the 21 h steam curing process ranged from 0.4 to 5.8 ng of mercury/kg of concrete and depended upon mercury concentrations in the concrete. The steam-cured concrete had a higher mercury release rate (ng kg{sup -1} h{sup -1}) compared to air-cured concrete containing fly ash, but the shorter curing interval resulted in less total release of mercury from the steam-cured concrete. The mercury flux from exposed concrete surfaces to mercury-free air ranged from 0.77 to 11.1 ng m{sup -2} h{sup -1}, which was similar to mercury fluxes for natural soils to ambient air of 4.2 ng m{sup -2} h{sup -1} reported by others. Less than 0.022% of the total quantity of mercury present from all mercury sources in the concrete was released during the curing process, and therefore, nearly all of the mercury was retained in the concrete. 31 refs., 4 figs., 2 tabs.

Danold W. Golightly; Chin-Min Cheng; Ping Sun; Linda K. Weavers; Harold W. Walker; Panuwat Taerakul; William E. Wolfe [Ohio State University, Columbus, OH (United States). Department of Civil and Environmental Engineering and Geodetic Science

2008-09-15T23:59:59.000Z

122

Mercury Detoxification by Bacteria: Simulations of Transcription Activation and Mercury-Carbon Bond Cleavage  

Science Conference Proceedings (OSTI)

In this chapter, we summarize recent work from our laboratory and provide new perspective on two important aspects of bacterial mercury resistance: the molecular mechanism of transcriptional regulation by MerR, and the enzymatic cleavage of the Hg-C bond in methylmercury by the organomercurial lyase, MerB. Molecular dynamics (MD) simulations of MerR reveal an opening-and-closing dynamics, which may be involved in initiating transcription of mercury resistance genes upon Hg(II) binding. Density functional theory (DFT) calculations on an active-site model of the enzyme reveal how MerB catalyzes the Hg-C bond cleavage using cysteine coordination and acid-base chemistry. These studies provide insight into the detailed mechanisms of microbial gene regulation and defense against mercury toxicity.

Guo, Hao-Bo [ORNL; Parks, Jerry M [ORNL; Johs, Alexander [ORNL; Smith, Jeremy C [ORNL

2011-01-01T23:59:59.000Z

123

Calculation of the performance of activated carbon at high relative humidities  

SciTech Connect

The Dubinin-Radushkevich potential theory was extended to include a term giving the effect of relative humidity on the uptake of adsorbate. This extended equation permit the adsorptive capacity of the activated charcoal in a respirator cartridge to be estimated for any combination of temperature, relative humidity, and concentration of contaminant. Application of this theory to previously published data of Werner showed a good correlation between theory and experiment. This equation is consistent with the experimental observations that 1) below a certain value, the relative humidity has little effect on the uptake of adsorbate, and 2) the effect of relative humidity, if observed, is more severe for lower than for higher concentration of contaminant.

Underhill, D.W.

1987-11-01T23:59:59.000Z

124

Carbon supercapacitors  

SciTech Connect

Carbon supercapacitors are represented as distributed RC networks with transmission line equivalent circuits. At low charge/discharge rates and low frequencies these networks approximate a simple series R{sub ESR}C circuit. The energy efficiency of the supercapacitor is limited by the voltage drop across the ESR. The pore structure of the carbon electrode defines the electrochemically active surface area which in turn establishes the volume specific capacitance of the carbon material. To date, the highest volume specific capacitance reported for a supercapacitor electrode is 220F/cm{sup 3} in aqueous H{sub 2}SO{sub 4} (10) and {approximately}60 F/cm{sup 3} in nonaqueous electrolyte (8).

Delnick, F.M.

1993-11-01T23:59:59.000Z

125

Carbon Nanotubes Grown on Various Fibers - Oak Ridge National ...  

fiber materials inlcuding quartz wool fibers, carbon fibers, and activated carbon fibers. In each example a chloride solution of Fe, ...

126

Program on Technology Innovation: Novel Carbon Sorbents  

Science Conference Proceedings (OSTI)

A new approach has been developed for making activated carbons and catalytic carbons with high surface areas. A novel carbonization process using alkali organic and metal salt precursors can yield carbons with a narrow, customized, pore size distribution as well as high adsorption capacity and catalytic activity. This report summarizes initial attempts to produce high-surface-area carbons with porous structure and carbons with added nanoscale catalyst using the novel carbonization process.

2009-03-23T23:59:59.000Z

127

Determination of the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon using thermogravimetric analysis  

Science Conference Proceedings (OSTI)

This study investigated the use of thermogravimetric analysis (TGA) to determine the adsorptive capacity and adsorption isotherm of vapor-phase mercury chloride on powdered activated carbon (PAC). The technique is commonly applied to remove mercury-containing air pollutants from gas streams emitted from municipal solid waste incinerators. An alternative form of powdered activated carbon derived from a pyrolyzed tire char was prepared for use herein. The capacity of waste tire-derived PAC to adsorb vapor-phase HgCl{sub 2} was successfully measured using a self-designed TGA adsorption system. Experimental results showed that the maximum adsorptive capacities of HgCl{sub 2} were 1.75, 0.688, and 0.230 mg of HgCl{sub 2} per gram of powdered activated carbon derived from carbon black at 30, 70, and 150{sup o} for 500 {mu}g/m{sup 3} of HgCl{sub 2}, respectively. Four adsorption isotherms obtained using the Langmuir, Freundlich, Redlich-Peterson, and Brunauer-Emmett-eller (BET) models were used to simulate the adsorption of HgCl{sub 2}. The comparison of experimental data associated with the four adsorption isotherms indicated that BET fit the experimental results better than did the other isotherms at 30{sup o}, whereas the Freundlich isotherm fit the experimental results better at 70 and 150{sup o}. Furthermore, the calculations of the parameters associated with Langmuir and Freundlich isotherms revealed that the adsorption of HgCl{sub 2} by PAC-derived carbon black favored adsorption at various HgCl{sub 2} concentrations and temperatures. 35 refs., 7 figs., 3 tabs.

Hsun-Yu Lin; Chung-Shin Yuan; Wei-Ching Chen; Chung-Hsuang Hung [National Sun Yat-Sen University, Taiwan (China). Institute of Environmental Engineering

2006-11-15T23:59:59.000Z

128

CarbonNanotubeActive ...  

intensively explored for enabling new applications otherwise ... Of particular importance, a high mobility, such as those obtained here, ...

129

Synthesis and Oxygen Reduction Reaction Activity of Atomic and Nanoparticle Gold on Thiol-Functionalized Multiwall Carbon Nanotubes  

E-Print Network (OSTI)

We demonstrated the self-assembly of atomic Au on thiol-functionalized multiwall carbon nanotubes through covalent bonding and the formation of Au nanoparticles (NPs) upon a subsequent thermal treatment. Au NPs of 3.4 nm ...

Kim, Junhyung

130

Synthesis, Activity and Durability of Pt Nanoparticles Supported on Multi-walled Carbon Nanotubes for Oxygen Reduction  

E-Print Network (OSTI)

Carbon nanotube supported metal nanoparticles (NPs) have attracted considerable attention due to their great potential for heterogeneous catalysis. In this paper, surfactant-free and well dispersed platinum (Pt) NPs supported ...

Massachusetts Institute of Technology. Dept. of Chemistry; Massachusetts Institute of Technology. Dept. of Mechanical Engineering; Massachusetts Institute of Technology. Dept. of Materials Science and Engineering; Sheng, Wenchao; Lee, Seung Woo; Crumlin, Ethan J.; Chen, Shuo; Shao-Horn, Yang

131

Quarterly Report for LANL Activities: FY12-Q2 National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program  

SciTech Connect

This report summarizes progress of LANL activities related to the tasks performed under the LANL FWP FE102-002-FY10, National Risk Assessment Partnership (NRAP): Industrial Carbon Capture Program. This FWP is funded through the American Recovery and Reinvestment Act (ARRA). Overall, the NRAP activities are focused on understanding and evaluating risks associated with large-scale injection and long-term storage of CO{sub 2} in deep geological formations. One of the primary risks during large-scale injection is due to changes in geomechanical stresses to the storage reservoir, to the caprock/seals and to the wellbores. These changes may have the potential to cause CO{sub 2} and brine leakage and geochemical impacts to the groundwater systems. While the importance of these stresses is well recognized, there have been relatively few quantitative studies (laboratory, field or theoretical) of geomechanical processes in sequestration systems. In addition, there are no integrated studies that allow evaluation of risks to groundwater quality in the context of CO{sub 2} injection-induced stresses. The work performed under this project is focused on better understanding these effects. LANL approach will develop laboratory and computational tools to understand the impact of CO{sub 2}-induced mechanical stress by creating a geomechanical test bed using inputs from laboratory experiments, field data, and conceptual approaches. The Geomechanical Test Bed will be used for conducting sensitivity and scenario analyses of the impacts of CO{sub 2} injection. The specific types of questions will relate to fault stimulation and fracture inducing stress on caprock, changes in wellbore leakage due to evolution of stress in the reservoir and caprock, and the potential for induced seismicity. In addition, the Geomechanical Test Bed will be used to investigate the coupling of stress-induced leakage pathways with impacts on groundwater quality. LANL activities are performed under two tasks: (1) develop laboratory and computational tools to understand CO{sub 2}-induced mechanical impacts and (2) use natural analog sites to determine potential groundwater impacts. We are using the Springerville-St. John Dome as a field site for collecting field data on CO{sub 2} migration through faults and groundwater impacts as well as developing and validating computational models. During the FY12 second quarter we have been working with New England Research Company to construct a tri-axial core-holder. We have built fluid control system for the coreflood system that can be ported to perform in-situ imaging of core. We have performed numerical simulations for groundwater impacts of CO{sub 2} and brine leakage using the reservoir model for Springerville-St John's Dome site. We have analyzed groundwater samples collected from Springerville site for major ion chemistry and isotopic composition. We are currently analyzing subsurface core and chip samples acquired for mineralogical composition.

Pawar, Rajesh J. [Los Alamos National Laboratory

2012-04-17T23:59:59.000Z

132

CARBON-CARBON COMPOSITE ALLCOMP Carbon-Carbon Composite  

E-Print Network (OSTI)

strength 4340 steel, carbon-carbon composite, and Carbon-Silicon Carbide composite were tested to examine-C composite containing continuous PAN T300 fibers · SWB: Chopped Fiber Composite containing SWB fibers Crush

Rollins, Andrew M.

133

The study of neutron activation yields in spallation reaction of 400 MeV/u carbon on a thick lead target  

E-Print Network (OSTI)

The spallation-neutron yield was studied experimentally by bombarding a thick lead target with 400 MeV/u carbon beam. The data were obtained with the activation analysis method using foils of Au, Mn, Al, Fe and In. The yields of produced isotopes were deduced by analyzing the measured {\\gamma} spectra of irradiated foils. According to the isotopes yields, the spatial and energy distributions of the neutron field were discussed. The experimental results were compared with Monte Carlo simulations performed by the GEANT4 + FLUKA code.

F. Ma; H. L. Ge; X. Y. Zhang; H. B. Zhang; Y. Q. Ju; L. Chen; L. Yang; F. Fu; Y. L. Zhang; J. Y. LI; T. J. Liang; B. Zhou; S. L. Wang; J. Y. Li; J. K. Xu; X. G. Leir; Z. Qin; L. Gu; G. M. Jin

2013-09-03T23:59:59.000Z

134

Chemically modified carbonic anhydrases useful in carbon capture systems  

Science Conference Proceedings (OSTI)

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott J; Alvizo, Oscar

2013-10-29T23:59:59.000Z

135

Chemically modified carbonic anhydrases useful in carbon capture systems  

DOE Patents (OSTI)

The present disclosure relates to chemically modified carbonic anhydrase polypeptides and soluble compositions, homogenous liquid formulations comprising them. The chemically modified carbonic anhydrase polypeptides have improved properties relative to the same carbonic anhydrase polypeptide that is not chemically modified including the improved properties of increased activity and/or stability in the presence of amine compounds, ammonia, or carbonate ion. The present disclosure also provides methods of preparing the chemically modified polypeptides and methods of using the chemically modified polypeptides for accelerating the absorption of carbon dioxide from a gas stream into a solution as well as for the release of the absorbed carbon dioxide for further treatment and/or sequestering.

Novick, Scott; Alvizo, Oscar

2013-01-15T23:59:59.000Z

136

Catalytic activity of a series of Zn(II) phenoxides for the copolymerization of epoxides and carbon dioxide  

Science Conference Proceedings (OSTI)

A series of zinc phenoxides of the general formula (2,6-R{sub 2}C{sub 6}H{sub 3}O){sub 2}Zn(base){sub 2} [R = Ph, {sup t}Bu, {sup i}Pr, base = Et{sub 2}O, THF, or propylene carbonate] and (2,4,6-Me{sub 3}C{sub 6}H{sub 2}O){sub 2}Zn(pyridine){sub 2} have been synthesized and characterized in the solid state by X-ray crystallography. All complexes crystallized as four-coordinate monomers with highly distorted tetrahedral geometry about the zinc center. The angles between the two sterically encumbering phenoxide ligands were found to be significantly more obtuse than the corresponding angles between the two smaller neutral base ligands, having average values of 140{degree} and 95{degree}, respectively. In a noninteracting solvent such as benzene or methylene chloride at ambient temperature, the ancillary base ligands are extensively dissociated from the zinc center, with the degree of dissociation being dependent on the base as well as the substituents on the phenolate ligands. That is, stronger ligand binding was found in zinc centers containing electron-donating tert-butyl substituents as opposed to electron-withdrawing phenyl substituents. In all instances, the order of ligand binding was pyridine > THF > epoxides. These bis(phenoxide) derivatives of zinc were shown to be very effective catalysts for the copolymerization of cyclohexene oxide and CO{sub 2} in the absence of strongly coordinating solvents, to afford high-molecular-weight polycarbonate (M{sub w} ranging from 45 x 10{sup 3} to 173 x 10{sup 3} Da) with low levels of polyether linkages. However, under similar conditions, these zinc complexes only coupled propylene oxide and CO{sub 2} to produce cyclic propylene carbonate. Nevertheless, these bis(phenoxide) derivatives of zinc were competent at terpolymerization of cyclohexene oxide/propylene oxide/CO{sub 2} with little cyclic propylene carbonate formation at low propylene oxide loadings. While CO{sub 2} showed no reactivity with the sterically encumbered zinc bis(phenoxides), e.g., (2,6-di-tert-butylphenoxide){sub 2}Zn(pyridine){sub 2} to provide the corresponding aryl carbonate zinc derivative. At the same time, both sterically hindered and sterically nonhindered phenoxide derivatives of zinc served to ring-open epoxide, i.e., were effective catalysts for the homopolymerization of epoxide to polyethers. The relevance of these reactivity patterns to the initiation step of the copolymerization process involving these monomeric zinc complexes is discussed.

Darensbourg, D.J.; Holtcamp, M.W.; Struck, G.E.; Zimmer, M.S.; Niezgoda, S.A.; Rainey, P.; Robertson, J.B.; Draper, J.D.; Reibenspies, J.H.

1999-01-13T23:59:59.000Z

137

CARBON TETRACHLORIDE  

E-Print Network (OSTI)

This fact sheet answers the most frequently asked health questions (FAQs) about carbon tetrachloride.

unknown authors

2005-01-01T23:59:59.000Z

138

decommissioning of carbon dioxide (CO  

NLE Websites -- All DOE Office Websites (Extended Search)

decommissioning of carbon dioxide (CO decommissioning of carbon dioxide (CO 2 ) storage wells. The manual builds on lessons learned through NETL research; the experiences of the Regional Carbon Sequestration Partnerships' (RCSPs) carbon capture, utilization, and storage (CCUS) field tests; and the acquired knowledge of industries that have been actively drilling wells for more than 100 years. In addition, the BPM provides an overview of the well-

139

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

140

Assessment of durability of carbon/epoxy composite materials after exposure to elevated temperatures and immersion in seawater for navy vessel applications  

E-Print Network (OSTI)

effectiveness of carbon fiber polymermatrix compositeby using activated carbon fibers. Carbon, 2002. 40: p. 445-Oxidative resistance of carbon fibers and their composites.

Hong, SoonKook

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

ACI MATERIALS JOURNAL TECHNICAL PAPER Internal ...  

Science Conference Proceedings (OSTI)

... when the SSD LWA was exposed to a salt solution of potassium nitrate (equilibrium relative ... prepared by first oven drying the LWA, cooling it to ...

142

Chandra ACIS Survey of M33 (ChASeM33): X-ray Imaging Spectroscopy of M33SNR21, the Brightest X-ray Supernova Remnant in M33  

E-Print Network (OSTI)

We present and interpret new X-ray data for M33SNR21, the brightest X-ray supernova remnant (SNR) in M33. The SNR is in seen projection against (and appears to be interacting with) the bright HII region NGC592. Data for this source were obtained as part of the Chandra ACIS Survey of M33 (ChASeM33) Very Large Project. The nearly on-axis Chandra data resolve the SNR into a ~5" diameter (20 pc at our assumed M33 distance of 817+/-58 kpc) slightly elliptical shell. The shell is brighter in the east, which suggests that it is encountering higher density material in that direction. The optical emission is coextensive with the X-ray shell in the north, but extends well beyond the X-ray rim in the southwest. Modeling the X-ray spectrum with an absorbed sedov model yields a shock temperature of 0.46(+0.01,-0.02) keV, an ionization timescale of n_e t = $2.1 (+0.2,-0.3) \\times 10^{12}$ cm$^{-3}$ s, and half-solar abundances (0.45 (+0.12, -0.09)). Assuming Sedov dynamics gives an average preshock H density of 1.7 +/- 0.3 cm$^{-3}$. The dynamical age estimate is 6500 +/- 600 yr, while the best fit $n_e t$ value and derived $n_e$ gives 8200 +/- 1700 yr; the weighted mean of the age estimates is 7600 +/- 600 yr. We estimate an X-ray luminosity (0.25-4.5 keV) of (1.2 +/- 0.2) times $10^{37}$ ergs s$^{-1}$ (absorbed), and (1.7 +/- 0.3) times $10^{37}$ ergs s$^{-1}$ (unabsorbed), in good agreement with the recent XMM-Newton determination. No significant excess hard emission was detected; the luminosity $\\le 1.2\\times 10^{35}$ ergs s$^{-1}$ (2-8 keV) for any hard point source.

Terrance J. Gaetz; William P. Blair; John P. Hughes; P. Frank Winkler; Knox S. Long; Thomas G. Pannuti; Benjamin Williams; Richard J. Edgar; Parviz Ghavamian; Paul P. Plucinsky; Manami Sasaki; Robert P. Kirshner; Miguel Avillez; Dieter Breitschwerdt

2007-06-18T23:59:59.000Z

143

Effect of Surface Oxygen Containing Groups on the Catalytic Activity of Multi-walled Carbon Nanotube Supported Pt Catalyst  

Science Conference Proceedings (OSTI)

Multi-walled carbon nanotubes (MWNT) supported platinum catalysts were employed to study the support functionalization on their catalytic performances. The MWNT were subjected to HNO{sub 3} functionalization, in which oxygen-containing-groups (OCGs) were introduced to improve Pt dispersion. The MWNT supports were characterized by nitrogen physisorption and NEXAFS, and the Pt supported on differently functionalized MWNT characterized by X-ray absorption, TEM and both hydrogen and CO chemisorption. Compared to the as received MWNT supports, Pt dispersion is improved on the HNO3 treated MWNT supports, but the turnover frequency (TOF) of aqueous phase reforming decreases by half. The TOF can be recovered by removing the OCGs via high temperature annealing. To further investigate the OCGs effect, different probe reactions, including both steam reforming and liquid phase reforming of hydrocarbon oxygenates and dehydrogenation of alkanes in the liquid and gas phases, have been performed on the MWNT supported catalysts with different OCGs. A comparison of these reaction results suggests that OCGs are only detrimental to reactions in a binary mixture with two components of different hydrophilicity due to their competitive adsorption on the catalyst supports.

X Wang; N Li; J Webb; L Pfefferle; G Haller

2011-12-31T23:59:59.000Z

144

Recovery Act: Re-utilization of Industrial Carbon Dioxide for...  

NLE Websites -- All DOE Office Websites (Extended Search)

Re-utilization of Industrial Carbon Dioxide for Algae Production Using a Phase Change Material Background Worldwide carbon dioxide (CO 2 ) emissions from human activity have...

145

Carbon Cycle 2.0  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Carbon Cycle 2.0 Carbon Cycle 2.0 Pioneering science for sustainable energy solutions Artificial Photosynthesis Energy Storage Combustion Carbon Capture & Storage Developing World Efficiency Photovoltaics Biofuels Energy Analysis Climate Modeling Carbon Cycle 2.0 is... 1. A vision for * a global energy system integrated with the Earth's natural carbon cycles * an interactive Berkeley Lab environment with a shared sense of purpose 2. A program development plan that will allow us to deepen our capabilities and provide more opportunities to have impact 3. An attempt to integrate our basic research with applications using models of technology deployment constraints 4. Set of internal activities aimed at priming the effort

146

Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Carbon Cycle Latest Global Carbon Budget Estimates Including CDIAC Estimates Terrestrial Carbon Management Data Sets and Analyses Carbon Dioxide Emissions from Fossil-Fuel Consumption and Cement Manufacture, (2011) Annual Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Monthly Fossil-Fuel CO2 Emissions: Mass of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) Annual Fossil-Fuel CO2 Emissions: Global Stable Carbon Isotopic Signature (2012) Monthly Fossil-Fuel CO2 Emissions: Isomass (δ 13C) of Emissions Gridded by One Degree Latitude by One Degree Longitude (2012) AmeriFlux - Terrestrial Carbon Dioxide, Water Vapor, and Energy Balance Measurements Estimates of Monthly CO2 Emissions and Associated 13C/12C Values

147

Carbon Isotopes  

NLE Websites -- All DOE Office Websites (Extended Search)

Atmospheric Trace Gases » Carbon Isotopes Atmospheric Trace Gases » Carbon Isotopes Carbon Isotopes Gateway Pages to Isotopes Data Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane 800,000 Deuterium Record and Shorter Records of Various Isotopic Species from Ice Cores Carbon-13 13C in CO Measurements from Niwot Ridge, Colorado and Montana de Oro, California (Tyler) 13C in CO2 NOAA/CMDL Flask Network (White and Vaughn) CSIRO GASLAB Flask Network (Allison, Francey, and Krummel) CSIRO in situ measurements at Cape Grim, Tasmania (Francey and Allison) Scripps Institution of Oceanography (Keeling et al.) 13C in CH4 NOAA/CMDL Flask Network (Miller and White) Northern & Southern Hemisphere Sites (Quay and Stutsman) Northern & Southern Hemisphere Sites (Stevens)

148

TiO{sub 2}/carbon nanotube hybrid nanostructures: Solvothermal synthesis and their visible light photocatalytic activity  

Science Conference Proceedings (OSTI)

MWCNT/TiO{sub 2} hybrid nanostructures were prepared via solvothermal synthesis and sol-gel method with benzyl alcohol as a surfactant. As-prepared hybrid materials were characterized by X-ray diffraction, transmission electron microscopy, UV-vis diffuse reflectance spectra and X-ray photoelectron spectroscopy. The results showed that MWCNTs were uniformly decorated with anatase nanocrystals in solvothermal condition, but MWCNTs were embedded in a majority of TiO{sub 2} nanoparticles by sol-gel method. When the weight ratio of MWCNTs to TiO{sub 2} was 20%, MWCNT/TiO{sub 2} hybrid nanostructures prepared by solvothermal synthesis exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. Post-annealing of MWCNT/TiO{sub 2} nanostructures at 400 deg. C resulted in the formation of the carbonaceous Ti-C bonds on the interface between TiO{sub 2} and MWCNTs, which enhanced the photoabsorbance of the hybrid materials in the visible light region and improved the visible-light degradation efficiency of methylene blue. - Graphical abstract: MWCNT/TiO{sub 2} nanostructures have been prepared by solvothermal method, which exhibited higher visible-light-driven photocatalytic activity than that prepared by sol-gel method. The carbonaceous Ti-C bonds on the interface between TiO{sub 2} and MWCNTs enhanced the photoabsorbance of the hybrid materials in the visible light region. Highlights: > Anatase TiO{sub 2} nanoparticles were anchored on CNTs surface uniformly via solvothermal method {yields} The morphology facilitated the electron transfer between CNTs and TiO{sub 2} {yields} Ti-C bonds extended the absorption of MWCNT/TiO{sub 2} to the whole visible light region. > The hybrid nanostructures showed enhanced visible-light induced photocatalytic activity.

Tian Lihong [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062 (China); Ye Liqun [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China); Deng Kejian [Key Laboratory of Catalysis and Materials Science of the State Ethnic Affairs Commission and Ministry of Education, South-Central University for Nationalities, Wuhan 430074 (China); Zan Ling, E-mail: irlab@whu.edu.cn [College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072 (China)

2011-06-15T23:59:59.000Z

149

Agricultural Carbon Mitigation in Europe  

NLE Websites -- All DOE Office Websites (Extended Search)

Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Agricultural Carbon Mitigation in Europe Smith P, Powlson DS, Smith JU, Falloon P, and Coleman K. 2000. Meeting Europe's climate change commitments: Quantitative estimates of the potential for carbon mitigation by agriculture. Global Climate Change 6:525-539. Abstract Under the Kyoto Protocol, the European Union is committed to a reduction in CO2 emissions to 92% of baseline (1990) levels during the first commitment period (2008-2012). The Kyoto Protocol allows carbon emissions to be offset by demonstrable removal of carbon from the atmosphere. Thus, land-use / land-management change and forestry activities that are shown to reduce atmospheric CO2 levels can be included in the Kyoto targets. These activities include afforestation, reforestation and deforestation (article

150

Carbon Nanotubes  

Science Conference Proceedings (OSTI)

Carbon Nanotubes. Sponsored by: TMS Electronic, Magnetic and Photonic Materials Division Date and Time: Sunday, February 13, 2005 ~ 8:30 am-5:00 pm

151

Carbon Nanomaterials  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... The graphene film was spin-coated using carbon nanotubes to form the cathode of the field emission device. A phosphor coated graphene-PET...

152

Evaluation of active transport membranes for carbon dioxide removal from hydrogen containing streams. Approved final topical report  

SciTech Connect

Air Products and Chemicals, Inc. is developing a new class of gas separation membranes called Active Transport Membranes (ATM). ATMs are unique in that they permeate acid gas components, via a reactive pathway, to the low pressure side of the membrane while retaining lighter, non-reactive gases at near feed pressure. This feature is intuitively attractive for hydrogen and synthesis gas processes where CO{sub 2} removal is desired and the hydrogen or synthesis gas product is to be used at elevated pressure. This report provides an overview of the technology status and reports on preliminary, order of magnitude assessments of ATMs for three applications requiring CO{sub 2} removal from gas streams containing hydrogen. The end uses evaluated are: CO{sub 2} removal in the COREX{reg_sign} Steel making process--upgrading export gas for a Direct Reducing Iron (DRI) process; CO{sub 2} removal for onboard hydrogen gas generators for mobile fuel cell applications; Bulk CO{sub 2} removal from hydrogen plant synthesis gas--a plant de-bottlenecking analysis for ammonia production. For each application, an overview of the process concept, rough equipment sizing and techno-economic evaluation against competing technologies is provided. Brief descriptions of US and world market conditions are also included.

Cook, P.J.; Laciak, D.V.; Pez, G.P.; Quinn, R.

1995-11-01T23:59:59.000Z

153

NETL: Carbon Storage - Carbon Sequestration Leadership Forum  

NLE Websites -- All DOE Office Websites (Extended Search)

CSLF Carbon Storage Carbon Sequestration Leadership Forum CSLF Logo The Carbon Sequestration Leadership Forum (CSLF) is a voluntary climate initiative of industrially developed and...

