Powered by Deep Web Technologies
Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Energy Conversion, Storage, and Transport News  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport News. Energy Conversion, Storage, and Transport News. (showing ...

2010-10-26T23:59:59.000Z

2

Energy Conversion, Storage, and Transport Portal  

Science Conference Proceedings (OSTI)

NIST Home > Energy Conversion, Storage, and Transport Portal. Energy Conversion, Storage, and Transport Portal. Programs ...

2013-04-08T23:59:59.000Z

3

Accidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Health Risks » Accidents Health Risks » Accidents DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Accidents A discussion of accidents involving depleted UF6 storage cylinders, including possible health effects, accident risk, and accident history. Potential Health Effects from Cylinder Accidents Accidents involving depleted UF6 storage cylinders are a concern because they could result in an uncontrolled release of UF6 to the environment, which could potentially affect the health of workers and members of the public living downwind of the accident site. Accidental release of UF6 from storage cylinders or during processing activities could result in injuries or fatalities. The most immediate hazard after a release would be from inhalation of hydrogen fluoride (HF), a highly corrosive gas formed when

4

Energy Conversion and Storage Program  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

5

Energy Storage, Transport, and Conversion in CNST  

Science Conference Proceedings (OSTI)

Energy Storage, Transport, and Conversion in CNST. Nanotribology ... Theory and Modeling of Materials for Renewable Energy. Nanostructures ...

2013-05-02T23:59:59.000Z

6

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

of Novel Energy Conversion and Storage Systems By Andrewof Novel Energy Conversion and Storage Systems by Andrew

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

7

Canister Storage Building (CSB) Design Basis Accident Analysis Documentation  

Science Conference Proceedings (OSTI)

This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

CROWE, R.D.; PIEPHO, M.G.

2000-03-23T23:59:59.000Z

8

Energy Conversion & Storage Program, 1993 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in: production of new synthetic fuels; development of high-performance rechargeable batteries and fuel cells; development of high-efficiency thermochemical processes for energy conversion; characterization of complex chemical processes and chemical species; and the study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1994-06-01T23:59:59.000Z

9

Energy conversion & storage program. 1994 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program investigates state-of-the-art electrochemistry, chemistry, and materials science technologies for: (1) development of high-performance rechargeable batteries and fuel cells; (2) development of high-efficiency thermochemical processes for energy conversion; (3) characterization of complex chemical processes and chemical species; (4) study and application of novel materials for energy conversion and transmission. Research projects focus on transport process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis.

Cairns, E.J.

1995-04-01T23:59:59.000Z

10

Evaluation of Accident Frequencies at the Canister Storage Bldg (CSB)  

DOE Green Energy (OSTI)

By using simple frequency calculations and fault tree logic, an evaluation of the design basis accident frequencies at the Canister Storage Building has been performed. The following are the design basis accidents: Mechanical damage of MCO; Gaseous release from the MCO; MCO internal hydrogen deflagration; MCO external hydrogen deflagration; Thermal runaway reactions inside the MCO; and Violation of design temperature criteria.

POWERS, T.B.

2000-03-20T23:59:59.000Z

11

Battery Chargers | Electrical Power Conversion and Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Battery Chargers | Electrical Power Conversion and Storage Battery Chargers | Electrical Power Conversion and Storage 625 West A Street | Lincoln, NE 68522-1794 | LesterElectrical.com P: 402.477.8988 | F: 402.441.3727, 402.474.1769 (Sales) MEMORANDUM TO: United States Department of Energy (DOE), Via Email, expartecommunications@hq.doe.gov FROM: Spencer Stock, Product Marketing Manager, Lester Electrical DATE: June 18, 2012 RE: Ex Parte Communications, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57 On Monday, June 11, 2012, representatives from Lester Electrical and Ingersoll Rand met with DOE to discuss the Notice of Proposed Rulemaking (NOPR) for Energy Conservation Standards for Battery Chargers and External Power Supplies, Docket Number EERE-2008-BT-STD-0005, RIN 1904-AB57.

12

Energy conversion & storage program. 1995 annual report  

DOE Green Energy (OSTI)

The 1995 annual report discusses laboratory activities in the Energy Conversion and Storage (EC&S) Program. The report is divided into three categories: electrochemistry, chemical applications, and material applications. Research performed in each category during 1995 is described. Specific research topics relate to the development of high-performance rechargeable batteries and fuel cells, the development of high-efficiency thermochemical processes for energy conversion, the characterization of new chemical processes and complex chemical species, and the study and application of novel materials related to energy conversion and transmission. Research projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials and deposition technologies, and advanced methods of analysis.

Cairns, E.J.

1996-06-01T23:59:59.000Z

13

Evaluation of Accident Frequencies at the Canister Storage Bldg (CSB)  

DOE Green Energy (OSTI)

By using the fault tree logic, an evaluation of the design basis accident frequencies at the Canister Storage Building has been performed. The evaluation demonstrates that due to low frequency of occurrences, the following design basis accidents are considered not credible (annual frequency of less than 10{sup -6}): Rearrangement of multidster overpack (MCO) internals; Gaseous release from the MCO; MCO internal hydrogen explosion; MCO external hydrogen explosion; Thermal runaway reactions inside the MCO; and Violation of design temperature criteria.

LIU, Y.J.

1999-09-02T23:59:59.000Z

14

Evaluation of accident frequencies at the canister storage building  

DOE Green Energy (OSTI)

By using the fault tree logic, an evaluation of the design basis accident frequencies at the Canister Storage Building has been performed. The evaluation demonstrates that due to low frequency of occurrences, the following design basis accidents are considered not credible (annual frequency of less than 10{sup -6}): Rearrangement of multi-canister overpack (MCO) internals; Gaseous release from the MCO; MCO internal hydrogen explosion; MCO external hydrogen explosion; Thermal runaway reactions inside the MCO; and Violation of design temperature criteria.

LIU, Y.J.

1999-05-13T23:59:59.000Z

15

September 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

September 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III...

16

January 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

January 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Energy Technology Perspectives 2012: Executive Summary Portuguese version NONE Energy...

17

Most Viewed Documents - Energy Storage, Conversion, and Utilization...  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002)...

18

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Storage A discussion of depleted UF6 cylinder storage activities and associated risks. Management Activities for Cylinders in Storage The long-term management of the existing DUF6 storage cylinders and the continual effort to remediate and maintain the safe condition of the DUF6 storage cylinders will remain a Departmental responsibility for many years into the future. The day to day management of the DUF6 cylinders includes actions designed to cost effectively maintain and improve their storage conditions, such as: General storage cylinder and storage yard maintenance; Performing regular inspections of cylinders; Restacking and respacing the cylinders to improve drainage and to

19

Energy Conversion, Storage, and Transport Programs and ...  

Science Conference Proceedings (OSTI)

... The Society of Automotive Engineers International (SAE) has proposed a ... hydrogen storage material satisfies the Department of Energy (DoE) goal ...

2010-05-24T23:59:59.000Z

20

Energy Conversion and Storage Program: 1992 Annual report  

Science Conference Proceedings (OSTI)

This report is the 1992 annual progress report for the Energy Conversion and Storage Program, a part of the Energy and Environment Division of the Lawrence Berkeley Laboratory. Work described falls into three broad areas: electrochemistry; chemical applications; and materials applications. The Energy Conversion and Storage Program applies principles of chemistry and materials science to solve problems in several areas: (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes and chemical species, and (5) study and application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Chemical applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing product and waste streams from synfuel plants, coal gasifiers, and biomass conversion processes. Materials applications research includes evaluation of the properties of advanced materials, as well as development of novel preparation techniques. For example, techniques such as sputtering, laser ablation, and poised laser deposition are being used to produce high-temperature superconducting films.

Cairns, E.J.

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Energy Conversion and Storage Program. 1990 annual report  

DOE Green Energy (OSTI)

The Energy Conversion and Storage Program applies chemistry and materials science principles to solve problems in (1) production of new synthetic fuels, (2) development of high-performance rechargeable batteries and fuel cells, (3) development of advanced thermochemical processes for energy conversion, (4) characterization of complex chemical processes, and (5) application of novel materials for energy conversion and transmission. Projects focus on transport-process principles, chemical kinetics, thermodynamics, separation processes, organic and physical chemistry, novel materials, and advanced methods of analysis. Electrochemistry research aims to develop advanced power systems for electric vehicle and stationary energy storage applications. Topics include identification of new electrochemical couples for advanced rechargeable batteries, improvements in battery and fuel-cell materials, and the establishment of engineering principles applicable to electrochemical energy storage and conversion. Chemical Applications research includes topics such as separations, catalysis, fuels, and chemical analyses. Included in this program area are projects to develop improved, energy-efficient methods for processing waste streams from synfuel plants and coal gasifiers. Other research projects seek to identify and characterize the constituents of liquid fuel-system streams and to devise energy-efficient means for their separation. Materials Applications research includes the evaluation of the properties of advanced materials, as well as the development of novel preparation techniques. For example, the use of advanced techniques, such as sputtering and laser ablation, are being used to produce high-temperature superconducting films.

Cairns, E.J.

1992-03-01T23:59:59.000Z

22

September 2013 Most Viewed Documents for Energy Storage, Conversion, And  

Office of Scientific and Technical Information (OSTI)

September 2013 Most Viewed Documents for Energy Storage, Conversion, And September 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) 169 Evaluation of the 2010 Toyota Prius Hybrid Synergy Drive System Burress, Timothy A [ORNL]; Campbell, Steven L [ORNL]; Coomer, Chester [ORNL]; Ayers, Curtis William [ORNL]; Wereszczak, Andrew A [ORNL]; Cunningham, Joseph Philip [ORNL]; Marlino, Laura D [ORNL]; Seiber, Larry Eugene [ORNL]; Lin, Hua-Tay [ORNL] (2011) 116 Evaluation of the 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, S.L.; Seiber, L.E.; Marlino, L.D.; Staunton, R.H.; Cunningham, J.P. (2008) 102 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design

23

April 2013 Most Viewed Documents for Energy Storage, Conversion, And  

Office of Scientific and Technical Information (OSTI)

April 2013 Most Viewed Documents for Energy Storage, Conversion, And April 2013 Most Viewed Documents for Energy Storage, Conversion, And Utilization Seventh Edition Fuel Cell Handbook NETL (2004) 628 Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. (null) 205 A study of lead-acid battery efficiency near top-of-charge and the impact on PV system design Stevens, J.W.; Corey, G.P. (1996) 173 Energy Saving Potentials and Air Quality Benefits of Urban HeatIslandMitigation Akbari, Hashem (2005) 153 Building a secondary containment system Broder, M.F. (1994) 144 An Improved Method of Manufacturing Corrugated Boxes: Lateral Corrugator Frank C. Murray Ph.D.; , Roman Popil Ph.D.; Michael Shaepe (formerly with IPST, now at Cargill. Inc) (2008) 141 Ammonia usage in vapor compression for refrigeration and air-conditioning in the United States

24

Most Viewed Documents - Energy Storage, Conversion, and Utilization | OSTI,  

Office of Scientific and Technical Information (OSTI)

Most Viewed Documents - Energy Storage, Conversion, and Utilization Most Viewed Documents - Energy Storage, Conversion, and Utilization Process Equipment Cost Estimation, Final Report H.P. Loh; Jennifer Lyons; Charles W. White, III (2002) Continuously variable transmissions: theory and practice Beachley, N.H.; Frank, A.A. () Review of air flow measurement techniques McWilliams, Jennifer (2002) Building a secondary containment system Broder, M.F. (1994) Cost benefit analysis of the night-time ventilative cooling in office building Seppanen, Olli; Fisk, William J.; Faulkner, David (2003) Evaluation of the 2007 Toyota Camry Hybrid Syneregy Drive System Burress, T.A.; Coomer, C.L.; Campbell, S.L.; et al. (2008) Nanofluid technology : current status and future research. Choi, S. U.-S. (1998) An Improved Method of Manufacturing Corrugated Boxes: Lateral

25

Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion  

SciTech Connect

Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

2012-09-30T23:59:59.000Z

26

ass combustion CO2 capture coal conversion mat on biofuels geologic storage hydrogen renewables  

E-Print Network (OSTI)

ass combustion CO2 capture coal conversion mat on biofuels geologic storage hydrogen renewables storage fuel cells CO2 capture photovoltaics ma conversion biofuels batteries conversion biofuels stion CO Stanford University About GCEP #12;Explored novel approaches for enhanced biofuel production, such as

Nur, Amos

27

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

hydrogen. Energy storage via molecular hydrogen is, ofhydrogen storage. International Journal of Hydrogen Energy,hydrogen storage. International Journal of Hydrogen Energy,

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

28

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume III. Wind conversion systems with energy storage. Final report  

DOE Green Energy (OSTI)

The variability of energy output inherent in wind energy conversion systems (WECS) has led to the investigation of energy storage as a means of managing the available energy when immediate, direct use is not possible or desirable. This portion of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a wind energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with wind energy conversion systems.

Not Available

1978-01-01T23:59:59.000Z

29

Summary of State-of-the-Art Power Conversion Systems for Energy Storage Applications  

DOE Green Energy (OSTI)

The power conversion system (PCS) is a vital part of many energy storage systems. It serves as the interface between the storage device, an energy source, and an AC load. This report summarizes the results of an extensive study of state-of-the-art power conversion systems used for energy storage applications. The purpose of the study was to investigate the potential for cost reduction and performance improvement in these power conversion systems and to provide recommendations for fiture research and development. This report provides an overview of PCS technology, a description of several state-of-the-art power conversion systems and how they are used in specific applications, a summary of four basic configurations for l:he power conversion systems used in energy storage applications, a discussion of PCS costs and potential cost reductions, a summary of the stancku-ds and codes relevant to the technology, and recommendations for future research and development.

Atcitty, S.; Gray-Fenner, A.; Ranade, S.

1998-09-01T23:59:59.000Z

30

Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Environmental Risks » Storage Environmental Risks » Storage Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Environmental Risks of Depleted UF6 Storage Discussion of the potential environmental impacts from storage of depleted UF6 at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts Analyzed in the PEIS The PEIS included an analysis of the potential environmental impacts from continuing to store depleted UF6 cylinders at the three current storage sites, as well as potential impacts from the storage of depleted uranium after conversion to an oxide form. Impacts from Continued Storage of UF6 Cylinders Continued storage of the UF6 cylinders would require extending the use of a

31

February 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

Urban HeatIslandMitigation Akbari, Hashem (2005) 138 Molten Salt-Carbon Nanotube Thermal Energy Storage for Concentrating Solar Power Systems Final Report Michael Schuller; Frank...

32

19th International Conference on Photochemical Conversion and Storage of Solar Energy  

E-Print Network (OSTI)

IPS-19 19th International Conference on Photochemical Conversion and Storage of Solar Energy 29@caltech.edu Prof. Harry Gray hbg@caltech.edu Prof. Jonas Peters jpeters@caltech.edu Dye-Sensitized & Polymer Solar Cells Advanced Photovoltaics Photocatalysis Solar Fuels Production Photoelectrochemistry

Goddard III, William A.

33

Thermo-chemical energy conversion and storage. Final report  

DOE Green Energy (OSTI)

Research support for the cyclohexane/benzene heat pipe development program at Sandia Laboratories is reported. The apparent kinetics of the gas-phase catalytic dehydrogenation of cyclohexane to benzene in an internally recirculated (gradientless) reactor over the temperature range from 500 to 800/sup 0/F at 1 atm at various space velocities was studied. A kinetic model was developed based on a reversible mass-action rate expression and a catalyst effectiveness factor which is able to correlate both the conversion and reaction rate data very well over the temperature range 500 to 750/sup 0/F. The data taken at 800/sup 0/F appear to be qualitatively and quantitatively different than the data taken at the lower temperatures. It is not as yet clear, whether this can be attributed to a change in kinetic mechanism or some reversible alteration of the catalyst surface at the higher temperature. The formation of side products in this system over the same temperature range was also studied. Both the number and amount of side product(s) formed increases with increasing temperature and residence time. Over the temperature range from 500 to 600/sup 0/F the side products produced appear to be strongly related to the presence of low molecular weight unsaturated hydrocarbon impurities in the (reagent grade) cyclohexane feed and it is possible that no side products would be formed were it not for the presence of these impurities. At temperatures above 600/sup 0/F, both the number and amount of side product(s) produced increases markedly. A test loop was designed and partially fabricated which will permit the study of the effects of long term continuous cycling of the system on catalyst activity and side product formation.

Ritter, A.B.; DeLancey, G.B.; Schneider, J.; Silla, H.

1978-09-01T23:59:59.000Z

34

Accident safety analysis for 300 Area N Reactor Fuel Fabrication and Storage Facility  

SciTech Connect

The purpose of the accident safety analysis is to identify and analyze a range of credible events, their cause and consequences, and to provide technical justification for the conclusion that uranium billets, fuel assemblies, uranium scrap, and chips and fines drums can be safely stored in the 300 Area N Reactor Fuel Fabrication and Storage Facility, the contaminated equipment, High-Efficiency Air Particulate filters, ductwork, stacks, sewers and sumps can be cleaned (decontaminated) and/or removed, the new concretion process in the 304 Building will be able to operate, without undue risk to the public, employees, or the environment, and limited fuel handling and packaging associated with removal of stored uranium is acceptable.

Johnson, D.J.; Brehm, J.R.

1994-01-01T23:59:59.000Z

35

Evaluation of coverage of enriched UF{sub 6} cylinder storage lots by existing criticality accident alarms  

SciTech Connect

The Portsmouth Gaseous Diffusion Plant (PORTS) is leased from the US Department of Energy (DOE) by the United States Enrichment Corporation (USEC), a government corporation formed in 1993. PORTS is in transition from regulation by DOE to regulation by the Nuclear Regulatory Commission (NRC). One regulation is 10 CFR Part 76.89, which requires that criticality alarm systems be provided for the site. PORTS originally installed criticality accident alarm systems in all building for which nuclear criticality accidents were credible. Currently, however, alarm systems are not installed in the enriched uranium hexafluoride (UF{sub 6}) cylinder storage lots. This report analyzes and documents the extent to which enriched UF{sub 6} cylinder storage lots at PORTS are covered by criticality detectors and alarms currently installed in adjacent buildings. Monte Carlo calculations are performed on simplified models of the cylinder storage lots and adjacent buildings. The storage lots modelled are X-745B, X-745C, X745D, X-745E, and X-745F. The criticality detectors modelled are located in building X-343, the building X-344A/X-342A complex, and portions of building X-330. These criticality detectors are those located closest to the cylinder storage lots. Results of this analysis indicate that the existing criticality detectors currently installed at PORTS are largely ineffective in detecting neutron radiation from criticality accidents in most of the cylinder storage lots at PORTS, except sometimes along portions of their peripheries.

Lee, B.L. Jr.; Dobelbower, M.C.; Woollard, J.E.; Sutherland, P.J.; Tayloe, R.W. Jr.

1995-03-01T23:59:59.000Z

36

Contribution of chemistry to energy. [Fuels from coal; solar energy storage/conversion  

DOE Green Energy (OSTI)

Chemistry has contributed in many ways to energy production and conversion in the fossil fuel era. The challenges facing chemists and chemical engineers as we look forward to the 21st Century are addressed. This paper discusses some of the means that can be employed to meet this challenge both in the near-term and long-term, particularly alternate fuels from coal and solar energy storage and conversion. A leading candidate for an energy supply medium is hydrogen; implementing this concept may well be the greatest challenge faced by chemists as we leave the age of fossil fuels and enter the era of renewable energy. (DLC)

Cox, K.E.

1978-01-01T23:59:59.000Z

37

Update on Utilization or Storage of CO2 Through Chemical, Biological, or Mineral Conversion  

Science Conference Proceedings (OSTI)

If emissions of carbon dioxide to the atmosphere are regulated, carbon capture from fossil-fired power plants is likely to become required. Many options for storing, sequestering, reusing, or converting the captured CO2 have been proposed. While storage or sequestration of the captured CO2 can reduce emissions to the atmosphere, beneficial reuse or conversion of the CO2 can potentially be much more advantageous by not only reducing emissions but also producing a ...

2013-12-16T23:59:59.000Z

38

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume II. Photovoltaic systems with energy storage. Final report  

DOE Green Energy (OSTI)

This volume of the General Electric study was directed at an evaluation of those energy storage technologies deemed best suited for use in conjunction with a photovoltaic energy conversion system in utility, residential and intermediate applications. Break-even cost goals are developed for several storage technologies in each application. These break-even costs are then compared with cost projections presented in Volume I of this report to show technologies and time frames of potential economic viability. The form of the presentation allows the reader to use more accurate storage system cost data as they become available. The report summarizes the investigations performed and presents the results, conclusions and recommendations pertaining to use of energy storage with photovoltaic energy conversion systems. Candidate storage concepts studied include (1) above ground and underground pumped hydro, (2) underground compressed air, (3) electric batteries, (4) flywheels, and (5) hydrogen production and storage. (WHK)

Not Available

1978-01-01T23:59:59.000Z

39

Direct conversion of plutonium-containing materials to borosilicate glass for storage or disposal  

SciTech Connect

A new process, the Glass Material Oxidation and Dissolution System (GMODS), has been invented for the direct conversion of plutonium metal, scrap, and residue into borosilicate glass. The glass should be acceptable for either the long-term storage or disposition of plutonium. Conversion of plutonium from complex chemical mixtures and variable geometries into homogeneous glass (1) simplifies safeguards and security; (2) creates a stable chemical form that meets health, safety, and environmental concerns; (3) provides an easy storage form; (4) may lower storage costs; and (5) allows for future disposition options. In the GMODS process, mixtures of metals, ceramics, organics, and amorphous solids containing plutonium are fed directly into a glass melter where they are directly converted to glass. Conventional glass melters can accept materials only in oxide form; thus, it is its ability to accept materials in multiple chemical forms that makes GMODS a unique glass making process. Initial proof-of-principle experiments have converted cerium (plutonium surrogate), uranium, stainless steel, aluminum, and other materials to glass. Significant technical uncertainties remain because of the early nature of process development.

Forsberg, C.W.; Beahm, E.C.

1995-06-27T23:59:59.000Z

40

Graphene-based Electrochemical Energy Conversion and Storage: Fuel cells, Supercapacitors and Lithium Ion Batteries  

SciTech Connect

Graphene has attracted extensive research interest due to its strictly 2-dimensional (2D) structure, which results in its unique electronic, thermal, mechanical, and chemical properties and potential technical applications. These remarkable characteristics of graphene, along with the inherent benefits of a carbon material, make it a promising candidate for application in electrochemical energy devices. This article reviews the methods of graphene preparation, introduces the unique electrochemical behavior of graphene, and summarizes the recent research and development on graphene-based fuel cells, supercapacitors and lithium ion batteries. In addition, promising areas are identified for the future development of graphene-based materials in electrochemical energy conversion and storage systems.

Hou, Junbo; Shao, Yuyan; Ellis, Michael A.; Moore, Robert; Yi, Baolian

2011-09-14T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

System for thermal energy storage, space heating and cooling and power conversion  

DOE Patents (OSTI)

An integrated system for storing thermal energy, for space heating and cong and for power conversion is described which utilizes the reversible thermal decomposition characteristics of two hydrides having different decomposition pressures at the same temperature for energy storage and space conditioning and the expansion of high-pressure hydrogen for power conversion. The system consists of a plurality of reaction vessels, at least one containing each of the different hydrides, three loops of circulating heat transfer fluid which can be selectively coupled to the vessels for supplying the heat of decomposition from any appropriate source of thermal energy from the outside ambient environment or from the spaces to be cooled and for removing the heat of reaction to the outside ambient environment or to the spaces to be heated, and a hydrogen loop for directing the flow of hydrogen gas between the vessels. When used for power conversion, at least two vessels contain the same hydride and the hydrogen loop contains an expansion engine. The system is particularly suitable for the utilization of thermal energy supplied by solar collectors and concentrators, but may be used with any source of heat, including a source of low-grade heat.

Gruen, Dieter M. (Downers Grove, IL); Fields, Paul R. (Chicago, IL)

1981-04-21T23:59:59.000Z

42

Reactive Ballistic Deposition of Nanostructured Model Materials for Electrochemical Energy Conversion and Storage  

SciTech Connect

Finely structured, supported thin films offer a host of opportunities for fundamental and applied research. Nanostructured materials often exhibit physical properties which differ from their bulk counterparts due to the increased importance of the surface in determining the thermodynamics and behavior of the system. Thus, control of the characteristic size, porosity, morphology, and surface area presents opportunities to tailor new materials which are useful platforms for elucidating the fundamental processes related to energy conversion and storage. The ability to produce high purity materials with direct control of relevant film parameters such as porosity, film thickness, and film morphology is of immediate interest in the fields of electrochemistry, photocatalysis, and thermal catalysis. Studies of various photoactive materials have introduced questions concerning the effects of film architecture and surface structure on the performance of the materials, while recent work has demonstrated that nanostructured, mesoporous, or disordered materials often deform plastically, making them robust in applications where volumetric expansion and phase transformations occur, such as in materials for lithium-ion batteries. Moreover, renewed emphasis has been placed on the formation of semi-conductive electrodes with controlled pore-size and large surface areas for the study and application of pseudo-capacitance and cation insertion processes for electrical energy storage. Understanding how the performance of such materials depends on morphology, porosity, and surface structure and area requires a synthesis technique which provides for incremental variations in structure and facilitates assessment of the performance with the appropriate analytical tools, preferably those that provide both structural information and kinetic insight into photoelectrochemical processes.

Flaherty, David W.; Hahn, Nathan T.; May, Robert A.; Berglund, Sean P.; Lin, Yong-Mao; Stevenson, Keith J.; Dohnalek, Zdenek; Kay, Bruce D.; Mullins, C. Buddie

2012-03-20T23:59:59.000Z

43

Health Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Conversion A discussion of health risks associated with conversion of depleted UF6 to another chemical form. General Health Risks of Conversion The potential environmental impacts, including potential health risks, associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This section discusses in general the types of health risks associated with the conversion process. The conversion of depleted UF6 to another chemical form will be done in an industrial facility dedicated to the conversion process. Conversion will involve the handling of depleted UF6 cylinders. Hazardous chemicals, such

44

MODELING OF 2LIBH4 PLUS MGH2 HYDROGEN STORAGE SYSTEM ACCIDENT SCENARIOS USING EMPIRICAL AND THEORETICAL THERMODYNAMICS  

DOE Green Energy (OSTI)

It is important to understand and quantify the potential risk resulting from accidental environmental exposure of condensed phase hydrogen storage materials under differing environmental exposure scenarios. This paper describes a modeling and experimental study with the aim of predicting consequences of the accidental release of 2LiBH{sub 4}+MgH{sub 2} from hydrogen storage systems. The methodology and results developed in this work are directly applicable to any solid hydride material and/or accident scenario using appropriate boundary conditions and empirical data. The ability to predict hydride behavior for hypothesized accident scenarios facilitates an assessment of the of risk associated with the utilization of a particular hydride. To this end, an idealized finite volume model was developed to represent the behavior of dispersed hydride from a breached system. Semiempirical thermodynamic calculations and substantiating calorimetric experiments were performed in order to quantify the energy released, energy release rates and to quantify the reaction products resulting from water and air exposure of a lithium borohydride and magnesium hydride combination. The hydrides, LiBH{sub 4} and MgH{sub 2}, were studied individually in the as-received form and in the 2:1 'destabilized' mixture. Liquid water hydrolysis reactions were performed in a Calvet calorimeter equipped with a mixing cell using neutral water. Water vapor and oxygen gas phase reactivity measurements were performed at varying relative humidities and temperatures by modifying the calorimeter and utilizing a gas circulating flow cell apparatus. The results of these calorimetric measurements were compared with standardized United Nations (UN) based test results for air and water reactivity and used to develop quantitative kinetic expressions for hydrolysis and air oxidation in these systems. Thermodynamic parameters obtained from these tests were then inputted into a computational fluid dynamics model to predict both the hydrogen generation rates and concentrations along with localized temperature distributions. The results of these numerical simulations can be used to predict ignition events and the resultant conclusions will be discussed.

James, C; David Tamburello, D; Joshua Gray, J; Kyle Brinkman, K; Bruce Hardy, B; Donald Anton, D

2009-04-01T23:59:59.000Z

45

Coverage impacts biomass composition, conversion to ethanol yields and microbial communities during storage.  

E-Print Network (OSTI)

??Increased mandates for the production of transportation fuels from renewable resources have thrust the conversion of lignocellulosic biomass, e.g., energy crops and agricultural residues, to (more)

Rigdon, Anne R.

2013-01-01T23:59:59.000Z

46

Prediction of the effects of compositional mixing in a reservoir on conversion to natural gas storage.  

E-Print Network (OSTI)

??The increased interest in the development of new Gas Storage Fields over the lastseveral decades has created some interesting challenges for the industry. Most existinggas (more)

Brannon, Alan W.

2011-01-01T23:59:59.000Z

47

Analysis of accident sequences and source terms at treatment and storage facilities for waste generated by US Department of Energy waste management operations  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the US Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies assessed, and the resultant radiological and chemical source terms evaluated. A personal-computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for the calculation of human health risk impacts. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated, and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. Key assumptions in the development of the source terms are identified. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also discuss specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J.; Folga, S.; Policastro, A.; Freeman, W.; Jackson, R.; Mishima, J.; Turner, S.

1996-12-01T23:59:59.000Z

48

Novel synthesis and characterisation of Li-N-(H)-based materials for energy storage and conversion.  

E-Print Network (OSTI)

??This work was motivated by the extensive research on Li-N-(H)-based materials, which have attracted increasing interest for potential applications in hydrogen storage and lithium-ion batteries (more)

Tapia Ruiz, Nuria

2013-01-01T23:59:59.000Z

49

Nondestructive Evaluation: Data Conversion, Data Storage, and Records Management Study for NDE  

Science Conference Proceedings (OSTI)

In the past 20 years, there has been a dramatic increase in the use of digital systems in nondestructive evaluation (NDE). The constant drive toward better acquisition technology, increased data storage capacity, and enhanced system capability has actually decreased the likelihood of being able to access digital data created and stored only a few years ago. For users to be able to extract the maximum benefit from their digital records, they need to identify and adopt appropriate strategies for handling t...

2011-09-27T23:59:59.000Z

50

Supplemental analysis of accident sequences and source terms for waste treatment and storage operations and related facilities for the US Department of Energy waste management programmatic environmental impact statement  

SciTech Connect

This report presents supplemental information for the document Analysis of Accident Sequences and Source Terms at Waste Treatment, Storage, and Disposal Facilities for Waste Generated by US Department of Energy Waste Management Operations. Additional technical support information is supplied concerning treatment of transuranic waste by incineration and considering the Alternative Organic Treatment option for low-level mixed waste. The latest respirable airborne release fraction values published by the US Department of Energy for use in accident analysis have been used and are included as Appendix D, where respirable airborne release fraction is defined as the fraction of material exposed to accident stresses that could become airborne as a result of the accident. A set of dominant waste treatment processes and accident scenarios was selected for a screening-process analysis. A subset of results (release source terms) from this analysis is presented.

Folga, S.; Mueller, C.; Nabelssi, B.; Kohout, E.; Mishima, J.

1996-12-01T23:59:59.000Z

51

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 3: Appendixes C-H  

Science Conference Proceedings (OSTI)

This report contains the Appendices for the Analysis of Accident Sequences and Source Terms at Waste Treatment and Storage Facilities for Waste Generated by the U.S. Department of Energy Waste Management Operations. The main report documents the methodology, computational framework, and results of facility accident analyses performed as a part of the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

52

Analysis of accident sequences and source terms at waste treatment and storage facilities for waste generated by U.S. Department of Energy Waste Management Operations, Volume 1: Sections 1-9  

SciTech Connect

This report documents the methodology, computational framework, and results of facility accident analyses performed for the U.S. Department of Energy (DOE) Waste Management Programmatic Environmental Impact Statement (WM PEIS). The accident sequences potentially important to human health risk are specified, their frequencies are assessed, and the resultant radiological and chemical source terms are evaluated. A personal computer-based computational framework and database have been developed that provide these results as input to the WM PEIS for calculation of human health risk impacts. The methodology is in compliance with the most recent guidance from DOE. It considers the spectrum of accident sequences that could occur in activities covered by the WM PEIS and uses a graded approach emphasizing the risk-dominant scenarios to facilitate discrimination among the various WM PEIS alternatives. Although it allows reasonable estimates of the risk impacts associated with each alternative, the main goal of the accident analysis methodology is to allow reliable estimates of the relative risks among the alternatives. The WM PEIS addresses management of five waste streams in the DOE complex: low-level waste (LLW), hazardous waste (HW), high-level waste (HLW), low-level mixed waste (LLMW), and transuranic waste (TRUW). Currently projected waste generation rates, storage inventories, and treatment process throughputs have been calculated for each of the waste streams. This report summarizes the accident analyses and aggregates the key results for each of the waste streams. Source terms are estimated and results are presented for each of the major DOE sites and facilities by WM PEIS alternative for each waste stream. The appendices identify the potential atmospheric release of each toxic chemical or radionuclide for each accident scenario studied. They also provide discussion of specific accident analysis data and guidance used or consulted in this report.

Mueller, C.; Nabelssi, B.; Roglans-Ribas, J. [and others

1995-04-01T23:59:59.000Z

53

Micro/Nano-Scale Phase Change Systems for Thermal Management and Solar Energy Conversion Applications  

E-Print Network (OSTI)

a working molecular solar energy conversion system where noEnergy Storage and Conversion System ..74Thermal (MOST) Energy Storage and Conversion System In this

Coso, Dusan

2013-01-01T23:59:59.000Z

54

Severe Accident Studies  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Severe Accident Studies Severe Accident Studies Christopher S. Bajwa Division of Spent Fuel Storage and Transportation Office of Nuclear Material Safety and Safeguards USNRC 2012 U.S. DOE National Transportation Stakeholders Forum (NTSF) May 15 - 17, 2012 Knoxville, TN * Going The Distance? - The Safe Transport of Spent Nuclear Fuel and High-Level Radioactive Waste in the United States * Released February 9, 2006 * Conclusions: * NRC safety regulations are adequate to ensure package containment effectiveness over a wide range of transport conditions, including most credible accident conditions. * The radiological risks are well understood and are generally low, with the possible exception of risks from releases in extreme accidents involving long duration, fully engulfing fires.

55

The Conversion and operation of the Cornell electron storage ring as a test accelerator (cesrta) for damping rings research and development  

E-Print Network (OSTI)

THE CONVERSION AND OPERATION OF THE CORNELL ELECTRON STORAGEon progress with the CESR conversion activities, the statusProc. CONCLUSION The CesrTA conversion is now approaching

Palmer, M.A.

2010-01-01T23:59:59.000Z

56

Flexographically Printed Rechargeable Zinc-based Battery for Grid Energy Storage  

E-Print Network (OSTI)

conversion: pumped hydroelectric storage; (3) internalpumped hydroelectric systems account for 99% of a worldwide storage

Wang, Zuoqian

2013-01-01T23:59:59.000Z

57

One of the major challenges in the twenty-first century is the development of cleaner, sustainable means of energy conversion and storage in order to address the problems  

E-Print Network (OSTI)

Energy research at Bath #12;Using a DC network to make the most of solar energy Project BRISTOL integrating renewable energy sources easier and more efficient. The use of a DC network to power lights means of energy conversion and storage in order to address the problems posed by global warming. Energy

Burton, Geoffrey R.

58

Solar-thermal energy conversion and storage: cyclohexane dehydrogenation. Progress report, 30 September 1977-30 June 1978  

DOE Green Energy (OSTI)

The objective of this project is to provide research support for the benzene/cyclohexane heat pipe development program at Sandia. The kinetics of the cyclohexane decomposition (energy collection) reaction over a commercially available naphtha reforming catalyst (RD-150, Englehard Industries) in the temperature range 400 to 800/sup 0/F and pressures of 1 to 40 atmospheres were measured. Significant amounts of side products such as toluene and butane were identified at temperatures above 550/sup 0/F at atmospheric pressure and significant mass transfer limitations on conversions were observed at the higher space velocities and higher temperatures. No significant decreases in catalyst activity were measured at temperatures below 800/sup 0/F. However, at 800/sup 0/F there was a significant decrease in catalyst activity which does not appear to be a poisoning problem but a thermal limitation on catalyst effectiveness. A test facility has been fabricated to study the behavior of the benzene/cyclohexane (or any other gas phase catalytic reaction) system and its catalysts under long term cycling at temperatures up to 1000/sup 0/F, and pressures up to 1000 psig at a wide variety of space velocities. A mathematical model was developed which simulates the dynamic behavior of the collector (endothermic) reactor and allows the evaluation of such things as startup, shutdown, switching and process control algorithms.

Ritter, A.B.; DeLancey, G.B.; Schneider, J.; Silla, H.