154

Performance evaluation of granular activated carbon system at Pantex: Rapid small-scale column tests to simulate removal of high explosives from contaminated groundwater  

Science Conference Proceedings (OSTI)

A granular activated carbon (GAC) system is now in operation at Pantex to treat groundwater from the perched aquifer that is contaminated with high explosives. The main chemicals of concern are RDX and HMX. The system consists of two GAC columns in series. Each column is charged with 10,000 pounds of Northwestern LB-830 GAC. At the design flow rate of 325 gpm, the hydraulic loading is 6.47 gpm/ft{sup 2}, and the empty bed contact time is 8.2 minutes per column. Currently, the system is operating at less than 10% of its design flow rate, although flow rate increases are expected in the relatively near future. This study had several objectives: Estimate the service life of the GAC now in use at Pantex; Screen several GACs to provide a recommendation on the best GAC for use at Pantex when the current GAC is exhausted and is replaced; Determine the extent to which natural organic matter in the Pantex groundwater fouls GAC adsorption sites, thereby decreasing the adsorption capacity for high explosives; and Determine if computer simulation models could match the experimental results, thereby providing another tool to follow system performance.

Henke, J.L.; Speitel, G.E. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering] [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering

1998-08-01T23:59:59.000Z

155

Ternary Blends for Controlling Cost and Carbon Content  

Science Conference Proceedings (OSTI)

... per ASTM C618, Standard Specification for Coal Fly Ash ... m3 (169 lb/ft3) and reported CaCO3 and ... program: ACI 212.3R-10, Report on Chemical ...

2013-07-31T23:59:59.000Z

156

The Electrode as Organolithium Reagent: Catalyst-Free Covalent Attachment of Electrochemically Active Species to an Azide-Terminated Glassy Carbon Electrode Surface  

SciTech Connect

Glassy carbon electrodes have been activated for modification with azide groups and subsequent coupling with ferrocenyl reagents by a catalyst-free route using lithium acetylide-ethylenediamine complex, and also by the more common Cu(I)-catalyzed alkyne-azide coupling (CuAAC) route, both affording high surface coverages. Electrodes were preconditioned at ambient temperature under nitrogen, and ferrocenyl surface coverages obtained by CuAAC were comparable to those reported with preconditioning at 1000 C under hydrogen/nitrogen. The reaction of lithium acetylide-ethylenediamine with the azide-terminated electrode affords a 1,2,3-triazolyllithium-terminated surface that is active toward covalent C-C coupling reactions including displacement at an aliphatic halide and nucleophilic addition at an aldehyde. For example, surface ferrocenyl groups were introduced by reaction with (6-iodohexyl)ferrocene; the voltammetry shows narrow, symmetric peaks indicating uniform attachment. Coverages are competitive with those obtained by the CuAAC route. X-ray photoelectron spectroscopic data, presented for each synthetic step, are consistent with the proposed reactions. This research was supported as part of the Center for Molecular Electrocatalysis, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences. Pacific Northwest National Laboratory is operated by Battelle for the US Department of Energy. A portion of the research was performed using EMSL, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory.

Das, Atanu K.; Engelhard, Mark H.; Liu, Fei; Bullock, R. Morris; Roberts, John A.

2013-12-02T23:59:59.000Z

157

Carbon dioxide capture process with regenerable sorbents  

DOE Patents (OSTI)

A process to remove carbon dioxide from a gas stream using a cross-flow, or a moving-bed reactor. In the reactor the gas contacts an active material that is an alkali-metal compound, such as an alkali-metal carbonate, alkali-metal oxide, or alkali-metal hydroxide; or in the alternative, an alkaline-earth metal compound, such as an alkaline-earth metal carbonate, alkaline-earth metal oxide, or alkaline-earth metal hydroxide. The active material can be used by itself or supported on a substrate of carbon, alumina, silica, titania or aluminosilicate. When the active material is an alkali-metal compound, the carbon-dioxide reacts with the metal compound to generate bicarbonate. When the active material is an alkaline-earth metal, the carbon dioxide reacts with the metal compound to generate carbonate. Spent sorbent containing the bicarbonate or carbonate is moved to a second reactor where it is heated or treated with a reducing agent such as, natural gas, methane, carbon monoxide hydrogen, or a synthesis gas comprising of a combination of carbon monoxide and hydrogen. The heat or reducing agent releases carbon dioxide gas and regenerates the active material for use as the sorbent material in the first reactor. New sorbent may be added to the regenerated sorbent prior to subsequent passes in the carbon dioxide removal reactor.

Pennline, Henry W. (Bethel Park, PA); Hoffman, James S. (Library, PA)

2002-05-14T23:59:59.000Z

158

ACI Materials Journal/November-December 2008 567 ACI MATERIALS JOURNAL TECHNICAL PAPER  

E-Print Network (OSTI)

microcracks saturating the ECC (Fig. 1(b)) before localization. This tight crack width is essential designation M45) along with green ECC mixture proportions (ECC with green foundry sand, ECC with bag house calcinator sand) Mixture proportions, *high-range water reducer M45 M45G M45 Calcin Cement 1 1 1 F-110 sand 0

Lepech, Michael D.

159

Cobalt-polypyrrole-carbon black (Co-PPY-CB) Electrocatalysts for the Oxygen Reduction Reaction (ORR) in Fuel Cells: Composition and Kinetic Activity  

DOE Green Energy (OSTI)

Electrocatalysts consisting of polypyrrole (PPY) and Co deposited on carbon black (CB) at several compositions were prepared and tested for the oxygen reduction reaction (ORR) in a HClO4 buffer (pH = 1) using a rotating ring-disk electrode (RRDE). It was determined that the most favorable catalyst composition (prior to calcination) had a CB:PPY weight ratio of 2 and a pyrrole:Co (i.e., PY:Co) molar ratio of 4. This catalyst had an onset potential of 0.785 V (vs. RHE) and a mass activity of ca. 1 A/g{sub cata} at the fuel cell relevant voltage of 0.65 V. Furthermore, it was found that the number of electrons exchanged during the ORR with the catalyst was ca. 3.5 and resulted in 28% yield of H{sub 2}O{sub 2} at 0.65 V, which hints to an indirect 4e{sup -} reduction of O{sub 2} to H{sub 2}O, with H{sub 2}O{sub 2} as an intermdiate. From energy dispersive spectroscopy (EDS) and extended X-ray absorption fine structure (EXAFS) analysis, it is proposed that a PY:Co ratio of 4 favors the formation, prior to calcination, in the catalyst precursor of Co-N complexes in which Co is coordinated to 3 or 4 N atoms, resulting in strong Co-N interactions that limit the formation upon calcination of low ORR activity Co nanoparticles. These Co-N complexes give rise upon calcination to CoN{sub x-2} sites in which the coordination of Co could favor the adsorption on them of O{sub 2}, which would make those sites particularly active and selective. At the same mass acitivity of 1 A/g{sub cata}, the voltage yielded by the catalyst was 200 mV lower than that for a state-of-the-art Pt (10 wt.%) catalyst, whoch H{sub 2}O{sub 2} output at 0.85 V was 39% and involves the exchange of 3.2 e{sup -}, overall making our material an attractive substitute to noble metal ORR electrocatalysts.

D Nguyen-Thanh; A Frenkel; J Wang; S OBrien; D Akins

2011-12-31T23:59:59.000Z

160

Carbon Footprinting for the Food Industry  

E-Print Network (OSTI)

174-1 Carbon Footprinting for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-174 and Natural Resources Carbon footprinting in the food industry is an activity that determines the greenhouse.g. tons) of carbon dioxide (CO2) equivalent per functional unit (e.g. kg or liter of goods sold) (PAS2050

Balasundaram, Balabhaskar "Baski"

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Cycle Print E-mail U.S. Carbon Cycle Science Program U.S. Carbon Cycle Science Program The U.S. Carbon Cycle Science Program, in consultation with the Carbon Cycle...

162

Carbon Capture and Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

SECARB's SECARB's Mississippi SalineTest Site: A Field Project Update Robert C. Trautz (rtrautz@epri.com) Electric Power Research Institute Senior Project Manager DOE Regional Carbon Sequestration Partnership Annual Review Meeting October 6-8, 2008 Pittsburgh, PA 2 1. Introduction 2. Well Drilling & Completion 3. Reservoir Characterization 4. CO 2 Injection Operations 5. Monitoring and Verification Outline 3 Key Organizations and Acknowledgments SOUTHERN STATES ENERGY BOARD Dr. Gerald (Jerry) R. Hill OTHER FIELD PROJECTS AND SUPPORTING ACTIVITIES * Advanced Resources * Alabama Geological Survey/ SCS * Gulf Coast Carbon Center (TXBEG) * EPRI * Virginia Tech University * Mississippi State University * Others Richard Esposito MISSISSIPPI POWER CO. Rick Berry Richard (Dick) Rhudy Robert (Rob) Trautz

163

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

David a. Lang David a. Lang Project Manager National Energy Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236 412-386-4881 david.lang@netl.doe.gov andrew chizmeshya Arizona State University Center for Solid State Science Tempe, AZ 85287-1704 480-965-6072 chizmesh@asu.edu A Novel ApproAch to MiNerAl cArboNAtioN: eNhANciNg cArboNAtioN While AvoidiNg MiNerAl pretreAtMeNt process cost Background Carbonation of the widely occurring minerals of the olivine group, such as forsterite (Mg 2 SiO 4 ), is a potential large-scale sequestration process that converts CO 2 into the environmentally benign mineral magnesite (MgCO 3 ). Because the process is exothermic, it inherently offers low-cost potential. Enhancing carbonation reactivity is the key to economic viability. Previous

164

Effects of HCl and SO{sub 2} concentration on mercury removal by activated carbon sorbents in coal-derived flue gas  

Science Conference Proceedings (OSTI)

The effect of the presence of HCl and SO{sub 2} in the simulated coal combustion flue gas on the Hg{sup 0} removal by a commercial activated carbon (coconut shell AC) was investigated in a laboratory-scale fixed-bed reactor in a temperature range of 80-200{sup o}C. The characteristics (thermal stability) of the mercury species formed on the sorbents under various adsorption conditions were investigated by the temperature-programmed decomposition desorption (TPDD) technique. It was found that the presence of HCl and SO{sub 2} in the flue gas affected the mercury removal efficiency of the sorbents as well as the characteristics of the mercury adsorption species. The mercury removal rate of AC increased with the HCl concentration in the flue gas. In the presence of HCl and the absence of SO{sub 2} during Hg{sup 0} adsorption by AC, a single Hg{sup 0} desorption peak at around 300{sup o}C was observed in the TPDD spectra and intensity of this peak increased with the HCl concentration during mercury adsorption. The peak at around 300{sup o}C may be derived from the decomposition and desorption of mercury chloride species. The presence of SO{sub 2} during mercury adsorption had an adverse effect on the mercury removal by AC in the presence of HCl. In the presence of both HCl and SO{sub 2} during Hg{sup 0} adsorption by AC, the major TPDD peak temperatures changed drastically depending upon the concentration of HCl and SO{sub 2} in flue gas during Hg{sup 0} adsorption. 16 refs., 7 figs.

Ryota Ochiai; M. Azhar Uddin; Eiji Sasaoka; Shengji Wu [Okayama University, Okayama (Japan). Faculty of Environmental Science and Technology

2009-09-15T23:59:59.000Z

165

How the Carbon Emissions Were Estimated  

U.S. Energy Information Administration (EIA) Indexed Site

How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated How the Carbon Emissions Were Estimated Carbon dioxide emissions are the main component of greenhouse gas emissions caused by human activity. Carbon dioxide is emitted mostly as a byproduct of the combustion of fossil fuels for energy, although certain industrial processes (e.g., cement manufacture) also emit carbon dioxide. The estimates of energy-related carbon emissions require both data on the energy use and carbon emissions coefficients relating energy use to the amount of carbon emitted. The Energy Information Administration (EIA) is the main source of data on U.S. energy use. Emissions of Greenhouse Gases in the United States 1998 used annual data provided by energy suppliers. However, to obtain more detail on how different sectors use energy, the emissions estimates in Energy and GHG Analysis rely data from on surveys of energy users, such as manufacturing establishments and commercial buildings.

166

Aluminum-carbon composite electrode  

DOE Patents (OSTI)

A high performance double layer capacitor having an electric double layer formed in the interface between activated carbon and an electrolyte is disclosed. The high performance double layer capacitor includes a pair of aluminum impregnated carbon composite electrodes having an evenly distributed and continuous path of aluminum impregnated within an activated carbon fiber preform saturated with a high performance electrolytic solution. The high performance double layer capacitor is capable of delivering at least 5 Wh/kg of useful energy at power ratings of at least 600 W/kg.

Farahmandi, C. Joseph (Auburn, AL); Dispennette, John M. (Auburn, AL)

1998-07-07T23:59:59.000Z

167

Temperature-programmed decomposition desorption of mercury species over activated carbon sorbents for mercury removal from coal-derived fuel gas  

Science Conference Proceedings (OSTI)

The mercury (Hg{sup 0}) removal process for coal-derived fuel gas in the integrated gasification combined cycle (IGCC) process will be one of the important issues for the development of a clean and highly efficient coal power generation system. Recently, iron-based sorbents, such as iron oxide (Fe{sub 2}O{sub 3}), supported iron oxides on TiO{sub 2}, and iron sulfides, were proposed as active mercury sorbents. The H{sub 2}S is one of the main impurity compounds in coal-derived fuel gas; therefore, H{sub 2}S injection is not necessary in this system. HCl is also another impurity in coal-derived fuel gas. In this study, the contribution of HCl to the mercury removal from coal-derived fuel gas by a commercial activated carbon (AC) was studied using a temperature-programmed decomposition desorption (TPDD) technique. The TPDD technique was applied to understand the decomposition characteristics of the mercury species on the sorbents. The Hg{sup 0}-removal experiments were carried out in a laboratory-scale fixed-bed reactor at 80-300{sup o}C using simulated fuel gas and a commercial AC, and the TPDD experiments were carried out in a U-tube reactor in an inert carrier gas (He or N{sub 2}) after mercury removal. The following results were obtained from this study: (1) HCl contributed to the mercury removal from the coal-derived fuel gas by the AC. (2) The mercury species captured on the AC in the HCl{sup -} and H{sub 2}S-presence system was more stable than that of the H{sub 2}S-presence system. (3) The stability of the mercury surface species formed on the AC in the H{sub 2}S-absence and HCl-presence system was similar to that of mercury chloride (HgClx) species. 25 refs., 12 figs., 1 tab.

M. Azhar Uddin; Masaki Ozaki; Eiji Sasaoka; Shengji Wu [Okayama University, Okayama (Japan). Faculty of Environmental Science and Technology

2009-09-15T23:59:59.000Z

168

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and Carbon-13 in Methane Modern Records of Carbon and Oxygen Isotopes in Atmospheric Carbon Dioxide and...

169

Carbon particles  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, Arlon J. (Oakland, CA)

1984-01-01T23:59:59.000Z

170

Enhanced carbon monoxide utilization in methanation process  

DOE Green Energy (OSTI)

Carbon monoxide - containing gas streams are passed over a catalyst to deposit a surface layer of active surface carbon thereon essentially without the formation of inactive coke. The active carbon is subsequently reacted with steam or hydrogen to form methane. Surprisingly, hydrogen and water vapor present in the feed gas do not adversely affect CO utilization significantly, and such hydrogen actually results in a significant increase in CO utilization.

Elek, Louis F. (Peekskill, NY); Frost, Albert C. (Congers, NY)

1984-01-01T23:59:59.000Z

171

Carbon microtubes  

DOE Patents (OSTI)

A carbon microtube comprising a hollow, substantially tubular structure having a porous wall, wherein the microtube has a diameter of from about 10 .mu.m to about 150 .mu.m, and a density of less than 20 mg/cm.sup.3. Also described is a carbon microtube, having a diameter of at least 10 .mu.m and comprising a hollow, substantially tubular structure having a porous wall, wherein the porous wall comprises a plurality of voids, said voids substantially parallel to the length of the microtube, and defined by an inner surface, an outer surface, and a shared surface separating two adjacent voids.

Peng, Huisheng (Shanghai, CN); Zhu, Yuntian Theodore (Cary, NC); Peterson, Dean E. (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM)

2011-06-14T23:59:59.000Z

172

NETL: Carbon Storage - NETL Carbon Capture and Storage Database  

NLE Websites -- All DOE Office Websites (Extended Search)

CCS Database CCS Database Carbon Storage NETL's Carbon Capture, Utilization, and Storage Database - Version 4 Welcome to NETL's Carbon Capture, Utilization, and Storage (CCUS) Database. The database includes active, proposed, canceled, and terminated CCUS projects worldwide. Information in the database regarding technologies being developed for capture, evaluation of sites for carbon dioxide (CO2) storage, estimation of project costs, and anticipated dates of completion is sourced from publically available information. The CCUS Database provides the public with information regarding efforts by various industries, public groups, and governments towards development and eventual deployment of CCUS technology. As of November 2012, the database contained 268 CCUS projects worldwide. The 268 projects include 68 capture, 61 storage, and 139 for capture and storage in more than 30 countries across 6 continents. While most of the projects are still in the planning and development stage, or have recently been proposed, 37 are actively capturing and injecting CO2

173

Chemical Activation  

NLE Websites -- All DOE Office Websites (Extended Search)

Chemical Activation of Single-walled Carbon Nanotubes for Hydrogen Adsorption Milton R. Smith, Jr., 1 Edward W. Bittner, 1 Wei Shi, 1, 2 J. Karl Johnson, 1, 2 and Bradley C....

174

Carbon | Open Energy Information  

Open Energy Info (EERE)

Carbon Sector Retrieved from "http:en.openei.orgwindex.php?titleCarbon&oldid271960" Categories: Articles with outstanding TODO tasks...

175

Carbon Additionality: Discussion Paper  

E-Print Network (OSTI)

Carbon Additionality: A review Discussion Paper Gregory Valatin November 2009 Forest Research. Voluntary Carbon Standards American Carbon Registry Forest Carbon Project Standard (ACRFCPS) 27 CarbonFix Standard (CFS) 28 Climate, Community and Biodiversity Standard (CCBS) 28 Forest Carbon Standard (FCS) 28

176

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Technology Laboratory 626 Cochrans Mill Road P.O. Box 10940 Pittsburgh, PA 15236-0940 412-386-4966 jose.figueroa@netl.doe.gov Kevin o'Brien Principal Investigator SRI International Materials Research Laboratory 333 Ravenswood Avenue Menlo Park, AK 94025 650-859-3528 kevin.obrien@sri.com Fabrication and Scale-Up oF polybenzimidazole - baSed membrane SyStem For pre - combUStion captUre oF carbon dioxide Background In order to effectively sequester carbon dioxide (CO 2 ) from a gasification plant, there must be an economically viable method for removing the CO 2 from other gases. While CO 2 separation technologies currently exist, their effectiveness is limited. Amine-based separation technologies work only at low temperatures, while pressure-swing absorption and cryogenic distillation consume significantly

177

Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

andrea Mcnemar andrea Mcnemar National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-2024 andrea.mcnemar@netl.doe.gov Gregory J. Elbring Principal Investigator Sandia National Laboratory P.O. Box 5800 Albuquerque, NM 87185 505-844-4904 gjelbri@sandia.gov GeoloGic SequeStration of carbon DioxiDe in a DepleteD oil reServoir: a comprehenSive moDelinG anD Site monitorinG project Background The use of carbon dioxide (CO 2 ) to enhance oil recovery (EOR) is a familiar and frequently used technique in the United States. The oil and gas industry has significant experience with well drilling and injecting CO 2 into oil-bearing formations to enhance production. While using similar techniques as in oil production, this sequestration field

178

Letters to the Editor Synthesis of nanoporous carbon with pre-graphitic domains  

E-Print Network (OSTI)

of carbons by gasification with CO2-III. Uniformity of gasification. Carbon 1971;9:79­85. [21] Marsh H, Rand B. The process of activation of carbons by gasification with CO2-I. Gasification of pure

Powles, Rebecca

179

Mercury Control Update 2009  

Science Conference Proceedings (OSTI)

EPRI has been evaluating cost-effective methods for reducing mercury emissions from coal-fired power plants. This report summarizes the current status of mercury control technologies and offers detailed discussion of boiler bromide addition balance-of-plant impacts and activated carbon injection (ACI) tests at selected sites.

2009-12-14T23:59:59.000Z

180

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Latest Estimates Latest Estimates Atmos CO2 Level 397.31 ppm Fossil CO2 Emissions 9,167 MMT Carbon Global Temp Anomaly +0.56°C / +1.01°F Global Sea Level Rise +2.9 ± 0.4 mm/y Carbon Dioxide Information Analysis Center The Carbon Dioxide Information Analysis Center (CDIAC) is the primary climate-change data and information analysis center of the U.S. Department of Energy (DOE). CDIAC is located at DOE's Oak Ridge National Laboratory (ORNL) and includes the World Data Center for Atmospheric Trace Gases. CDIAC's data holdings include estimates of carbon dioxide emissions from fossil-fuel consumption and land-use changes; records of atmospheric concentrations of carbon dioxide and other radiatively active trace gases; carbon cycle and terrestrial carbon management datasets and analyses; and

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Fabricating solid carbon porous electrodes from powders  

DOE Patents (OSTI)

Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

1997-01-01T23:59:59.000Z

182

Fabricating solid carbon porous electrodes from powders  

DOE Patents (OSTI)

Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

1997-06-10T23:59:59.000Z

183

Nanostructuring of Microporous Carbons with Carbon Nanotubes for ...  

Science Conference Proceedings (OSTI)

Presentation Title, Nanostructuring of Microporous Carbons with Carbon Nanotubes for Efficient Carbon Dioxide Capture. Author(s), Stephen C. Hawkins, ...

184

Aerosol organic carbon to black carbon ratios: Analysis of published...  

NLE Websites -- All DOE Office Websites (Extended Search)

Aerosol organic carbon to black carbon ratios: Analysis of published data and implications for climate forcing Title Aerosol organic carbon to black carbon ratios: Analysis of...

185

Method for making carbon films  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area ([approx equal]1000 m[sup 2] /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160 C for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750 C in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750--850 C for between 1--6 hours. 2 figs.

Tan, M.X.

1999-07-29T23:59:59.000Z

186

Method for making carbon films  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

Tan, Ming X. (Livermore, CA)

1999-01-01T23:59:59.000Z

187

activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Detecting Things We Cannot See: Learning the Concepts of Control and Detecting Things We Cannot See: Learning the Concepts of Control and Variable in an Experiment Submitted by Anita Brook-Dupree, 1996 TRAC teacher at Fermilab, Teacher, Alternative Middle Years School, Philadelphia, PA. Particle physicists at Fermilab in Batavia, Illinois are faced with the problem of detecting the presence of sub-atomic particles they cannot see. During my summer as a TRAC teacher at Fermilab, I tried to think of ways to teach middle school students about things we cannot see. I want to thank my nine-year-old daughter Gia for the idea for the following activity. I was lamenting that I could not come up with ideas of how to relate the work of Fermilab scientists to anything that my students would understand. Then I was reminded by my daughter, that when I brought her to school on the

188

Carbon Steels  

Science Conference Proceedings (OSTI)

Table 1   Corrosion rates of carbon steel at various locations...Vancouver Island, BC, Canada Rural marine 13 0.5 Detroit, MI Industrial 14.5 0.57 Fort Amidor Pier, CZ Marine 14.5 0.57 Morenci, MI Urban 19.5 0.77 Potter County, PA Rural 20 0.8 Waterbury, CT Industrial 22.8 0.89 State College, PA Rural 23 0.9 Montreal, QC, Canada Urban 23 0.9 Durham, NH Rural 28 1.1...

189

Electrolyte reservoir for carbonate fuel cells  

DOE Patents (OSTI)

An electrode for a carbonate fuel cell and method of making same are described wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

Iacovangelo, C.D.; Shores, D.A.

1984-05-23T23:59:59.000Z

190

Electrolyte reservoir for carbonate fuel cells  

DOE Patents (OSTI)

An electrode for a carbonate fuel cell and method of making same wherein a substantially uniform mixture of an electrode-active powder and porous ceramic particles suitable for a carbonate fuel cell are formed into an electrode with the porous ceramic particles having pores in the range of from about 1 micron to about 3 microns, and a carbonate electrolyte is in the pores of the ceramic particles.

Iacovangelo, Charles D. (Schenectady, NY); Shores, David A. (Minneapolis, MN)

1985-01-01T23:59:59.000Z

191

Molten carbonate fuel cell research at ORNL  

DOE Green Energy (OSTI)

The activities at ORNL during the period July 1976 to February 1977 on the molten carbonate fuel cell program, funded by the ERDA Division of Conservation Research and Technology, are summarized. This period marks the initiation of molten carbonate fuel cell research at ORNL, making use of the extensive background of expertise and facilities in molten salt research. The activities described include a literature survey on molten carbonates, design, acquisition and installation of apparatus for experimental studies of molten carbonates, initial experiments on materials compatibility with molten carbonates, electrolysis experiments for the determination of transference numbers, and theoretical studies of transport behavior and the coupling of mass flows in molten carbonate mixtures. Significant accomplishments were the theoretical prediction of a possibly appreciable change in the alkali ion ratio at molten carbonate fuel cell electrodes, operated at high current densities, as a result of mobility differences of the alkali ions; design, construction and assembly of an electrolysis cell, and initiation of measurements of composition profiles in mixed alkali carbonate electrolytes; initiation of differential scanning calorimetry of pure alkali carbonates for quantitative measurement of transition enthalpies, eventually leading to new, more reliable values of the enthalpies and free energies of formation of the pure and mixed carbonates.

Braunstein, J.; Bronstein, H. R.; Cantor, S.; Heatherly, D.; Vallet, C. E.

1977-05-01T23:59:59.000Z

192

Carbon Sequestration Project Portfolio  

NLE Websites -- All DOE Office Websites (Extended Search)

Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Home > Technologies > Carbon Storage > Reference Shelf > Project Portfolio Carbon Storage 2011 Carbon Storage Project Portfolio Table of Contents CARBON STORAGE OVERVIEW Carbon Storage Program Contacts [PDF-26KB] Carbon Storage Projects National Map [PDF-169KB] State Projects Summary Table [PDF-39KB] Carbon Storage Program Structure [PDF-181KB] Selected Carbon Sequestration Program Papers and Publications The U.S. Department of Energy's R&D Program to Reduce Greenhouse Gas Emissions Through Beneficial Uses of Carbon Dioxide (2011) [PDF-3.3MB] Greenhouse Gas Science and Technology Carbon Capture and Sequestration: The U.S. Department of Energy's R&D Efforts to Characterize Opportunities for Deep Geologic Storage of Carbon Dioxide in Offshore Resources (2011) [PDF-445KB]

193

Photophysics of carbon nanotubes  

E-Print Network (OSTI)

This thesis reviews the recent advances made in optical studies of single-wall carbon nanotubes. Studying the electronic and vibrational properties of carbon nanotubes, we find that carbon nanotubes less than 1 nm in ...

Samsonidze, Georgii G

2007-01-01T23:59:59.000Z

194

Carbon Dioxide (CO2)  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide (CO2) Carbon Dioxide (CO2) Gateway Pages to Carbon Dioxide Data Modern records and ice core records back 2000 years 800,000 year records from ice cores Other...

195

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making 2D and 3D carbon-carbon composites having a combined high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizible woven cloth are infiltrated with carbon material to form green composites. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnant step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3100.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. C. to 1300.degree. C. at a reduced. pressure.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1993-01-01T23:59:59.000Z

196

Mantle helium and carbon isotopes in Separation Creek Geothermal Springs, Three Sisters area, Central Oregon: Evidence for renewed volcanic activity or a long term steady state system?  