1978-07-01T23:59:59.000Z

59

Applied research on energy storage and conversion for photovoltaic and wind energy systems. Volume I. Study summary and concept screening. Final report  

DOE Green Energy (OSTI)

This study was directed at a review of storage technologies, and particularly those which might be best suited for use in conjunction with wind and photovoltaics. The potential ''worth'' added by incorporating storage was extensively analyzed for both wind and photovoltaics. Energy storage concepts studied include (1) above ground pumped hydro storage, (2) underground pumped hydro storage, (3) thermal storage-oil, (4) thermal storage-steam, (5) underground compressed air storage, (6) pneumatic storage, (7) lead-acid batteries, (8) advanced batteries, (9) inertial storage (flywheel), (10) hydrogen generation and storage, and (11) superconducting magnetic energy storage. The investigations performed and the major results, conclusions, and recommendations are presented in this volume. (WHK)

Not Available

1978-01-01T23:59:59.000Z

60

Nuclear Reactor Accidents  

NLE Websites -- All DOE Office Websites (Extended Search)

Reactor Accidents The accidents at the Three Mile Island (TMI) and Chernobyl nuclear reactors have triggered particularly intense concern about radiation hazards. The TMI accident,...

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Electrochemical Energy Storage and Conversion  

Science Conference Proceedings (OSTI)

Mar 4, 2013 ... Design and Discovery of Novel Energy Materials: Stephan Lany1; 1NREL ... determine and characterise the state of an electrochemical system,...

62

Unit Conversion  

Science Conference Proceedings (OSTI)

Unit Conversion. ... Unit Conversion Example. "If you have an amount of unit of A, how much is that in unit B?"; Dimensional Analysis; ...

2012-12-04T23:59:59.000Z

63

Chernobyl accident: A comprehensive risk assessment  

SciTech Connect

The authors, all of whom are Ukrainian and Russian scientists involved with Chernobyl nuclear power plant since the April 1986 accident, present a comprehensive review of the accident. In addition, they present a risk assessment of the remains of the destroyed reactor and its surrounding shelter, Chernobyl radioactive waste storage and disposal sites, and environmental contamination in the region. The authors explore such questions as the risks posed by a collapse of the shelter, radionuclide migration from storage and disposal facilities in the exclusion zone, and transfer from soil to vegetation and its potential regional impact. The answers to these questions provide a scientific basis for the development of countermeasures against the Chernobyl accident in particular and the mitigation of environmental radioactive contamination in general. They also provide an important basis for understanding the human health and ecological risks posed by the accident.

Vargo, G.J.; Poyarkov, V.; Baryakhtar, V.; Kukhar, V.; Los, I.

1999-11-01T23:59:59.000Z

64

Accident Investigation Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Improvement (HPI). The recommended techniques apply equally well to DOE Federal-led accident investigations conducted under DOE Order (O) 225.1B, Accident Investigations,...

65

BAdvanced adiabatic compressed air energy storage for the article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. Converse: Seasonal Energy Storage in a Renewable Energy S  

E-Print Network (OSTI)

The large-scale generation of electrical wind energy is planned in many countries, but the intermittent nature of its supply, and variations in load profile indicate a strong requirement for energy storage to deliver the energy when needed. Whilst pumped hydro storage, batteries and fuel cells have some advantages, only compressed air energy storage (CAES) has the storage capacity of pumped hydro, but with lower cost and less geographic restrictions. Existing diabatic CAES plant lose heat energy from the cycle during compression, and which must be re-generated before the compressed air is expanded in a modified gas turbine. Adiabatic CAES, on the other hand, uses a separate thermal energy store during the compression part of the cycle. During the generation part of the cycle the thermal energy store is used to reheat the air, which is then expanded through a sliding pressure air turbine. This storage technology offers significant improvements in cycle efficiency and, as no fuel is used, it generates no CO2. This paper describes the work of 19 partners within the AA-CAES Project (Advanced Adiabatic Compressed Air Energy

Chris Bullough; Christoph Gatzen; Christoph Jakiel; Martin Koller; Andreas Nowi; Stefan Zunft; Alstom Power; Technology Centre; Leicester Le Lh

2004-01-01T23:59:59.000Z

66

Portsmouth DUF6 Conversion Final EIS - Chapter 9: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS 9 GLOSSARY Accident: An unplanned sequence of events resulting in undesirable consequences, such as the release of radioactive or hazardous material to the environment. Accident consequence assessment: An assessment of the impacts following the occurrence of an accident, independent of the probability of that accident. The environmental impact statement (EIS) provides estimates of the consequences of a number of possible accidents, ranging from those with low probability (rare) to those with relatively high probability (frequent). Accident frequency: The likelihood that a specific accident will occur, that is, the probability of occurrence. If an accident is estimated to happen once every 50 years, the accident frequency is generally reported as

67

Paducah DUF6 Conversion Final EIS - Chapter 9: Glossary  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS 9 GLOSSARY Accident: An unplanned sequence of events resulting in undesirable consequences, such as the release of radioactive or hazardous material to the environment. Accident consequence assessment: An assessment of the impacts following the occurrence of an accident, independent of the probability of that accident. The environmental impact statement (EIS) provides estimates of the consequences of a number of possible accidents, ranging from those with low probability (rare) to those with relatively high probability (frequent). Accident frequency: The likelihood that a specific accident will occur, that is, the probability of occurrence. If an accident is estimated to happen once every 50 years, the accident frequency is generally reported as

68

Conversion Factor  

Gasoline and Diesel Fuel Update (EIA)

Conversion Factor (Btu per cubic foot) Production Marketed... 1,110 1,106 1,105 1,106 1,109 Extraction Loss ......

69

Conversion Tables  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Dioxide Information Analysis Center - Conversion Tables Carbon Dioxide Information Analysis Center - Conversion Tables Contents taken from Glossary: Carbon Dioxide and Climate, 1990. ORNL/CDIAC-39, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, Oak Ridge, Tennessee. Third Edition. Edited by: Fred O'Hara Jr. 1 - International System of Units (SI) Prefixes 2 - Useful Quantities in CO2 3 - Common Conversion Factors 4 - Common Energy Unit Conversion Factors 5 - Geologic Time Scales 6 - Factors and Units for Calculating Annual CO2 Emissions Using Global Fuel Production Data Table 1. International System of Units (SI) Prefixes Prefix SI Symbol Multiplication Factor exa E 1018 peta P 1015 tera T 1012 giga G 109 mega M 106 kilo k 103 hecto h 102 deka da 10 deci d 10-1 centi c 10-2

70

Nuclear criticality accidents  

SciTech Connect

Criticality occurs when a sufficient quantity of fissionable material is accumulated, and it results in the liberation of nuclear energy. All process accidents have involved plutonium or highly enriched uranium, as have most of the critical experiment accidents. Slightly enriched uranium systems require much larger quantities of material to achieve criticality. An appreciation of criticality accidents should be based on an understanding of factors that influence criticality, which are discussed in this article. 11 references.

Smith, D.R. (Los Alamos National Laboratory, New Mexico (Unites States))

1991-10-01T23:59:59.000Z

71

Severe Accident Studies | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Severe Accident Studies Severe Accident Studies Powerpoint discussing studies and conclusions on transportation accidents and safety. Severe Accident Studies More Documents &...

72

Proceedings of the Chornobyl phytoremediation and biomass energy conversion workshop  

DOE Green Energy (OSTI)

Many concepts, systems, technical approaches, technologies, ideas, agreements, and disagreements were vigorously discussed during the course of the 2-day workshop. The workshop was successful in generating intensive discussions on the merits of the proposed concept that includes removal of radionuclides by plants and trees (phytoremediation) to clean up soil in the Chornobyl Exclusion Zone (CEZ), use of the resultant biomass (plants and trees) to generate electrical power, and incorporation of ash in concrete casks to be used as storage containers in a licensed repository for low-level waste. Twelve years after the Chornobyl Nuclear Power Plant (ChNPP) Unit 4 accident, which occurred on April 26, 1986, the primary 4radioactive contamination of concern is from radioactive cesium ({sup 137}Cs) and strontium ({sup 90}Sr). The {sup 137}Cs and {sup 90}Sr were widely distributed throughout the CEZ. The attendees from Ukraine, Russia, Belarus, Denmark and the US provided information, discussed and debated the following issues considerably: distribution and characteristics of radionuclides in CEZ; efficacy of using trees and plants to extract radioactive cesium (Cs) and strontium (Sr) from contaminated soil; selection of energy conversion systems and technologies; necessary infrastructure for biomass harvesting, handling, transportation, and energy conversion; radioactive ash and emission management; occupational health and safety concerns for the personnel involved in this work; and economics. The attendees concluded that the overall concept has technical and possibly economic merits. However, many issues (technical, economic, risk) remain to be resolved before a viable commercial-scale implementation could take place.

Hartley, J. [Pacific Northwest National Lab., Richland, WA (United States)] [Pacific Northwest National Lab., Richland, WA (United States); Tokarevsky, V. [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)] [State Co. for Treatment and Disposal of Mixed Hazardous Waste (Ukraine)

1998-06-01T23:59:59.000Z

73

Precious Metals Conversion Information  

Science Conference Proceedings (OSTI)

Precious Metals Conversion Information. The Office of Weights and Measures (OWM) has prepared a Conversion Factors ...

2012-11-21T23:59:59.000Z

74

Alcohol fuel conversion apparatus  

Science Conference Proceedings (OSTI)

This patent describes an alcohol fuel conversion apparatus for internal combustion engines comprising: fuel storage means for containing an alcohol fuel; primary heat exchange means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchange means; a heat source for heating the primary heat exchange means; pressure relief valve means in closed fluid communication with the primary heat exchange means for releasing heated pressurized alcohol into an expansion chamber; converter means including the expansion chamber in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; fuel injection means in fluid communication with the converter means for injecting vaporized alcohol into the cylinders of an internal combustion engine for mixing with air within the cylinders for proper combustion; and pump means for pressurized pumping of alcohol from the 23 fuel storage means to the primary heat exchanger means, converter means, fuel injector means, and to the engine.

Carroll, B.I.

1987-12-08T23:59:59.000Z

75

Accident resistant transport container  

DOE Patents (OSTI)

The invention relates to a container for the safe air transport of plutonium having several intermediate wood layers and a load spreader intermediate an inner container and an outer shell for mitigation of shock during a hypothetical accident.

Andersen, John A. (Albuquerque, NM); Cole, James K. (Albuquerque, NM)

1980-01-01T23:59:59.000Z

76

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Oct 10, 2012 ... Energy Storage: Materials, Systems and Applications: Hydrogen Storage Program Organizers: Zhenguo "Gary" Yang, Pacific Northwest...

77

Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Natural Gas Safety Natural Gas Safety after a Traffic Accident to someone by E-mail Share Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident on Facebook Tweet about Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident on Twitter Bookmark Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident on Google Bookmark Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident on Delicious Rank Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident on Digg Find More places to share Alternative Fuels Data Center: Natural Gas Safety after a Traffic Accident on AddThis.com... More in this section... Natural Gas Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions

78

Context: Destruction/Conversion  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Context: Destruction/Conversion. ... Process for Conversion of Halon 1211.. Tran, R.; Kennedy, EM; Dlugogorski, BZ; 2000. ...

2011-11-17T23:59:59.000Z

79

Primer on lead-acid storage batteries  

DOE Green Energy (OSTI)

This handbook was developed to help DOE facility contractors prevent accidents caused during operation and maintenance of lead-acid storage batteries. Major types of lead-acid storage batteries are discussed as well as their operation, application, selection, maintenance, and disposal (storage, transportation, as well). Safety hazards and precautions are discussed in the section on battery maintenance. References to industry standards are included for selection, maintenance, and disposal.

NONE

1995-09-01T23:59:59.000Z

80

Hanford Waste Tank Bump Accident and Consequence Analysis  

Science Conference Proceedings (OSTI)

This report provides a new evaluation of the Hanford tank bump accident analysis and consequences for incorporation into the Authorization Basis. The analysis scope is for the safe storage of waste in its current configuration in single-shell and double-shell tanks.

BRATZEL, D.R.

2000-06-20T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Environmental Risks Associated with Conversion of Depleted UF6  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Environmental Risks line line Storage Conversion Manufacturing Disposal Conversion A general discussion of the potential environmental impacts associated with depleted UF6 conversion activities. Impacts Analyzed in the PEIS The potential environmental impacts associated with conversion activities will be evaluated in detail as part of the Depleted Uranium Hexafluoride management program after a contract is awarded for conversion services. This page discusses in general the types of impacts that might be associated with the conversion process based on the PEIS analysis. The PEIS evaluated the potential environmental impacts for representative conversion facilities. Conversion to uranium oxide and uranium metal were considered. Potential impacts were evaluated for a representative site, and

82

Depleted UF6 Conversion facility EIS Topics  

NLE Websites -- All DOE Office Websites (Extended Search)

Topics Topics Depleted UF6 Conversion Facility EIS Topics A listing of topics included in the Depleted UF6 Conversion Facility EISs. DOE addressed the following environmental issues when assessing the potential environmental impacts of the alternatives in the two site-specific EISs. DOE solicited comment from the Federal agencies, Native American tribes, state and local governments, and the general public on these and any other issues as part of the public scoping process: Potential impacts on health from DUF6 conversion activities, including potential impacts to workers and the public from exposure to radiation and chemicals during routine and accident conditions for the construction, operation, maintenance, and decontamination and decommissioning of DUF6 conversion facilities.

83

Microsoft Word - Unrelated Accident  

NLE Websites -- All DOE Office Websites (Extended Search)

For Immediate Release For Immediate Release Truck Accident Did Not Involve WIPP Shipment CARLSBAD, N.M., October 1, 2009 - A Wednesday night truck accident north of Albuquerque on Highway 165 that involved an 18-wheeler is not related to Waste Isolation Pilot Plant (WIPP) transuranic waste shipments. Involved in the accident was a load of new, unused 55-gallon drums manufactured in Carlsbad that was en route to Richland, Washington. The Waste Isolation Pilot Plant is a U.S. Department of Energy facility designed to safely isolate defense-related transuranic waste from people and the environment. Waste temporarily stored at sites around the country is shipped to WIPP and permanently disposed in rooms mined out of an ancient salt formation 2,150 feet below the surface. WIPP, which began waste

84

Accident Investigation Handbook  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SENSI NOT MEAS UREMENT TIVE D DOE-HDBK-1 1208-2012 July 2012 DOE E HA ANDBOOK K Ac ccide ent and d Op pera ational Sa afety y An naly ysis Volume e I: Ac ccide ent A Analy ysis Tec chniq ques U.S. Depar rtmen nt of En nergy Was shingto on, D.C C. 205 85 DOE-HDBK-1208-2012 INTRODUCTION - HANDBOOK APPLICATION AND SCOPE Accident Investigations (AI) and Operational Safety Reviews (OSR) are valuable for evaluating technical issues, safety management systems and human performance and environmental conditions to prevent accidents, through a process of continuous organizational learning. This Handbook brings together the strengths of the experiences gained in conducting Department of Energy (DOE) accident investigations over the past many years. That experience encourages us

85

Basic research on ceramic materials for energy storage and conversion systems. Progress report, December 1, 1975--November 30, 1976. [Tl/sub 2/ZnI/sub 2/, In/sub 4/CdI/sub 6/, Tl/sub 4/CdI/sub 6/, and In/sub 2/ZnI/sub 4/; solid electrolytes and electrodes  

DOE Green Energy (OSTI)

The present research program involves utilizing appropriate experimental probes for measuring the movement of ionic and electronic charge carriers in ceramic materials suitable for solid electrolyte and electrode applications in high-performance, secondary battery and fuel cell systems. Special emphasis is placed on developing: (1) a better understanding of the effects of structure, impurities and composition on charge carrier transport mechanisms in such materials; and (2) detailed knowledge of the kinetics and mechanism of reactions occurring (on a microscopic scale) at the electrode-electrolyte interfaces of energy storage and conversion systems.

Whitmore, D.H.

1976-12-01T23:59:59.000Z

86

Computerized Accident Incident Reporting System  

Energy.gov (U.S. Department of Energy (DOE))

The Computerized Accident/Incident Reporting System is a database used to collect and analyze DOE and DOE contractor reports of injuries, illnesses, and other accidents that occur during DOE...

87

Balanced reconfiguration of storage banks in a hybrid electrical energy storage system  

Science Conference Proceedings (OSTI)

Compared with the conventional homogeneous electrical energy storage (EES) systems, hybrid electrical energy storage (HEES) systems provide high output power and energy density as well as high power conversion efficiency and low self-discharge at a low ... Keywords: bank reconfiguration, hybrid electrical energy storage system

Younghyun Kim; Sangyoung Park; Yanzhi Wang; Qing Xie; Naehyuck Chang; Massimo Poncino; Massoud Pedram

2011-11-01T23:59:59.000Z

88

LPG land transportation and storage safety. Final report  

SciTech Connect

This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 through 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

Martinsen, W.E.; Cavin, W.D.

1981-09-01T23:59:59.000Z

89

LPG land transportation and storage safety. Final report  

SciTech Connect

This report contains an analytical examination of fatal accidents involving liquefied petroleum gas (LPG) releases during transportation and/or transportation related storage. Principal emphasis was on accidents during the nine-year period 1971 to 1979. Fatalities to members of the general public (i.e., those at the scene of the accident through coincidence or curiosity) were of special interest. Transportation accidents involving railroad tank cars, trucks, and pipelines were examined as were accidents at storage facilities, including loading and unloading at such facilities. The main sources of the necessary historical accident data were the accident reports submitted to the Department of Transportation by LPG carriers, National Transportation Safety Board accident reports, articles in the National Fire Protection Association journals, other literature, and personal interviews with firemen, company personnel, and others with knowledge of certain accidents. The data indicate that, on the average, releases of LPG during transportation and intermediate storage cause approximately six fatalities per year to members of the general public. The individual risk is about 1 death per 37,000,000 persons; about the same as the risk of a person on the ground being killed by an airplane crash, and much less than the risk of death by lightning, tornadoes, or dam failures.

1981-09-01T23:59:59.000Z

90

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

W _7405-eng- 4B QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvint r UCRL-9 533 QUANrUM CONVERSION IN PHWOSYNTHESIS * Melvinitself. The primary quantum conversion act is an ionization

Calvin, Melvin

2008-01-01T23:59:59.000Z

91

Produced Conversion Coatings  

Science Conference Proceedings (OSTI)

Chemical conversion coatings are commonly applied to Mg alloys as paint bases and in some cases as stand-alone protection. Traditional conversion coatings...

92

Library Conversion Tool  

Science Conference Proceedings (OSTI)

Library Conversion Tool. ... The LIB2NIST mass spectral data conversion program consists of the following files (which are contained in a ZIP archive): ...

2013-06-24T23:59:59.000Z

93

Conversion of Legacy Data  

Science Conference Proceedings (OSTI)

... Conversion of Legacy Data. Conversion of legacy data can be one of the most difficult and challenging components in an SGML environment. ...

94

Biofuel Conversion Process  

Energy.gov (U.S. Department of Energy (DOE))

The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers...

95

Conversion Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Conversion Plan Conversion Plan This template is used to document the conversion plan that clearly defines the system or project's conversion procedures; outlines the installation...

96

Barriers to Switching Accidents  

Science Conference Proceedings (OSTI)

The EPRI Switching Safety & Reliability Project Steering Committee sponsored development of a self-study based training program for personnel who perform switching. Some of the earlier EPRI Switching Safety & Reliability research projects that focused on the causes of switching errors, highlighted a need to reduce the 'complacency' that tends to develop as switching activities are performed over and over again and become 'routine.' Most switching accidents or incidents involve personnel who were trained ...

2005-12-22T23:59:59.000Z

97

Power conversion apparatus and method  

DOE Patents (OSTI)

A power conversion apparatus includes an interfacing circuit that enables a current source inverter to operate from a voltage energy storage device (voltage source), such as a battery, ultracapacitor or fuel cell. The interfacing circuit, also referred to as a voltage-to-current converter, transforms the voltage source into a current source that feeds a DC current to a current source inverter. The voltage-to-current converter also provides means for controlling and maintaining a constant DC bus current that supplies the current source inverter. The voltage-to-current converter also enables the current source inverter to charge the voltage energy storage device, such as during dynamic braking of a hybrid electric vehicle, without the need of reversing the direction of the DC bus current.

Su, Gui-Jia (Knoxville, TN)

2012-02-07T23:59:59.000Z

98

Severe accident analysis using dynamic accident progression event trees.  

E-Print Network (OSTI)

??In present, the development and analysis of Accident Progression Event Trees (APETs) are performed in a manner that is computationally time consuming, difficult to reproduce (more)

Hakobyan, Aram P

2006-01-01T23:59:59.000Z

99

Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower  

Science Conference Proceedings (OSTI)

HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoas conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

None

2012-01-11T23:59:59.000Z

100

APS Guideline for Accident Investigations  

NLE Websites -- All DOE Office Websites (Extended Search)

occurring in CATXSDs facilities at the APS. Definitions Accident: an unexpected event that produces personal injury, illness, or death; damage to or loss of property or...

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Hydrogen Storage  

Science Conference Proceedings (OSTI)

Applied Neutron Scattering in Engineering and Materials Science Research: Hydrogen Storage Sponsored by: Metallurgical Society of the Canadian Institute of...

102

NETL: Carbon Storage - Geologic Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Geologic Storage Geologic Storage Carbon Storage Geologic Storage Focus Area Geologiccarbon dioxide (CO2) storage involves the injection of supercritical CO2 into deep geologic formations (injection zones) overlain by competent sealing formations and geologic traps that will prevent the CO2 from escaping. Current research and field studies are focused on developing better understanding 11 major types of geologic storage reservoir classes, each having their own unique opportunities and challenges. Understanding these different storage classes provides insight into how the systems influence fluids flow within these systems today, and how CO2 in geologic storage would be anticipated to flow in the future. The different storage formation classes include: deltaic, coal/shale, fluvial, alluvial, strandplain, turbidite, eolian, lacustrine, clastic shelf, carbonate shallow shelf, and reef. Basaltic interflow zones are also being considered as potential reservoirs. These storage reservoirs contain fluids that may include natural gas, oil, or saline water; any of which may impact CO2 storage differently. The following summarizes the potential for storage and the challenges related to CO2 storage capability for fluids that may be present in more conventional clastic and carbonate reservoirs (saline water, and oil and gas), as well as unconventional reservoirs (unmineable coal seams, organic-rich shales, and basalts):

103

Stress in accident and post-accident management at Chernobyl ?  

E-Print Network (OSTI)

Abstract. The effects of the Chernobyl nuclear accident on the psychology of the affected population have been much discussed. The psychological dimension has been advanced as a factor explaining the emergence, from 1990 onwards, of a post-accident crisis in the main CIS countries affected. This article presents the conclusions of a series of European studies, which focused on the consequences of the Chernobyl accident. These studies show that the psychological and social effects associated with the post-accident situation arise from the interdependency of a number of complex factors exerting a deleterious effect on the population. We shall first attempt to characterise the stress phenomena observed among the population affected by the accident. Secondly, we will be presenting an analysis of the various factors that have contributed to the emerging psychological and social features of population reaction to the accident and in post-accident phases, while not neglecting the effects of the pre-accident situation on the target population. Thirdly, we shall devote some initial consideration to the conditions that might be conducive to better management of postaccident stress. In conclusion, we shall emphasise the need to restore confidence among the population generally. 1.

Gilles Heriard Dubreuil

1996-01-01T23:59:59.000Z

104

Superconducting magnetic energy storage  

DOE Green Energy (OSTI)

Long-time varying-daily, weekly, and seasonal-power demands require the electric utility industry to have installed generating capacity in excess of the average load. Energy storage can reduce the requirement for less efficient excess generating capacity used to meet peak load demands. Short-time fluctuations in electric power can occur as negatively damped oscillations in complex power systems with generators connected by long transmission lines. Superconducting inductors with their associated converter systems are under development for both load leveling and transmission line stabilization in electric utility systems. Superconducting magnetic energy storage (SMES) is based upon the phenomenon of the nearly lossless behavior of superconductors. Application is, in principal, efficient since the electromagnetic energy can be transferred to and from the storage coils without any intermediate conversion to other energy forms. Results from a reference design for a 10-GWh SMES unit for load leveling are presented. The conceptual engineering design of a 30-MJ, 10-MW energy storage coil is discussed with regard to system stabilization, and tests of a small scale, 100-KJ SMES system are presented. Some results of experiments are provided from a related technology based program which uses superconducting inductive energy storage to drive fusion plasmas.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.; Schermer, R.I.

1978-01-01T23:59:59.000Z

105

Energy Storage Laboratory (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

Not Available

2011-10-01T23:59:59.000Z

106

Accurate accident reconstruction in VANET  

Science Conference Proceedings (OSTI)

We propose a forensic VANET application to aid an accurate accident reconstruction. Our application provides a new source of objective real-time data impossible to collect using existing methods. By leveraging inter-vehicle communications, we compile ... Keywords: EDR, VANET, accident reconstruction, in-vehicle applications

Yuliya Kopylova; Csilla Farkas; Wenyuan Xu

2011-07-01T23:59:59.000Z

107

Nuclear Reactor Severe Accident Experiments  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Reactor Severe Accident Experiments Nuclear Reactor Severe Accident Experiments Capabilities Engineering Experimentation Reactor Safety Testing and Analysis Overview Nuclear Reactor Severe Accident Experiments MAX NSTF SNAKE Aerosol Experiments System Components Laser Applications Robots Applications Other Facilities Other Capabilities Work with Argonne Contact us For Employees Site Map Help Join us on Facebook Follow us on Twitter NE on Flickr Nuclear Reactor Severe Accident Experiments 1 2 3 4 5 6 7 We perform experiments simulating reactor core melt phenomena in which molten core debris ("corium") erodes the concrete floor of a containment building. This occurred during the Fukushima nuclear power plant accident though the extent of concrete damage is yet unknown. This video shows the top view of a churning molten pool of uranium oxide at 2000°C (3600°F) seen during an experiment at Argonne. Corium behaves much like lava.

108

Conversion Between Implicit - CECM  

E-Print Network (OSTI)

Conversion Between Implicit and Parametric Representation of Differential Varieties. Xiao-Shan Gao, Institute of Systems Science, Chinese Academy of...

109

Ocean Thermal Energy Conversion  

Energy.gov (U.S. Department of Energy (DOE))

A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity.

110

Beneficial Conversion Features or Contingently Adjustable Conversion  

E-Print Network (OSTI)

1. An entity may issue convertible debt with an embedded conversion option that is required to be bifurcated under Statement 133 if all of the conditions in paragraph 12 of that Statement are met. An embedded conversion option that initially requires separate Copyright 2008, Financial Accounting Standards Board Not for redistribution Page 1accounting as a derivative under Statement 133 may subsequently no longer meet the conditions that would require separate accounting as a derivative. A reassessment of whether an embedded conversion option must be bifurcated under Statement 133 is required each reporting period. When an entity is no longer required to bifurcate a conversion option pursuant to Statement 133, there are differing views on how an entity should recognize that change.

Bifurcation Criteria; Fasb Statement No; Stock Purchase Warrants

2006-01-01T23:59:59.000Z

111

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Biodiesel Biofuel Conversion Processes Biopower Bio-Based Products Biomass Resources Geothermal Hydrogen Hydropower Ocean Solar Wind Biofuel Conversion Processes The conversion of...

112

Iterated multidimensional wave conversion  

Science Conference Proceedings (OSTI)

Mode conversion can occur repeatedly in a two-dimensional cavity (e.g., the poloidal cross section of an axisymmetric tokamak). We report on two novel concepts that allow for a complete and global visualization of the ray evolution under iterated conversions. First, iterated conversion is discussed in terms of ray-induced maps from the two-dimensional conversion surface to itself (which can be visualized in terms of three-dimensional rooms). Second, the two-dimensional conversion surface is shown to possess a symplectic structure derived from Dirac constraints associated with the two dispersion surfaces of the interacting waves.

Brizard, A. J. [Dept. Physics, Saint Michael's College, Colchester, VT 05439 (United States); Tracy, E. R.; Johnston, D. [Dept. Physics, College of William and Mary, Williamsburg, VA 23187-8795 (United States); Kaufman, A. N. [LBNL and Physics Dept., UC Berkeley, Berkeley, CA 94720 (United States); Richardson, A. S. [T-5, LANL, Los Alamos, NM 87545 (United States); Zobin, N. [Dept. Mathematics, College of William and Mary, Williamsburg, VA 23187-8795 (United States)

2011-12-23T23:59:59.000Z

113

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by...

114

Polymeric and Conversion Coatings  

Science Conference Proceedings (OSTI)

Oct 19, 2011 ... Ongoing research reveals that the search for appropriate conversion ... of the coated alloy was ~ 250 mV more noble compared to bare alloy.

115

QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

QUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin Januaryas it occurs in modern photosynthesis can only take place inof the problem or photosynthesis, or any specific aspect of

Calvin, Melvin

2008-01-01T23:59:59.000Z

116

Catalytic conversion of biomass.  

E-Print Network (OSTI)

?? Catalytic processes for conversion of biomass to transportation fuels have gained an increasing attention in sustainable energy production. The biomass can be converted to (more)

Calleja Aguado, Raquel

2013-01-01T23:59:59.000Z

117

EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

59: Uranium Hexafluoride Conversion Facility at the Paducah, 59: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site EIS-0359: Uranium Hexafluoride Conversion Facility at the Paducah, Kentucky Site Summary This site-specific EIS considers the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three locations within the Paducah site; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride (HF) produced as a conversion co-product; and neutralization of HF to calcium fluoride and its sale or disposal in the event that the HF product is not sold. This EIS also considers a no action alternative that assumes continued storage of DUF6 at the Paducah site. A

118

Depleted uranium storage and disposal trade study: Summary report  

SciTech Connect

The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

Hightower, J.R.; Trabalka, J.R.

2000-02-01T23:59:59.000Z

119

Hydrogen Storage  

Fuel Cell Technologies Publication and Product Library (EERE)

This 2-page fact sheet provides a brief introduction to hydrogen storage technologies. Intended for a non-technical audience, it explains the different ways in which hydrogen can be stored, as well a

120

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems...

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

NUCLEAR CONVERSION APPARATUS  

DOE Patents (OSTI)

A nuclear conversion apparatus is described which comprises a body of neutron moderator, tubes extending therethrough, uranium in the tubes, a fluid- circulating system associated with the tubes, a thorium-containing fluid coolant in the system and tubes, and means for withdrawing the fluid from the system and replacing it in the system whereby thorium conversion products may be recovered.

Seaborg, G.T.

1960-09-13T23:59:59.000Z

122

Chemical Conversion Coating  

Science Conference Proceedings (OSTI)

Table 16   Applications of aluminum using chemical conversion coatings...doors 6063 Acrylic paint (b) Cans 3004 Sanitary lacquer Fencing 6061 None applied Chromate conversion coatings Aircraft fuselage skins 7075 clad with 7072 Zinc chromate primer Electronic chassis 6061-T4 None applied Cast missile bulkhead 356-T6 None applied Screen 5056 clad with 6253 Clear varnish...

123

A CANDU Severe Accident Analysis  

Science Conference Proceedings (OSTI)

As interest in severe accident studies has increased in the last years, we have developed a set of simple models to analyze severe accidents for CANDU reactors that should be integrated in the EU codes. The CANDU600 reactor uses natural uranium fuel and heavy water (D2O) as both moderator and coolant, with the moderator and coolant in separate systems. We chose to analyze accident development for a LOCA with simultaneous loss of moderator cooling and the loss of emergency core cooling system (ECCS). This type of accident is likely to modify the reactor geometry and will lead to a severe accident development. When the coolant temperatures inside a pressure tube reaches 10000 deg C, a contact between pressure tube and calandria tube occurs and the residual heat is transferred to the moderator. Due to the lack of cooling, the moderator eventually begins to boil and is expelled, through the calandria vessel relief ducts, into the containment. Therefore the calandria tubes (fuel channels) will be uncovered, then will disintegrate and fall down to the calandria vessel bottom. After all the quantity of moderator is vaporized and expelled, the debris will heat up and eventually boil. The heat accumulated in the molten debris will be transferred through the calandria vessel wall to the shield tank water, which normally surrounds the calandria vessel. The phenomena described above are modelled, analyzed and compared with the existing data. The results are encouraging. (authors)

Negut, Gheorghe; Catana, Alexandru [Institute for Nuclear Research, 1, Compului Str., Mioveni, PO Box 78, 0300 Pitesti (Romania); Prisecaru, Ilie [University Politehnica Bucharest (Romania)

2006-07-01T23:59:59.000Z

124

An Analysis on the Characteristics of Boiling Liquid Expanding Vapor Explosion Accidents in Marine Transportation  

Science Conference Proceedings (OSTI)

BLEVE is a kind of disaster that may cause serious consequences in the process of maritime transportation of liquefied petroleum gas, liquefied natural gas. To analyze the accident characteristics of both the external environment and the internal causes ... Keywords: BLEVE, boiler, characteristics analysis, liquefied gas storage tank

Sining Chen; Yinquan Duo; Lijun Wei

2010-01-01T23:59:59.000Z

125

Microturbine Power Conversion Technology Review  

SciTech Connect

In this study, the Oak Ridge National Laboratory (ORNL) is performing a technology review to assess the market for commercially available power electronic converters that can be used to connect microturbines to either the electric grid or local loads. The intent of the review is to facilitate an assessment of the present status of marketed power conversion technology to determine how versatile the designs are for potentially providing different services to the grid based on changes in market direction, new industry standards, and the critical needs of the local service provider. The project includes data gathering efforts and documentation of the state-of-the-art design approaches that are being used by microturbine manufacturers in their power conversion electronics development and refinement. This project task entails a review of power converters used in microturbines sized between 20 kW and 1 MW. The power converters permit microturbine generators, with their non-synchronous, high frequency output, to interface with the grid or local loads. The power converters produce 50- to 60-Hz power that can be used for local loads or, using interface electronics, synchronized for connection to the local feeder and/or microgrid. The power electronics enable operation in a stand-alone mode as a voltage source or in grid-connect mode as a current source. Some microturbines are designed to automatically switch between the two modes. The information obtained in this data gathering effort will provide a basis for determining how close the microturbine industry is to providing services such as voltage regulation, combined control of both voltage and current, fast/seamless mode transfers, enhanced reliability, reduced cost converters, reactive power supply, power quality, and other ancillary services. Some power quality improvements will require the addition of storage devices; therefore, the task should also determine what must be done to enable the power conversion circuits to accept a varying dc voltage source. The study will also look at technical issues pertaining to the interconnection and coordinated/compatible operation of multiple microturbines. It is important to know today if modifications to provide improved operation and additional services will entail complete redesign, selected component changes, software modifications, or the addition of power storage devices. This project is designed to provide a strong technical foundation for determining present technical needs and identifying recommendations for future work.

Staunton, R.H.

2003-07-21T23:59:59.000Z

126

ACCIDENT ANALYSES & CONTROL OPTIONS IN SUPPORT OF THE SLUDGE WATER SYSTEM SAFETY ANALYSIS  

Science Conference Proceedings (OSTI)

This report documents the accident analyses and nuclear safety control options for use in Revision 7 of HNF-SD-WM-SAR-062, ''K Basins Safety Analysis Report'' and Revision 4 of HNF-SD-SNF-TSR-001, ''Technical Safety Requirements - 100 KE and 100 KW Fuel Storage Basins''. These documents will define the authorization basis for Sludge Water System (SWS) operations. This report follows the guidance of DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', for calculating onsite and offsite consequences. The accident analysis summary is shown in Table ES-1 below. While this document describes and discusses potential control options to either mitigate or prevent the accidents discussed herein, it should be made clear that the final control selection for any accident is determined and presented in HNF-SD-WM-SAR-062.

WILLIAMS, J.C.

2003-11-15T23:59:59.000Z

127

DUF6 Storage Safety  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Safety Depleted UF6 Storage line line How DUF6 is Stored Where DUF6 is Stored DUF6 Storage Safety Cylinder Leakage Depleted UF6 Storage Safety Continued cylinder storage is...

128

Naval Spent Fuel Rail Shipment Accident Exercise Objectives ...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives Naval Spent Fuel Rail Shipment Accident Exercise Objectives...

129

Energy Storage Laboratory (Fact Sheet)  

SciTech Connect

This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Storage Laboratory at the Energy Systems Integration Facility. At NREL's Energy Storage Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on the integration of energy storage systems (both stationary and vehicle-mounted) and interconnection with the utility grid. Focusing on battery technologies, but also hosting ultra-capacitors and other electrical energy storage technologies, the laboratory will provide all resources necessary to develop, test, and prove energy storage system performance and compatibility with distributed energy systems. The laboratory will also provide robust vehicle testing capability, including a drive-in environmental chamber, which can accommodate commercial-sized hybrid, electric, biodiesel, ethanol, compressed natural gas, and hydrogen fueled vehicles. The Energy Storage Laboratory is designed to ensure personnel and equipment safety when testing hazardous battery systems or other energy storage technologies. Closely coupled with the research electrical distribution bus at ESIF, the Energy Storage Laboratory will offer megawatt-scale power testing capability as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Some application scenarios are: The following types of tests - Performance, Efficiency, Safety, Model validation, and Long duration reliability. (2) Performed on the following equipment types - (a) Vehicle batteries (both charging and discharging V2G); (b) Stationary batteries; (c) power conversion equipment for energy storage; (d) ultra- and super-capacitor systems; and (e) DC systems, such as commercial microgrids.

2011-10-01T23:59:59.000Z

130

ADEPT: Efficient Power Conversion  

SciTech Connect

ADEPT Project: In todays increasingly electrified world, power conversionthe process of converting electricity between different currents, voltage levels, and frequenciesforms a vital link between the electronic devices we use every day and the sources of power required to run them. The 14 projects that make up ARPA-Es ADEPT Project, short for Agile Delivery of Electrical Power Technology, are paving the way for more energy efficient power conversion and advancing the basic building blocks of power conversion: circuits, transistors, inductors, transformers, and capacitors.

None

2011-01-01T23:59:59.000Z

131

Direct energy conversion systems  

SciTech Connect

The potential importance of direct energy conversion to the long-term development of fusion power is discussed with stress on the possibility of alleviating waste heat problems. This is envisioned to be crucial for any central power station in the 21st century. Two approaches to direct conversion, i.e., direct collection and magnetic expansion, are reviewed. While other techniques may be possible, none have received sufficient study to allow evaluation. It is stressed that, due to the intimate connection between the type of fusion fuel, the confinement scheme, direct conversion, and the coupling technique, all four element must be optimized simultaneously for high overall efficiency.

Miley, G.H.

1978-01-01T23:59:59.000Z

132

Solar Thermal Conversion  

DOE Green Energy (OSTI)

The thermal conversion process of solar energy is based on well-known phenomena of heat transfer (Kreith 1976). In all thermal conversion processes, solar radiation is absorbed at the surface of a receiver, which contains or is in contact with flow passages through which a working fluid passes. As the receiver heats up, heat is transferred to the working fluid which may be air, water, oil, or a molten salt. The upper temperature that can be achieved in solar thermal conversion depends on the insolation, the degree to which the sunlight is concentrated, and the measures taken to reduce heat losses from the working fluid.

Kreith, F.; Meyer, R. T.

1982-11-01T23:59:59.000Z

133

Accident analysis for high-level waste management alternatives in the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement  

SciTech Connect

A comparative generic accident analysis was performed for the programmatic alternatives for high-level waste (HLW) management in the US Department of Energy Environmental Restoration and Waste Management Programmatic Environmental Impact Statement (EM PEIS). The key facilities and operations of the five major HLW management phases were considered: current storage, retrieval, pretreatment, treatment, and interim canister storage. A spectrum of accidents covering the risk-dominant accidents was analyzed. Preliminary results are presented for HLW management at the Hanford site. A comparison of these results with those previously advanced shows fair agreement.

Folga, S.; Mueller, C.; Roglans-Ribas, J.

1994-02-01T23:59:59.000Z

134

Flexible Conversion Ratio Fast Reactor Systems Evaluation  

Science Conference Proceedings (OSTI)

Conceptual designs of lead-cooled and liquid salt-cooled fast flexible conversion ratio reactors were developed. Both concepts have cores reated at 2400 MWt placed in a large-pool-type vessel with dual-free level, which also contains four intermediate heat exchanges coupling a primary coolant to a compact and efficient supercritical CO2 Brayton cycle power conversion system. Decay heat is removed passively using an enhanced Reactor Vessel Auxiliary Cooling System and a Passive Secondary Auxiliary Cooling System. The most important findings were that (1) it is feasible to design the lead-cooled and salt-cooled reactor with the flexible conversion ratio (CR) in the range of CR=0 and CR=1 n a manner that achieves inherent reactor shutdown in unprotected accidents, (2) the salt-cooled reactor requires Lithium thermal Expansion Modules to overcme the inherent salt coolant's large positive coolant temperature reactivity coefficient, (3) the preferable salt for fast spectrum high power density cores is NaCl-Kcl-MgCl2 as opposed to fluoride salts due to its better themal-hydraulic and neutronic characteristics, and (4) both reactor, but attain power density 3 times smaller than that of the sodium-cooled reactor.

Neil Todreas; Pavel Hejzlar

2008-06-30T23:59:59.000Z

135

Wave Energy Conversion Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Wave Energy Conversion Technology Wave Energy Conversion Technology Speaker(s): Mirko Previsic Date: August 2, 2001 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Julie Osborn Scientists have been working on wave power conversion for the past twenty years, but recent advances in offshore and IT technologies have made it economically competitive. Sea Power & Associates is a Berkeley-based renewable energy technology company. We have developed patented technology to generate electricity from ocean wave energy using a system of concrete buoys and highly efficient hydraulic pumps. Our mission is to provide competitively priced, non-polluting, renewable energy for coastal regions worldwide. Mirko Previsic, founder and CEO, of Sea Power & Associates will discuss ocean wave power, existing technologies for its conversion into

136

DANISHBIOETHANOLCONCEPT Biomass conversion for  

E-Print Network (OSTI)

DANISHBIOETHANOLCONCEPT Biomass conversion for transportation fuel Concept developed at RIS? and DTU Anne Belinda Thomsen (RIS?) Birgitte K. Ahring (DTU) #12;DANISHBIOETHANOLCONCEPT Biomass: Biogas #12;DANISHBIOETHANOLCONCEPT Pre-treatment Step Biomass is macerated The biomass is cut in small

137

Solar Hydrogen Conversion Background  

E-Print Network (OSTI)

Solar Hydrogen Conversion Background: The photoelectrochemical production of hydrogen has drawn properties In order to develop better materials for solar energy applications, in-depth photoelectrochemical simulated solar irradiance. Hydrogen production experiments are conducted in a sealed aluminum cell

Raftery, Dan

138

Photovoltaic Cell Conversion Efficiency  

Energy.gov (U.S. Department of Energy (DOE))

The conversion efficiency of a photovoltaic (PV) cell, or solar cell, is the percentage of the solar energy shining on a PV device that is converted into electrical energy, or electricity....

139

Structured luminescence conversion layer  

SciTech Connect

An apparatus device such as a light source is disclosed which has an OLED device and a structured luminescence conversion layer deposited on the substrate or transparent electrode of said OLED device and on the exterior of said OLED device. The structured luminescence conversion layer contains regions such as color-changing and non-color-changing regions with particular shapes arranged in a particular pattern.

Berben, Dirk; Antoniadis, Homer; Jermann, Frank; Krummacher, Benjamin Claus; Von Malm, Norwin; Zachau, Martin

2012-12-11T23:59:59.000Z

140

Severe Accident Management Guidance Technical Basis Report  

Science Conference Proceedings (OSTI)

Guidance to aid operating crews in responding to a severe core damage accident was first developed as a response to the 1979 accident at Three Mile Island Unit 2. This guidance encompasses those actions that could be considered to arrest the progression of a core damage accident or to limit the extent of resulting releases of fission products. The original guidance was developed in a logical manner, starting with compiling the best information regarding severe-accident phenomena available at that ...

2012-10-31T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Chernobyl Nuclear Accident | National Nuclear Security Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Chernobyl Nuclear Accident | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering the Nuclear Navy Emergency Response...

142

Novel Nuclear Powered Photocatalytic Energy Conversion  

DOE Green Energy (OSTI)

The University of Massachusetts Lowell Radiation Laboratory (UMLRL) is involved in a comprehensive project to investigate a unique radiation sensing and energy conversion technology with applications for in-situ monitoring of spent nuclear fuel (SNF) during cask transport and storage. The technology makes use of the gamma photons emitted from the SNF as an inherent power source for driving a GPS-class transceiver that has the ability to verify the position and contents of the SNF cask. The power conversion process, which converts the gamma photon energy into electrical power, is based on a variation of the successful dye-sensitized solar cell (DSSC) design developed by Konarka Technologies, Inc. (KTI). In particular, the focus of the current research is to make direct use of the high-energy gamma photons emitted from SNF, coupled with a scintillator material to convert some of the incident gamma photons into photons having wavelengths within the visible region of the electromagnetic spectrum. The high-energy gammas from the SNF will generate some power directly via Compton scattering and the photoelectric effect, and the generated visible photons output from the scintillator material can also be converted to electrical power in a manner similar to that of a standard solar cell. Upon successful implementation of an energy conversion device based on this new gammavoltaic principle, this inherent power source could then be utilized within SNF storage casks to drive a tamper-proof, low-power, electronic detection/security monitoring system for the spent fuel. The current project has addressed several aspects associated with this new energy conversion concept, including the development of a base conceptual design for an inherent gamma-induced power conversion unit for SNF monitoring, the characterization of the radiation environment that can be expected within a typical SNF storage system, the initial evaluation of Konarka's base solar cell design, the design and fabrication of a range of new cell materials and geometries at Konarka's manufacturing facilities, and the irradiation testing and evaluation of these new cell designs within the UML Radiation Laboratory. The primary focus of all this work was to establish the proof of concept of the basic gammavoltaic principle using a new class of dye-sensitized photon converter (DSPC) materials based on KTI's original DSSC design. In achieving this goal, this report clearly establishes the viability of the basic gammavoltaic energy conversion concept, yet it also identifies a set of challenges that must be met for practical implementation of this new technology.

White,John R.; Kinsmen,Douglas; Regan,Thomas M.; Bobek,Leo M.

2005-08-29T23:59:59.000Z

143

Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Objectives - Develop and verify: On-board hydrogen storage systems achieving: 1.5 kWhkg (4.5 wt%), 1.2 kWhL, and 6kWh by 2005 2 kWhkg (6 wt%), 1.5 kWhL, and 4kWh by...

144

Evolvable neural networks ensembles for accidents diagnosis  

Science Conference Proceedings (OSTI)

Prediction and diagnosis of nuclear accidents is one of the most important tasks for nuclear safety. Since accurate diagnosis of nuclear accident is a very important issue for avoidance of disastrous outcomes, it is more desirable to make a decision ... Keywords: ensembles, neuroevolution, nuclear accidents

Hany Sallam; Carlo S. Regazzoni; Ihab Talkhan; Amir Atiya

2008-07-01T23:59:59.000Z

145

Converting LPG caverns to natural-gas storage permits fast response to market  

Science Conference Proceedings (OSTI)

Deregulation of Canada`s natural-gas industry in the late 1980s led to a very competitive North American natural-gas storage market. TransGas Ltd., Regina, Sask., began looking for method for developing cost-effective storage while at the same time responding to new market-development opportunities and incentives. Conversion of existing LPG-storage salt caverns to natural-gas storage is one method of providing new storage. To supply SaskEnergy Inc., the province`s local distribution company, and Saskatchewan customers, TransGas previously had developed solution-mined salt storage caverns from start to finish. Two Regina North case histories illustrate TransGas` experiences with conversion of LPG salt caverns to gas storage. This paper provides the testing procedures for the various caverns, cross-sectional diagrams of each cavern, and outlines for cavern conversion. It also lists storage capacities of these caverns.

Crossley, N.G. [TransGas Ltd., Regina, Saskatchewan (Canada)

1996-02-19T23:59:59.000Z

146

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Scale Superconducting Magnetic Energy Storage Plant", IEEEfor SlIperconducting Magnetic Energy Storage Unit", inSuperconducting Magnetic Energy Storage Plant, Advances in

Hassenzahl, W.

2011-01-01T23:59:59.000Z

147

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Superconducting 30-MJ Energy Storage Coil", Proc. 19 80 ASC,Superconducting Magnetic Energy Storage Plant", IEEE Trans.SlIperconducting Magnetic Energy Storage Unit", in Advances

Hassenzahl, W.

2011-01-01T23:59:59.000Z

148

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

aquifers for thermal energy storage. Problems outlined aboveModeling of Thermal Energy Storage in Aquifers," Proceed-ings of Aquifer Thermal Energy Storage Workshop, Lawrence

Tsang, C.-F.

2011-01-01T23:59:59.000Z

149

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Usage Storage Storage Energy storage isnt just for AA batteries. Thanks to investments from the Energy Department's Advanced Research...

150

AQUIFER THERMAL ENERGY STORAGE  

E-Print Network (OSTI)

using aquifers for thermal energy storage. Problems outlinedmatical Modeling of Thermal Energy Storage in Aquifers,"Proceed- ings of Aquifer Thermal Energy Storage Workshop,

Tsang, C.-F.

2011-01-01T23:59:59.000Z

151

FCT Hydrogen Storage: Contacts  

NLE Websites -- All DOE Office Websites (Extended Search)

Contacts to someone by E-mail Share FCT Hydrogen Storage: Contacts on Facebook Tweet about FCT Hydrogen Storage: Contacts on Twitter Bookmark FCT Hydrogen Storage: Contacts on...

152

High Thermal Energy Storage Density LiNO3-KNO3-NaNO2-KNO2 ...  

Science Conference Proceedings (OSTI)

Symposium, Energy Conversion Photovoltaic, Concentrating Solar Power, and ... the energy storage capacity for concentrating solar power generation systems. ... Investigation on the Inhomogeneous Property Distribution of AZO Thin Film...

153

Paducah DUF6 Conversion Final EIS - Appendix F: Assessment Methodologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Paducah DUF Paducah DUF 6 Conversion Final EIS APPENDIX F: ASSESSMENT METHODOLOGIES Assessment Methodologies F-2 Paducah DUF 6 Conversion Final EIS Assessment Methodologies F-3 Paducah DUF 6 Conversion Final EIS APPENDIX F: ASSESSMENT METHODOLOGIES In general, the activities assessed in this environmental impact statement (EIS) could affect workers, members of the general public, and the environment during construction of new facilities, during routine operation of facilities, during transportation, and during facility or transportation accidents. Activities could have adverse effects (e.g., human health impairment) or positive effects (e.g., regional socioeconomic benefits, such as the creation of jobs). Some impacts would result primarily from the unique characteristics of the uranium and other chemical

154

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Daniel R. Borneo, PE Daniel R. Borneo, PE Sandia National Laboratories September 27, 2007 San Francisco, CA PEER REVIEW 2007 DOE(SNL)/CEC Energy Storage Program FYO7 Projects Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000. 2 Presentation Outline * DOE(SNL)/CEC Collaboration - Background of DOE(SNL)/CEC Collaboration - FY07 Project Review * Zinc Bromine Battery (ZBB) Demonstration * Palmdale Super capacitor Demonstration * Sacramento Municipal Utility District (SMUD) Regional Transit (RT) Super capacitor demonstration * Beacon Flywheel Energy Storage System (FESS) 3 Background of DOE(SNL)/CEC Collaboration * Memorandum of Understanding Between CEC and DOE (SNL). - In Place since 2004

155

Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Development Concept Development Concept Nitrogen-Air Battery F.M. Delnick, D. Ingersoll, K.Waldrip Sandia National Laboratories Albuquerque, NM presented to U.S. DOE Energy Storage Systems Research Program Washington, DC November 2-4, 2010 Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. Funded by the Energy Storage Systems Program of the U.S. Department Of Energy through Sandia National Laboratories Full Air Breathing Battery Concept * Concept is to use O 2 and N 2 as the electrodes in a battery * Novel because N 2 is considered inert * Our group routinely reacts N 2 electrochemically

156

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer.

Kotter, Dale K. (North Shelley, ID); Rankin, Richard A. (Ammon, ID)

1991-02-26T23:59:59.000Z

157

Overview of coal conversion  

SciTech Connect

The structure of coal and the processes of coal gasification and coal liquefaction are reviewed. While coal conversion technology is not likely to provide a significant amount of synthetic fuel within the next several years, there is a clear interest both in government and private sectors in the development of this technology to hedge against ever-diminishing petroleum supplies, especially from foreign sources. It is evident from this rather cursory survey that there is some old technology that is highly reliable; new technology is being developed but is not ready for commercialization at the present state of development. The area of coal conversion is ripe for exploration both on the applied and basic research levels. A great deal more must be understood about the reactions of coal, the reactions of coal products, and the physics and chemistry involved in the various stages of coal conversion processes in order to make this technology economically viable.

Clark, B.R.

1981-03-27T23:59:59.000Z

158

Digital optical conversion module  

DOE Patents (OSTI)

A digital optical conversion module used to convert an analog signal to a computer compatible digital signal including a voltage-to-frequency converter, frequency offset response circuitry, and an electrical-to-optical converter. Also used in conjunction with the digital optical conversion module is an optical link and an interface at the computer for converting the optical signal back to an electrical signal. Suitable for use in hostile environments having high levels of electromagnetic interference, the conversion module retains high resolution of the analog signal while eliminating the potential for errors due to noise and interference. The module can be used to link analog output scientific equipment such as an electrometer used with a mass spectrometer to a computer. 2 figs.

Kotter, D.K.; Rankin, R.A.

1988-07-19T23:59:59.000Z

159

Direct conversion technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. This report contains progress of research on the Alkali Metal Thermal-to-Electric Converter (AMTEC) and on the Two-Phase Liquid-Metal MHD Electrical Generator (LMMHD) for the period January 1, 1991 through December 31, 1991. Research on AMTEC and on LMMHD was initiated during October 1987. Reports prepared on previous occasions (Refs. 1--5) contain descriptive and performance discussions of the following direct conversion concepts: thermoelectric, pyroelectric, thermionic, thermophotovoltaic, thermoacoustic, thermomagnetic, thermoelastic (Nitionol heat engine); and also, more complete descriptive discussions of AMTEC and LMMHD systems.

Massier, P.F.; Back, L.H.; Ryan, M.A.; Fabris, G.

1992-01-07T23:59:59.000Z

160

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Sequestration Partnerships Regional Carbon Sequestration Partnership (RCSP) Programmatic Points of Contact Carbon Storage Program Infrastructure Coordinator Carbon Storage...

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conservation Technologies thrust area supports initiatives that enhance the core competencies of the Lawrence Livermore National Laboratory (LLNL) Engineering Directorate in the area of solid-state power electronics. Through partnerships with LLNL programs, projects focus on the development of enabling technologies for existing and emerging programs that have unique power conversion requirements. This year, a multi-disciplinary effort was supported which demonstrated solid-state, high voltage generation by using a dense, monolithic photovoltaic array. This effort builds upon Engineering's strengths in the core technology areas of power conversion, photonics, and microtechnologies.

Haigh, R E

1998-01-01T23:59:59.000Z

162

Direct Conversion Technology  

DOE Green Energy (OSTI)

The overall objective of the Direct Conversion Technology task is to develop an experimentally verified technology base for promising direct conversion systems that have potential application for energy conservation in the end-use sectors. Initially, two systems were selected for exploratory research and advanced development. These are Alkali Metal Thermal-to-Electric Converter (AMTEC) and Two-Phase Liquid Metal MD Generator (LMMHD). This report describes progress that has been made during the first six months of 1992 on research activities associated with these two systems. (GHH)

Back, L.H.; Fabris, G.; Ryan, M.A.

1992-07-01T23:59:59.000Z

163

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

diameter, noting that the electrical power is only generatedcurrents to generate electrical power have employed twodetermine the electrical power that can be generated from

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

164

Hierarchical electrode architectures for electrical energy storage & conversion.  

DOE Green Energy (OSTI)

The integration and stability of electrocatalytic nanostructures, which represent one level of porosity in a hierarchical structural scheme when combined with a three-dimensional support scaffold, has been studied using a combination of synthetic processes, characterization techniques, and computational methods. Dendritic platinum nanostructures have been covalently linked to common electrode surfaces using a newly developed chemical route; a chemical route equally applicable to a range of metals, oxides, and semiconductive materials. Characterization of the resulting bound nanostructure system confirms successful binding, while electrochemistry and microscopy demonstrate the viability of these electroactive particles. Scanning tunneling microscopy has been used to image and validate the short-term stability of several electrode-bound platinum dendritic sheet structures toward Oswald ripening. Kinetic Monte Carlo methods have been applied to develop an understanding of the stability of the basic nano-scale porous platinum sheets as they transform from an initial dendrite to hole containing sheets. Alternate synthetic strategies were pursued to grow dendritic platinum structures directly onto subunits (graphitic particles) of the electrode scaffold. A two-step photocatalytic seeding process proved successful at generating desirable nano-scale porous structures. Growth in-place is an alternate strategy to the covalent linking of the electrocatalytic nanostructures.

Zavadil, Kevin Robert; Missert, Nancy A.; Shelnutt, John Allen; van Swol, Frank B.

2012-01-01T23:59:59.000Z

165

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

F.H.J. , et al. , Power Generation by Pressure-Drivenal. , Electrokinetic power generation by means of streamingF.H.J. , et al. , Power generation by pressure-driven

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

166

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

as energy/hydrogen carrier, its history. Comptes Rendusas energy/hydrogen carrier, its history. Comptes Rendus

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

167

Explorations of Novel Energy Conversion and Storage Systems  

E-Print Network (OSTI)

alternative energy sources. Hydrogen has been investigated to become a major component of world energy solutions

Duffin, Andrew Mark

2010-01-01T23:59:59.000Z

168

April 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

Stop news scroll Most Visited Adopt-A-Doc DOE Data Explorer DOE Green Energy DOepatents DOE R&D Accomplishments .EDUconnections Energy Science and Technology Software Center...

169

June 2013 Most Viewed Documents for Energy Storage, Conversion...  

Office of Scientific and Technical Information (OSTI)

to RSS OSTI Blog Get Widgets Get Alert Services OSTI Facebook OSTI Twitter OSTI Google+ Bookmark and Share (Link will open in a new window) Go to Videos Loading... Stop news...

170

Application-storage discovery  

Science Conference Proceedings (OSTI)

Discovering application dependency on data and storage is a key prerequisite for many storage optimization tasks such as data assignment to storage tiers, storage consolidation, virtualization, and handling unused data. However, in the real world these ... Keywords: enterprise storage, experimental evaluation, storage discovery

Nikolai Joukov; Birgit Pfitzmann; HariGovind V. Ramasamy; Murthy V. Devarakonda

2010-05-01T23:59:59.000Z

171

Energy Storage Laboratory (Fact Sheet), NREL (National Renewable Energy Laboratory), Energy Systems Integration Facility (ESIF)  

NLE Websites -- All DOE Office Websites (Extended Search)

Power conversion equipment for energy storage Power conversion equipment for energy storage * Ultra- and super-capacitor systems * DC systems, such as commercial microgrids Partner with Us Work with NREL experts and take advantage of the state-of-the-art capabilities at the ESIF to make progress on your projects, which may range from fundamental research to applications engineering. Partners at the ESIF's Energy Storage Laboratory

172

Links to on-line unit conversions  

Science Conference Proceedings (OSTI)

... Basic physical quantities. General unit, currency, and temperature conversion. ... Many conversions, including unusual and ancient units. ...

173

Model Energy Conversion Efficiency of Biological Systems  

Science Conference Proceedings (OSTI)

MML Researchers Model Energy Conversion Efficiency of Biological Systems. Novel, highly efficient energy conversion ...

2013-03-15T23:59:59.000Z

174

Photovoltaic Energy Conversion  

E-Print Network (OSTI)

Photovoltaic Energy Conversion Frank Zimmermann #12;Solar Electricity Generation Consumes no fuel Buy Solar Energy Stocks? Make Photovoltaics your Profession! #12;Challenges Make solar cells more and fossil fuel depletion problems! #12;Photovoltaics: Explosive Growth #12;Take Advantage of Solar Megatrend

Glashausser, Charles

175

ENERGY CONVERSION Spring 2011  

E-Print Network (OSTI)

in this course: Week 1: Review Week 2: Entropy and exergy Week 3: Power cycles, Otto and Diesel Week 4 resources including: wind, wave energy conversion devices, and fuel cell technologies Week12: Introduction will work in groups as assigned. Experiment: Diesel Engine Assessment: Projects 20% Lab Reports

Bahrami, Majid

176

Solar energy conversion.  

SciTech Connect

If solar energy is to become a practical alternative to fossil fuels, we must have efficient ways to convert photons into electricity, fuel, and heat. The need for better conversion technologies is a driving force behind many recent developments in biology, materials, and especially nanoscience. The Sun has the enormous untapped potential to supply our growing energy needs. The barrier to greater use of the solar resource is its high cost relative to the cost of fossil fuels, although the disparity will decrease with the rising prices of fossil fuels and the rising costs of mitigating their impact on the environment and climate. The cost of solar energy is directly related to the low conversion efficiency, the modest energy density of solar radiation, and the costly materials currently required. The development of materials and methods to improve solar energy conversion is primarily a scientific challenge: Breakthroughs in fundamental understanding ought to enable marked progress. There is plenty of room for improvement, since photovoltaic conversion efficiencies for inexpensive organic and dye-sensitized solar cells are currently about 10% or less, the conversion efficiency of photosynthesis is less than 1%, and the best solar thermal efficiency is 30%. The theoretical limits suggest that we can do much better. Solar conversion is a young science. Its major growth began in the 1970s, spurred by the oil crisis that highlighted the pervasive importance of energy to our personal, social, economic, and political lives. In contrast, fossil-fuel science has developed over more than 250 years, stimulated by the Industrial Revolution and the promise of abundant fossil fuels. The science of thermodynamics, for example, is intimately intertwined with the development of the steam engine. The Carnot cycle, the mechanical equivalent of heat, and entropy all played starring roles in the development of thermodynamics and the technology of heat engines. Solar-energy science faces an equally rich future, with nanoscience enabling the discovery of the guiding principles of photonic energy conversion and their use in the development of cost-competitive new technologies.

Crabtree, G. W.; Lewis, N. S. (Materials Science Division); (California Inst. of Tech.)

2008-03-01T23:59:59.000Z

177

Hydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review  

E-Print Network (OSTI)

they have initiated on solid state hydride tanks for hydrogen storage and other energy conversionHydrogen Storage Systems Analysis Working Group Meeting 2007 Hydrogen Program Annual Review Crystal Laboratory and Elvin Yuzugullu Sentech, Inc. June 28, 2007 #12;SUMMARY REPORT Hydrogen Storage

178

Gas storage materials, including hydrogen storage materials  

DOE Patents (OSTI)

A material for the storage and release of gases comprises a plurality of hollow elements, each hollow element comprising a porous wall enclosing an interior cavity, the interior cavity including structures of a solid-state storage material. In particular examples, the storage material is a hydrogen storage material such as a solid state hydride. An improved method for forming such materials includes the solution diffusion of a storage material solution through a porous wall of a hollow element into an interior cavity.

Mohtadi, Rana F; Wicks, George G; Heung, Leung K; Nakamura, Kenji

2013-02-19T23:59:59.000Z

179

Computerized Accident/Incident Reporting System  

NLE Websites -- All DOE Office Websites (Extended Search)

Accident Recordkeeping and Reporting Accident Recordkeeping and Reporting Accident/Incident Recordkeeping and Reporting CAIRS logo Computerized Accident Incident Reporting System CAIRS Database The Computerized Accident/Incident Reporting System is a database used to collect and analyze DOE and DOE contractor reports of injuries, illnesses, and other accidents that occur during DOE operations. Injury and Illness Dashboard The Dashboard provides an alternate interface to CAIRS information. The initial release of the Dashboard allows analysis of composite DOE-wide information and summary information by Program Office, and site. Additional data feature are under development. CAIRS Registration Form CAIRS is a Government computer system and, as such, has security requirements that must be followed. Access to the

180

Question detection in spoken conversations using textual conversations  

Science Conference Proceedings (OSTI)

We investigate the use of textual Internet conversations for detecting questions in spoken conversations. We compare the text-trained model with models trained on manually-labeled, domain-matched spoken utterances with and without prosodic features. ...

Anna Margolis; Mari Ostendorf

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Recommendations for Analyzing Accidents Under NEPA  

Energy.gov (U.S. Department of Energy (DOE))

This DOE guidance clarifies and supplements "Recommendations for the Preparation of Environmental Assessments and Environmental Impact Statements." It focuses on principles of accident analyses under NEPA.

182

Accident Tolerant Fuels for Light Water Reactors  

Science Conference Proceedings (OSTI)

Presentation Title, Accident Tolerant Fuels for Light Water Reactors. Author(s), Steven J. Zinkle, Kurt A. Terrani, Lance L. Snead. On-Site Speaker (Planned)...

183

Systematics of Reconstructed Process Facility Criticality Accidents  

SciTech Connect

The systematics of the characteristics of twenty-one criticality accidents occurring in nuclear processing facilities of the Russian Federation, the United States, and the United Kingdom are examined. By systematics the authors mean the degree of consistency or agreement between the factual parameters reported for the accidents and the experimentally known conditions for criticality. The twenty-one reported process criticality accidents are not sufficiently well described to justify attempting detailed neutronic modeling. However, results of classic hand calculations confirm the credibility of the reported accident conditions.

Pruvost, N.L.; McLaughlin, T.P.; Monahan, S.P.

1999-09-19T23:59:59.000Z

184

ORISE: REAC/TS Radiation Accident Registries  

NLE Websites -- All DOE Office Websites (Extended Search)

Accident Registries The Radiation Emergency Assistance CenterTraining Site (REACTS) at the Oak Ridge Institute for Science and Education (ORISE) maintains a number of radiation...

185

Accident Investigation Report Plutonium Contamination in the...  

NLE Websites -- All DOE Office Websites (Extended Search)

Accident Investigation Report Plutonium Contamination in the Zero Power Physics Reactor Facility at the Idaho National Laboratory, November 8, 2011 January 2012 Disclaimer...

186

Wind energy conversion system  

DOE Patents (OSTI)

The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

Longrigg, Paul (Golden, CO)

1987-01-01T23:59:59.000Z

187

Session: Energy Conversion  

DOE Green Energy (OSTI)

This session at the Geothermal Energy Program Review X: Geothermal Energy and the Utility Market consisted of five presentations: ''Hydrothermal Energy Conversion Technology'' by David Robertson and Raymond J. LaSala; ''Materials for Geothermal Production'' by Lawrence E. Kukacka; ''Supersaturated Turbine Expansions for Binary Geothermal Power Plants'' by Carl J. Bliem; ''Geothermal Waster Treatment Biotechnology: Progress and Advantages to the Utilities'' by Eugen T. Premuzic; and ''Geothermal Brine Chemistry Modeling Program'' by John H. Weare.

Robertson, David; LaSala, Raymond J.; Kukacka, Lawrence E.; Bliem, Carl J.; Premuzic, Eugene T.; Weare, John H.

1992-01-01T23:59:59.000Z

188

Natural gas conversion process  

Science Conference Proceedings (OSTI)

The experimental apparatus was dismantled and transferred to a laboratory space provided by Lawrence Berkeley Laboratory (LBL) which is already equipped with a high-ventilation fume hood. This will enable us to make tests at higher gas flow rates in a safe environment. Three papers presented at the ACS meeting in San Francisco (Symposium on Natural Gas Upgrading II) April 5--10, 1992 show that the goal of direct catalytic conversion of Methane into heavier Hydrocarbons in a reducing atmosphere is actively pursued in three other different laboratories. There are similarities in their general concept with our own approach, but the temperature range of the experiments reported in these recent papers is much lower and this leads to uneconomic conversion rates. This illustrates the advantages of Methane activation by a Hydrogen plasma to reach commercial conversion rates. A preliminary process flow diagram was established for the Integrated Process, which was outlined in the previous Quarterly Report. The flow diagram also includes all the required auxiliary facilities for product separation and recycle of the unconverted feed as well as for the preparation and compression of the Syngas by-product.

Not Available

1992-01-01T23:59:59.000Z

189

FCT Hydrogen Storage: The 'National Hydrogen Storage Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

The 'National Hydrogen Storage Project' to someone by E-mail Share FCT Hydrogen Storage: The 'National Hydrogen Storage Project' on Facebook Tweet about FCT Hydrogen Storage: The...

190

Thermochemical seasonal energy storage for solar thermal power  

DOE Green Energy (OSTI)

During the many years that thermochemical energy storage has been under investigation, the concept has been plagued with two persistent problems: high capital cost and poor efficiency. Literally hundreds of chemical reactions have also been carried out. For short-term storage, thermochemical systems suffer in comparison with highly efficient sensible storage media such as molten salts. Long-term storage, on the other hand, is not cost-competitive with systems employing fossil backup power. Thermochemical storage will play a significant role in solar thermal electric conversion only under highly select circumstances. The portion of electric demand served by solar plants must be sufficiently high that the balance of the grid cannot fully supplant seasonal storage. High fossil fuel costs must preclude the use of gas turbines for backup power. Significant breakthroughs in the development of one or more chemical reaction systems must occur. Ingeniously integrated systems must be employed to enhance the efficiency and cost-effectiveness of thermochemical storage. A promising integration scheme discussed herein consists of using sensible storage for diurnal cycling in parallel with thermochemical seasonal storage. Under the most favorable circumstances, thermochemical storage can be expected to play a small but perhaps vital role in supplying baseload energy from solar thermal electric conversion plants.

Barnhart, J.S.

1984-01-01T23:59:59.000Z

191

DUF6 Conversion Facility EISs  

NLE Websites -- All DOE Office Websites (Extended Search)

Sign Me Up Search: OK Button DUF6 Guide DU Uses DUF6 Management and Uses DUF6 Conversion EIS Documents News FAQs Internet Resources Glossary Home Conversion Facility EISs...

192

FAQ 32-What are the potential health risks from conversion of depleted  

NLE Websites -- All DOE Office Websites (Extended Search)

conversion of depleted uranium hexafluoride to other forms? conversion of depleted uranium hexafluoride to other forms? What are the potential health risks from conversion of depleted uranium hexafluoride to other forms? Accidental release of UF6 during processing activities could result in injuries. The most immediate hazard from a release would be lung injury or death from inhalation of hydrogen fluoride (HF), a highly corrosive gas formed when UF6 reacts with moisture in air. Uranyl fluoride is also formed. Uranyl fluoride is a particulate that can be dispersed in air and inhaled. Once inhaled, uranyl fluoride is easily absorbed into the bloodstream because it is soluble. If large quantities are inhaled, kidney toxicity will result. Conversion of uranium hexafluoride to oxide or metal may involve hazardous chemicals in addition to UF6; specifically, ammonia (NH3) may be used in the process, and HF may be produced from the process. In the PEIS, the conversion accidents estimated to have the largest potential consequences were accidents involving the rupture of tanks containing either anhydrous HF or ammonia. Such an accident could be caused by a large earthquake. The probability of large earthquakes depends on the location of the facility, and the probability of damage depends on the structural characteristics of the buildings. In the PEIS, the estimated frequency of this type of accident was less than once in one million years. However, if such an extremely unlikely accident did occur, it was estimated that up to 41,000 members of the general public around the conversion facility might experience adverse effects from chemical exposures (mostly mild and temporary effects, such as respiratory irritation or temporary decrease in kidney function). Of these, up to 1,700 individuals might experience irreversible adverse effects (such as lung damage or kidney damage), with the potential for about 30 fatalities. In addition, irreversible or fatal effects among workers very near the accident scene would be possible. (Note: The actual numbers of injuries among the general public would depend on the size and proximity of the population around the conversion facility).

193

Conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents, For your convenience, you may convert energies online below. Or display factors as: ...

194

Energy Conversion/Fuel Cells  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2011. Symposium, Energy Conversion/Fuel Cells. Sponsorship, MS&T Organization.

195

Conversion of Questionnaire Data  

SciTech Connect

During the survey, respondents are asked to provide qualitative answers (well, adequate, needs improvement) on how well material control and accountability (MC&A) functions are being performed. These responses can be used to develop failure probabilities for basic events performed during routine operation of the MC&A systems. The failure frequencies for individual events may be used to estimate total system effectiveness using a fault tree in a probabilistic risk analysis (PRA). Numeric risk values are required for the PRA fault tree calculations that are performed to evaluate system effectiveness. So, the performance ratings in the questionnaire must be converted to relative risk values for all of the basic MC&A tasks performed in the facility. If a specific material protection, control, and accountability (MPC&A) task is being performed at the 'perfect' level, the task is considered to have a near zero risk of failure. If the task is performed at a less than perfect level, the deficiency in performance represents some risk of failure for the event. As the degree of deficiency in performance increases, the risk of failure increases. If a task that should be performed is not being performed, that task is in a state of failure. The failure probabilities of all basic events contribute to the total system risk. Conversion of questionnaire MPC&A system performance data to numeric values is a separate function from the process of completing the questionnaire. When specific questions in the questionnaire are answered, the focus is on correctly assessing and reporting, in an adjectival manner, the actual performance of the related MC&A function. Prior to conversion, consideration should not be given to the numeric value that will be assigned during the conversion process. In the conversion process, adjectival responses to questions on system performance are quantified based on a log normal scale typically used in human error analysis (see A.D. Swain and H.E. Guttmann, 'Handbook of Human Reliability Analysis with Emphasis on Nuclear Power Plant Applications,' NUREG/CR-1278). This conversion produces the basic event risk of failure values required for the fault tree calculations. The fault tree is a deductive logic structure that corresponds to the operational nuclear MC&A system at a nuclear facility. The conventional Delphi process is a time-honored approach commonly used in the risk assessment field to extract numerical values for the failure rates of actions or activities when statistically significant data is absent.