DOE Green Energy (OSTI)

Cold bubbling springs in the Separation Creek area, the locus of current uplift at South Sister volcano show strong mantle signatures in helium and carbon isotopes and CO{sub 2}/{sup 3}He. This suggests the presence of fresh basaltic magma in the volcanic plumbing system. Currently there is no evidence to link this system directly to the uplift, which started in 1998. To the contrary, all geochemical evidence suggests that there is a long-lived geothermal system in the Separation Creek area, which has not significantly changed since the early 1990s. There was no archived helium and carbon data, so a definite conclusion regarding the strong mantle signature observed in these tracers cannot yet be drawn. There is a distinct discrepancy between the yearly magma supply required to explain the current uplift (0.006 km{sup 3}/yr) and that required to explain the discharge of CO{sub 2} from the system (0.0005 km{sup 3}/yr). This discrepancy may imply that the chemical signal associated with the increase in magma supply has not reached the surface yet. With respect to this the small changes observed at upper Mesa Creek require further attention, due to the recent volcanic vent in that area it may be the location were the chemical signal related to the uplift can most quickly reach the surface. Occurrence of such strong mantle signals in cold/diffuse geothermal systems suggests that these systems should not be ignored during volcano monitoring or geothermal evaluation studies. Although the surface-expression of these springs in terms of heat is minimal, the chemistry carries important information concerning the size and nature of the underlying high-temperature system and any changes taking place in it.

van Soest, M.C.; Kennedy, B.M.; Evans, W.C.; Mariner, R.H.

2002-04-30T23:59:59.000Z

197

Carbon film electrodes for super capacitor applications  

DOE Patents (OSTI)

A microporous carbon film for use as electrodes in energy strorage devices is disclosed, which is made by the process comprising the steps of: (1) heating a polymer film material consisting essentially of a copolymer of polyvinylidene chloride and polyvinyl chloride in an inert atmosphere to form a carbon film; and (2) activating said carbon film to form said microporous carbon film having a density between about 0.7 g/cm.sup.2 and 1 g/cm.sup.2 and a gravimetric capacitance of about between 120 F/g and 315 F/g.

Tan, Ming X. (Livermore, CA)

1999-01-01T23:59:59.000Z

198

Carbon-enhanced VRLA batteries.  

Science Conference Proceedings (OSTI)

The addition of certain forms of carbon to the negative plate in valve regulated lead acid (VRLA) batteries has been demonstrated to increase the cycle life of such batteries by an order of magnitude or more under high-rate, partial-state-of-charge operation. Such performance will provide a significant impact, and in some cases it will be an enabling feature for applications including hybrid electric vehicles, utility ancillary regulation services, wind farm energy smoothing, and solar photovoltaic energy smoothing. There is a critical need to understnd how the carbon interacts with the negative plate and achieves the aforementioned benefits at a fundamental level. Such an understanding will not only enable the performance of such batteries to be optimzied, but also to explore the feasibility of applying this technology to other battery chemistries. In partnership with the East Penn Manufacturing, Sandia will investigate the electrochemical function of the carbon and possibly identify improvements to its anti-sulfation properties. Shiomi, et al. (1997) discovered that the addition of carbon to the negative active material (NAM) substantially reduced PbSO{sub 4} accumulation in high rate, partial state of charge (HRPSoC) cycling applications. This improved performance with a minimal cost. Cycling applications that were uneconomical for traditional VRLA batteries are viable for the carbon enhanced VRLA. The overall goal of this work is to quantitatively define the role that carbon plays in the electrochemistry of a VRLA battery.

Enos, David George; Hund, Thomas D.; Shane, Rod (East Penn Manufacturing, Lyon Station, PA)

2010-10-01T23:59:59.000Z

199

DOE Carbon Sequestration Program  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Program Charles E. Schmidt Carbon Sequestration Product Manager National Energy Technology Laboratory David J. Beecy Director, Office of Environmental Systems...

200

Carbon Nanotube Nanocomposites, Methods of Making Carbon ...  

This technology describes methods to fabricate supercapacitors using aligned carbon nanotubes that are decorated with metal oxide or nitride ...

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production  

E-Print Network (OSTI)

#12;Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward Zero Carbon Energy Production Toward

Narasayya, Vivek

202

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network (OSTI)

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.2 July of group schemes 8 2.6 Monitoring 9 2.7 Carbon statements and reporting 9 2.8 Woodland Carbon Code trademark 10 3. Carbon sequestration 11 3.1 Units of carbon calculation 11 3.2 Carbon baseline 11 3.3 Carbon

203

Carbon Code Requirements for voluntary carbon sequestration projects  

E-Print Network (OSTI)

Woodland Carbon Code Requirements for voluntary carbon sequestration projects ® Version 1.1 July.6 Monitoring 8 2.7 Carbon statements and reporting 8 2.8 Woodland Carbon Code trademark 9 3. Carbon sequestration 10 3.1 Units of carbon calculation 10 3.2 Carbon baseline 10 3.3 Carbon leakage 11 3.4 Project

204

The Structure of Ions near Carbon Nanotubes: New Insights into Carbon  

NLE Websites -- All DOE Office Websites (Extended Search)

The Structure of Ions near Carbon Nanotubes: New Insights into The Structure of Ions near Carbon Nanotubes: New Insights into Carbon Surface Chemistry and Implications for Water Purification Carbon-based materials have long been used for a variety of water purification operations. Researchers have investigated carbon materials as adsorbents for decades, but only limited information on the precise details of aqueous ion interactions with carbon surfaces has been uncovered. It is empirically known that the affinity of activated carbon for various hydrated ions depends critically on how the material is processed. Processing influences the types of chemical groups and the structure of the carbon surface, which in turn influences the strength of interaction between hydrated ions and the carbon surface. It is also believed that many of the puzzling properties of impurity-free carbon, such as ferromagnetism, are governed by specific modifications of the carbon surface. However, very little is known about the local structure of the carbon surface that is responsible for its aqueous ion affinity.

205

Irradiation Stability of Carbon Nanotubes  

E-Print Network (OSTI)

Ion irradiation of carbon nanotubes is a tool that can be used to achieve modification of the structure. Irradiation stability of carbon nanotubes was studied by ion and electron bombardment of the samples. Different ion species at various energies were used in experiments, and several defect characterization techniques were applied to characterize the damage. Development of dimensional changes of carbon nanotubes in microscopes operated at accelerating voltages of 30 keV revealed that binding energy of carbon atoms in CNs is much lower than in bulk materials. Resistivity measurements during irradiation demonstrated existence of a quasi state of defect creation. Linear relationship between ID/IG ratio and increasing irradiation fluence was revealed by Raman spectroscopy study of irradiated carbon buckypapers. The deviations from linear relationship were observed for the samples irradiated to very high fluence values. Annealing of irradiated samples was able to reduce the value of ID/IG ratio and remove defects. However, annealing could not affect ID/IG ratio and remove defects in amorphized samples. The extracted value of activation energy for irradiated sample was 0.36 0.05 eV. The value of activation energy was in good agreement with theoretical studies.

Aitkaliyeva, Assel

2009-08-01T23:59:59.000Z

206

Edgewood Carbon Holdings LLC | Open Energy Information  

Open Energy Info (EERE)

Edgewood Carbon Holdings LLC Edgewood Carbon Holdings LLC Jump to: navigation, search Name Edgewood Carbon Holdings LLC Place Cornwall, Vermont Zip 57530 Sector Carbon Product Edgewood Carbon Holdings LLC is active worldwide in the evolving commercialization of carbon recovery. Coordinates 50.443321°, -4.93986° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.443321,"lon":-4.93986,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

207

Local Atomic Density of Microporous Carbons  

DOE Green Energy (OSTI)

We investigated the structure of two disordered carbons: activated carbon fibers (ACF) and ultramicroporous carbon (UMC). These carbons have highly porous structure with large surface areas and consequently low macroscopic density that should enhance adsorption of hydrogen. We used the atomic pair distribution function to probe the local atomic arrangements. The results show that the carbons maintain an in-plane local atomic structure similar to regular graphite, but the stacking of graphitic layers is strongly disordered. Although the local atomic density of these carbons is lower than graphite, it is only {approx}20% lower and is much higher than the macroscopic density due to the porosity of the structure. For this reason, the density of graphene sheets that have optimum separation for hydrogen adsorption is lower than anticipated.

Dmowski, Wojtek; Contescu, Cristian I.; Llobet, Anna; Gallego, Nidia C.; Egami, Takeskhi (Tennessee-K); (ORNL); (LANL)

2012-07-12T23:59:59.000Z

208

Composite carbon foam electrode  

DOE Patents (OSTI)

Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

Mayer, Steven T. (San Leandro, CA); Pekala, Richard W. (Pleasant Hill, CA); Kaschmitter, James L. (Pleasanton, CA)

1997-01-01T23:59:59.000Z

209

Composite carbon foam electrode  

DOE Patents (OSTI)

Carbon aerogels used as a binder for granulated materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy. 1 fig.

Mayer, S.T.; Pekala, R.W.; Kaschmitter, J.L.

1997-05-06T23:59:59.000Z

210

Separation of carbon nanotubes in density gradients  

DOE Patents (OSTI)

The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

Hersam, Mark C. (Evanston, IL); Stupp, Samuel I. (Chicago, IL); Arnold, Michael S. (Northbrook, IL)

2012-02-07T23:59:59.000Z

211

Separation of carbon nanotubes in density gradients  

DOE Patents (OSTI)

The separation of single-walled carbon nanotubes (SWNTs), by chirality and/or diameter, using centrifugation of compositions of SWNTs in and surface active components in density gradient media.

Hersam, Mark C. (Evanston, IL); Stupp, Samuel I. (Chicago, IL); Arnold, Michael S. (Northbrook, IL)

2010-02-16T23:59:59.000Z

212

Short-term dynamics of soil carbon, microbial biomass, and soil enzyme activities as compared to longer-term effects of tillage in irrigated row crops  

E-Print Network (OSTI)

of soil microbial biomass and activity in conventional andPaul EA (1994) Microbial biomass. In: Weaver RW, Angle S,Owens LB (1988) Soil microbial biomass and organic component

Geisseler, Daniel; Horwath, William R.

2009-01-01T23:59:59.000Z

213

Process for sequestering carbon dioxide and sulfur dioxide  

DOE Patents (OSTI)

A process for sequestering carbon dioxide, which includes reacting a silicate based material with an acid to form a suspension, and combining the suspension with carbon dioxide to create active carbonation of the silicate-based material, and thereafter producing a metal salt, silica and regenerating the acid in the liquid phase of the suspension.

Maroto-Valer, M. Mercedes (State College, PA); Zhang, Yinzhi (State College, PA); Kuchta, Matthew E. (State College, PA); Andresen, John M. (State College, PA); Fauth, Dan J. (Pittsburgh, PA)

2009-10-20T23:59:59.000Z

214

Carbon Strategy for the Food Industry FAPC Food Process Engineer  

E-Print Network (OSTI)

172-1 Carbon Strategy for the Food Industry Tim Bowser FAPC Food Process Engineer FAPC-172 Robert M and Natural Resources Introduction Carbon strategy is a term that refers to a systematic plan of action for managing carbon consumption and emissions related to food manufacturing and distribution activities

Balasundaram, Balabhaskar "Baski"

215

High-strength porous carbon and its multifunctional applications  

SciTech Connect

High-strength porous carbon and a method of its manufacture are described for multifunctional applications, such as ballistic protection, structural components, ultracapacitor electrodes, gas storage, and radiation shielding. The carbon is produced from a polymer precursor via carbonization, and optionally by surface activation and post-treatment.

Wojtowicz, Marek A; Rubenstein, Eric P; Serio, Michael A; Cosgrove, Joseph E

2013-12-31T23:59:59.000Z

216

Electrosorption of Inorganic Ions from Aqueous by Carbon Electrode  

Science Conference Proceedings (OSTI)

In this study, effects of ionic radius, charge, and mass on the electro sorption desalination performance of activated carbon electrodes were investigated. The sorption capacity of carbon electrodes was approximately 0.08-0.18 mmol/g carbon. The electro ... Keywords: electrosorption, desalination, electric double layers

Zhao-Lin Chen; Hong-Tao Zhang; Chun-Xu Wu; Lei Gao; Yu-Shuang Wang; Fang-Qin Xue; Mo-Han Sun

2012-05-01T23:59:59.000Z

217

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal...  

Open Energy Info (EERE)

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State...

218

Definition, Capabilities, and Components of a Terrestrial Carbon Monitoring System  

Science Conference Proceedings (OSTI)

Research efforts for effectively and consistently monitoring terrestrial carbon are increasing in number. As such, there is a need to define carbon monitoring and how it relates to carbon cycle science and carbon management. There is also a need to identify intended capabilities of a carbon monitoring system and what system components are needed to develop the capabilities. This paper is intended to promote discussion on what capabilities are needed in a carbon monitoring system based on requirements for different areas of carbon-related research and, ultimately, for carbon management. While many methods exist to quantify different components of the carbon cycle, research is needed on how these methods can be coupled or integrated to obtain carbon stock and flux estimates regularly and at a resolution that enables attribution of carbon dynamics to respective sources. As society faces sustainability and climate change conerns, carbon management activities implemented to reduce carbon emissions or increase carbon stocks will become increasingly important. Carbon management requires moderate to high resolution monitoring. Therefore, if monitoring is intended to help inform management decisions, management priorities should be considered prior to development of a monitoring system.

West, Tristram O.; Brown, Molly E.; Duran, Riley M.; Ogle, Stephen; Moss, Richard H.

2013-08-08T23:59:59.000Z

219

The Woodland Carbon Code  

E-Print Network (OSTI)

The Woodland Carbon Code While society must continue to make every effort to reduce greenhouse gas a role by removing carbon dioxide from the atmosphere. The potential of woodlands to soak up carbon to help compensate for their carbon emissions. But before investing in such projects, people want to know

220

Mechanomutable Carbon Nanotube Arrays  

Science Conference Proceedings (OSTI)

About this Abstract. Meeting, 2010 TMS Annual Meeting & Exhibition. Symposium , Polymer Nanocomposites. Presentation Title, Mechanomutable Carbon...

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1998-01-01T23:59:59.000Z

222

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein. 17 figs.

Lagow, R.J.

1998-02-10T23:59:59.000Z

223

Acetylenic carbon allotrope  

DOE Patents (OSTI)

A fourth allotrope of carbon, an acetylenic carbon allotrope, is described. The acetylenic carbon allotropes of the present invention are more soluble than the other known carbon allotropes in many common organic solvents and possesses other desirable characteristics, e.g. high electron density, ability to burn cleanly, and electrical conductive properties. Many uses for this fourth allotrope are described herein.

Lagow, Richard J. (6204 Shadow Mountain Dr., Austin, TX 78731)

1999-01-01T23:59:59.000Z

224

Method for making carbon super capacitor electrode materials  

DOE Patents (OSTI)

A method for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200.degree.-250.degree. C., followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300.degree. C., follows carbonization.

Firsich, David W. (Dayton, OH); Ingersoll, David (Albuquerque, NM); Delnick, Frank M. (Dexter, MI)

1998-01-01T23:59:59.000Z

225

Method for making carbon super capacitor electrode materials  

DOE Patents (OSTI)

A method is described for making near-net-shape, monolithic carbon electrodes for energy storage devices. The method includes the controlled pyrolysis and activation of a pressed shape of methyl cellulose powder with pyrolysis being carried out in two stages; pre-oxidation, preferably in air at a temperature between 200--250 C, followed by carbonization under an inert atmosphere. An activation step to adjust the surface area of the carbon shape to a value desirable for the application being considered, including heating the carbon shape in an oxidizing atmosphere to a temperature of at least 300 C, follows carbonization. 1 fig.

Firsich, D.W.; Ingersoll, D.; Delnick, F.M.

1998-07-07T23:59:59.000Z

226

Biofuels Science and Facilities (Carbon Cycle 2.0)  

DOE Green Energy (OSTI)

Jay D. Keasling speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Keasling, Jay D.

2010-02-04T23:59:59.000Z

227

Glossary: Energy-Related Carbon Emissions  

U.S. Energy Information Administration (EIA)

Carbon Sequestration: The fixation of atmospheric carbon dioxide in a carbon sink through biological or physical processes. Carbon Sink: ...

228

Regional Carbon Sequestration Partnerships | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science & Innovation Carbon Capture and Storage Regional Carbon Sequestration Partnerships Regional Carbon Sequestration Partnerships DOE's Regional Carbon Sequestration...

229

Carbonic Acid Retreatment of Biomass  

DOE Green Energy (OSTI)

This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. (1) Solidify the theoretical understanding of the binary CO{sub 2}/H{sub 2}O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. (2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. (3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. (4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. (5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. (6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high ({approx}50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

Baylor university

2003-06-01T23:59:59.000Z

230

Carbonic Acid Pretreatment of Biomass  

SciTech Connect

This project sought to address six objectives, outlined below. The objectives were met through the completion of ten tasks. 1) Solidify the theoretical understanding of the binary CO2/H2O system at reaction temperatures and pressures. The thermodynamics of pH prediction have been improved to include a more rigorous treatment of non-ideal gas phases. However it was found that experimental attempts to confirm theoretical pH predictions were still off by a factor of about 1.8 pH units. Arrhenius experiments were carried out and the activation energy for carbonic acid appears to be substantially similar to sulfuric acid. Titration experiments have not yet confirmed or quantified the buffering or acid suppression effects of carbonic acid on biomass. 2) Modify the carbonic acid pretreatment severity function to include the effect of endogenous acid formation and carbonate buffering, if necessary. It was found that the existing severity functions serve adequately to account for endogenous acid production and carbonate effects. 3) Quantify the production of soluble carbohydrates at different reaction conditions and severity. Results show that carbonic acid has little effect on increasing soluble carbohydrate concentrations for pretreated aspen wood, compared to pretreatment with water alone. This appears to be connected to the release of endogenous acids by the substrate. A less acidic substrate such as corn stover would derive benefit from the use of carbonic acid. 4) Quantify the production of microbial inhibitors at selected reaction conditions and severity. It was found that the release of inhibitors was correlated to reaction severity and that carbonic acid did not appear to increase or decrease inhibition compared to pretreatment with water alone. 5) Assess the reactivity to enzymatic hydrolysis of material pretreated at selected reaction conditions and severity. Enzymatic hydrolysis rates increased with severity, but no advantage was detected for the use of carbonic acid compared to water alone. 6) Determine optimal conditions for carbonic acid pretreatment of aspen wood. Optimal severities appeared to be in the mid range tested. ASPEN-Plus modeling and economic analysis of the process indicate that the process could be cost competitive with sulfuric acid if the concentration of solids in the pretreatment is maintained very high (~50%). Lower solids concentrations result in larger reactors that become expensive to construct for high pressure applications.

G. Peter van Walsum; Kemantha Jayawardhana; Damon Yourchisin; Robert McWilliams; Vanessa Castleberry

2003-05-31T23:59:59.000Z

231

Electron Microscopy of Carbon Nanotube Composites  

Science Conference Proceedings (OSTI)

Electron Microscopy of Carbon Nanotube Composites. Summary: Carbon nanomaterials such as carbon nanotubes (CNTs ...

2013-07-01T23:59:59.000Z

232

On carbon footprints and growing energy use  

SciTech Connect

Could fractional reductions in the carbon footprint of a growing organization lead to a corresponding real reduction in atmospheric CO{sub 2} emissions in the next ten years? Curtis M. Oldenburg, head of the Geologic Carbon Sequestration Program of LBNLs Earth Sciences Division, considers his own organization's carbon footprint and answers this critical question? In addressing the problem of energy-related greenhouse gas (GHG) emissions and climate change, it is essential that we understand which activities are producing GHGs and the scale of emission for each activity, so that reduction efforts can be efficiently targeted. The GHG emissions to the atmosphere of an individual or group are referred to as the carbon footprint. This terminology is entirely appropriate, because 85% of the global marketed energy supply comes from carbon-rich fossil fuel sources whose combustion produces CO{sub 2}, the main GHG causing global climate change. Furthermore, the direct relation between CO2 emissions and fossil fuels as they are used today makes energy consumption a useful proxy for carbon footprint. It would seem to be a simple matter to reduce energy consumption across the board, both individually and collectively, to help reduce our carbon footprints and therefore solve the energyclimate crisis. But just how much can we reduce carbon footprints when broader forces, such as growth in energy use, cause the total footprint to simultaneously expand? In this feature, I present a calculation of the carbon footprint of the Earth Sciences Division (ESD), the division in which I work at Lawrence Berkeley National Laboratory (LBNL), and discuss the potential for reducing this carbon footprint. It will be apparent that in terms of potential future carbon footprint reductions under projections of expected growth, ESD may be thought of as a microcosm of the situation of the world as a whole, in which alternatives to the business-as-usual use of fossil fuels are needed if absolute GHG emission reductions are to be achieved.

Oldenburg, C.M.

2011-06-01T23:59:59.000Z

233

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that higher temperature calcination of trona leds to reduced carbonation activity in subsequent cycles, but that calcination in dry carbon dioxide did not result in decreased activity relative to calcination in helium. Following higher temperature calcination, sodium bicarbonate (SBC) No.3 has greater activity than either coarse or fine grades of trona. Fixed bed testing of calcined SBC No.3 at 70 C confirmed that high rates of carbon dioxide absorption are possible and that the resulting product is a mixture of Wegscheider's salt and sodium carbonate. In fluidized bed testing of supported potassium carbonate, very rapid carbonation rates were observed. Activity of the support material complicated the data analysis. A milled, spherical grade of SBC appeared to be similar in attrition and abrasion characteristics to an unmilled, less regularly shaped SBC. The calcination behavior, at 107 C, for the milled and unmilled materials was also similar.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P.Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

2002-10-01T23:59:59.000Z

234

Michael Heine, SGL Group - The Carbon Company, Carbon Fibers...  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Fibers in Lightweight Systems for Wind Energy and Automotive Applications: Availability and Challenges for the Future Michael Heine, SGL Group - The Carbon Company, Carbon...

235

Carbon Efficiency, Carbon Reduction Potential, and Economic Developmen...  

Open Energy Info (EERE)

Carbon Reduction Potential, and Economic Development in the People's Republic of China Jump to: navigation, search Tool Summary Name: Carbon Efficiency, Carbon Reduction...

236

Carbon Ion Pump for Carbon Dioxide Removal  

coal fired power plants; oil or gas fired power plants; cement production; bio-fuel combustion; Separation of carbon dioxide from other combustion ...

237

Carbon fuel cells with carbon corrosion suppression  

Science Conference Proceedings (OSTI)

An electrochemical cell apparatus that can operate as either a fuel cell or a battery includes a cathode compartment, an anode compartment operatively connected to the cathode compartment, and a carbon fuel cell section connected to the anode compartment and the cathode compartment. An effusion plate is operatively positioned adjacent the anode compartment or the cathode compartment. The effusion plate allows passage of carbon dioxide. Carbon dioxide exhaust channels are operatively positioned in the electrochemical cell to direct the carbon dioxide from the electrochemical cell.

Cooper, John F. (Oakland, CA)

2012-04-10T23:59:59.000Z

238

Carbon Management and Carbon Dioxide Reduction  

Science Conference Proceedings (OSTI)

Cost-Effective Gas Stream Component Analysis Techniques and Strategies for Carbon Capture Systems from Oxy-Fuel Combustion (An Overview).

239

Associations of health, physical activity and weight status with motorised travel and transport carbon dioxide emissions: a cross-sectional, observational study  

E-Print Network (OSTI)

(active travel) substitutes for at least some motorised travel and thereby reduces CO2 emissions [e.g. 12]. This assump- tion is supported by the finding that energy expenditure from walking is negatively correlated with fossil fuel use from car driving... About your local pedestrian and cycling routes Continued 11 About your work or place of study S E C T I O N E Sedentary occupation You spend most of your time sitting (e.g. in an office, driving a vehicle). Standing occupation You spend most of your time...

Goodman, Anna; Brand, Christian; Ogilvie, David; on behalf of the iConnect consortium

2012-08-03T23:59:59.000Z

240

Metallic carbon materials  

DOE Patents (OSTI)

Novel metallic forms of planar carbon are described, as well as methods of designing and making them. Nonhexagonal arrangements of carbon are introduced into a graphite carbon network essentially without destroying the planar structure. Specifically a form of carbon comprising primarily pentagons and heptagons, and having a large density of states at the Fermi level is described. Other arrangements of pentagons and heptagons that include some hexagons, and structures incorporating squares and octagons are additionally disclosed. Reducing the bond angle symmetry associated with a hexagonal arrangement of carbons increases the likelihood that the carbon material will have a metallic electron structure.

Cohen, Marvin Lou (Berkeley, CA); Crespi, Vincent Henry (Darien, IL); Louie, Steven Gwon Sheng (Berkeley, CA); Zettl, Alexander Karlwalter (Kensington, CA)

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

NETL: Regional Carbon Sequestration Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

RCSP Carbon Storage Regional Carbon Sequestration Partnerships In 2003, the U.S. Department of Energy (DOE) awarded cooperative agreements to seven Regional Carbon Sequestration...

242

Carbon Nanostructure-Based Sensors  

E-Print Network (OSTI)

Control of Single-Walled Carbon Nanotube Functionalization.M. S. Characterizing carbon nanotube samples with resonancewith a Single-Walled Carbon Nanotube Capacitor. Science

Sarkar, Tapan

2012-01-01T23:59:59.000Z

243

An X-ray photometry system I: Chandra ACIS  

E-Print Network (OSTI)

We present a system of X-ray photometry for the Chandra satellite. X-ray photometry can be a powerful tool to obtain flux estimates, hardness ratios, and colors unbiased by assumptions about spectral shape and independent of temporal and spatial changes in instrument characteristics. The system we have developed relies on our knowledge of effective area and the energy-to-channel conversion to construct filters similar to photometric filters in the optical bandpass. We show that the filters are well behaved functions of energy and that this X-ray photometric system is able to reconstruct fluxes to within about 20%, without color corrections, for non-pathological spectra. Even in the worst cases it is better than 50%. Our method also treats errors in a consistent manner, both statistical as well as systematic.

Grimm, H -J; Fabbiano, G; Elvis, M

2008-01-01T23:59:59.000Z

244

Controlled low strength materials (CLSM), reported by ACI Committee 229  

Science Conference Proceedings (OSTI)

Controlled low-strength material (CLSM) is a self-compacted, cementitious material used primarily as a backfill in lieu of compacted fill. Many terms are currently used to describe this material including flowable fill, unshrinkable fill, controlled density fill, flowable mortar, flowable fly ash, fly ash slurry, plastic soil-cement, soil-cement slurry, K-Krete and other various names. This report contains information on applications, material properties, mix proportioning, construction and quality-control procedures. This report`s intent is to provide basic information on CLSM technology, with emphasis on CLSM material characteristics and advantages over conventional compacted fill. Applications include backfills, structural fills, insulating and isolation fills, pavement bases, conduit bedding, erosion control, void filling, and radioactive waste management.

Rajendran, N.

1997-07-01T23:59:59.000Z

245

NETL: The Carbon Sequestration Newsletter: July 2001  

NLE Websites -- All DOE Office Websites (Extended Search)

July 2001 July 2001 This newsletter is produced by the National Energy Technology Laboratory and presents summaries of significant events related to carbon sequestration that have taken place over the past month. TABLE OF CONTENTS Sequestration in the News Events / Announcements from NETL's Carbon Sequestration Program Publications Legislative Activity Related to Carbon Sequestration Sequestration in the News New York Times The June 17 edition of the New York Times contains an article on carbon sequestration in geologic formations, Strategy has a Greenhouse Gas Bottled Up Under Land and Sea. The article mentions President Bush's support of carbon sequestration technologies, the $15 million Southern Saskatchewan project in Weyburn oil fields, and the reactions from environmental groups. Go to the New York Times to find the article by entering "Weyburn" on the web site's search feature.

246

Distributed Energy Resources for Carbon Emissions Mitigation  

DOE Green Energy (OSTI)

The era of publicly mandated GHG emissions restrictions inthe United States has begun with recent legislation in California andseven northeastern states. Commercial and industrial buildings canimprove the carbon-efficiency of end-use energy consumption by installingtechnologies such as on-site cogeneration of electricity and useful heatin combined heat and power systems, thermally-activated cooling, solarelectric and thermal equipment, and energy storage -- collectively termeddistributed energy resources (DER). This research examines a collectionof buildings in California, the Northeast, and the southern United Statesto demonstrate the effects of regional characteristics such as the carbonintensity of central electricity grid, the climate-driven demand forspace heating and cooling, and the availability of solar insolation. Theresults illustrate that the magnitude of a realistic carbon tax ($100/tC)is too small to incent significant carbon-reducing effects oneconomically optimal DER adoption. In large part, this is because costreduction and carbon reduction objectives are roughly aligned, even inthe absence of a carbon tax.

Firestone, Ryan; Marnay, Chris

2007-05-01T23:59:59.000Z

247

Challenges for improving estimates of soil organic carbon stored in  

NLE Websites -- All DOE Office Websites (Extended Search)

Challenges for improving estimates of soil organic carbon stored in Challenges for improving estimates of soil organic carbon stored in permafrost regions September 30, 2013 Tweet EmailPrint One of the greatest environmental challenges of the 21st century lies in predicting the impacts of anthropogenic activities on Earth's carbon cycle. Soil is a significant component of the carbon cycle, because it contains at least two-thirds of the world's terrestrial carbon and more than twice as much carbon as the atmosphere. Although soil organic carbon (SOC) stocks were built over millennial time scales, they are susceptible to a far more rapid release back to the atmosphere due to climatic and land use change. If environmental perturbations negatively impact the processes regulating the storage of SOC, significant amounts of this carbon could be decomposed

248

Method of making carbon-carbon composites  

DOE Patents (OSTI)

A process for making a carbon-carbon composite having a combination of high crystallinity, high strength, high modulus and high thermal and electrical conductivity. High-modulus/high-strength mesophase derived carbon fibers are woven into a suitable cloth. Layers of this easily graphitizable woven cloth are covered with petroleum or coal tar pitch and pressed at a temperature a few degrees above the softening point of the pitch to form a green laminated composite. The green composite is restrained in a suitable fixture and heated slowly to carbonize the pitch binder. The carbonized composite is then impregnated several times with pitch by covering the composite with hot pitch under pressure. The composites are given a heat treatment between each impregnation step to crack up the infiltrated carbon and allow additional pitch to enter the microstructure during the next impregnation cycle. The impregnated composites are then given a final heat treatment in the range 2500.degree. to 3000.degree. C. to fully graphitize the fibers and the matrix carbon. The composites are then infiltrated with pyrolytic carbon by chemical vapor deposition in the range 1000.degree. to 1300.degree. C. at a reduced pressure for approximately one hundred and fifty (150) hours.

Engle, Glen B. (16716 Martincoit Rd., Poway, CA 92064)

1991-01-01T23:59:59.000Z

249

Journal of Environmental Management] (  

E-Print Network (OSTI)

The Thief Process is a cost-effective variation to activated carbon injection (ACI) for removal of mercury from flue gas. In this scheme, partially combusted coal from the furnace of a pulverized coal power generation plant is extracted by a lance and then re-injected into the ductwork downstream of the air preheater. Recent results on a 500-lb/h pilot-scale combustion facility show similar removals of mercury for both the Thief Process and ACI. The tests conducted to date at laboratory, bench, and pilot-scales demonstrate that the Thief sorbents exhibit capacities for mercury from flue gas streams that are comparable to those exhibited by commercially available activated carbons. A patent for the process was issued in February 2003. The Thief sorbents are cheaper than commercially-available activated carbons; exhibit excellent capacities for mercury; and the overall process holds great potential for reducing the cost of mercury removal

Evan J. Granite; Mark C. Freeman; Richard A. Hargis; William J. Odowd; W. Pennline

2006-01-01T23:59:59.000Z

250

Terrestrial Carbon Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Terrestrial Carbon Management Data Sets and Analyses Terrestrial Carbon Management Data Sets and Analyses Carbon Accumulation with Cropland Management Influence of Agricultural Management on Soil Organic Carbon: A Compendium and Assessment of Canadian Studies (VandenBygaart et al., Agriculture and Agri-Food Canada) Soil Carbon Sequestration by Tillage and Crop Rotation: A Global Data Analysis (West and Post, Oak Ridge National Laboratory) Preliminary Estimates of the Potential for Carbon Mitigation in European Soils Through No-Till Farming (Smith et al., University of Aberdeen, United Kingdom) Potential for Carbon Sequestration in European Soils: Preliminary Estimates for Five Scenarios Using Results from Long-Term Experiments (Smith et al., University of Aberdeen, United Kingdom) Carbon Accumulation with Grassland Management

251

Quantifying Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Perturbations to the carbon cycle could constitute large feedbacks on future changes in atmospheric CO2 concentration and climate. This paper demonstrates how carbon cycle feedback can be expressed in formally similar ways to climate feedback, ...

J. M. Gregory; C. D. Jones; P. Cadule; P. Friedlingstein

2009-10-01T23:59:59.000Z

252

Carbon Monoxide Safety Tips  

E-Print Network (OSTI)

Protect yourself and your family from the deadly effects of carbon monoxide--a colorless, odorless poisonous gas. This publication describes the warning signs of carbon monoxide exposure and includes a home safety checklist.

Shaw, Bryan W.; Garcia, Monica L.

1999-07-26T23:59:59.000Z

253

NETL: Carbon Storage Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Carbon Storage Newsletter PDF-571KB has been posted. 08.27.2013 Publications August 2013 Carbon Storage Newsletter PDF-1.1MB has been posted. 08.15.2013 News Ancient...

254

Carbon nanotube nanoelectrode arrays  

DOE Patents (OSTI)

The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

Ren, Zhifeng (Newton, MA); Lin, Yuehe (Richland, WA); Yantasee, Wassana (Richland, WA); Liu, Guodong (Fargo, ND); Lu, Fang (Burlingame, CA); Tu, Yi (Camarillo, CA)

2008-11-18T23:59:59.000Z

255

Carbon Footprint and Carbon Deficit Analysis of Iron and Steel ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Technologies and Carbon Dioxide Management. Presentation Title ... Study on Capture, Recovery and Utilization of Carbon Dioxide.

256

Carbon Fibers and Carbon Nanotubes - Programmaster.org  

Science Conference Proceedings (OSTI)

Feb 17, 2010 ... Polymer Nanocomposites: Carbon Fibers and Carbon Nanotubes Sponsored by: The Minerals, Metals and Materials Society Program...

257

Carbon Dioxide Compression  

Science Conference Proceedings (OSTI)

Page 1. C opyright 2009 Carbon Dioxide Compression DOE EPRI NIST ... Greenhouse gas sequestration Page 5. 5 C opyright 2009 ...

2013-04-22T23:59:59.000Z

258

Carbon Mitigation Measurements  

Science Conference Proceedings (OSTI)

... sustainable technologies such as CO 2 capture and sequestration (CCS ... property diagnostic tools (under realistic conditions for carbon capture from ...

2012-10-04T23:59:59.000Z

259

Big Sky Carbon Atlas  

DOE Data Explorer (OSTI)

(Acknowledgment to the Big Sky Carbon Sequestration Partnership (BSCSP); see home page at http://www.bigskyco2.org/)

Carbon Sequestration Partnership, Big Sky [BSCSP; ,

260

Electrocatalysts on Carbon Nanoparticles  

Carbon nanostructures offer extremely high surface areas and so are attractive candidates to support dispersed catalysts. These nanostructures, ...

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Low Carbon Fuel Standards  

E-Print Network (OSTI)

land-use changes. When biofuel production increases, land ison carbon releases. If biofuel production does not result in

Sperling, Dan; Yeh, Sonia

2009-01-01T23:59:59.000Z

262

892 ACI Structural Journal/November-December 2005 ACI Structural Journal, V. 102, No. 6, November-December 2005.  

E-Print Network (OSTI)

. Grundhoffer, T.; Mendis, P. A.; French, C. W.; and Leon, R., "Bond of Epoxy-Coated Reinforcement in Normal

Peterson, Blake R.

263

NETL: Mercury Emissions Control Technologies - On-Site Production of  

NLE Websites -- All DOE Office Websites (Extended Search)

On-Site Production of Mercury Sorbent with Low Concrete Impact On-Site Production of Mercury Sorbent with Low Concrete Impact The detrimental health effects of mercury are well documented. Furthermore, it has been reported that U.S. coal-fired plants emit approximately 48 tons of mercury a year. To remedy this, the U.S. Environmental Protection Agency (EPA) released the Clean Air Mercury Rule (CAMR) on March 15, 2005. A promising method to achieve the mandated mercury reductions is activated carbon injection (ACI). While promising, the current cost of ACI for mercury capture is expensive, and ACI adversely impacts the use of the by-product fly-ash for concrete. Published prices for activated carbon are generally 0.5-1 $/lb and capital costs estimates are 2-55 $/KW. Because of the high costs of ACI, Praxair started feasibility studies on an alternative process to reduce the cost of mercury capture. The proposed process is composed of three steps. First, a hot oxidant mixture is created by using a proprietary Praxair burner. Next, the hot oxidant is allowed to react with pulverized coal and additives. The resulting sorbent product is separated from the resulting syngas. In a commercial installation, the resulting sorbent product would be injected between the air-preheater and the particulate control device.

264

Formation of Carbon Dwarfs  

E-Print Network (OSTI)

We consider the formation of dwarf carbon stars via accretion from a carbon AGB companion in light of the new 107 object sample of Downes et al. (2004). This sample is now large enough to allow good mass determination via comparison of a composite spectrum to theoretical atmospheric models. Carbon dwarfs of spectral type M are indeed main sequence M dwarfs with enhanced metallicity and carbon abundance. We also calculate the predicted abundance of both M and of F/G carbon dwarfs, and show that the latter should be falsifiable in the near future.

Charles L. Steinhardt; Dimitar D. Sasselov

2005-02-08T23:59:59.000Z

265

Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon fiber  

E-Print Network (OSTI)

Study of fire retardant behavior of carbon nanotube membranes and carbon nanofiber paper in carbon Accepted 14 January 2010 Available online 20 January 2010 A B S T R A C T Single-walled carbon nanotube (SWCNT) and multi-walled carbon nanotube (MWCNT) membranes (buckypaper) and carbon nanofiber (CNF) paper

Das, Suman

266

Continuous, Non-Invasive, In-Field Soil Carbon Scanning System  

NLE Websites -- All DOE Office Websites (Extended Search)

Continuous, Non-Invasive, In-Field Soil Continuous, Non-Invasive, In-Field Soil Carbon Scanning System Background Earth generates and emits an enormous amount of carbon dioxide into the atmos- phere from its deep energy resources, its near-surface processes, and biotic activi- ties. Although anthropogenic carbon dioxide emissions increase global warming, global warming is also alleviated by human activities in sequestering carbon into the terrestrial ecosystem and injecting carbon dioxide deep into geological formations,

267

Method for aqueous gold thiosulfate extraction using copper-cyanide pretreated carbon adsorption  

Science Conference Proceedings (OSTI)

A gold thiosulfate leaching process uses carbon to remove gold from the leach liquor. The activated carbon is pretreated with copper cyanide. A copper (on the carbon) to gold (in solution) ratio of at least 1.5 optimizes gold recovery from solution. To recover the gold from the carbon, conventional elution technology works but is dependent on the copper to gold ratio on the carbon.

Young, Courtney; Melashvili, Mariam; Gow, Nicholas V

2013-08-06T23:59:59.000Z

268

Patterned functional carbon fibers from polyethylene  

SciTech Connect

Patterned, continuous carbon fibers with controlled surface geometry were produced from a novel melt-processible carbon precursor. This portends the use of a unique technique to produce such technologically innovative fibers in large volume for important applications. The novelties of this technique include ease of designing and fabricating fibers with customized surface contour, the ability to manipulate filament diameter from submicron scale to a couple of orders of magnitude larger scale, and the amenable porosity gradient across the carbon wall by diffusion controlled functionalization of precursor. The geometry of fiber cross-section was tailored by using bicomponent melt-spinning with shaped dies and controlling the melt-processing of the precursor polymer. Circular, trilobal, gear-shaped hollow fibers, and solid star-shaped carbon fibers of 0.5 - 20 um diameters, either in self-assembled bundle form, or non-bonded loose filament form, were produced by carbonizing functionalized-polyethylene fibers. Prior to carbonization, melt-spun fibers were converted to a char-forming mass by optimizing the sulfonation on polyethylene macromolecules. The fibers exhibited distinctly ordered carbon morphologies at the outside skin compared to the inner surface or fiber core. Such order in carbon microstructure can be further tuned by altering processing parameters. Partially sulfonated polyethylene-derived hollow carbon fibers exhibit 2-10 fold surface area (50-500 m2/g) compared to the solid fibers (10-25 m2/g) with pore sizes closer to the inside diameter of the filaments larger than the sizes on the outer layer. These specially functionalized carbon fibers hold promise for extraordinary performance improvements when used, for example, as composite reinforcements, catalyst support media, membranes for gas separation, CO2 sorbents, and active electrodes and current collectors for energy storage applications.

Hunt, Marcus A [ORNL; Saito, Tomonori [ORNL; Brown, Rebecca H [ORNL; Kumbhar, Amar S [University of North Carolina, Chapel Hill; Naskar, Amit K [ORNL

2012-01-01T23:59:59.000Z

269

Measurement of carbon for carbon sequestration and site monitoring  

Science Conference Proceedings (OSTI)

A 2 to 6 degree C increase in global temperature by 2050 has been predicted due to the production of greenhouse gases that is directly linked to human activities. This has encouraged an increase in the international efforts on ways to reduce anthropogenic emissions of greenhouse gases particularly carbon dioxide (CO{sub 2}) as evidence for the link between atmospheric greenhouse gases and climate change has been established. Suggestion that soils and vegetation could be managed to increase their uptake and storage of CO{sub 2}, and thus become 'land carbon sinks' is an incentive for scientists to undertake the ability to measure and quantify the carbon in soils and vegetation to establish base-line quantities present at this time. The verification of the permanence of these carbon sinks has raised some concern regarding the accuracy of their long-term existence. Out of the total percentage of carbon that is potentially sequestered in the terrestrial land mass, only 25% of that is sequestered above ground and almost 75% is hypothesized to be sequestered underground. Soil is composed of solids, liquids, and gases which is similar to a three-phase system. The gross chemical composition of soil organic carbon (SOC) consists of 65% humic substances that are amorphous, dark-colored, complex, polyelectrolyte-like materials that range in molecular weight from a few hundred to several thousand Daltons. The very complex structure of humic and fulvic acid makes it difficult to obtain a spectral signature for all soils in general. The humic acids of different soils have been observed to have polymeric structure, appearing as rings, chains and clusters as seen in electron microscope observations. The humification processes of the soils will decide the sizes of their macromolecules that range from 60-500 angstroms. The percentage of the humus that occurs in the light brown soils is much lower than the humus present in dark brown soils. The humus of forest soils is characterized by a high content of fulvic acids while the humus of peat and grassland soils is high in humic acids. Similarly it is well known that the amount of carbon present in forest soils is lower than the amount present in grassland soils.

Martin, Madhavi Z [ORNL; Wullschleger, Stan D [ORNL; Garten Jr, Charles T [ORNL; Palumbo, Anthony Vito [ORNL

2007-01-01T23:59:59.000Z

270

Carbon dioxide sensor  

SciTech Connect

The present invention generally relates to carbon dioxide (CO.sub.2) sensors. In one embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor that incorporates lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3). In another embodiment, the present invention relates to a carbon dioxide (CO.sub.2) sensor has a reduced sensitivity to humidity due to a sensing electrode with a layered structure of lithium carbonate and barium carbonate. In still another embodiment, the present invention relates to a method of producing carbon dioxide (CO.sub.2) sensors having lithium phosphate (Li.sub.3PO.sub.4) as an electrolyte and sensing electrode comprising a combination of lithium carbonate (Li.sub.2CO.sub.3) and barium carbonate (BaCO.sub.3).

Dutta, Prabir K. (Worthington, OH); Lee, Inhee (Columbus, OH); Akbar, Sheikh A. (Hilliard, OH)

2011-11-15T23:59:59.000Z

271

Carbon nanotubes grown on bulk materials and methods for fabrication  

DOE Patents (OSTI)

Disclosed are structures formed as bulk support media having carbon nanotubes formed therewith. The bulk support media may comprise fibers or particles and the fibers or particles may be formed from such materials as quartz, carbon, or activated carbon. Metal catalyst species are formed adjacent the surfaces of the bulk support material, and carbon nanotubes are grown adjacent the surfaces of the metal catalyst species. Methods employ metal salt solutions that may comprise iron salts such as iron chloride, aluminum salts such as aluminum chloride, or nickel salts such as nickel chloride. Carbon nanotubes may be separated from the carbon-based bulk support media and the metal catalyst species by using concentrated acids to oxidize the carbon-based bulk support media and the metal catalyst species.

Menchhofer, Paul A. (Clinton, TN); Montgomery, Frederick C. (Oak Ridge, TN); Baker, Frederick S. (Oak Ridge, TN)

2011-11-08T23:59:59.000Z

272

IEP - Carbon Dioxide: Regulatory Drivers  

NLE Websites -- All DOE Office Websites (Extended Search)

IEP - Carbon Dioxide (CO2) Regulatory Drivers In July 7, 2009 testimony before the U.S. Senate Committee on Environment and Public Works, Secretary of Energy Steven Chu made the following statements:1 "...Overwhelming scientific evidence shows that carbon dioxide from human activity has increased the atmospheric level of CO2 by roughly 40 percent, a level one- third higher than any time in the last 800,000 years. There is also a consensus that CO2 and other greenhouse gas emissions have caused our planet to change. Already, we have seen the loss of about half of the summer arctic polar ice cap since the 1950s, a dramatically accelerating rise in sea level, and the loss of over two thousand cubic miles of glacial ice, not on geological time scales but over a mere hundred years.

273

Big Sky Carbon Sequestration Partnership  

Science Conference Proceedings (OSTI)

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I fall into four areas: evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; development of GIS-based reporting framework that links with national networks; designing an integrated suite of monitoring, measuring, and verification technologies and assessment frameworks; and initiating a comprehensive education and outreach program. The groundwork is in place to provide an assessment of storage capabilities for CO2 utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research agenda in Carbon Sequestration. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other DOE regional partnerships. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the Partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long-term viability. Scientifically sound MMV is critical for public acceptance of these technologies. Deliverables for the 7th Quarter reporting period include (1) for the geological efforts: Reports on Technology Needs and Action Plan on the Evaluation of Geological Sinks and Pilot Project Deployment (Deliverables 2 and 3), and Report on the Feasibility of Mineralization Trapping in the Snake River Plain Basin (Deliverable 14); (2) for the terrestrial efforts: Report on the Evaluation of Terrestrial Sinks and a Report of the Best Production Practices for Soil C Sequestration (Deliverables 8 and 15). In addition, the 7th Quarter activities for the Partnership included further development of the proposed activities for the deployment and demonstration phase of the carbon sequestration pilots including geological and terrestrial pilots, expansion of the Partnership to encompass regions and institutions that are complimentary to the steps we have identified, building greater collaborations with industry and stakeholders in the region, contributed to outreach efforts that spanned all partnerships, co-authorship on the Carbon Capture and Separation report, and developed a regional basis to address future energy opportunities in the region. The deliverables and activities are discussed in the following sections and appended to this report. The education and outreach efforts have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The public website has been expanded and integrated with the GIS carbon atlas. We have made presentations to stakeholders and policy makers including two tribal sequestration workshops, and made connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmental

Susan M. Capalbo

2005-11-01T23:59:59.000Z

274

Pyrophoric metal-carbon foam composites and methods of making the same  

Science Conference Proceedings (OSTI)

A method for creating a pyrophoric material according to one embodiment includes thermally activating a carbon foam for creating micropores therein; contacting the activated carbon foam with a liquid solution comprising a metal salt for depositing metal ions in the carbon foam; and reducing the metal ions in the foam to metal particles. A pyrophoric material in yet another embodiment includes a pyrophoric metal-carbon foam composite comprising a carbon foam having micropores and mesopores and a surface area of greater than or equal to about 2000 m.sup.2/g, and metal particles in the pores of the carbon foam. Additional methods and materials are also disclosed.

Gash, Alexander E. (Brentwood, CA); Satcher, Jr., Joe H. (Patterson, CA); Simpson, Randall L. (Livermore, CA); Baumann, Theodore F. (Discovery Bay, CA); Worsley, Marcus A. (Belmont, CA)

2012-05-08T23:59:59.000Z

275

Carbon Emissions: Paper Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Paper Industry Paper Industry Carbon Emissions in the Paper Industry The Industry at a Glance, 1994 (SIC Code: 26) Total Energy-Related Emissions: 31.6 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 8.5% Total First Use of Energy: 2,665 trillion Btu -- Pct. of All Manufacturers: 12.3% -- Pct. Renewable Energy: 47.7% Carbon Intensity: 11.88 MMTC per quadrillion Btu Renewable Energy Sources (no net emissions): -- Pulping liquor: 882 trillion Btu -- Wood chips and bark: 389 trillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 31.6 Net Electricity 11.0

276

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

277

Carbon Emissions: Food Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Food Industry Food Industry Carbon Emissions in the Food Industry The Industry at a Glance, 1994 (SIC Code: 20) Total Energy-Related Emissions: 24.4 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 6.6% Total First Use of Energy: 1,193 trillion Btu -- Pct. of All Manufacturers: 5.5% Carbon Intensity: 20.44 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 24.4 Net Electricity 9.8 Natural Gas 9.1 Coal 4.2 All Other Sources 1.3 Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998

278

Carbon Emissions: Chemicals Industry  

U.S. Energy Information Administration (EIA) Indexed Site

Chemicals Industry Chemicals Industry Carbon Emissions in the Chemicals Industry The Industry at a Glance, 1994 (SIC Code: 28) Total Energy-Related Emissions: 78.3 million metric tons of carbon (MMTC) -- Pct. of All Manufacturers: 21.1% -- Nonfuel Emissions: 12.0 MMTC Total First Use of Energy: 5,328 trillion Btu -- Pct. of All Manufacturers: 24.6% Energy Sources Used As Feedstocks: 2,297 trillion Btu -- LPG: 1,365 trillion Btu -- Natural Gas: 674 trillion Btu Carbon Intensity: 14.70 MMTC per quadrillion Btu Energy Information Administration, "1994 Manufacturing Energy Consumption Survey" and Emissions of Greenhouse Gases in the United States 1998 Energy-Related Carbon Emissions, 1994 Source of Carbon Carbon Emissions (million metric tons) All Energy Sources 78.3 Natural Gas 32.1

279

The Carbon Cycle  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle The Carbon Cycle The global carbon cycle involves the carbon in and exchanging between the earth's atmosphere, fossil fuels, the oceans, and the vegetation and soils of the earth's terrestrial ecosystems. image Each year, the world's terrestrial ecosystems withdraw carbon from the atmosphere through photosynthesis and add it again through respiration and decay. A more detailed look at the global carbon cycle for the 1990s is shown below. The main annual fluxes in GtC yr-1 are: pre-industrial "natural" fluxes in black and "anthropogenic" fluxes in red (modified from Sarmiento and Gruber, 2006, with changes in pool sizes from Sabine et al., 2004a). The net terrestrial loss of -39 GtC is inferred from cumulative fossil fuel emissions minus atmospheric increase minus ocean storage. The loss of

280

Mesoporous carbon materials  

SciTech Connect

The invention is directed to a method for fabricating a mesoporous carbon material, the method comprising subjecting a precursor composition to a curing step followed by a carbonization step, the precursor composition comprising: (i) a templating component comprised of a block copolymer, (ii) a phenolic compound or material, (iii) a crosslinkable aldehyde component, and (iv) at least 0.5 M concentration of a strong acid having a pKa of or less than -2, wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for sufficient time to convert the precursor composition to a mesoporous carbon material. The invention is also directed to a mesoporous carbon material having an improved thermal stability, preferably produced according to the above method.

Dai, Sheng; Wang, Xiqing

2013-08-20T23:59:59.000Z

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Would Border Carbon Adjustments prevent carbon leakage and heavy industry  

E-Print Network (OSTI)

No 52-2013 Would Border Carbon Adjustments prevent carbon leakage and heavy industry halshs-00870689,version1-7Oct2013 #12;Would Border Carbon Adjustments prevent carbon leakage and heavy The efficiency of unilateral climate policies may be hampered by carbon leakage and competitiveness losses

Recanati, Catherine

282

Carbon Film Electrodes For Super Capacitor Applications  

DOE Patents (OSTI)

A method for treating an organic polymer material, preferably a vinylidene chloride/vinyl chloride copolymer (Saran) to produce a flat sheet of carbon film material having a high surface area (.apprxeq.1000 m.sup.2 /g) suitable as an electrode material for super capacitor applications. The method comprises heating a vinylidene chloride/vinyl chloride copolymer film disposed between two spaced apart graphite or ceramic plates to a first temperature of about 160.degree. C. for about 14 hours to form a stabilized vinylidene chloride/vinyl chloride polymer film, thereafter heating the stabilized film to a second temperature of about 750.degree. C. in an inert atmosphere for about one hour to form a carbon film; and finally activating the carbon film to increase the surface area by heating the carbon film in an oxidizing atmosphere to a temperature of at least 750-850.degree. C. for between 1-6 hours.

Tan, Ming X. (Livermore, CA)

1999-07-20T23:59:59.000Z

283

Activated Carbon and FGD Gypsum Standard Reference ...  

Science Conference Proceedings (OSTI)

... have been effectively reduced in recent years, but atmospheric emissions of mercury from the operation of coal-fired power plants still remain the ...

2012-10-01T23:59:59.000Z

284

Sandia National Laboratories Carbon Activation Process  

development as a hybrid power source for ... layer capacitors, while storing high levels of electrical ... Previous methods utilized high temperatures, ...

285

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

R&D Overview R&D Overview Office of Fossil Energy Justin "Judd" R. Swift Asst. Secretary for International Affairs Office of Fossil Energy U.S. Department of Energy 2 nd U.S/China CO 2 Emission Control Science & Technology Symposium May 28-29, 2008 Hangzhou, China Office of Fossil Energy Technological Carbon Management Options Improve Efficiency Sequester Carbon  Renewables  Nuclear  Fuel Switching  Demand Side  Supply Side  Capture & Store  Enhance Natural Sinks Reduce Carbon Intensity All options needed to:  Affordably meet energy demand  Address environmental objectives Office of Fossil Energy DOE's Sequestration Program Structure Infrastructure Regional Carbon Sequestration

286

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Cement Production Refineries Etc.... C Capture & Storage, Austin, TX Nov. 13-15, 2007 Carbon Sequestration Program Goals * Deliver technologies & best practices that validate:...

287

Carbon Sequestration - Public Meeting  

NLE Websites -- All DOE Office Websites (Extended Search)

Public Meeting Programmatic Environmental Impact Statement Public Meeting May 18, 2004 National Energy Technology Laboratory Office of Fossil Energy Scott Klara Carbon Sequestration Technology Manager Carbon Sequestration Program Overview * What is Carbon Sequestration * The Fossil Energy Situation * Greenhouse Gas Implications * Pathways to Greenhouse Gas Stabilization * Sequestration Program Overview * Program Requirements & Structure * Regional Partnerships * FutureGen * Sources of Information What is Carbon Sequestration? Capture can occur: * at the point of emission * when absorbed from air Storage locations include: * underground reservoirs * dissolved in deep oceans * converted to solid materials * trees, grasses, soils, or algae Capture and storage of CO 2 and other Greenhouse Gases that

288

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

289

Carbon Capture & Sequestration  

Energy.gov (U.S. Department of Energy (DOE))

Learn about the Energy Department's work to capture and transport CO2 into underground geologic formations, also known as carbon capture and sequestration.

290

Carbon Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel power plants as viable, clean sources of electric power. The program is focused on developing technologies that can achieve 99 percent of carbon dioxide (CO 2 ) storage...

291

Carbon Fiber Electronic Interconnects.  

E-Print Network (OSTI)

??Carbon fiber is an emerging material in electrical and electronics industry. It has been used as contact in many applications, such as switch, potentiometer, and (more)

Deng, Yuliang

2007-01-01T23:59:59.000Z

292

Reinforced Carbon Nanotubes.  

DOE Patents (OSTI)

The present invention relates generally to reinforced carbon nanotubes, and more particularly to reinforced carbon nanotubes having a plurality of microparticulate carbide or oxide materials formed substantially on the surface of such reinforced carbon nanotubes composite materials. In particular, the present invention provides reinforced carbon nanotubes (CNTs) having a plurality of boron carbide nanolumps formed substantially on a surface of the reinforced CNTs that provide a reinforcing effect on CNTs, enabling their use as effective reinforcing fillers for matrix materials to give high-strength composites. The present invention also provides methods for producing such carbide reinforced CNTs.