Powell, Danny H [ORNL; Elwood Jr, Robert H [ORNL

2011-01-01T23:59:59.000Z

196

SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Next-Generation Thermionic Solar Next-Generation Thermionic Solar Energy Conversion to someone by E-mail Share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Facebook Tweet about SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Twitter Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Google Bookmark SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Delicious Rank SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on Digg Find More places to share SunShot Initiative: Next-Generation Thermionic Solar Energy Conversion on AddThis.com... Concentrating Solar Power Systems Components Competitive Awards CSP Research & Development Thermal Storage CSP Recovery Act Baseload

197

Final Environmental Impact Statement for Construction and Operation of a Depleted Uranium Hexafluoride Conversion Facility at Portsmouth, Ohio, Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Portsmouth DUF Portsmouth DUF 6 Conversion Final EIS FIGURE S-1 Regional Map of the Portsmouth, Ohio, Site Vicinity Summary S-18 Portsmouth DUF 6 Conversion Final EIS FIGURE S-3 Three Alternative Conversion Facility Locations within the Portsmouth Site, with Location A Being the Preferred Alternative (A representative conversion facility footprint is shown within each location.) Summary S-20 Portsmouth DUF 6 Conversion Final EIS FIGURE S-4 Conceptual Overall Material Flow Diagram for the Portsmouth Conversion Facility Summary S-21 Portsmouth DUF 6 Conversion Final EIS FIGURE S-5 Conceptual Conversion Facility Site Layout for Portsmouth Summary S-25 Portsmouth DUF 6 Conversion Final EIS FIGURE S-6 Potential Locations for Construction of a New Cylinder Storage Yard at Portsmouth

198

Energy conversion device with support member having pore channels  

DOE Patents (OSTI)

Energy devices such as energy conversion devices and energy storage devices and methods for the manufacture of such devices. The devices include a support member having an array of pore channels having a small average pore channel diameter and having a pore channel length. Material layers that may include energy conversion materials and conductive materials are coaxially disposed within the pore channels to form material rods having a relatively small cross-section and a relatively long length. By varying the structure of the materials in the pore channels, various energy devices can be fabricated, such as photovoltaic (PV) devices, radiation detectors, capacitors, batteries and the like.

Routkevitch, Dmitri [Longmont, CO; Wind, Rikard A [Johnstown, CO

2014-01-07T23:59:59.000Z

199

Occult Trucking and Storage  

E-Print Network (OSTI)

At least we used to. We are Occult Trucking and Storage andNOTHING. FLASHBACK -- OCCULT TRUCKING AND STORAGE DEPOT --I saw him. FLASHBACK - OCCULT TRUCKING AND STORAGE DEPOT -

Eyres, Jeffrey Paul

2011-01-01T23:59:59.000Z

200

Sorption Storage Technology Summary  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Technology Summary DOE H2 Storage Workshop, Feb 14-15, 2011, Washington, DC 1 Compressed & Cryo-Compressed Hydrogen Storage Workshop February 14 - 15, 2011, Washington, DC...

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Seasonal thermal energy storage  

DOE Green Energy (OSTI)

This report describes the following: (1) the US Department of Energy Seasonal Thermal Energy Storage Program, (2) aquifer thermal energy storage technology, (3) alternative STES technology, (4) foreign studies in seasonal thermal energy storage, and (5) economic assessment.

Allen, R.D.; Kannberg, L.D.; Raymond, J.R.

1984-05-01T23:59:59.000Z

202

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

Adki ns, "Raccoon Mountain Pumped-Storage Plant- Ten Years2J O. D. Johnson, "Worldwide Pumped-Storage Projects", PowerUnderground Pumped Hydro Storage", Proc. 1976 Eng.

Hassenzahl, W.

2011-01-01T23:59:59.000Z

203

FCT Hydrogen Storage: Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics to someone by E-mail Share FCT Hydrogen Storage: Basics on Facebook Tweet about FCT Hydrogen Storage: Basics on Twitter Bookmark FCT Hydrogen Storage: Basics on Google...

204

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

Ocean Thermal Energy Conversion (OTEC) Draft Programmaticof ocean thermal energy conversion technology. U.S. Depart~on Ocean TherUial Energy Conversion, June 18, 1979. Ocean

Sands, M.Dale

2013-01-01T23:59:59.000Z

205

Semiconductor Nanowires and Nanotubes for Energy Conversion  

E-Print Network (OSTI)

notably energy conversion. As research continues in thisnanowires for energy conversion. Chemical Reviews, 2010.for solar energy conversion. Physical Review Letters, 2004.

Fardy, Melissa Anne

2010-01-01T23:59:59.000Z

206

: Package gov.nist.nlpir.irf.conversion  

Science Conference Proceedings (OSTI)

gov.nist.nlpir.irf.conversion Classes Ascii2HtmlConverter ConversionRule ConversionRules IrfConverter Sgml2AppDocConverter.

207

The Hartford Life and Accident Insurance  

E-Print Network (OSTI)

The Hartford Life and Accident Insurance Company Group Numbers Basic Group Term Life AD&D-677984 Life and Accident Insurance Company. (Referred to as The Hartford or Hartford.) General information industry. Europ Assist has been helping customers in times of crisis for more than 46 years. They have

208

Does Daylight Savings Time Affect Traffic Accidents?  

E-Print Network (OSTI)

This paper studies the effect of changes in accident pattern due to Daylight Savings Time (DST). The extension of the DST in 2007 provides a natural experiment to determine whether the number of traffic accidents is affected by shifts in hours of daylight using the year as control group. Using data on traffic accidents in Texas based on crash reports provided by the Texas Transportation Institute, and a difference in differences technique, this study creates a regression model to determine how significant this factor is in affecting traffic accident patterns as observed in the data. Results show that DST has no statistically significant effect on traffic accidents of all categories including (but not limited to) highway, non-highway, and accidents, accidents with injuries and no injuries, and accidents by drivers of all age-groups. This implies that the federal governments policy of DST (and its extension) has no costs incurred by a rise in motor vehicle crashes when it gets dark early.

Deen, Sophia 1988-

2012-05-01T23:59:59.000Z

209

Accident states simulation: process fluids release  

Science Conference Proceedings (OSTI)

Seveso II Directive imposes for high hazardous plants quantitative risk evaluation of the major accident. In a general context the risk is defined as product between frequency and consequences of accident state. There are five steps in quantitative risk ... Keywords: hazard, hydrogen sulphide, mathematical model, release, risk, safety system, simulation

Cornelia Croitoru; Mihai Anghel; Floarea Pop; Ioan Stefanescu; Gheorghe Titescu; Mihai Patrascu; Ervin Watzlawek; Dorin Cheresdi

2008-08-01T23:59:59.000Z

210

Commercial SNF Accident Release Fractions  

Science Conference Proceedings (OSTI)

The purpose of this analysis is to specify and document the total and respirable fractions for radioactive materials that could be potentially released from an accident at the repository involving commercial spent nuclear fuel (SNF) in a dry environment. The total and respirable release fractions are used to support the preclosure licensing basis for the repository. The total release fraction is defined as the fraction of total commercial SNF assembly inventory, typically expressed as an activity inventory (e.g., curies), of a given radionuclide that is released to the environment from a waste form. Radionuclides are released from the inside of breached fuel rods (or pins) and from the detachment of radioactive material (crud) from the outside surfaces of fuel rods and other components of fuel assemblies. The total release fraction accounts for several mechanisms that tend to retain, retard, or diminish the amount of radionuclides that are available for transport to dose receptors or otherwise can be shown to reduce exposure of receptors to radiological releases. The total release fraction includes a fraction of airborne material that is respirable and could result in inhalation doses; this subset of the total release fraction is referred to as the respirable release fraction. Accidents may involve waste forms characterized as: (1) bare unconfined intact fuel assemblies, (2) confined intact fuel assemblies, or (3) canistered failed commercial SNF. Confined intact commercial SNF assemblies at the repository are contained in shipping casks, canisters, or waste packages. Four categories of failed commercial SNF are identified: (1) mechanically and cladding-penetration damaged commercial SNF, (2) consolidated/reconstituted assemblies, (3) fuel rods, pieces, and debris, and (4) nonfuel components. It is assumed that failed commercial SNF is placed into waste packages with a mesh screen at each end (CRWMS M&O 1999). In contrast to bare unconfined fuel assemblies, the container that confines the fuel assemblies could provide an additional barrier for diminishing the total release fraction should the fuel rod cladding breach during an accident. This analysis, however, does not take credit for the additional barrier and establishes only the total release fractions for bare unconfined intact commercial SNF assemblies, which may be conservatively applied to confined intact commercial I SNF assemblies.

J. Schulz

2004-11-05T23:59:59.000Z

211

Zinc phosphate conversion coatings  

DOE Patents (OSTI)

Zinc phosphate conversion coatings for producing metals which exhibit enhanced corrosion prevention characteristics are prepared by the addition of a transition-metal-compound promoter comprising a manganese, iron, cobalt, nickel, or copper compound and an electrolyte such as polyacrylic acid, polymethacrylic acid, polyitaconic acid and poly-L-glutamic acid to a phosphating solution. These coatings are further improved by the incorporation of Fe ions. Thermal treatment of zinc phosphate coatings to generate .alpha.-phase anhydrous zinc phosphate improves the corrosion prevention qualities of the resulting coated metal.

Sugama, Toshifumi (Wading River, NY)

1997-01-01T23:59:59.000Z

212

The Fukushima Daiichi Accident Study Information Portal  

SciTech Connect

This paper presents a description of The Fukushima Daiichi Accident Study Information Portal. The Information Portal was created by the Idaho National Laboratory as part of joint NRC and DOE project to assess the severe accident modeling capability of the MELCOR analysis code. The Fukushima Daiichi Accident Study Information Portal was created to collect, store, retrieve and validate information and data for use in reconstructing the Fukushima Daiichi accident. In addition to supporting the MELCOR simulations, the Portal will be the main DOE repository for all data, studies and reports related to the accident at the Fukushima Daiichi nuclear power station. The data is stored in a secured (password protected and encrypted) repository that is searchable and accessible to researchers at diverse locations.

Shawn St. Germain; Curtis Smith; David Schwieder; Cherie Phelan

2012-11-01T23:59:59.000Z

213

PERSPECTIVES ON A DOE CONSEQUENCE INPUTS FOR ACCIDENT ANALYSIS APPLICATIONS  

Science Conference Proceedings (OSTI)

Department of Energy (DOE) accident analysis for establishing the required control sets for nuclear facility safety applies a series of simplifying, reasonably conservative assumptions regarding inputs and methodologies for quantifying dose consequences. Most of the analytical practices are conservative, have a technical basis, and are based on regulatory precedent. However, others are judgmental and based on older understanding of phenomenology. The latter type of practices can be found in modeling hypothetical releases into the atmosphere and the subsequent exposure. Often the judgments applied are not based on current technical understanding but on work that has been superseded. The objective of this paper is to review the technical basis for the major inputs and assumptions in the quantification of consequence estimates supporting DOE accident analysis, and to identify those that could be reassessed in light of current understanding of atmospheric dispersion and radiological exposure. Inputs and assumptions of interest include: Meteorological data basis; Breathing rate; and Inhalation dose conversion factor. A simple dose calculation is provided to show the relative difference achieved by improving the technical bases.

(NOEMAIL), K; Jonathan Lowrie, J; David Thoman (NOEMAIL), D; Austin Keller (NOEMAIL), A

2008-07-30T23:59:59.000Z

214

Subsea Pumped Hydro Storage.  

E-Print Network (OSTI)

??A new technology for energy storage called Subsea Pumped Hydro Storage (SPHS) has been evaluated from a techno-economical point of view. Intermittent renewable energy sources (more)

Erik, Almen John

2013-01-01T23:59:59.000Z

215

Energy Storage Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage Testing The Advanced Vehicle Testing Activity is tasked by the U.S. Department of Energys Vehicle Technology Program to conduct various types of energy storage...

216

NERSC HPSS Storage Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Trends and Summaries Storage by Scientific Discipline Troubleshooting Optimizing IO performance on the Lustre file system IO Formats Sharing Data Transferring Data Unix...

217

Underground Natural Gas Storage  

U.S. Energy Information Administration (EIA)

Underground Natural Gas Storage. Measured By. Disseminated Through. Monthly Survey of Storage Field Operators -- asking injections, withdrawals, base gas, working gas.

218

Aquifer thermal energy (heat and chill) storage  

DOE Green Energy (OSTI)

As part of the 1992 Intersociety Conversion Engineering Conference, held in San Diego, California, August 3--7, 1992, the Seasonal Thermal Energy Storage Program coordinated five sessions dealing specifically with aquifer thermal energy storage technologies (ATES). Researchers from Sweden, The Netherlands, Germany, Switzerland, Denmark, Canada, and the United States presented papers on a variety of ATES related topics. With special permission from the Society of Automotive Engineers, host society for the 1992 IECEC, these papers are being republished here as a standalone summary of ATES technology status. Individual papers are indexed separately.

Jenne, E.A. (ed.)

1992-11-01T23:59:59.000Z

219

Semiconductor Metrology for Energy Conversion  

Science Conference Proceedings (OSTI)

... lasers, LEDs, photodetectors, and high-efficiency solar cells critical to optical communication, display, data storage, and energy conservation and ...

2012-08-21T23:59:59.000Z

220

Web Based Course: SAF-230DE, Accident Investigation Overview...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video September 20, 2013 -...

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

ORISE: The Medical Basis for Radiation-Accident Preparedness...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Medical Basis for Radiation-Accident Preparedness: Medical Management Proceedings of the Fifth International REACTS Symposium on the Medical Basis for Radiation-Accident...

222

Audit of the Department of Energy's Transportation Accident Resistant...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Transportation Accident Resistant Container Program, IG-0380 Audit of the Department of Energy's Transportation Accident Resistant Container Program, IG-0380 Audit of the...

223

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weathproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction and operational with a minimal power draw.

Murphy, L.M.

1985-09-16T23:59:59.000Z

224

Energy conversion system  

DOE Patents (OSTI)

The energy conversion system includes a photo-voltaic array for receiving solar radiation and converting such radiation to electrical energy. The photo-voltaic array is mounted on a stretched membrane that is held by a frame. Tracking means for orienting the photo-voltaic array in predetermined positions that provide optimal exposure to solar radiation cooperate with the frame. An enclosure formed of a radiation transmissible material includes an inside containment space that accommodates the photo-voltaic array on the stretched membrane, the frame and the tracking means, and forms a protective shield for all such components. The enclosure is preferably formed of a flexible inflatable material and maintains its preferred form, such as a dome, under the influence of a low air pressure furnished to the dome. Under this arrangement the energy conversion system is streamlined for minimizing wind resistance, sufficiently weatherproof for providing protection against weather hazards such as hail, capable of using diffused light, lightweight for low-cost construction, and operational with a minimal power draw.

Murphy, Lawrence M. (Lakewood, CO)

1987-01-01T23:59:59.000Z

225

Conversion of plutonium scrap and residue to boroilicate glass using the GMODS process  

SciTech Connect

Plutonium scrap and residue represent major national and international concerns because (1) significant environmental, safety, and health (ES&H) problems have been identified with their storage; (2) all plutonium recovered from the black market in Europe has been from this category; (3) storage costs are high; and (4) safeguards are difficult. It is proposed to address these problems by conversion of plutonium scrap and residue to a CRACHIP (CRiticality, Aerosol, and CHemically Inert Plutonium) glass using the Glass Material Oxidation and Dissolution System (GMODS). CRACHIP refers to a set of requirements for plutonium storage forms that minimize ES&H concerns. The concept is several decades old. Conversion of plutonium from complex chemical mixtures and variable geometries into a certified, qualified, homogeneous CRACHIP glass creates a stable chemical form that minimizes ES&H risks, simplifies safeguards and security, provides an easy-to-store form, decreases storage costs, and allows for future disposition options. GMODS is a new process to directly convert metals, ceramics, and amorphous solids to glass; oxidize organics with the residue converted to glass; and convert chlorides to borosilicate glass and a secondary sodium chloride stream. Laboratory work has demonstrated the conversion of cerium (a plutonium surrogate), uranium (a plutonium surrogate), Zircaloy, stainless steel, and other materials to glass. GMODS is an enabling technology that creates new options. Conventional glassmaking processes require conversion of feeds to oxide-like forms before final conversion to glass. Such chemical conversion and separation processes are often complex and expensive.

Forsberg, C.W.; Beahm, E.C.; Parker, G.W.; Rudolph, J.; Elam, K.R.; Ferrada, J.J.

1995-11-28T23:59:59.000Z

226

Basis of conversion factors for energy equivalents  

Science Conference Proceedings (OSTI)

... Basis of conversion factors for energy equivalents Conversion factors for energy equivalents are derived from the following relations: ...

227

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Conversion factors for energy equivalents Return to online conversions. Next page of energy equivalents. Definition of uncertainty ...

228

Catalytic Conversion of Bioethanol to Hydrocarbons ...  

Conventional biomass to hydrocarbon conversion is generally not commercially feasible, due to costs of the conversion process.

229

Facility accident analysis for low-level waste management alternatives in the US Department of Energy Waste Management Program  

Science Conference Proceedings (OSTI)

The risk to human health of potential radiological releases resulting from facility accidents constitutes an important consideration in the US Department of Energy (DOE) waste management program. The DOE Office of Environmental Management (EM) is currently preparing a Programmatic Environmental Impact Statement (PEIS) that evaluates the risks associated with managing five types of radiological and chemical wastes in the DOE complex. Several alternatives for managing each of the five waste types are defined and compared in the EM PEIS. The alternatives cover a variety of options for storing, treating, and disposing of the wastes. Several treatment methods and operation locations are evaluated as part of the alternatives. The risk induced by potential facility accidents is evaluated for storage operations (current and projected waste storage and post-treatment storage) and for waste treatment facilities. For some of the five waste types considered, facility accidents cover both radiological and chemical releases. This paper summarizes the facility accident analysis that was performed for low-level (radioactive) waste (LLW). As defined in the EM PEIS, LLW includes all radioactive waste not classified as high-level, transuranic, or spent nuclear fuel. LLW that is also contaminated with chemically hazardous components is treated separately as low-level mixed waste (LLMW).

Roglans-Ribas, J.; Mueller, C.; Nabelssi, B.; Folga, S.; Tompkins, M.

1995-06-01T23:59:59.000Z

230

Power conversion technologies  

DOE Green Energy (OSTI)

The Power Conversion Technologies thrust area identifies and sponsors development activities that enhance the capabilities of engineering at Lawrence Livermore National Laboratory (LLNL) in the area of solid- state power electronics. Our primary objective is to be a resource to existing and emerging LLNL programs that require advanced solid-state power electronic technologies.. Our focus is on developing and integrating technologies that will significantly impact the capability, size, cost, and reliability of future power electronic systems. During FY-96, we concentrated our research efforts on the areas of (1) Micropower Impulse Radar (MIR); (2) novel solid-state opening switches; (3) advanced modulator technology for accelerators; (4) compact accelerators; and (5) compact pulse generators.

Newton, M. A.

1997-02-01T23:59:59.000Z

231

Quantum optical waveform conversion  

E-Print Network (OSTI)

Currently proposed architectures for long-distance quantum communication rely on networks of quantum processors connected by optical communications channels [1,2]. The key resource for such networks is the entanglement of matter-based quantum systems with quantum optical fields for information transmission. The optical interaction bandwidth of these material systems is a tiny fraction of that available for optical communication, and the temporal shape of the quantum optical output pulse is often poorly suited for long-distance transmission. Here we demonstrate that nonlinear mixing of a quantum light pulse with a spectrally tailored classical field can compress the quantum pulse by more than a factor of 100 and flexibly reshape its temporal waveform, while preserving all quantum properties, including entanglement. Waveform conversion can be used with heralded arrays of quantum light emitters to enable quantum communication at the full data rate of optical telecommunications.

Kielpinski, D; Wiseman, HM

2010-01-01T23:59:59.000Z

232

Storage | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Storage Storage Energy storage isn’t just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more. Energy storage isn't just for AA batteries. Thanks to investments from the Energy Department's Advanced Research Projects Agency-Energy (ARPA-E), energy storage may soon play a bigger part in our electricity grid, making it possible to generate more renewable electricity. Learn more.

233

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOENETL-20051217 U.S. Department of Energy Office of Fossil Energy National Energy...

234

Wideband Wavelength Conversion Using Cavity ...  

Science Conference Proceedings (OSTI)

... The researchers use the interaction of two ... bands that are frequently used in telecommunications. ... conversion should be possible using the same ...

2013-08-27T23:59:59.000Z

235

Energy Basics: Biofuel Conversion Processes  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

from the EERE Bioenergy Technologies Office. Thermochemical Conversion Processes Heat energy and chemical catalysts can be used to break down biomass into intermediate compounds...

236

Thermal Conversion Factor Source Documentation  

U.S. Energy Information Administration (EIA)

national annual quantity-weighted average conversion factors for conventional, reformulated, and oxygenated motor gasolines (see Table A3). The factor ...

237

PRIMARY QUANTUM CONVERSION IN PHOTOSYNTHESIS  

E-Print Network (OSTI)

Reactions in,Bacterial Photosynthesis. I, Nature of lightReactions in Bacterial Photosynthesis. 111. Reactions ofQUANTUM CONVERSION IN PHOTOSYNTHESIS Melvin Calvin and G. M.

Calvin, Melvin; Androes, G.M.

1962-01-01T23:59:59.000Z

238

Alternative Fuels Data Center: Conversion Regulations  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversion Regulations Conversion Regulations to someone by E-mail Share Alternative Fuels Data Center: Conversion Regulations on Facebook Tweet about Alternative Fuels Data Center: Conversion Regulations on Twitter Bookmark Alternative Fuels Data Center: Conversion Regulations on Google Bookmark Alternative Fuels Data Center: Conversion Regulations on Delicious Rank Alternative Fuels Data Center: Conversion Regulations on Digg Find More places to share Alternative Fuels Data Center: Conversion Regulations on AddThis.com... Conversion Regulations All vehicle and engine conversions must meet standards instituted by the U.S. Environmental Protection Agency (EPA), the National Highway Traffic Safety Administration (NHTSA), and state agencies like the California Air Resources Board (CARB).

239

Decontamination Dressdown at a Transportation Accident Involving  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Decontamination Dressdown at a Transportation Accident Involving Decontamination Dressdown at a Transportation Accident Involving Radioactive Material Decontamination Dressdown at a Transportation Accident Involving Radioactive Material The purpose of this User's Guide is to provide instructors with an overview of the key points covered in the video. The Student Handout portion of this Guide is designed to assist the instructor in reviewing those points with students. The Student Handout should be distributed to students after the video is shown and the instructor should use the Guide to facilitate a discussion on how the decontamination dressdown process is implemented. During this discussion, the instructor can present various scenarios, each of which would discuss decontamination at the accident scene. The purpose of this discussion would be to cover how responders

240

A systems approach to food accident analysis  

E-Print Network (OSTI)

Food borne illnesses lead to 3000 deaths per year in the United States. Some industries, such as aviation, have made great strides increasing safety through careful accident analysis leading to changes in industry practices. ...

Helferich, John D

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

A SUMMARY OF INDUSTRIAL ACCIDENTS IN USAEC FACILITIES  

SciTech Connect

The summary includes descriptions of serious accidents for l959 and 1960, AEC industrial injury frequency rates, criticality accidents, radiation exposures, accidents involving radioactive materials in AEC activities during 1959 and 1960, and accidents involving fatalities in AEC activities during l959 and 1960. (B.O.G.)

1961-12-01T23:59:59.000Z

242

Alcohol fuel conversion apparatus for internal combustion engines  

Science Conference Proceedings (OSTI)

An alcohol fuel conversion apparatus is described for internal combustion engines comprising: fuel storage means containing an alcohol fuel; primary heat exchanger means in fluid communication with the fuel storage means for transferring heat to pressurized alcohol contained within the heat exchanger means; a heat source for heating the heat exchange means; pressure relief valve means, in closed fluid communication with the primary heat exchange means, operable to release heated pressurized alcohol into an expansion chamber; converter means, including the expansion chamber, in fluid communication with the pressure relief valve means for receiving the heated pressurized alcohol and for the vaporization of the alcohol; carburetor means in fluid communication with the converter means for metering and mixing vaporized alcohol with air for proper combustion and for feeding the mixture to an internal combustion engine; and pump means for pressurized pumping of alcohol from the fuel storage means to the heat exchanger means, converter means, carburetor means, and to the engine.

Carroll, B.I.

1987-01-13T23:59:59.000Z

243

Three Mile Island accident and post-accident recovery: what did we learn  

SciTech Connect

A description of the accident at Three Mile Island-2 reactor is presented. Activities related to the cleanup and decontamination of the reactor are described.

Collins, E.D.

1982-01-01T23:59:59.000Z

244

Large electrical-energy storage facilities  

SciTech Connect

Problems associated with the utilization of various types of energy-storage facilities are considered, three areas being singled out: operation during the variable portion of the load curve with double regulation effect, handling of peaks and the filling in of off-peak dips in the load curve; the generation of power impulses through the use of stored energy for short-term supply of load; and the conversion of one form of energy to another. The present-day state of development and introduction of storage facilities of various kinds is described. The conditions for utilization of large-scale storage on the power systems of the USSR are evaluated, and the principles for determining the economic efficiency are formulated.

Ershevich, V.V.

1985-01-01T23:59:59.000Z

245

Transportation Storage Interface | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Interface Transportation Storage Interface Regulation of Future Extended Storage and Transportation. Transportation Storage Interface More Documents & Publications Status...

246

Low level waste shipment accident lessons learned  

SciTech Connect

On October 1, 1994 a shipment of low-level waste from the Fernald Environmental Management Project, Fernald, Ohio, was involved in an accident near Rolla, Missouri. The accident did not result in the release of any radioactive material. The accident did generate important lessons learned primarily in the areas of driver and emergency response communications. The shipment was comprised of an International Standards Organization (ISO) container on a standard flatbed trailer. The accident caused the low-level waste package to separate from the trailer and come to rest on its top in the median. The impact of the container with the pavement and median inflicted relatively minor damage to the container. The damage was not substantial enough to cause failure of container integrity. The success of the package is attributable to the container design and the packaging procedures used at the Fernald Environmental Management Project for low-level waste shipments. Although the container survived the initial wreck, is was nearly breached when the first responders attempted to open the ISO container. Even though the container was clearly marked and the shipment documentation was technically correct, this information did not identify that the ISO container was the primary containment for the waste. The lessons learned from this accident have DOE complex wide applicability. This paper is intended to describe the accident, subsequent emergency response operations, and the lessons learned from this incident.

Rast, D.M.; Rowe, J.G.; Reichel, C.W.

1995-02-01T23:59:59.000Z

247

MEDICAL IMAGE CONVERSION Peter Stanchev  

E-Print Network (OSTI)

MEDICAL IMAGE CONVERSION Peter Stanchev Institute of Mathematics, Bulgarian Academy of Sciences with the problem of converting medical images from one format to another. In solving it the structure of the most commonly used medical image formats are studied and analysed. A mechanism for medical image file conversion

Stanchev, Peter

248

Visualization components for persistent conversations  

Science Conference Proceedings (OSTI)

An appropriately designed interface to persistent, threaded conversations could reinforce socially beneficial behavior by prominently featuring how frequently and to what degree each user exhibits such behaviors. Based on the data generated by the Netscan ... Keywords: Usenet, asynchronous threaded discussions, newsgroup, persistent conversation, social cyberspaces, visualization

Marc A. Smith; Andrew T. Fiore

2001-03-01T23:59:59.000Z

249

Carbon Capture and Storage  

Science Conference Proceedings (OSTI)

Carbon capture and sequestration (CCS) is the long-term isolation of carbon dioxide from the atmosphere through physical, chemical, biological, or engineered processes. This includes a range of approaches including soil carbon sequestration (e.g., through no-till farming), terrestrial biomass sequestration (e.g., through planting forests), direct ocean injection of CO{sub 2} either onto the deep seafloor or into the intermediate depths, injection into deep geological formations, or even direct conversion of CO{sub 2} to carbonate minerals. Some of these approaches are considered geoengineering (see the appropriate chapter herein). All are considered in the 2005 special report by the Intergovernmental Panel on Climate Change (IPCC 2005). Of the range of options available, geological carbon sequestration (GCS) appears to be the most actionable and economic option for major greenhouse gas reduction in the next 10-30 years. The basis for this interest includes several factors: (1) The potential capacities are large based on initial estimates. Formal estimates for global storage potential vary substantially, but are likely to be between 800 and 3300 Gt of C (3000 and 10,000 Gt of CO{sub 2}), with significant capacity located reasonably near large point sources of the CO{sub 2}. (2) GCS can begin operations with demonstrated technology. Carbon dioxide has been separated from large point sources for nearly 100 years, and has been injected underground for over 30 years (below). (3) Testing of GCS at intermediate scale is feasible. In the US, Canada, and many industrial countries, large CO{sub 2} sources like power plants and refineries lie near prospective storage sites. These plants could be retrofit today and injection begun (while bearing in mind scientific uncertainties and unknowns). Indeed, some have, and three projects described here provide a great deal of information on the operational needs and field implementation of CCS. Part of this interest comes from several key documents written in the last three years that provide information on the status, economics, technology, and impact of CCS. These are cited throughout this text and identified as key references at the end of this manuscript. When coupled with improvements in energy efficiency, renewable energy supplies, and nuclear power, CCS help dramatically reduce current and future emissions (US CCTP 2005, MIT 2007). If CCS is not available as a carbon management option, it will be much more difficult and much more expensive to stabilize atmospheric CO{sub 2} emissions. Recent estimates put the cost of carbon abatement without CCS to be 30-80% higher that if CCS were to be available (Edmonds et al. 2004).

Friedmann, S

2007-10-03T23:59:59.000Z

250

$?- e$ Conversion With Four Generations  

E-Print Network (OSTI)

We study $\\mu - e$ conversion with sequential four generations. A large mass for the fourth generation neutrino can enhance the conversion rate by orders of magnitude. We compare constraints obtained from $\\mu - e$ conversion using experimental bounds on various nuclei with those from $\\mu \\to e \\gamma$ and $\\mu \\to e\\bar e e$. We find that the current bound from $\\mu - e$ conversion with Au puts the most stringent constraint in this model. The relevant flavor changing parameter $\\lambda_{\\mu e} = V^*_{\\mu 4}V_{e4}^{}$ is constrained to be less than $1.6\\times 10^{-5}$ for the fourth generation neutrino mass larger than 100 GeV. Implications for future $\\mu -e$ conversion, $\\mu \\to e\\gamma$ and $\\mu \\to e\\bar e e$ experiments are discussed.

N. G. Deshpande; T. Enkhbat; T. Fukuyama; X. -G. He; L. -H. Tsai; K. Tsumura

2011-06-25T23:59:59.000Z

251

Storage of burned PWR and BWR fuel  

SciTech Connect

In the last few years, credit for fuel burnup has been allowed in the design and criticality safety analysis of high-density spent-fuel storage racks. Design and operating philosophies, however, differ significantly between pressurized water reactor (PWR)- and boiling water reactor (BWR)-type plants because: (1) PWR storage pools generally use soluble boron, which provides backup criticality control under accident conditions; and (2) BWR fuel generally contains gadolinium burnable poison, which results in a characteristically peaked burnup-dependent reactivity variation. In PWR systems, the reactivity decreases monotonically with burnup in a nearly linear fashion (excluding xenon effects), and a two-region concept is feasible. In BWR systems, the reactivity is initially low, increases as fuel burnup progresses, and reaches a maximum at a burnup where the gadolinium is nearly depleted. In any spent-fuel storage rack design, uncertainties due to manufacturing tolerances and in calculational methods must be included to assure that the highest reactivity (k/sub eff/) is less than the 0.95 US Nuclear Regulatory Commission limit. In the absence of definitive critical experiment data with spent fuel, the uncertainty due to depletion calculations must be assumed on the basis of judgment. High-density spent-fuel storage racks may be designed for both PWR and BWR plants with credit for burnup. However, the design must be tailored to each plant with appropriate consideration of the preferences/specifications of the utility operating staff.

Turner, S.E.

1987-01-01T23:59:59.000Z

252

INTEGRATED HYDROGEN STORAGE SYSTEM MODEL  

DOE Green Energy (OSTI)

Hydrogen storage is recognized as a key technical hurdle that must be overcome for the realization of hydrogen powered vehicles. Metal hydrides and their doped variants have shown great promise as a storage material and significant advances have been made with this technology. In any practical storage system the rate of H2 uptake will be governed by all processes that affect the rate of mass transport through the bed and into the particles. These coupled processes include heat and mass transfer as well as chemical kinetics and equilibrium. However, with few exceptions, studies of metal hydrides have focused primarily on fundamental properties associated with hydrogen storage capacity and kinetics. A full understanding of the complex interplay of physical processes that occur during the charging and discharging of a practical storage system requires models that integrate the salient phenomena. For example, in the case of sodium alanate, the size of NaAlH4 crystals is on the order of 300nm and the size of polycrystalline particles may be approximately 10 times larger ({approx}3,000nm). For the bed volume to be as small as possible, it is necessary to densely pack the hydride particles. Even so, in packed beds composed of NaAlH{sub 4} particles alone, it has been observed that the void fraction is still approximately 50-60%. Because of the large void fraction and particle to particle thermal contact resistance, the thermal conductivity of the hydride is very low, on the order of 0.2 W/m-{sup o}C, Gross, Majzoub, Thomas and Sandrock [2002]. The chemical reaction for hydrogen loading is exothermic. Based on the data in Gross [2003], on the order of 10{sup 8}J of heat of is released for the uptake of 5 kg of H{sub 2}2 and complete conversion of NaH to NaAlH{sub 4}. Since the hydride reaction transitions from hydrogen loading to discharge at elevated temperatures, it is essential to control the temperature of the bed. However, the low thermal conductivity of the hydride makes it difficult to remove the heat of reaction, especially in the relatively short target refueling times, see Attachment 3. This document describes a detailed numerical model for general metal hydride beds that couples reaction kinetics with heat and mass transfer, for both hydriding and dehydriding of the bed. The detailed model is part of a comprehensive methodology for the design, evaluation and modification of hydrogen storage systems. In Hardy [2007], scoping models for reaction kinetics, bed geometry and heat removal parameters are discussed. The scoping models are used to perform a quick assessment of storage systems and identify those which have the potential to meet DOE performance targets. The operational characteristics of successful candidate systems are then evaluated with the more detailed models discussed in this document. The detailed analysis for hydrogen storage systems is modeled in either 2 or 3-dimensions, via the general purpose finite element solver COMSOL Multiphysics{reg_sign}. The two-dimensional model serves to provide rapid evaluation of bed configurations and physical processes, while the three-dimensional model, which requires a much longer run time, is used to investigate detailed effects that do not readily lend themselves to two-dimensional representations. The model is general and can be adapted to any geometry or storage media. In this document, the model is applied to a modified cylindrical shell and tube geometry with radial fins perpendicular to the axis, see Figures 4.1-1 and 4.1-2. Sodium alanate, NaAlH{sub 4}, is used as the hydrogen storage medium. The model can be run on any DOS, LINUX or Unix based system.

Hardy, B

2007-11-16T23:59:59.000Z

253

Hydrothermal Energy Conversion Technology  

SciTech Connect

The goal of the Hydrothermal Program is to develop concepts which allow better utilization of geothermal energy to reduce the life-cycle cost of producing electricity from liquid-dominated, hydrothermal resources. Research in the program is currently ongoing in three areas: (1) Heat Cycle Research, which is looking at methods to increase binary plant efficiencies; (2) Materials Development, which is developing materials for use in geothermal associated environments; and (3) Advanced Brine Chemistry, with work taking place in both the brine chemistry modeling area and waste disposal area. The presentations during this session reviewed the accomplishments and activities taking place in the hydrothermal energy conversion program. Lawrence Kukacka, Brookhaven National Laboratory, discussed advancements being made to develop materials for use in geothermal applications. This research has identified a large number of potential materials for use in applications from pipe liners that inhibit scale buildup and reduce corrosion to elastomers for downhole use. Carl J. Bliem, Idaho National Engineering Laboratory, discussed preparations currently underway to conduct field investigations of the condensation behavior of supersaturated turbine expansions. The research will evaluate whether the projected 8% to 10% improvement in brine utilization can be realized by allowing these expansions. Eugene T. Premuzic, Brookhaven National Laboratory, discussed advancements being made using biotechnology for treatment of geothermal residual waste; the various process options were discussed in terms of biotreatment variables. A treatment scenario and potential disposal costs were presented. John H. Weare, University of California, San Diego, discussed the present capabilities of the brine chemistry model he has developed for geothermal applications and the information it can provide a user. This model is available to industry. The accomplishments from the research projects presented in this session have been many. It is hoped that these accomplishments can be integrated into industrial geothermal power plant sites to assist in realizing the goal of reducing the cost of energy produced from the geothermal resource.

Robertson, David W.; LaSala, Raymond J.

1992-03-24T23:59:59.000Z

254

Energy storage for hybrid remote power systems  

DOE Green Energy (OSTI)

Energy storage can be a cost-effective component of hybrid remote power systems. Storage serves the special role of taking advantage of intermittent renewable power sources. Traditionally this role has been played by lead-acid batteries, which have high life-cycle costs and pose special disposal problems. Hydrogen or zinc-air storage technologies can reduce life-cycle costs and environmental impacts. Using projected data for advanced energy storage technologies, LLNL ran an optimization for a hypothetical Arctic community with a reasonable wind resource (average wind speed 8 m/s). These simulations showed the life-cycle annualized cost of the total energy system (electric plus space heating) might be reduced by nearly 40% simply by adding wind power to the diesel system. An additional 20 to 40% of the wind-diesel cost might be saved by adding hydrogen storage or zinc-air fuel cells to the system. Hydrogen produced by electrolysis of water using intermittent, renewable power provides inexpensive long-term energy storage. Conversion back to electricity with fuel cells can be accomplished with available technology. The advantages of a hydrogen electrolysis/fuel cell system include low life-cycle costs for long term storage, no emissions of concern, quiet operation, high reliability with low maintenance, and flexibility to use hydrogen as a direct fuel (heating, transportation). Disadvantages include high capital costs, relatively low electrical turn-around efficiency, and lack of operating experience in utility settings. Zinc-air fuel cells can lower capital and life-cycle costs compared to hydrogen, with most of the same advantages. Like hydrogen systems, zinc-air technology promises a closed system for long-term storage of energy from intermittent sources. The turn around efficiency is expected to exceed 60%, while use of waste heat can potentially increase overall energy efficiency to over 80%.

Isherwood, W., LLNL

1998-03-01T23:59:59.000Z

255

Upcoming Natural Gas Storage Facilities.  

U.S. Energy Information Administration (EIA)

Kentucky Energy Hub Project Orbit Gas Storage Inc KY Leader One Gas Storage Project Peregrine Midstream Partners WY Tricor Ten Section Storage Project

256

Vehicle Technologies Office: Energy Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage to someone by E-mail Share Vehicle Technologies Office: Energy Storage on Facebook Tweet about Vehicle Technologies Office: Energy Storage on Twitter Bookmark...

257

Criticality Safety Evaluation of Hanford Site High Level Waste Storage Tanks  

Science Conference Proceedings (OSTI)

This criticality safety evaluation covers operations for waste in underground storage tanks at the high-level waste tank farms on the Hanford site. This evaluation provides the bases for criticality safety limits and controls to govern receipt, transfer, and long-term storage of tank waste. Justification is provided that a nuclear criticality accident cannot occur for tank farms operations, based on current fissile material and operating conditions.

ROGERS, C.A.

2000-02-17T23:59:59.000Z

258

Instrument Performance Under Severe Accident Conditions: Ways to Acquire Information From Instrumentation Affected by an Accident  

Science Conference Proceedings (OSTI)

Under accident conditions, information is needed for diagnosing plant status and confirming plant responses to mitigative actions. This makes it important to understand how instruments behave in severe accident environments and to find ways to obtain information from the instruments under conditions that can be more severe than their design bases.

1993-12-01T23:59:59.000Z

259

Management and Uses Conversion Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Conversion Conversion Depleted UF6 Conversion DOE is planning to build two depleted UF6 conversion facilities, and site-specific environmental impact statements (EISs) to evaluate project alternatives. The Final Plan for Conversion and the Programmatic EIS The eventual disposition of depleted UF6 remains the subject of considerable interest within the U.S. Congress, and among concerned citizens and other stakeholders. Congress stated its intentions in Public Law (P. L.) 105-204, signed by the President in July 1998. P. L. 105-204 required DOE to develop a plan to build two depleted UF6 conversion facilities, one each at Portsmouth, Ohio, and Paducah, Kentucky. DOE submitted the required plan, Final Plan for the Conversion of Depleted Uranium Hexafluoride, to Congress in July 1999. This document provided a discussion of DOE's technical approach and schedule to implement this project. Although much of the information provided in this report is still valid, a few aspects of this plan have changed since its publication.

260

Carbon Storage Review 2012  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy National Energy Technology Laboratory Carbon Storage R&D Project Review Meeting Developing the Technologies and Building the Infrastructure for CO 2 Storage August 21-23,...

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

NREL: Energy Storage - News  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Storage News Below are news stories related to NREL's energy storage research. August 28, 2013 NREL Battery Calorimeters Win R&D 100 Award The award-wining Isothermal...

262

NETL: Carbon Storage Archive  

NLE Websites -- All DOE Office Websites (Extended Search)

2013 Carbon Storage Newsletter PDF-571KB has been posted. 08.27.2013 Publications August 2013 Carbon Storage Newsletter PDF-1.1MB has been posted. 08.15.2013 News Ancient...

263

SUPERCONDUCTING MAGNETIC ENERGY STORAGE  

E-Print Network (OSTI)

pumped hydro, compressed air, and battery energy storage areto other energy storage sys tem s suc h as pumped hydro andenergy would be $50/MJ whereas the cost of the pumped hydro

Hassenzahl, W.

2011-01-01T23:59:59.000Z

264

Releases of UF{sub 6} to the atmosphere after a potential fire in a cylinder storage yard  

Science Conference Proceedings (OSTI)

Uranium hexafluoride (UF{sub 6}), a toxic material, is stored in just over 6200 cylinders at the K-25 site in Oak Ridge, Tennessee. The safety analysis report (SAR) for cylinder yard storage operations at the plant required the development of accident scenarios for the potential release of UF{sub 6} to the atmosphere. In accordance with DOE standards and guidance, the general approach taken in this SAR was to examine the functions and contents of the cylinder storage yards to determine whether safety-significant hazards were present for workers in the immediate vicinity, workers on-site, the general public off-site, or the environment. and to evaluate the significance of any hazards that were found. A detailed accident analysis was performed to determine a set of limiting accidents that have potential for off-site consequences. One of the limiting accidents identified in the SAR was the rupture of a cylinder engulfed in a fire.

Lombardi, D.A.; Williams, W.R.; Anderson, J.C. [and others

1997-06-01T23:59:59.000Z

265

Energy Storage & Delivery  

Science Conference Proceedings (OSTI)

Energy Storage & Delivery. Summary: Schematic of Membrane Molecular Structure The goal of the project is to develop ...

2013-07-23T23:59:59.000Z

266

Conventional Storage Water Heaters  

Energy.gov (U.S. Department of Energy (DOE))

Conventional storage water heaters remain the most popular type of water heating system for homes and buildings.

267

Barn ConversionBarn Conversion DiscussionDiscussion  

E-Print Network (OSTI)

B.G.S.A.C Stats ·· 2500 square foot insulated pole barn2500 square foot insulated pole barn ·· concrete neededhouse the system needed ·· Is the conversion cost worthIs the conversion cost worth while when compared installedNo vapor barrier installed ·· Rains in barnRains in barn ·· Up to 75 gallons per dayUp to 75

268

Thermal Conversion Process (TCP) Technology  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Changing World Technologies' Changing World Technologies' Thermal Conversion Process Commercial Demonstration Plant DOE/EA 1506 Weld County, Colorado December 2004 U.S. DEPARTMENT OF ENERGY GOLDEN FIELD OFFICE 1617 Cole Boulevard Golden, Colorado 80401 Thermal Conversion Process (TCP) Technology Commercial Demonstration - Weld County, CO TABLE OF CONTENTS Environmental Assessment Thermal Conversion Process (TCP) Technology Commercial Demonstration Project Weld County, Colorado SUMMARY............................................................................................................................. S-1 1.0 INTRODUCTION.........................................................................................................1-1 1.1. National Environmental Policy Act and Related Procedures...........................1-1

269

EPA Redesigns Conversion Certification Policies  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

EPA Redesigns EPA Redesigns Conversion Certification Policies At a recent meeting held in Washington, DC, officials from the U.S. Environmental Protection Agency (EPA) opened dialogue about proposed changes to its emission certification policies that affect alternative fuel vehicles (AFVs). "We are trying to accommo- date the Energy Policy Act (EPAct) and Executive Order requirements while trying to change enforce- ment policies and guidance with respect to conversions," said Rich Ackerman of EPA's Enforcement Office. The meeting, attended by representatives of more than 60 organizations, was held to discuss actions addressing AFV emission certification. Specifically, topics included * Conversion emissions perfor- mance data * Status of environmental laws pertaining to alternative fuel

270

SAF-230DE - Web Based Course: Accident Investigation Overview | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SAF-230DE - Web Based Course: Accident Investigation Overview SAF-230DE - Web Based Course: Accident Investigation Overview SAF-230DE - Web Based Course: Accident Investigation Overview September 18, 2013 - 10:52am Addthis SAF-230DE - Web Based Course: Accident Investigation Overview The Office of Health Safety and Security (HSS) National Training Center (NTC) in collaboration with the HSS Accident Investigation Program (HS-24) has developed and released a course that provides an overview of the fundamentals of accident investigation. This course is intended to meet the every five year refresher training requirement for DOE Federal Accident Investigators under DOE Order 225.1B "Accident Investigations", and serves as an orientation to other DOE Federal Accident Investigation Board Members who need a basic knowledge of

271

PNNL Solving the Energy Storage Challenge | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PNNL Solving the Energy Storage Challenge PNNL Solving the Energy Storage Challenge PNNL Solving the Energy Storage Challenge January 14, 2011 - 12:41pm Addthis PNNL teamed up with Northwest Public Television to produce a video on their effort on energy storage, "Saving the Sun for a Rainy Day." Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs What does this mean for me? In order to maintain reliability from renewables, energy must be stored for when power cannot be generated -- a challenge that PNNL is working on. In conversations about renewable energy sources like solar and wind - whether here at the Energy Department or among industry leaders, scientists and students - energy storage is repeatedly identified as the tipping point between intermittency and reliability.

272

OCEAN THERMAL ENERGY CONVERSION PROGRAMMATIC ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

DOE-EPA Working Group on Ocean TherUial Energy Conversion,Sands, M.D. (editor) Ocean Thermal Energy Conversion (OTEC)r:he comnercialization of ocean thermal energy conversion

Sands, M.Dale

2013-01-01T23:59:59.000Z

273

Ocean Thermal Energy Conversion | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Thermal Energy Conversion Ocean Thermal Energy Conversion August 16, 2013 - 4:22pm Addthis A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in...

274

Alternative Fuels Data Center: Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions Conversions Printable Version Share this resource Send a link to Alternative Fuels Data Center: Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversions on AddThis.com... Vehicle Conversions Photo of converted to run on propane. What kinds of conversions are available? Natural Gas Propane Electric Hybrid Ethanol An aftermarket conversion is a vehicle or engine modified to operate using

275

Alternative Fuels Data Center: Propane Vehicle Conversions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Conversions to someone by E-mail Conversions to someone by E-mail Share Alternative Fuels Data Center: Propane Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Propane Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Propane Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Propane Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Propane Vehicle Conversions on AddThis.com... More in this section... Propane Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Laws & Incentives Propane Vehicle Conversions Related Information Conversion Basics Regulations Vehicle conversions provide alternative fuel options beyond what is

276

Tidal Conversion by Supercritical Topography  

E-Print Network (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of ...

Balmforth, Neil J.

277

Conversion to the Metric System  

U.S. Energy Information Administration (EIA)

Appendix C Conversion to the Metric System Public Law 100418, the Omnibus Trade and Competitiveness Act of 1988, states: It is the declared policy of the United ...

278

Tidal Conversion by Supercritical Topography  

Science Conference Proceedings (OSTI)

Calculations are presented of the rate of energy conversion of the barotropic tide into internal gravity waves above topography on the ocean floor. The ocean is treated as infinitely deep, and the topography consists of periodic obstructions; a ...

Neil J. Balmforth; Thomas Peacock

2009-08-01T23:59:59.000Z

279

Conversion coefficients for superheavy elements  

E-Print Network (OSTI)

In this paper we report on internal conversion coefficients for Z = 111 to Z = 126 superheavy elements obtained from relativistic Dirac-Fock (DF) calculations. The effect of the atomic vacancy created during the conversion process has been taken into account using the so called "Frozen Orbital" approximation. The selection of this atomic model is supported by our recent comparison of experimental and theoretical conversion coefficients across a wide range of nuclei. The atomic masses, valence shell electron configurations, and theoretical atomic binding energies required for the calculations were adopted from a critical evaluation of the published data. The new conversion coefficient data tables presented here cover all atomic shells, transition energies from 1 keV up to 6000 keV, and multipole orders of 1 to 5. A similar approach was used in our previous calculations [1] for Z = 5 - 110.

T. Kibdi; M. B. Trzhaskovskaya; M. Gupta; A. E. Stuchbery

2011-03-03T23:59:59.000Z

280

Cosmopolitanism - Conversation with Stuart Hall  

E-Print Network (OSTI)

Conversation between Stuart Hall and Pnina Werbner on the theme of Cosmopolitanism (to be shown at the Association of Social Anthropologists Silver Jubilee conference in 2006), in March 2006...

Hall, Stuart

2006-09-27T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Unsupervised modeling of Twitter conversations  

Science Conference Proceedings (OSTI)

We propose the first unsupervised approach to the problem of modeling dialogue acts in an open domain. Trained on a corpus of noisy Twitter conversations, our method discovers dialogue acts by clustering raw utterances. Because it accounts for the sequential ...

Alan Ritter; Colin Cherry; Bill Dolan

2010-06-01T23:59:59.000Z

282

Biological conversion of synthesis gas  

DOE Green Energy (OSTI)

A continuous stirred tank reactor with and without sulfur recovery has been operated using Chlorobium thiosulfatophilum for the conversion of H[sub 2]S to elemental sulfur. In operating the reactor system with sulfur recovery, a gas retention time of 40 min was required to obtain a 100 percent conversion of H[sub 2]S to elemental sulfur. Essentially no SO[sub 4][sup 2[minus

Clausen, E.C.

1993-04-10T23:59:59.000Z

283

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Sub-committee Storage Sub-committee 2012 Work Plan Confidential 1 2012 Storage Subcommittee Work Plan * Report to Congress. (legislative requirement) - Review existing and projected research and funding - Review existing DOE, Arpa-e projects and the OE 5 year plan - Identify gaps and recommend additional topics - Outline distributed (review as group) * Develop and analysis of the need for large scale storage deployment (outline distributed again) * Develop analysis on regulatory issues especially valuation and cost recovery Confidential 2 Large Scale Storage * Problem Statement * Situation Today * Benefits Analysis * Policy Issues * Technology Gaps * Recommendations * Renewables Variability - Reserves and capacity requirements - Financial impacts - IRC Response to FERC NOI and update

284

EMERGENCY RESPONSE TO A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Emer Emer Emer Emer Emer Emergency Response to a T gency Response to a T gency Response to a T gency Response to a T gency Response to a Transportation ransportation ransportation ransportation ransportation Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material Accident Involving Radioactive Material DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond the scope of this video and requires either additional

285

Severe accident testing of a personnel airlock  

Science Conference Proceedings (OSTI)

Sandia National Laboratories (Sandia) is investigating the leakage potential of mechanical penetrations as part of a research program on containment integrity under severe accident loads for the US Nuclear Regulatory Commission (NRC). Barnes et al. (1984) and Shackelford et al. (1985) identified leakage from personnel airlocks as an important failure mode of containments subject to severe accident loads. However, these studies were based on relatively simple analysis methods. The complex structural interaction between the door, gasket, and bulkhead in personnel airlocks makes analytical evaluation of leakage difficult. In order to provide data to validate methods for evaluating the leakage potential, a full-size personnel airlock was subject to simulated severe accident loads consisting of pressure and temperature up to 300 psig and 800/degree/F. The test was conducted at Chicago Bridge and Iron under contract to Sandia. Julien and Peters (1989) provide a detailed report on the test program. 6 refs., 5 figs.

Clauss, D.B.; Parks, M.B.; Julien, J.T.; Peters, S.W.

1989-01-01T23:59:59.000Z

286

Assessment of CRBR core disruptive accident energetics  

Science Conference Proceedings (OSTI)

The results of an independent assessment of core disruptive accident energetics for the Clinch River Breeder Reactor are presented in this document. This assessment was performed for the Nuclear Regulatory Commission under the direction of the CRBR Program Office within the Office of Nuclear Reactor Regulation. It considered in detail the accident behavior for three accident initiators that are representative of three different classes of events; unprotected loss of flow, unprotected reactivity insertion, and protected loss of heat sink. The primary system's energetics accommodation capability was realistically, yet conservatively, determined in terms of core events. This accommodation capability was found to be equivalent to an isentropic work potential for expansion to one atmosphere of 2550 MJ or a ramp rate of about 200 $/s applied to a classical two-phase disassembly.

Theofanous, T.G.; Bell, C.R.

1984-03-01T23:59:59.000Z

287

A Review of Criticality Accidents 2000 Revision  

SciTech Connect

Criticality accidents and the characteristics of prompt power excursions are discussed. Sixty accidental power excursions are reviewed. Sufficient detail is provided to enable the reader to understand the physical situation, the chemistry and material flow, and when available the administrative setting leading up to the time of the accident. Information on the power history, energy release, consequences, and causes are also included when available. For those accidents that occurred in process plants, two new sections have been included in this revision. The first is an analysis and summary of the physical and neutronic features of the chain reacting systems. The second is a compilation of observations and lessons learned. Excursions associated with large power reactors are not included in this report.

Thomas P. McLaughlin; Shean P. Monahan; Norman L. Pruvost; Vladimir V. Frolov; Boris G. Ryazanov; Victor I. Sviridov

2000-05-01T23:59:59.000Z

288

EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

60: Depleted Uranium Oxide Conversion Product at the 60: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site EIS-0360: Depleted Uranium Oxide Conversion Product at the Portsmouth, Ohio Site Summary This site-specific EIS analyzes the construction, operation, maintenance, and decontamination and decommissioning of the proposed depleted uranium hexafluoride (DUF6) conversion facility at three alternative locations within the Portsmouth site; transportation of all cylinders (DUF6, enriched, and empty) currently stored at the East Tennessee Technology Park (ETTP) near Oak Ridge, Tennessee, to Portsmouth; construction of a new cylinder storage yard at Portsmouth (if required) for ETTP cylinders; transportation of depleted uranium conversion products and waste materials to a disposal facility; transportation and sale of the hydrogen fluoride

289

FCT Hydrogen Storage: Hydrogen Storage R&D Activities  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage R&D Activities Hydrogen Storage R&D Activities to someone by E-mail Share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Facebook Tweet about FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Twitter Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Google Bookmark FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Delicious Rank FCT Hydrogen Storage: Hydrogen Storage R&D Activities on Digg Find More places to share FCT Hydrogen Storage: Hydrogen Storage R&D Activities on AddThis.com... Home Basics Current Technology DOE R&D Activities National Hydrogen Storage Compressed/Liquid Hydrogen Tanks Testing and Analysis Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards

290

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 612 (A612) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2006). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., drum crushing, size reduction, and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A612 is located in the southeast quadrant of LLNL. The A612 fenceline is approximately 220 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A612 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6. This Introduction to the WASTE STORAGE FACILITIES TSRs is not part of the TSR limits or conditions and contains no requirements related to WASTE STORAGE FACILITIES operations or to the safety analyses of the DSA.

Larson, H L

2007-09-07T23:59:59.000Z

291

Chemical Storage-Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage - Storage - Overview Ali T-Raissi, FSEC Hydrogen Storage Workshop Argonne National Laboratory, Argonne, Illinois August 14-15, 2002 Hydrogen Fuel - Attributes * H 2 +½ O 2 → H 2 O (1.23 V) * High gravimetric energy density: 27.1 Ah/g, based on LHV of 119.93 kJ/g * 1 wt % = 189.6 Wh/kg (0.7 V; i.e. η FC = 57%) * Li ion cells: 130-150 Wh/kg Chemical Hydrides - Definition * They are considered secondary storage methods in which the storage medium is expended - primary storage methods include reversible systems (e.g. MHs & C-nanostructures), GH 2 & LH 2 storage Chemical Hydrides - Definition (cont.) * The usual chemical hydride system is reaction of a reactant containing H in the "-1" oxidation state (hydride) with a reactant containing H in the "+1" oxidation

292

NETL: Carbon Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Storage Storage Technologies Carbon Storage (formerly referred to as the "Carbon Sequestration Program") Program Overview For quick navigation of NETL's Carbon Storage Program website, please click on the image. NETL's Carbon Storage Program Fossil fuels are considered the most dependable, cost-effective energy source in the world. The availability of these fuels to provide clean, affordable energy is essential for domestic and global prosperity and security well into the 21st century. However, a balance is needed between energy security and concerns over the impacts of concentrations of greenhouse gases (GHGs) in the atmosphere - particularly carbon dioxide (CO2). NETL's Carbon Storage Program is developing a technology portfolio of safe, cost-effective, commercial-scale CO2 capture, storage, and mitigation

293

Fast Conversion Algorithms for Orthogonal Polynomials - Computer ...  

E-Print Network (OSTI)

Nov 13, 2008 ... a known conversion algorithm from an arbitrary orthogonal basis to the ... Fast algorithms, transposed algorithms, basis conversion, orthogonal.

294

Photocatalytic Conversion of Carbon Dioxide to Methanol.  

E-Print Network (OSTI)

??The photocatalytic conversion of carbon dioxide (CO2) to methanol was investigated. The procedure for the carbon dioxide conversion was carried out using a small scale (more)

Okpo, Emmanuel

2009-01-01T23:59:59.000Z

295

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Conversion to someone by E-mail Share Vehicle Technologies Office: Solid State Energy Conversion on Facebook Tweet about Vehicle Technologies Office: Solid State Energy...

296

Vehicle Technologies Office: Solid State Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid State Energy Conversion The Solid State Energy Conversion R&D activity is focused on developing advanced thermoelectric technologies for utilizing engine waste heat by...

297

Documents: Disposal of DUF6 Conversion Products  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion Products Search Documents: Search PDF Documents View a list of all documents Disposal of DUF6 Conversion Products PDF Icon Engineering Analysis for Disposal of...

298

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Thermal Energy Conversion A process called ocean thermal energy conversion (OTEC) uses the heat energy stored in the Earth's oceans to generate electricity. OTEC works best when...

299

Accident progression event tree analysis for postulated severe accidents at N Reactor  

SciTech Connect

A Level II/III probabilistic risk assessment (PRA) has been performed for N Reactor, a Department of Energy (DOE) production reactor located on the Hanford reservation in Washington. The accident progression analysis documented in this report determines how core damage accidents identified in the Level I PRA progress from fuel damage to confinement response and potential releases the environment. The objectives of the study are to generate accident progression data for the Level II/III PRA source term model and to identify changes that could improve plant response under accident conditions. The scope of the analysis is comprehensive, excluding only sabotage and operator errors of commission. State-of-the-art methodology is employed based largely on the methods developed by Sandia for the US Nuclear Regulatory Commission in support of the NUREG-1150 study. The accident progression model allows complex interactions and dependencies between systems to be explicitly considered. Latin Hypecube sampling was used to assess the phenomenological and systemic uncertainties associated with the primary and confinement system responses to the core damage accident. The results of the analysis show that the N Reactor confinement concept provides significant radiological protection for most of the accident progression pathways studied.

Wyss, G.D.; Camp, A.L.; Miller, L.A.; Dingman, S.E.; Kunsman, D.M. (Sandia National Labs., Albuquerque, NM (USA)); Medford, G.T. (Science Applications International Corp., Albuquerque, NM (USA))

1990-06-01T23:59:59.000Z

300

LESSONS LEARNED FROM A RECENT LASER ACCIDENT  

SciTech Connect

A graduate student received a laser eye injury from a femtosecond Ti:sapphire laser beam while adjusting a polarizing beam splitter optic. The direct causes for the accident included failure to follow safe alignment practices and failure to wear the required laser eyewear protection. Underlying root causes included inadequate on-the-job training and supervision, inadequate adherence to requirements, and inadequate appreciation for dimly visible beams outside the range of 400-700nm. This paper describes how the accident occurred, discusses causes and lessons learned, and describes corrective actions being taken.

Woods, Michael; /SLAC

2011-01-26T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Merchant Commodity Storage and Term Structure Model Error  

E-Print Network (OSTI)

Merchants operations involves valuing and hedging the cash flows of commodity and energy conversion assets as real options based on stochastic models that inevitably embed model error. In this paper we quantify how empirically calibrated model errors about the futures price term structure affect the valuation and hedging of commodity storage assets, specifically the storage of natural gas, an important energy source. We also explore ways to mitigate the impact of these errors. Our analysis demonstrates the differential impact of term structure model error on natural gas storage valuation versus hedging. We also propose an effective approach to deal with the negative effect of such model error on factor hedging, a specific hedging approach. More generally, our work suggests managerial principles for option valuation and hedging in the presence of term structure model error. These principles should have relevance for the merchant management of other commodity conversion assets and for the management of financial options that also depend on term structure dynamics

Nicola Secom; Guoming Lai; Franois Margot; Alan Scheller-wolf

2011-01-01T23:59:59.000Z

302

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system is scheduled to be on.  

E-Print Network (OSTI)

East Bank District Heating-to-Cooling Conversion Plan Check the date your building's cooling system Coal Storage Building 39 NA Cooke Hall 56 Donhowe Building 044 East Gateway District Steam Distr. 199

Webb, Peter

303

Accident Investigation of the Fall Injury at the Savannah River...  

NLE Websites -- All DOE Office Websites (Extended Search)

U.S. Department of Energy Office of Environmental Management Accident Investigation Report Fall Injury Accident at the Savannah River Site on July 1, 2011 August 8, 2011 Disclaimer...

304

Double contingency controls in the pit disassembly and conversion facility  

Science Conference Proceedings (OSTI)

A Pit Disassembly and Conversion Facility (PDCF) will be built and operated at DOE'S Savannah River Site (SRS) in South Carolina. The facility will process over three metric tons of plutonium per year. There will be a significant amount of special nuclear material (SNM) moving through the various processing modules in the facility, and this will obviously require well-designed engineering controls to prevent criticality accidents. The PDCF control system will interlock glovebox entry doors closed if the correct amount of SNM has not been removed from the exit enclosure. These same engineering controls will also be used to verify that only plutonium goes to plutonium processing gloveboxes, enriched uranium goes to enriched uranium processing, and that neither goes into non-SNM processing gloveboxes.

Christensen, L. (Lowell); Brady-Raap, M. (Michaele)

2002-01-01T23:59:59.000Z

305

Arrival condition of spent fuel after storage, handling, and transportation  

Science Conference Proceedings (OSTI)

This report presents the results of a study conducted to determine the probable arrival condition of spent light-water reactor (LWR) fuel after handling and interim storage in spent fuel storage pools and subsequent handling and accident-free transport operations under normal or slightly abnormal conditions. The objective of this study was to provide information on the expected condition of spent LWR fuel upon arrival at interim storage or fuel reprocessing facilities or at disposal facilities if the fuel is declared a waste. Results of a literature survey and data evaluation effort are discussed. Preliminary threshold limits for storing, handling, and transporting unconsolidated spent LWR fuel are presented. The difficulty in trying to anticipate the amount of corrosion products (crud) that may be on spent fuel in future shipments is also discussed, and potential areas for future work are listed. 95 references, 3 figures, 17 tables.

Bailey, W.J.; Pankaskie, P.J.; Langstaff, D.C.; Gilbert, E.R.; Rising, K.H.; Schreiber, R.E.

1982-11-01T23:59:59.000Z

306

Uncertainty Assessments in Severe Nuclear Accident Scenarios  

Science Conference Proceedings (OSTI)

Managing uncertainties in industrial systems is a daily challenge to ensure improved design, robust operation, accountable performance and responsive risk control. This paper aims to illustrate the different depth analyses that the uncertainty software ... Keywords: Monte Carlo simulation, nuclear power plant, sensitivity analysis, severe accident, uncertainty

Bertrand Iooss; Fabrice Gaudier; Michel Marques; Bertrand Spindler; Bruno Tourniaire

2009-09-01T23:59:59.000Z

307

Blasting practices and explosives accidents in Utah coal mines  

SciTech Connect

Practices in use in Utah are commended and accidents incident to blasting are reviewed with suggestions as to future avoidance.

Parker, D.J.

1935-01-01T23:59:59.000Z

308

RECENT LASER ACCIDENTS AT DEPARTMENT OF ENERGY LABORATORIES  

SciTech Connect

Recent laser accidents and incidents at research laboratories across the Department of Energy complex are reviewed in this paper. Factors that contributed to the accidents are examined. Conclusions drawn from the accident reports are summarized and compared. Control measures that could have been implemented to prevent the accidents will be summarized and compared. Recommendations for improving laser safety programs are outlined and progress toward achieving them are summarized.

ODOM, CONNON R. [Los Alamos National Laboratory

2007-02-02T23:59:59.000Z

309

Accident Investigation and Materials Failure Analysis at the ...  

Science Conference Proceedings (OSTI)

Both are independent federal agencies charged with investigating transportation accidents in all modes, including aviation, railroad, highway, marine, pipeline,...

310

DOE O 225.1B, Accident Investigations  

Directives, Delegations, and Requirements

This Order prescribes organizational responsibilities, authorities, and requirements for conducting investigations of certain accidents occurring at DOE sites, ...

2011-03-04T23:59:59.000Z

311

Technical and economic assessment of three solar conversion technologies  

DOE Green Energy (OSTI)

Photoelectric energy conversion, solar electric thermal conversion, and direct solar thermal conversion are examined from the point of view of technical and economic viability. The key conclusions of this examination are that all three of these solar thermal conversion technologies are technically viable today. However, only the direct solar thermal heat applications appear to be close to economically viability. If it is assumed that a lead time of approximately 25 years is required before a technical innovation can be placed on the market in a large scale, only direct applications of solar thermal energy, such as for heating water or providing industrial process heat, appear to have the potential of making major market penetration in this century. At the present time, the useful energy delivered from an industrial process heat system is within a factor of two of competing with systems using electric resistance heating or fossil fuel such as oil or coal. The technologies for direct application of solar thermal energy are mature and within technical and economical reach of mass production and installation. There exists no economically viable energy storage system compatible with industrial heat application temperatures, but a large penetration of the market appears feasible by designing solar systems that do not exceed the minimal load requirement of the industrial process and thereby utilize all available thermal energy directly.

Kreith, F.

1979-01-01T23:59:59.000Z

312

Final report on the development of a 2 MW/10 second battery energy storage system for power disturbance protection  

DOE Green Energy (OSTI)

Voltage sags, swells and momentary power interruptions lasting a few cycles to several seconds are common disturbances on utility power distribution systems. These disturbances are a result of normal utility recloser switching activity due in part to distribution system short circuits from natural causes such as lightning, rodents, traffic accidents, and current overloads. Power disturbances pose serious problems for many customers with critical, voltage sensitive equipment. Faults can interrupt a manufacturing process, cause PLC`s to initialize their programmed logic and restart equipment out of sequence, create computer data errors, interrupt communications, lockup PC keyboards and cause equipment to malfunction. These momentary disturbances result in billions of dollars of lost productivity annually due to downtime, cleanup, lost production and the loss of customer confidence in the business. This report describes prototype development work for a factory assembled 2 MW/10 Second Battery Energy Storage System. The system design includes (1) a modular battery energy storage system comprised of several strings of batteries-each string provided with an integral Power Conversion System (PCS), (2) an Electronic Selector Device (ESD) comprised of a solid state static switch with sensing and power switching controls, and utility interconnection termination bus bars, and (3) a separate isolation transformer to step-up PCS output voltage to interface directly with the distribution transformer serving the industrial or commercial customer. The system monitors the utility distribution system voltage for voltage sags, swells, and interruptions, switches the customer`s critical loads from utility power to the energy stored in the systems batteries and provides up to 2 MVA until the disturbance clears or up to 10 seconds. Once the ESD sensing circuits have confirmed that the utility is again stable, it seamlessly returns the critical load to the utility. 22 figs., 1 tab.

NONE

1996-12-11T23:59:59.000Z

313

Energy Conversion Photovoltaic, Concentrating Solar Power, and ...  

Science Conference Proceedings (OSTI)

About this Symposium. Meeting, Materials Science & Technology 2012. Symposium, Energy Conversion Photovoltaic, Concentrating Solar Power, and ...

314

Biochemical Conversion Pilot Plant (Fact Sheet)  

Science Conference Proceedings (OSTI)

This fact sheet provides information about Biochemical Conversion Pilot Plant capabilities and resources at NREL.

Not Available

2012-06-01T23:59:59.000Z

315

Final safety analysis report for the irradiated fuels storage facility  

SciTech Connect

A fuel storage facility has been constructed at the Idaho Chemical Processing Plant to provide safe storage for spent fuel from two commercial HTGR's, Fort St. Vrain and Peach Bottom, and from the Rover nuclear rocket program. The new facility was built as an addition to the existing fuel storage basin building to make maximum use of existing facilities and equipment. The completed facility provides dry storage for one core of Peach Bottom fuel (804 elements), 1$sup 1$/$sub 2$ cores of Fort St. Vrain fuel (2200 elements), and the irradiated fuel from the 20 reactors in the Rover program. The facility is designed to permit future expansion at a minimum cost should additional storage space for graphite-type fuels be required. A thorough study of the potential hazards associated with the Irradiated Fuels Storage Facility has been completed, indicating that the facility is capable of withstanding all credible combinations of internal accidents and pertinent natural forces, including design basis natural phenomena of a 10,000 year flood, a 175-mph tornado, or an earthquake having a bedrock acceleration of 0.33 g and an amplification factor of 1.3, without a loss of integrity or a significant release of radioactive materials. The design basis accident (DBA) postulated for the facility is a complete loss of cooling air, even though the occurrence of this situation is extremely remote, considering the availability of backup and spare fans and emergency power. The occurrence of the DBA presents neither a radiation nor an activity release hazard. A loss of coolant has no effect upon the fuel or the facility other than resulting in a gradual and constant temperature increase of the stored fuel. The temperature increase is gradual enough that ample time (28 hours minimum) is available for corrective action before an arbitrarily imposed maximum fuel centerline temperature of 1100$sup 0$F is reached. (LK)

Bingham, G.E.; Evans, T.K.

1976-01-01T23:59:59.000Z

316

Heat storage duration  

DOE Green Energy (OSTI)

Both the amount and duration of heat storage in massive elements of a passive building are investigated. Data taken for one full winter in the Balcomb solar home are analyzed with the aid of sub-system simulation models. Heat storage duration is tallied into one-day intervals. Heat storage location is discussed and related to overall energy flows. The results are interpreted and conclusions drawn.

Balcomb, J.D.

1981-01-01T23:59:59.000Z

317

Frequency Conversion of Entangled State  

E-Print Network (OSTI)

The quantum characteristics of sum-frequency process in an optical cavity with an input signal optical beam, which is a half of entangled optical beams, are analyzed. The calculated results show that the quantum properties of the signal beam can be maintained after its frequency is conversed during the intracavity nonlinear optical interaction. The frequency-conversed output signal beam is still in an entangled state with the retained other half of initial entangled beams. The resultant quantum correlation spectra and the parametric dependences of the correlations on the initial squeezing factor, the optical losses and the pump power of the sum-frequency cavity are calculated. The proposed system for the frequency conversion of entangled state can be used in quantum communication network and the calculated results can provide direct references for the design of experimental systems.

Aihong Tan; Xiaojun Jia; Changde Xie

2006-03-01T23:59:59.000Z

318

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the Documented Safety Analysis for the Waste Storage Facilities (DSA) (LLNL 2009). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.4.