Ren, Zhifen (Newton, MA); Wen, Jian Guo (Newton, MA); Lao, Jing Y. (Chestnut Hill, MA); Li, Wenzhi (Brookline, MA)

2005-06-28T23:59:59.000Z

293

Carbon Nanomaterials and Heterostructures  

Science Conference Proceedings (OSTI)

Mar 12, 2012 ... This presentation aims to capture those recent research efforts in synthesis and applications of carbon nanotubes in Li-ion battery, bioelectronic...

294

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Does CCS really make a difference for the environment? Carbon capture and storage (CCS) is one of several options, including the use of renewables, nuclear energy, alternative...

295

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates, through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests conducted at LSU indicated that exposure of sorbent to water vapor prior to contact with carbonation gas does not significantly increase the reaction rate. Calcined fine mesh trona has a greater initial carbonation rate than calcined sodium bicarbonate, but appears to be more susceptible to loss of reactivity under severe calcination conditions. The Davison attrition indices for Grade 5 sodium bicarbonate, commercial grade sodium carbonate and extra fine granular potassium carbonate were, as tested, outside of the range suitable for entrained bed reactor testing. Fluidized bed testing at RTI indicated that in the initial stages of reaction potassium carbonate removed 35% of the carbon dioxide in simulated flue gas, and is reactive at higher temperatures than sodium carbonate. Removals declined to 6% when 54% of the capacity of the sorbent was exhausted. Carbonation data from electrobalance testing was correlated using a shrinking core reaction model. The activation energy of the reaction of sodium carbonate with carbon dioxide and water vapor was determined from nonisothermal thermogravimetry.

David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

2002-04-01T23:59:59.000Z

296

Carbon-Optimal and Carbon-Neutral Supply Chains  

E-Print Network (OSTI)

Y. Li, M. Daskin. 2009. Carbon Footprint and the ManagementJ. van Houtum. 2011. E?ect of carbon emission regulations onStreamlined Enterprise Carbon Footprinting. Environmental

Caro, F.; Corbett, C. J.; Tan, T.; Zuidwijk, R.

2011-01-01T23:59:59.000Z

297

Carbon Formation and Metal Dusting in Hot-Gas Cleanup Systems of Coal Gasifiers  

SciTech Connect

There are several possible materials/systems degradation modes that result from gasification environments with appreciable carbon activities. These processes, which are not necessarily mutually exclusive, include carbon deposition, carburization, metal dusting, and CO disintegration of refractories. Carbon formation on solid surfaces occurs by deposition from gases in which the carbon activity (a sub C) exceeds unity. The presence of a carbon layer CO can directly affect gasifier performance by restricting gas flow, particularly in the hot gas filter, creating debris (that may be deposited elsewhere in the system or that may cause erosive damage of downstream components), and/or changing the catalytic activity of surfaces.

Tortorelli, Peter F.; Judkins, Roddie R.; DeVan, Jackson H.; Wright, Ian G.

1995-12-31T23:59:59.000Z

298

Fossil Energy Techline, DOE Completes Large-Scale Carbon  

E-Print Network (OSTI)

and represents a summary of carbon sequestration news covering the past month. Readers are referred to the actual article(s) for complete information. It is produced by the National Energy Technology Laboratory to provide information on recent activities and publications related to carbon sequestration. It covers domestic, international, public sector, and private sector news.

unknown authors

2008-01-01T23:59:59.000Z

299

Nano-carbon materials for cold cathode applications  

Science Conference Proceedings (OSTI)

Nano-carbon thin film materials were obtained by chemical vapor deposition in dc discharge activated hydrogen-methane gas mixture. Film structure, surface morphology and phase composition was studied by Raman, electron microscopy and electron spectroscopy ... Keywords: CVD, carbon, field emission, nanostructures

A. N. Obraztsov; Al. A. Zakhidov; A. P. Volkov; D. A. Lyashenko

2003-09-01T23:59:59.000Z

300

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

Science Conference Proceedings (OSTI)

The objective of this project is to develop a simple and inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable sorbent. The sorbents being investigated in this project are primarily alkali carbonates, and particularly sodium carbonate and potassium carbonate, which are converted to bicarbonates or intermediate salts through reaction with carbon dioxide and water vapor. Bicarbonates are regenerated to carbonates when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, electrobalance tests suggested that high calcination temperatures decrease the activity of sodium bicarbonate Grade 1 (SBC No.1) during subsequent carbonation cycles, but there is little or no progressive decrease in activity in successive cycles. SBC No.1 appears to be more active than SBC No.3. As expected, the presence of SO{sub 2} in simulated flue gas results in a progressive loss of sorbent capacity with increasing cycles. This is most likely due to an irreversible reaction to produce Na{sub 2}SO{sub 3}. This compound appears to be stable at calcination temperatures as high as 200 C. Tests of 40% supported potassium carbonate sorbent and plain support material suggest that some of the activity observed in tests of the supported sorbent may be due to adsorption by the support material rather than to carbonation of the sorbent.

David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Ya Liang; Douglas P. Harrison

2003-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Lead carbonate scintillator materials  

DOE Patents (OSTI)

Improved radiation detectors containing lead carbonate or basic lead carbonate as the scintillator element are disclosed. Both of these scintillators have been found to provide a balance of good stopping power, high light yield and short decay constant that is superior to other known scintillator materials. The radiation detectors disclosed are favorably suited for use in general purpose detection and in medical uses.

Derenzo, Stephen E. (Pinole, CA); Moses, William W. (Berkeley, CA)

1991-01-01T23:59:59.000Z

302

Double layer capacitance of carbon foam electrodes  

DOE Green Energy (OSTI)

We have evaluated a wide variety of microcellular carbon foams prepared by the controlled pyrolysis and carbonization of several polymers including: polyacrylonitrile (PAN), polymethacrylonitrile (PMAN), resorcinol/formaldehyde (RF), divinylbenzene/methacrylonitrile (DVB), phenolics (furfuryl/alcohol), and cellulose polymers such as Rayon. The porosity may be established by several processes including: Gelation (1-5), phase separation (1-3,5-8), emulsion (1,9,10), aerogel/xerogel formation (1,11,12,13), replication (14) and activation. In this report we present the complex impedance analysis and double layer charging characteristics of electrodes prepared from one of these materials for double layer capacitor applications, namely activated cellulose derived microcellular carbon foam.

Delnick, F.M.; Ingersoll, D. [Sandia National Labs., Albuquerque, NM (United States); Firsich, D. [EG& G Mound Lab., Miamisburg, OH (United States)

1993-11-01T23:59:59.000Z

303

Carbon Films Produced from Ionic Liquid Carbon Precursors ...  

The invention is directed to a method for producing a film of porous carbon, the method comprising carbonizing a film of an ionic liquid, wherein the ...

304

Carbon ion pump for removal of carbon dioxide from combustion ...  

Biomass and Biofuels; Building Energy Efficiency; ... Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures United States Patent ...

305

Fiber Bridging Model for Reinforced-Carbon-Carbon  

Science Conference Proceedings (OSTI)

Symposium, Professor K. K. Chawla Honorary Symposium on Fibers, Foams and ... fiber bridging and resistance-curve behavior in reinforced-carbon-carbon (

306

Stabilization and carbonization studies of polyacrylonitrile /carbon nanotube composite fibers .  

E-Print Network (OSTI)

??Carbon fibers contain more than 90 wt. % carbon. They have low density, high specific strength and modulus, and good temperature and chemical resistance. Therefore, (more)

Liu, Yaodong

2010-01-01T23:59:59.000Z

307

Novel method for carbon nanofilament growth on carbon fibers.  

E-Print Network (OSTI)

??Carbon nanofilaments were grown on the surface of microscale carbon-fibers at relatively low temperature using palladium as a catalyst to create multiscale fiber reinforcing structures (more)

Garcia, Daniel

2009-01-01T23:59:59.000Z

308

Synthesis of Carbon-Carbon Composite via Infiltration Process of ...  

Science Conference Proceedings (OSTI)

The carbon frame was first pyrolyzed from the wood template. The final composites were then obtained by infiltrating molten coal tar pitch into the carbon frame...

309

Carbonate fuel cell matrix strengthening  

DOE Green Energy (OSTI)

The present baseline electrolyte matrix is a porous ceramic powder bed impregnated with alkali carbonate electrolyte. The matrix provides both ionic conduction and gas sealing. During fuel cell stack operation, the matrix experiences both mechanical and thermal stresses. Different mechanical characteristics of active and wet seal areas generate stress. Thermal stress is generated by nonuniform temperature distribution and thermal cycling. A carbonate fuel cell generally may experience planned and unplanned thermal cycles between 650 C and room temperature during its 40,000h life. During the cycling, the electrolyte matrix expands and contracts at a different rate from other cell components. Furthermore, the change in electrolyte volume associated with freezing/melting may generate additional thermal stress. Strengthening of the matrix may be beneficial for longer-term stability of the carbonate fuel cell with respect to repeated thermal cycling. Several promising strengtheners with improved chemical and mechanical stabilities were identified. Fibers provide the highest strengthening effect, followed by particulates. Matrix fabrication technique was successfully modified for uniformly incorporating the advanced strengtheners, maintaining the desired aspect ratio. Enhanced gas sealing demonstrated using the advanced matrices.

Yuh, C.Y.; Haung, C.M.; Johnsen, R.

1995-12-31T23:59:59.000Z

310

carbon | OpenEI Community  

Open Energy Info (EERE)

carbon Home Graham7781's picture Submitted by Graham7781(2002) Super contributor 9 January, 2014 - 13:12 Suburbs offset Low Carbon Footprint of major U.S. Cities carbon cities CO2...

311

Nonlinearity of Carbon Cycle Feedbacks  

Science Conference Proceedings (OSTI)

Coupled climatecarbon models have shown the potential for large feedbacks between climate change, atmospheric CO2 concentrations, and global carbon sinks. Standard metrics of this feedback assume that the response of land and ocean carbon uptake ...

Kirsten Zickfeld; Michael Eby; H. Damon Matthews; Andreas Schmittner; Andrew J. Weaver

2011-08-01T23:59:59.000Z

312

NON-DESTRUCTIVE SOIL CARBON ANALYZER.  

Science Conference Proceedings (OSTI)

This report describes the feasibility, calibration, and safety considerations of a non-destructive, in situ, quantitative, volumetric soil carbon analytical method based on inelastic neutron scattering (INS). The method can quantify values as low as 0.018 gC/cc, or about 1.2% carbon by weight with high precision under the instrument's configuration and operating conditions reported here. INS is safe and easy to use, residual soil activation declines to background values in under an hour, and no radiological requirements are needed for transporting the instrument. The labor required to obtain soil-carbon data is about 10-fold less than with other methods, and the instrument offers a nearly instantaneous rate of output of carbon-content values. Furthermore, it has the potential to quantify other elements, particularly nitrogen. New instrumentation was developed in response to a research solicitation from the U.S. Department of Energy (DOE LAB 00-09 Carbon Sequestration Research Program) supporting the Terrestrial Carbon Processes (TCP) program of the Office of Science, Biological and Environmental Research (BER). The solicitation called for developing and demonstrating novel techniques for quantitatively measuring changes in soil carbon. The report includes raw data and analyses of a set of proof-of-concept, double-blind studies to evaluate the INS approach in the first phase of developing the instrument. Managing soils so that they sequester massive amounts of carbon was suggested as a means to mitigate the atmospheric buildup of anthropogenic CO{sub 2}. Quantifying changes in the soils' carbon stocks will be essential to evaluating such schemes and documenting their performance. Current methods for quantifying carbon in soil by excavation and core sampling are invasive, slow, labor-intensive and locally destroy the system being observed. Newly emerging technologies, such as Laser Induced Breakdown Spectroscopy and Near-Infrared Spectroscopy, offer soil-carbon analysis; however, these also are invasive and destructive techniques. The INS approach permits quantification in a relatively large volume of soil without disrupting the measurement site. The technique is very fast and provides nearly instantaneous results thereby reducing the cost, and speeding up the rate of analysis. It also has the potential to cover large areas in a mobile scanning mode. These capabilities will significantly advance the tracking carbon sequestration and offer a tool for research in agronomy, forestry, soil ecology and biogeochemistry.

WIELOPOLSKI,L.MITRA,S.HENDREY,G.ORION,I.ROGERS,H.TORBERT,A.PRIOR,S.RUNION,B.

2004-02-01T23:59:59.000Z

313

Carbon-free generation  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon-free generation Carbon-free generation Carbon-free central generation of electricity, either through fossil fuel combustion with carbon dioxide capture and storage or development of renewable sources such as solar, wind, and/or nuclear power, is key to our future energy portfolio. Brookhaven also provides tools and techniques for studying geological carbon dioxide sequestration and analyzing safety issues for nuclear systems. Our nation faces grand challenges: finding alternative and cleaner energy sources and improving efficiency to meet our exponentially growing energy needs. Researchers at Brookhaven National Laboratory are poised to meet these challenges with basic and applied research programs aimed at advancing the effective use of renewable energy through improved conversion,

314

2013 Global Carbon Project  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Global Carbon Project 2013 Global Carbon Project DOI: 10.3334/CDIAC/GCP_2013_V1.1 image 2013 Budget v1.1 (November 2013) image 2013 Budget v1.3 (December 2013, contains typographical corrections to 2011 Australia emissions from v1.1 and corrections to the 2011 Australia transfer and consumption emissions from v1.2) image image image image Global Carbon Dioxide Emissions to Reach 36 Billion Tonnes in 2013 Global emissions of carbon dioxide from the combustion of fossil fuels will reach 36 billion tonnes for the year 2013. "This is a level unprecedented in human history," says CSIRO's Dr Pep Canadell, Executive-Director of the Global Carbon Project (GCP) and co-author of a new report. Global emissions due to fossil fuel alone are set to grow this year at a slightly lower pace of 2.1% than the average 3.1% since 2000, reaching 36

315

Extrasolar Carbon Planets  

E-Print Network (OSTI)

We suggest that some extrasolar planets carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disk's C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptune-mass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures.

Marc J. Kuchner; S. Seager

2005-04-08T23:59:59.000Z

316

Carbon Supply for the Pilot Region: Arkansas, Louisiana, and Mississippi  

Science Conference Proceedings (OSTI)

The EPRI Project "Quantifying Carbon Market Opportunities in the United States" began in 2001. The first major task was the design of a methodology for estimating the quantity and cost of carbon storage opportunities in the United States and a test of this methodology in a pilot region. The primary outputs from this task are carbon supply curves for the most important classes of carbon sequestration activities in land-use change and forestry projects. This report presents the results for the pilot region...

2005-12-20T23:59:59.000Z

317

Low Cost Solar Energy Conversion (Carbon Cycle 2.0)  

DOE Green Energy (OSTI)

Ramamoorthy Ramesh from LBNL's Materials Science Division speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Ramesh, Ramamoorthy

2010-02-04T23:59:59.000Z

318

Pyrolyzed macrocycle/carbon blends for advanced electrocatalysts  

DOE Green Energy (OSTI)

Pyrolysis of metallated macrocycle compounds involves a vapor phase condensation to form a solid, condensation product that is carbonaceous and electronically conductive. Reaction of these vapors with hot carbon surfaces permits condensation on these surfaces that prepares active electrocatalytic carbons. The role of the metal ion in these processes is not clear, although the chelate clearly acts to carry the metal into the vapor phase. Rapid peroxide decomposition results only with the composite (carbon plus chelate) char. Thus these modified surfaces add the necessary peroxide reactivity to carbon for high oxygen electroreduction rates.

Vanderborgh, N.E.; Rieke, P.C.

1986-01-01T23:59:59.000Z

319

Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnership Presented to: Regional Carbon Sequestration Partnerships Annual Review Meeting Development Phase Field Tests Pittsburgh, PA October 5, 2010...

320

Nanostructured Carbide Derived Carbon (CDC)  

... can be grown at rates up to 100 micrometers per hour and is composed of graphite, diamond, amorphous carbon and carbon "nano-onions" ...

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Microfluidic Analysis for Carbon Management.  

E-Print Network (OSTI)

??This thesis focuses on applying microfluidic techniques to analyze two carbon management methods; underground carbon sequestration and enhanced oil recovery. The small scale nature of (more)

Sell, Andrew

2012-01-01T23:59:59.000Z

322

Carbon International | Open Energy Information  

Open Energy Info (EERE)

International Place London, United Kingdom Zip NW1 8LH Sector Carbon Product London-based energy and communications agency specialising in low carbon energy and climate change....

323

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

the process through which carbon is cycled through the air, ground, plants, animals, and fossil fuels. People and animals inhale oxygen from the air and exhale carbon dioxide...

324

Carbon Trust | Open Energy Information  

Open Energy Info (EERE)

company funded by the UK government to help business and the public sector cut carbon emissions and capture the commercial potential of low carbon technologies....

325

Carbon Capture Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Lawrence Berkeley National Laboratory Research Institute of Innovative Energy Carbon Capture Research and Development Carbon capture and storage from fossil-based power...

326

Sorbent Injection for Small ESP Mercury Control in Low Sulfur Eastern Bituminous Coal Flue Gas  

NLE Websites -- All DOE Office Websites (Extended Search)

Sorbent InjectIon for Small eSP Sorbent InjectIon for Small eSP mercury control In low Sulfur eaStern bItumInouS coal flue GaS Background Full-scale field testing has demonstrated the effectiveness of activated carbon injection (ACI) as a mercury-specific control technology for certain coal-fired power plants, depending on the plant's coal feedstock and existing air pollution control device configuration. In a typical configuration, powdered activated carbon (PAC) is injected downstream of the plant's air heater and upstream of the existing particulate control device - either an electrostatic precipitator (ESP) or a fabric filter (FF). The PAC adsorbs the mercury from the combustion flue gas and is subsequently captured along with the fly ash in the ESP or FF. ACI can have some negative side

327

Thermocatalytic process for CO.sub.2-free production of hydrogen and carbon from hydrocarbons  

SciTech Connect

A novel process and apparatus are disclosed for sustainable CO.sub.2-free production of hydrogen and carbon by thermocatalytic decomposition (dissociation, pyrolysis, cracking) of hydrocarbon fuels over carbon-based catalysts in the absence of air and/or water. The apparatus and thermocatalytic process improve the activity and stability of carbon catalysts during the thermocatalytic process and produce both high purity hydrogen (at least, 99.0 volume %) and carbon, from any hydrocarbon fuel, including sulfurous fuels. In a preferred embodiment, production of hydrogen and carbon is achieved by both internal and external activation of carbon catalysts. Internal activation of carbon catalyst is accomplished by recycling of hydrogen-depleted gas containing unsaturated and aromatic hydrocarbons back to the reactor. External activation of the catalyst can be achieved via surface gasification with hot combustion gases during catalyst heating. The process and apparatus can be conveniently integrated with any type of fuel cell to generate electricity.

Muradov, Nazim Z. (Melbourne, FL)

2011-08-23T23:59:59.000Z

328

NIES Low-Carbon Society Scenarios 2050 | Open Energy Information  

Open Energy Info (EERE)

NIES Low-Carbon Society Scenarios 2050 NIES Low-Carbon Society Scenarios 2050 Jump to: navigation, search Name NIES Low-Carbon Society Scenarios 2050 Agency/Company /Organization National Institute for Environmental Studies Topics Background analysis, Low emission development planning Website http://2050.nies.go.jp/LCS/ind Program Start 2009 Country Bangladesh, China, India, Indonesia, Japan, Malaysia, Thailand, Vietnam UN Region Eastern Asia References 2050 Low-Carbon Society Scenarios (LCSs)[1] National and Local Scenarios National and local scenarios available from the activity webpage: http://2050.nies.go.jp/LCS/index.html References ↑ "2050 Low-Carbon Society Scenarios (LCSs)" Retrieved from "http://en.openei.org/w/index.php?title=NIES_Low-Carbon_Society_Scenarios_2050&oldid=553682"

329

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

330

Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large-Scale Industrial Carbon Capture, Storage Plant Begins Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction Large-Scale Industrial Carbon Capture, Storage Plant Begins Construction August 24, 2011 - 1:00pm Addthis Washington, DC - Construction activities have begun at an Illinois ethanol plant that will demonstrate carbon capture and storage. The project, sponsored by the U.S. Department of Energy's Office of Fossil Energy, is the first large-scale integrated carbon capture and storage (CCS) demonstration project funded by the American Recovery and Reinvestment Act (ARRA) to move into the construction phase. Led by the Archer Daniels Midland Company (ADM), a member of DOE's Midwest Geological Sequestration Consortium, the Illinois-ICCS project is designed to sequester approximately 2,500 metric tons of carbon dioxide

331

A carbon sensitive supply chain network problem with green procurement  

E-Print Network (OSTI)

Faced with growing concerns over the environmental impact of human activities and increasing regulatory pressure, companies are beginning to recognize the importance of greening their supply chains by minimizing carbon ...

Simchi-Levi, David

332

Treated carbon fibers with improved performance for electrochemical and chemical applications  

DOE Patents (OSTI)

A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method is described for making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers. 14 figs.

Chu, X.; Kinoshita, Kimio

1999-02-23T23:59:59.000Z

333

Treated carbon fibers with improved performance for electrochemical and chemical applications  

DOE Patents (OSTI)

A treated mesophase carbon fiber is disclosed having a high density of exposed edges on the fiber surface, and a method of making such a treated fiber. A carbon electrode is also described which is constructed from such treated mesophase carbon fibers. The resulting electrode, formed from such treated flexible carbon fibers, is characterized by a high density of active sites formed from such exposed edges, low corrosion, and good mechanical strength, and may be fabricated into various shapes. The treated mesophase carbon fibers of the invention are formed by first loading the surface of the mesophase carbon fiber with catalytic metal particles to form catalytic etch sites on a hard carbon shell of the fiber. The carbon fiber is then subject to an etch step wherein portions of the hard carbon shell or skin are selectively removed adjacent the catalytic metal particles adhering to the carbon shell. This exposes the underlying radial edges of the graphite-like layers within the carbon shell of the mesophase carbon fiber, which exposed radial edges then act as active sites of a carbon electrode subsequently formed from the treated mesophase carbon fibers.

Chu, Xi (Albany, CA); Kinoshita, Kimio (Cupertino, CA)

1999-01-01T23:59:59.000Z

334

IMPACCT: Carbon Capture Technology  

Science Conference Proceedings (OSTI)

IMPACCT Project: IMPACCTs 15 projects seek to develop technologies for existing coal-fired power plants that will lower the cost of carbon capture. Short for Innovative Materials and Processes for Advanced Carbon Capture Technologies, the IMPACCT Project is geared toward minimizing the cost of removing carbon dioxide (CO2) from coal-fired power plant exhaust by developing materials and processes that have never before been considered for this application. Retrofitting coal-fired power plants to capture the CO2 they produce would enable greenhouse gas reductions without forcing these plants to close, shifting away from the inexpensive and abundant U.S. coal supply.

None

2012-01-01T23:59:59.000Z

335

Zinc-catalyzed copolymerization of carbon dioxide and propylene oxide  

E-Print Network (OSTI)

The zinc-catalyzed copolymerization of carbon dioxide and propylene oxide, which is one of the promising reactions for the utilization of carbon dioxide, has been investigated from various aspects. Above all, considering that supercritical carbon dioxide has recently been paid attention in the field of extraction, separation, and reaction medium, its aptitude for both a reaction solvent and a reactant was examined in zinc glutarate-catalyzed reactions. As a result, it was proved that supercritical carbon dioxide was a suitable substitute for organic solvents in the copolymerization reactions. Great diffusivity of supercritical carbon dioxide into polymer segments was thought to promote carbon dioxide supply to the active sites of the zinc species and to afford alternating polycarbonate production. Low reaction temperature appeared to be advantageous to polycarbonate and cyclic carbonate formation. Apart from zinc glutarate catalyst whose detailed mechanistic studies were hard to perform due to its insolubility, some other zinc compounds were studied. A homogeneous catalyst, bis(ethyl fumarato)zinc, showed similar polycarbonate yield to zinc glutarate, and the method of the catalyst preparation affected its catalytic activity. Only a small amount of the catalyst was considered to be active in the copolymerization process even in the homogeneous systems. In the zinc dicarboxylate complexes, the carbon number between two carboxyl groups and the steric nature in the vicinity of the zinc atom might be important factors for the copolymerization catalysis.

Katsurao, Takumi

1994-01-01T23:59:59.000Z

336

Land-Use Change and Carbon Sinks: Econometric Estimation of the Carbon Sequestration Supply Function  

E-Print Network (OSTI)

Shuzhen Nong, and helpful comments on previous versions of the manuscript by Michael Roberts. The authors take responsibility for all remaining errors. The opinions expressed are the authors only and do not necessarily When and if the United States chooses to implement a greenhouse gas reduction program, it will be necessary to decide whether carbon sequestration policies such as those that promote forestation and discourage deforestation should be part of the domestic portfolio of compliance activities. We investigate the cost of forest-based carbon sequestration. In contrast with previous approaches, we econometrically examine micro-data on revealed landowner preferences, modeling six major private land uses in a comprehensive analysis of the contiguous United States. The econometric estimates are used to simulate landowner responses to sequestration policies. Key commodity prices are treated as endogenous and a carbon sink model is used to predict changes in carbon storage. Our estimated marginal costs of carbon sequestration are greater than those from previous engineering cost analyses and sectoral optimization models. Our estimated sequestration supply function is similar to the carbon abatement supply function from energy-based analyses, suggesting that forest-based carbon

Ruben N. Lubowski; Andrew J. Plantinga; Robert N. Stavins

2006-01-01T23:59:59.000Z

337

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling  

E-Print Network (OSTI)

Low Cost Carbon Fiber Production Carbon Fiber Manufacturing Cost Modeling Oak Ridge National been identified by carbon fiber manufacturers as a market with substantial growth potential. When manufactured with carbon fiber as opposed to traditional materials such as steel, automotive parts are able

338

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10)  

E-Print Network (OSTI)

International Conference on Carbon Nanotechnology: Potential and Challenges (Carbon 10) 15 - 17th Since the discovery of the carbon nanotube (CNT) about two decades ago, research related to its of Materials and Process Engineering Kanpur Chapter hosted the `International Conference on Carbon

Srivastava, Kumar Vaibhav

339

Baseline Carbon Storage, Carbon Sequestration, and Greenhouse-Gas  

E-Print Network (OSTI)

Baseline Carbon Storage, Carbon Sequestration, and Greenhouse-Gas Fluxes in Terrestrial Ecosystems, and Benjamin M. Sleeter Chapter 5 of Baseline and Projected Future Carbon Storage and Greenhouse-Gas Fluxes, carbon sequestration, and greenhouse-gas fluxes in terrestrial ecosystems of the Western United States

Fleskes, Joe

340

Reduction of carbon dioxide emissions by mineral carbonation  

Science Conference Proceedings (OSTI)

The study investigates the technologies that have the potential to provide feasible reduction of carbon dioxide (CO2) from a reference power plant. Particular focus has been given to mineral carbonation (at 1 bar) in which magnesium (Mg) and/or ... Keywords: carbon dioxide, emissions, mineral carbonation

C. J. Sturgeon; M. G. Rasul; Ashfaque Ahmed Chowdhury

2010-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Carbon-on-Metal Films for Surface Plasmon Resonance Detection of Matthew R. Lockett,  

E-Print Network (OSTI)

Carbon-on-Metal Films for Surface Plasmon Resonance Detection of DNA Arrays Matthew R. Lockett of a lamellar structure in which a thin layer of amorphous carbon is deposited onto a surface plasmon-active gold thin film (Figure 1a). Carbon-based surfaces are readily modified with biomolecules of interest

342

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

The authors' long term goal is to develop accurate prediction methods for describing the adsorption behavior of gas mixtures on solid adsorbents over complete ranges of temperature, pressure and adsorbent types. The major objectives of the project are to: (1) measure the adsorption behavior of pure CO{sub 2}, methane, nitrogen and their binary and ternary mixtures on several selected coals having different properties at temperatures and pressures applicable to the particular coal being studied, (2) generalize the adsorption results in terms of appropriate properties of the coals, to facilitate estimation of adsorption behavior for coals other than those studied experimentally, (3) delineate the sensitivity of the competitive adsorption of CO{sub 2}, methane and nitrogen to the specific characteristics of the coal on which they are adsorbed; establish the major differences (if any) in the nature of this competitive adsorption on different coals, and (4) test and/or develop theoretically-based mathematical models to represent accurately the adsorption behavior of mixtures of the type for which measurements are made. The specific accomplishments of this project during this reporting period are summarized below in three broad categories outlining experimentation, model development, and coal characterization. (1) Experimental Work: Our adsorption apparatus was reassembled, and all instruments were tested and calibrated. Having confirmed the viability of the experimental apparatus and procedures used, adsorption isotherms for pure methane, carbon dioxide and nitrogen on wet Fruitland coal were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 2%. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on two other coals. (2) Model Development: The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, two-dimensional cubic equations of state, and the local density model. In general, all models performed well for Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). However, for pressures higher than 8.3 MPa (1200 psia), carbon dioxide produced multilayer adsorption behavior similar to Type IV adsorption. Our results to date indicate that the SLD model may be a suitable choice for modeling multilayer coalbed gas adsorption. However, model improvements are required to (a) account for coal heterogeneity and structure complexity, and (b) provide for more accurate density predictions. (3) Coal Characterization: We have identified several well-characterized coals for use in our adsorption studies. The criteria for coal selection has been guided by the need for coals that (a) span the spectrum of properties encountered in coalbed methane production (such as variation in rank), and (b) originate from coalbed methane recovery sites (e.g., San Juan Basin, Black Warrior Basin, etc.). At Pennsylvania State University, we have completed calibrating our instruments using a well-characterized activated carbon. In addition, we have conducted CO{sub 2} and methane uptakes on four samples, including (a) a widely used commercial activated carbon, BPL from Calgon Carbon Corp.; (b) an Illinois No.6 bituminous coal from the Argonne Premium Coal sample bank; (c) a Fruitland Intermediate coal sample; (d) a dry Fruitland sample. The results are as expected, except for a greater sensitivity to the outgassing temperature. ''Standard'' outgassing conditions (e.g., 383.2 K, overnight), which are often used, may not be appropriate for gas storage in coalbeds. Conditions that are more representative of in-situ coal (approximately 313.2 K) may be much more appropriate. In addition, our results highlight the importance of assessing the degree of approach to adsorption equilibrium.

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

343

Effects of Air Emissions Controls on Coal Combustion Products: Interim Data Report  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is collecting information describing the effects of air emissions controls on coal combustion products (CCPs) as they pertain to disposal and use. Specifically, data are being collected to assess the impacts of calcium bromide (CaBr2) addition to coal, refined coal, halogen injection in the boiler, brominated activated carbon injection (BrACI) in the flue gas, dry sorbent injection (DSI) in the flue gas, and flue gas desulfurization (FGD) ...

2013-12-18T23:59:59.000Z

344

Cyclic process for producing methane from carbon monoxide with heat removal  

DOE Patents (OSTI)

Carbon monoxide-containing gas streams are converted to methane by a cyclic, essentially two-step process in which said carbon monoxide is disproportionated to form carbon dioxide and active surface carbon deposited on the surface of a catalyst, and said carbon is reacted with steam to form product methane and by-product carbon dioxide. The exothermic heat of reaction generated in each step is effectively removed during each complete cycle so as to avoid a build up of heat from cycle-to-cycle, with particularly advantageous techniques being employed for fixed bed, tubular and fluidized bed reactor operations.

Frost, Albert C. (Congers, NY); Yang, Chang-lee (Spring Valley, NY)

1982-01-01T23:59:59.000Z

345

Production of single-walled carbon nanotube grids  

Science Conference Proceedings (OSTI)

A method of forming a nanotube grid includes placing a plurality of catalyst nanoparticles on a grid framework, contacting the catalyst nanoparticles with a gas mixture that includes hydrogen and a carbon source in a reaction chamber, forming an activated gas from the gas mixture, heating the grid framework and activated gas, and controlling a growth time to generate a single-wall carbon nanotube array radially about the grid framework. A filter membrane may be produced by this method.

Hauge, Robert H; Xu, Ya-Qiong; Pheasant, Sean

2013-12-03T23:59:59.000Z

346

Carbon nanotubes : synthesis, characterization, and applications  

E-Print Network (OSTI)

of graphitized carbon fibers. Carbon, 1976. 14 (2): p. 133-chemical vapor deposited carbon fiber. Carbon, 2001. 39 : p.G.G. , Lengths of Carbon Fibers Grown from Iron Catalyst

Deck, Christian Peter

2009-01-01T23:59:59.000Z

347

Experimental investigation of carbon dioxide trapping due to capillary retention in deep saline aquifers.  

E-Print Network (OSTI)

??Carbon dioxide (CO2) is by far the most significant greenhouse gas released by human activities through fossil fuel combustion. In order to minimize CO2 emissions (more)

Li, Xinqian

2013-01-01T23:59:59.000Z

348

Reactive carbon from life support wastes for incinerator flue gas cleanup-System Testing  

DOE Green Energy (OSTI)

This paper presents the results from a joint research initiative between NASA Ames Research Center and Lawrence Berkeley National lab. The objective of the research is to produce activated carbon from life support wastes and to use the activated carbon to adsorb and chemically reduce the NO{sub x} and SO{sub 2} contained in incinerator flue gas. Inedible biomass waste from food production is the primary waste considered for conversion to activated carbon. Results to date show adsorption of both NO{sub x} and SO{sub 2} in activated carbon made from biomass. Conversion of adsorbed NO{sub x} to nitrogen has also been observed.

Fisher, John W.; Pisharody, Suresh; Moran, Mark J.; Wignarajah, Kanapathipillai; Xu, X.H.; Shi, Yao; Chang, Shih-Ger

2002-05-14T23:59:59.000Z

349

Controlling mercury emissions from coal-fired power plants  

Science Conference Proceedings (OSTI)

Increasingly stringent US federal and state limits on mercury emissions form coal-fired power plants demand optimal mercury control technologies. This article summarises the successful removal of mercury emissions achieved with activated carbon injection and boiler bromide addition, technologies nearing commercial readiness, as well as several novel control concepts currently under development. It also discusses some of the issues standing in the way of confident performance and cost predictions. In testing conducted on western coal-fired units with fabric filters or TOXECON to date, ACI has generally achieved mercury removal rates > 90%. At units with ESPs, similar performance requires brominated ACI. Alternatively, units firing western coals can use boiler bromide addition to increase flue gas mercury oxidation and downstream capture in a wet scrubber, or to enhance mercury removal by ACI. At eastern bituminous fired units with ESPs, ACI is not as effective, largely due to SO{sub 3} resulting from the high sulfur content of the coal or the use of SO{sub 3} flue gas conditioning to improve ESP performance. 7 refs., 3 figs.

Chang, R. [Electric Power Research Institute, Palo Alto, CA (United States)

2009-07-15T23:59:59.000Z

350

CYCLIC CARBON DIOXIDE STIMULATION  

NLE Websites -- All DOE Office Websites (Extended Search)

CARBON DIOXIDE STIMULATION ("Huff-and-Puff') (A well-stimulation method) Cyclic CO 2 stimulation is a single-well operation that is developing as a method of rapidly producing oil....

351

Regional Carbon Sequestration Partnerships  

NLE Websites -- All DOE Office Websites (Extended Search)

Regional Carbon Sequestration Partnerships Review Meeting October 12-14, 2005 Table of Contents Agenda PDF-1438KB Phase I Program Review Meeting Phase II Kick-Off Meeting Phase...

352

SRD 134 Carbon Dioxide  

Science Conference Proceedings (OSTI)

> Return to SRD 134, Index of Semiconductor Process Gases. CARBON DIOXIDE. MW [1]. 44.010. NBP [1]. 194.75 K. TP [1]. 216.59 K. CO 2. Pc [1]. ...

2012-07-27T23:59:59.000Z

353

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

354

Carbon Capture Pilots (Kentucky)  

Energy.gov (U.S. Department of Energy (DOE))

Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealths utilities, the Electric Power Research Institute, the Center for...

355

Carbon nanotube zoom lenses  

Science Conference Proceedings (OSTI)

We show that convergent or divergent zoom lenses with focal length variations up to approximately 100% can be implemented by growing arrays of carbon nanotubes (CNTs) on curved templates. Unique lenses, which can change their character from divergent ...

D. Dragoman; M. Dragoman

2003-06-01T23:59:59.000Z

356

Carbon Dioxide Capture by Absorption with Potassium Carbonate  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Capture by Absorption Carbon Dioxide Capture by Absorption with Potassium Carbonate Background Although alkanolamine solvents, such as monoethanolamine (MEA), and solvent blends have been developed as commercially-viable options for the absorption of carbon dioxide (CO 2 ) from waste gases, natural gas, and hydrogen streams, further process improvements are required to cost-effectively capture CO 2 from power plant flue gas. The promotion of potassium carbonate (K

357

Carbon Nanofibers for Intracellular Manipulation  

Carbon Nanofibers for Intracellular Manipulation Tim McKnight CM: Greg Flickinger. Presenter: John Morris

358

Research Report Forests and carbon  

E-Print Network (OSTI)

Research Report Forests and carbon: a review of additionality #12;#12;Forests and carbon: a review. ISBN 978-0-85538-816-4 Valatin, G. (2011). Forests and carbon: a review of additionality. Forestry, baseline, carbon, climate change mitigation, forestry, quality assurance, sequestration. FCRP013/FC

359

Method for synthesizing carbon nanotubes  

Science Conference Proceedings (OSTI)

A method for preparing a precursor solution for synthesis of carbon nanomaterials, where a polar solvent is added to at least one block copolymer and at least one carbohydrate compound, and the precursor solution is processed using a self-assembly process and subsequent heating to form nanoporous carbon films, porous carbon nanotubes, and porous carbon nanoparticles.

Fan, Hongyou

2012-09-04T23:59:59.000Z

360

Energy Storage: Breakthrough in Battery Technologies (Carbon Cycle 2.0)  

DOE Green Energy (OSTI)

Nitash Balsara speaks at the Carbon Cycle 2.0 kick-off symposium Feb. 2, 2010. We emit more carbon into the atmosphere than natural processes are able to remove - an imbalance with negative consequences. Carbon Cycle 2.0 is a Berkeley Lab initiative to provide the science needed to restore this balance by integrating the Labs diverse research activities and delivering creative solutions toward a carbon-neutral energy future. http://carboncycle2.lbl.gov/

Balsara, Nitash

2010-02-04T23:59:59.000Z

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Black Carbons Properties and Role in the Environment: A Comprehensive Review  

E-Print Network (OSTI)

Keywords: soil carbon sequestration; carbon budget;of an energy efficient carbon sequestration mechanism, asin the later section on carbon sequestration. In atmospheric

Shrestha, Gyami

2010-01-01T23:59:59.000Z

362

Electrocatalytic reduction of carbon dioxide to carbon monoxide by rhenium and manganese polypyridyl catalysts  

E-Print Network (OSTI)

for reduction of carbon dioxide. IR-SpectroelectrochemicalElectrocatalytic reduction of carbon dioxide mediated by Re(Reduction of Carbon Dioxide to Carbon Monoxide Mediated by (

Smieja, Jonathan Mark

2012-01-01T23:59:59.000Z

363

Spectroelectrochemical study of the role played by carbon functionality in fuel cell electrodes  

Science Conference Proceedings (OSTI)

X-ray absorption spectroscopy was used to identify specific types of nitrogen and sulfur-based carbon functionality present in the carbon black supports of fuel cell anodes and cathodes. The effects of these functional groups on the electrocatalytic performance of small platinum particles, dispersed on the carbon, during methanol oxidation and oxygen reduction were assessed. Electrodes functionalized with nitrogen had enhanced catalytic activities toward oxygen reduction and methanol oxidation relative to untreated electrodes. Although electrodes with sulfur functionality had higher oxygen reduction activities than untreated carbons, the activity of these electrodes toward methanol oxidation was found to be lower than electrodes manufactured from untreated carbon. It was found that carbon supports functionalized with both nitrogen and sulfur initiated the formation of Pt particles smaller in size than those observed on untreated carbon supports.

Roy, S.C.; Harding, A.W.; Russell, A.E.; Thomas, K.M. [Univ. of Newcastle, Newcastle-upon-Tyne (United Kingdom)

1997-07-01T23:59:59.000Z

364

Activation of fly ash  

DOE Patents (OSTI)

Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

Corbin, D.R.; Velenyi, L.J.; Pepera, M.A.; Dolhyj, S.R.

1986-08-19T23:59:59.000Z

365

Activation of fly ash  

DOE Patents (OSTI)

Fly ash is activated by heating a screened magnetic fraction of the ash in a steam atmosphere and then reducing, oxidizing and again reducing the hydrothermally treated fraction. The activated fly ash can be used as a carbon monoxide disproportionating catalyst useful in the production of hydrogen and methane.

Corbin, David R. (New Castle, DE); Velenyi, Louis J. (Lyndhurst, OH); Pepera, Marc A. (Northfield, OH); Dolhyj, Serge R. (Parma, OH)

1986-01-01T23:59:59.000Z

366

NETL: ARRA Regional Carbon Sequestration Training Centers  

NLE Websites -- All DOE Office Websites (Extended Search)

ARRA Regional Carbon Sequestration Training Centers ARRA Regional Carbon Sequestration Training Centers ARRA Logo Projects in this area are funded, in whole or in part, with funds appropriated by the American Recovery and Reinvestment Act of 2009 (ARRA) and will train personnel in the implementation of carbon capture and storage (CCS) technology. While CCS technologies offer great potential for reducing CO2 emissions and mitigating potential climate change, deploying these technologies will require a significantly expanded workforce trained in the various specialties that are currently underrepresented in the United States. Education and training activities undertaken in this area are developing a future generation of geologists, scientists, and engineers that will provide the human capital and skills required for implementing CCS technologies.

367

Carbon Capture Pilots (Kentucky) | Open Energy Information  

Open Energy Info (EERE)

Pilots (Kentucky) Pilots (Kentucky) No revision has been approved for this page. It is currently under review by our subject matter experts. Jump to: navigation, search Last modified on February 12, 2013. EZFeed Policy Place Kentucky Name Carbon Capture Pilots (Kentucky) Policy Category Other Policy Policy Type Industry Recruitment/Support Affected Technologies Coal with CCS Active Policy Yes Implementing Sector State/Province Primary Website http://energy.ky.gov/carbon/Pages/default.aspx Summary Support for the Carbon Management Research Group (CMRG), a public/private partnership consisting of most of the Commonwealth's utilities, the Electric Power Research Institute, the Center for Applied Energy Research (CAER), and the Department for Energy Development and Independence (DEDI),

368

Carbon coated textiles for flexible energy storage  

SciTech Connect

This paper describes a flexible and lightweight fabric supercapacitor electrode as a possible energy source in smart garments. We examined the electrochemical behavior of porous carbon materials impregnated into woven cotton and polyester fabrics using a traditional printmaking technique (screen printing). The porous structure of such fabrics makes them attractive for supercapacitor applications that need porous films for ion transfer between electrodes. We used cyclic voltammetry, galvanostatic cycling and electrochemical impedance spectroscopy to study the capacitive behaviour of carbon materials using nontoxic aqueous electrolytes including sodium sulfate and lithium sulfate. Electrodes coated with activated carbon (YP17) and tested at 0.25 A$g1 achieved a high gravimetric and areal capacitance, an average of 85 F$g1 on cotton lawn and polyester microfiber, both corresponding to 0.43 F$cm2.

Jost, Kristy [Drexel University; Perez, Carlos O [ORNL; Mcdonough, John [Drexel University; Presser, Volker [ORNL; Heon, Min [Drexel University; Dion, Genevieve [Drexel University; Gogotsi, Yury [ORNL

2011-01-01T23:59:59.000Z

369

SOUTHWEST REGIONAL PARTNERSHIP ON CARBON SEQUESTRATION  

Science Conference Proceedings (OSTI)

The Southwest Partnership Region includes six whole states, including Arizona, Colorado, Kansas, New Mexico, Oklahoma, and Utah, roughly one-third of Texas, and significant portions of adjacent states. The Partnership comprises a large, diverse group of expert organizations and individuals specializing in carbon sequestration science and engineering, as well as public policy and outreach. The main objective of the Southwest Partnership project is to achieve an 18% reduction in carbon intensity by 2012. The Partnership made great progress in this first year. Action plans for possible Phase II carbon sequestration pilot tests in the region are almost finished, including both technical and non-technical aspects necessary for developing and carrying out these pilot tests. All partners in the Partnership are taking an active role in evaluating and ranking optimum sites and technologies for capture and storage of CO{sub 2} in the Southwest Region. We are identifying potential gaps in all aspects of potential sequestration deployment issues.

Brian McPherson; Rick Allis; Barry Biediger; Joel Brown; Jim Cappa; George Guthrie; Richard Hughes; Eugene Kim; Robert Lee; Dennis Leppin; Charles Mankin; Orman Paananen; Rajesh Pawar; Tarla Peterson; Steve Rauzi; Jerry Stuth; Genevieve Young

2004-11-01T23:59:59.000Z

370

Annual Energy Outlook 2006 with Projections to 2030  

Gasoline and Diesel Fuel Update (EIA)

ACI ACI Activated carbon injection AD Associated-dissolved (natural gas) AEO Annual Energy Outlook AEO2005 Annual Energy Outlook 2005 AEO2006 Annual Energy Outlook 2006 Altos Altos Partners ANWR Arctic National Wildlife Refuge API American Petroleum Institute BLGCC Black liquor gasification coupled with a combined-cycle power plant BOE Barrels of oil equivalent BTL Biomass-to-liquids Btu British thermal units CAAA90 Clean Air Act Amendments of 1990 CAFE Corporate average fuel economy CAIR Clean Air Interstate Rule CAMR Clean Air Mercury Rule CARB California Air Resources Board CBO Congressional Budget Office CHP Combined heat and power CO 2 Carbon dioxide CPI Consumer price index CRI Color rendering index CTL Coal-to-liquids DB Deutsche Bank AG DCL Direct coal liquefaction DOE U.S. Department of Energy E85 Fuel containing a blend of 70 to 85 percent ethanol EEA Energy and Environmental

371

Measurement of carbon capture efficiency and stored carbon leakage  

DOE Patents (OSTI)

Data representative of a measured carbon dioxide (CO.sub.2) concentration and of a measured oxygen (O.sub.2) concentration at a measurement location can be used to determine whether the measured carbon dioxide concentration at the measurement location is elevated relative to a baseline carbon dioxide concentration due to escape of carbon dioxide from a source associated with a carbon capture and storage process. Optionally, the data can be used to quantify a carbon dioxide concentration increase at the first location that is attributable to escape of carbon dioxide from the source and to calculate a rate of escape of carbon dioxide from the source by executing a model of gas-phase transport using at least the first carbon dioxide concentration increase. Related systems, methods, and articles of manufacture are also described.

Keeling, Ralph F.; Dubey, Manvendra K.

2013-01-29T23:59:59.000Z

372

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

SciTech Connect

The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the first performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first Partnership meeting the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Complementary to the efforts on evaluation of sources and sinks is the development of the Big Sky Partnership Carbon Cyberinfrastructure (BSP-CC) and a GIS Road Map for the Partnership. These efforts will put in place a map-based integrated information management system for our Partnership, with transferability to the national carbon sequestration effort. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but other policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. A series of meetings held in November and December, 2003, have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These include the impact of existing local, state, and federal permitting issues for terrestrial based carbon sequestration projects, consistency of final protocols and planning standards with national requirements, and alignments of carbon sequestration projects with existing federal and state cost-share programs. Finally, the education and outreach efforts during this performance period have resulted in a comprehensive plan which serves as a guide for implementing the outreach activities under Phase I. The primary goal of this plan is to increase awareness, understanding, and public acceptance of sequestration efforts and build support for a constituent based network which includes the initial Big Sky Partnership and other local and regional businesses and entities.

Susan M. Capalbo

2004-01-04T23:59:59.000Z

373

BIG SKY CARBON SEQUESTRATION PARTNERSHIP  

Science Conference Proceedings (OSTI)

The Big Sky Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts during the second performance period fall into four areas: evaluation of sources and carbon sequestration sinks; development of GIS-based reporting framework; designing an integrated suite of monitoring, measuring, and verification technologies; and initiating a comprehensive education and outreach program. At the first two Partnership meetings the groundwork was put in place to provide an assessment of capture and storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that would complement the ongoing DOE research. The region has a diverse array of geological formations that could provide storage options for carbon in one or more of its three states. Likewise, initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil C on forested, agricultural, and reclaimed lands. Both options include the potential for offsetting economic benefits to industry and society. Steps have been taken to assure that the GIS-based framework is consistent among types of sinks within the Big Sky Partnership area and with the efforts of other western DOE partnerships. Efforts are also being made to find funding to include Wyoming in the coverage areas for both geological and terrestrial sinks and sources. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts begun in developing and implementing MMV technologies for geological sequestration reflect this concern. Research is also underway to identify and validate best management practices for soil C in the partnership region, and to design a risk/cost effectiveness framework to make comparative assessments of each viable sink, taking into account economic costs, offsetting benefits, scale of sequestration opportunities, spatial and time dimensions, environmental risks, and long term viability. Scientifically sound information on MMV is critical for public acceptance of these technologies. Two key deliverables were completed this quarter--a literature review/database to assess the soil carbon on rangelands, and the draft protocols, contracting options for soil carbon trading. To date, there has been little research on soil carbon on rangelands, and since rangeland constitutes a major land use in the Big Sky region, this is important in achieving a better understanding of terrestrial sinks. The protocols developed for soil carbon trading are unique and provide a key component of the mechanisms that might be used to efficiently sequester GHG and reduce CO{sub 2} concentrations. Progress on other deliverables is noted in the PowerPoint presentations. A series of meetings held during the second quarter have laid the foundations for assessing the issues surrounding the implementation of a market-based setting for soil C credits. These meetings provide a connection to stakeholders in the region and a basis on which to draw for the DOE PEIS hearings. Finally, the education and outreach efforts have resulted in a comprehensive plan and process which serves as a guide for implementing the outreach activities under Phase I. While we are still working on the public website, we have made many presentations to stakeholders and policy makers, connections to other federal and state agencies concerned with GHG emissions, climate change, and efficient and environmentally-friendly energy production. In addition, we have laid plans for integration of our outreach efforts with the students, especially at the tribal colleges and at the universities involved in our partnership. This includes collaboration with the film and media arts departments at MSU, with outreach effort

Susan M. Capalbo

2004-06-01T23:59:59.000Z

374

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs,  

Open Energy Info (EERE)

Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mantle Helium And Carbon Isotopes In Separation Creek Geothermal Springs, Three Sisters Area, Central Oregon- Evidence For Renewed Volcanic Activity Or A Long Term Steady State System(Question) Details Activities (1) Areas (1) Regions (0) Abstract: Here we present the helium and carbon isotope results from the initial study of a fluid chemistry-monitoring program started in the summer of 2001 near the South Sister volcano in central Oregon. The Separation Creek area which is several miles due west of the volcano is the locus of

375

NETL: Carbon Storage - Big Sky Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

BSCSP BSCSP Carbon Storage Big Sky Carbon Sequestration Partnership MORE INFO Additional information related to ongoing BSCSP efforts can be found on their website. The Big Sky Carbon Sequestration Partnership (BSCSP) is led by Montana State University-Bozeman and represents a coalition of more than 60 organizations including universities, national laboratories, private companies, state agencies, Native American tribes, and international collaborators. The partners are engaged in several aspects of BSCSP projects and contribute to the efforts to deploy carbon storage projects in the BSCSP region. The BSCSP region encompasses Montana, Wyoming, Idaho, South Dakota, and eastern Washington and Oregon. BSCSP Big Sky Carbon Sequestration Partnership Region Big Sky Carbon Sequestration Partnership Region

376

Carbon fuel particles used in direct carbon conversion fuel cells  

SciTech Connect

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F.; Cherepy, Nerine

2012-10-09T23:59:59.000Z

377

Carbon fuel particles used in direct carbon conversion fuel cells  

SciTech Connect

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

2012-01-24T23:59:59.000Z

378

Carbon fuel particles used in direct carbon conversion fuel cells  

Science Conference Proceedings (OSTI)

A system for preparing particulate carbon fuel and using the particulate carbon fuel in a fuel cell. Carbon particles are finely divided. The finely dividing carbon particles are introduced into the fuel cell. A gas containing oxygen is introduced into the fuel cell. The finely divided carbon particles are exposed to carbonate salts, or to molten NaOH or KOH or LiOH or mixtures of NaOH or KOH or LiOH, or to mixed hydroxides, or to alkali and alkaline earth nitrates.