Laycak, D T

2010-03-05T23:59:59.000Z

319

Technical Safety Requirements for the Waste Storage Facilities  

SciTech Connect

This document contains Technical Safety Requirements (TSR) for the Radioactive and Hazardous Waste Management (RHWM) WASTE STORAGE FACILITIES, which include Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area at Lawrence Livermore National Laboratory (LLNL). The TSRs constitute requirements regarding the safe operation of the WASTE STORAGE FACILITIES. These TSRs are derived from the 'Documented Safety Analysis for the Waste Storage Facilities' (DSA) (LLNL 2008). The analysis presented therein determined that the WASTE STORAGE FACILITIES are low-chemical hazard, Hazard Category 2 non-reactor nuclear facilities. The TSRs consist primarily of inventory limits and controls to preserve the underlying assumptions in the hazard and accident analyses. Further, appropriate commitments to safety programs are presented in the administrative controls sections of the TSRs. The WASTE STORAGE FACILITIES are used by RHWM to handle and store hazardous waste, TRANSURANIC (TRU) WASTE, LOW-LEVEL WASTE (LLW), mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL as well as small amounts from other U.S. Department of Energy (DOE) facilities, as described in the DSA. In addition, several minor treatments (e.g., size reduction and decontamination) are carried out in these facilities. The WASTE STORAGE FACILITIES are located in two portions of the LLNL main site. A625 is located in the southeast quadrant of LLNL. The A625 fenceline is approximately 225 m west of Greenville Road. The DWTF Storage Area, which includes Building 693 (B693), Building 696 Radioactive Waste Storage Area (B696R), and associated yard areas and storage areas within the yard, is located in the northeast quadrant of LLNL in the DWTF complex. The DWTF Storage Area fenceline is approximately 90 m west of Greenville Road. A625 and the DWTF Storage Area are subdivided into various facilities and storage areas, consisting of buildings, tents, other structures, and open areas as described in Chapter 2 of the DSA. Section 2.4 of the DSA provides an overview of the buildings, structures, and areas in the WASTE STORAGE FACILITIES, including construction details such as basic floor plans, equipment layout, construction materials, controlling dimensions, and dimensions significant to the hazard and accident analysis. Chapter 5 of the DSA documents the derivation of the TSRs and develops the operational limits that protect the safety envelope defined for the WASTE STORAGE FACILITIES. This TSR document is applicable to the handling, storage, and treatment of hazardous waste, TRU WASTE, LLW, mixed waste, California combined waste, nonhazardous industrial waste, and conditionally accepted waste received or generated in the WASTE STORAGE FACILITIES. Section 5, Administrative Controls, contains those Administrative Controls necessary to ensure safe operation of the WASTE STORAGE FACILITIES. Programmatic Administrative Controls are in Section 5.6.

Laycak, D T

2008-06-16T23:59:59.000Z

320

Argonne Chemical Sciences & Engineering - Catalysis & Energy Conversion  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen and Fuel Cell Materials Hydrogen and Fuel Cell Materials * Members * Contact * Publications * Overview * Alternative Electrocatalysts * Electrocatalyst Durability * Hydrogen Storage * Electrocatalyst Degradation Catalysis & Energy Conversion Home Hydrogen and Fuel Cell Materials Polymer electrolyte fuel cell (PEFC) systems are promising alternatives to conventional power systems for transportation, portable, and stationary applications due to their high efficiency of converting fuel to electricity, low emissions, and low operating temperatures. Three major issues for PEFC systems, especially for portable and transportation use, are cost, lifetime, and fuel storage, with the fuel of choice being hydrogen. Argonne's Hydrogen and Fuel Cell Materials group has active research projects in these three areas, to enable the use of this promising technology in a variety of applications.

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

NETL: Carbon Storage - Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Infrastructure Infrastructure Carbon Storage Infrastructure The Infrastructure Element of DOE's Carbon Storage Program is focused on research and development (R&D) initiatives to advance geologic CO2 storage toward commercialization. DOE determined early in the program's development that addressing CO2 mitigation on a regional level is the most effective way to address differences in geology, climate, population density, infrastructure, and socioeconomic development. This element includes the following efforts designed to support the development of regional infrastructure for carbon capture and storage (CCS). Click on Image to Navigate Infrastructure Content on this page requires a newer version of Adobe Flash Player. Get Adobe Flash player Regional Carbon Sequestration Partnerships (RCSP) - This

322

Other Innovative Storage Systems  

Science Conference Proceedings (OSTI)

High Efficiency Electrical Energy Storage Using Reversible Solid Oxide Cells: Scott Barnett1; Gareth Hughes1; Kyle Yakal-Kremski1; Zhan Gao1; 1 Northwestern...

323

NREL: Energy Storage - Webmaster  

NLE Websites -- All DOE Office Websites (Extended Search)

to reply. Your name: Your email address: Your message: Send Message Printable Version Energy Storage Home About the Project Technology Basics Research & Development Awards &...

324

NREL: Energy Storage - Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Resources The National Renewable Energy Laboratory's (NREL) Energy Storage team and partners work within a variety of programs that have created test manuals to establish standard...

325

Advanced Energy Storage Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Advanced Energy Storage Publications Reports: Advanced Technology Development Program For Lithium-Ion Batteries: Gen 2 Performance Evaluation Final Report Advanced Technology...

326

Storage Sub-committee  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gaps - Existing R&D and pilot programs - CAES - Controllable pumping - Off shore (energy island, etc) - Gravity systems - Thermal storage Confidential 3 Report to DOE ...

327

Carbon Storage Program  

NLE Websites -- All DOE Office Websites (Extended Search)

fuel power plants as viable, clean sources of electric power. The program is focused on developing technologies that can achieve 99 percent of carbon dioxide (CO 2 ) storage...

328

HEATS: Thermal Energy Storage  

SciTech Connect

HEATS Project: The 15 projects that make up ARPA-Es HEATS program, short for High Energy Advanced Thermal Storage, seek to develop revolutionary, cost-effective ways to store thermal energy. HEATS focuses on 3 specific areas: 1) developing high-temperature solar thermal energy storage capable of cost-effectively delivering electricity around the clock and thermal energy storage for nuclear power plants capable of cost-effectively meeting peak demand, 2) creating synthetic fuel efficiently from sunlight by converting sunlight into heat, and 3) using thermal energy storage to improve the driving range of electric vehicles (EVs) and also enable thermal management of internal combustion engine vehicles.

None

2012-01-01T23:59:59.000Z

329

H 2 Storage Projects  

Science Conference Proceedings (OSTI)

... 10. Titanium-decorated carbon nanotubes: a potential high-capacity hydrogen storage madium. ... 3. Exohydrogenated single-wall carbon nanotubes. ...

330

Natural Gas Storage Valuation .  

E-Print Network (OSTI)

??In this thesis, one methodology for natural gas storage valuation is developed and two methodologies are improved. Then all of the three methodologies are applied (more)

Li, Yun

2007-01-01T23:59:59.000Z

331

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Does CCS really make a difference for the environment? Carbon capture and storage (CCS) is one of several options, including the use of renewables, nuclear energy, alternative...

332

Energy Storage Systems 2007 Peer Review - International Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Energy International Energy Storage Program Presentations Energy Storage Systems 2007 Peer Review - International Energy Storage Program Presentations The U.S. DOE Energy Storage Systems Program (ESS) held an annual peer review on September 27, 2007 in San Francisco, CA. Eighteen presentations were divided into categories; those related to international energy storage programs are below. Other presentation categories were: Economics - Benefit Studies and Environment Benefit Studies Utility & Commercial Applications of Advanced Energy Storage Systems Power Electronics Innovations in Energy Storage Systems ESS 2007 Peer Review - DOE-CEC Energy Storage Program FY07 Projects - Daniel Borneo, SNL.pdf ESS 2007 Peer Review - Joint NYSERDA-DOE Energy Storage Initiative Projects

333

Mass and Lifetime Measurements in Storage Rings  

Science Conference Proceedings (OSTI)

Masses of nuclides covering a large area of the chart of nuclides can be measured in storage rings where many ions circulate at the same time. In this paper the recent progress in the analysis of Schottky mass spectrometry data is presented as well as the technical improvements leading to higher accuracy for isochronous mass measurements with a time-of-flight detector. The high sensitivity of the Schottky method down to single ions allows to measure lifetimes of nuclides by observing mother and daughter nucleus simultaneously. In this way we investigated the decay of bare and H-like 140Pr. As we could show the lifetime can be even shortened compared to those of atomic nuclei despite of a lower number of electrons available for internal conversion or electron capture.All these techniques will be implemented with further improvements at the storage rings of the new FAIR facility at GSI in the future.

Weick, H.; Beckert, K.; Beller, P.; Bosch, F.; Dimopoulou, C.; Kozhuharov, C.; Kurcewicz, J.; Mazzocco, M.; Nociforo, C.; Nolden, F.; Steck, M.; Sun, B.; Winkler, M. [Gesellschaft fuer Schwerionenforschung mbH, 64291 Darmstadt (Germany); Brandau, C.; Chen, L.; Geissel, H.; Knoebel, R.; Litvinov, S. A.; Litvinov, Yu. A.; Scheidenberger, C. [Gesellschaft fuer Schwerionenforschung mbH, 64291 Darmstadt (Germany); II. Phys. Institut, Justus-Liebig-Universitaet Giessen, 35392 Giessen (Germany)] (and others)

2007-05-22T23:59:59.000Z

334

Health Risks Associated with Disposal of Depleted Uranium  

NLE Websites -- All DOE Office Websites (Extended Search)

Disposal DUF6 Health Risks line line Accidents Storage Conversion Manufacturing Disposal Transportation Disposal of Depleted Uranium A discussion of risks associated with disposal...

335

Power conversion from environmentally scavenged energy sources.  

DOE Green Energy (OSTI)

As the power requirements for modern electronics continue to decrease, many devices which were once dependent on wired power are now being implemented as portable devices operating from self-contained power sources. The most prominent source of portable power is the electrochemical battery, which converts chemical energy into electricity. However, long lasting batteries require large amounts of space for chemical storage, and inevitably require replacement when the chemical reaction no longer takes place. There are many transducers and scavenging energy sources (SES) that are able to exploit their environment to generate low levels of electrical power over a long-term time period, including photovoltaic cells, thermoelectric generators, thermionic generators, and kinetic/piezoelectric power generators. This generated power is sustainable as long as specific environmental conditions exist and also does not require the large volume of a long lifetime battery. In addition to the required voltage generation, stable power conversion requires excess energy to be efficiently stored in an ultracapacitor or similar device and monitoring control algorithms to be implemented, while computer modeling and simulation can be used to complement experimental testing. However, building an efficient and stable power source scavenged from a varying input source is challenging.

Druxman, Lee Daniel

2007-09-01T23:59:59.000Z

336

NETL: Carbon Storage - Reference Shelf  

NLE Websites -- All DOE Office Websites (Extended Search)

Carbon Storage > Reference Shelf Carbon Storage > Reference Shelf Carbon Storage Reference Shelf Below are links to Carbon Storage Program documents and reference materials. Each of the 10 categories has a variety of documents posted for easy access to current information - just click on the category link to view all related materials. RSS Icon Subscribe to the Carbon Storage RSS Feed. Carbon Storage Collage 2012 Carbon Utilization and Storage Atlas IV Carbon Sequestration Project Portfolio DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap Public Outreach and Education for Carbon Storage Projects Carbon Storage Technology Program Plan Carbon Storage Newsletter Archive Impact of the Marcellus Shale Gas Play on Current and Future CCS Activities Site Screening, Selection, and Initial Characterization for Storage of CO2 in Deep Geologic Formations Carbon Storage Systems and Well Management Activities Monitoring, Verification, and Accounting of CO2 Stored in Deep Geologic Formations

337

REAC/TS Radiation Accident Registry: An Overview  

Science Conference Proceedings (OSTI)

Over the past four years, REAC/TS has presented a number of case reports from its Radiation Accident Registry. Victims of radiological or nuclear incidents must meet certain dose criteria for an incident to be categorized as an accident and be included in the registry. Although the greatest numbers of accidents in the United States that have been entered into the registry involve radiation devices, the greater percentage of serious accidents have involved sealed sources of one kind or another. But if one looks at the kinds of accident scenarios that have resulted in extreme consequence, i.e., death, the greater share of deaths has occurred in medical settings.

Doran M. Christensen, DO, REAC /TS Associate Director and Staff Physician Becky Murdock, REAC/TS Registry and Health Physics Technician

2012-12-12T23:59:59.000Z

338

Trends status: Post-accident fission product chemistry  

DOE Green Energy (OSTI)

It is important to understand and model the chemical and physical behavior of vapor iodine species in containment environments for the following reasons: This behavior can contribute significantly to severe accident source terms; the development of accident mitigation or management strategies (e.g., an effective filter system); for long-term clean-up and recovery following an accident; regulatory requirements (e.g., spray or pool additives); and design basis accidents (i.e., steam generator tube rupture). This document discusses the Oak Ridge National Laboratory ''Post-Accident'' Chemistry Program.

Kress, T.S.; Beahm, E.C.; Shockley, W.C.; Weber, C.F.

1988-01-01T23:59:59.000Z

339

Environment/Health/Safety (EHS): Monthly Accident Statistics  

NLE Websites -- All DOE Office Websites (Extended Search)

Monthly Accident Statistics Monthly Accident Statistics Latest Accident Statistics Accident Statistics (through December 2013) Archived Accident Statistics 2013 Through November Through October Through September Through August Through July Through June Through May Through April Through March Through February Through January 2012 Through December Through November Through October Through September Through August Through July Through June Through May Through February Through January 2011 Through December Through November Through October Through September Through August Through July Through June Through May Through April Through March Through February Through January 2010 Through December Through November Through October Through September Through August Through July Through June Through May Through April Through March Through February

340

Conversion of the Barotropic Tide  

Science Conference Proceedings (OSTI)

Using linear wave theory, the rate at which energy is converted into internal gravity waves by the interaction of the barotropic tide with topography in an ocean is calculated. Bell's formula for the conversion rate is extended to the case of an ...

Stefan G. Llewellyn Smith; W. R. Young

2002-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Technology, Safety and Costs of Decommissioning a Reference Uranium Hexafluoride Conversion Plant  

Science Conference Proceedings (OSTI)

Safety and cost information is developed for the conceptual decommissioning of a commercial uranium hexafluoride conversion (UF{sub 6}) plant. Two basic decommissioning alternatives are studied to obtain comparisons between cost and safety impacts: DECON, and passive SAFSTOR. A third alternative, DECON of the plant and equipment with stabilization and long-term care of lagoon wastes. is also examined. DECON includes the immediate removal (following plant shutdown) of all radioactivity in excess of unrestricted release levels, with subsequent release of the site for public use. Passive SAFSTOR requires decontamination, preparation, maintenance, and surveillance for a period of time after shutdown, followed by deferred decontamination and unrestricted release. DECON with stabilization and long-term care of lagoon wastes (process wastes generated at the reference plant and stored onsite during plant operation} is also considered as a decommissioning method, although its acceptability has not yet been determined by the NRC. The decommissioning methods assumed for use in each decommissioning alternative are based on state-of-the-art technology. The elapsed time following plant shutdown required to perform the decommissioning work in each alternative is estimated to be: for DECON, 8 months; for passive SAFSTOR, 3 months to prepare the plant for safe storage and 8 months to accomplish deferred decontamination. Planning and preparation for decommissioning prior to plant shutdown is estimated to require about 6 months for either DECON or passive SAFSTOR. Planning and preparation prior to starting deferred decontamination is estimated to require an additional 6 months. OECON with lagoon waste stabilization is estimated to take 6 months for planning and about 8 months to perform the decommissioning work. Decommissioning cost, in 1981 dollars, is estimated to be $5.91 million for OECON. For passive SAFSTOR, preparing the facility for safe storage is estimated to cost $0.88 million, the annual maintenance and surveillance cost is estimated to be about $0.095 million, and deferred decontamination is estimated to cost about $6.50 million. Therefore, passive SAFSTOR for 10 years is estimated to cost $8.33 million in nondiscounted 1981 dollars. DECON with lagoon waste stabilization is estimated to cost about $4.59 million, with an annual cost of $0.011 million for long-term care. All of these estimates include a 25% contingency. Waste management costs for DECON, including the net cost of disposal of the solvent extraction lagoon wastes by shipping those wastes to a uranium mill for recovery of residual uranium, comprise about 38% of the total decommissioning cost. Disposal of lagoon waste at a commercial low-level waste burial ground is estimated to add $10.01 million to decommissioning costs. Safety analyses indicate that radiological and nonradiological safety impacts from decommissioning activities should be small. The 50-year committed dose equivalent to members of the public from airborne releases during normal decommissioning activities is estimated to 'Je about 4.0 man-rem. Radiation doses to the public from accidents are found to be very low for all phases of decommissioning. Occupational radiation doses from normal decommissioning operations (excluding transport operations) are estimated to be about 79 man-rem for DECON and about 80 man-rem for passive SAFSTOR with 10 years of safe storage. Doses from DECON with lagoon waste stabilization are about the same as for DECON except there is less dose resulting from transportation of radioactive waste. The number of fatalities and serious lost-time injuries not related to radiation is found to be very small for all decommissioning alternatives. Comparison of the cost estimates shows that DECON with lagoon waste stabilization is the least expensive method. However, this alternative does not allow unrestricted release of the site. The cumulative cost of maintenance and surveillance and the higher cost of deferred decontamination makes passive SAFSTOR more expensive than DECON. Seve

Elder, H. K.

1981-10-01T23:59:59.000Z

342

Cool Storage Technology Guide  

Science Conference Proceedings (OSTI)

It is a fact that avoiding load growth is cheaper than constructing new power plants. Cool storage technologies offer one method for strategically stemming the impact of future peak demand growth. This guide provides a comprehensive resource for understanding and evaluating cool storage technologies.

2000-08-14T23:59:59.000Z

343

Energy storage capacitors  

DOE Green Energy (OSTI)

The properties of capacitors are reviewed in general, including dielectrics, induced polarization, and permanent polarization. Then capacitance characteristics are discussed and modelled. These include temperature range, voltage, equivalent series resistance, capacitive reactance, impedance, dissipation factor, humidity and frequency effects, storage temperature and time, and lifetime. Applications of energy storage capacitors are then discussed. (LEW)

Sarjeant, W.J.

1984-01-01T23:59:59.000Z

344

The Role of Energy Storage in Commercial Building  

DOE Green Energy (OSTI)

Motivation and Background of Study This project was motivated by the need to understand the full value of energy storage (thermal and electric energy storage) in commercial buildings, the opportunity of benefits for building operations and the potential interactions between a building and a smart grid infrastructure. On-site or local energy storage systems are not new to the commercial building sector; they have been in place in US buildings for decades. Most building-scale storage technologies are based on thermal or electrochemical storage mechanisms. Energy storage technologies are not designed to conserve energy, and losses associated with energy conversion are inevitable. Instead, storage provides flexibility to manage load in a building or to balance load and generation in the power grid. From the building owner's perspective, storage enables load shifting to optimize energy costs while maintaining comfort. From a grid operations perspective, building storage at scale could provide additional flexibility to grid operators in managing the generation variability from intermittent renewable energy resources (wind and solar). To characterize the set of benefits, technical opportunities and challenges, and potential economic values of storage in a commercial building from both the building operation's and the grid operation's view-points is the key point of this project. The research effort was initiated in early 2010 involving Argonne National Laboratory (ANL), the National Renewable Energy Laboratory (NREL), and Pacific Northwest National Laboratory (PNNL) to quantify these opportunities from a commercial buildings perspective. This report summarizes the early discussions, literature reviews, stakeholder engagements, and initial results of analyses related to the overall role of energy storage in commercial buildings. Beyond the summary of roughly eight months of effort by the laboratories, the report attempts to substantiate the importance of active DOE/BTP R&D activities in this space.

Kintner-Meyer, Michael CW; Subbarao, Krishnappa; Prakash Kumar, Nirupama; Bandyopadhyay, Gopal K.; Finley, C.; Koritarov, V. S.; Molburg, J. C.; Wang, J.; Zhao, Fuli; Brackney, L.; Florita, A. R.

2010-09-30T23:59:59.000Z

345

Read about Thermal Storage Research in OSTI Resources | OSTI, US Dept of  

Office of Scientific and Technical Information (OSTI)

Read about Thermal Storage Research in OSTI Resources Read about Thermal Storage Research in OSTI Resources From the DOE Press Release: "High Energy Advanced Thermal Storage (HEATS). More than 90% of energy technologies involve the transport and conversion of thermal energy. Therefore, advancements in thermal energy storage - both hot and cold - would dramatically improve performance for a variety of critical energy applications. ..." From the Databases Energy Citations Database Information Bridge DOE Green Energy WorldWideScience.org More information Secretary Chu announces $130 Million for Advanced Research Projects, April 20, 2011 From Zero to $180 Million in Five Days DOE Blog ARPA-E's High Density Thermal Storage Workshop, January 2011 Advanced Heat Transfer and Thermal Storage Fluids High Energy Advanced Thermal Storage Grant Synopsis

346

Severe accident approach - final report. Evaluation of design measures for severe accident prevention and consequence mitigation.  

Science Conference Proceedings (OSTI)

An important goal of the US DOE reactor development program is to conceptualize advanced safety design features for a demonstration Sodium Fast Reactor (SFR). The treatment of severe accidents is one of the key safety issues in the design approach for advanced SFR systems. It is necessary to develop an in-depth understanding of the risk of severe accidents for the SFR so that appropriate risk management measures can be implemented early in the design process. This report presents the results of a review of the SFR features and phenomena that directly influence the sequence of events during a postulated severe accident. The report identifies the safety features used or proposed for various SFR designs in the US and worldwide for the prevention and/or mitigation of Core Disruptive Accidents (CDA). The report provides an overview of the current SFR safety approaches and the role of severe accidents. Mutual understanding of these design features and safety approaches is necessary for future collaborations between the US and its international partners as part of the GEN IV program. The report also reviews the basis for an integrated safety approach to severe accidents for the SFR that reflects the safety design knowledge gained in the US during the Advanced Liquid Metal Reactor (ALMR) and Integral Fast Reactor (IFR) programs. This approach relies on inherent reactor and plant safety performance characteristics to provide additional safety margins. The goal of this approach is to prevent development of severe accident conditions, even in the event of initiators with safety system failures previously recognized to lead directly to reactor damage.

Tentner, A. M.; Parma, E.; Wei, T.; Wigeland, R.; Nuclear Engineering Division; SNL; INL

2010-03-01T23:59:59.000Z

347

Warehouse and Storage Buildings  

U.S. Energy Information Administration (EIA) Indexed Site

Warehouse and Storage Warehouse and Storage Characteristics by Activity... Warehouse and Storage Warehouse and storage buildings are those used to store goods, manufactured products, merchandise, raw materials, or personal belongings. Basic Characteristics [ See also: Equipment | Activity Subcategories | Energy Use ] Warehouse and Storage Buildings... While the idea of a warehouse may bring to mind a large building, in reality most warehouses were relatively small. Forty-four percent were between 1,001 and 5,000 square feet, and seventy percent were less than 10,000 square feet. Many warehouses were newer buildings. Twenty-five percent were built in the 1990s and almost fifty percent were constructed since 1980. Tables: Buildings and Size Data by Basic Characteristics Establishment, Employment, and Age Data by Characteristics

348

,"Underground Natural Gas Storage by Storage Type"  

U.S. Energy Information Administration (EIA) Indexed Site

Sourcekey","N5030US2","N5010US2","N5020US2","N5070US2","N5050US2","N5060US2" "Date","U.S. Natural Gas Underground Storage Volume (MMcf)","U.S. Total Natural Gas in Underground...

349

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

Feb-13 Mar-13 Apr-13 May-13 Jun-13 Jul-13 View History All Operators Natural Gas in Storage 6,482,603 6,102,063 6,235,751 6,653,184 7,027,708 7,302,556 1973-2013 Base Gas 4,379,494...

350

Alternative Fuels Data Center: Vehicle Conversion Basics  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Vehicle Conversion Vehicle Conversion Basics to someone by E-mail Share Alternative Fuels Data Center: Vehicle Conversion Basics on Facebook Tweet about Alternative Fuels Data Center: Vehicle Conversion Basics on Twitter Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Google Bookmark Alternative Fuels Data Center: Vehicle Conversion Basics on Delicious Rank Alternative Fuels Data Center: Vehicle Conversion Basics on Digg Find More places to share Alternative Fuels Data Center: Vehicle Conversion Basics on AddThis.com... Vehicle Conversion Basics Photo of a Ford Transit Connect converted to run on compressed natural gas. A Ford Transit Connect converted to run on compressed natural gas. A converted vehicle or engine is one modified to use a different fuel or

351

Accident, Maryland: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Accident, Maryland: Energy Resources Accident, Maryland: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.628696°, -79.319759° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.628696,"lon":-79.319759,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

352

Less than severe worst case accidents  

Science Conference Proceedings (OSTI)

Many systems can provide tremendous benefit if operating correctly, produce only an inconvenience if they fail to operate, but have extreme consequences if they are only partially disabled such that they operate erratically or prematurely. In order to assure safety, systems are often tested against the most severe environments and accidents that are considered possible to ensure either safe operation or safe failure. However, it is often the less severe environments which result in the ``worst case accident`` since these are the conditions in which part of the system may be exposed or rendered unpredictable prior to total system failure. Some examples of less severe mechanical, thermal, and electrical environments which may actually be worst case are described as cautions for others in industries with high consequence operations or products.

Sanders, G.A.

1996-08-01T23:59:59.000Z

353

Characterization of a nuclear accident dosimeter  

E-Print Network (OSTI)

The 23rd nuclear accident dosimetry intercomparison was held during the week of June 12-16, 1995 at Los Alamos National Laboratory. This report presents the results of this event, referred to as NAD 23, as related to the performance of Sandia National Laboratories' (SNL) personal nuclear accident dosimeter (PNAD). Two separate critical assemblies, SHEBA and Godiva, were used to generate seven separate neutron spectra for use in dose comparisons. SNL's PNAD measured absorbed doses that were within +16 to +26 percent of the reference doses. In addition, a preliminary investigation was undertaken to determine the feasibility of using the data obtained from an irradiated PNAD to correct for body orientation. This portion of the experiment was performed with a TRIGA reactor at the Nuclear Science Center at Texas A&M University.

Burrows, Ronald Allen

1995-01-01T23:59:59.000Z

354

EPR Severe Accident Threats and Mitigation  

SciTech Connect

Despite the extremely low EPR core melt frequency, an improved defence-in-depth approach is applied in order to comply with the EPR safety target: no stringent countermeasures should be necessary outside the immediate plant vicinity like evacuation, relocation or food control other than the first harvest in case of a severe accident. Design provisions eliminate energetic events and maintain the containment integrity and leak-tightness during the entire course of the accident. Based on scenarios that cover a broad range of physical phenomena and which provide a sound envelope of boundary conditions associated with each containment challenge, a selection of representative loads has been done, for which mitigation measures have to cope with. This paper presents the main critical threats and the approach used to mitigate those threats. (authors)

Azarian, G. [Framatome ANP SAS, Tour Areva, Place de la Coupole 92084 Paris la Defense (France); Kursawe, H.M.; Nie, M.; Fischer, M.; Eyink, J. [Framatome ANP GmbH, Freyeslebenstrasse, 1, D-91058 Erlangen (Germany); Stoudt, R.H. [Framatome ANP Inc. - 3315 Old Forest Rd, Lynchburgh, VA 24501 (United States)

2004-07-01T23:59:59.000Z

355

Characterization of a nuclear accident dosimeter  

Science Conference Proceedings (OSTI)

The 23rd nuclear accident dosimetry intercomparison was held during the week of June 12--16, 1995 at Los Alamos National Laboratory. This report presents the results of this event, referred to as NAD 23, as related to the performance of Sandia National Laboratories (SNL) personal nuclear accident dosimeter (PNAD). Two separate critical assemblies, SHEBA and Godiva, were used to generate seven separate neutron spectra for use in dose comparisons. SNL`s PNAD measured absorbed doses that were within +16 to +26% of the reference doses. In addition, a preliminary investigation was undertaken to determine the feasibility of using the data obtained from an irradiated PNAD to correct for body orientation. This portion of the experiment was performed with a TRIGA reactor at the Nuclear Science Center at Texas A and M University.

Burrows, R.A.

1995-12-01T23:59:59.000Z

356

US Department of Energy Chernobyl accident bibliography  

SciTech Connect

This bibliography has been prepared by Pacific Northwest Laboratory (PNL) for the US Department of Energy (DOE) Office of Health and Environmental Research to provide bibliographic information in a usable format for research studies relating to the Chernobyl nuclear accident that occurred in the Ukrainian Republic, USSR in 1986. This report is a product of the Chernobyl Database Management project. The purpose of this project is to produce and maintain an information system that is the official United States repository for information related to the accident. Two related products prepared for this project are the Chernobyl Bibliographic Search System (ChernoLit{trademark}) and the Chernobyl Radiological Measurements Information System (ChernoDat). This report supersedes the original release of Chernobyl Bibliography (Carr and Mahaffey, 1989). The original report included about 2200 references. Over 4500 references and an index of authors and editors are included in this report.

Kennedy, R.A.; Mahaffey, J.A.; Carr, F. Jr.

1992-04-01T23:59:59.000Z

357

Hydrogen-based electrochemical energy storage - Energy ...  

An energy storage device (100) providing high storage densities via hydrogen storage. The device (100) includes a counter electrode (110), a storage ...

358

Severe accidents in spent fuel pools in support of generic safety, Issue 82  

SciTech Connect

This investigation provides an assessment of the likelihood and consequences of a severe accident in a spent fuel storage pool - the complete draining of the pool. Potential mechanisms and conditions for failure of the spent fuel, and the subsequent release of the fission products, are identified. Two older PWR and BWR spent fuel storage pool designs are considered based on a preliminary screening study which tried to identify vulnerabilities. Internal and external events and accidents are assessed. Conditions which could lead to failure of the spent fuel Zircaloy cladding as a result of cladding rupture or as a result of a self-sustaining oxidation reaction are presented. Propagation of a cladding fire to older stored fuel assemblies is evaluated. Spent fuel pool fission product inventory is estimated and the releases and consequences for the various cladding scenarios are provided. Possible preventive or mitigative measures are qualitatively evaluated. The uncertainties in the risk estimate are large, and areas where additional evaluations are needed to reduce uncertainty are identified.

Sailor, V.L.; Perkins, K.R.; Weeks, J.R.; Connell, H.R.

1987-07-01T23:59:59.000Z

359

Fukushima Daiichi Accident -- Technical Causal Factor Analysis  

Science Conference Proceedings (OSTI)

On March 11, 2011, the Fukushima Daiichi nuclear power plant experienced a seismic event and subsequent tsunami. The accident and the ensuing mitigation and recovery activities occurred over several days, involved a number of incidents, and might provide several opportunities for lessons learned. The objective of this report is to determine the fundamental causative factors for the loss of critical systems at the Fukushima Daiichi reactors that resulted in core damage and subsequent radioactive release. ...

2012-03-27T23:59:59.000Z

360

Calculation notes in support of TWRS FSAR spray leak accident analysis  

SciTech Connect

This document contains the detailed calculations that support the spray leak accident analysis in the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The consequence analyses in this document form the basis for the selection of controls to mitigate or prevent spray leaks throughout TWRS. Pressurized spray leaks can occur due to a breach in containment barriers along transfer routes, during waste transfers. Spray leaks are of particular safety concern because, depending on leak dimensions, and waste pressure, they can be relatively efficient generators of dispersible sized aerosols that can transport downwind to onsite and offsite receptors. Waste is transferred between storage tanks and between processing facilities and storage tanks in TWRS through a system of buried transfer lines. Pumps for transferring waste and jumpers and valves for rerouting waste are located inside below grade pits and structures that are normally covered. Pressurized spray leaks can emanate to the atmosphere due to breaches in waste transfer associated equipment inside these structures should the structures be uncovered at the time of the leak. Pressurized spray leaks can develop through holes or cracks in transfer piping, valve bodies or pump casings caused by such mechanisms as corrosion, erosion, thermal stress, or water hammer. Leaks through degraded valve packing, jumper gaskets, or pump seals can also result in pressurized spray releases. Mechanisms that can degrade seals, packing and gaskets include aging, radiation hardening, thermal stress, etc. An1782other common cause for spray leaks inside transfer enclosures are misaligned jumpers caused by human error. A spray leak inside a DST valve pit during a transfer of aging waste was selected as the bounding, representative accident for detailed analysis. Sections 2 through 5 below develop this representative accident using the DOE- STD-3009 format. Sections 2 describes the unmitigated and mitigated accident scenarios evaluated to determine the need for safety class SSCs or TSR controls. Section 3 develops the source terms associated with the unmitigated and mitigated accident scenarios. Section 4 estimates the radiological and toxicological consequences for the unmitigated and mitigated scenarios. Section 5 compares the radiological and toxicological consequences against the TWRS evaluation guidelines. Section 6 extrapolates from the representative accident case to other represented spray leak sites to assess the conservatism in using the representative case to define controls for other postulated spray leak sites throughout TWRS. Section 7 discusses the sensitivities of the consequence analyses to the key parameters and assumptions used in the analyses. Conclusions are drawn in Section 8. The analyses herein pertain to spray leaks initiated due to internal mechanisms (e.g., corrosion, erosion, thermal stress, etc). External initiators of spray leaks (e.g., excavation accidents), and natural phenomena initiators (e.g., seismic events) are to be covered in separate accident analyses.

Hall, B.W.

1996-09-25T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Ultrafine hydrogen storage powders  

DOE Patents (OSTI)

A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

2000-06-13T23:59:59.000Z

362

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January 1, 2006 through March 31, 2006. Activities during this time period were: (1) Organize and host the 2006 Spring Meeting in San Diego, CA on February 21-22, 2006; (2) Award 8 projects for co-funding by GSTC for 2006; (3) New members recruitment; and (4) Improving communications.

Joel L. Morrison; Sharon L. Elder

2006-05-10T23:59:59.000Z

363

Gas Storage Technology Consortium  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2007 through June 30, 2007. Key activities during this time period included: (1) Organizing and hosting the 2007 GSTC Spring Meeting; (2) Identifying the 2007 GSTC projects, issuing award or declination letters, and begin drafting subcontracts; (3) 2007 project mentoring teams identified; (4) New NETL Project Manager; (5) Preliminary planning for the 2007 GSTC Fall Meeting; (6) Collecting and compiling the 2005 GSTC project final reports; and (7) Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-06-30T23:59:59.000Z

364

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of April 1, 2005 through June 30, 2005. During this time period efforts were directed toward (1) GSTC administration changes, (2) participating in the American Gas Association Operations Conference and Biennial Exhibition, (3) issuing a Request for Proposals (RFP) for proposal solicitation for funding, and (4) organizing the proposal selection meeting.

Joel Morrison

2005-09-14T23:59:59.000Z

365

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is crucial in meeting the needs of these new markets. To address the gas storage needs of the natural gas industry, an industry-driven consortium was created - the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of January1, 2007 through March 31, 2007. Key activities during this time period included: {lg_bullet} Drafting and distributing the 2007 RFP; {lg_bullet} Identifying and securing a meeting site for the GSTC 2007 Spring Proposal Meeting; {lg_bullet} Scheduling and participating in two (2) project mentoring conference calls; {lg_bullet} Conducting elections for four Executive Council seats; {lg_bullet} Collecting and compiling the 2005 GSTC Final Project Reports; and {lg_bullet} Outreach and communications.

Joel L. Morrison; Sharon L. Elder

2007-03-31T23:59:59.000Z

366

SERI Solar Energy Storage Program  

DOE Green Energy (OSTI)

The SERI Solar Energy Storage Program provides research on advanced technologies, system analyses, and assessments of thermal energy storage for solar applications in support of the Thermal and Chemical Energy Storage Program of the DOE Division of Energy Storage Systems. Currently, research is in progress on direct contact latent heat storage and thermochemical energy storage and transport. Systems analyses are being performed of thermal energy storage for solar thermal applications, and surveys and assessments are being prepared of thermal energy storage in solar applications.

Copeland, R. J.; Wright, J. D.; Wyman, C. E.

1980-02-01T23:59:59.000Z

367

NREL: Energy Storage - Industry Participants  

NLE Websites -- All DOE Office Websites (Extended Search)

Industry Participants NREL's energy storage project is funded by the DOE's Vehicle Technologies Office. We work closely with automobile manufacturers, energy storage developers,...

368

Rough order of magnitude cost estimate for immobilization of 18.2 MT of plutonium sharing existing facilities at Hanford with pit disassembly {ampersand} conversion facility: alternative 2  

SciTech Connect

The purpose of this Cost Estimate Report is to identify preliminary capital and operating costs for a facility to immobilize 18.2 metric tons (nominal) of plutonium as a ceramic in an existing facility at Hanford, the Fuels and Materials Examination Facility (FMEF). The Pit Disassembly and Conversion Facility (PDCF), which is being costed in a separate report will also be located in the FMEF in this co- location option. The technical engineering data used as the basis for this study is presented in the EIS Data Call Input Report, `Plutonium Immobilization Plant Using Ceramic in Existing Facilities at Hanford.` The FMEF will require minimal facility modifications to accommodate the Plutonium Immobilization Plant (PIP). Adequate space is available within the FMEF for installation of the immobilization process equipment. Facility HVAC, utility, and support systems exist to support the immobilization operations. Building modifications are primarily the removal of the SAF line (gloveboxes and support equipment) on the 70` level and building interior changes. The plutonium immobilization equipment will primarily occupy the 42` and 70` levels of the FMEF, with the same equipment layout as in the sole occupancy case. The Pit Disassembly and Conversion Facility would occupy the 21` and O` (Entry) levels. Elements of the FMEF and adjacent Fuel Assembly Area (FAA) that will be shared by PIP and PDCF include shipping and receiving, laboratory, waste handling, security, offices, maintenance shops, SNM storage vault, and utilities. It was assumed that the existing utilities and support systems are adequate or only need minor upgrades to support both the PIP and PDCF. The PIP cost estimate was reconciled with the PDCF cost estimate to confirm the use and costs of shared systems and personnel. The facility design for a 50 metric ton plutonium throughput plant will be used for the 18.2 metric ton facility. Plutonium conversion operations will operate at the same design rate as the 50 metric ton facility over the 10 year operating period. Some of the process equipment will operate for a shorter period of time and fewer operators will be required. The assumptions, missions, design bases, facility and process descriptions, and accident analyses are the same. Therefore it is assumed that the capital cost for the 18.2 metric ton facility is identical to that of the 50 metric ton facility. However, the following operating costs will be less: consumable materials, equipment replacement and maintenance labor, employment requirements, and waste generation.

DiSabatino, A., LLNL

1998-06-01T23:59:59.000Z

369

Cooling thermal storage  

Science Conference Proceedings (OSTI)

This article gives some overall guidelines for successful operation of cooling thermal storage installations. Electric utilities use rates and other incentives to encourage thermal storage, which not only reduces their system peaks but also transfers a portion of their load from expensive daytime inefficient peaking plants to less expensive nighttime base load high efficiency coal and nuclear plants. There are hundreds of thermal storage installations around the country. Some of these are very successful; others have failed to achieve all of their predicted benefits because application considerations were not properly addressed.

Gatley, D.P.

1987-04-01T23:59:59.000Z

370

Collector: storage wall systems  

SciTech Connect

Passive Trombe wall systems require massive masonry walls to minimize large temperature swings and movable night insulation to prevent excessive night heat losses. As a solar energy collection system, Trombe wall systems have low efficiencies because of the nature of the wall and, if auxiliary heat is needed, because of absorption of this heat. Separation of collector and storage functions markedly improves the efficiency. A simple fiberglass absorber can provide high efficiency while phase change storage provides a compact storage unit. The need for movable insulation is obviated.

Boardman, H.

1980-01-01T23:59:59.000Z

371

Superconducting magnetic energy storage for electric utilities and fusion systems  

DOE Green Energy (OSTI)

Superconducting inductors provide a compact and efficient means of storing electrical energy without an intermediate conversion process. Energy storage inductors are under development for load leveling and transmission line stabilization in electric utility systems and for driving magnetic confinement and plasma heating coils in fusion energy systems. Fluctuating electric power demands force the electric utility industry to have more installed generating capacity than the average load requires. Energy storage can increase the utilization of base-load fossil and nuclear power plants for electric utilities. The Los Alamos Scientific Laboratory and the University of Wisconsin are developing superconducting magnetic energy storage (SMES) systems, which will store and deliver electrical energy for load leveling, peak shaving, and the stabilization of electric utility networks. In the fusion area, inductive energy transfer and storage is being developed. Both 1-ms fast-discharge theta-pinch systems and 1-to-2-s slow energy transfer tokamak systems have been demonstrated. The major components and the method of operation of a SMES unit are described, and potential applications of different size SMES systems in electric power grids are presented. Results are given of a reference design for a 10-GWh unit for load leveling, of a 30-MJ coil proposed for system stabilization, and of tests with a small-scale, 100-kJ magnetic energy storage system. The results of the fusion energy storage and transfer tests are presented. The common technology base for the various storage systems is discussed.

Rogers, J.D.; Boenig, H.J.; Hassenzahl, W.V.

1978-01-01T23:59:59.000Z

372

Assessment of energy storage concepts for use in pulsed space power systems  

SciTech Connect

Preliminary assessments have been completed for thermal energy storage in heat rejection systems as well as for regenerable electrical storage modules in systems having nuclear sources with Rankine power conversion and solar sources with Brayton and Rankine power conversion. Storage technologies considered for the regenerable modules include flywheels, batteries, fuel cells, superconducting magnets and capacitors. Both source and sink thermal storage were examined for the solar energy based systems. Benefits derived from incorporating thermal storage in the heat rejection system depend on the storage density and the radiator specific mass. The analysis shows that inclusion of a thermal store results in heat rejection system mass reductions for generation times of up to 1100 seconds. Results show that the storage system value (mass reduction) increases with decreasing total generation time. In general, the value is greatest for generation times of 600 seconds or less although mass savings are realized for generation times nearly twice as long. For a total generation time of 500 seconds, incorporating storage in a nuclear Rankine power system results in a mass reduction of 50%. System masses similar to the nuclear Rankine are obtainable for solar Rankine and Brayton cycles using regenerable electrical storage modules. However, a 100-orbit recharge time is required, when the constraint of keeping concentrator areas smaller than 1000 m/sup 2/ is also imposed.

Olszewski, M.; Morris, D.G.

1987-01-01T23:59:59.000Z

373

DUF6 Conversion Facility EIS Schedule  

NLE Websites -- All DOE Office Websites (Extended Search)

Depleted UF6 Conversion Facility EISs Schedule The final EISs for the DUF6 Conversion Facilities have been completed, and are available through this web site. The RODs are...

374

Biofuel Conversion Basics | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Biofuel Conversion Basics Biofuel Conversion Basics Biofuel Conversion Basics August 14, 2013 - 12:31pm Addthis The conversion of biomass solids into liquid or gaseous biofuels is a complex process. Today, the most common conversion processes are biochemical- and thermochemical-based. However, researchers are also exploring photobiological conversion processes. Biochemical Conversion Processes In biochemical conversion processes, enzymes and microorganisms are used as biocatalysts to convert biomass or biomass-derived compounds into desirable products. Cellulase and hemicellulase enzymes break down the carbohydrate fractions of biomass to five- and six-carbon sugars in a process known as hydrolysis. Yeast and bacteria then ferment the sugars into products such as ethanol. Biotechnology advances are expected to lead to dramatic

375

Impacts Associated with Transfer of Spent Nuclear Fuel from Spent Fuel Storage Pools to Dry Storage After Five Years of Cooling, Revision 1  

Science Conference Proceedings (OSTI)

In 2010, EPRI performed a study of the accelerated transfer of spent fuel from pools to dry storage in response to the threat of terrorist activities at nuclear power plants (report 1021049). Following the March 2011 Great East Japan Earthquake and the subsequent accident at the Fukushima Daiichi nuclear power plant, some organizations issued a renewed call for accelerated transfer of used fuel from spent fuel ...

2012-08-31T23:59:59.000Z

376

EFFECT OF DENTAL POLYMER DEGREE OF CONVERSION ...  

Science Conference Proceedings (OSTI)

Effect of Dental Polymer Degree of Conversion on Oral Biofilms. Alison Kraigsley, Sheng Lin-Gibson, Nancy J. Lin. National ...

377

Appendix B Metric and Thermal Conversion Tables  

U.S. Energy Information Administration (EIA)

2011 U.S. Energy Information Administration | Natural Gas Annual 193 Appendix B Metric and Thermal Conversion Tables

378

Conversion of Levulinic Acid to Methyl Tetrahydrofuran ...  

Search PNNL. PNNL Home; About; Research; Publications; Jobs; News; Contacts; Conversion of Levulinic Acid to Methyl Tetrahydrofuran. Battelle ...

379

Conversion of Levulinic Acid to Methyl Tetrahydrofuran ...  

Biomass and Biofuels Conversion of Levulinic Acid to Methyl Tetrahydrofuran Pacific Northwest National Laboratory. Contact PNNL About This Technology ...

380

Hydrogen Storage- Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

- - Overview George Thomas, Hydrogen Consultant to SNL * and Jay Keller, Hydrogen Program Manager Sandia National Laboratories H 2 Delivery and Infrastructure Workshop May 7-8, 2003 * Most of this presentation has been extracted from George Thomas' invited BES Hydrogen Workshop presentation (May 13-14, 2003) Sandia National Laboratories 4/14/03 2 Sandia National Laboratories From George Thomas, BES workshop 5/13/03 H 2 storage is a critical enabling technology for H 2 use as an energy carrier The low volumetric density of gaseous fuels requires a storage method which compacts the fuel. Hence, hydrogen storage systems are inherently more complex than liquid fuels. Storage technologies are needed in all aspects of hydrogen utilization. production distribution utilization

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

Where is CO2 storage happening today? Where is CO2 storage happening today? Sleipner Project (Norway) Sleipner Project (Norway) Carbon dioxide (CO2) storage is currently happening across the United States and around the world. Large, commercial-scale projects, like the Sleipner CO2 Storage Site in Norway, the Weyburn-Midale CO2 Project in Canada, and the In Salah project in Algeria, have been injecting CO2 for many years. Each of these projects stores more than 1 million tons of CO2 per year. Large-scale efforts are currently underway in Africa, China, Australia, and Europe, too. These commercial-scale projects are demonstrating that large volumes of CO2 can be safely and permanently stored. Additionally, a multitude of pilot efforts are underway in different parts of the world to determine suitable locations and technologies for future

382

storage technology barriers. The...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summit Power to build a 400-megawatt (MW) coal-fired power plant with carbon capture and storage (CCS) in Britain. The companies will submit the Caledonia Clean Energy Project to...

383

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh100 kW Flywheel Energy Storage Module * 100KWh - 18 cost KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft Hub (which limits surface speed)...

384

DUF6 Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

of depleted UF6 is stored in steel cylinders at three sites in the U.S. Depleted UF6 Inventory and Storage Locations U.S. DOE's inventory of depleted UF6 consists of approximately...

385

Storage Ring Parameters  

NLE Websites -- All DOE Office Websites (Extended Search)

Photon Source Parameters Storage Ring Parameters Print General Parameters Parameter Value Beam particle electron Beam energy 1.9 GeV (1.0-1.9 GeV possible) Injection energy 1.9 GeV...

386

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

The Ice Bear30 Hybrid Air Conditionerthermal energy storage system150uses smart integrated controls, ice storage, and a dedicated compressor for cooling. The system is designed to provide cooling to interior spaces by circulating refrigerant within an additional evaporator coil added to a standard unitary air conditioner. The Ice Bear 30 is a relatively small size (5 ton), intended for use in residential and light commercial applications. This report describes EPRI tests of the Ice Bear 30, which is manu...

2009-12-14T23:59:59.000Z

387

Analog storage integrated circuit  

DOE Patents (OSTI)

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks.

Walker, J. T. (Palo Alto, CA); Larsen, R. S. (Menlo Park, CA); Shapiro, S. L. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

388

Thermal Energy Storage  

Science Conference Proceedings (OSTI)

This Technology Brief provides an update on the current state of cool thermal energy storage systems (TES) for end-use applications. Because of its ability to shape energy use, TES is strategic technology that allows end-users to reduce their energy costs while simultaneously providing benefits for electric utilities through persistent peak demand reduction and peak shifting. In addition to discussing the concepts of thermal energy storage, the Brief discusses the current state of TES technologies and dr...

2008-12-16T23:59:59.000Z

389

Analog storage integrated circuit  

DOE Patents (OSTI)

A high speed data storage array is defined utilizing a unique cell design for high speed sampling of a rapidly changing signal. Each cell of the array includes two input gates between the signal input and a storage capacitor. The gates are controlled by a high speed row clock and low speed column clock so that the instantaneous analog value of the signal is only sampled and stored by each cell on coincidence of the two clocks. 6 figs.

Walker, J.T.; Larsen, R.S.; Shapiro, S.L.

1989-03-07T23:59:59.000Z

390

A framework for the assessment of severe accident management strategies  

SciTech Connect

Severe accident management can be defined as the use of existing and/or altemative resources, systems and actors to prevent or mitigate a core-melt accident. For each accident sequence and each combination of severe accident management strategies, there may be several options available to the operator, and each involves phenomenological and operational considerations regarding uncertainty. Operational uncertainties include operator, system and instrumentation behavior during an accident. A framework based on decision trees and influence diagrams has been developed which incorporates such criteria as feasibility, effectiveness, and adverse effects, for evaluating potential severe accident management strategies. The framework is also capable of propagating both data and model uncertainty. It is applied to several potential strategies including PWR cavity flooding, BWR drywell flooding, PWR depressurization and PWR feed and bleed.

Kastenberg, W.E. [ed.; Apostolakis, G.; Dhir, V.K. [California Univ., Los Angeles, CA (United States). Dept. of Mechanical, Aerospace and Nuclear Engineering] [and others

1993-09-01T23:59:59.000Z

391

NETL: Carbon Storage FAQs  

NLE Websites -- All DOE Office Websites (Extended Search)

different options for CO2 storage? different options for CO2 storage? Oil and gas reservoirs, many containing carbon dioxide (CO2), as well as natural deposits of almost pure CO2, can be found in many places in the United States and around the world. These are examples of long-term storage of CO2 by nature, where "long term" means millions of years. Their existence demonstrates that naturally occurring geologic formations and structures of various kinds are capable of securely storing CO2 deep in the subsurface for very long periods of time. Because of the economic importance of oil and gas, scientists and engineers have studied these natural deposits for many decades in order to understand the physical and chemical processes which led to their formation. There are also many decades of engineering experience in subsurface operations similar to those needed for CO2 storage. The most directly applicable experience comes from the oil industry, which, for 40 years, has injected CO2 in depleted oil reservoirs for the recovery of additional product through enhanced oil recovery (EOR). Additional experience comes from natural gas storage operations, which have utilized depleted gas reservoirs, as well as reservoirs containing only water. Scientists and engineers are now combining the knowledge obtained from study of natural deposits with experience from analogous operations as a basis for studying the potential for large-scale storage of CO2 in the deep subsurface.

392

TMI-2 accident: core heat-up analysis  

SciTech Connect

This report summarizes NSAC study of reactor core thermal conditions during the accident at Three Mile Island, Unit 2. The study focuses primarily on the time period from core uncovery (approximately 113 minutes after turbine trip) through the initiation of sustained high pressure injection (after 202 minutes). The transient analysis is based upon established sequences of events; plant data; post-accident measurements; interpretation or indirect use of instrument responses to accident conditions.

Ardron, K.H.; Cain, D.G.

1981-01-01T23:59:59.000Z

393

Preliminary dose assessment of the Chernobyl accident  

Science Conference Proceedings (OSTI)

From the major accident at Unit 4 of the Chernobyl nuclear power station, a plume of airborne radioactive fission products was initially carried northwesterly toward Poland, thence toward Scandinavia and into Central Europe. Reports of the levels of radioactivity in a variety of media and of external radiation levels were collected in the Department of Energy's Emergency Operations Center and compiled into a data bank. Portions of these and other data which were obtained directly from published and official reports were utilized to make a preliminary assessment of the extent and magnitude of the external dose to individuals downwind from Chernobyl. Radioactive /sup 131/I was the predominant fission product. The time of arrival of the plume and the maximum concentrations of /sup 131/I in air, vegetation and milk and the maximum reported depositions and external radiation levels have been tabulated country by country. A large amount of the total activity in the release was apparently carried to a significant elevation. The data suggest that in areas where rainfall occurred, deposition levels were from ten to one-hundred times those observed in nearby ''dry'' locations. Sufficient spectral data were obtained to establish average release fractions and to establish a reference spectra of the other nuclides in the release. Preliminary calculations indicated that the collective dose equivalent to the population in Scandinavia and Central Europe during the first year after the Chernobyl accident would be about 8 x 10/sup 6/ person-rem. From the Soviet report, it appears that a first year population dose of about 2 x 10/sup 7/ person-rem (2 x 10/sup 5/ Sv) will be received by the population who were downwind of Chernobyl within the U.S.S.R. during the accident and its subsequent releases over the following week. 32 refs., 14 figs., 20 tabs.

Hull, A.P.

1987-01-01T23:59:59.000Z

394

Measurements for Hydrogen Storage Materials  

Science Conference Proceedings (OSTI)

Measurements for Hydrogen Storage Materials. Summary: ... Hydrogen is promoted as petroleum replacement in the Hydrogen Economy. ...

2013-07-02T23:59:59.000Z

395

Dry Cask Storage Characterization Project  

Science Conference Proceedings (OSTI)

Nuclear utilities have developed independent spent fuel storage installations (ISFSIs) as a means of expanding their spent-fuel storage capacity on an interim basis until a geologic repository is available to accept the fuel for permanent storage. This report provides a technical basis for demonstrating the feasibility of extended spent-fuel storage in ISFSIs.

2002-09-26T23:59:59.000Z

396

GAS STORAGE TECHNOLOGY CONSORTIUM  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and is scheduled for completion on March 31, 2004. Phase 1A of the project includes the creation of the GSTC structure, development of constitution (by-laws) for the consortium, and development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with the second 3-months of the project and encompasses the period December 31, 2003, through March 31, 2003. During this 3-month, the dialogue of individuals representing the storage industry, universities and the Department of energy was continued and resulted in a constitution for the operation of the consortium and a draft of the initial Request for Proposals (RFP).

Robert W. Watson

2004-04-17T23:59:59.000Z

397

Gas Storage Technology Consortium  

Science Conference Proceedings (OSTI)

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created-the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. This report addresses the activities for the quarterly period of July 1, 2006 to September 30, 2006. Key activities during this time period include: {lg_bullet} Subaward contracts for all 2006 GSTC projects completed; {lg_bullet} Implement a formal project mentoring process by a mentor team; {lg_bullet} Upcoming Technology Transfer meetings: {sm_bullet} Finalize agenda for the American Gas Association Fall Underground Storage Committee/GSTC Technology Transfer Meeting in San Francisco, CA. on October 4, 2006; {sm_bullet} Identify projects and finalize agenda for the Fall GSTC Technology Transfer Meeting, Pittsburgh, PA on November 8, 2006; {lg_bullet} Draft and compile an electronic newsletter, the GSTC Insider; and {lg_bullet} New members update.

Joel L. Morrison; Sharon L. Elder

2006-09-30T23:59:59.000Z

398

Sec. Herrington Leads Delegation in Response to Chernobyl Accident...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sec. Herrington Leads Delegation in Response to Chernobyl Accident | National Nuclear Security Administration Our Mission Managing the Stockpile Preventing Proliferation Powering...

399

Median Light Rail Crossing: Accident Causation And Countermeasures  

E-Print Network (OSTI)

Integration of Light Rail Transit Into City Streets. TCRPInfluencing Safety at Highway-Rail Grade Crossings. InK. , W. Hucke and W. Berg. Rail Highway Crossing Accident

Coifman, Benjamin; Bertini, Robert L.

1997-01-01T23:59:59.000Z

400

Next-generation nuclear fuel withstands high-temperature accident...  

NLE Websites -- All DOE Office Websites (Extended Search)

(more than 200 degrees Celsius greater than postulated accident conditions) most fission products remained inside the fuel particles, which each boast their own primary...

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

HEALTH EFFECTS OF THE NUCLEAR ACCIDENT AT THREE MILE ISLAND  

E-Print Network (OSTI)

In) Symposium on Nuclear Reactor Safety: Perspective. Ahealth effects of the nuclear reactor accident at Three Mile50-mile radius of the nuclear reactor site, approximately

Fabrikant, J.I.

2010-01-01T23:59:59.000Z

402

High resolution A/D conversion based on piecewise conversion at lower resolution  

SciTech Connect

Piecewise conversion of an analog input signal is performed utilizing a plurality of relatively lower bit resolution A/D conversions. The results of this piecewise conversion are interpreted to achieve a relatively higher bit resolution A/D conversion without sampling frequency penalty.

Terwilliger, Steve (Albuquerque, NM)

2012-06-05T23:59:59.000Z

403

CATALYTIC CONVERSION OF SOLVENT REFINED COAL TO LIQUID PRODUCTS  

E-Print Network (OSTI)

and Friedman, S. ,"Conversion of Anthraxylon - Kinetics ofiv- LBL 116807 CATALYTIC CONVERSION OF SOLVENT REFINED COALand Mechanisms of Coal Conversion to Clean Fuel,iI pre-

Tanner, K.I.

2010-01-01T23:59:59.000Z

404

STRIPPING OF PROCESS CONDENSATES FROM SOLID FUEL CONVERSION  

E-Print Network (OSTI)

Aqueous from Fossil Fuel Conversion Processes", ~l:;_J. _and Pollution Control in Coal Conversion Processes", U. s.By-Product Waters from Coal Conversion Processes", American

Hill, Joel David

2013-01-01T23:59:59.000Z

405

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTAL ASSESSMENTOcean Thermal Energy Conversion Draft Programmatic Environ-Ocean Thermal Energy Conversion. U.S. DOE Assistant Secre-

Sands, M.Dale

2013-01-01T23:59:59.000Z

406

OCEAN THERMAL ENERGY CONVERSION (OTEC) PROGRAMMATIC ENVIRONMENTAL ANALYSIS  

E-Print Network (OSTI)

Thermal Energy Conversion Conference. Ocean Systems Branch,Thermal Energy Conversion Conference. Ocean Systems Branch,thermal energy conversion, June 18, 1979. Ocean Systems

Sands, M. D.

2011-01-01T23:59:59.000Z

407

Recycling of wasted energy : thermal to electrical energy conversion  

E-Print Network (OSTI)

Nanoporous Thermal-to-Electrical Energy Conversion System (hand, the indirect energy conversion systems tend to beIn a direct energy conversion system, heat can be converted

Lim, Hyuck

2011-01-01T23:59:59.000Z

408

NREL-Ocean Energy Thermal Conversion | Open Energy Information  

Open Energy Info (EERE)

Ocean Energy Thermal Conversion Jump to: navigation, search Logo: NREL-Ocean Energy Thermal Conversion Name NREL-Ocean Energy Thermal Conversion AgencyCompany Organization...

409

OCEAN THERMAL ENERGY CONVERSION: AN OVERALL ENVIRONMENTAL ASSESSMENT  

E-Print Network (OSTI)

M.D. (editor). 1980. Ocean Thermal Energy Conversion Draft1980 :. i l OCEAN THERMAL ENERGY CONVERSION: ENVIRONMENTALDevelopment Plan. Ocean Thermal Energy Conversion. U.S. DOE

Sands, M.Dale

2013-01-01T23:59:59.000Z

410

NREL: Biomass Research - Biochemical Conversion Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

Biochemical Conversion Capabilities Biochemical Conversion Capabilities NREL researchers are working to improve the efficiency and economics of the biochemical conversion process by focusing on the most challenging steps in the process. Biochemical conversion of biomass to biofuels involves three basic steps: Converting biomass to sugar or other fermentation feedstock through: Pretreatment Conditioning and enzymatic hydrolysis Enzyme development. Fermenting these biomass-derived feedstocks using: Microorganisms for fermentation. Processing the fermentation product to produce fuel-grade ethanol and other fuels, chemicals, heat, and electricity by: Integrating the bioprocess. Get the Adobe Flash Player to see this video. This video is a narrated animation that explains the biochemical conversion

411

Biomass thermochemical conversion program: 1987 annual report  

DOE Green Energy (OSTI)

The objective of the Biomass Thermochemical Conversion Program is to generate a base of scientific data and conversion process information that will lead to establishment of cost-effective processes for conversion of biomass resources into clean fuels. To accomplish this objective, in fiscal year 1987 the Thermochemical Conversion Program sponsored research activities in the following four areas: Liquid Hydrocarbon Fuels Technology; Gasification Technology; Direct Combustion Technology; Program Support Activities. In this report an overview of the Thermochemical Conversion Program is presented. Specific research projects are then described. Major accomplishments for 1987 are summarized.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1988-01-01T23:59:59.000Z

412

Biomass thermochemical conversion program. 1985 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. The US Department of Energy (DOE) is sponsoring research on this conversion technology for renewable energy through its Biomass Thermochemical Conversion Program. The Program is part of DOE's Biofuels and Municipal Waste Technology Division, Office of Renewable Technologies. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1985. 32 figs., 4 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1986-01-01T23:59:59.000Z

413

FCT Hydrogen Storage: Current Technology  

NLE Websites -- All DOE Office Websites (Extended Search)

Current Technology to someone Current Technology to someone by E-mail Share FCT Hydrogen Storage: Current Technology on Facebook Tweet about FCT Hydrogen Storage: Current Technology on Twitter Bookmark FCT Hydrogen Storage: Current Technology on Google Bookmark FCT Hydrogen Storage: Current Technology on Delicious Rank FCT Hydrogen Storage: Current Technology on Digg Find More places to share FCT Hydrogen Storage: Current Technology on AddThis.com... Home Basics Current Technology Gaseous and Liquid Hydrogen Storage Materials-Based Hydrogen Storage Hydrogen Storage Challenges Status of Hydrogen Storage Technologies DOE R&D Activities Quick Links Hydrogen Production Hydrogen Delivery Fuel Cells Technology Validation Manufacturing Codes & Standards Education Systems Analysis Contacts Current Technology

414

LIQUID PROPANE GAS (LPG) STORAGE AREA BOILING LIQUID EXPANDING VAPOR EXPLOSION (BLEVE) ANALYSIS  

SciTech Connect

The PHA and the FHAs for the SWOC MDSA (HNF-14741) identified multiple accident scenarios in which vehicles powered by flammable gases (e.g., propane), or combustible or flammable liquids (e.g., gasoline, LPG) are involved in accidents that result in an unconfined vapor cloud explosion (UVCE) or in a boiling liquid expanding vapor explosion (BLEVE), respectively. These accident scenarios are binned in the Bridge document as FIR-9 scenarios. They are postulated to occur in any of the MDSA facilities. The LPG storage area will be in the southeast corner of CWC that is relatively remote from store distaged MAR. The location is approximately 30 feet south of MO-289 and 250 feet east of 2401-W by CWC Gate 10 in a large staging area for unused pallets and equipment.

PACE, M.E.

2004-01-13T23:59:59.000Z

415

Mode conversion studies in TFTR  

SciTech Connect

Mode converted Ion Bernstein Waves (IBW) have important potential applications in tokamak reactors. These applications include on or off axis electron heating and current drive and the channeling of alpha particle power for both current drive and increased reactivity. Efficient mode conversion electron heating with a low field side antenna, with both on and off axis power deposition, has been demonstrated for the first time in TFTR in D{sup 3}He-{sup 4}He plasmas. Up to 80% of the Ion Cyclotron Range of Frequency (ICRF) power is coupled to electrons at the mode conversion surface. Experiments during deuterium and tritium neutral beam injection (NBI) indicate that good mode conversion efficiency can be maintained during NBI if sufficient {sup 3}He is present. No evidence of strong alpha particle heating by the IBW is seen. Recent modeling indicates that if the mode converted IBW is preferentially excited off the horizontal midplane then the resultant high poloidal mode number wave may channel alpha particle power to either electrons or ions. In TFTR both the propagation of the IBW and its effect on the alpha particle population is being investigated. Experiments with 2 MW of ICRF power launched with {+-} 90{degree} antenna phasing for current drive show that electron heating and sawtooth activity depend strongly on the direction of the launched wave. The noninductively driven current could not be experimentally determined in these relatively high plasma current, short pulse discharges. Experiments at higher RF power and lower plasma current are planned to determine on and off axis current drive efficiency.

Majeski, R.; Fisch, N.J.; Adler, H.

1995-03-01T23:59:59.000Z

416

Formation of alcohol conversion catalysts  

DOE Patents (OSTI)

The method of the present invention involves a composition containing an intimate mixture of (a) metal oxide support particles and (b) a catalytically active metal oxide from Groups VA, VIA, or VIIA, its method of manufacture, and its method of use for converting alcohols to aldehydes. During the conversion process, catalytically active metal oxide from the discrete catalytic metal oxide particles migrates to the oxide support particles and forms a monolayer of catalytically active metal oxide on the oxide support particle to form a catalyst composition having a higher specific activity than the admixed particle composition.

Wachs, Israel E. (Bridgewater, NJ); Cai, Yeping (Louisville, KY)

2001-01-01T23:59:59.000Z

417

Effect of bubble size and density on methane conversion to hydrate  

SciTech Connect

Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methanewater solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

Leske, J.; Taylor, C.E.; Ladner, E.P.

2007-03-01T23:59:59.000Z

418

Biomass Thermochemical Conversion Program: 1986 annual report  

DOE Green Energy (OSTI)

Wood and crop residues constitute a vast majority of the biomass feedstocks available for conversion, and thermochemical processes are well suited for conversion of these materials. Thermochemical conversion processes can generate a variety of products such as gasoline hydrocarbon fuels, natural gas substitutes, or heat energy for electric power generation. The US Department of Energy is sponsoring research on biomass conversion technologies through its Biomass Thermochemical Conversion Program. Pacific Northwest Laboratory has been designated the Technical Field Management Office for the Biomass Thermochemical Conversion Program with overall responsibility for the Program. This report briefly describes the Thermochemical Conversion Program structure and summarizes the activities and major accomplishments during fiscal year 1986. 88 refs., 31 figs., 5 tabs.

Schiefelbein, G.F.; Stevens, D.J.; Gerber, M.A.

1987-01-01T23:59:59.000Z

419

Preliminary analysis of loss-of-coolant accident in Fukushima nuclear accident  

Science Conference Proceedings (OSTI)

Loss-of-Coolant Accident (LOCA) in Boiling Water Reactor (BWR) especially on Fukushima Nuclear Accident will be discussed in this paper. The Tohoku earthquake triggered the shutdown of nuclear power reactors at Fukushima Nuclear Power station. Though shutdown process has been completely performed, cooling process, at much smaller level than in normal operation, is needed to remove decay heat from the reactor core until the reactor reach cold-shutdown condition. If LOCA happen at this condition, it will cause the increase of reactor fuel and other core temperatures and can lead to reactor core meltdown and exposure of radioactive material to the environment such as in the Fukushima Dai Ichi nuclear accident case. In this study numerical simulation has been performed to calculate pressure composition, water level and temperature distribution on reactor during this accident. There are two coolant regulating system that operational on reactor unit 1 at this accident, Isolation Condensers (IC) system and Safety Relief Valves (SRV) system. Average mass flow of steam to the IC system in this event is 10 kg/s and could keep reactor core from uncovered about 3,2 hours and fully uncovered in 4,7 hours later. There are two coolant regulating system at operational on reactor unit 2, Reactor Core Isolation Condenser (RCIC) System and Safety Relief Valves (SRV). Average mass flow of coolant that correspond this event is 20 kg/s and could keep reactor core from uncovered about 73 hours and fully uncovered in 75 hours later. There are three coolant regulating system at operational on reactor unit 3, Reactor Core Isolation Condenser (RCIC) system, High Pressure Coolant Injection (HPCI) system and Safety Relief Valves (SRV). Average mass flow of water that correspond this event is 15 kg/s and could keep reactor core from uncovered about 37 hours and fully uncovered in 40 hours later.

Su'ud, Zaki; Anshari, Rio [Nuclear and Biophysics Research Group, Dept. of Physics, Bandung Institute of Technology, Jl.Ganesha 10, Bandung, 40132 (Indonesia)

2012-06-06T23:59:59.000Z

420

GAS STORAGE TECHNOLOGY CONSORTIUM  

SciTech Connect

Gas storage is a critical element in the natural gas industry. Producers, transmission and distribution companies, marketers, and end users all benefit directly from the load balancing function of storage. The unbundling process has fundamentally changed the way storage is used and valued. As an unbundled service, the value of storage is being recovered at rates that reflect its value. Moreover, the marketplace has differentiated between various types of storage services, and has increasingly rewarded flexibility, safety, and reliability. The size of the natural gas market has increased and is projected to continue to increase towards 30 trillion cubic feet (TCF) over the next 10 to 15 years. Much of this increase is projected to come from electric generation, particularly peaking units. Gas storage, particularly the flexible services that are most suited to electric loads, is critical in meeting the needs of these new markets. In order to address the gas storage needs of the natural gas industry, an industry-driven consortium was created--the Gas Storage Technology Consortium (GSTC). The objective of the GSTC is to provide a means to accomplish industry-driven research and development designed to enhance operational flexibility and deliverability of the Nation's gas storage system, and provide a cost effective, safe, and reliable supply of natural gas to meet domestic demand. To accomplish this objective, the project is divided into three phases that are managed and directed by the GSTC Coordinator. Base funding for the consortium is provided by the U.S. Department of Energy (DOE). In addition, funding is anticipated from the Gas Technology Institute (GTI). The first phase, Phase 1A, was initiated on September 30, 2003, and was completed on March 31, 2004. Phase 1A of the project included the creation of the GSTC structure, development and refinement of a technical approach (work plan) for deliverability enhancement and reservoir management. This report deals with Phase 1B and encompasses the period April 1, 2004, through June 30, 2004. During this 3-month period, a Request for Proposals (RFP) was made. A total of 17 proposals were submitted to the GSTC. A proposal selection meeting was held June 9-10, 2004 in Morgantown, West Virginia. Of the 17 proposals, 6 were selected for funding.

Robert W. Watson

2004-07-15T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Radioactive waste storage issues  

SciTech Connect

In the United States we generate greater than 500 million tons of toxic waste per year which pose a threat to human health and the environment. Some of the most toxic of these wastes are those that are radioactively contaminated. This thesis explores the need for permanent disposal facilities to isolate radioactive waste materials that are being stored temporarily, and therefore potentially unsafely, at generating facilities. Because of current controversies involving the interstate transfer of toxic waste, more states are restricting the flow of wastes into - their borders with the resultant outcome of requiring the management (storage and disposal) of wastes generated solely within a state`s boundary to remain there. The purpose of this project is to study nuclear waste storage issues and public perceptions of this important matter. Temporary storage at generating facilities is a cause for safety concerns and underscores, the need for the opening of permanent disposal sites. Political controversies and public concern are forcing states to look within their own borders to find solutions to this difficult problem. Permanent disposal or retrievable storage for radioactive waste may become a necessity in the near future in Colorado. Suitable areas that could support - a nuclear storage/disposal site need to be explored to make certain the health, safety and environment of our citizens now, and that of future generations, will be protected.

Kunz, D.E.

1994-08-15T23:59:59.000Z

422

Biological conversion of synthesis gas  

DOE Green Energy (OSTI)

Mass transfer and kinetic studies were carried out for the Rhodospirillum rubrum and Chlorobium thiosulfatophilum bacterial systems. R. rubrum is a photosynthetic anaerobic bacterium which catalyzes the biological water gas shift reaction: CO + H[sub 2]0 [yields] CO[sub 2] + H[sub 2]. C. thiosulfatophilum is also a H[sub 2]S and COS to elemental sulfur. The growth of R. rubrum may be satisfactorily carried out at 25[degree] and 30[degree]C, while CO uptake and thus the conversion of CO best occurs at temperatures of either 30[degree], 32[degree] or 34[degree]C. The rate of conversion of COs and H[sub 2]O to CO[sub 2] and H[sub 2]S may be modeled by a first order rate expression. The rate constant at 30[degree]C was found to be 0.243 h[sup [minus]1]. The growth of C. thiosulfatophilum may be modeled in terms of incoming light intensity using a Monod equation: [mu] = [sub 351] + I[sub o]/[sup 0.152]I[sub o]. Comparisons of the growth of R. rubrum and C. thiosulfatophilum shows that the specific growth rate of C. thiosulfatophilum is much higher at a given light intensity.

Klasson, K.T.; Basu, R.; Johnson, E.R.; Clausen, E.C.; Gaddy, J.L.

1992-03-01T23:59:59.000Z

423

Underground Natural Gas Storage by Storage Type  

U.S. Energy Information Administration (EIA) Indexed Site

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

424

Underground Natural Gas Storage by Storage Type  

Gasoline and Diesel Fuel Update (EIA)

2007 2008 2009 2010 2011 2012 View 2007 2008 2009 2010 2011 2012 View History All Operators Net Withdrawals 192,093 33,973 -348,719 -17,009 -347,562 -7,279 1967-2012 Injections 3,132,920 3,340,365 3,314,990 3,291,395 3,421,813 2,825,427 1935-2012 Withdrawals 3,325,013 3,374,338 2,966,180 3,274,385 3,074,251 2,818,148 1944-2012 Salt Cavern Storage Fields Net Withdrawals 20,001 -42,044 -56,010 -58,295 -92,413 -19,528 1994-2012 Injections 400,244 440,262 459,330 510,691 532,893 465,005 1994-2012 Withdrawals 420,245 398,217 403,321 452,396 440,480 445,477 1994-2012 Nonsalt Cavern Storage Net Withdrawals 172,092 76,017 -292,710 41,286 -255,148 12,249 1994-2012 Injections 2,732,676 2,900,103 2,855,667 2,780,703 2,888,920 2,360,422 1994-2012 Withdrawals

425

NREL: Learning - Hydrogen Storage  

NLE Websites -- All DOE Office Websites (Extended Search)

Hydrogen Storage Hydrogen Storage On the one hand, hydrogen's great asset as a renewable energy carrier is that it is storable and transportable. On the other hand, its very low natural density requires storage volumes that are impractical for vehicles and many other uses. Current practice is to compress the gas in pressurized tanks, but this still provides only limited driving range for vehicles and is bulkier than desirable for other uses as well. Liquefying the hydrogen more than doubles the fuel density, but uses up substantial amounts of energy to lower the temperature sufficiently (-253°C at atmospheric pressure), requires expensive insulated tanks to maintain that temperature, and still falls short of desired driving range. One possible way to store hydrogen at higher density is in the spaces within the crystalline

426

Storage Ring Operation Modes  

NLE Websites -- All DOE Office Websites (Extended Search)

Longitudinal bunch profile and Up: APS Storage Ring Parameters Longitudinal bunch profile and Up: APS Storage Ring Parameters Previous: Source Parameter Table Storage Ring Operation Modes Standard Operating Mode, top-up Fill pattern: 102 mA in 24 singlets (single bunches) with a nominal current of 4.25 mA and a spacing of 153 nanoseconds between singlets. Lattice configuration: Low emittance lattice with effective emittance of 3.1 nm-rad and coupling of 1%. Bunch length (rms): 33.5 ps. Refill schedule: Continuous top-up with single injection pulses occurring at a minimum of two minute intervals, or a multiple of two minute intervals. Special Operating Mode - 324 bunches, non top-up Fill pattern: 102 mA in 324 uniformly spaced singlets with a nominal single bunch current of 0.31 mA and a spacing of 11.37 nanoseconds between singlets.

427

Flywheel Energy Storage Module  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

kWh/100 kW kWh/100 kW Flywheel Energy Storage Module * 100KWh - 1/8 cost / KWh vs. current State of the Art * Bonded Magnetic Bearings on Rim ID * No Shaft / Hub (which limits surface speed) * Flexible Motor Magnets on Rim ID * Develop Touch-down System for Earthquake Flying Rim Eliminate Shaft and Hub Levitate on Passive Magnetic Bearings Increase Rim Tip Speed Larger Diameter Thinner Rim Stores More Energy 4 X increase in Stored Energy with only 60% Increase in Weight Development of a 100 kWh/100 kW Flywheel Energy Storage Module High Speed, Low Cost, Composite Ring with Bore-Mounted Magnetics Current State of the Art Flywheel Limitations of Existing Flywheel * 15 Minutes of storage * Limited to Frequency Regulation Application * Rim Speed (Stored Energy) Limited by Hub Strain and Shaft Dynamics

428

Inertial energy storage device  

DOE Patents (OSTI)

The inertial energy storage device of the present invention comprises a composite ring formed of circumferentially wound resin-impregnated filament material, a flanged hollow metal hub concentrically disposed in the ring, and a plurality of discrete filament bandsets coupling the hub to the ring. Each bandset is formed of a pair of parallel bands affixed to the hub in a spaced apart relationship with the axis of rotation of the hub being disposed between the bands and with each band being in the configuration of a hoop extending about the ring along a chordal plane thereof. The bandsets are disposed in an angular relationship with one another so as to encircle the ring at spaced-apart circumferential locations while being disposed in an overlapping relationship on the flanges of the hub. The energy storage device of the present invention has the capability of substantial energy storage due to the relationship of the filament bands to the ring and the flanged hub.

Knight, Jr., Charles E. (Knoxville, TN); Kelly, James J. (Oak Ridge, TN); Pollard, Roy E. (Powell, TN)

1978-01-01T23:59:59.000Z

429

Results of transient /accident analysis for the HEU, first mixed HEU-LEU and for the first full LEU cores of the WWR-SM reactor at INP AS RUZ  

SciTech Connect

The WWR-SM reactor in Uzbekistan is preparing for the conversion from HEU (36%) fuel to LEU (19.8%) fuel. During this conversion, the HEU fuel assemblies (IRT-3M FA) being discharged at the end of each cycle will be replaced by LEU fuel assemblies (IRT-4M FA); this gradual conversion requires 9 cycles. The safety analysis report for this conversion process has been prepared. This paper presents selected results for postulated transient/accidents during this conversion process; results for transient analysis for the HEU core, the 1st mixed (HEU-LEU) core, and for the first full LEU core are presented for the following initiators: control rod motion (2 cases), loss of power, and FA blockage. These results show that safety is maintained for all transients analyzed and that the behavior of all the analyzed cores is essentially the same. (author)

Baytelesov, S.A.; Dosimbaev, A.A.; Kungurov, F.R.; Salikhbaev, U.S. [Institute of Nuclear Physics, Ulugbek, 100214 Tashkent (Uzbekistan)

2008-07-15T23:59:59.000Z

430

Methods for Detector Placement and Analysis of Criticality Accident Alarm Systems  

Science Conference Proceedings (OSTI)

Determining the optimum placement to minimize the number of detectors for a criticality accident alarm system (CAAS) in a large manufacturing facility is a complex problem. There is typically a target for the number of detectors that can be used over a given zone of the facility. A study to optimize detector placement typically begins with some initial guess at the placement of the detectors and is followed by either predictive calculations of accidents at specific locations or adjoint calculations based on preferred detector locations. Within an area of a facility, there may be a large number of potential criticality accident sites. For any given placement of the detectors, the list of accident sites can be reduced to a smaller number of locations at which accidents may be difficult for detectors to detect. Developing the initial detector placement and determining the list of difficult accident locations are both based on the practitioner's experience. Simulations following fission particles released from an accident location are called 'forward calculations.' These calculations can be used to answer the question 'where would an alarm be triggered?' by an accident at a specified location. Conversely, 'adjoint calculations' start at a detector site using the detector response function as a source and essentially run in reverse. These calculations can be used to answer the question 'where would an accident be detected?' by a specified detector location. If the number of accidents, P, is much less than the number of detectors, Q, then forward simulations may be more convenient and less time-consuming. If Q is large or the detectors are not placed yet, then a mesh tally of dose observed by a detector at any location must be computed over the entire zone. If Q is much less than P, then adjoint calculations may be more efficient. Adjoint calculations employing a mesh tally can be even more advantageous because they do not rely on a list of specific difficult-to-detect accident sites, which may not have included every possible accident location. Analog calculations (no biasing) simply follow particles naturally. For sparse buildings and line-of-sight calculations, analog Monte Carlo (MC) may be adequate. For buildings with internal walls or large amounts of heavy equipment (dense geometry), variance reduction may be required. Calculations employing the CADIS method use a deterministic calculation to create an importance map and a matching biased source distribution that optimize the final MC to quickly calculate one specific tally. Calculations employing the FW-CADIS method use two deterministic calculations (one forward and one adjoint) to create an importance map and a matching biased source distribution that are designed to make the MC calculate a mesh tally with more uniform uncertainties in both high-dose and low-dose areas. Depending on the geometry of the problem, the number of detectors, and the number of accident sites, different approaches to CAAS placement studies can be taken. These are summarized in Table I. SCALE 6.1 contains the MAVRIC sequence, which can be used to perform any of the forward-based approaches outlined in Table I. For analog calculations, MAVRIC simply calls the Monaco MC code. For CADIS and FW-CADIS, MAVRIC uses the Denovo discrete ordinates (SN) deterministic code to generate the importance map and biased source used by Monaco. An adjoint capability is currently being added to Monaco and should be available in the next release of SCALE. An adjoint-based approach could be performed with Denovo alone - although fine meshes, large amounts of memory, and long computation times may be required to obtain accurate solutions. Coarse-mesh SN simulations could be employed for adjoint-based scoping studies until the adjoint capability in Monaco is complete. CAAS placement studies, especially those dealing with mesh tallies, require some extra utilities to aid in the analysis. Detectors must receive a minimum dose rate in order to alarm; therefore, a simple yes/no plot could be more useful to the analyst t

Peplow, Douglas E. [ORNL; Wetzel, Larry [Babcock & Wilcox Nuclear Operations Group Inc.

2012-01-01T23:59:59.000Z

431

Thermal energy storage material  

DOE Patents (OSTI)

A thermal energy storage material which is stable at atmospheric temperature and pressure and has a melting point higher than 32.degree.F. is prepared by dissolving a specific class of clathrate forming compounds, such as tetra n-propyl or tetra n-butyl ammonium fluoride, in water to form a substantially solid clathrate. The resultant thermal energy storage material is capable of absorbing heat from or releasing heat to a given region as it transforms between solid and liquid states in response to temperature changes in the region above and below its melting point.

Leifer, Leslie (Hancock, MI)

1976-01-01T23:59:59.000Z

432

DECONTAMINATION DRESSDOWN AT A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Video User' s Guide Video User' s Guide DECONTAMINATION DRESSDOWN AT A TRANSPORTATION ACCIDENT INVOLVING RADIOACTIVE MATERIAL DISCLAIMER Viewing this video and completing the enclosed printed study material do not by themselves provide sufficient skills to safely engage in or perform duties related to emergency response to a transportation accident involving radioactive material. Meeting that goal is beyond

433

Variable selection and ranking for analyzing automobile traffic accident data  

Science Conference Proceedings (OSTI)

Variable ranking and feature selection are important concepts in data mining and machine learning. This paper introduces a new variable ranking technique named Sum Max Gain Ratio (SMGR). The new technique is evaluated within the domain of traffic accident ... Keywords: decision tree, traffic accident data, variable and feature selection, variable ranking

Huanjing Wang; Allen Parrish; Randy K. Smith; Susan Vrbsky

2005-03-01T23:59:59.000Z

434

Assessment of Existing Plant Instrumentation for Severe Accident Management  

Science Conference Proceedings (OSTI)

During an accident, information would be needed for diagnosing a plant's status and confirming its response to mitigative actions. It is important to determine the information necessary for severe accident management and to ensure that this information could be derived from plant instrumentation.

1993-12-01T23:59:59.000Z

435

Web Based Course: SAF-230DE, Accident Investigation Overview Promotional Video  

Energy.gov (U.S. Department of Energy (DOE))

This course that provides an overview of the fundamentals of accident investigation. The course is intended to meet the every five year refresher training requirement for DOE Federal Accident Investigators under DOE O 225.1B, Accident Investigations.

436

Conversion and Blending Facility highly enriched uranium to low enriched uranium as metal. Revision 1  

SciTech Connect

The mission of this Conversion and Blending Facility (CBF) will be to blend surplus HEU metal and alloy with depleted uranium metal to produce an LEU product. The primary emphasis of this blending operation will be to destroy the weapons capability of large, surplus stockpiles of HEU. The blended LEU product can only be made weapons capable again by the uranium enrichment process. The blended LEU will be produced as a waste suitable for storage or disposal.

1995-07-05T23:59:59.000Z

437

Severe Accident Related Research and Development at Forschungszentrum Karlsruhe for Present and Future Needs  

SciTech Connect

The research and development program at the Forschungszentrum Karlsruhe, performed within the Program Nuclear Safety Research, is centered around phenomena and processes that could possibly endanger the containment integrity of a large pressurized water reactor after a severe accident. The program includes three activities.The first activity is in-vessel steam explosion. Premixing phenomena are studied in the QUEOS and PREMIX test series. The efficiency of energy conversion is the subject of ECO tests. The BERDA experimental program investigates the load capacity of a reactor pressure vessel (RPV) in steam explosion events.The second activity is hydrogen behavior and mitigation. Advanced models and numerical tools are developed to describe hydrogen sources, distribution of gases in containment, the various modes of hydrogen combustion, and corresponding structural loads.The third activity is ex-vessel melt behavior. The release behavior of melt after RPV failure is studied in DISCO and KAJET tests. In support of core catcher development, interaction with sacrificial and refractory materials, further melt spreading and cooling phenomena are investigated in KAPOOL, KATS, and COMET tests.The goal is to describe and quantify the governing mechanisms and to develop verified models and numerical tools that are able to predict maximum possible loads for severe accident scenarios on full plant scale. The work supported the development and assessment of the safety design of the French-German European Pressurized Water Reactor (EPR). It led to a broader understanding of severe accident phenomena and of controlling and mitigating measures that can also be of benefit for existing plants.

Scholtyssek, Werner; Heusener, Gerhard; Hofmann, Fritz; Plitz, Helmut [Forschungszentrum Karlsruhe GmbH (Germany)

2002-07-15T23:59:59.000Z

438

Naval Spent Fuel Rail Shipment Accident Exercise Objectives  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NAVAL SPENT FUEL RAIL SHIPMENT NAVAL SPENT FUEL RAIL SHIPMENT ACCIDENT EXERCISE OBJECTIVES * Familiarize stakeholders with the Naval spent fuel ACCIDENT EXERCISE OBJECTIVES Familiarize stakeholders with the Naval spent fuel shipping container characteristics and shipping practices * Gain understanding of how the NNPP escorts who accompany the spent fuel shipments will interact with civilian emergency services representatives g y p * Allow civilian emergency services agencies the opportunity to evaluate their response to a pp y p simulated accident * Gain understanding of how the communications links that would be activated in an accident involving a Naval spent fuel shipment would work 1 NTSF May 11 ACCIDENT EXERCISE TYPICAL TIMELINE * Conceptual/Organizational Meeting - April 6 E R T i d it t t d TYPICAL TIMELINE

439

REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)  

SciTech Connect

Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified additional components and actions in Section 3.0 and Table 3 that require further evaluation. The purpose of this report is to evaluate another portion of the remaining inventory (i.e., delayed neutron signal fuel, blanket assemblies, highly enriched assemblies, newly loaded Ident-69 pin containers, and returned fuel) to ensure it can be safely off loaded to the FFTF spent fuel storage system.

CHASTAIN, S.A.

2005-10-24T23:59:59.000Z

440

BALLISTICS TESTING OF THE 9977 SHIPPING PACKAGE FOR STORAGE APPLICATIONS  

SciTech Connect

Radioactive materials are stored in a variety of locations throughout the DOE complex. At the Savannah River Site (SRS), materials are stored within dedicated facilities. Each of those facilities has a documented safety analysis (DSA) that describes accidents that the facility and the materials within it may encounter. Facilities at the SRS are planning on utilizing the certified Model 9977 Shipping Package as a long term storage package and one of these facilities required ballistics testing. Specifically, in order to meet the facility DSA, the radioactive materials (RAM) must be contained within the storage package after impact by a .223 caliber round. In order to qualify the Model 9977 Shipping Package for storage in this location, the package had to be tested under these conditions. Over the past two years, the Model 9977 Shipping Package has been subjected to a series of ballistics tests. The purpose of the testing was to determine if the 9977 would be suitable for use as a storage package at a Savannah River Site facility. The facility requirements are that the package must not release any of its contents following the impact in its most vulnerable location by a .223 caliber round. A package, assembled to meet all of the design requirements for a certified 9977 shipping configuration and using simulated contents, was tested at the Savannah River Site in March of 2011. The testing was completed and the package was examined. The results of the testing and examination are presented in this paper.

Loftin, B.; Abramczyk, G.; Koenig, R.

2012-06-06T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Storage Business Model White Paper  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Storage Business Model White Paper Storage Business Model White Paper Summary June 11 2013 Storage Business Model White Paper - Purpose  Identify existing business models for investors/operators, utilities, end users  Discuss alignment of storage "value proposition" with existing market designs and regulatory paradigms  Difficulties in realizing wholesale market product revenue streams for distributed storage - the "bundled applications" problem  Discuss risks/barriers to storage adoption and where existing risk mitigation measures fall down  Recommendations for policy/research steps - Alternative business models - Accelerated research into life span and failure modes

442

Spent-fuel-storage alternatives  

Science Conference Proceedings (OSTI)

The Spent Fuel Storage Alternatives meeting was a technical forum in which 37 experts from 12 states discussed storage alternatives that are available or are under development. The subject matter was divided into the following five areas: techniques for increasing fuel storage density; dry storage of spent fuel; fuel characterization and conditioning; fuel storage operating experience; and storage and transport economics. Nineteen of the 21 papers which were presented at this meeting are included in this Proceedings. These have been abstracted and indexed. (ATT)

Not Available

1980-01-01T23:59:59.000Z

443

Advanced Coal Conversion Process Demonstration  

NLE Websites -- All DOE Office Websites (Extended Search)

Clean Coal Technology Program Clean Coal Technology Program Advanced Coal Conversion Process Demonstration A DOE Assessment DOE/NETL-2005/1217 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory April 2005 2 Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name,

444

Cleanup of hydrocarbon conversion system  

Science Conference Proceedings (OSTI)

This patent describes a process for the catalytic reforming of a substantially contaminant-free second hydrocarbon feed using a second reforming catalyst, in a catalytic-reforming system having equipment contaminated through contact with a contaminant-containing prior feed. It comprises: contacting the first hydrocarbon feed in the catalytic-reforming system at first reforming conditions with a first reforming catalyst until contaminant removal from the conversion system is substantially completed and the system is contaminant-free; thereafter replacing the first reforming catalyst in the contaminant-free catalytic-reforming system with a second reforming catalyst; and thereafter contacting the second hydrocarbon feed in the contaminant-free catalytic-reforming system with the second reforming catalyst at second reforming conditions.

Peer, R.L.; Russ, M.B.

1990-07-10T23:59:59.000Z

445

Energy Calculator- Common Units and Conversions  

NLE Websites -- All DOE Office Websites (Extended Search)

Energy Calculator - Common Units and Conversions Energy Calculator - Common Units and Conversions Calculators for Energy Used in the United States: Coal Electricity Natural Gas Crude Oil Gasoline Diesel & Heating Oil Coal Conversion Calculator Short Tons Btu Megajoules Metric Tons Clear Calculate 1 Short Ton = 20,169,000 Btu (based on U.S. consumption, 2007) Electricity Conversion Calculator KilowattHours Btu Megajoules million Calories Clear Calculate 1 KilowattHour = 3,412 Btu Natural Gas Conversion Calculator Cubic Feet Btu Megajoules Cubic Meters Clear Calculate 1 Cubic Foot = 1,028 Btu (based on U.S. consumption, 2007); 1 therm = 100,000 Btu; 1 terajoule = 1,000,000 megajoules Crude Oil Conversion Calculator Barrels Btu Megajoules Metric Tons* Clear Calculate 1 Barrel = 42 U.S. gallons = 5,800,000 Btu (based on U.S. consumption,

446

Documents: DUF6 Conversion EIS Supporting Documents  

NLE Websites -- All DOE Office Websites (Extended Search)

DUF6 Conversion EIS DUF6 Conversion EIS Search Documents: Search PDF Documents View a list of all documents NEPA Compliance: DUF6 Conversion EIS Supporting Documents PDF Icon Notice of Change in National Environmental Policy Act (NEPA) Compliance Approach for the Depleted Uranium Hexafluoride (DUF6) Conversion Facilities Project 38 KB details PDF Icon Press Release: DOE Seeks Public Input for Depleted Uranium Hexafluoride Environmental Impact Statement 90 KB details PDF Icon Advance Notice of Intent To Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 52 KB details PDF Icon Notice of Intent to Prepare an Environmental Impact Statement for Depleted Uranium Hexafluoride Conversion Facilities 60 KB details PDF Icon Overview: Depleted Uranium Hexafluoride (DUF6) Management Program

447

DUF6 Conversion Facility EIS Alternatives  

NLE Websites -- All DOE Office Websites (Extended Search)

Alternatives Alternatives Depleted UF6 Conversion Facility EIS Alternatives Alternatives included in the Depleted UF6 Conversion Facility EISs. Proposed Action The proposed action evaluated in each EIS is to construct and operate a conversion facility at each site for conversion of the DOE DUF6 inventory. The time period considered is a construction period of approximately 2 years, an operational period of 25 years at Paducah and 18 years at Portsmouth, and the decontamination and decommissioning (D&D) of the facility of about 3 years. The EISs assess the potential environmental impacts from the following proposed activities: Construction, operation, maintenance, and D&D of the proposed DUF6 conversion facility at each site; Transportation of uranium conversion products and waste materials to a disposal facility;

448

Introduction to Solar Photon Conversion  

SciTech Connect

The efficient and cost-effective direct conversion of solar photons into solar electricity and solar fuels is one of the most important scientific and technological challenges of this century. It is estimated that at least 20 terawatts of carbon-free energy (1 and 1/2 times the total amount of all forms of energy consumed today globally), in the form of electricity and liquid and gaseous fuels, will be required by 2050 in order to avoid the most serious consequences of global climate change and to ensure adequate global energy supply that will avoid economic chaos. But in order for solar energy to contribute a major fraction of future carbon-free energy supplies, it must be priced competitively with, or perhaps even be less costly than, energy from fossil fuels and nuclear power as well as other renewable energy resources. The challenge of delivering very low-cost solar fuels and electricity will require groundbreaking advances in both fundamental and applied science. This Thematic Issue on Solar Photon Conversion will provide a review by leading researchers on the present status and prognosis of the science and technology of direct solar photoconversion to electricity and fuels. The topics covered include advanced and novel concepts for low-cost photovoltaic (PV) energy based on chemistry (dye-sensitized photoelectrodes, organic and molecular PV, multiple exciton generation in quantum dots, singlet fission), solar water splitting, redox catalysis for water oxidation and reduction, the role of nanoscience and nanocrystals in solar photoconversion, photoelectrochemical energy conversion, and photoinduced electron transfer. The direct conversion of solar photons to electricity via photovoltaic (PV) cells is a vital present-day commercial industry, with PV module production growing at about 75%/year over the past 3 years. However, the total installed yearly averaged energy capacity at the end of 2009 was about 7 GW-year (0.2% of global electricity usage). Thus, there is potential for the PV industry to grow enormously in the future (by factors of 100-300) in order for it to provide a significant fraction of total global electricity needs (currently about 3.5 TW). Such growth will be greatly facilitated by, and probably even require, major advances in the conversion efficiency and cost reduction for PV cells and modules; such advances will depend upon advances in PV science and technology, and these approaches are discussed in this Thematic Issue. Industrial and domestic electricity utilization accounts for only about 30% of the total energy consumed globally. Most ({approx}70%) of our energy consumption is in the form of liquid and gaseous fuels. Presently, solar-derived fuels are produced from biomass (labeled as biofuels) and are generated through biological photosynthesis. The global production of liquid biofuels in 2009 was about 1.6 million barrels/day, equivalent to a yearly output of about 2.5 EJ (about 1.3% of global liquid fuel utilization). The direct conversion of solar photons to fuels produces high-energy chemical products that are labeled as solar fuels; these can be produced through nonbiological approaches, generally called artificial photosynthesis. The feedstocks for artificial photosynthesis are H{sub 2}O and CO{sub 2}, either reacting as coupled oxidation-reduction reactions, as in biological photosynthesis, or by first splitting H{sub 2}O into H{sub 2} and O{sub 2} and then reacting the solar H{sub 2} with CO{sub 2} (or CO produced from CO2) in a second step to produce fuels through various well-known chemical routes involving syngas, water gas shift, and alcohol synthesis; in some applications, the generated solar H{sub 2} itself can be used as an excellent gaseous fuel, for example, in fuel cells. But at the present time, there is no solar fuels industry. Much research and development are required to create a solar fuels industry, and this Thematic Issue presents several reviews on the relevant solar fuels science and technology. The first three manuscripts relate to the daunting problem of producing

Nozik, A.; Miller, J.

2010-11-10T23:59:59.000Z

449

MELCOR accident analysis for ARIES-ACT  

Science Conference Proceedings (OSTI)

We model a loss of flow accident (LOFA) in the ARIES-ACT1 tokamak design. ARIES-ACT1 features an advanced SiC blanket with LiPb as coolant and breeder, a helium cooled steel structural ring and tungsten divertors, a thin-walled, helium cooled vacuum vessel, and a room temperature water-cooled shield outside the vacuum vessel. The water heat transfer system is designed to remove heat by natural circulation during a LOFA. The MELCOR model uses time-dependent decay heats for each component determined by 1-D modeling. The MELCOR model shows that, despite periodic boiling of the water coolant, that structures are kept adequately cool by the passive safety system.

Paul W. Humrickhouse; Brad J. Merrill

2012-08-01T23:59:59.000Z

450

NGLW RCRA Storage Study  

Science Conference Proceedings (OSTI)

The Idaho Nuclear Technology and Engineering Center (INTEC) at the Idaho National Engineering and Environmental Laboratory contains radioactive liquid waste in underground storage tanks at the INTEC Tank Farm Facility (TFF). INTEC is currently treating the waste by evaporation to reduce the liquid volume for continued storage, and by calcination to reduce and convert the liquid to a dry waste form for long-term storage in calcine bins. Both treatment methods and activities in support of those treatment operations result in Newly Generated Liquid Waste (NGLW) being sent to TFF. The storage tanks in the TFF are underground, contained in concrete vaults with instrumentation, piping, transfer jets, and managed sumps in case of any liquid accumulation in the vault. The configuration of these tanks is such that Resource Conservation and Recovery Act (RCRA) regulations apply. The TFF tanks were assessed several years ago with respect to the RCRA regulations and they were found to be deficient. This study considers the configuration of the current tanks and the RCRA deficiencies identified for each. The study identifies four potential methods and proposes a means of correcting the deficiencies. The cost estimates included in the study account for construction cost; construction methods to minimize work exposure to chemical hazards, radioactive contamination, and ionizing radiation hazards; project logistics; and project schedule. The study also estimates the tank volumes benefit associated with each corrective action to support TFF liquid waste management planning.

R. J. Waters; R. Ochoa; K. D. Fritz; D. W. Craig

2000-06-01T23:59:59.000Z

451

Electrical Energy Storage  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Electrochemical Flow Storage System Typical Cell Power Density (Wcm 2 ) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 UTRC Conventional Conventional flow battery cell UTRC flow battery...

452

Flash Storage Today  

Science Conference Proceedings (OSTI)

Can flash memory become the foundation for a new tier in the storage hierarchy? The past few years have been an exciting time for flash memory. The cost has fallen dramatically as fabrication has become more efficient and the market has grown; the density ...

Adam Leventhal

2008-07-01T23:59:59.000Z

453

Alkaline storage battery  

Science Conference Proceedings (OSTI)

An alkaline storage battery having located in a battery container a battery element comprising a positive electrode, a negative electrode, a separator and a gas ionizing auxiliary electrode, in which the gas ionizing electrode is contained in a bag of microporous film, is described.

Suzuki, S.

1984-02-28T23:59:59.000Z

454

Flywheel Energy Storage  

Science Conference Proceedings (OSTI)

Flywheels are under consideration as an alternative for electrochemical batteries in a variety of applications This summary report provides a discussion of the mechanics of flywheels and magnetic bearings, the general characteristics of inertial energy storage systems, design considerations for flywheel systems, materials for advanced flywheels, and cost considerations.

1997-09-03T23:59:59.000Z

455

Underground pumped hydroelectric storage  

DOE Green Energy (OSTI)

Underground pumped hydroelectric energy storage was conceived as a modification of surface pumped storage to eliminate dependence upon fortuitous topography, provide higher hydraulic heads, and reduce environmental concerns. A UPHS plant offers substantial savings in investment cost over coal-fired cycling plants and savings in system production costs over gas turbines. Potential location near load centers lowers transmission costs and line losses. Environmental impact is less than that for a coal-fired cycling plant. The inherent benefits include those of all pumped storage (i.e., rapid load response, emergency capacity, improvement in efficiency as pumps improve, and capacity for voltage regulation). A UPHS plant would be powered by either a coal-fired or nuclear baseload plant. The economic capacity of a UPHS plant would be in the range of 1000 to 3000 MW. This storage level is compatible with the load-leveling requirements of a greater metropolitan area with population of 1 million or more. The technical feasibility of UPHS depends upon excavation of a subterranean powerhouse cavern and reservoir caverns within a competent, impervious rock formation, and upon selection of reliable and efficient turbomachinery - pump-turbines and motor-generators - all remotely operable.

Allen, R.D.; Doherty, T.J.; Kannberg, L.D.

1984-07-01T23:59:59.000Z

456

Cryptographic cloud storage  

Science Conference Proceedings (OSTI)

We consider the problem of building a secure cloud storage service on top of a public cloud infrastructure where the service provider is not completely trusted by the customer. We describe, at a high level, several architectures that combine recent and ...

Seny Kamara; Kristin Lauter

2010-01-01T23:59:59.000Z

457

Pneumatic energy storage  

DOE Green Energy (OSTI)

An essential component to hybrid electric and electric vehicles is energy storage. A power assist device could also be important to many vehicle applications. This discussion focuses on the use of compressed gas as a system for energy storage and power in vehicle systems. Three possible vehicular applications for which these system could be used are discussed in this paper. These applications are pneumatically driven vehicles, series hybrid electric vehicles, and power boost for electric and conventional vehicles. One option for a compressed gas system is as a long duration power output device for purely pneumatic and hybrid cars. This system must provide enough power and energy to drive under normal conditions for a specified time or distance. The energy storage system for this use has the requirement that it will be highly efficient, compact, and have low mass. Use of a compressed gas energy storage as a short duration, high power output system for conventional motor vehicles could reduce engine size or reduce transient emissions. For electric vehicles this kind of system could lengthen battery life by providing battery load leveling during accelerations. The system requirements for this application are that it be compact and have low mass. The efficiency of the system is a secondary consideration in this application.

Flowers, D.

1995-09-19T23:59:59.000Z

458

Angular dependence of a simple accident dosimeter  

SciTech Connect

A simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. Studies of the model without phantom or other confounding factors have shown that the cross sections and fluence-to-dose factors generated by the Monte Carlo method agree with those generated by analytic expressions for the high energy component. The threshold cross sections for the detectors on a phantom were calculated. The resulting doses assigned agree well with exposures made to three critical assemblies. In this study the angular dependence on a phantom is studied and compared with measurements taken on the GODIVA reactor. The dosimeter positions on the phantom are facing the source, on the back and the side. In previous papers the modeling of a simple dosimeter made of a sulfur tablet, bare and cadmium covered indium foils and a cadmium covered copper foil has been modeled using MCNP5. The conclusion made was that most of the neutron dose from criticality assemblies results from the high energy neutron fluences determined by the sulfur and indium detectors. The results using doses measured from the GODIVA, SHEBA, and bare and lead shielded SILENE reactors confirmed this. The angular dependence of an accident dosemeter is of interest in evaluating the exposure of personnel. To investigate this effect accident dosemeters were placed on a phantom and exposed to the GODIVA reactor at phantom orientations of 0{sup o}, 45{sup o}, 90{sup o}, 135{sup o}, and 180{sup o} to the assembly center line.

Devine, R. T. (Robert T.); Romero, L. L. (Leonard L.); Olsher, R. H. (Richard H.)

2004-01-01T23:59:59.000Z

459

NV Energy Electricity Storage Valuation  

SciTech Connect

This study examines how grid-level electricity storage may benet the operations of NV Energy in 2020, and assesses whether those benets justify the cost of the storage system. In order to determine how grid-level storage might impact NV Energy, an hourly production cost model of the Nevada Balancing Authority (\\BA") as projected for 2020 was built and used for the study. Storage facilities were found to add value primarily by providing reserve. Value provided by the provision of time-of-day shifting was found to be limited. If regulating reserve from storage is valued the same as that from slower ramp rate resources, then it appears that a reciprocating engine generator could provide additional capacity at a lower cost than a pumped storage hydro plant or large storage capacity battery system. In addition, a 25-MW battery storage facility would need to cost $650/kW or less in order to produce a positive Net Present Value (NPV). However, if regulating reserve provided by storage is considered to be more useful to the grid than that from slower ramp rate resources, then a grid-level storage facility may have a positive NPV even at today's storage system capital costs. The value of having storage provide services beyond reserve and time-of-day shifting was not assessed in this study, and was therefore not included in storage cost-benefit calculations.

Ellison, James F.; Bhatnagar, Dhruv; Samaan, Nader A.; Jin, Chunlian

2013-06-30T23:59:59.000Z

460

Static power conversion techniques for unique energy devices  

E-Print Network (OSTI)

Solar power, fuel cells, and supercapacitors are some hics. of the new energy devices that are being used today in various power applications. The first two of these devices are exciting alternative sources of clean energy. The third device is an important new energy storage device that has some properties of a battery and a capacitor allowing it to be used in applications where attributes of both are needed. To realize the full potential of these energy sources, novel engineering strategies have to be implemented to manage the conversion of power. Since these devices are relatively new and their development is constantly maturing, a introduction to these devices will be a useful to those unfamiliar with the state of the art of solar cells, fuel cells, and supercapacitors. In this paper characteristics of each technology will be reviewed and design consideration will be discussed, and methods of utilizing each of these devices will be offered.

Welch, Richard Andrew

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Frequency Conversion Interfaces for Photonic Quantum ...  

Science Conference Proceedings (OSTI)

... by nearly two orders of magnitude while maintaining equal conversion efficiency. ... focused on developing approaches to tune the energy levels of ...

2013-07-02T23:59:59.000Z

462

Novel Nitride-Modified Multielectron Conversion Electrode ...  

Novel Nitride-Modified Multielectron Conversion Electrode Materials for Lithium Ion Batteries Note: The technology described above is an early stage opportunity.

463

Share of Conversion Capacity - Energy Information Administration  

U.S. Energy Information Administration (EIA)

In the early to mid 1980s, Atlantic Basin refiners rapidly expanded their conversion capacity as a consequence of the belief that world crude production would get ...

464

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically converting an alcohol ...

465

Direct Conversion of Biomass into Transportation Fuels  

Direct Conversion of Biomass into Transportation Fuels . Return to Marketing Summary. Skip footer navigation to end of page. Contacts | Web Site Policies | U.S ...

466

Conversion of Ultra High Performance Carbon Fiber  

Conversion of Ultra High Performance Carbon Fiber Note: The technology described above is an early stage opportunity. Licensing rights to this intellectual property may

467

Energy Basics: Ocean Thermal Energy Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Ocean Thermal Energy Conversion Tidal Energy Wave Energy...

468

Catalytic Conversion of Bioethanol to Hydrocarbons  

ORNL 2011-G00219/jcn UT-B ID 201002414 08.2011 Catalytic Conversion of Bioethanol to Hydrocarbons Technology Summary A method for catalytically ...

469

Converse, Texas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

| Sign Up Search Page Edit with form History Facebook icon Twitter icon Converse, Texas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates...

470

Landholders, Residential Land Conversion, and Market Signals  

E-Print Network (OSTI)

465 Margulis: Landholders, Residential Land Conversion, and1983. An Analysis of Residential Developer Location FactorsHow Regulation Affects New Residential Development. New

Margulis, Harry L.

2006-01-01T23:59:59.000Z

471

Bioenergy Technologies Office: Processing and Conversion  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

sugar-rich stream (hydrolyzate) is fed to organisms that ferment the sugars to fuel precursor molecules. The biochemical conversion platform also has a large stake in some...

472

"Approaches to Ultrahigh Efficiency Solar Energy Conversion"...  

Office of Science (SC) Website

"Approaches to Ultrahigh Efficiency Solar Energy Conversion" Webinar Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events EFRC News...

473

"Fundamental Challenges in Solar Energy Conversion" workshop...  

Office of Science (SC) Website

Fundamental Challenges in Solar Energy Conversion" workshop hosted by LMI-EFRC Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events...

474

Conversion factors for energy equivalents: All factors  

Science Conference Proceedings (OSTI)

... Previous page of energy equivalents. Definition of uncertainty notation eg, 123(45) | Basis of conversion factors for energy equivalents. Top. ...

475

Carbon-based Materials for Energy Storage  

E-Print Network (OSTI)

Flexible, lightweight energy-storage devices are of greatstrategy to fabricate flexible energy-storage devices.Flexible, lightweight energy-storage devices (batteries and

Rice, Lynn Margaret

2012-01-01T23:59:59.000Z

476

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

High temperature underground thermal energy storage, inProceedings, Thermal Energy Storage in Aquifers Workshop:underground thermal energy storage, in ATES newsletter:

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

477

Storage/Handling | Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

StorageHandling StorageHandling Records Management Procedures for Storage, Transfer & Retrieval of Records from the Washington National Records Center (WNRC) or Legacy Management...

478

Nanostructured Materials for Energy Generation and Storage  

E-Print Network (OSTI)

for Electrochemical Energy Storage Nanostructured Electrodesof Electrode Design for Energy Storage and Generation .batteries and their energy storage efficiency. vii Contents

Khan, Javed Miller

2012-01-01T23:59:59.000Z

479

Energy Storage Demonstration Project Locations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Storage Demonstration Project Locations Energy Storage Demonstration Project Locations Map of the United States showing the location of Energy Storage Demonstration projects...

480

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

Survey of Thermal Energy Storage in Aquifers Coupled withGeneration and Energy Storage," presented at Frontiers ofStudy of Underground Energy Storage Using High-Pressure,

Authors, Various

2011-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "accidents storage conversion" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

AQUIFER THERMAL ENERGY STORAGE-A SURVEY  

E-Print Network (OSTI)

1978, High temperature underground thermal energy storage,in Proceedings, Thermal Energy Storage in Aquifers Workshop:High temperature underground thermal energy storage, in ATES

Tsang, Chin Fu

2012-01-01T23:59:59.000Z

482

THERMAL ENERGY STORAGE IN AQUIFERS WORKSHOP  

E-Print Network (OSTI)

B. Quale. Seasonal storage of thermal energy in water in theand J. Schwarz, Survey of Thermal Energy Storage in AquifersSecond Annual Thermal Energy Storage Contractors'

Authors, Various

2011-01-01T23:59:59.000Z

483

Nuclear Fuels Storage & Transportation Planning Project | Department...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nuclear Fuels Storage & Transportation Planning Project Nuclear Fuels Storage & Transportation Planning Project Independent Spent Fuel Storage Installation (ISFSI) at the shutdown...