Cooper, John F. (Oakland, CA); Cherepy, Nerine (Oakland, CA)

2011-08-16T23:59:59.000Z

379

Extrasolar Carbon Planets  

E-Print Network (OSTI)

We suggest that some extrasolar planets ? 60 M ? will form substantially from silicon carbide and other carbon compounds. Pulsar planets and low-mass white dwarf planets are especially good candidate members of this new class of planets, but these objects could also conceivably form around stars like the Sun. This planet-formation pathway requires only a factor of two local enhancement of the protoplanetary disks C/O ratio above solar, a condition that pileups of carbonaceous grains may create in ordinary protoplanetary disks. Hot, Neptunemass carbon planets should show a significant paucity of water vapor in their spectra compared to hot planets with solar abundances. Cooler, less massive carbon planets may show hydrocarbon-rich spectra and tar-covered surfaces. The high sublimation temperatures of diamond, SiC, and other carbon compounds could protect these planets from carbon depletion at high temperatures. Subject headings: astrobiology planets and satellites, individual (Mercury, Jupiter) planetary systems: formation pulsars, individual (PSR 1257+12)

Marc J. Kuchner; S. Seager

2005-01-01T23:59:59.000Z

380

WESTCARB Carbon Atlas  

DOE Data Explorer (OSTI)

WESTCARB is characterizing the extent and capacity of geologic formations capable of storing CO2, known as sinks. Results are entered into a geographic information system (GIS) database, along with the location of major CO2-emitting point sources in each of the six WESTCARB states, enabling researchers and the public to gauge the proximity of candidate CO2 storage sites to emission sources and the feasibility of linking them via pipelines. Specifically, the WESTCARB GIS database (also known as the carbon atlas) stores layers of geologic information about potential underground storage sites, such as porosity and nearby fault-lines and aquifers. Researchers use these data, along with interpreted geophysical data and available oil and gas well logs to estimate the region's potential geologic storage capacity. The database also depicts existing pipeline routes and rights-of-way and lands that could be off-limits, which can aid the development of a regional carbon management strategy. The WESTCARB Carbon Atlas, which is accessible to the public, provides a resource for public discourse on practical solutions for regional CO2 management. A key WESTCARB partner, the Utah Automated Geographic Reference Center, has developed data serving procedures to enable the WESTCARB Carbon Atlas to be integrated with those from other regional partnerships, thereby supporting the U.S. Department of Energy's national carbon atlas (NATCARB). (Acknowledgement to the WESTCARB web site at http://www.westcarb.org/index.htm)

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NETL: Carbon Dioxide 101 FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

is carbon dioxide? is carbon dioxide? CO2 Dipole Carbon Dioxide Carbon dioxide (chemical name CO2) is a clear gas composed of one atom of carbon (C) and two atoms of oxygen (O). Carbon dioxide is one of many chemical forms of carbon on the Earth. It does not burn, and in standard temperature and pressure conditions it is stable, inert, and non-toxic. Carbon dioxide occurs naturally in small amounts (about 0.04%) in the Earth's atmosphere. The volume of CO2 in the atmosphere is equivalent to one individual in a crowd of 2,500. Carbon dioxide is produced naturally by processes deep within the Earth. This CO2 can be released at the surface by volcanoes or might be trapped in natural underground geologic CO2 deposits, similar to underground deposits of oil and natural gas. As a major greenhouse gas, CO2 helps create and

382

SEQUESTERING CARBON DIOXIDE IN COALBEDS  

SciTech Connect

During the present reporting period, six complementary tasks involving experimentation, model development, and coal characterization were undertaken to meet our project objectives: (1) A second adsorption apparatus, utilizing equipment donated by BP Amoco, was assembled. Having confirmed the reliability of this additional experimental apparatus and procedures, adsorption isotherms for CO{sub 2}, methane, ethane, and nitrogen on wet Fruitland coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia). These measurements showed good agreement with our previous data and yielded an expected uncertainty of about 3%. The addition of this new facility has allowed us to essentially double our rate of data production. (2) Adsorption isotherms for pure CO{sub 2}, methane, and nitrogen on wet Illinois-6 coal and on activated carbon were measured at 319.3 K (115 F) and pressures to 12.4 MPa (1800 psia) on our first apparatus. The activated carbon measurements showed good agreement with literature data and with measurements obtained on our second apparatus. The expected uncertainty of the data is about 3%. The Illinois-6 adsorption measurements are a new addition to the existing database. Preparations are underway to measure adsorption isotherms for pure methane, carbon dioxide and nitrogen on DESC-8 coal. (3) Adsorption from binary mixtures of methane, nitrogen and CO{sub 2} at a series of compositions was also measured on the wet Fruitland coal at 319.3 K (115 F), using our first apparatus. The nominal compositions of these mixtures are 20%/80%, 40%/60%, 60%/40%, and 80%/20%. The experiments were conducted at pressures from 100 psia to 1800 psia. The expected uncertainty for these binary mixture data varies from 2 to 9%. (4) A study was completed to address the previously-reported rise in the CO{sub 2} absolute adsorption on wet Fruitland coal at 115 F and pressures exceeding 1200 psia. Our additional adsorption measurements on Fruitland coal and on activated carbon show that: (a) the Gibbs adsorption isotherm for CO{sub 2} under study exhibits typical adsorption behavior for supercritical gas adsorption, and (b) a slight variation from Type I absolute adsorption may be observed for CO{sub 2}, but the variation is sensitive to the estimates used for adsorbed phase density. (5) The experimental data were used to evaluate the predictive capabilities of various adsorption models, including the Langmuir/loading ratio correlation, a two-dimensional cubic equation of state (EOS), a new two-dimensional (2-D) segment-segment interactions equation of state, and the simplified local density model (SLD). Our model development efforts have focused on developing the 2-D analog to the Park-Gasem-Robinson (PGR) EOS and an improved form of the SLD model. The new PGR EOS offers two advantages: (a) it has a more accurate repulsive term, which is important for reliable adsorption predictions, and (b) it is a segment-segment interactions model, which should more closely describe the gas-coal interactions during the adsorption process. In addition, a slit form of the SLD model was refined to account more precisely for heterogeneity of the coal surface and matrix swelling. In general, all models performed well for the Type I adsorption exhibited by methane, nitrogen, and carbon dioxide up to 8.3 MPa (average deviations within 2%). In comparison, the SLD model represented the adsorption behavior of all fluids considered within 5% average deviations, including the near-critical behavior of carbon dioxide beyond 8.3 MPa (1200 psia). Work is in progress to (a) derive and implement the biporous form of the SLD model, which would expand the number of structural geometries used to represent the heterogeneity of coal surface; and (b) extend the SLD model to mixture predictions. (6) Proper reduction of our adsorption data requires accurate gas-phase compressibility (Z) factors for methane, ethane, nitrogen and carbon dioxide and their mixtures to properly analyze our experimental adsorption data. A careful evaluation of t

K.A.M. Gasem; R.L. Robinson, Jr.; L.R. Radovic

2001-06-15T23:59:59.000Z

383

Success Stories: Carbon Explorer  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL Device Monitors Ocean Carbon LBNL Device Monitors Ocean Carbon Imagine waking up each morning and discovering that twenty percent of all plants in your garden had disappeared over night. They had been eaten. Equally astonishing would be the discovery in the afternoon that new plants had taken their place. This is the norm of life in the ocean. Without the ability to accurately observe these daily changes in ocean life cycles, over vast spatial scales, we lack the ability to predict how the ocean will respond to rising CO2 levels, crippling our ability to develop accurate models of global warming or devise strategies to prevent it. The Carbon Explorer, conceived by Berkeley Lab's James K. Bishop in collaboration with Scripps Institution of Oceanography (La Jolla, California) and WET labs, Inc. (Philomath, Oregon), bridges this

384

Carbon Materials Breakout Group  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Breakout Group Process Materials Breakout Group Process * Day 2, Thursday - Review results of Day 1 and modify if needed - Identify critical R&D needs - Outline R&D plan with key milestones - Report results to plenary Carbon Materials Breakout Group * Key Results - Target: get the science right to engineer carbon materials for hydrogen storage * Integrate theory, experiment, engineering * Understand mechanisms, effects, and interactions ranging from physisorption to chemisorption - Theory * Provide "directional" guidance for experiments (and vice- versa) * Provide baseline theory to elucidate parameters affecting the number and type of binding sites and the heat of their interaction with H2 (∆H ) for a broad range of (highly) modified carbon materials

385

BNL | Carbon Cycle Science  

NLE Websites -- All DOE Office Websites (Extended Search)

The Carbon Cycle Science & Technology Group aims to increase understanding The Carbon Cycle Science & Technology Group aims to increase understanding of the impacts of global change on managed and unmanaged ecosystems and improve knowledge of possible global change mitigation approaches. The group has three main focus areas. FACE Climate Change Experimental Facility Design and Management The CCS&T group is an internationally recognized leader in the development of Free Air CO2 Enrichment (FACE) research facilities. We are interested in the design and management of manipulative experiments that examine the effects of carbon dioxide, ozone, other atmospheric pollutants, temperature and precipitation on natural and managed ecosystems. FACE Plant Physiology and High Throughput Biochemical Phenotyping At FACE facilities we have studied the mechanisms that underlie the

386

Carbon Sequestration 101  

NLE Websites -- All DOE Office Websites (Extended Search)

Perspectives on Carbon Capture and Storage Perspectives on Carbon Capture and Storage - Directions, Challenges, and Opportunities Thomas J. Feeley, III National Energy Technology Laboratory Carbon Capture and Storage November 13-15, 2007 Austin, Texas C Capture & Storage, Austin, TX Nov. 13-15, 2007 U.S. Fossil Fuel Reserves / Production Ratio 250+ Year Supply at Current Demand Levels ! 258 11.7 9.7 0 100 200 300 Coal Oil Natural Gas Anthracite & Bituminous Sub- Bituminous & Lignite Sources: BP Statistical Review, June 2004, - for coal reserves data - World Energy Council; EIA, Advance Summary U.S. Crude Oil, Natural Gas, and Natural Gas Liquids Reserves, 2003 Annual Report, September 22, 2004 - for oil and gas reserves data. C Capture & Storage, Austin, TX Nov. 13-15, 2007 80 120 160 200 240 1970 1975 1980

387

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

Sequestration Options in the Illinois Basin - Phase III DE-FC26-05NT42588 Robert J. Finley and the MGSC Project Team Illinois State Geological Survey (University of Illinois) and Schlumberger Carbon Services U.S. Department of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23, 2012 * The Midwest Geological Sequestration Consortium is funded by the U.S. Department of Energy through the National Energy Technology Laboratory (NETL) via the Regional Carbon Sequestration Partnership Program (contract number DE-FC26-05NT42588) and by a cost share agreement with the Illinois Department of Commerce and Economic Opportunity, Office of Coal Development through the Illinois Clean Coal

388

RMOTC - Testing - Carbon Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Management Carbon Management Ten Sleep Time Structure, 2nd Wall Creek Formation at RMOTC Notice: As of July 15th 2013, the Department of Energy announced the intent to sell Naval Petroleum Reserve Number 3 (NPR3). The sale of NPR-3 will also include the sale of all equipment and materials onsite. A decision has been made by the Department of Energy to complete testing at RMOTC by July 1st, 2014. RMOTC will complete testing in the coming year with the currently scheduled testing partners. For more information on the sale of NPR-3 and sale of RMOTC equipment and materials please join our mailing list here. RMOTC has the field setting, infrastructure, and expertise to play an important role in carbon management testing, demonstration, and research. The unique combination of a publicly-owned and DOE-operated oil field,

389

Carbon-particle generator  

DOE Patents (OSTI)

A method and apparatus whereby small carbon particles are made by pyrolysis of a mixture of acetylene carried in argon. The mixture is injected through a nozzle into a heated tube. A small amount of air is added to the mixture. In order to prevent carbon build-up at the nozzle, the nozzle tip is externally cooled. The tube is also elongated sufficiently to assure efficient pyrolysis at the desired flow rates. A key feature of the method is that the acetylene and argon, for example, are premixed in a dilute ratio, and such mixture is injected while cool to minimize the agglomeration of the particles, which produces carbon particles with desired optical properties for use as a solar radiant heat absorber.

Hunt, A.J.

1982-09-29T23:59:59.000Z

390

Carbon microstructures for electrochemical studies  

DOE Green Energy (OSTI)

Thin layers of photoresist were spin coated onto silicon wafers, and then carbonized to form smooth carbon films by heating in nitrogen for 1 hour at temperatures between 600 to 1100 C. Well-defined carbon microstructures on Si wafers that are being considered for electrodes in a microbattery concept were obtained by additional processing steps involving patterning and lithography of the photoresist prior to carbonization. The status of the fabrication of carbon microelectrodes obtained by pyrolysis of photoresist, characterization of the carbons by surface-sensitive techniques and electrochemical analysis by cyclic voltammetry of the I{sup -}/I{sub 3}{sup -} redox reaction is described.

Kostecki, Robert; Song, Xiang Yun; Kinoshita, Kim

2001-06-22T23:59:59.000Z

391

NETL: 2010 - Carbon Sequestration Peer Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Peer Review Carbon Sequestration Peer Review During March 15 - 19, 2010, a total of 16 projects from NETL's Carbon Sequestration Program were peer reviewed....

392

Carbon nanotubes : synthesis, characterization, and applications  

E-Print Network (OSTI)

around Surface-Attached Carbon Nanotubes. Ind. Eng. Chem.the flexural rigidity of carbon nanotube ensembles. AppliedNanotechnology in Carbon Materials. Acta Metallurgica, 1997.

Deck, Christian Peter

2009-01-01T23:59:59.000Z

393

Equinox Carbon Equities LLC | Open Energy Information  

Open Energy Info (EERE)

Equinox Carbon Equities LLC Jump to: navigation, search Name Equinox Carbon Equities, LLC Place Newport Beach, California Zip 92660 Sector Carbon Product Investment firm focused on...

394

GS Carbon Corporation | Open Energy Information  

Open Energy Info (EERE)

GS Carbon Corporation Jump to: navigation, search Name GS Carbon Corporation Place New York, New York Zip 10119 Sector Carbon Product The company offsets emissions output with...

395

Global Fossil Fuel Carbon Emissions - Graphics  

NLE Websites -- All DOE Office Websites (Extended Search)

Fossil-Fuel CO2 Emissions Global Graphics Global Fossil-Fuel Carbon Emissions - Graphics Carbon Emission Estimates image image Global Per Capita Carbon Emission Estimates...

396

Electron transport through single carbon nanotubes  

E-Print Network (OSTI)

of CNTs in a protective carbon fiber coating enables theencapsulation in a carbon fiber coating [9]. This coatingembedded in an amorphous carbon fiber coating that is not

Chai, G

2008-01-01T23:59:59.000Z

397

Carbon Dioxide Information Analysis Center (CDIAC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Key resources related to carbon cycle and climate change research Recent Greenhouse Gas Concentrations Latest Global Carbon Budget Estimates Illustration of the Global Carbon...

398

Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

399

Formation of rare earth carbonates using supercritical carbon dioxide  

DOE Patents (OSTI)

The invention relates to a process for the rapid, high yield conversion of select rare earth oxides or hydroxides, to their corresponding carbonates by contact with supercritical carbon dioxide.

Fernando, Quintus (Tucson, AZ); Yanagihara, Naohisa (Zacopan, MX); Dyke, James T. (Santa Fe, NM); Vemulapalli, Krishna (Tuscon, AZ)

1991-09-03T23:59:59.000Z

400

Preparation and Microstructure of Carbon/Carbon Composites ...  

Science Conference Proceedings (OSTI)

Symposium, C. Advanced High-Temperature Structural Materials ... Carbon fiber felts were firstly densified by carbon using chemical vapor infiltration to ... Character Distribution on Oxidation Resistance of ZG30Cr20Ni10 Heat Resistant Steel.

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Haverford Researchers Create Carbon Dioxide-Separating Polymer  

NLE Websites -- All DOE Office Websites (Extended Search)

Haverford College Haverford College Researchers Create Carbon Dioxide-Separating Polymer Haverford College Researchers Create Carbon Dioxide-Separating Polymer August 1, 2012 | Tags: Basic Energy Sciences (BES), Chemistry, Hopper Rebecca Raber, rraber@haverford.edu, +1 610 896 1038 gtoc.jpg Carbon dioxide gas separation is important for many environmental and energy applications. Molecular dynamics simulations are used to characterize a two-dimensional hydrocarbon polymer, PG-ES1, that uses a combination of surface adsorption and narrow pores to separate carbon dioxide from nitrogen, oxygen, and methane gases. Image by Joshua Schrier, Haverford College. Carbon dioxide is the primary greenhouse gas emitted through human activities, such as the combustion of fossil fuels for energy and

402

NETL: 2009 Conference Proceedings - Carbon Capture 2020 Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Capture 2020 Workshop Carbon Capture 2020 Workshop October 5-6, 2009 Table of Contents Disclaimer Presentations PRESENTATIONS Workshop Summary [PDF-1.2MB] Opening Comments and Overview Presentations on Ongoing FE and BES Carbon Capture Research Dr. James J. Markowsky - Assistant Secretary, Office Fossil Energy, U.S. Department of Energy Dr. William F. Brinkman - Director, Office of Science, U.S. Department of Energy FE Program for Carbon Capture [PDF-1.3MB] Jared Ciferno - National Energy Technology Laboratory, U.S. Department of Energy NETL Research Activities [PDF-1.6MB] Geo Richards - National Energy Technology Laboratory, U.S. Department of Energy BES Research on Carbon Capture [PDF-570KB] Mary Galvin - Office of Basic Energy Sciences, U.S. Department of Energy Overview of EFRC [PDF-1.5MB]

403

Research Experience in Carbon Sequestration 2013 Now Accepting Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Experience in Carbon Sequestration 2013 Now Accepting Experience in Carbon Sequestration 2013 Now Accepting Applications Research Experience in Carbon Sequestration 2013 Now Accepting Applications March 12, 2013 - 1:43pm Addthis Washington, DC - Graduate students and early career professionals can gain hands-on field research experience in areas related to carbon capture and storage (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. The initiative, supported by DOE's Office of Fossil Energy (FE) and the National Energy Technology Laboratory (NETL), is currently accepting applications for RECS 2013, scheduled for June 2-12, in Birmingham, AL. The deadline to apply is April 20. An intensive science and field-based program, RECS 2013 will combine background briefings with group exercises and field activities at an

404

Yucca Mountain Area Saturated Zone Dissolved Organic Carbon Isotopic Data  

SciTech Connect

Groundwater samples in the Yucca Mountain area were collected for chemical and isotopic analyses and measurements of water temperature, pH, specific conductivity, and alkalinity were obtained at the well or spring at the time of sampling. For this project, groundwater samples were analyzed for major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC). The U.S. Geological Survey (USGS) performed all the fieldwork on this project including measurement of water chemistry field parameters and sample collection. The major ions dissolved in the groundwater, deuterium, oxygen-18, and carbon isotopes of dissolved inorganic carbon (DIC) were analyzed by the USGS. All preparation and processing of samples for DOC carbon isotopic analyses and geochemical modeling were performed by the Desert Research Institute (DRI). Analysis of the DOC carbon dioxide gas produced at DRI to obtain carbon-13 and carbon-14 values was conducted at the University of Arizona Accelerator Facility (a NSHE Yucca Mountain project QA qualified contract facility). The major-ion chemistry, deuterium, oxygen-18, and carbon isotopes of DIC were used in geochemical modeling (NETPATH) to determine groundwater sources, flow paths, mixing, and ages. The carbon isotopes of DOC were used to calculate groundwater ages that are independent of DIC model corrected carbon-14 ages. The DIC model corrected carbon-14 calculated ages were used to evaluate groundwater travel times for mixtures of water including water beneath Yucca Mountain. When possible, groundwater travel times were calculated for groundwater flow from beneath Yucca Mountain to down gradient sample sites. DOC carbon-14 groundwater ages were also calculated for groundwaters in the Yucca Mountain area. When possible, groundwater travel times were estimated for groundwater flow from beneath Yucca Mountain to down gradient groundwater sample sites using the DOC calculated groundwater ages. The DIC calculated groundwater ages were compared with DOC calculated groundwater ages and both of these ages were compared to travel times developed in ground-water flow and transport models. If nuclear waste is stored in Yucca Mountain, the saturated zone is the final barrier against the release of radionuclides to the environment. The most recent rendition of the TSPA takes little credit for the presence of the saturated zone and is a testament to the inadequate understanding of this important barrier. If radionuclides reach the saturated zone beneath Yucca Mountain, then there is a travel time before they would leave the Yucca Mountain area and flow down gradient to the Amargosa Valley area. Knowing how long it takes groundwater in the saturated zone to flow from beneath Yucca Mountain to down gradient areas is critical information for potential radionuclide transport. Radionuclide transport in groundwater may be the quickest pathway for radionuclides in the proposed Yucca Mountain repository to reach land surface by way of groundwater pumped in Amargosa Valley. An alternative approach to ground-water flow and transport models to determine the travel time of radionuclides from beneath Yucca Mountain to down gradient areas in the saturated zone is by carbon-14 dating of both inorganic and organic carbon dissolved in the groundwater. A standard method of determining ground-water ages is to measure the carbon-13 and carbon-14 of DIC in the groundwater and then correct the measured carbon-14 along a flow path for geochemical reactions that involve carbon containing phases. These geochemical reactions are constrained by carbon-13 and isotopic fractionations. Without correcting for geochemical reactions, the ground-water ages calculated from only the differences in carbon-14 measured along a flow path (assuming the decrease in carbon-14 is due strictly to radioactive decay) could be tens of thousands of years too old. The computer program NETPATH, developed by the USGS, is the best geochemical program for correcting carbon-14 activities for geochemical r

Thomas, James; Decker, David; Patterson, Gary; Peterman, Zell; Mihevc, Todd; Larsen, Jessica; Hershey, Ronald

2007-06-25T23:59:59.000Z

405

Big Sky Carbon Sequestration Partnership  

SciTech Connect

The Big Sky Carbon Sequestration Partnership, led by Montana State University, is comprised of research institutions, public entities and private sectors organizations, and the Confederated Salish and Kootenai Tribes and the Nez Perce Tribe. Efforts under this Partnership in Phase I are organized into four areas: (1) Evaluation of sources and carbon sequestration sinks that will be used to determine the location of pilot demonstrations in Phase II; (2) Development of GIS-based reporting framework that links with national networks; (3) Design of an integrated suite of monitoring, measuring, and verification technologies, market-based opportunities for carbon management, and an economic/risk assessment framework; (referred to below as the Advanced Concepts component of the Phase I efforts) and (4) Initiation of a comprehensive education and outreach program. As a result of the Phase I activities, the groundwork is in place to provide an assessment of storage capabilities for CO{sub 2} utilizing the resources found in the Partnership region (both geological and terrestrial sinks), that complements the ongoing DOE research agenda in Carbon Sequestration. The geology of the Big Sky Carbon Sequestration Partnership Region is favorable for the potential sequestration of enormous volume of CO{sub 2}. The United States Geological Survey (USGS 1995) identified 10 geologic provinces and 111 plays in the region. These provinces and plays include both sedimentary rock types characteristic of oil, gas, and coal productions as well as large areas of mafic volcanic rocks. Of the 10 provinces and 111 plays, 1 province and 4 plays are located within Idaho. The remaining 9 provinces and 107 plays are dominated by sedimentary rocks and located in the states of Montana and Wyoming. The potential sequestration capacity of the 9 sedimentary provinces within the region ranges from 25,000 to almost 900,000 million metric tons of CO{sub 2}. Overall every sedimentary formation investigated has significant potential to sequester large amounts of CO{sub 2}. Simulations conducted to evaluate mineral trapping potential of mafic volcanic rock formations located in the Idaho province suggest that supercritical CO{sub 2} is converted to solid carbonate mineral within a few hundred years and permanently entombs the carbon. Although MMV for this rock type may be challenging, a carefully chosen combination of geophysical and geochemical techniques should allow assessment of the fate of CO{sub 2} in deep basalt hosted aquifers. Terrestrial carbon sequestration relies on land management practices and technologies to remove atmospheric CO{sub 2} where it is stored in trees, plants, and soil. This indirect sequestration can be implemented today and is on the front line of voluntary, market-based approaches to reduce CO{sub 2} emissions. Initial estimates of terrestrial sinks indicate a vast potential for increasing and maintaining soil Carbon (C) on rangelands, and forested, agricultural, and reclaimed lands. Rangelands can store up to an additional 0.05 mt C/ha/yr, while the croplands are on average four times that amount. Estimates of technical potential for soil sequestration within the region in cropland are in the range of 2.0 M mt C/yr over 20 year time horizon. This is equivalent to approximately 7.0 M mt CO{sub 2}e/yr. The forestry sinks are well documented, and the potential in the Big Sky region ranges from 9-15 M mt CO{sub 2} equivalent per year. Value-added benefits include enhanced yields, reduced erosion, and increased wildlife habitat. Thus the terrestrial sinks provide a viable, environmentally beneficial, and relatively low cost sink that is available to sequester C in the current time frame. The Partnership recognizes the critical importance of measurement, monitoring, and verification technologies to support not only carbon trading but all policies and programs that DOE and other agencies may want to pursue in support of GHG mitigation. The efforts in developing and implementing MMV technologies for geological and terrestrial sequestration re

Susan Capalbo

2005-12-31T23:59:59.000Z

406

Kinetics and mechanism of the potassium-catalyzed carbon/carbon dioxide gasification  

SciTech Connect

The catalytic effect of potassium on the rate of CO/sub 2/ gasification of a bituminous coal char and a pure carbon substrate is investigated. The gasification rate depends on both the catalyst concentration (K/C atomic ratio) and the internal porous structure of the solid. For low values of the K/C atomic ratio, the initial gasification rate increases sharply with the addition of catalyst; at higher values, the rate profile levels off. The sharp increase in rate is due to the activation of reaction sites while the plateau is attributed to the saturation of the surface with active sites. The variation of the instantaneous gasification rate (based on remaining carbon) with carbon conversion at various initial K/C ratios is studied. The important reasons for the change in rate are the change in the solid surface area, the loss of active sites, the loss of catalyst by vaporization and the change in the K/C ratio due to carbon depletion. The loss of catalyst from the pure carbon substrate by vaporization is also determined. Temperature programmed experiments show that under inert atmospheres, both KOH and K/sub 2/CO/sub 3/ react with carbon to give a reduced form of the catalyst which appears to be a prerequisite for the rapid vaporization of potassium. The effect of catalyst loss on both the initial gasification rate and the variation in rate with conversion is determined. The proposed redox mechanism contains three surface complexes: -CO/sub 2/K, -COK and -CK. The oxide groups are the intermediates during C/CO/sub 2/ gasification. The completely reduced form, -CK, is the end product of catalyst reduction and is the precursor for K loss. The stoichiometries of these surface groups are confirmed by oxygen and potassium balance.

Sams, D.A.

1985-01-01T23:59:59.000Z

407

How carbon-based sorbents will impact fly ash utilization and disposal  

Science Conference Proceedings (OSTI)

The injection of activated carbon flue gas to control mercury emissions will result in a fly ash and activated carbon mixture. The potential impact of this on coal combustion product disposal and utilization is discussed. The full paper (and references) are available at www.acaa-usa.org. 1 tab., 2 photos.

Pflughoeft-Hassett, D.F.; Hassett, D.J.; Buckley, T.D.; Heebink, L.V.; Pavlish, J.H. [Energy and Environmental Research Center (United States)

2008-07-01T23:59:59.000Z

408

Low-Temperature Fluorination of Soft-Templated Mesoporous Carbons for a High-Power Lithium/Carbon Fluoride Battery  

Science Conference Proceedings (OSTI)

Soft-templated mesoporous carbons and activated mesoporous carbons were fluorinated using elemental fluorine between room temperature and 235 C. The mesoporous carbons were prepared via self-assembly synthesis of phloroglucinol formaldehyde as a carbon precursor in the presence of triblock ethylene oxide propylene oxide ethylene oxide copolymer BASF Pluronic F127 as the template. The F/C ratios ranged from 0.15 to 0.75 according to gravimetric, energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy analysis. Materials have mesopore diameters up to 11 nm and specific surface areas as high as 850 m2 g 1 after fluorination as calculated from nitrogen adsorption isotherms at 196 C. Furthermore, the materials exhibit higher discharge potentials and energy and power densities as well as faster reaction kinetics under high current densities than commercial carbon fluorides with similar fluorine contents when tested as cathodes for Li/CFx batteries.

Fulvio, Pasquale F [ORNL; Dai, Sheng [ORNL; Guo, Bingkun [ORNL; Mahurin, Shannon Mark [ORNL; Mayes, Richard T [ORNL; Sun, Xiao-Guang [ORNL; Veith, Gabriel M [ORNL; Brown, Suree [ORNL; Adcock, Jamie [University of Tennessee, Knoxville (UTK)

2011-01-01T23:59:59.000Z

409

Carbon Jungle | Open Energy Information  

Open Energy Info (EERE)

Jungle Jungle Jump to: navigation, search Name Carbon Jungle Place El Segundo, California Zip 90246 Sector Carbon Product Carbon Jungle's mission is to decrease CO2 in the atmosphere by planting and managing tree plantations, increasing awareness of the facts behind increased CO2 in the atmosphere, and giving companies a means to participate in carbon credit trading. References Carbon Jungle[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Carbon Jungle is a company located in El Segundo, California . References ↑ "Carbon Jungle" Retrieved from "http://en.openei.org/w/index.php?title=Carbon_Jungle&oldid=343237" Categories: Clean Energy Organizations

410

Asset Carbon | Open Energy Information  

Open Energy Info (EERE)

Asset Carbon Place United Kingdom Product UK-based startup looking to invest in CDMJI projects. References Asset Carbon1 LinkedIn Connections CrunchBase Profile No CrunchBase...

411

Sensor applications of carbon nanotubes  

E-Print Network (OSTI)

A search of published research on sensing mechanisms of carbon nanotubes was performed to identify applications in which carbon nanotubes might improve on current sensor technologies, in either offering improved performance, ...

Rushfeldt, Scott I

2005-01-01T23:59:59.000Z

412

The carbon dioxide dilemma  

SciTech Connect

The effect of burning fossil fuels on the global climate is discussed. It may be that as we produce carbon dioxide by burning fossil fuels, we create a greenhouse effect which causes temperatures on earth to rise. Implications of changes in global temperatures are discussed.

Edelson, E.

1982-02-01T23:59:59.000Z

413

Progress in carbonate fuel cells  

DOE Green Energy (OSTI)

Our objective is to increase both the life and power of the molten carbonate fuel (MCFC) by developing improved components and designs. Current activities are as follows: (1)Development of LiFeO{sub 2} and LiCoO{sub 2} cathodes for extended MCFC life, particularly in pressurized operation, where the present cathode, NiO, provides insufficient life (2) Development of distributed-manifold MCFC designs for increased volumetric power density and decreased temperature gradients (and, therefore, increased life) (3) Development of components and designs appropriate for high-power density operation (>2 kW/m{sup 2}and >100 kW/m{sup 3}in an integrated MCFC system) (4)Studies of pitting corrosion of the stainless-steel interconnects and aluminized seals now being employed in the MCFC (alternative components will also be studied). Each of these activities has the potential to reduce the MCFC system cost significantly. Progress in each activity will be presented during the poster session.

Myles, K.M.; Krumpelt, M.; Roche, M.F. [and others

1995-12-31T23:59:59.000Z

414

Carbon Diffusion Across Dissimilar Steel Welds  

E-Print Network (OSTI)

. However, this method could not be extended to the ferrite phase field. Experimental results from dissimilar metal joints heat treated in the ferrite phase field indicated that the dissolution and precipitation of carbides is instrumental in providing a... / -+ graphite Activation free energy Difference in carbon concentration across the interface Difference in alloy concentration across the interface Wagner interaction coefficient between element i and j Distance between {002} austenite planes Separation...

Race, Julia Margaret

1992-12-08T23:59:59.000Z

415

CARBON TECHNOLOGY: I: Petroleum Coke  

Science Conference Proceedings (OSTI)

CARBON TECHNOLOGY: Session I: Petroleum Coke. Sponsored by: LMD Aluminum Committee Program Organizer: Jean-Claude Thomas , Aluminium...

416

Carbon Fiber Consortium | Partnerships | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Industrial Partnerships Carbon Fiber Consortium Manufacturing Industrial Partnerships Staff Partnerships Home | Connect with ORNL | For Industry | Partnerships | Industrial...

417

Carbon Nanotubes Information at NIST  

Science Conference Proceedings (OSTI)

... John Bonevich. Laser Applications Heat Up for Carbon Nanotubes. Longer is Better for Nanotube Optical Properties. Modeling ...

2010-10-05T23:59:59.000Z

418

4th Carbon Nanotube Workshop  

Science Conference Proceedings (OSTI)

... measurments, and disseinate this summary to the nanotube community. ... RM) for length separated single-wall carbon nanotubes in aqueous ...

2013-04-05T23:59:59.000Z

419

Carbon Dioxide Utilization Archived Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility Mercury Sorbent Field Testing Program Sorbent Technologies Corporation Western Kentucky University 9292003 Enhanced Practical Photosynthesis Carbon Sequestration ORNL...

420

NETL: Gasifipedia - Carbon Sequestration  

NLE Websites -- All DOE Office Websites (Extended Search)

Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Coal: SNG from Coal: Process & Commercialization: Carbon Sequestration Carbon sequestration, also termed carbon storage, is the permanent storage of CO2, usually in deep geologic formations. Industrially-generated CO2 -- resulting from fossil fuel combustion, gasification, and other industrial processes -- is injected as a supercritical fluid into geologic reservoirs, where it is held in place by natural traps and seals. Carbon storage is one approach to minimizing atmospheric emissions of man-made CO2. As discussed above, the main purpose of CO2 EOR such as the Weyburn Project is tertiary recovery of crude oil, but in effect substantial CO2 remains sequestered/stored as a result. Current Status of CO2 Storage CO2 storage is currently underway in the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway and the Weyburn-Midale CO2 Project in Canada, have been injecting CO2 into geologic storage formations more than a decade. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, as well. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. In addition, a number of smaller pilot projects are underway in different parts of the world to determine suitable locations and technologies for future long-term CO2 storage. To date, more than 200 small-scale CO2 storage projects have been carried out worldwide. A demonstration project that captures CO2 from a pulverized coal power plant and pipes it to a geologic formation for storage recently came online in Alabama.

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Poverty, Risk and the Adoption of Soil Carbon  

E-Print Network (OSTI)

In this paper we explore the incentives of low income agricultural producers to adopt soil carbon sequestration, focusing particularly on the impact of risk. A dynamic optimization model of the farm level decision to adopt conservation is then presented, where farmers optimize over the expected utility of profits from agricultural and carbon sequestration activities. Carbon sequestration adoption impacts on agricultural productivity are modeled as a combination of the technological impacts of adopting a new farming system and the productivity impacts of changes in soil carbon on agricultural output. Comparative static results indicate that increases in the price for carbon sequestered in the soil and the discount rate have an unambiguous impact on equilibrium soil carbon levels with the former leading to higher carbon levels and the latter leading to lower levels. The impact of increases in the price of agricultural output and risk aversion are ambiguous, depending on the relative strength of the productivity and technology effects of adoption. The paper concludes with a discussion of the implications of the theoretical and empirical findings for the design of payment mechanisms to induce low income farmers to participate in carbon markets. 1

Joshua Graff-zivin

2007-01-01T23:59:59.000Z

422

Revisit Carbon/Sulfur Composite for Li-S Batteries  

SciTech Connect

To correlate the carbon properties e.g. surface area and porous structure, with the electrochemical behaviors of carbon/sulfur (C/S) composite cathodes for lithium-sulfur (Li-S) batteries, four different carbon frameworks including Ketjen Black (KB, high surface area and porous), Graphene (high surface area and nonporous), Acetylene Black (AB, low surface area and nonporous) and Hollow Carbon Nano Sphere (HCNS, low surface area and porous) are employed to immobilize sulfur (80 wt.%). It has been revealed that high surface area of carbon improves the utilization rate of active sulfur and decreases the real current density during the electrochemical reactions. Accordingly, increased reversible capacities and reduced polarization are observed for high surface area carbon hosts such as KB/S and graphene/S composites. The porous structure of KB or HCNS matrix promotes the long-term cycling stability of C/S composites but only at relatively low rate (0.2 C). Once the current density increases, the pore effect completely disappears and all Li-S batteries show similar trend of capacity degradation regardless of the different carbon hosts used in the cathodes. The reason has been assigned to the formation of reduced amount of irreversible Li2S on the cathode as well as shortened time for polysulfides to transport towards lithium anode at elevated current densities. This work provides valuable information for predictive selection on carbon materials to construct C/S composite for practical applications from the electrochemical point of view.

Zheng, Jianming; Gu, Meng; Wagner, Michael J.; Hays, Kevin; Li, Xiaohong S.; Zuo, Pengjian; Wang, Chong M.; Zhang, Jiguang; Liu, Jun; Xiao, Jie

2013-07-23T23:59:59.000Z

423

Development of internal reforming carbonate fuel cell stack technology  

DOE Green Energy (OSTI)

Activities under this contract focused on the development of a coal-fueled carbonate fuel cell system design and the stack technology consistent with the system design. The overall contract effort was divided into three phases. The first phase, completed in January 1988, provided carbonate fuel cell component scale-up from the 1ft{sup 2} size to the commercial 4ft{sup 2} size. The second phase of the program provided the coal-fueled carbonate fuel cell system (CGCFC) conceptual design and carried out initial research and development needs of the CGCFC system. The final phase of the program emphasized stack height scale-up and improvement of stack life. The results of the second and third phases are included in this report. Program activities under Phase 2 and 3 were designed to address several key development areas to prepare the carbonate fuel cell system, particularly the coal-fueled CFC power plant, for commercialization in late 1990's. The issues addressed include: Coal-Gas Related Considerations; Cell and Stack Technology Improvement; Carbonate Fuel Cell Stack Design Development; Stack Tests for Design Verification; Full-Size Stack Design; Test Facility Development; Carbonate Fuel Cell Stack Cost Assessment; and Coal-Fueled Carbonate Fuel Cell System Design. All the major program objectives in each of the topical areas were successfully achieved. This report is organized along the above-mentioned topical areas. Each topical area has been processed separately for inclusion on the data base.

Farooque, M.

1990-10-01T23:59:59.000Z

424

5, 40834113, 2005 Black Carbon  

E-Print Network (OSTI)

ACPD 5, 4083­4113, 2005 Black Carbon Specific Absorption in the Mexico City Metropolitan Area J. C and Physics Discussions Measurements of Black Carbon Specific Absorption in the Mexico City Metropolitan Area License. 4083 #12;ACPD 5, 4083­4113, 2005 Black Carbon Specific Absorption in the Mexico City Metropolitan

Paris-Sud XI, Université de

425

Carbon Accounting in Forest Ecosystems  

E-Print Network (OSTI)

. Carbon Pools: Above ground biomass Belowground BiomassBelowground Biomass Soil Organic Carbon Dead: · Aboveground biomassAboveground biomass · Belowground biomass · Soil Organic Carbon · Litter · Dead Wood· Dead Wood · (Wood Products) T?V S?D Industrie Service GmbH #12;Principles · Biomass is usually measured

Pettenella, Davide

426

Research Report Forests and carbon  

E-Print Network (OSTI)

Research Report Forests and carbon: valuation, discounting and risk management #12;#12;Forests and carbon: valuation, discounting and risk management Gregory Valatin Forestry Commission: Edinburgh-0-85538-815-7 Valatin, G. (2010). Forests and carbon: valuation, discounting and risk management. Forestry Commission

427

NETL: Carbon Storage - Southeast Regional Carbon Sequestration Partnership  

NLE Websites -- All DOE Office Websites (Extended Search)

Southeast Regional Carbon Sequestration Partnership Southeast Regional Carbon Sequestration Partnership MORE INFO Additional information related to ongoing SECARB efforts can be found on their website. The Southeast Regional Carbon Sequestration Partnership (SECARB), managed by the Southern States Energy Board (SSEB), represents a 13-State region, including Alabama, Arkansas, Florida, Georgia, Louisiana, Mississippi, North Carolina, South Carolina, Tennessee, Texas, and Virginia, and portions of Kentucky and West Virginia. SECARB is comprised of over 100 participants representing Federal and State governments, industry, academia, and non-profit organizations. Southeast Regional Carbon Sequestration Partnership Region Southeast Regional Carbon Sequestration Partnership Region The primary goal of SECARB is to develop the necessary framework and

428

Direct Carbon Conversion: Review of Production and Electrochemical Conversion of Reactive Carbons, Economics and Potential Impact on the Carbon Cycle  

SciTech Connect

Concerns over global warning have motivated the search for more efficient technologies for electric power generation from fossil fuels. Today, 90% of electric power is produced from coal, petroleum or natural gas. Higher efficiency reduces the carbon dioxide emissions per unit of electric energy. Exercising an option of deep geologic or ocean sequestration for the CO{sub 2} byproduct would reduce emissions further and partially forestall global warming. We introduce an innovative concept for conversion of fossil fuels to electricity at efficiencies in the range of 70-85% (based on standard enthalpy of the combustion reaction). These levels exceed the performance of common utility plants by up to a factor of two. These levels are also in excess of the efficiencies of combined cycle plants and of advanced fuel cells now operated on the pilot scale. The core of the concept is direct carbon conversion a process that is similar to that a fuel cell but differs in that synthesized forms of carbon, not hydrogen, are used as fuel. The cell sustains the reaction, C + O{sub 2} = CO{sub 2} (E {approx} 1.0 V, T = 800 C). The fuel is in the form of fine particulates ({approx}100 nm) distributed by entrainment in a flow of CO{sub 2} to the cells to form a slurry of carbon in the melt. The byproduct stream of CO{sub 2} is pure. It affords the option of sequestration without additional separation costs, or can be reused in secondary oil or gas recovery. Our experimental program has discovered carbon materials with orders of magnitude spreads in anode reactivity reflected in cell power density. One class of materials yields energy at about 1 kW/m{sup 2} sufficiently high to make practical the use of the cell in electric utility applications. The carbons used in such cells are highly disordered on the nanometer scale (2-30 nm), relative to graphite. Such disordered or turbostratic carbons can be produced by controlled pyrolysis (thermal decomposition) of hydrocarbons extracted from coal, petroleum or natural gas. For coal and lignite, such hydrocarbons may be produced by cyclic hydrogenation (hydropyrolysis), with the recycle of the hydrogen intermediate following pyrolysis. Starting with common CH{sub x} feedstock for carbon black manufacture, the ash entrained into the carbon (<0.03%) does not jeopardize cell life or enter into the economic estimates for power generation. The value of carbon (relative to hydrogen) as an electrochemical fuel derives from thermodynamic aspects of the C/O{sub 2} reaction. First, the entropy change of the C/O{sub 2} reaction is nearly zero, allowing theoretical efficiencies ({Delta}G(T)/{Delta}H{sub i298}) of 100% (cf. H{sub 2}/O{sub 2} theoretical efficiency of 70%). Second, the thermodynamic activity of the carbon fuel and the CO{sub 2} product are spatially and temporally invariant. This allows 100% utilization of the carbon fuel in single pass (cf. hydrogen utilizations of 75-85%). The carbodmelt slurry is non-explosive at operating temperatures. The total energy efficiency for the C/O{sub 2} is roughly 80% for cell operation at practical rates. In summary, what gives this route its fundamental advantage in energy conversion is that it derives the greatest possible fraction of energy of the fossil resource from an electrochemical reaction (C+O{sub 2} = CO{sub 2}) that is comparatively simple to operate at efficiencies of 80%, in a single-pass cell configuration without bottoming turbine cycles.

Cooper, J F; Cherepy, N; Upadhye, R; Pasternak, A; Steinberg, M

2000-12-12T23:59:59.000Z

429

Simulations of the global carbon cycle and anthropogenic CO{sub 2} transient. Annual report  

SciTech Connect

This research focuses on improving the understanding of the anthropogenic carbon dioxide transient using observations and models of the past and present. In addition, an attempt is made to develop an ability to predict the future of the carbon cycle in response to continued anthropogenic perturbations and climate change. Three aspects of the anthropogenic carbon budget were investigated: (1) the globally integrated budget at the present time; (2) the time history of the carbon budget; and (3) the spatial distribution of carbon fluxes. One of the major activities of this study was the participation in the model comparison study of Enting, et al. [1994] carried out in preparation for the IPCC 1994 report.

Sarmiento, J.L.

1994-07-01T23:59:59.000Z

430

Thief carbon catalyst for oxidation of mercury in effluent stream  

DOE Patents (OSTI)

A catalyst for the oxidation of heavy metal contaminants, especially mercury (Hg), in an effluent stream is presented. The catalyst facilitates removal of mercury through the oxidation of elemental Hg into mercury (II) moieties. The active component of the catalyst is partially combusted coal, or "Thief" carbon, which can be pre-treated with a halogen. An untreated Thief carbon catalyst can be self-promoting in the presence of an effluent gas streams entrained with a halogen.

Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

2011-12-06T23:59:59.000Z

431

Available Technologies: Acceleration of Carbon Dioxide ...  

APPLICATIONS OF TECHNOLOGY: Carbon dioxide capture and sequestration; ADVANTAGES: Accelerated capture of carbon dioxide; Effective at extremely dilute (nanomolar ...

432

Vertically Aligned and Periodically Distributed Carbon Nanotube  

Science Conference Proceedings (OSTI)

Presentation Title, Vertically Aligned and Periodically Distributed Carbon Nanotube (CNT) ... Application of Carbon Nanotubes Energy to Bioelectronic Sensor.

433

MESOPOROUS CARBON MATERIALS - Energy Innovation Portal  

Building Energy Efficiency ... Solar Thermal; ... wherein said carbonization step comprises heating the precursor composition at a carbonizing temperature for ...

434

Gold Nanoparticles Supported on Carbon Nitride: Influence of Surface Hydroxyls on Low Temperature Carbon Monoxide Oxidation  

SciTech Connect

This paper reports the synthesis of 2.5 nm gold clusters on the oxygen free and chemically labile support carbon nitride (C3N4). Despite having small particle sizes and high enough water partial pressure these Au/C3N4 catalysts are inactive for the gas phase and liquid phase oxidation of carbon monoxide. The reason for the lack of activity is attributed to the lack of surface OH groups on the C3N4. These OH groups are argued to be responsible for the activation of CO in the oxidation of CO. The importance of basic OH groups explains the well document dependence of support isoelectric point versus catalytic activity.

Singh, Joseph A [ORNL; Dudney, Nancy J [ORNL; Li, Meijun [ORNL; Overbury, Steven {Steve} H [ORNL; Veith, Gabriel M [ORNL

2012-01-01T23:59:59.000Z

435

6, 34193463, 2006 Black carbon or  

E-Print Network (OSTI)

ACPD 6, 3419­3463, 2006 Black carbon or brown carbon M. O. Andreae and A. Gelencs´er Title Page Chemistry and Physics Discussions Black carbon or brown carbon? The nature of light-absorbing carbonaceous;ACPD 6, 3419­3463, 2006 Black carbon or brown carbon M. O. Andreae and A. Gelencs´er Title Page

Paris-Sud XI, Université de

436

CHARTER FOR THE CARBON SEQUESTRATION  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

CHARTER FOR THE CARBON SEQUESTRATION CHARTER FOR THE CARBON SEQUESTRATION LEADERSHIP FORUM (CSLF): A CARBON CAPTURE AND STORAGE TECHNOLOGY INITIATIVE The undersigned national governmental entities (collectively the "Members") set forth the following Terms of Reference for the Carbon Sequestration Leadership Forum (CSLF), a framework for international cooperation in research and development for the separation, capture, transportation and storage of carbon dioxide. The CSLF will seek to realize the promise of carbon capture and storage over the coming decades, making it commercially competitive and environmentally safe. 1. Purpose of the CSLF To facilitate the development of improved cost-effective technologies for the separation and capture of carbon dioxide for its transport and long-term safe storage; to make these

437

CARBON7510.pdf  

NLE Websites -- All DOE Office Websites (Extended Search)

Author's personal copy Author's personal copy NMR a critical tool to study the production of carbon fiber from lignin Marcus Foston a , Grady A. Nunnery b , Xianzhi Meng a , Qining Sun a , Frederick S. Baker b , Arthur Ragauskas a, * a BioEnergy Science Center, School of Chemistry and Biochemistry, Institute of Paper Science and Technology, Georgia Institute of Technology, 500 10th St., Atlanta, GA 30332, United States b Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6087, United States A R T I C L E I N F O Article history: Received 7 April 2012 Accepted 6 September 2012 Available online 14 September 2012 A B S T R A C T The structural changes occurring to hardwood Alcell TM lignin as a result of fiber devolatiliza- tion/extrusion, oxidative thermo-stabilization and carbonization are investigated in this study by solid-state and solution nuclear magnetic resonance

438

CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS  

SciTech Connect

The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, or ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. This quarter, five cycle thermogravimetric tests were conducted at the Louisiana State University (LSU) with sodium bicarbonate Grade 3 (SBC{number_sign}3) which showed that carbonation activity declined slightly over 5 cycles following severe calcination conditions of 200 C in pure CO{sub 2}. Three different sets of calcination conditions were tested. Initial carbonation activity (as measured by extent of reaction in the first 25 minutes) was greatest subsequent to calcination at 120 C in He, slightly less subsequent to calcination in 80% CO{sub 2}/20% H{sub 2}O, and lowest subsequent to calcination in pure CO{sub 2} at 200 C. Differences in the extent of reaction after 150 minutes of carbonation, subsequent to calcination under the same conditions followed the same trend but were less significant. The differences between fractional carbonation under the three calcination conditions declined with increasing cycles. A preliminary fixed bed reactor test was also conducted at LSU. Following calcination, the sorbent removed approximately 19% of the CO{sub 2} in the simulated flue gas. CO{sub 2} evolved during subsequent calcination was consistent with an extent of carbonation of approximately 49%. Following successful testing of SBC{number_sign}3 sorbent at RTI reported in the last quarter, a two cycle fluidized bed reactor test was conducted with trona as the sorbent precursor, which was calcined to sodium carbonate. In the first carbonation cycle, CO{sub 2} removal rates declined from 20% to about 8% over the course of three hours. Following calcination, a second carbonation cycle was conducted, at a lower temperature with a lower water vapor content. CO{sub 2} removal and sorbent capacity utilization declined under these conditions. Modifications were made to the reactor to permit addition of extra water for testing in the next quarter. Thermodynamic analysis of the carbonation reaction suggested the importance of other phases, intermediate between sodium carbonate and sodium bicarbonate, and the potential for misapplication of thermodynamic data from the literature. An analysis of initial rate data from TGA experiments suggested that the data may fit a model controlled by the heat transfer from the sorbent particle surface to the bulk gas.

David A. Green; Brian S. Turk; Raghubir P. Gupta; William J. McMichael; Douglas P. Harrison; Ya Liang

2002-01-01T23:59:59.000Z

439

CARBON DIOXIDE FIXATION.  

DOE Green Energy (OSTI)

Solar carbon dioxide fixation offers the possibility of a renewable source of chemicals and fuels in the future. Its realization rests on future advances in the efficiency of solar energy collection and development of suitable catalysts for CO{sub 2} conversion. Recent achievements in the efficiency of solar energy conversion and in catalysis suggest that this approach holds a great deal of promise for contributing to future needs for fuels and chemicals.

FUJITA,E.

2000-01-12T23:59:59.000Z

440

Carbonate fuel cell matrix  

DOE Patents (OSTI)

A carbonate fuel cell matrix is described comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles. 8 figs.

Farooque, M.; Yuh, C.Y.

1996-12-03T23:59:59.000Z

Note: This page contains sample records for the topic "aci activated carbon" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Carbonate fuel cell matrix  

DOE Patents (OSTI)

A carbonate fuel cell matrix comprising support particles and crack attenuator particles which are made platelet in shape to increase the resistance of the matrix to through cracking. Also disclosed is a matrix having porous crack attenuator particles and a matrix whose crack attenuator particles have a thermal coefficient of expansion which is significantly different from that of the support particles, and a method of making platelet-shaped crack attenuator particles.

Farooque, Mohammad (Huntington, CT); Yuh, Chao-Yi (New Milford, CT)

1996-01-01T23:59:59.000Z

442

Carbon taxes and India  

Science Conference Proceedings (OSTI)

Using the Indian module of the Second Generation Model 9SGM, we explore a reference case and three scenarios in which greenhouse gas emissions were controlled. Two alternative policy instruments (carbon taxes and tradable permits) were analyzed to determine comparative costs of stabilizing emissions at (1) 1990 levels (the 1 X case), (2) two times the 1990 levels (the 2X case), and (3) three times the 1990 levels (the 3X case). The analysis takes into account India`s rapidly growing population and the abundance of coal and biomass relative to other fuels. We also explore the impacts of a global tradable permits market to stabilize global carbon emissions on the Indian economy under the following two emissions allowance allocation methods: (1) {open_quotes}Grandfathered emissions{close_quotes}: emissions allowances are allocated based on 1990 emissions. (2) {open_quotes}Equal per capita emissions{close_quotes}: emissions allowances are allocated based on share of global population. Tradable permits represent a lower cost method to stabilize Indian emissions than carbon taxes, i.e., global action would benefit India more than independent actions.

Fisher-Vanden, K.A.; Pitcher, H.M.; Edmonds, J.A.; Kim, S.H. [Pacific Northwest Lab., Richland, WA (United States); Shukla, P.R. [Indian Institute of Management, Ahmedabad (India)

1994-07-01T23:59:59.000Z

443

Southeast Regional Carbon Sequestration Partnership  

SciTech Connect

The Southeast Regional Carbon Sequestration Partnership's (SECARB) Phase I program focused on promoting the development of a framework and infrastructure necessary for the validation and commercial deployment of carbon sequestration technologies. The SECARB program, and its subsequent phases, directly support the Global Climate Change Initiative's goal of reducing greenhouse gas intensity by 18 percent by the year 2012. Work during the project's two-year period was conducted within a ''Task Responsibility Matrix''. The SECARB team was successful in accomplishing its tasks to define the geographic boundaries of the region; characterize the region; identify and address issues for technology deployment; develop public involvement and education mechanisms; identify the most promising capture, sequestration, and transport options; and prepare action plans for implementation and technology validation activity. Milestones accomplished during Phase I of the project are listed below: (1) Completed preliminary identification of geographic boundaries for the study (FY04, Quarter 1); (2) Completed initial inventory of major sources and sinks for the region (FY04, Quarter 2); (3) Completed initial development of plans for GIS (FY04, Quarter 3); (4) Completed preliminary action plan and assessment for overcoming public perception issues (FY04, Quarter 4); (5) Assessed safety, regulatory and permitting issues (FY05, Quarter 1); (6) Finalized inventory of major sources/sinks and refined GIS algorithms (FY05, Quarter 2); (7) Refined public involvement and education mechanisms in support of technology development options (FY05, Quarter 3); and (8) Identified the most promising capture, sequestration and transport options and prepared action plans (FY05, Quarter 4).

Kenneth J. Nemeth

2006-08-30T23:59:59.000Z

444

Carbon-based Fuel Cell  

DOE Green Energy (OSTI)

The direct use of coal in the solid oxide fuel cell to generate electricity is an innovative concept for power generation. The C-fuel cell (carbon-based fuel cell) could offer significant advantages: (1) minimization of NOx emissions due to its operating temperature range of 700-1000 C, (2) high overall efficiency because of the direct conversion of coal to CO{sub 2}, and (3) the production of a nearly pure CO{sub 2} exhaust stream for the direct CO{sub 2} sequestration. The objective of this project is to determine the technical feasibility of using a highly active anode catalyst in a solid oxide fuel for the direct electrochemical oxidation of coal to produce electricity. Results of this study showed that the electric power generation from Ohio No 5 coal (Lower Kittanning) Seam, Mahoning County, is higher than those of coal gas and pure methane on a solid oxide fuel cell assembly with a promoted metal anode catalyst at 950 C. Further study is needed to test the long term activity, selectivity, and stability of anode catalysts.

Steven S. C. Chuang

2005-08-31T23:59:59.000Z

445

Carbon Power & Light, Inc | Open Energy Information  

Open Energy Info (EERE)

Carbon Power & Light, Inc Carbon Power & Light, Inc Jump to: navigation, search Name Carbon Power & Light, Inc Place Wyoming Utility Id 2998 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes Activity Retail Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Service 1-Phase Non-Seasonal Commercial Commercial General Service 1-Phase Non-Seasonal Residential Residential General Service 1-Phase Seasonal Commercial Commercial General Service 1-Phase Seasonal Residential Residential General Service 3-Phase Commercial Commercial

446

Monitoring soil carbon will prepare growers for a carbon trading system  

E-Print Network (OSTI)

they obtain a soil carbon sequestration amount over 10 yearsLal R. 2004. Soil carbon sequestration to mitigate climateto estimate soil carbon sequestration based on estimates of

Suddick, Emma C; Ngugi, Moffatt K; Paustian, Keith; Six, Johan

2013-01-01T23:59:59.000Z

447

Carbon Capital: The Political Ecology of Carbon Forestry and Development in Chiapas, Mexico  

E-Print Network (OSTI)

B v + B d ) C T = Total carbon B v = biomass contained indevelopment through carbon sequestration: experiences in2000) Rural livelihoods and carbon management, IIED Natural

Osborne, Tracey Muttoo

2010-01-01T23:59:59.000Z

448

Black Carbons Properties and Role in the Environment: A Comprehensive Review  

E-Print Network (OSTI)

NOAA/ESRL. Mauna Loa Carbon Dioxide Annual Mean Data.H. Can reducing black carbon emissions counteract globalanalysis of black carbon in soils. Global Biogeochem. Cycle.

Shrestha, Gyami

2010-01-01T23:59:59.000Z

449

ON CALCULATING THE TRANSFER OF CARBON-13 IN RESERVOIR MODELS OF THE CARBON CYCLE  

E-Print Network (OSTI)

7. Keeling. C. D. 1973. The carbon dioxide cycle: reservoirexchange of atmospheric carbon dioxide with the oceans andmodel to study the carbon dioxide exchange in nature. Tellus

Tans, Pieter P.

2013-01-01T23:59:59.000Z

450

Tensile testing and stabilization/carbonization studies of polyacrylonitrile/carbon nanotube composite fibers .  

E-Print Network (OSTI)

??This study focuses on the processing, structure and properties of polyacrylonitrile (PAN)/ carbon nanotube (CNT) composite carbon fibers. Small diameter PAN/CNT based carbon fibers have (more)

Lyons, Kevin Mark

2012-01-01T23:59:59.000Z

451

Methodology for Carbon Accounting of Grouped Mosaic and Landscape-scale  

Open Energy Info (EERE)

Methodology for Carbon Accounting of Grouped Mosaic and Landscape-scale Methodology for Carbon Accounting of Grouped Mosaic and Landscape-scale REDD Projects Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Methodology for Carbon Accounting of Grouped Mosaic and Landscape-scale REDD Projects Agency/Company /Organization: Voluntary Carbon Standard Sector: Land Focus Area: