National Library of Energy BETA

Sample records for access gateway plug-in

  1. U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities

    Broader source: Energy.gov [DOE]

    Two vulnerabilities in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system.

  2. T-701: Citrix Access Gateway Enterprise Edition Input Validation...

    Broader source: Energy.gov (indexed) [DOE]

    ABSTRACT: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks. reference LINKS: SecurityTracker Alert ID:...

  3. V-106: Citrix Access Gateway Unspecified Security Bypass Vulnerability

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in Citrix Access Gateway, which can be exploited by malicious people to bypass certain security restrictions.

  4. NERSC Science Gateways

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Users Science Gateways Science Gateways About Science Gateways A science gateway is a web based interface to access HPC computers and storage systems. Gateways allow science...

  5. U-020: McAfee Web Gateway Web Access Cross Site Scripting Vulnerabilit...

    Office of Environmental Management (EM)

    0: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability U-020: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability October 26, 2011 - 9:00am Addthis...

  6. IEEE Access 2015-000125 1 Abstract--Plug-in hybrid electric vehicles (PHEVs) offer the

    E-Print Network [OSTI]

    Eppstein, Margaret J.

    IEEE Access 2015-000125 1 Abstract-- Plug-in hybrid electric vehicles (PHEVs) offer the potential vehicles (PHEVs); agent-based model; market penetration; electric vehicle adoption; vehicle choice-in hybrid electric vehicles (PHEVs) offer the potential to significantly reduce GHG emissions [2

  7. HotGrid: Graduated Access to Grid-based Science Gateways

    E-Print Network [OSTI]

    Williams, Roy

    provide useful science gateways in the medium to long term, but also strong scientific results in the short term. We will explore the construction of "science gateways" which abstract the architectural in a familiar data-analysis environment. The gateway is thus utilized in several different ways: ­ Web form

  8. Your GatewaY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    http:www.osti.govnle Your GatewaY to InformatIon across the Department of enerGY The National Library of Energy Beta search tool provides one-stop access to DOE information in...

  9. Science Gateways

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-Contest December 17, 2015Gateways

  10. V-153: Symantec Brightmail Gateway Input Validation Flaw Permits...

    Broader source: Energy.gov (indexed) [DOE]

    T-701: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks U-001:Symantec IM Manager Input Validation Flaws...

  11. Plug-in Hybrid Initiative

    SciTech Connect (OSTI)

    Goodman, Angie; Moore, Ray; Rowden, Tim

    2013-09-27

    Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

  12. Plug-In Hybrid Electric Vehicles (Presentation)

    SciTech Connect (OSTI)

    Markel, T.

    2006-05-08

    Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

  13. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation arravt068vssmiyasato2011o .pdf More Documents & Publications Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation SCAQMD:Plug-In...

  14. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Energy Savers [EERE]

    Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:...

  15. Hybrid and Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    2014-05-20

    Hybrid and plug-in electric vehicles use electricity either as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles(PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use.

  16. Plug-in hybrid electric vehicle R&D plan

    SciTech Connect (OSTI)

    None, None

    2007-06-01

    FCVT, in consultation with industry and other appropriate DOE offices, developed the Draft Plug-In Hybrid Electric Vehicle R&D Plan to accelerate the development and deployment of technologies critical for plug-in hybrid vehicles.

  17. Plug-In Demo Charges up Clean Cities Coalitions

    Broader source: Energy.gov [DOE]

    Clean Cities Coordinators across the country highlight the benefits of plug-in hybrids and help collect valuable usage data as part of a demonstration project for the upcoming plug-in hybrid model of the Toyota Prius.

  18. Sample Employee Newsletter Articles for Plug-In Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Articles for Plug-In Electric Vehicle Engagement These sample articles on plug-in electric vehicles (PEVs) can be customized and used in your employee newsletters, blog or...

  19. Plug-In Hybrid Electric Vehicle Market Introduction Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Market Introduction Study SSuummmmaarryy ooff WWoorrkksshhoopp. #12;ORNL/TM-2008/242 Plug-in Hybrid Electric Vehicle Market Introduction Study SUMMARY OF WORKSHOP The Plug-In Hybrid Electric Vehicle (PHEV) Market Introduction Study Workshop was attended by approximately

  20. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 3:Phase 1, Task 3: Technic Government or any agency thereof. #12;ORNL/TM-2008/068 Plug-in Hybrid Electric Vehicle Value Proposition The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study is a collaborative effort between

  1. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    Plug-In Hybrid Electric Vehicle Value Proposition Study IInntteerriimm RReeppoorrtt:: PPhhaassee 11 Government or any agency thereof. ORNL/TM-2008/076 #12;Plug-in Hybrid Electric Vehicle Value Proposition 2009 i ACKNOWLEDGEMENTS The Plug-In Hybrid Electric Vehicle (PHEV) Value Proposition Study

  2. Plug-in Electric Vehicle Outreach

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying Around withPlug-and-PlayPlug-in

  3. Fermi plug-in for TEMPO2 documentation L. Guillemot

    E-Print Network [OSTI]

    Nishikawa, Ken-Ichi

    Fermi plug-in for TEMPO2 documentation L. Guillemot e-mail: guillemo at mpifr-bonn.mpg.de v4.0, 24/09/2011 #12;Introduction The Fermi plug-in for TEMPO2 allows to calculate a pulsar rotational phase for each by TEMPO2. The plug-in first calculates the position of the observatory for each photon time, using

  4. EV Everywhere: America's Plug-In Electric Vehicle Market Charges...

    Energy Savers [EERE]

    the world's total and our transportation system producing a third of the country's carbon pollution, improving plug-in electric vehicle technology and increasing the number of...

  5. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-05-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  6. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  7. Battery Choices for Different Plug-in HEV Configurations (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2006-07-12

    Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

  8. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. vssarravt068miyasato2010p.pdf More Documents & Publications Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Vehicle...

  9. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  10. Vehicle Technologies Office: AVTA - Plug-in Electric Vehicle...

    Broader source: Energy.gov (indexed) [DOE]

    nation's vehicle fleet. VTO invested 400 million in 18 projects to demonstrate plug-in electric vehicles (PEVs, also known as electric cars) and infrastructure, including 10...

  11. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

  12. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

  13. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01

    and impacts of hybrid electric vehicle options for compactof plug-in hybrid electric vehicles, vol. 1: nationwideimpacts of hybrid electric vehicle options. Report #1000349,

  14. Science Gateways : Demos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque| Stanford SynchrotronVideo-Contest December 17, 2015GatewaysDemos

  15. Hybrid and Plug-In Electric Vehicles (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-05-01

    Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  16. Advanced Plug-in Electric Vehicle Travel and Charging

    E-Print Network [OSTI]

    California at Davis, University of

    Advanced Plug-in Electric Vehicle Travel and Charging Behavior UC Davis Plug-in Hybrid and Electric Vehicle Research Center Michael Nicholas Thomas Turrentine Gil Tal #12;Project Overview · Provide most in-depth study of PEV usage and charging dynamics. Inform policy on battery size/vehicle architecture

  17. Competitive Charging Station Pricing for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Huang, Jianwei

    Competitive Charging Station Pricing for Plug-in Electric Vehicles Wei Yuan, Member, IEEE, Jianwei considers the problem of charging station pricing and station selection of plug-in electric vehicles (PEVs). Every PEV needs to select a charging station by con- sidering the charging prices, waiting times

  18. California Statewide Plug-In Electric Vehicle Infrastructure Assessment

    SciTech Connect (OSTI)

    Melaina, Marc; Helwig, Michael

    2014-05-01

    The California Statewide Plug-In Electric Vehicle Infrastructure Assessment conveys to interested parties the Energy Commission’s conclusions, recommendations, and intentions with respect to plug-in electric vehicle (PEV) infrastructure development. There are several relatively low-risk and high-priority electric vehicle supply equipment (EVSE) deployment options that will encourage PEV sales and

  19. HAN Attack Surface and the Open Smart Energy Gateway Project

    E-Print Network [OSTI]

    Searle, Justin

    2014-01-01

    Surface  and  the  Open  Smart   Energy  Gateway  Project  Surface  and  the  Open  Smart   Energy  Gateway  Project  home.       The  Open  Smart  Energy  Gateway  (OpenSEG)  

  20. Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint

    SciTech Connect (OSTI)

    Markel, T.

    2010-04-01

    Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

  1. Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Burke, Andrew

    2009-01-01

    for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

  2. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  3. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01

    237–253. Burke, A. , 2007. Batteries and ultracapacitors forresults with lithium-ion batteries. In: Proceedings (CD)locate/tranpol Are batteries ready for plug-in hybrid

  4. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    higher power density batteries have reduced energy density,2008 UCD-ITS-WP-09-02 Are batteries ready for plug-in hybridprograms mischaracterize the batteries needed to start

  5. Plug-in electric vehicle introduction in the EU

    E-Print Network [OSTI]

    Sisternes, Fernando J. de $q (Fernando José Sisternes Jiménez)

    2010-01-01

    Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

  6. Plug-In Hybrid Electric Vehicles | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in...

  7. EV Everywhere: Innovative Battery Research Powering Up Plug-In...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Grand Challenge seeks to make the U.S. the first nation in the world to produce plug-in electric vehicles that are as affordable and convenient for the average American...

  8. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation vss063bazzi2011o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  9. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plug-In Hybrid Electric Vehicles 2014 BMW i3-REX 2013 Chevrolet Volt 2013 Ford Cmax Energi 2013 Ford Fusion Energi 2013 Toyota Prius 2012 Chevrolet Volt 2012 Toyota Prius Electric...

  10. Advancing Plug In Hybrid Technology and Flex Fuel Application...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Meeting vss063bazzi2012o.pdf More Documents & Publications Advancing Plug In Hybrid Technology and Flex Fuel Application on a Chrysler Mini-Van PHEV DOE Funded Project...

  11. High-Power Electrochemical Storage Devices and Plug-in Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle Battery Development High-Power Electrochemical Storage Devices and Plug-in Hybrid Electric Vehicle...

  12. International Clean Energy Analysis Gateway: Assisting Developing Countries with Clean Energy Deployment (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    The International Clean Energy Analysis Gateway seeks to enhance developing country access to energy efficiency and renewable energy analysis tools, databases, methods, and other technical resources in a dynamic user interaction environment. In addition to providing information on available tools, the gateway also is a platform for Web seminars, online training, peer networks, and expert assistance. The gateway is sponsored by the U.S. Department of Energy (DOE) and the United Nations Industrial Development Organization (UNIDO) and managed by the National Renewable Energy Laboratory (NREL). Further cooperation is desired with organizations that can help expand the information presented in the portal and assist with outreach and training.

  13. Wireless Gateway Programming Model Qadri Hamarsheh

    E-Print Network [OSTI]

    1 Wireless Gateway Programming Model Qadri Hamarsheh Department of Computer Engineering, Faculty suggests architecture for Wireless Gateway Programming Model that consists of building blocks to solve the technical and business problems of wireless environment. The paper describes various fundamental aspects

  14. "Catching the second wave" of the Plug in Electric Vehicle

    E-Print Network [OSTI]

    California at Davis, University of

    , utility side support · Retail system: dealer profit and support for customers · Used PEV market"Catching the second wave" of the Plug in Electric Vehicle Market PEV market update from ITS PHEV on gasoline, diesel, natural gas, biofuels and other liquid or gaseous fuels. · HEV = Hybrid electric vehicles

  15. Power Forecasting for Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Lavaei, Javad

    Power Forecasting for Plug-in Electric Vehicles with Statistic Simulations Guangbin Li (gl2423) #12 of the most heated-discussed issues. Energy shortage and environment pollution are the main bottleneck the tradeoff between energy supply and environment pollution. As the international oil price was continuously

  16. A Plague of Plug-ins Thomas Ball

    E-Print Network [OSTI]

    Borgs, Christian

    Interaction · Other thoughts ­ Smart phone ­ Cloud computing ­ Human-based computation #12;Car Plug-ins #12: "DOM Level 1" recommended by W3C #12;2000s: Buffer Overflow and Security Exploits · Connectedness of code with many buffer overflows (lack of isolation) leads to a security crisis at Microsoft · Security

  17. Web 3D Rendering Without Plug-Ins Andrs Buritic

    E-Print Network [OSTI]

    Dahlquist, Kam D.

    OpenJSGL Web 3D Rendering Without Plug-Ins Andrés Buriticá Loyola Marymount University Faculty, 2007 Introduction 3D graphics Applications The Worldwide Web #12;Concept OpenGL JavaScript OpenJSGL Previous Work: 3D In A Browser Java applets Flash JavaScript VRML, later called X3D Java Web Start Other

  18. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  19. Plug-In Electric Vehicle Handbook for Consumers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-09-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

  20. Graphene 'gateway' discovery opens possibilities for improved...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dawn Levy Communications 865.576.6448 Graphene 'gateway' discovery opens possibilities for improved energy technologies Computer simulations show a single proton (pink) can cross...

  1. T-566: Citrix Secure Gateway Unspecified Vulnerability

    Broader source: Energy.gov [DOE]

    A vulnerability has been reported in Citrix Secure Gateway, which can be exploited by malicious people to compromise a vulnerable system.

  2. The Smithsonian American Art Museum GATEWAY Demonstration

    Broader source: Energy.gov [DOE]

    View the video about using LEDs in a GATEWAY demonstration at the Smithsonian American Art Museum in Washington, DC, including an interview with lighting designer Scott Rosenfeld.

  3. Global Science Gateway Agreement Signed in London | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Global Science Gateway Agreement Signed in London Global Science Gateway Agreement Signed in London January 22, 2006 - 10:15am Addthis DOE Partners With British Library on...

  4. A Brief Discussion of Battery Properties and Goals for Plug-in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Brief Discussion of Battery Properties and Goals for Plug-in Hybrid and Electric Vehicles Title A Brief Discussion of Battery Properties and Goals for Plug-in Hybrid and Electric...

  5. Emissions and Fuel Consumption Test Results from a Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus Emissions and Fuel Consumption Test Results from a Plug-In Hybrid Electric School Bus 2010 DOE Vehicle...

  6. Fact #562: March 16, 2009 Carbon Reduction of Plug-in Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Fact 562: March 16, 2009 Carbon Reduction of Plug-in Hybrid Electric Vehicles Estimates from the GREET model...

  7. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost Fact 595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel...

  8. Fact #856 January 19, 2015 Plug-in and Hybrid Cars Receive High...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction...

  9. Fact #796: September 9, 2013 Electric Vehicle and Plug-In Hybrid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales History Fact 796: September 9, 2013 Electric Vehicle and Plug-In Hybrid Electric Vehicle Sales...

  10. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells Program, and...

  11. DOE Supports PG&E Development of Next Generation Plug-in Hybrid...

    Office of Environmental Management (EM)

    DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks DOE Supports PG&E Development of Next Generation Plug-in Hybrid Electric Trucks February 25, 2015 -...

  12. Fact #815: February 3, 2014 Global Sales of Top 10 Plug-In Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    sales overall and led among plug-in hybrid vehicles with sales of about 25,000. As a proportion of sales, the Nissan Leaf and Toyota Prius Plug-in hybrid had the most even...

  13. Plug-In Electric Vehicle Handbook for Workplace Charging Hosts

    SciTech Connect (OSTI)

    2013-08-01

    Plug-in electric vehicles (PEVs) have immense potential for increasing the country's energy, economic, and environmental security, and they will play a key role in the future of U.S. transportation. By providing PEV charging at the workplace, employers are perfectly positioned to contribute to and benefit from the electrification of transportation. This handbook answers basic questions about PEVs and charging equipment, helps employers assess whether to offer workplace charging for employees, and outlines important steps for implementation.

  14. Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center Home Page on Digglaws-incentivesFuelsPublicationsPlug-In Hybrid

  15. Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.; Markel, T.; Simpson, A.

    2006-10-01

    Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

  16. Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Prospects for Plug-in Hybrid Electric Vehicles in the United States: A General Equilibrium Analysis, Technology and Policy Program #12;#12;3 Prospects for Plug-in Hybrid Electric Vehicles in the United States Engineering ABSTRACT The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions

  17. EAST CAMPUS / MIT GATEWAY Alternative Approaches

    E-Print Network [OSTI]

    Reif, Rafael

    EAST CAMPUS / MIT GATEWAY Alternative Approaches Prepared by The Design Committee July 19. 2013 #12;East Campus / MIT Gateway - Alternative Approaches 1 This report lays out strategic options for design space on the campus south of Main Street. The report examines alternative approaches to achieving

  18. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    E-Print Network [OSTI]

    Momber, Ilan

    2010-01-01

    Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridL ABORATORY Plug-in Electric Vehicle Interactions with a

  19. Interconnecting WiFi Devices with IEEE 802.15.4 Devices without Using a Gateway

    E-Print Network [OSTI]

    Gnawali, Omprakash

    to bridge between the low power IEEE 802.15.4 network and the Internet. The bridge has at least two at a smart home, the user may use a smartphone and send command over WiFi to the gateway, often through smart home automation applications are non-interactive. Yet, they require Internet access either

  20. Compact Fluorescent Plug-In Ballast-in-a-Socket

    SciTech Connect (OSTI)

    Rebecca Voelker

    2001-12-21

    The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.

  1. AVTA: Plug-In Hybrid Electric School Buses

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following set of reports describes data collected from testing several plug-in hybrid electric school buses in locations in three different states. This research was conducted by the National Renewable Energy Laboratory (NREL).

  2. Plug-In Hybrid Vehicle Analysis (Milestone Report)

    SciTech Connect (OSTI)

    Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

    2006-11-01

    NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

  3. Plug In Hybrid Development Consortium | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas: Energy Resources Jump to:PlotWatt Jump to:Plug In

  4. NREL: Learning - Plug-In Hybrid Electric Vehicle Basics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial Toolkit The Geospatial ToolkitElectricityPlug-In Hybrid

  5. SSL GATEWAY UNIVERSITY OF FLORIDA DANCE SHOWCASE

    Broader source: Energy.gov [DOE]

    View the video showing side-by-side dance performances with halogen and LED sidelighting as part of the Solid-State Lighting GATEWAY demonstration at the University of Florida.

  6. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-12-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  7. Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jeffrey R. Belt

    2010-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

  8. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    on fuel cells, advanced batteries, and ultracapacitorof Lithium-ion Batteries of Various Chemistries for Plug-inAdvisor utilizing lithium-ion batteries of the different

  9. Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles

    E-Print Network [OSTI]

    Burke, Andrew; Miller, Marshall

    2009-01-01

    Characteristics of Lithium-ion Batteries of VariousAdvisor utilizing lithium-ion batteries of the differentin hybrids. Keywords: lithium-ion batteries, plug-in hybrid

  10. Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)

    Broader source: Energy.gov [DOE]

    Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

  11. Clean Cities Plug-In Electric Vehicle Handbook for Electrical Contractors

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  12. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts

    SciTech Connect (OSTI)

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  13. Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

  14. Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-02-13

    Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

  15. Plug-In Hybrid Electric Vehicle Energy Storage System Design: Preprint

    SciTech Connect (OSTI)

    Markel, T.; Simpson, A.

    2006-05-01

    This paper discusses the design options for a plug-in hybrid electric vehicle, including power, energy, and operating strategy as they relate to the energy storage system.

  16. Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV

    SciTech Connect (OSTI)

    O'Keefe. M. P.; Markel, T.

    2006-11-01

    This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

  17. Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)

    SciTech Connect (OSTI)

    Simpson, A.

    2006-08-24

    Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.

  18. Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Gonder, J.; Simpson, A.

    2006-11-01

    This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

  19. Space Heaters, Computers, Cell Phone Chargers: How Plugged In Are Commercial Buildings?

    E-Print Network [OSTI]

    Sanchez, Marla; Webber, Carrie; Brown, Richard; Busch, John; Pinckard, Margaret; Roberson, Judy

    2007-01-01

    Heaters, Computers, Cell Phone Chargers: How Plugged In Arefixture type. For battery chargers, we noted the portablecomponent and whether the charger was empty or full. For

  20. Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale

    SciTech Connect (OSTI)

    Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

    2009-07-01

    Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

  1. Accessibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAbout UsAboutWeb Policies » Accessibility

  2. Accessibility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act Recovery ActARMAccelerators,Access to the

  3. Solid State Lighting: GATEWAY and CALiPER

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Laboratory Marc.Ledbetter@pnnl.gov 503.417.7557 April 3, 2013 Solid State Lighting: GATEWAY & CALiPER Solid State Lighting: GATEWAY & CALiPER 2 | Building Technologies...

  4. Text-Alternative Version: Smithsonian GATEWAY Demonstration Video

    Broader source: Energy.gov [DOE]

    Following is a text version of a video about the GATEWAY demonstration project at the Smithsonian American Art Museum.

  5. An agent-based model to study market penetration of plug-in hybrid electric vehicles

    E-Print Network [OSTI]

    Vermont, University of

    An agent-based model to study market penetration of plug-in hybrid electric vehicles Margaret J 2011 Available online 29 April 2011 Keywords: Plug-in hybrid electric vehicles Market penetration Agent vehicle (PHEV) market penetration. The model accounts for spatial and social effects (including threshold

  6. Optimal Power Market Participation of Plug-In Electric Vehicles Pooled by Distribution Feeder

    E-Print Network [OSTI]

    Caramanis, Michael

    Optimal Power Market Participation of Plug-In Electric Vehicles Pooled by Distribution Feeder : Power system markets, Power system economics Key Words: Load management, Electric vehicle grid Transactions on Power Systems #12;WORKING PAPER 1 Optimal Power Market Participation of Plug-In Electric

  7. CREATING A PLUG-IN ELECTRIC VEHICLE INDUSTRY CLUSTER IN MICHIGAN

    E-Print Network [OSTI]

    Lyon, Thomas P.

    303 CREATING A PLUG-IN ELECTRIC VEHICLE INDUSTRY CLUSTER IN MICHIGAN: PROSPECTS AND POLICY OPTIONS a Plug-In Electric Vehicle Industry Cluster in Michigan: Prospects and Policy Options, 18 MICH. TELECOMM.......................................................308 II. Will the Electric Vehicle Industry Cluster?....................309 A. Why Do Industries

  8. Fact #752: November 5, 2012 Western Europe Plug-in Car Sales, 2012

    Broader source: Energy.gov [DOE]

    Using data for the first seven months of 2012, Norway has the highest plug-in car market share at 2.55%. The Netherlands has the second highest plug-in market share (0.59%) and despite its small...

  9. Gateway Design for Data Gathering Sensor Raluca Musaloiu-E.

    E-Print Network [OSTI]

    Amir, Yair

    such a gateway requires special energy sources, such as rechargeable batteries coupled with solar panels@cs.jhu.edu Abstract--Innovation in gateways for data gathering sensor networks has lagged compared to advances in mote investigate mechanisms to minimize energy consumption at the gateway including completely powering it off

  10. An Optimization Model for Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Malikopoulos, Andreas [ORNL] [ORNL; Smith, David E [ORNL] [ORNL

    2011-01-01

    The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

  11. Fact #877: June 15, 2015 Which States Have More Battery Electric Vehicles than Plug-in Hybrids?

    Broader source: Energy.gov [DOE]

    Plug-in electric vehicles (PEVs) include both battery electric vehicles (BEVs) which run only on electricity, and plug-in hybrid electric vehicles (PHEVs) which run on electricity and/or gasoline....

  12. Kansas Consortium Plug-in Hybrid Medium Duty

    SciTech Connect (OSTI)

    None, None

    2012-03-31

    On September 30, 2008, the US Department of Energy (DoE), issued a cooperative agreement award, DE-FC26-08NT01914, to the Metropolitan Energy Center (MEC), for a project known as “Kansas Consortium Plug-in Hybrid Medium Duty Certification” project. The cooperative agreement was awarded pursuant to H15915 in reference to H. R. 2764 Congressionally Directed Projects. The original agreement provided funding for The Consortium to implement the established project objectives as follows: (1) to understand the current state of the development of a test protocol for PHEV configurations; (2) to work with industry stakeholders to recommend a medium duty vehicle test protocol; (3) to utilize the Phase 1 Eaton PHEV F550 Chassis or other appropriate PHEV configurations to conduct emissions testing; (4) and to make an industry PHEV certification test protocol recommendation for medium duty trucks. Subsequent amendments to the initial agreement were made, the most significant being a revised Scope of Project Objectives (SOPO) that did not address actual field data since it was not available as originally expected. This project was mated by DOE with a parallel project award given to the South Coast Air Quality Management District (SCAQMD) in California. The SCAQMD project involved designing, building and testing of five medium duty plug-in hybrid electric trucks. SCAQMD had contracted with the Electric Power Research Institute (EPRI) to manage the project. EPRI provided the required match to the federal grant funds to both the SCAQMD project and the Kansas Consortium project. The rational for linking the two projects was that the data derived from the SCAQMD project could be used to validate the protocols developed by the Kansas Consortium team. At the same time, the consortium team would be a useful resource to SCAQMD in designating their test procedures for emissions and operating parameters and determining vehicle mileage. The years between award of the cooperative agreements and their completion were problematic for the US and world economies. This resulted in the President and Congress implementing the American Recovery and Reinvestment Act of 2009, abbreviated ARRA (Pub.L. 111-5), commonly referred to as the Stimulus or The Recovery Act. The stimulus money available for transportation projects encouraged the SCAQMD to seek additional funds. In August of 2009, they eventually were awarded an additional $45.5 M, and the scope of their project was expanded to 378 vehicles. However, as a consequence of the stimulus money and the inundation of DOE with applications for new project under the ARRA, the expected time table for producing and testing vehicles was significantly delayed. As a result, these vehicles were not available for validating the protocols developed by the Kansas Consortium. Therefore, in April of 2011, the Scope of Project Objectives (SOPO) for the project was revised, and limited to producing the draft protocol for PHEV certification as its deliverable.

  13. Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing and Pontryagin's minimum principle

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Energy management of power-split plug-in hybrid electric vehicles based on simulated annealing Accepted 14 August 2014 Available online 27 August 2014 Keywords: Plug-in hybrid electric vehicles Fuel management method is proposed for a power-split plug-in hybrid electric vehicle (PHEV). Through analyzing

  14. Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus t In this study, plug-in and wireless charging for an all-electric bus system are compared from the life cycle t Wireless charging, as opposed to plug-in charging, is an alternative charging method for electric vehicles

  15. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

  16. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  17. U.S. Department of Energy Increases Access to Results of DOE...

    Broader source: Energy.gov (indexed) [DOE]

    has launched the Public Access Gateway for Energy and Science - PAGES - a web-based portal that will provide free public access to accepted peer-reviewed manuscripts or...

  18. Plug-In Electric Vehicle R&D on High Energy Materials | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R&D on High Energy Materials Plug-In Electric Vehicle R&D on High Energy Materials Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit Review 2008 on...

  19. Plug-in vehicles and carsharing : user preferences, energy consumption and potential for growth

    E-Print Network [OSTI]

    Zoepf, Stephen M

    2015-01-01

    Plug-in Electric Vehicles (PEVs) are seen as a key pathway to reduce fuel consumption and greenhouse gas emissions in transportation, yet their sales are under 1% of new cars despite large incentives. Carsharing, a market ...

  20. Prospects for plug-in hybrid electric vehicles in the United States : a general equilibrium analysis

    E-Print Network [OSTI]

    Karplus, Valerie Jean

    2008-01-01

    The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions in carbon dioxide emissions from personal vehicle transportation in the United States over the next century, depending on the ...

  1. Fact #876: June 8, 2015 Plug-in Electric Vehicle Penetration...

    Broader source: Energy.gov (indexed) [DOE]

    fotw876web.xlsx More Documents & Publications Fact 856 January 19, 2015 Plug-in and Hybrid Cars Receive High Scores for Owner Satisfaction - Dataset Quarterly Analysis Review...

  2. A simulation-based assessment of plug-in hybrid electric vehicle architectures

    E-Print Network [OSTI]

    Sotingco, Daniel (Daniel S.)

    2012-01-01

    Plug-in hybrid electric vehicles (PHEVs) are vehicles that utilize power from both an internal combustion engine and an electric battery that can be recharged from the grid. Simulations of series, parallel, and split-architecture ...

  3. Fact #878: June 22, 2015 Plug-in Vehicle Penetration in Selected Countries, 2014

    Office of Energy Efficiency and Renewable Energy (EERE)

    The International Energy Agency released the 2015 report Hybrid and Electric Vehicles, The Electric Drive Delivers which shows the total number of plug-in electric vehicles (PEVs) in selected...

  4. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction Fact 843:...

  5. Fact #685: July 25, 2011 Reasons for Buying a Plug-in Hybrid Vehicle

    Broader source: Energy.gov [DOE]

    General Motors has been gathering feedback from customers who purchased the 2011 Chevrolet Volt, which is the only plug-in hybrid vehicle (PHEV) on the market today. Through May 2011, about 2,100...

  6. Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Feb 4, 2014 ... Minimum Cost Path Problem for Plug-in Hybrid Electric Vehicles. Okan Arslan ( okan.arslan ***at*** bilkent.edu.tr) Baris Yildiz (baris.yildiz ...

  7. Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology

    SciTech Connect (OSTI)

    Simpson, A.

    2006-11-01

    This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

  8. Fact #873: May 18, 2015 Plug-In Vehicle Sales Total Nearly 120...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2014 were the Nissan Leaf, Chevrolet Volt, Tesla Model S, Toyota Prius PHEV, and Ford Fusion Energi. From the first plug-in vehicle sales in 2011 to 2014 about 287 million...

  9. Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop

    Office of Energy Efficiency and Renewable Energy (EERE)

    Local government leaders, utilities, car makers and electric-vehicle infrastructure providers came together to discuss how they can best coordinate their efforts at the Plug-in Vehicle and Infrastructure Workshop.

  10. Ford Plug-In Project: Bringing PHEVs to Market Demonstration and Validation Project

    SciTech Connect (OSTI)

    2013-12-31

    This project is in support of our national goal to reduce our dependence on fossil fuels. By supporting efforts that contribute toward the successful mass production of plug-in hybrid electric vehicles, our nation’s transportation-related fuel consumption can be offset with energy from the grid. Over four and a half years ago, when this project was originally initiated, plug-in electric vehicles were not readily available in the mass marketplace. Through the creation of a 21 unit plug-in hybrid vehicle fleet, this program was designed to demonstrate the feasibility of the technology and to help build cross-industry familiarity with the technology and interface of this technology with the grid. Ford Escape PHEV Demonstration Fleet 3 March 26, 2014 Since then, however, plug-in vehicles have become increasingly more commonplace in the market. Ford, itself, now offers an all-electric vehicle and two plug-in hybrid vehicles in North America and has announced a third plug-in vehicle offering for Europe. Lessons learned from this project have helped in these production vehicle launches and are mentioned throughout this report. While the technology of plugging in a vehicle to charge a high voltage battery with energy from the grid is now in production, the ability for vehicle-to-grid or bi-directional energy flow was farther away than originally expected. Several technical, regulatory and potential safety issues prevented progressing the vehicle-to-grid energy flow (V2G) demonstration and, after a review with the DOE, V2G was removed from this demonstration project. Also proving challenging were communications between a plug-in vehicle and the grid or smart meter. While this project successfully demonstrated the vehicle to smart meter interface, cross-industry and regulatory work is still needed to define the vehicle-to-grid communication interface.

  11. City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program

    SciTech Connect (OSTI)

    2013-12-31

    The City of Las Vegas was awarded Department of Energy (DOE) project funding in 2009, for the City of Las Vegas Plug-in Hybrid Electric Vehicle Demonstration Program. This project allowed the City of Las Vegas to purchase electric and plug-in hybrid electric vehicles and associated electric vehicle charging infrastructure. The City anticipated the electric vehicles having lower overall operating costs and emissions similar to traditional and hybrid vehicles.

  12. Hybrid and Plug-In Electric Vehicles (Spanish Version); Clean Cities, Energy Efficiency & Renewable Energy (EERE)

    SciTech Connect (OSTI)

    2015-08-01

    This is a Spanish-language brochure about hybrid and plug-in electric vehicles, which use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. These vehicles can be divided into three categories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), all-electric vehicles (EVs). Together, they have great potential to cut U.S. petroleum use and vehicle emissions.

  13. BASSET: Scalable Gateway Finder in Large Graphs

    SciTech Connect (OSTI)

    Tong, H; Papadimitriou, S; Faloutsos, C; Yu, P S; Eliassi-Rad, T

    2010-11-03

    Given a social network, who is the best person to introduce you to, say, Chris Ferguson, the poker champion? Or, given a network of people and skills, who is the best person to help you learn about, say, wavelets? The goal is to find a small group of 'gateways': persons who are close enough to us, as well as close enough to the target (person, or skill) or, in other words, are crucial in connecting us to the target. The main contributions are the following: (a) we show how to formulate this problem precisely; (b) we show that it is sub-modular and thus it can be solved near-optimally; (c) we give fast, scalable algorithms to find such gateways. Experiments on real data sets validate the effectiveness and efficiency of the proposed methods, achieving up to 6,000,000x speedup.

  14. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting...

    Broader source: Energy.gov (indexed) [DOE]

    Energy (DOE) has published a new GATEWAY report entitled Pedestrian Friendly Outdoor Lighting. Recognizing that pedestrian lighting has different criteria for success than street...

  15. Alaska Gateway School District Adopts Combined Heat and Power...

    Broader source: Energy.gov (indexed) [DOE]

    Tok, Alaska, the economic impact of high fuel prices was crippling the community's economy, especially for the Alaska Gateway School District, with staff laid off and double...

  16. Plug-In Hybrid Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinumtake the 2011 userConsumersWorkplace

  17. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, W.B.; DuBois, D.H.

    1996-12-03

    Disclosed is a system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway. 7 figs.

  18. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, Wallace B. (Los Alamos, NM); DuBois, David H. (Los Alamos, NM)

    1996-01-01

    A system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway.

  19. Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program

    E-Print Network [OSTI]

    Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

    2009-01-01

    for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

  20. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    E-Print Network [OSTI]

    Momber, Ilan

    2010-01-01

    Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridwith Connection of Electric Vehicles TABLE IV D ECISION V

  1. Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)

    SciTech Connect (OSTI)

    Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

    2007-05-01

    Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

  2. AVTA: Reports on Plug-in Electric Vehicle Readiness at 3 DOD Facilities

    Broader source: Energy.gov [DOE]

    The Vehicle Technologies Office's Advanced Vehicle Testing Activity carries out testing on a wide range of advanced vehicles and technologies on dynamometers, closed test tracks, and on-the-road. These results provide benchmark data that researchers can use to develop technology models and guide future research and development. The following reports analyze data and survey results on readiness for the use of plug-in electric vehicles on the Naval Air Station Jacksonville, Naval Station Mayport, and Joint Base Lewis McChord, as informed by the AVTA's testing on plug-in electric vehicle charging equipment. This research was conducted by Idaho National Laboratory.

  3. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  4. SECURITY FOR ENTERPRISE TELEWORK AND REMOTE ACCESS Karen Scarfone, Editor

    E-Print Network [OSTI]

    device and a remote access server, often a virtual private network (VPN) gateway. The tunnel uses based on their high-level architectures: tunneling, portals, remote desktop access, and direct application access. Tunneling involves establishing a secure communications tunnel between a telework client

  5. Mathematics 122 -Gateway Exam -Fall 96 The Gateway exam will consist of ten randomly chosen problems about integra-

    E-Print Network [OSTI]

    Torres, Rodolfo

    Mathematics 122 - Gateway Exam - Fall 96 The Gateway exam will consist of ten randomly nine pro* *blems without any mistakes. You need not simplify your answers, but if you do, the si* *m- plification must be error-free. If you fail to pass the exam you will be allow* *ed to retake it. When you

  6. Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

  7. Java Plug-in Configuration for Version 7, Update 51 or Later Java Plug-in Version7, Update 51 for PC and Macrequires additional configuration before it will allow InfoView to

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Java Plug-in Configuration for Version 7, Update 51 or Later Java Plug-in Version7, Update 51. Open the Java Control Panel. · PC: o Click on Start Menu o Click on "Control Panel" o Click on the "Java" icon · Mac: o Click on Apple icon on upper left screen o Go to System Preferences o Click

  8. Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and

    E-Print Network [OSTI]

    Kemner, Ken

    " for the smart grid ­ How many plug-in electric vehicle purchasers be upset with smart grid costs? ­ Will smart, high income early adopters insist on no-hassle smart grid technology? Renewable performance standards Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar

  9. Plug-in Hybrid Electric Vehicle On-Road Emissions Characterization and Demonstration Study

    E-Print Network [OSTI]

    Hohl, Carrie

    2012-12-31

    On-road emissions and operating data were collected from a plug-in hybrid electric vehicle (PHEV) over the course of 6months spanning August 2007 through January 2008 providing the first comprehensive on-road evaluation of the PHEV drivetrain...

  10. State-of-Health Aware Optimal Control of Plug-in Electric Vehicles

    E-Print Network [OSTI]

    Pedram, Massoud

    , nuclear power and renewable energy such as wind energy, solar energy and tidal energy. The battery storage, USA {yanzhiwa, siyuyue, pedram}@usc.edu Abstract--Plug-in electric vehicles (PEVs) are key new energy) technology in the smart grid infrastructure can exploit the electrical energy storage ability of PEV

  11. Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    SciTech Connect (OSTI)

    2012-04-01

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  12. Fact #822: May 26, 2014 Battery Capacity Varies Widely for Plug-In Vehicles

    Broader source: Energy.gov [DOE]

    Battery-electric vehicles have capacities ranging from 12 kilowatt-hours (kWh) in the Scion iQ EV to 85 kWh in the Tesla Model S. Plug-in hybrid-electric vehicles typically have smaller battery...

  13. Project Information Form Project Title Advanced Energy Management Strategy Development for Plug-in Hybrid

    E-Print Network [OSTI]

    California at Davis, University of

    Project Information Form Project Title Advanced Energy Management Strategy Development for Plug,365 Total Project Cost $58,365 Agency ID or Contract Number DTRT13-G-UTC29 Start and End Dates April 1, 2014 ­ September 30, 2015 Brief Description of Research Project Plug-in hybrid vehicles (PHEVs) have great

  14. Optimal Charging of Plug-in Hybrid Electric Vehicles in Smart Grids Somayeh Sojoudi Steven H. Low

    E-Print Network [OSTI]

    Wierman, Adam

    and Electrical Engineering Departments, California Institute of Technology, (email: slow@caltech.edu). interest1 Optimal Charging of Plug-in Hybrid Electric Vehicles in Smart Grids Somayeh Sojoudi Steven H. Low Abstract-- Plug-in hybrid electric vehicles (PHEVs) play an important role in making a greener future

  15. MODEL PREDICTIVE CONTROL OF A MICROGRID WITH PLUG-IN VEHICLES: ERROR MODELING AND THE ROLE OF PREDICTION HORIZON

    E-Print Network [OSTI]

    Papalambros, Panos

    MODEL PREDICTIVE CONTROL OF A MICROGRID WITH PLUG-IN VEHICLES: ERROR MODELING AND THE ROLE) for a microgrid with plug-in vehicles. A predictive model is de- veloped based on a hub model of the microgrid INTRODUCTION Recently, the control of electrical microgrids has been the focus of research efforts. A microgrid

  16. Project Information Form Project Title The Dynamics of Plug-in Electric Vehicles in the Secondary Market and

    E-Print Network [OSTI]

    California at Davis, University of

    Project Until recently, there were very few used plug-in electric vehicles (PEVs) on the market. HoweverProject Information Form Project Title The Dynamics of Plug-in Electric Vehicles in the Secondary Market and Their Implications for Vehicle Demand, Durability, and Emissions University UC Davis Principal

  17. Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general equilibrium analysis

    E-Print Network [OSTI]

    Prospects for plug-in hybrid electric vehicles in the United States and Japan: A general-in hybrid electric vehicles Environmental policy Emissions a b s t r a c t The plug-in hybrid electric-powered vehicles. A representative vehicle tech- nology that runs on electricity in addition to conventional fuels

  18. Install Sun Java Plug-In for PRISM You will need administrator rights to your computer to install Java.

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Install Sun Java Plug-In for PRISM You will need administrator rights to your computer to install Java. Please contact your technical support group for assistance. 1. Go to the following web site to download the Sun Java plug-in. http://www.java.com/en/download/manual.jsp 2. Click the link for your

  19. Install Sun Java Plug-In for PRISM You will need administrator rights to your computer to install Java.

    E-Print Network [OSTI]

    Sibille, Etienne

    Install Sun Java Plug-In for PRISM You will need administrator rights to your computer to install Java. Please contact your technical support group for assistance. 1. Go to the following web site to download the Sun Java plug-in. http://www.java.com/en/download/manual.jsp 2. Click the Windows 7, XP Online

  20. Install Sun Java Plug-In for PRISM You will need administrator rights to your computer to install Java.

    E-Print Network [OSTI]

    Sibille, Etienne

    Install Sun Java Plug-In for PRISM You will need administrator rights to your computer to install Java. Please contact your technical support group for assistance. 1. Go to the following web site to download the Sun Java plug-in. http://www.oracle.com/technetwork/java/javase/downloads/index.html 2. Next

  1. Gateway:Low Emission Development Strategies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway Edit History Gateway:Low EmissionGateway

  2. DOE Publishes GATEWAY Report on Exterior Lighting at Princeton...

    Office of Environmental Management (EM)

    Exterior Lighting at Princeton University DOE Publishes GATEWAY Report on Exterior Lighting at Princeton University October 30, 2015 - 1:46pm Addthis The U.S. Department of...

  3. DOE Publishes GATEWAY Report on LED Lighting in a Performing...

    Energy Savers [EERE]

    LED Lighting in a Performing Arts Setting DOE Publishes GATEWAY Report on LED Lighting in a Performing Arts Setting August 6, 2014 - 2:46pm Addthis The U.S. Department of Energy...

  4. DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting...

    Energy Savers [EERE]

    Pedestrian Friendly Outdoor Lighting DOE Publishes GATEWAY Report on Pedestrian Friendly Outdoor Lighting January 9, 2014 - 3:55pm Addthis The U.S. Department of Energy (DOE) has...

  5. T-544: Cisco Security Advisory: Cisco Content Services Gateway...

    Broader source: Energy.gov (indexed) [DOE]

    Cisco Content Services Gateway Vulnerabilities PLATFORM: Cisco IOS Software Release 12.4(24)MD1 on the Cisco CSG2 ABSTRACT: Cisco IOS Software Release 12.4(24)MD1 on the Cisco CSG2...

  6. New GATEWAY Report Monitors LED System Performance in a High...

    Energy Savers [EERE]

    the Yuma (Arizona) Sector Border Patrol Area. Six LED luminaires - installed on three poles as part of a trial installation detailed in a prior GATEWAY report - continue to be...

  7. High-performance parallel interface to synchronous optical network gateway

    DOE Patents [OSTI]

    St. John, Wallace B. (Los Alamos, NM); DuBois, David H. (Los Alamos, NM)

    1998-08-11

    A digital system provides sending and receiving gateways for HIPPI interfaces. Electronic logic circuitry formats data signals and overhead signals in a data frame that is suitable for transmission over a connecting fiber optic link. Multiplexers route the data and overhead signals to a framer module. The framer module allocates the data and overhead signals to a plurality of 9-byte words that are arranged in a selected protocol. The formatted words are stored in a storage register for output through the gateway.

  8. Gateway:Low Emission Development Strategies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway Edit History Gateway:Low

  9. The Pulse Protocol: Energy Efficient Infrastructure Access

    E-Print Network [OSTI]

    Awerbuch, Baruch

    The Pulse Protocol: Energy Efficient Infrastructure Access Baruch Awerbuch, David Holmer, herb}@cs.jhu.edu Abstract-- We present the Pulse protocol which is designed for multi-hop wireless. The Pulse protocol utilizes a periodic flood initiated at the network gateways which provides both routing

  10. An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia; Tang, Lixin

    2013-01-01

    Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

  11. Economics of Plug-In Hybrid Electric Vehicles (released in AEO2009)

    Reports and Publications (EIA)

    2009-01-01

    Plug-In hybrid electric vehicles (PHEVs) have gained significant attention in recent years, as concerns about energy, environmental, and economic securityincluding rising gasoline prices have prompted efforts to improve vehicle fuel economy and reduce petroleum consumption in the transportation sector. PHEVs are particularly well suited to meet these objectives, because they have the potential to reduce petroleum consumption both through fuel economy gains and by substituting electric power for gasoline use.

  12. Interpersonal Influence within Car Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.

    2009-01-01

    my money in my beliefs…and buy a hybrid car to help promotethe production of further hybrid cars…that year they wereCar Buyers’ Social Networks: Five Perspectives on Plug-in Hybrid

  13. A Vehicle Systems Approach to Evaluate Plug-in Hybrid Battery Cold Start, Life and Cost Issues 

    E-Print Network [OSTI]

    Shidore, Neeraj Shripad

    2012-07-16

    The batteries used in plug-in hybrid electric vehicles (PHEVs) need to overcome significant technical challenges in order for PHEVs to become economically viable and have a large market penetration. The internship at Argonne National Laboratory (ANL...

  14. Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost

    Broader source: Energy.gov [DOE]

    The recently released results of a 2008 survey on plug-in hybrid vehicles (PHEVs) show that 42% of respondents said there was some chance that they would buy a PHEV sometime in the future....

  15. Vehicle Technologies Office Merit Review 2015: Plug-In Hybrid Medium-Duty Truck Demonstration and Evaluation Program

    Broader source: Energy.gov [DOE]

    Presentation given by SCAQMD at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about plug-in hybrid medium-duty truck...

  16. Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis

    E-Print Network [OSTI]

    Reilly, John M.

    The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition ...

  17. DOE Publishes 20K Hour Testing Results for 2008 GATEWAY Bridge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    20K Hour Testing Results for 2008 GATEWAY Bridge Installation DOE Publishes 20K Hour Testing Results for 2008 GATEWAY Bridge Installation October 9, 2014 - 12:00pm Addthis The U.S....

  18. OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets August 27, 2013 | Tags: Basic Energy...

  19. McAfee, Inc. McAfee Web Gateway WG5000 and WG5500 Appliances

    E-Print Network [OSTI]

    McAfee, Inc. McAfee Web Gateway WG5000 and WG5500 Appliances Hardware Models: 5000, 5500; Firmware Policy, Version 1.9 August 17, 2012 McAfee Web Gateway WG5000 and WG5500 Appliances Page 2 of 32 © 2012............................................................................................................................4 2 MCAFEE WEB GATEWAY WG5000 AND WG5500 APPLIANCES ................................5 2.1 OVERVIEW

  20. Vehicle Technologies Office: AVTA- Plug-In Hybrid Electric Vehicles Performance and Testing Data

    Broader source: Energy.gov [DOE]

    The Advanced Vehicle Testing Activity (AVTA) uses standard procedures and test specifications to test and collect data from vehicles on dynamometers, closed test tracks, and on-the-road. Data on the plug-in hybrid electric version of the following vehicles is available: 2013 Ford Fusion Energi, 2013 Ford C-Max Energi Fleet, 2013 Ford C-Max Energi, 2012 Chevrolet Volt, 2012 Toyota Prius, 2013 Toyota Prius, 2013 Chevrolet Volt, 2011 Chrysler Town & Country, 2010 Quantum Escape, and 2010 Ford Escape Advanced Research Vehicle.

  1. Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)

    SciTech Connect (OSTI)

    Pesaran, A.

    2007-12-01

    Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

  2. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  3. Charging Your Plug-in Electric Vehicle at Home | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV) charging station in Rhode Island. | Photothe

  4. Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle (PEV)Day-June 22,Fresno U.S.EnergyDepartment ofhybrid

  5. DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENT SEABDepartment ofDepartment ofDepartment

  6. Plug-in Electric Vehicles Charge Forward in Oregon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterFinancialInvesting inServices »About UsAbout the GeothermalPlug-in

  7. DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE Zero Energy ReadyHomeownersofVehicles |

  8. DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electricLaboratory | DepartmentDOE ZeroofBatteriesHybrid Electric Vehicles

  9. Gateway:Low Emission Development Strategies | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway Edit History Gateway:Low Emission

  10. Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results

    SciTech Connect (OSTI)

    James E. Francfort

    2009-07-01

    The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOE’s Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

  11. St. Louis Sites Fact Sheet "Gateway to Excellence"

    E-Print Network [OSTI]

    US Army Corps of Engineers

    St. Louis Sites Fact Sheet CLEANUP "Gateway to Excellence" U.S. Army Corps of Engineers St. Louis of the St. Louis FUSRAP Sites under CERCLA. Let's look at each of these in turn. SAMPLING (PRE are documented in the Preliminary Design Investigation Report. DESIGN (REMEDIAL DESIGN) Based on the Pre

  12. Impact of Plug-in Hybrid Vehicles on the Electric Grid

    SciTech Connect (OSTI)

    Hadley, Stanton W

    2006-11-01

    Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

  13. The Neutron Science TeraGrid Gateway, a TeraGrid Science Gateway to Support the Spallation Neutron Source

    E-Print Network [OSTI]

    Vazhkudai, Sudharshan

    by a service oriented architecture for functional implementation. KEY WORDS: Portal, Neutron Scattering, TeraGrid, Science Gateway, Service Architecture, Grid 1. INTRODUCTION Neutron Science: Neutron scattering is used, earth science, and fundamental physics [3]. As a diagnostic tool, neutron scattering provides unique

  14. Cost Effectiveness Analysis of Quasi-Static Wireless Power Transfer for Plug-In Hybrid Electric Transit Buses: Preprint

    SciTech Connect (OSTI)

    Wang, Lijuan; Gonder, Jeff; Burton, Evan; Brooker, Aaron; Meintz, Andrew; Konan, Arnaud

    2015-11-11

    This study evaluates the costs and benefits associated with the use of a plug-in hybrid electric bus and determines the cost effectiveness relative to a conventional bus and a hybrid electric bus. A sensitivity sweep analysis was performed over a number of a different battery sizes, charging powers, and charging stations. The net present value was calculated for each vehicle design and provided the basis for the design evaluation. In all cases, given present day economic assumptions, the conventional bus achieved the lowest net present value while the optimal plug-in hybrid electric bus scenario reached lower lifetime costs than the hybrid electric bus. The study also performed parameter sensitivity analysis under low market potential assumptions and high market potential assumptions. The net present value of plug-in hybrid electric bus is close to that of conventional bus.

  15. Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint

    SciTech Connect (OSTI)

    Pesaran, A. A.; Kim, G. H.; Keyser, M.

    2009-05-01

    The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

  16. Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation

    SciTech Connect (OSTI)

    Hadley, Stanton W; Tsvetkova, Alexandra A

    2008-01-01

    Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

  17. A Queueing Based Scheduling Approach to Plug-In Electric Vehicle Dispatch in Distribution Systems

    E-Print Network [OSTI]

    Li, Qiao; Ilic, Marija D

    2012-01-01

    Large-scale integration of plug-in electric vehicles (PEV) in power systems can cause severe issues to the existing distribution system, such as branch congestions and significant voltage drops. As a consequence, smart charging strategies are crucial for the secure and reliable operation of the power system. This paper tries to achieve high penetration level of PEVs with the existing distribution system infrastructure by proposing a smart charging algorithm that can optimally utilize the distribution system capacity. Specifically, the paper proposes a max-weight PEV dispatch algorithm to control the PEV charging rates, subject to power system physical limits. The proposed max-weight PEV dispatch algorithm is proved to be throughput optimal under very mild assumptions on the stochastic dynamics in the system. This suggests that the costly distribution system infrastructure upgrade can be avoided, or failing that, at least successfully deferred. The proposed PEV dispatch algorithm is particularly attractive in ...

  18. Advancing Plug-In Hybrid Technology and Flex Fuel Application on a Chrysler Minivan

    SciTech Connect (OSTI)

    Bazzi, Abdullah; Barnhart, Steven

    2014-12-31

    FCA US LLC viewed this DOE funding as a historic opportunity to begin the process of achieving required economies of scale on technologies for electric vehicles. The funding supported FCA US LLC’s light-duty electric drive vehicle and charging infrastructure-testing activities and enabled FCA US LLC to utilize the funding on advancing Plug-in Hybrid Electric Vehicle (PHEV) technologies to future programs. FCA US LLC intended to develop the next generations of electric drive and energy batteries through a properly paced convergence of standards, technology, components, and common modules, as well as first-responder training and battery recycling. To support the development of a strong, commercially viable supplier base, FCA US LLC also used this opportunity to evaluate various designated component and sub-system suppliers. The original project proposal was submitted in December 2009 and selected in January 2010. The project ended in December 2014.

  19. A Dynamic Algorithm for Facilitated Charging of Plug-In Electric Vehicles

    E-Print Network [OSTI]

    Taheri, Nicole; Ye, Yinyu

    2011-01-01

    Plug-in Electric Vehicles (PEVs) are a rapidly developing technology that can reduce greenhouse gas emissions and change the way vehicles obtain power. PEV charging stations will most likely be available at home and at work, and occasionally be publicly available, offering flexible charging options. Ideally, each vehicle will charge during periods when electricity prices are relatively low, to minimize the cost to the consumer and maximize societal benefits. A Demand Response (DR) service for a fleet of PEVs could yield such charging schedules by regulating consumer electricity use during certain time periods, in order to meet an obligation to the market. We construct an automated DR mechanism for a fleet of PEVs that facilitates vehicle charging to ensure the demands of the vehicles and the market are met. Our dynamic algorithm depends only on the knowledge of a few hundred driving behaviors from a previous similar day, and uses a simple adjusted pricing scheme to instantly assign feasible and satisfactory c...

  20. 2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results

    SciTech Connect (OSTI)

    Tyler Gray; Matthew Shirk; Jeffrey Wishart

    2013-07-01

    The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

  1. Self-learning control system for plug-in hybrid vehicles

    DOE Patents [OSTI]

    DeVault, Robert C [Knoxville, TN

    2010-12-14

    A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

  2. A New Integrated Onboard Charger and Accessory Power Converter for Plug-in Electric Vehicles

    SciTech Connect (OSTI)

    Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

    2014-01-01

    In this paper, a new approach is presented for integrating the function of onboard battery charging into the traction drive system and accessory dc-dc converter of a plug-in electric vehicle (PEV). The idea is to utilize the segmented traction drive system of a PEV as the frond converter of the charging circuit and the transformer and high voltage converter of the 14 V accessory dc-dc converter to form a galvanically isolated onboard charger. Moreover, a control method is presented for suppressing the battery current ripple component of twice the grid frequency with the reduced dc bus capacitor in the segmented inverter. The resultant integrated charger has lower cost, weight, and volume than a standalone charger due to a substantially reduced component count. The proposed integrated charger topology was verified by modeling and experimental results on a 5.8 kW charger prototype.

  3. Electric Vehicle Preparedness Task 3: Detailed Assessment of Charging Infrastructure for Plug-in Electric Vehicles at Joint Base Lewis McChord

    SciTech Connect (OSTI)

    Steve Schey; Jim Francfort

    2014-10-01

    This report provides an assessment of charging infrastructure required to support the suggested plug-in electric vehicle replacements at Joint Base Lewis McChord.

  4. Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management

    E-Print Network [OSTI]

    Williams, Brett D

    2010-01-01

    assessment for fuel cell electric vehicles." Argonne, Ill. :of Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Recharging and Household Electric Vehicle Market: A Near-

  5. Web Service Access Management for Integration with Agent Systems

    E-Print Network [OSTI]

    Web Service Access Management for Integration with Agent Systems B.J. Overeinder, P.D. Verkaik, from the perspective of agent systems (and not as is gen- erally the case by web service providers). Mediating between web service requests from (virtual) organizations of agents, the web ser- vice gateway

  6. Web Accessibility Accessibility

    E-Print Network [OSTI]

    Oklahoma, University of

    Web Accessibility #12;Accessibility Webaim This is a pre-y prolific site that vary based on the type of web content. StaFc, content managed and dynamic web sites can benefit from our accessibility review service. Rich media

  7. GATEWAY Univ of Maryland Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12,Executive Compensation References: FAR 31.205-6Applications |EnergyGATEWAY

  8. 500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric

    E-Print Network [OSTI]

    Baldick, Ross

    ), vehicle to grid (V2G). I. INTRODUCTION THERE ARE various motivations for developing alterna- tive energy500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric sources and associated vehicle powertrains to reduce a widespread dependence on oil. The motivations

  9. IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 28, NO. 2, MAY 2013 1113 Synergistic Control of Plug-In Vehicle

    E-Print Network [OSTI]

    Peng, Huei

    energy can provide low-carbon electricity to PEVs. This paper presents a hierarchical control algorithm to reduce green- house gas emissions and carbon footprints around the world, they are expected to grow Sun, Fellow, IEEE Abstract--Significant synergy exists between plug-in electric ve- hicles (PEVs

  10. Fact #873: May 18, 2015 Plug-In Vehicle Sales Total Nearly 120,000 Units in 2014

    Broader source: Energy.gov [DOE]

    The number of plug-in vehicles sold in the United States in 2014 grew to nearly 120,000, up from 97,000 the year before. Nissan and Chevrolet had the best sellers in 2011 with the Leaf and the Volt...

  11. Microgram-Scale Testing of Reaction Conditions in Solution Using Nanoliter Plugs in Microfluidics with Detection by MALDI-MS

    E-Print Network [OSTI]

    Ismagilov, Rustem F.

    Microgram-Scale Testing of Reaction Conditions in Solution Using Nanoliter Plugs in Microfluidics-mail: r-ismagilov@uchicago.edu This paper describes a microfluidic system to screen and optimize organic solutions. Previously, we demonstrated the use of a microfabricated PDMS plug-based microfluidic system

  12. IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS

    E-Print Network [OSTI]

    IMPACTS ASSESSMENT OF PLUG-IN HYBRID VEHICLES ON ELECTRIC UTILITIES AND REGIONAL U.S. POWER GRIDS National Laboratory(a) ABSTRACT The U.S. electric power infrastructure is a strategic national asset of shifting emissions from millions of individual vehicles to a relatively few number of power plants. Overall

  13. Abstract--The penetration of plug-in electric vehicles and renewable distributed generation is expected to increase over the

    E-Print Network [OSTI]

    Perreault, Dave

    1 Abstract--The penetration of plug-in electric vehicles and renewable distributed generation, power grids I. INTRODUCTION ROWING concern for climate change and energy security has renewed interest legislative effort to mandate, or incentivize, large scale integration of renewable energy resources

  14. Well-to-Wheels Analysis of Energy Use and Greenhouse Gas Emissions of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-01

    This report examines energy use and emissions from primary energy source through vehicle operation to help researchers understand the impact of the upstream mix of electricity generation technologies for recharging plug-in hybrid electric vehicles (PHEVs), as well as the powertrain technology and fuel sources for PHEVs.

  15. Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains

    E-Print Network [OSTI]

    McGaughey, Alan

    T S Electrified vehicle life cycle emissions and cost depend on driving conditions. GHGs can triple in NYC cycle, hybrid and plug-in vehicles can cut life cycle emissions by 60% and reduce costs up to 20 vehicles offer marginal emissions reductions at higher costs. NYC conditions with frequent stops triple

  16. Battery life and performance depend strongly on temperature; thus there exists a need for thermal conditioning in plug-in

    E-Print Network [OSTI]

    Michalek, Jeremy J.

    ABSTRACT Battery life and performance depend strongly on temperature; thus there exists a need battery life depends on the design of thermal management used as well as the specific battery chemistry of an air cooled plug-in hybrid electric vehicle battery pack with cylindrical LiFePO4/graphite cell design

  17. Blue Coat Systems, Inc. Secure Web Gateway Virtual Appliance-V100

    E-Print Network [OSTI]

    Blue Coat Systems, Inc. Secure Web Gateway Virtual Appliance-V100 Software Version: 6.5.2.8 FIPS@corsec.com http://www.bluecoat.com http://www.corsec.com #12;Secure Web Gateway Virtual Appliance-V100 Security Policy, Version 0.5 July 25, 2014 Blue Coat Secure Web Gateway Virtual Appliance-V100 Page 2 of 33 © 2014

  18. Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China

    Broader source: Energy.gov [DOE]

    In 2011, plug-in car sales in the U.S. were 0.28% of the U.S. car market, and grew to 0.44% of the U.S. car market in the first eight months of 2012. Western Europe has also increased their plug-in...

  19. Gateway:América Latina/Aprender más sobre las ERNC/Estudios...

    Open Energy Info (EERE)

    Analisis de Proyectos de Bomba de Calor con Fuente Geotermica Fuente: Leonardo Energy Idioma: Espaol Retrieved from "http:en.openei.orgwindex.php?titleGateway:AmricaLatin...

  20. Socially Optimal Electric Driving Range of Plug-in Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Kontou, Eleftheria [ORNL; Yin, Yafeng [University of Florida; Lin, Zhenhong [ORNL

    2015-01-01

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of $3.19 per day when exclusively charging at home, compared to $3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electric driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.

  1. Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint

    SciTech Connect (OSTI)

    Simpson, M.; Markel, T.

    2012-08-01

    The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

  2. On-line Decentralized Charging of Plug-In Electric Vehicles in Power Systems

    E-Print Network [OSTI]

    Li, Qiao; Negi, Rohit; Franchetti, Franz; Ilic, Marija D

    2011-01-01

    Plug-in electric vehicles (PEV) are gaining increasing popularity in recent years, due to the growing societal awareness of reducing greenhouse gas (GHG) emissions and the dependence on foreign oil or petroleum. Large-scale implementation of PEVs in the power system currently faces many challenges. One particular concern is that the PEV charging can potentially cause significant impact on the existing power distribution system, due to the increase in peak load. As such, this work tries to mitigate the PEV charging impact by proposing a decentralized smart PEV charging algorithm to minimize the distribution system load variance, so that a 'flat' total load profile can be obtained. The charging algorithm is on-line, in that it controls the PEV charging processes in each time slot based entirely on the current power system state. Thus, compared to other forecast based smart charging approaches in the literature, the charging algorithm is robust against various uncertainties in the power system, such as random PE...

  3. Socially optimal electric driving range of plug-in hybrid electric vehicles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Kontou, Eleftheria; Yin, Yafeng; Lin, Zhenhong

    2015-07-25

    This study determines the optimal electric driving range of plug-in hybrid electric vehicles (PHEVs) that minimizes the daily cost borne by the society when using this technology. An optimization framework is developed and applied to datasets representing the US market. Results indicate that the optimal range is 16 miles with an average social cost of 3.19 per day when exclusively charging at home, compared to 3.27 per day of driving a conventional vehicle. The optimal range is found to be sensitive to the cost of battery packs and the price of gasoline. When workplace charging is available, the optimal electricmore »driving range surprisingly increases from 16 to 22 miles, as larger batteries would allow drivers to better take advantage of the charging opportunities to achieve longer electrified travel distances, yielding social cost savings. If workplace charging is available, the optimal density is to deploy a workplace charger for every 3.66 vehicles. Moreover, the diversification of the battery size, i.e., introducing a pair and triple of electric driving ranges to the market, could further decrease the average societal cost per PHEV by 7.45% and 11.5% respectively.« less

  4. Cost Analysis of Plug-In Hybred Electric Vehicles Using GPS-Based Longitudinal Travel Data

    SciTech Connect (OSTI)

    Wu, Xing [Lamar University] [Lamar University; Dong, Jing [Iowa State University] [Iowa State University; Lin, Zhenhong [ORNL] [ORNL

    2014-01-01

    Using spatial, longitudinal travel data of 415 vehicles over 3 18 months in the Seattle metropolitan area, this paper estimates the operating costs of plug-in hybrid electric vehicles (PHEVs) of various electric ranges (10, 20, 30, and 40 miles) for 3, 5, and 10 years of payback period, considering different charging infrastructure deployment levels and gasoline prices. Some key findings were made. (1) PHEVs could help save around 60% or 40% in energy costs, compared with conventional gasoline vehicles (CGVs) or hybrid electric vehicles (HEVs), respectively. However, for motorists whose daily vehicle miles traveled (DVMT) is significant, HEVs may be even a better choice than PHEV40s, particularly in areas that lack a public charging infrastructure. (2) The incremental battery cost of large-battery PHEVs is difficult to justify based on the incremental savings of PHEVs operating costs unless a subsidy is offered for largebattery PHEVs. (3) When the price of gasoline increases from $4/gallon to $5/gallon, the number of drivers who benefit from a larger battery increases significantly. (4) Although quick chargers can reduce charging time, they contribute little to energy cost savings for PHEVs, as opposed to Level-II chargers.

  5. Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid

    SciTech Connect (OSTI)

    Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

    2010-09-30

    The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

  6. A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL] [ORNL; Greene, David L [ORNL] [ORNL

    2010-01-01

    This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

  7. Global Science Gateway Agreement Signed in London | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMat 4" |a,-DepartmentMarkedDepartment ofDOE

  8. Global Science Gateway Now Open | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMat 4" |a,-DepartmentMarkedDepartment

  9. DOE Announces International Agreement on Global Science Online Gateway |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-in electric vehicle10 DOE ASSESSMENTat Los AlamosCertificationDepartment of

  10. Compilation of Expenditures for the Hawai`i Gateway Energy Center

    E-Print Network [OSTI]

    Compilation of Expenditures for the Hawai`i Gateway Energy Center Prepared for the U.S. Department;Compilation of Expenditures for the Hawai`i Gateway Energy Center 1.0 Introduction As part of the Hawai will be located more closely to the park activities. 3.0 Cost Summary The following is a compilation of the costs

  11. The Lunar L1 Gateway: Portal to the Stars and Beyond

    E-Print Network [OSTI]

    Ross, Shane

    1 The Lunar L1 Gateway: Portal to the Stars and Beyond Martin W. Lo Navigation and Mission Design-30, 2001 #12;2 The Lunar L1 Gateway: Portal to the Stars and Beyond Martin Lo1 , Shane Ross2 Abstract Our Solar System is interconnected by a vast system of tunnels winding around the Sun generated

  12. Psychological & Brain Sciences 10/2012 HOW TO PLACE AN ORDER IN GATEWAY

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    Psychological & Brain Sciences 10/2012 1 HOW TO PLACE AN ORDER IN GATEWAY 1) Go to the Gateway above). All items need to be from the same vendor. #12;Psychological & Brain Sciences 10/2012 2 c on the Cart in the upper right hand corner to view your items. #12;Psychological & Brain Sciences 10/2012 3

  13. RelateGateways: Using Spatial Context to Identify and Interact with Pervasive Services

    E-Print Network [OSTI]

    , UK 2 ETH Zurich / SAP Research, Switzerland 3 Ludwig-Maximilians-Universit¨at, M¨unchen, Germany displays, multimedia systems, worksta- tions, etc. While on the run we should be able to use the mobileGateways project extends the mobile desktop with a new kind of widget: the gateways. These com- ponents

  14. Maximizing Network Lifetime Via 3G Gateway Assignment in Dual-Radio Sensor Networks

    E-Print Network [OSTI]

    Liang, Weifa

    - ments, such as temperature, humidity, wind, solar radiation, etc. [3]. Sensor nodes are typically as well as in the idling cost [5]. If all sensors are gateways, they will run out of energy within a shortMaximizing Network Lifetime Via 3G Gateway Assignment in Dual-Radio Sensor Networks Xu Xu, Weifa

  15. Towards an Industry Data Gateway: An Integrated Platform for the Analysis of Wind Turbine Data

    E-Print Network [OSTI]

    Towards an Industry Data Gateway: An Integrated Platform for the Analysis of Wind Turbine Data monitoring of sensor information from wind turbines, and how a data gateway can help to increase in the context of wind turbines. It goes on to describe the innovative approach used in VAVID to meet

  16. Impact of Gateways Placement on Clustering Algorithms in Wireless Mesh Networks

    E-Print Network [OSTI]

    Boutaba, Raouf

    .Anelli@univ-reunion.fr Abstract--In wireless mesh networks, designing algorithms that efficiently balance the traffic loads among as a result of its direct impact on the way routers are associated to gateways. In this paper, we investigate algorithms. We show that if bounds on the number of hops between routers and gateways exist, load

  17. The Internet of Things Has a Gateway Problem Thomas Zachariah, Noah Klugman, Bradford Campbell,

    E-Print Network [OSTI]

    Cafarella, Michael J.

    The Internet of Things Has a Gateway Problem Thomas Zachariah, Noah Klugman, Bradford Campbell,nklugman,bradjc,adkinsjd,nealjack,prabal}@umich.edu ABSTRACT The vision of an Internet of Things (IoT) has captured the imag- ination of the world and raised, Management, Performance, Standardiza- tion Keywords Internet of Things, Gateway, Mobile Phones, Bluetooth Low

  18. User:GregZiebold/Gateway test | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEt Al.,Turin, New York:PowerNew York: Energy ResourcesCalpakGateway test <

  19. Gateway Energy Services Corporation (Maryland) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:ofEnia SpAFlexStock| Open EnergyGapminderTexas:GasConGateway

  20. Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Gross, Thomas; Lin, Zhenhong; Sullivan, John; Cleary, Timothy; Ward, Jake

    2010-02-01

    Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

  1. Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities

    SciTech Connect (OSTI)

    Donald Karner

    2007-12-01

    The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energy’s FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

  2. Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective

    SciTech Connect (OSTI)

    Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

    2013-04-01

    The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

  3. Web Card - Clean Cities Plug-In Electric Vehicle Handbook for Fleet Managers

    SciTech Connect (OSTI)

    2012-07-01

    A 2" x 3-1/4" web card which has a quick response code for accessing the PEV Handbook for Fleet Managers via a smart phone. The cards are intended to be handed out instead of the handbook.

  4. Fact #665: March 7, 2011 Garage Availability for Plug-in Vehicles

    Broader source: Energy.gov [DOE]

    According to the 2009 American Housing Survey, two-thirds of all housing units in the U.S. have a garage or carport. The access to electricity that a garage or carport may provide is important for...

  5. Grid-Integrated Fleet & Workplace Charging for Plug-in Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cost & Maximize Accessibility 8' x 18' EV Only EV Only EV Only Spacing allows each charger to be used several times each day, without moving cars - just move the cord. 18' cord...

  6. Plug-In Hybrid Electric Vehicle Value Proposition Study: Interim Report: Phase I Scenario Evaluation

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun; DeVault, Robert C

    2009-01-01

    Plug-in hybrid electric vehicles (PHEVs) offer significant improvements in fuel economy, convenient low-cost recharging capabilities, potential environmental benefits, and decreased reliance on imported petroleum. However, the cost associated with new components (e.g., advanced batteries) to be introduced in these vehicles will likely result in a price premium to the consumer. This study aims to overcome this market barrier by identifying and evaluating value propositions that will increase the qualitative value and/or decrease the overall cost of ownership relative to the competing conventional vehicles and hybrid electric vehicles (HEVs) of 2030 During this initial phase of this study, business scenarios were developed based on economic advantages that either increase the consumer value or reduce the consumer cost of PHEVs to assure a sustainable market that can thrive without the aid of state and Federal incentives or subsidies. Once the characteristics of a thriving PHEV market have been defined for this timeframe, market introduction steps, such as supportive policies, regulations and temporary incentives, needed to reach this level of sustainability will be determined. PHEVs have gained interest over the past decade for several reasons, including their high fuel economy, convenient low-cost recharging capabilities, potential environmental benefits and reduced use of imported petroleum, potentially contributing to President Bush's goal of a 20% reduction in gasoline use in ten years, or 'Twenty in Ten'. PHEVs and energy storage from advanced batteries have also been suggested as enabling technologies to improve the reliability and efficiency of the electric power grid. However, PHEVs will likely cost significantly more to purchase than conventional or other hybrid electric vehicles (HEVs), in large part because of the cost of batteries. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The purpose of this project is to identify and evaluate value-added propositions for PHEVs that will help overcome this market barrier. Candidate value propositions for the initial case study were chosen to enhance consumer acceptance of PHEVs and/or compatibility with the grid. Potential benefits of such grid-connected vehicles include the ability to supply peak load or emergency power requirements of the grid, enabling utilities to size their generation capacity and contingency resources at levels below peak. Different models for vehicle/battery ownership, leasing, financing and operation, as well as the grid, communications, and vehicle infrastructure needed to support the proposed value-added functions were explored during Phase 1. Rigorous power system, vehicle, financial and emissions modeling were utilized to help identify the most promising value propositions and market niches to focus PHEV deployment initiatives.

  7. Plug-in Hybrid Electric Vehicle Value Proposition Study - Final Report

    SciTech Connect (OSTI)

    Sikes, Karen; Hadley, Stanton W; McGill, Ralph N; Cleary, Timothy

    2010-07-01

    PHEVs have been the subject of growing interest in recent years because of their potential for reduced operating costs, oil displacement, national security, and environmental benefits. Despite the potential long-term savings to consumers and value to stakeholders, the initial cost of PHEVs presents a major market barrier to their widespread commercialization. The study Objectives are: (1) To identify and evaluate value-added propositions for PHEVs that will help overcome the initial price premium relative to comparable ICEs and HEVs and (2) to assess other non-monetary benefits and barriers associated with an emerging PHEV fleet, including environmental, societal, and grid impacts. Study results indicate that a single PHEV-30 on the road in 2030 will: (1) Consume 65% and 75% less gasoline than a comparable HEV and ICE, respectively; (2) Displace 7.25 and 4.25 barrels of imported oil each year if substituted for equivalent ICEs and HEVs, respectively, assuming 60% of the nation's oil consumed is imported; (3) Reduce net ownership cost over 10 years by 8-10% relative to a comparable ICE and be highly cost competitive with a comparable HEV; (4) Use 18-22% less total W2W energy than a comparable ICE, but 8-13% more than a comparable HEV (assuming a 70/30 split of E10 and E85 use in 2030); and (5) Emit 10% less W2W CO{sub 2} than equivalent ICEs in southern California and emits 13% more W2W CO{sub 2} than equivalent ICEs in the ECAR region. This also assumes a 70/30 split of E10 and E85 use in 2030. PHEVs and other plug-in vehicles on the road in 2030 may offer many valuable benefits to utilities, business owners, individual consumers, and society as a whole by: (1) Promoting national energy security by displacing large volumes of imported oil; (2) Supporting a secure economy through the expansion of domestic vehicle and component manufacturing; (3) Offsetting the vehicle's initial price premium with lifetime operating cost savings (e.g., lower fuel and maintenance costs); (4) Supporting the use of off-peak renewable energy through smart charging practices. However, smart grid technology is not a prerequisite for realizing the benefits of PHEVs; and (5) Potentially using its bidirectional electricity flow capability to aid in emergency situations or to help better manage a building's or entire grid's load.

  8. Web Card - Clean Cities Plug-In Electric Vehicle Handbook for Consumers

    SciTech Connect (OSTI)

    2012-07-01

    A 2"x3-1/4" web card printed on 2 sides which has a quick response code for accessing the PEV Handbook for Consumers via a smart phone. They are intended to be handed out instead of the handbook.

  9. Taipei terminal rail station : casting an urban gateway

    E-Print Network [OSTI]

    Tsai, May Deanna

    1991-01-01

    Access is a key issue in the design of railway stations. The evolution of the train station typology, has resulted in many types of stations based on the development of the stations' access. Since rail travel on a larger ...

  10. International Lattice Data Grid: Turn on, plug in,and download

    E-Print Network [OSTI]

    C. M. Maynard

    2010-01-28

    In the beginning there was the internet, then came the world wide web, and now there is the grid. In the future perhaps there will be the cloud. In the age of persistent, pervasive, and pandemic networks I review how the lattice QCD community embraced the open source paradigm for both code and data whilst adopting the emerging grid technologies, and why having your data persistently accessible via standardized protocols and services might be a good idea.

  11. Webinar: 20K Hour GATEWAY Testing Results for I-35W Bridge

    Office of Energy Efficiency and Renewable Energy (EERE)

    The U.S. Department of Energy has released a GATEWAY Demonstration report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September...

  12. Closing the gateways of democracy : cities and the militarization of protest policing

    E-Print Network [OSTI]

    Golan, Gan

    2005-01-01

    In the era of globalization, cities function as 'gateways of democracy,' the spaces and places where the civil society literally 'marches through' in order to deliver oppositional claims into the global arena. However, ...

  13. Manufacturing recovery : a networked approach to green job creation in Massachusetts Gateway cities

    E-Print Network [OSTI]

    Leavy-Sperounis, Marianna (Marianna Breakstone)

    2010-01-01

    In this thesis, I compare workforce development planning in Lawrence and Lowell, Massachusetts, two of the state's older industrial "Gateway" cities. I specifically examine local planning processes around job creation in ...

  14. Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory

    SciTech Connect (OSTI)

    Parks, K.; Denholm, P.; Markel, T.

    2007-05-01

    The combination of high oil costs, concerns about oil security and availability, and air quality issues related to vehicle emissions are driving interest in plug-in hybrid electric vehicles (PHEVs). PHEVs are similar to conventional hybrid electric vehicles, but feature a larger battery and plug-in charger that allows electricity from the grid to replace a portion of the petroleum-fueled drive energy. PHEVs may derive a substantial fraction of their miles from grid-derived electricity, but without the range restrictions of pure battery electric vehicles. As of early 2007, production of PHEVs is essentially limited to demonstration vehicles and prototypes. However, the technology has received considerable attention from the media, national security interests, environmental organizations, and the electric power industry. The use of PHEVs would represent a significant potential shift in the use of electricity and the operation of electric power systems. Electrification of the transportation sector could increase generation capacity and transmission and distribution (T&D) requirements, especially if vehicles are charged during periods of high demand. This study is designed to evaluate several of these PHEV-charging impacts on utility system operations within the Xcel Energy Colorado service territory.

  15. T-701: Citrix Access Gateway Enterprise Edition Input Validation Flaw in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergyPlan | Department ofSUPPLEMENTSwitzerland|of Energy T-685:Cross-SiteLogon

  16. U-020: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability |

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowing YouNeed forUnruhDepartment ofM I C H AReactionDepartment of

  17. Plug-in electric vehicle market penetration and incentives: a global review

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederalPlatinumtake the 2011| Argonne National

  18. TIS (Technology Information System): The Intelligent Gateway Processor (IGP)

    SciTech Connect (OSTI)

    Hampel, V.E.; Barker, R.; Berch, M.; Kawin, R.; Lann, N.; McGrogan, S.; Sharpe, N.; Winiger, G.

    1984-10-01

    The Technology Information System (TIS) is an Intelligent Gateway Processor (IGP) capable of interconnecting heterogeneous information resources at geographically distributed locations in an automated, unified, and controlled manner. It augments the capabilities of personal computers and workstations of scientists and engineers by providing a shared directory to worldwide bibliographic and numeric resources and a library of self-guided procedures by which test, data, and graphs can be downloaded, reformatted, aggregated, analyzed, and shared among users and different host machines. The TIS link capability is used routinely for transcontinental tutorials and as a proactical means for the audiovisual linking of TIS users with experts at their respective locations. The IGP universal user interface permits changes and additions of available resources while running non-stop. The TIS/IGP at th Lawrence Livermore National Laboratory (LLNL) serves as the host system for several different communities of users who develop integrated information systems for personal and shared programmatic resources. The TIS local area network utilizes a 10 Mbps Ethernet which serves as a testbed for high-technology hardware and software.

  19. Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power.

    SciTech Connect (OSTI)

    Wang, J.; Liu, C.; Ton, D.; Zhou, Y.; Kim, J.; Vyas, A. (Decision and Information Sciences); ( ES); (ED); (Kyungwon Univ.)

    2011-07-01

    This paper uses a new unit commitment model which can simulate the interactions among plug-in hybrid electric vehicles (PHEVs), wind power, and demand response (DR). Four PHEV charging scenarios are simulated for the Illinois power system: (1) unconstrained charging, (2) 3-hour delayed constrained charging, (3) smart charging, and (4) smart charging with DR. The PHEV charging is assumed to be optimally controlled by the system operator in the latter two scenarios, along with load shifting and shaving enabled by DR programs. The simulation results show that optimally dispatching the PHEV charging load can significantly reduce the total operating cost of the system. With DR programs in place, the operating cost can be further reduced.

  20. Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM

    SciTech Connect (OSTI)

    Momber, Ilan; Gomez, Tomás; Venkataramanan, Giri; Stadler, Michael; Beer, Sebastian; Lai, Judy; Marnay, Chris; Battaglia, Vincent

    2010-06-01

    It is generally believed that plug-in electric vehicles (PEVs) offer environmental and energy security advantages compared to conventional vehicles. Policies are stimulating electric transportation deployment, and PEV adoption may grow significantly. New technology and business models are being developed to organize the PEV interface and their interaction with the wider grid. This paper analyzes the PEVs' integration into a building's Energy Management System (EMS), differentiating between vehicle to macrogrid (V2M) and vehicle to microgrid (V2m) applications. This relationship is modeled by the Distributed Energy Resources Customer Adoption Model (DER-CAM), which finds optimal equipment combinations to meet microgrid requirements at minimum cost, carbon footprint, or other criteria. Results derive battery value to the building and the possibility of a contractual affiliation sharing the benefit. Under simple annual fixed payments and energy exchange agreements, vehicles are primarily used to avoid peak demand charges supplying cheaper off-peak electricity to the building during workdays.

  1. Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4

    SciTech Connect (OSTI)

    Schey, Stephen; Francfort, Jim

    2014-12-01

    This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.

  2. Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles (Revised)

    SciTech Connect (OSTI)

    Denholm, P.; Short, W.

    2006-10-01

    Hybrid electric vehicles with the capability of being recharged from the grid may provide a significant decrease in oil consumption. These ''plug-in'' hybrids (PHEVs) will affect utility operations, adding additional electricity demand. Because many individual vehicles may be charged in the extended overnight period, and because the cost of wireless communication has decreased, there is a unique opportunity for utilities to directly control the charging of these vehicles at the precise times when normal electricity demand is at a minimum. This report evaluates the effects of optimal PHEV charging, under the assumption that utilities will indirectly or directly control when charging takes place, providing consumers with the absolute lowest cost of driving energy. By using low-cost off-peak electricity, PHEVs owners could purchase the drive energy equivalent to a gallon of gasoline for under 75 cents, assuming current national average residential electricity prices.

  3. 10 Kammen and others/p. 1 Cost-Effectiveness of Greenhouse Gas Emission Reductions from Plug-in Hybrid Electric Vehicles

    E-Print Network [OSTI]

    Kammen, Daniel M.

    -in Hybrid Electric Vehicles Daniel M. Kammen1 , Samuel M. Arons, Derek M. Lemoine and Holmes Hummel Cars per year.2 Plug-in hybrid electric vehicles could alter these trends. On a vehicle technology spectrum that stretches from fossil fuel­powered conventional vehicles (CVs) through hybrid electric vehicles 1

  4. How green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more environmental friendly and

    E-Print Network [OSTI]

    Toohey, Darin W.

    How green are electric vehicles? It is thought plug-in hybrids and other electric vehicles are more environmental friendly and produce less pollution. Examining other aspects of electric vehicles besides tailpipe vehicles are a life cycle analysis approach must be used. Electricity: Electric vehicles will require more

  5. Wireless Power May Cut the Cord for Plug-In Devices, Including Cars1 by Will Ferguson for National Geographic News, abbreviated2

    E-Print Network [OSTI]

    South Bohemia, University of

    Boston, these and other applications of wireless electricity signal a future with fewer snaking5 cables.6 the industrial potential for wireless power is huge,12 especially in the realm of electric vehicles and wirelessWireless Power May Cut the Cord for Plug-In Devices, Including Cars1 by Will Ferguson for National

  6. An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data

    E-Print Network [OSTI]

    Recker, W. W.; Kang, J. E.

    2010-01-01

    in California Energy Markets, Transportation Research BoardEnergy and Emissions Using One-Day Travel Data UNIVERSITY OF CALIFORNIA TRANSPORTATIONCalifornia Transportation Center UCTC-FR-2010-14 An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy

  7. ON BUILDING AN INTERNET GATEWAY FOR INTERNET TELEPHONY Cheng-Yue Chang and Ming-Syan Chen

    E-Print Network [OSTI]

    Hung, Shih-Hao

    ON BUILDING AN INTERNET GATEWAY FOR INTERNET TELEPHONY Cheng-Yue Chang and Ming-Syan Chen@arbor.ee.ntu.edu.tw; mschen@cc.ee.ntu.edu.tw ABSTRACT In recent years, the Internet has emerged as an important collaborative, it is very important to construct a PSTN/Internet gateway for further experiments and devel- opments

  8. Gateway:U.S. OpenLabs/Environmental and Economic Impacts | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: EnergyGateway Edit History Gateway:LowInformation

  9. Impact of Component Sizing in Plug-In Hybrid Electric Vehicles for Energy Resource and Greenhouse Emissions Reduction

    SciTech Connect (OSTI)

    Malikopoulos, Andreas

    2013-01-01

    Widespread use of alternative hybrid powertrains currently appears inevitable and many opportunities for substantial progress remain. The necessity for environmentally friendly vehicles, in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change, has led to significant investment in enhancing the propulsion portfolio with new technologies. Recently, plug-in hybrid electric vehicles (PHEVs) have attracted considerable attention due to their potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the transportation sector. PHEVs are especially appealing for short daily commutes with excessive stop-and-go driving. However, the high costs associated with their components, and in particular, with their energy storage systems have been significant barriers to extensive market penetration of PEVs. In the research reported here, we investigated the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium duty PHEV. An optimization framework is proposed and applied to two different parallel powertrain configurations, pre-transmission and post-transmission, to derive the Pareto frontier with respect to motor/generator and battery size. The optimization and modeling approach adopted here facilitates better understanding of the potential benefits from proper selection of motor/generator and battery size on fuel economy and GHG emissions. This understanding can help us identify the appropriate sizing of these components and thus reducing the PHEV cost. Addressing optimal sizing of PHEV components could aim at an extensive market penetration of PHEVs.

  10. Assessing Energy Impact of Plug-In Hybrid Electric Vehicles: Significance of Daily Distance Variation over Time and Among Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL; Greene, David L [ORNL

    2012-01-01

    Accurate assessment of the impact of plug-in hybrid electric vehicles (PHEVs) on petroleum and electricity consumption is a necessary step toward effective policies. Variations in daily vehicle miles traveled (VMT) over time and among drivers affect PHEV energy impact, but the significance is not well understood. This paper uses a graphical illustration, a mathematical derivation, and an empirical study to examine the cause and significance of such an effect. The first two methods reveal that ignoring daily variation in VMT always causes underestimation of petroleum consumption and overestimation of electricity consumption by PHEVs; both biases increase as the assumed PHEV charge-depleting (CD) range moves closer to the average daily VMT. The empirical analysis based on national travel survey data shows that the assumption of uniform daily VMT over time and among drivers causes nearly 68% underestimation of expected petroleum use and nearly 48% overestimation of expected electricity use by PHEVs with a 40-mi CD range (PHEV40s). Also for PHEV40s, consideration of daily variation in VMT over time but not among drivers similar to the way the utility factor curve is derived in SAE Standard SAE J2841 causes underestimation of expected petroleum use by more than 24% and overestimation of expected electricity use by about 17%. Underestimation of petroleum use and overestimation of electricity use increase with larger-battery PHEVs.

  11. Gateway Adaptive Pacing for TCP across Multihop Wireless Networks and the Internet*

    E-Print Network [OSTI]

    Lindemann, Christoph

    Gateway Adaptive Pacing for TCP across Multihop Wireless Networks and the Internet* Sherif M. El introduce an effective congestion control scheme for TCP over hybrid wireless/wired networks comprising a multihop wireless IEEE 802.11 network and the wired Internet. We propose an adaptive pacing scheme

  12. GATEWAY Demonstrations: Trial Demonstration of Area Lighting Retrofit, Yuma Border Patrol, Yuma, Arizona

    SciTech Connect (OSTI)

    Wilkerson, A. M.; McCullough, J. J.

    2014-12-31

    Along the Yuma Sector Border Patrol Area in Yuma, Arizona, the GATEWAY program conducted a trial demonstration in which the incumbent quartz metal halide area lighting was replaced with LED at three pole locations at the Yuma Sector Border Patrol Area in Yuma, Arizona. The retrofit was documented to better understand LED technology performance in high-temperature environments.

  13. IEEE Wireless Communications February 200630 1536-1284/06/$20.00 2006 IEEE Gateway router

    E-Print Network [OSTI]

    Jiang, Hai

    IEEE Wireless Communications · February 200630 1536-1284/06/$20.00 © 2006 IEEE Gateway router-exempt 2.4 GHz industri- al, scientific, and medical (ISM) frequency band, the IEEE 802.11b WLAN offers a data rate up to 11 Mb/s, while IEEE 802.11a WLAN and European Telecommunications Standard Insti- tute

  14. Compilation of Expenditures for the Hawai`i Gateway Energy Center

    E-Print Network [OSTI]

    `i Distributed Energy Resource Technologies for Energy Security Subtask 2.2 Deliverable #3 By Hawai`i Natural`i Distributed Energy Resource Technologies for Energy Security project, the Hawai`i Natural Energy InstituteCompilation of Expenditures for the Hawai`i Gateway Energy Center Prepared for the U.S. Department

  15. An SNMP Gateway for Delay/Disruption Tolerant Network Management GREGORY L. CAMPBELL

    E-Print Network [OSTI]

    Kruse, Hans

    is tested by creating a sample terrestrial management system and by mimicking interaction with the DING protocol. The results prove that a push-based data collection method that populates a shared database canAn SNMP Gateway for Delay/Disruption Tolerant Network Management by GREGORY L. CAMPBELL Mc

  16. U-244: McAfee Email Gateway Lets Remote Users Bypass Authentication...

    Broader source: Energy.gov (indexed) [DOE]

    McAfee Email Gateway (MEG) 7.0.0 and 7.0.1 (MEG 6.7.x is NOT affected.) McAfee Email and Web Security (EWS) 5.6 Patch 3 and earlier McAfee Email and Web Security (EWS) 5.5 Patch 6...

  17. The University of Oklahoma 2011-2012 Graduate College Bulletin GRADUATE GATEWAY EMBLEM BY HADLEY JERMAN

    E-Print Network [OSTI]

    Forester, Max

    #12;The University of Oklahoma 2011-2012 Graduate College Bulletin Page | 1 GRADUATE GATEWAY EMBLEM BY HADLEY JERMAN Ms. Jerman graduated from the School of Art and Art History at the University of Oklahoma and was an Oklahoma State Regents Scholar and member of OU's Joe C. and Carole Kerr McClendon Honors College. While

  18. Transparent Flow Migration through Splicing for Multi-homed Vehicular Internet Gateways

    E-Print Network [OSTI]

    Banerjee, Suman

    Transparent Flow Migration through Splicing for Multi-homed Vehicular Internet Gateways Joshua Hare for the contents of the interrupted flow and splice them back to the original flow in a manner that is transparent round trip times for more than 93% of the traffic volume. Clients left to their own mechanisms would

  19. Determining PHEV Performance Potential – User and Environmental Influences on A123 Systems’ Hymotion™ Plug-In Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    John G. Smart; Huang Iu

    2009-05-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity and recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-50km of charge depleting range. This paper will cover efforts by A123 Systems and the Idaho National Laboratory in studying the on-road performance of this PHEV fleet. The performance potentials of various fleets will be compared in order to determine the major influences on overall performance.

  20. Accessible buildings Moderately accessible buildings*

    E-Print Network [OSTI]

    Lee, Dongwon

    Campus neighborhood map Moderately accessible paths** Accessible building entrance via parking lot to the University Park campus. This map, provided by UAC, is designed to assist persons with disabilities in finding accessibility. Your observations and suggestions regarding architectural For more information on UAC, you can

  1. U.S. Department of Energy Vehicle Technologies Program: Battery Test Manual For Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    Jon P. Christophersen

    2014-09-01

    This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Office. It is based on technical targets for commercial viability established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEV’s. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, future revisions including some modifications and clarifications of these procedures are expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices. The DOE-United States Advanced Battery Consortium (USABC), Technical Advisory Committee (TAC) supported the development of the manual. Technical Team points of contact responsible for its development and revision are Renata M. Arsenault of Ford Motor Company and Jon P. Christophersen of the Idaho National Laboratory. The development of this manual was funded by the Unites States Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Technical direction from DOE was provided by David Howell, Energy Storage R&D Manager and Hybrid Electric Systems Team Leader. Comments and questions regarding the manual should be directed to Jon P. Christophersen at the Idaho National Laboratory (jon.christophersen@inl.gov).

  2. U.S. Department of Energy -- Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Testing and Demonstration Activities

    SciTech Connect (OSTI)

    James E. Francfort; Donald Karner; John G. Smart

    2009-05-01

    The U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA) tests plug-in hybrid electric vehicles (PHEV) in closed track, dynamometer and onroad testing environments. The onroad testing includes the use of dedicated drivers on repeated urban and highway driving cycles that range from 10 to 200 miles, with recharging between each loop. Fleet demonstrations with onboard data collectors are also ongoing with PHEVs operating in several dozen states and Canadian Provinces, during which trips- and miles-per-charge, charging demand and energy profiles, and miles-per-gallon and miles-per-kilowatt-hour fuel use results are all documented, allowing an understanding of fuel use when vehicles are operated in charge depleting, charge sustaining, and mixed charge modes. The intent of the PHEV testing includes documenting the petroleum reduction potential of the PHEV concept, the infrastructure requirements, and operator recharging influences and profiles. As of May 2008, the AVTA has conducted track and dynamometer testing on six PHEV conversion models and fleet testing on 70 PHEVs representing nine PHEV conversion models. A total of 150 PHEVs will be in fleet testing by the end of 2008, all with onboard data loggers. The onroad testing to date has demonstrated 100+ miles per gallon results in mostly urban applications for approximately the first 40 miles of PHEV operations. The primary goal of the AVTA is to provide advanced technology vehicle performance benchmark data for technology modelers, research and development programs, and technology goal setters. The AVTA testing results also assist fleet managers in making informed vehicle purchase, deployment and operating decisions. The AVTA is part of DOE’s Vehicle Technologies Program. These AVTA testing activities are conducted by the Idaho National Laboratory and Electric Transportation Engineering Corporation, with Argonne National Laboratory providing dynamometer testing support. The proposed paper and presentation will discuss PHEV testing activities and results. INL/CON-08-14333

  3. Report on the Field Performance of A123Systems’s HymotionTM Plug-in Conversion Module for the Toyota Prius

    SciTech Connect (OSTI)

    Huang Iu; John Smart

    2009-04-01

    A123Systems’s HymotionTM L5 Plug-in Conversion Module (PCM) is a supplemental battery system that converts the Toyota Prius hybrid electric vehicle (HEV) into a plug-in hybrid electric vehicle (PHEV). The Hymotion system uses a lithium ion battery pack with 4.5 kWh of useable energy capacity. It recharges by plugging into a standard 110/120V outlet. The system is designed to more than double the Prius fuel efficiency for 30-40 miles of charge depleting range. If the Hymotion pack is fully depleted, the Prius operates as a normal HEV in charge sustaining mode. The Hymotion L5 PCM is the first commercially available aftermarket product complying with CARB emissions and NHTSA impact standards. Since 2006, over 50 initial production Hymotion Plug-in Conversion Modules have been installed in private fleet vehicles across the United States and Canada. With the help of the Idaho National Laboratory, which conducts the U.S. Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), A123Systems collects real-time vehicle data from each fleet vehicle using on-board data loggers. These data are analyzed to determine vehicle performance. This paper presents the results of this field evaluation. Data to be presented includes the L5 Prius charge depleting range, gasoline fuel efficiency, and electrical energy efficiency. Effects of driving conditions, driving style, and charging patterns on fuel efficiency are also presented. Data show the Toyota Prius equipped with the Hymotion Plug-in Conversion Module is capable of achieving over 100 mpg in certain driving conditions when operating in charge depleting mode.

  4. The added economic and environmental value of plug-in electric vehicles connected to commercial building microgrids

    SciTech Connect (OSTI)

    Stadler, Michael; Momber, Ilan; Megel, Olivier; Gomez, Tomás; Marnay, Chris; Beer, Sebastian; Lai, Judy; Battaglia, Vincent

    2010-08-25

    Connection of electric storage technologies to smartgrids or microgrids will have substantial implications for building energy systems. In addition to potentially supplying ancillary services directly to the traditional centralized grid (or macrogrid), local storage will enable demand response. As an economically attractive option, mobile storage devices such as plug-in electric vehicles (EVs) are in direct competition with conventional stationary sources and storage at the building. In general, it is assumed that they can improve the financial as well as environmental attractiveness of renewable and fossil based on-site generation (e.g. PV, fuel cells, or microturbines operating with or without combined heat and power). Also, mobile storage can directly contribute to tariff driven demand response in commercial buildings. In order to examine the impact of mobile storage on building energy costs and carbon dioxide (CO2) emissions, a microgrid/distributed-energy-resources (DER) adoption problem is formulated as a mixed-integer linear program with minimization of annual building energy costs applying CO2 taxes/CO2 pricing schemes. The problem is solved for a representative office building in the San Francisco Bay Area in 2020. By using employees' EVs for energy management, the office building can arbitrage its costs. But since the car battery lifetime is reduced, a business model that also reimburses car owners for the degradation will be required. In general, the link between a microgrid and an electric vehicle can create a win-win situation, wherein the microgrid can reduce utility costs by load shifting while the electric vehicle owner receives revenue that partially offsets his/her expensive mobile storage investment. For the California office building with EVs connected under a business model that distributes benefits, it is found that the economic impact is very limited relative to the costs of mobile storage for the site analyzed, i.e. cost reductions from electric vehicle connections are modest. Nonetheless, this example shows that some economic benefit is created because of avoided demand charges and on-peak energy. The strategy adopted by the office building is to avoid these high on-peak costs by using energy from the mobile storage in the business hours. CO2 emission reduction strategy results indicate that EVs' contribution at the selected office building are minor.

  5. Optimizing and Diversifying the Electric Range of Plug-in Hybrid Electric Vehicles for U.S. Drivers

    SciTech Connect (OSTI)

    Lin, Zhenhong [ORNL

    2012-01-01

    To provide useful information for automakers to design successful plug-in hybrid electric vehicle (PHEV) products and for energy and environmental analysts to understand the social impact of PHEVs, this paper addresses the question of how many of the U.S. consumers, if buying a PHEV, would prefer what electric ranges. The Market-oriented Optimal Range for PHEV (MOR-PHEV) model is developed to optimize the PHEV electric range for each of 36,664 sampled individuals representing U.S. new vehicle drivers. The optimization objective is the minimization of the sum of costs on battery, gasoline, electricity and refueling hassle. Assuming no battery subsidy, the empirical results suggest that: 1) the optimal PHEV electric range approximates two thirds of one s typical daily driving distance in the near term, defined as $450/kWh battery delivered price and $4/gallon gasoline price. 2) PHEVs are not ready to directly compete with HEVs at today s situation, defined by the $600/kWh battery delivered price and the $3-$4/gallon gasoline price, but can do so in the near term. 3) PHEV10s will be favored by the market over longer-range PHEVs in the near term, but longer-range PHEVs can dominate the PHEV market if gasoline prices reach as high as $5-$6 per gallon and/or battery delivered prices reach as low as $150-$300/kWh. 4) PHEVs can become much more attractive against HEVs in the near term if the electric range can be extended by only 10% with multiple charges per day, possible with improved charging infrastructure or adapted charging behavior. 5) the impact of a $100/kWh decrease in battery delivered prices on the competiveness of PHEVs against HEVs can be offset by about $1.25/gallon decrease in gasoline prices, or about 7/kWh increase in electricity prices. This also means that the impact of a $1/gallon decrease in gasoline prices can be offset by about 5/kWh decrease in electricity prices.

  6. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #843: Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

  7. Fact #843: October 20, 2014 Cumulative Plug-in Electric Vehicle Sales are Two and a Half Times Higher than Hybrid Electric Vehicle Sales in the First 45 Months since Market Introduction

    Broader source: Energy.gov [DOE]

    The first hybrid electric vehicle was introduced in December 1999 and for the next 45 months (through August 2003) there were a total of 95,778 hybrid vehicles sold. The first mass-marketed plug-in...

  8. Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-06-01

    The U.S. Department of Energy (DOE) is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service (NPS) views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other NPS tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr for this tunnel to a much larger figure national

  9. Well-to-wheels energy use and greenhouse gas emissions analysis of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Burnham, A.; Wang, M.; Molburg, J.; Rousseau, A.; Energy Systems

    2009-03-31

    Researchers at Argonne National Laboratory expanded the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model and incorporated the fuel economy and electricity use of alternative fuel/vehicle systems simulated by the Powertrain System Analysis Toolkit (PSAT) to conduct a well-to-wheels (WTW) analysis of energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW results were separately calculated for the blended charge-depleting (CD) and charge-sustaining (CS) modes of PHEV operation and then combined by using a weighting factor that represented the CD vehicle-miles-traveled (VMT) share. As indicated by PSAT simulations of the CD operation, grid electricity accounted for a share of the vehicle's total energy use, ranging from 6% for a PHEV 10 to 24% for a PHEV 40, based on CD VMT shares of 23% and 63%, respectively. In addition to the PHEV's fuel economy and type of on-board fuel, the marginal electricity generation mix used to charge the vehicle impacted the WTW results, especially GHG emissions. Three North American Electric Reliability Corporation regions (4, 6, and 13) were selected for this analysis, because they encompassed large metropolitan areas (Illinois, New York, and California, respectively) and provided a significant variation of marginal generation mixes. The WTW results were also reported for the U.S. generation mix and renewable electricity to examine cases of average and clean mixes, respectively. For an all-electric range (AER) between 10 mi and 40 mi, PHEVs that employed petroleum fuels (gasoline and diesel), a blend of 85% ethanol and 15% gasoline (E85), and hydrogen were shown to offer a 40-60%, 70-90%, and more than 90% reduction in petroleum energy use and a 30-60%, 40-80%, and 10-100% reduction in GHG emissions, respectively, relative to an internal combustion engine vehicle that used gasoline. The spread of WTW GHG emissions among the different fuel production technologies and grid generation mixes was wider than the spread of petroleum energy use, mainly due to the diverse fuel production technologies and feedstock sources for the fuels considered in this analysis. The PHEVs offered reductions in petroleum energy use as compared with regular hybrid electric vehicles (HEVs). More petroleum energy savings were realized as the AER increased, except when the marginal grid mix was dominated by oil-fired power generation. Similarly, more GHG emissions reductions were realized at higher AERs, except when the marginal grid generation mix was dominated by oil or coal. Electricity from renewable sources realized the largest reductions in petroleum energy use and GHG emissions for all PHEVs as the AER increased. The PHEVs that employ biomass-based fuels (e.g., biomass-E85 and -hydrogen) may not realize GHG emissions benefits over regular HEVs if the marginal generation mix is dominated by fossil sources. Uncertainties are associated with the adopted PHEV fuel consumption and marginal generation mix simulation results, which impact the WTW results and require further research. More disaggregate marginal generation data within control areas (where the actual dispatching occurs) and an improved dispatch modeling are needed to accurately assess the impact of PHEV electrification. The market penetration of the PHEVs, their total electric load, and their role as complements rather than replacements of regular HEVs are also uncertain. The effects of the number of daily charges, the time of charging, and the charging capacity have not been evaluated in this study. A more robust analysis of the VMT share of the CD operation is also needed.

  10. Well-to-wheels analysis of energy use and greenhouse gas emissions of plug-in hybrid electric vehicles.

    SciTech Connect (OSTI)

    Elgowainy, A.; Han, J.; Poch, L.; Wang, M.; Vyas, A.; Mahalik, M.; Rousseau, A.

    2010-06-14

    Plug-in hybrid electric vehicles (PHEVs) are being developed for mass production by the automotive industry. PHEVs have been touted for their potential to reduce the US transportation sector's dependence on petroleum and cut greenhouse gas (GHG) emissions by (1) using off-peak excess electric generation capacity and (2) increasing vehicles energy efficiency. A well-to-wheels (WTW) analysis - which examines energy use and emissions from primary energy source through vehicle operation - can help researchers better understand the impact of the upstream mix of electricity generation technologies for PHEV recharging, as well as the powertrain technology and fuel sources for PHEVs. For the WTW analysis, Argonne National Laboratory researchers used the Greenhouse gases, Regulated Emissions, and Energy use in Transportation (GREET) model developed by Argonne to compare the WTW energy use and GHG emissions associated with various transportation technologies to those associated with PHEVs. Argonne researchers estimated the fuel economy and electricity use of PHEVs and alternative fuel/vehicle systems by using the Powertrain System Analysis Toolkit (PSAT) model. They examined two PHEV designs: the power-split configuration and the series configuration. The first is a parallel hybrid configuration in which the engine and the electric motor are connected to a single mechanical transmission that incorporates a power-split device that allows for parallel power paths - mechanical and electrical - from the engine to the wheels, allowing the engine and the electric motor to share the power during acceleration. In the second configuration, the engine powers a generator, which charges a battery that is used by the electric motor to propel the vehicle; thus, the engine never directly powers the vehicle's transmission. The power-split configuration was adopted for PHEVs with a 10- and 20-mile electric range because they require frequent use of the engine for acceleration and to provide energy when the battery is depleted, while the series configuration was adopted for PHEVs with a 30- and 40-mile electric range because they rely mostly on electrical power for propulsion. Argonne researchers calculated the equivalent on-road (real-world) fuel economy on the basis of U.S. Environmental Protection Agency miles per gallon (mpg)-based formulas. The reduction in fuel economy attributable to the on-road adjustment formula was capped at 30% for advanced vehicle systems (e.g., PHEVs, fuel cell vehicles [FCVs], hybrid electric vehicles [HEVs], and battery-powered electric vehicles [BEVs]). Simulations for calendar year 2020 with model year 2015 mid-size vehicles were chosen for this analysis to address the implications of PHEVs within a reasonable timeframe after their likely introduction over the next few years. For the WTW analysis, Argonne assumed a PHEV market penetration of 10% by 2020 in order to examine the impact of significant PHEV loading on the utility power sector. Technological improvement with medium uncertainty for each vehicle was also assumed for the analysis. Argonne employed detailed dispatch models to simulate the electric power systems in four major regions of the US: the New England Independent System Operator, the New York Independent System Operator, the State of Illinois, and the Western Electric Coordinating Council. Argonne also evaluated the US average generation mix and renewable generation of electricity for PHEV and BEV recharging scenarios to show the effects of these generation mixes on PHEV WTW results. Argonne's GREET model was designed to examine the WTW energy use and GHG emissions for PHEVs and BEVs, as well as FCVs, regular HEVs, and conventional gasoline internal combustion engine vehicles (ICEVs). WTW results are reported for charge-depleting (CD) operation of PHEVs under different recharging scenarios. The combined WTW results of CD and charge-sustaining (CS) PHEV operations (using the utility factor method) were also examined and reported. According to the utility factor method, the share of vehicle miles trav

  11. Variability of Battery Wear in Light Duty Plug-In Electric Vehicles Subject to Ambient Temperature, Battery Size, and Consumer Usage: Preprint

    SciTech Connect (OSTI)

    Wood, E.; Neubauer, J.; Brooker, A. D.; Gonder, J.; Smith, K. A.

    2012-08-01

    Battery wear in plug-in electric vehicles (PEVs) is a complex function of ambient temperature, battery size, and disparate usage. Simulations capturing varying ambient temperature profiles, battery sizes, and driving patterns are of great value to battery and vehicle manufacturers. A predictive battery wear model developed by the National Renewable Energy Laboratory captures the effects of multiple cycling and storage conditions in a representative lithium chemistry. The sensitivity of battery wear rates to ambient conditions, maximum allowable depth-of-discharge, and vehicle miles travelled is explored for two midsize vehicles: a battery electric vehicle (BEV) with a nominal range of 75 mi (121 km) and a plug-in hybrid electric vehicle (PHEV) with a nominal charge-depleting range of 40 mi (64 km). Driving distance distributions represent the variability of vehicle use, both vehicle-to-vehicle and day-to-day. Battery wear over an 8-year period was dominated by ambient conditions for the BEV with capacity fade ranging from 19% to 32% while the PHEV was most sensitive to maximum allowable depth-of-discharge with capacity fade ranging from 16% to 24%. The BEV and PHEV were comparable in terms of petroleum displacement potential after 8 years of service, due to the BEV?s limited utility for accomplishing long trips.

  12. U.S. Department of Energy's EV Everywhere Workplace Charging Challenge, Mid-Program Review: Employees Plug In

    SciTech Connect (OSTI)

    2015-12-01

    This Program Review takes an unprecedented look at the state of workplace charging in the United States -- a report made possible by U.S. Department of Energy leadership and valuable support from our partners as they share their progress in developing robust workplace charging programs. Through the Workplace Charging Challenge, more than 250 participants are accelerating the development the nation's worksite PEV charging infrastructure and are supporting cleaner, more convenient transportation options within their communities. Challenge partners are currently providing access to PEV charging stations at more than 440 worksites across the country and are influencing countless other organizations to do the same.

  13. The role of gateways in the evolution of temperature and salinity of semi-enclosed basins: An oceanic box model for the Miocene Mediterranean Sea and Paratethys

    E-Print Network [OSTI]

    Utrecht, Universiteit

    . Our analysis forms a novel way of linking tectonics, climate and basin evolution. We investigate. Introduction Marine gateways play a crucial role in the exchange of water, heat and salt between ocean basins. Tectonically induced changes in gateway geometry can alter ocean circulation and heat transport, which in turn

  14. 20K Hour GATEWAY Testing Results for I-35W Bridge Webinar

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy released a GATEWAY Demonstration report on the longer-term performance of an LED lighting system that was installed on the I-35W Bridge in Minneapolis in September 2008 and represents one of the country’s oldest continuously operated exterior LED lighting installations. Prior to installation, two of the LED luminaires were tested, along with a third luminaire that was not installed on the bridge but was tested for 6,000 hours in a laboratory for comparison purposes.

  15. U.S. Department of Energy Vehicle Technologies Program -- Advanced Vehicle Testing Activity -- Plug-in Hybrid Electric Vehicle Charging Infrastructure Review

    SciTech Connect (OSTI)

    Kevin Morrow; Donald Darner; James Francfort

    2008-11-01

    Plug-in hybrid electric vehicles (PHEVs) are under evaluation by various stake holders to better understand their capability and potential benefits. PHEVs could allow users to significantly improve fuel economy over a standard HEV and in some cases, depending on daily driving requirements and vehicle design, have the ability to eliminate fuel consumption entirely for daily vehicle trips. The cost associated with providing charge infrastructure for PHEVs, along with the additional costs for the on-board power electronics and added battery requirements associated with PHEV technology will be a key factor in the success of PHEVs. This report analyzes the infrastructure requirements for PHEVs in single family residential, multi-family residential and commercial situations. Costs associated with this infrastructure are tabulated, providing an estimate of the infrastructure costs associated with PHEV deployment.

  16. Portal Vein Embolization Using a Nitinol Plug (Amplatzer Vascular Plug) in Combination with Histoacryl Glue and Iodinized Oil: Adequate Hypertrophy with a Reduced Risk of Nontarget Embolization

    SciTech Connect (OSTI)

    Bent, Clare L., E-mail: clare_bent@yahoo.co.uk; Low, Deborah; Matson, Matthew B.; Renfrew, Ian; Fotheringham, Tim [Barts and The London NHS Trust, Department of Diagnostic Imaging (United Kingdom)

    2009-05-15

    The purpose of this study was to assess whether portal vein embolization (PVE) using a nitinol vascular plug in combination with histoacryl glue and iodinized oil minimizes the risk of nontarget embolization while obtaining good levels of future liver remnant (FLR) hypertrophy. Between November 2005 and August 2008, 16 patients (8 females, 8 males; mean age, 63 {+-} 3.6 years), each with a small FLR, underwent right ipsilateral transhepatic PVE prior to major hepatectomy. Proximal PVE was initially performed by placement of a nitinol vascular plug, followed by distal embolization using a mixture of histoacryl glue and iodinized oil. Pre- and 6 weeks postprocedural FLR volumes were calculated using computed tomographic imaging. Selection for surgery required an FLR of 0.5% of the patient's body mass. Clinical course and outcome of surgical resection for all patients were recorded. At surgery, the ease of hepatectomy was subjectively assessed in comparison to previous experience following PVE with alternative embolic agents. PVE was successful in all patients. Mean procedure time was 30.4 {+-} 2.5 min. Mean absolute increase in FLR volume was 68.9% {+-} 12.0% (p = 0.00005). There was no evidence of nontarget embolization during the procedure or on subsequent imaging. Nine patients proceeded to extended hepatectomy. Six patients demonstrated disease progression. One patient did not achieve sufficient hypertrophy in relation to body mass to undergo hepatic resection. At surgery, the hepatobiliary surgeons observed less periportal inflammation compared to previous experience with alternative embolic agents, facilitating dissection at extended hepatectomy. In conclusion, ipsilateral transhepatic PVE using a single nitinol plug in combination with histoacryl glue and iodinized oil simplifies the procedure, offering short procedural times with minimal risk of nontarget embolization. Excellent levels of FLR hypertrophy are achieved enabling safe extended hepatectomy.

  17. Accessing PDSF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAbout UsAboutWeb Policies »FacilitiesAccessing

  18. Accessibility | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act Recovery ActARMAccelerators,Access toServices

  19. Gate Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid you not find whatGasEnergyfeatureCleanperformanceCareersGate Access Gate

  20. Remote Access

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout UsRegionalScientific andRemote Access Remote

  1. GATEWAY ENTERPRISES

    Office of Legacy Management (LM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-SessionsSouth DakotaRobbins and700, 1.Reports1E~ S·D3 2,000 4,000DOEK IGENERALC

  2. eVMTeVMT Analysis of OnAnalysis of OnRoad Data fromRoad Data from PlugPlugIn Hybrid Electric andIn Hybrid Electric and

    E-Print Network [OSTI]

    California at Davis, University of

    In Hybrid Electric and gov PlugPlug In Hybrid Electric andIn Hybrid Electric and AllAllElectric Vehicles Electric Vehicles www.inl.g October 2, 2014 Richard "Barney" Carlson w INL/MIS-14-32984 y Shawn Salisbury Laboratory Advanced Vehicle Testing Activity (AVTA) #12;Introduction · Calculated electric vehicle miles

  3. Frey, H.C., H.W. Choi, E. Pritchard, and J. Lawrence, "In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric Vehicle," Paper 2009-A-242-AWMA, Proceedings, 102nd Annual Conference and Exhibition, Air &

    E-Print Network [OSTI]

    Frey, H. Christopher

    Use, and Emissions of a Plug-in Hybrid Electric Vehicle," Paper 2009-A-242-AWMA, Proceedings, 102nd. 1 In-Use Measurement of the Activity, Energy Use, and Emissions of a Plug-in Hybrid Electric Vehicle Emission Inventory data. An engine load-based model based on vehicle-specific power (VSP) was developed

  4. Development of Production-Intent Plug-In Hybrid Vehicle Using Advanced Lithium-Ion Battery Packs with Deployment to a Demonstration Fleet

    SciTech Connect (OSTI)

    No, author

    2013-09-29

    The primary goal of this project was to speed the development of one of the first commercially available, OEM-produced plug-in hybrid electric vehicles (PHEV). The performance of the PHEV was expected to double the fuel economy of the conventional hybrid version. This vehicle program incorporated a number of advanced technologies, including advanced lithium-ion battery packs and an E85-capable flex-fuel engine. The project developed, fully integrated, and validated plug-in specific systems and controls by using GM’s Global Vehicle Development Process (GVDP) for production vehicles. Engineering Development related activities included the build of mule vehicles and integration vehicles for Phases I & II of the project. Performance data for these vehicles was shared with the U.S. Department of Energy (DOE). The deployment of many of these vehicles was restricted to internal use at GM sites or restricted to assigned GM drivers. Phase III of the project captured the first half or Alpha phase of the Engineering tasks for the development of a new thermal management design for a second generation battery module. The project spanned five years. It included six on-site technical reviews with representatives from the DOE. One unique aspect of the GM/DOE collaborative project was the involvement of the DOE throughout the OEM vehicle development process. The DOE gained an understanding of how an OEM develops vehicle efficiency and FE performance, while balancing many other vehicle performance attributes to provide customers well balanced and fuel efficient vehicles that are exciting to drive. Many vehicle content and performance trade-offs were encountered throughout the vehicle development process to achieve product cost and performance targets for both the OEM and end customer. The project team completed two sets of PHEV development vehicles with fully integrated PHEV systems. Over 50 development vehicles were built and operated for over 180,000 development miles. The team also completed four GM engineering development Buy-Off rides/milestones. The project included numerous engineering vehicle and systems development trips including extreme hot, cold and altitude exposure. The final fuel economy performance demonstrated met the objectives of the PHEV collaborative GM/DOE project. Charge depletion fuel economy of twice that of the non-PHEV model was demonstrated. The project team also designed, developed and tested a high voltage battery module concept that appears to be feasible from a manufacturability, cost and performance standpoint. The project provided important product development and knowledge as well as technological learnings and advancements that include multiple U.S. patent applications.

  5. Gateway clone primer design The proper design of attB-attached primer is a crucial point for the BP and LR reaction of

    E-Print Network [OSTI]

    Lamitina, Todd

    Gateway clone primer design The proper design of attB-attached primer is a crucial point for the BP. Green: is the the nucleotide(s) added to keep the sequence in the right reading frame. You can change

  6. Internet architecture Access networks

    E-Print Network [OSTI]

    architecture (1) router PC server wireless laptop smartphone Wired Communication links in router)/wireless access point Ethernet Wireless access point Wireless laptops Router links " connect end systems/routers/switches/access points " fiber, copper and radio " transmission rate

  7. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 3: Technical Requirements and Procedure for Evaluation of One Scenario

    SciTech Connect (OSTI)

    Sikes, Karen R; Hinds, Shaun; Hadley, Stanton W; McGill, Ralph N; Markel, Lawrence C; Ziegler, Richard E; Smith, David E; Smith, Richard L; Greene, David L; Brooks, Daniel L; Wiegman, Herman; Miller, Nicholas; Marano, Dr. Vincenzo

    2008-07-01

    In Task 2, the project team designed the Phase 1 case study to represent the 'baseline' plug-in hybrid electric vehicle (PHEV) fleet of 2030 that investigates the effects of seventeen (17) value propositions (see Table 1 for complete list). By creating a 'baseline' scenario, a consistent set of assumptions and model parameters can be established for use in more elaborate Phase 2 case studies. The project team chose southern California as the Phase 1 case study location because the economic, environmental, social, and regulatory conditions are conducive to the advantages of PHEVs. Assuming steady growth of PHEV sales over the next two decades, PHEVs are postulated to comprise approximately 10% of the area's private vehicles (about 1,000,000 vehicles) in 2030. New PHEV models introduced in 2030 are anticipated to contain lithium-ion batteries and be classified by a blended mileage description (e.g., 100 mpg, 150 mpg) that demonstrates a battery size equivalence of a PHEV-30. Task 3 includes the determination of data, models, and analysis procedures required to evaluate the Phase 1 case study scenario. Some existing models have been adapted to accommodate the analysis of the business model and establish relationships between costs and value to the respective consumers. Other data, such as the anticipated California generation mix and southern California drive cycles, have also been gathered for use as inputs. The collection of models that encompasses the technical, economic, and financial aspects of Phase 1 analysis has been chosen and is described in this deliverable. The role of PHEV owners, utilities (distribution systems, generators, independent system operators (ISO), aggregators, or regional transmission operators (RTO)), facility owners, financing institutions, and other third parties are also defined.

  8. Plug-In Hybrid Electric Vehicle Value Proposition Study: Phase 1, Task 2: Select Value Propositions/Business Model for Further Study

    SciTech Connect (OSTI)

    Sikes, Karen R; Markel, Lawrence C; Hadley, Stanton W; Hinds, Shaun

    2008-04-01

    The Plug-In Hybrid Electric Vehicle (PHEV) Value Propositions Workshop held in Washington, D.C. in December 2007 served as the Task 1 Milestone for this study. Feedback from all five Workshop breakout sessions has been documented in a Workshop Summary Report, which can be found at www.sentech.org/phev. In this report, the project team compiled and presented a comprehensive list of potential value propositions that would later serve as a 'grab bag' of business model components in Task 2. After convening with the Guidance and Evaluation Committee and other PHEV stakeholders during the Workshop, several improvements to the technical approach were identified and incorporated into the project plan to present a more realistic and accurate case study and evaluation. The assumptions and modifications that will have the greatest impact on the case study selection process in Task 2 are described in more detail in this deliverable. The objective of Task 2 is to identify the combination of value propositions that is believed to be achievable by 2030 and collectively hold promise for a sustainable PHEV market by 2030. This deliverable outlines what the project team (with input from the Committee) has defined as its primary scenario to be tested in depth for the remainder of Phase 1. Plans for the second and third highest priority/probability business scenarios are also described in this deliverable as proposed follow up case studies in Phase 2. As part of each case study description, the proposed utility system (or subsystem), PHEV market segment, and facilities/buildings are defined.

  9. Baker-Barry Tunnel Lighting: Evaluation of a Potential GATEWAY Demonstrations Project

    SciTech Connect (OSTI)

    Tuenge, Jason R.

    2011-06-28

    The U.S. Department of Energy is evaluating the Baker-Barry Tunnel as a potential GATEWAY Demonstrations project for deployment of solid-state lighting (SSL) technology. The National Park Service views this project as a possible proving ground and template for implementation of light-emitting diode (LED) luminaires in other tunnels, thereby expanding the estimated 40% energy savings from 132 MWh/yr to a much larger figure nationally. Most of the energy savings in this application is attributable to the instant-restrike capability of LED products and to their high tolerance for frequent on/off switching, used here to separately control either end of the tunnel during daytime hours. Some LED luminaires rival or outperform their high-intensity discharge (HID) counterparts in terms of efficacy, but options are limited, and smaller lumen packages preclude true one-for-one equivalence. However, LED products continue to improve in efficacy and affordability at a rate unmatched by other light source technologies; the estimated simple payback period of eight years (excluding installation costs and maintenance savings) can be expected to improve with time. The proposed revisions to the existing high-pressure sodium (HPS) lighting system would require slightly increased controls complexity and significantly increased luminaire types and quantities. In exchange, substantial annual savings (from reduced maintenance and energy use) would be complemented by improved quantity and quality of illumination. Although advanced lighting controls could offer additional savings, it is unclear whether such a system would prove cost-effective; this topic may be explored in future work.

  10. Open Access Task Force Open Access to

    E-Print Network [OSTI]

    Jiang, Huiqiang

    Libraries Initiative launched by National Science Foundation; Social Sciences Research Network (SSRN Library System rgmiller@pitt.edu #12;Open Access Task Force Open Access is... · A family of copyright · The only constraint on reproduction and distribution, and the only role for copyright in this domain

  11. Accessing Online COR Training

    Office of Energy Efficiency and Renewable Energy (EERE)

    Contracting Officer’s Representative (COR) training is now be available in an online format. "Accessing Online COR Training" provides a step-by-step guide to access the online COR course. 

  12. Gateway Management Console (GMC) Instructions The GMC is the integration point for how departments will augment the UCSB financial systems and

    E-Print Network [OSTI]

    the bulk upload down load go the Bulk Account Management page. Search for your department, and click loaded either manually or by the bulk load; account strings can be managed at this page. It is importantGateway Management Console (GMC) Instructions The GMC is the integration point for how departments

  13. The Libraries' website is a gateway to locating articles of all types (journal, magazine, newspaper) via the online databases we subscribe to. From Blackboard, click "Library" tab, you will find Online Library Tutorials

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    the library homepage (http://library.binghamton.edu/) and type your search term to get a start. This "one______________________________________________________________________________________________________________________ The Libraries' website is a gateway to locating articles of all types (journal, magazine, newspaper) via the online

  14. Identity and Access Management: Access Management Survey 1 Access Management Survey Questions

    E-Print Network [OSTI]

    Maroncelli, Mark

    Identity and Access Management: Access Management Survey 1 Access Management Survey Questions The Identity and Access Management (IAM) Technical Architect Group (TAG) was formed by Kevin Morooney, the vice assistance with defining the requirements for Access Management, as outlined in Strategic Recommendations 4

  15. ACCESS Magazine Fall 2006

    E-Print Network [OSTI]

    2006-01-01

    of cars whose owners have prepaid to enter the CCZ; privateowners who have not prepaid and do not pay by midnight areA LMANAC : Unlimited Access: Prepaid Transit at Universities

  16. Accessibility HANDBOOK AND

    E-Print Network [OSTI]

    Accessibility Awareness HANDBOOK AND LEARNING MODULE A Guide for Faculty and Staff #12;Table Awareness Handbook and Learning Module 1 Sometimes the worst thing about having a disability is that people

  17. Accessing the spoken word 

    E-Print Network [OSTI]

    Goldman, Jerry; Renals, Steve; Bird, Steven; de Jong, Franciska; Federico, Marcello; Fleischhauer, Carl; Kornbluh, Mark; Lamel, Lori; Oard, Douglas W; Stewart, Claire; Wright, Richard

    Spoken-word audio collections cover many domains, including radio and television broadcasts, oral narratives, governmental proceedings, lectures, and telephone conversations. The collection, access, and preservation of such data is stimulated...

  18. Accessible Parking Motorcycle Parking

    E-Print Network [OSTI]

    Nanyes, Ollie

    Hartmann Center Comstock Hall Holmes Main Street Parking Deck Transitional Parking Lot Lovelace JobstNorth Accessible Parking Motorcycle Parking Visitors Commuter Student Resident Student Resident St & Staff University Vehicles © Bradley University · 06/18/14 Emergency Phone Parking Legend FIJI

  19. Library Guide Access ... 3

    E-Print Network [OSTI]

    Steiner, Ullrich

    ____________________________ Library Guide 2012-2013 #12;Contents Access ... 3 Finding things ... 4-6 Layout and classification... 7 Floor plans ... 8-9 Borrowing things ... 10 Renewing and returning things;Sidney Sussex Library Guide 2012-2013 Welcome to the Richard Powell Library Tel: (01223) 338852 e

  20. Library Guide Access ... 3

    E-Print Network [OSTI]

    Steiner, Ullrich

    ____________________________ Library Guide 2014-2015 #12;Contents Access ... 3 Finding things ... 4-6 Layout and classification... 7 Floor plans ... 8-9 Borrowing things ... 10 Renewing and returning things;Sidney Sussex Library Guide 2014-2015 Welcome to the Richard Powell Library Tel: (01223) 338852 e

  1. Deregulation Direct Access

    E-Print Network [OSTI]

    Kammen, Daniel M.

    AB 1890 AB1X Aggregator Blue Book CEC CPUC CTC Deregulation Direct Access Divestiture DWR EOB EPAct an initiative on the ballot in response to the energy crisis. www.ftcr.org ESPs that sell electricity generated of peak demand. Investor Owned Utility. A private electric utility (owned by shareholders) regulated

  2. Special Access Programs

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-03-29

    This Order is for OFFICIAL USE ONLY and will not be distributed on the Directives' Portal. For distribution, please contact the Executive Secretary of the Special Access Program Oversight Committee at (202) 586-3345. Does not cancel/supersede other directives.

  3. Access for All 

    E-Print Network [OSTI]

    Stearns, Linda Lea Merenda

    2012-07-16

    district to determine if there is fair and equitable access for all students. The paper contains two major components. The first is quantitative study of the four entrance requirements for 8th grade Algebra I Pre-AP at a central Texas middle school...

  4. Access Management Software Requirements Specification

    E-Print Network [OSTI]

    Maroncelli, Mark

    · Access to directory data · Emergency Rehire · Multiple IDs · Deceased Employee · Outreach Registration and Abbreviations Abbreviation Definition Group Collection of people who exist in the Penn State Directory. Role · Employee Confidentiality · Provisioning of an employee's digital Identity · Student early access

  5. Dueco Plug-In Hybrid Engines

    SciTech Connect (OSTI)

    Phillip Eidler

    2011-09-30

    Dueco, a final stage manufacture of utility trucks, was awarded a congressionally directed cost shared contract to develop, test, validate, and deploy several PHEV utility trucks. Odyne will be the primary subcontractor responsible for all aspects of the hybrid system including its design and installation on a truck chassis. Key objectives in this program include developing a better understanding of the storage device and system capability; improve aspects of the existing design, optimization of system and power train components, and prototype evaluation. This two year project will culminate in the delivery of at least five vehicles for field evaluation.

  6. Plug-in Electric Vehicle Outreach

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i nAandSummary Areas ofEnergy OnPeter| Department of|RobertFairwayTheHours

  7. Plug in America | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPIProtectio1975) |Texas: Energy Resources Jump to:PlotWatt Jump to:Plug

  8. Plug In Partners | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue MountainSchool DistrictPlaxica

  9. Access to the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAcceleratingthYourAccess to the

  10. Access to the ALS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act Recovery ActARMAccelerators,Access to the ALS

  11. Accessibility - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of raregovAboutRecovery Act Recovery ActARMAccelerators,Access to

  12. VCU Innovation Gateway BioTech One, Suite 3000 800 E Leigh St PO Box 980568 Richmond, Virginia 23219 Phone (804) 828-5188 http://www.research.vcu.edu/ott

    E-Print Network [OSTI]

    Hammack, Richard

    an appropriate treatment plan, resulting in lower quality of life and increased health care cost. FurtherVCU Innovation Gateway · BioTech One, Suite 3000 · 800 E Leigh St · PO Box 980568 · Richmond assessments Highly reliable Non-invasive and rapid Cost effective Inventors Paul Wetzel, Ph.D. Mark Baron, M

  13. Randolph : Boston's gateway suburb

    E-Print Network [OSTI]

    Madden, James, Jr. (James Michael)

    2010-01-01

    In the last two decades, certain American suburbs have begun to struggle with issues traditionally thought of as urban problems and dealt with in city settings, such as failing schools, fragmented community, affordable ...

  14. Gateway Issue 2 

    E-Print Network [OSTI]

    Multiple Contributors

    1985-01-01

    rooftop lawn. A hot-climate wind tunnel experiment was carried out in order to obtain and analyze the heat and moisture transport in the rooftop lawn. Furthermore, a calculation with the energy conservation equation was carried out using the results...

  15. GATEWAY DEMONSTRATION MUSEUM REPORTS

    Broader source: Energy.gov [DOE]

    It’s hard to find a lighting application with aesthetic standards higher than those of museums, where success depends upon showing the artifacts and works of art in the best possible light –...

  16. GATEWAY DEMONSTRATION UNIVERSITY PROJECTS

    Broader source: Energy.gov [DOE]

    A college campus features a wide range of lighting applications under one administrative “rooftop” – classrooms, offices, theaters, labs, libraries, dining halls, dormitories, museums, chapels,...

  17. Your GatewaY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAboutXu Named| Princeton Plasma Physics LabYour

  18. Vehicle barrier with access delay

    DOE Patents [OSTI]

    Swahlan, David J; Wilke, Jason

    2013-09-03

    An access delay vehicle barrier for stopping unauthorized entry into secure areas by a vehicle ramming attack includes access delay features for preventing and/or delaying an adversary from defeating or compromising the barrier. A horizontally deployed barrier member can include an exterior steel casing, an interior steel reinforcing member and access delay members disposed within the casing and between the casing and the interior reinforcing member. Access delay members can include wooden structural lumber, concrete and/or polymeric members that in combination with the exterior casing and interior reinforcing member act cooperatively to impair an adversarial attach by thermal, mechanical and/or explosive tools.

  19. Information Access Router for Integrated Information Access System Koji Murakami

    E-Print Network [OSTI]

    Information Access Router for Integrated Information Access System Koji Murakami Department System (IIAS) that accepts diverse kinds of questions and provides the requested information in the most will report on the implementation of one important com- ponent of the system, the Information Ac- cess Router

  20. TABLE OF CONTENTS Safe Access

    E-Print Network [OSTI]

    US Army Corps of Engineers

    , construction, and maintenance of the means of access, and b. Erection and dismantling procedures of scaffolds, including provisions for providing fall protection (FP) during the erection or dismantling when the erection or dismantling involves work at heights. > See Sections 21.K.02 and 22.A.03. 24.A.03 Job-made means of access

  1. Remote direct memory access

    DOE Patents [OSTI]

    Archer, Charles J.; Blocksome, Michael A.

    2012-12-11

    Methods, parallel computers, and computer program products are disclosed for remote direct memory access. Embodiments include transmitting, from an origin DMA engine on an origin compute node to a plurality target DMA engines on target compute nodes, a request to send message, the request to send message specifying a data to be transferred from the origin DMA engine to data storage on each target compute node; receiving, by each target DMA engine on each target compute node, the request to send message; preparing, by each target DMA engine, to store data according to the data storage reference and the data length, including assigning a base storage address for the data storage reference; sending, by one or more of the target DMA engines, an acknowledgment message acknowledging that all the target DMA engines are prepared to receive a data transmission from the origin DMA engine; receiving, by the origin DMA engine, the acknowledgement message from the one or more of the target DMA engines; and transferring, by the origin DMA engine, data to data storage on each of the target compute nodes according to the data storage reference using a single direct put operation.

  2. A quantum access network

    E-Print Network [OSTI]

    Bernd Fröhlich; James F. Dynes; Marco Lucamarini; Andrew W. Sharpe; Zhiliang Yuan; Andrew J. Shields

    2014-09-02

    The theoretically proven security of quantum key distribution (QKD) could revolutionise how information exchange is protected in the future. Several field tests of QKD have proven it to be a reliable technology for cryptographic key exchange and have demonstrated nodal networks of point-to-point links. However, so far no convincing answer has been given to the question of how to extend the scope of QKD beyond niche applications in dedicated high security networks. Here we show that adopting simple and cost-effective telecommunication technologies to form a quantum access network can greatly expand the number of users in quantum networks and therefore vastly broaden their appeal. We are able to demonstrate that a high-speed single-photon detector positioned at a network node can be shared between up to 64 users for exchanging secret keys with the node, thereby significantly reducing the hardware requirements for each user added to the network. This point-to-multipoint architecture removes one of the main obstacles restricting the widespread application of QKD. It presents a viable method for realising multi-user QKD networks with resource efficiency and brings QKD closer to becoming the first widespread technology based on quantum physics.

  3. Distance-based accessibility indices

    E-Print Network [OSTI]

    Csató, László

    2015-01-01

    The paper attempts to develop a suitable accessibility index for networks where each link has a value such that a smaller number is preferred like distance, cost, or travel time. A measure called distance sum is characterized by three independent properties: anonymity, an appropriately chosen independence axiom, and dominance preservation, which requires that a node not far to any other is at least as accessible. We argue for the need of eliminating the independence property in certain applications. Therefore generalized distance sum, a family of accessibility indices, will be suggested. It is linear, considers the accessibility of vertices besides their distances and depends on a parameter in order to control its deviation from distance sum. Generalized distance sum is anonymous and satisfies dominance preservation if its parameter meets a sufficient condition. Two detailed examples demonstrate its ability to reflect the vulnerability of accessibility to link disruptions.

  4. Energy Data Access | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederalJuly 8, 2015 Throughenergy data presents a

  5. Access Digital Library, Search, News and more

    E-Print Network [OSTI]

    Goodrich, Lisa V.

    [General] Access Digital Library, Search, News and more [Education] Access MyCourses content [Research] Access Digital Library, NCBI Blast and more [Personal] Access your portable bookmarks using My and 500 textbooks via the Digital Library, one click access to NCBI Blast sequence databases. [General

  6. Fall Graduation Access Information Accessibility, Wheelchairs, and Disability

    E-Print Network [OSTI]

    needs parking pass" on the dashboard of the car. The first two parking bays in the lot nearest Cassell in the portal areas. The band platform area is not accessible for wheelchairs (between Aisles 11 and 13). #12

  7. Subscriber access provided by DUKE UNIV The Journal of Physical Chemistry B is published by the American Chemical Society.

    E-Print Network [OSTI]

    Liu, Jie

    percolation network cannot be excluded. Introduction Fluorination is a chemical gateway to functionalization fluorinated thermally in F2, with fluorination levels reaching 50%. Scanning tunneling microscopy (STM

  8. U-205: RSA Access Manager Session Replay Flaw Lets Remote Users Access the System

    Broader source: Energy.gov [DOE]

    A vulnerability was reported in RSA Access Manager. A remote user can gain access to the target system.

  9. ACADEMIC AFFAIRS ACCESS AND ADMINISTRATION

    E-Print Network [OSTI]

    Arnold, Elizabeth A.

    , Accounting Operations & Disbursements Copy Centers Dining Services Facilities Management Finance Human & Reporting Prospect Research Quality Assurance Campaign Management College Engagement Donor RelationsACADEMIC AFFAIRS ACCESS AND ENROLLMENT MANAGEMENT ADMINISTRATION AND FINANCE STUDENT AFFAIRS

  10. Plugged In: Understanding How and Where Plug-in Electric Vehicle Drivers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying AroundActivity |in HybridCharge

  11. Designing Personalised Information Access to Structured Information Spaces

    E-Print Network [OSTI]

    Magoulas, George D.

    and Dionisios N. Dimakopoulos1 London Knowledge Lab and School of Computer Science, Birkbeck College University provided on the Web and is very popular in digital libraries, classification-based search engines, digital libraries, subject gateways, web directories, newsgroups and mailing lists [6]. The diversity

  12. Forests for People Access, recreation & tourism

    E-Print Network [OSTI]

    Strategy Forests for People Access, recreation & tourism on the national forest estate #12;#12;Access, recreation and tourism on the national forest estate | 3 Forests for People Access, recreation and tourism on the national forest estate Setting the scene Everyone has a right of responsible access

  13. LOCH: Open Access Implementation Responsibility Matrix 

    E-Print Network [OSTI]

    Krzak, Anna

    2015-02-05

    Draft Responsibility Matrix for College of Medicine and Veterinary Medicine for REF Open Access requirements implementation.

  14. PennAccess: Towne Building Entrance Information

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    PennAccess: Towne Building Entrance Information: 220 South 33rd Street . Philadelphia . PA . 19104 1. Towne Building is accessible through the main entrance to Levine Hall off Chancellor Walk. This entrance does not access the basement of the Towne Building. 2. There is also access through the Levine

  15. Cybersecurity Framework AccessControl

    E-Print Network [OSTI]

    Cybersecurity Framework AccessControl Policy Machine Cloud Computing Cryptography Evaluation Guidelines Standards Systems SecurityPractices Critical Infrastructure Verification Security Controls Assets-170 Computer Security Division 2013 Annual Report #12;#12;NIST Special Publication 800-170 Computer Security

  16. open access journal Public Health

    E-Print Network [OSTI]

    Oakley, Jeremy

    open access journal Journal of Public Health in AfricaeISSN 2038-9930 i www the Journal of Public Health in Africa is a peer-reviewed, electronic quarterly, that focuses on health issues in the African continent. The journal editors seek high quality original articles on public health related issues

  17. RESTRICTED ACCESS to Groat Road

    E-Print Network [OSTI]

    MacMillan, Andrew

    RESTRICTED ACCESS to Dudely B Menzies Bridge to Kinsmen Park to High Level Bridge to Groat Road 89 Ave Edinboro Road Saskatchewan Drive Saskatchewan Drive Saskatchewan Drive 88 Corbett Field West Aberhart Centre Childcare Centre South Field Car Park Thermal Energy Storage Corbett Hall Canadian Blood

  18. Subject Access to Your Information 

    E-Print Network [OSTI]

    Tucker, Sandra

    2006-08-01

    =ISO-8859-1 Subject Access to Your Information Sandy Tucker Texas A&M University Libraries August 1, 2006 Second International Symposium on Transportation Technology Transfer Introduction You have packages ? books, pamphlets, files, electronic... Lists Transportation Research Thesaurus Your own list Use a Short List or a Long List of Terms? If you have a small collection, a short list of terms is appropriate. If you have a large collection, a longer list of more specific terms...

  19. Alexandria Digital Library Project Content Access Characterization

    E-Print Network [OSTI]

    Janée, Greg

    Alexandria Digital Library Project Content Access Characterization in Digital Libraries Greg Janée · James Frew · David Valentine University of California, Santa Barbara #12;Alexandria Digital Library environments e.g., GIS #12;Alexandria Digital Library Project Janée, Frew, Valentine · Content Access

  20. Metropolitan Accessibility and Transportation Sustainability:Sustainability

    E-Print Network [OSTI]

    Papalambros, Panos

    Metropolitan Accessibility and Transportation Sustainability:Sustainability: Comparative Reduce (fulfillment of)Promote Sustainability: Meet needs of (fulfillment of) needs present Institute SMART Sustainable Mobility and Accessibility Research andSMART Sustainable Mobility

  1. HM-ACCESS Project | Department of Energy

    Office of Environmental Management (EM)

    Project HM-ACCESS Project Framework for the Use of Electronic Shipping Papers for the Transport of Hazardous Materials HM-ACCESS Project (Framework for the Use of Electronic...

  2. Premier Access Insurance Company Certificate of Insurance

    E-Print Network [OSTI]

    Leistikow, Bruce N.

    Premier Access Insurance Company Certificate of Insurance Policy/Group Number: 3725 We certify provided by Premier Access Insurance Company for You and Your eligible Dependents. All terms and benefits...................................................... Family Deductible Amount

  3. Identity, Credential, and Access Management (ICAM)

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2013-02-19

    To establish requirements and responsibilities for DOE identity, credential, and access management program. Cancels DOE N 206.4.

  4. Characterizing Open Access Publishing at Your Institution 

    E-Print Network [OSTI]

    Hubbard, David E.; Li, Yu

    2014-11-03

    Medical Library, 2008) Open Access (OA) “… digital, online, free of charge, and free of most copyright and licensing restrictions.” (Suber, 2012, p. 4) “Flavors” of Open Access Gold: provide immediate open access, peer reviewed; authors retain copyright... Green: self-archiving; not necessarily peer reviewed Hybrid: some open access Delayed: embargo period Some Questions about OA Publishing? How much OA publishing is there at my institution? In what OA journals are my faculty publishing? In what...

  5. Accessing Fieldbus Systems via Web Services

    E-Print Network [OSTI]

    Turau, Volker

    Accessing Fieldbus Systems via Web Services Marcus Venzke1 and Stefan Pitzek2 1 Telematics -- This paper discusses accessing fieldbus systems via web services over the Internet or intranets, having validation. It rejects all accesses not conforming to the specification of the web service's interface. 1

  6. The University of Western Ontario's Accessibility Plan

    E-Print Network [OSTI]

    Lennard, William N.

    The University of Western Ontario's Accessibility Plan September 2004 to August 2005 Prepared Appendix C ­ King's University College Accessibility Plan #12;3 The University of Western Ontario's Annual Accessibility Plan September 30, 2004 Introduction In December 2001, Ontario passed the Ontarians

  7. The University of Western Ontario's Accessibility Plan

    E-Print Network [OSTI]

    Lennard, William N.

    The University of Western Ontario's Accessibility Plan September 2005 to August 2006 Prepared ........................................................................................................15 Appendix A ­ Members of WODAC Appendix B ­ The University of Western Ontario Accessibility of Western Ontario's Annual Accessibility Plan September 30, 2005 Introduction In December 2001, Ontario

  8. Building Access Program Facilities Management Bridge Group

    E-Print Network [OSTI]

    Building Access Program Facilities Management Bridge Group January 21, 2014 #12;Campus Safety Initiatives · Lighting and Landscaping · Video Surveillance · Building Access #12;The Challenge · How do we;Components of Building Access · Perimeter automation · Tightening of public hours #12;Perimeter Automation

  9. Human Resources Security Access Matrix Function Training

    E-Print Network [OSTI]

    Wu, Shin-Tson

    June 2013 Human Resources Security Access Matrix Function Training Course Required Class Mode Training Course Prerequisite Security Access Form Required Contact for Additional Information Complete Electronic I-9 Forms REC001: I-9 /E-Verify Web Training OR Online OR None Electronic I-9 Security Access Form

  10. Video, Audio, and Animation Text Versions for Web Accessibility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Video, Audio, and Animation Text Versions for Web Accessibility Video, Audio, and Animation Text Versions for Web Accessibility For accessibility, Section 508 requires text...

  11. Laboratory Access | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesse Bergkamp Graduate student Subtask22BackgroundLabSanta'sNewNaturalAccess

  12. Sealed head access area enclosure

    DOE Patents [OSTI]

    Golden, Martin P. (Trafford, PA); Govi, Aldo R. (Greensburg, PA)

    1978-01-01

    A liquid-metal-cooled fast breeder power reactor is provided with a sealed head access area enclosure disposed above the reactor vessel head consisting of a plurality of prefabricated structural panels including a center panel removably sealed into position with inflatable seals, and outer panels sealed into position with semipermanent sealant joints. The sealant joints are located in the joint between the edge of the panels and the reactor containment structure and include from bottom to top an inverted U-shaped strip, a lower layer of a room temperature vulcanizing material, a separator strip defining a test space therewithin, and an upper layer of a room temperature vulcanizing material. The test space is tapped by a normally plugged passage extending to the top of the enclosure for testing the seal or introducing a buffer gas thereinto.

  13. SLAC All Access: Laser Labs

    ScienceCinema (OSTI)

    Minitti, Mike; Woods Mike

    2014-06-03

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  14. T-606: Sun Java System Access Manager Lets Remote Users Partially Modify Data and Remote Authenticated Users Partially Access Data

    Broader source: Energy.gov [DOE]

    Sun Java System Access Manager Lets Remote Users Partially Modify Data and Remote Authenticated Users Partially Access Data.

  15. Inferring Applications at the Network Layer using Collective Traffic Statistics

    E-Print Network [OSTI]

    Zhang, Zhi-Li

    not be accessible due to the use of encryption or tunneling protocols by endpoints or gateways. Furthermore

  16. Gateway:ECOWAS Clean Energy Gateway | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable UrbanKentucky: Energy ResourcesMauiWebinars/Prospección y

  17. The Access Almanac: Graduated Parking Fines

    E-Print Network [OSTI]

    Shoup, Donald

    2010-01-01

    THE ACCESS ALMANAC Graduated Parking Fines BY DONALD SHOUPC ITIES OFTEN INCREASE THEIR PARKING FINESWHEN overtime parking in a calendar year is $35, the second

  18. International Electricity Trade - Open Access | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    DOE has consistently expressed its policy that international electricity trade should be subject to the same principles of comparable open access and non-discrimination that apply...

  19. UH Parking Access & Mid-Pacific Institute

    E-Print Network [OSTI]

    Pacific Ocean Science & Technology Kuykendall Annex Information Technology Center Krauss Hall Holmes HallStairs Pond UH Parking Access & Mid-Pacific Institute Exit Dole Street Offices Multipurpose

  20. Adjudicative Guidelines for Determining Eligibility for Access...

    Broader source: Energy.gov (indexed) [DOE]

    consultants, contractors, employees of contractors, licensees, certificate holders or grantees and their employees and other individuals who require access to classified...

  1. GATEWAY Demonstrations: LED Street Lighting

    SciTech Connect (OSTI)

    Cook, Tyson; Shackelford, Jordan; Pang, Terrance Pang

    2008-12-01

    This report summarizes an assessment project conducted to study the performance of light emitting diode (LED) luminaires in a street lighting application in San Francisco, CA.

  2. gateway | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo NewYanbu, Saudideveloper Home Jweers'sgateway Home

  3. OpenEI Community - gateway

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc Jump to:Newberg, Oregon:OGE EnergyOklahoma: EnergyOpenOpenEIper39/0Utility/0

  4. Science Gateway: The Materials Project

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurityPediatricNOAA Science Engagement

  5. GATEWAY Demonstrations | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article)Forthcoming UpgradesArea:Benefits ofofStack Pattern 1:W S

  6. SDO/IRIS Data Access Hands-on Web Access to SDO Data from JSOC

    E-Print Network [OSTI]

    SDO/IRIS Data Access Hands-on Shuo Wang SWRL/NJIT March 2014 #12;Web Access to SDO Data from JSOC 2010) at: http://jsoc.stanford.edu/doc/exports/tour.pdf See my PowerPoint file titled "Web Access

  7. ACCESSIBLE TEXT ENTRY ACCESSIBLE HANDHELD AND DESKTOP TEXT ENTRY FOR PEOPLE WITH

    E-Print Network [OSTI]

    Wobbrock, Jacob O.

    a new text entry method for PDAs and mobile phones called EdgeWrite, which provides physical stabilityACCESSIBLE TEXT ENTRY ACCESSIBLE HANDHELD AND DESKTOP TEXT ENTRY FOR PEOPLE WITH MOTOR IMPAIRMENTS the EdgeWrite design to common input devices for desktop computer access, thus lowering the cost

  8. UCSB Geography Access Authorization Record Fall 2014 Geography Access Control / Identification Application

    E-Print Network [OSTI]

    California at Santa Barbara, University of

    UCSB Geography Access Authorization Record Fall 2014 Geography Access Control / Identification): Geography Use of this card is for University academic purposes only. The issued access/identification card of Geography as soon as possible. I hereby certify that the above information is true and correct, and I

  9. RESEARCH & INNOVATION OFFICE EASY ACCESS IP

    E-Print Network [OSTI]

    University of Technology, Sydney

    RESEARCH & INNOVATION OFFICE EASY ACCESS IP AN INTRODUCTION FOR INDUSTRY PARTNERS FEBRUARY 2014 #12 to provide industry with greater opportunity and incentive to develop products and services that will lead regardless of how successful the end product is You gain easy access to cutting edge science, technology

  10. Access Paths Multi-dimensional Index Structures

    E-Print Network [OSTI]

    Mannheim, Universität

    for result TID-lists) · high cost for intersection if one of the indexes deliverse many results · But') · index.find_key(`ZH1984') · Discussion: · cost equivalent to the cost of a one-dimensional access! KeyAccess Paths Multi-dimensional Index Structures 1Freitag, 4. Juni 2010 #12;September 27, 2007

  11. The University of Western Ontario's Accessibility Plan

    E-Print Network [OSTI]

    Lennard, William N.

    The University of Western Ontario's Accessibility Plan September 2008 to August 2009 Prepared ........................................................................................................15 Appendix A Members of WODAC #12;3 The University of Western Ontario's Annual Accessibility Plan September 30, 2008 Introduction In December 2001, Ontario passed the Ontarians with Disabilities Act, 2001

  12. The University of Western Ontario's Accessibility Plan

    E-Print Network [OSTI]

    Lennard, William N.

    The University of Western Ontario's Accessibility Plan September 2006 to August 2007 Prepared;3 The University of Western Ontario's Annual Accessibility Plan September 30, 2006 Introduction In December 2001, Ontario passed the Ontarians with Disabilities Act, 2001 (the "Act"). The purpose of the Act is to improve

  13. The University of Western Ontario's Accessibility Plan

    E-Print Network [OSTI]

    Lennard, William N.

    The University of Western Ontario's Accessibility Plan September 2011 to August 2012 Prepared .....................................................................................17 #12;3 Introduction In December 2001, Ontario passed the Ontarians with Disabilities Act, 2001 (the Ontario has reported on its compliance with the customer service standard under the Accessibility

  14. The University of Western Ontario's Accessibility Plan

    E-Print Network [OSTI]

    Lennard, William N.

    The University of Western Ontario's Accessibility Plan September 2007 to August 2008 Prepared ........................................................................................................12 Appendix A Members of WODAC #12;3 The University of Western Ontario's Annual Accessibility Plan September 30, 2007 Introduction In December 2001, Ontario passed the Ontarians with Disabilities Act, 2001

  15. Foreign National Access to DOE Cyber Systems

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1999-11-01

    DOE N 205.16, dated 9-15-05, extends this Notice until 9-30-06, unless sooner rescinded. To ensure foreign national access to DOE cyber systems continues to advance DOE program objectives while enforcing information access restrictions.

  16. Logic in Access Control (Tutorial Notes)

    E-Print Network [OSTI]

    Ahmed, Amal

    of California, Santa Cruz Abstract. Access control is central to security in computer systems. Over the years to a tutorial given at the 2009 International School on Foundations of Security Analysis and Design. 1 provide a simple, solid, and general foundation for access control, as well as methods for designing

  17. University Library Fact Sheet Sconul Access

    E-Print Network [OSTI]

    Brierley, Andrew

    University Library Fact Sheet Sconul Access Opening Hours Please consult the library website for our current opening hours: http://www.st-andrews.ac.uk/library/ Library Cards To borrow books and access the Library you must bring your card with you to the library on each visit. Please notify

  18. National Radiobiology Archives Distributed Access user's manual

    SciTech Connect (OSTI)

    Watson, C.; Smith, S. (Pacific Northwest Lab., Richland, WA (United States)); Prather, J. (Linfield Coll., McMinnville, OR (United States))

    1991-11-01

    This User's Manual describes installation and use of the National Radiobiology Archives (NRA) Distributed Access package. The package consists of a distributed subset of information representative of the NRA databases and database access software which provide an introduction to the scope and style of the NRA Information Systems.

  19. Web Accessibility Office of Diversity and Inclusion

    E-Print Network [OSTI]

    Jones, Michelle

    Web Accessibility Office of Diversity and Inclusion Applies to: Any website conducting university of the art digital and web based information delivery of information is increasingly central in carrying out constituencies. This policy establishes minimum standards for the accessibility of web based information

  20. ENSURING ACCESS TO FEDERALLY CONDUCTED PROGRAMS AND ACTIVITIES BY

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLCConfidentialityOnline Hosted by theAddressing

  1. ENSURING ACCESS TO FEDERALLY CONDUCTED PROGRAMS AND ACTIVITIES BY

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus, LLCConfidentialityOnline Hosted by theAddressingINDIVIDUALS

  2. Energy Department Announces Funding to Access Higher Quality Wind Resources

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederalJuly 8, 2015inSolarWinners | Departmentand

  3. Headquarters Facilities Master Security Plan - Chapter 12, Special Access

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11, SolarMatFermiGuidoEnvironmentalA

  4. INSTRUCTIONS FOR USING HSPD-12 AUTHENTICATED OUTLOOK WEB ACCESS (OWA)

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRD Report11,SecurityHome . Form D-4-AILE:Falls - The number3/2013

  5. International Electricity Trade - Open Access | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPLforLDRDEnergy Copyrights ASiteas Prepared for Delivery by2 theDOE

  6. BUILDING CONNECTION SOUTH BLOCK: ACCESS VIA MAIN ENTRANCE

    E-Print Network [OSTI]

    Shoubridge, Eric

    ENTRANCE ELEVATOR WASHROOMS BUILDING CONNECTION SOUTH BLOCK: ACCESS VIA MAIN ENTRANCE NORTH BLOCK: ACCESS VIA MAIN ENTRANCE WEST BLOCK: ALL LEVELS ARE ACCESSIBLE BY PUBLIC ELEVATOR SOUTH BLOCK MAIN ENTRANCE NORTH BLOCK: ACCESS VIA MAIN ENTRANCE WEST BLOCK: ALL LEVELS ARE ACCESSIBLE BY PUBLIC

  7. ETSU College of Medicine Onity Door Access Authorization Form

    E-Print Network [OSTI]

    Karsai, Istvan

    ETSU College of Medicine Onity Door Access Authorization Form Please grant access to: 6 access. ____ ALL AREAS (ETSU Service Personnel Only) Medical School Research & Training, VA Bldg. #119-Mail: johnsodl@etsu.edu #12;

  8. Policy 3507 Information Technology Accessibility 1 OLD DOMINION UNIVERSITY

    E-Print Network [OSTI]

    Policy 3507 ­ Information Technology Accessibility 1 OLD DOMINION UNIVERSITY University Policy Policy #3507 INFORMATION TECHNOLOGY ACCESSIBILITY POLICY Responsible Oversight Executive: Vice President, regardless of physical disability, will have the opportunity for appropriate access to information technology

  9. Nemesis: Preventing Authentication & Access Control Vulnerabilities in Web Applications

    E-Print Network [OSTI]

    Sabatini, David M.

    Nemesis: Preventing Authentication & Access Control Vulnerabilities in Web Applications Michael web applications. Authentication attacks occur when a web application authenticates users unsafely, granting access to web clients that lack the ap- propriate credentials. Access control attacks occur when

  10. Plug-In Hybrid Electric Vehicle Value Proposition Study

    E-Print Network [OSTI]

    Pennycook, Steve

    the U.S. Department of Energy (DOE) Information Bridge: Web site: http://www.osti.gov/bridge Reports-576-8401 Fax: 865-576-5728 E-mail: reports@adonis.osti.gov Web site: http://www.osti

  11. Plug-In Electric Vehicle Handbook for Consumers

    SciTech Connect (OSTI)

    2015-02-09

    This handbook is designed to answer a consumer's basic questions, as well as point them to additional information they need, to make the best decision about whether an electric-drive vehicle is right for them.

  12. Q&A: Plugging In with a Power Lineman

    Broader source: Energy.gov [DOE]

    Power lineman are integral in keeping the lights on. Here's a Q&A with a third-generation power lineman.

  13. Power System Level Impacts of Plug-In Hybrid Vehicles

    E-Print Network [OSTI]

    to the electric power industry. The impact of PHEVs on the power grid is investigated. The methodology for this investigation is based on three procedures: (a) typical utilization of PHEVs that capture human habits, and (d) impact of PHEV deployment on the operations and the security of the power grid. Proper models

  14. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    of the battery’s total energy capacity is used—known as theto total available energy capacity divided by CD range. Thecategories: power, energy capacity, life, cost, and safety (

  15. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    of the battery’s total energy capacity is used—known as theto total available energy capacity divided by CD range. Thecategories: power, energy capacity, life, cost, and safety (

  16. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01

    of the battery’s total energy capacity is used—known as theto total available energy capacity divided by CD range. Thecategories: power, energy capacity, life, cost, and safety (

  17. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01

    and timing of vehicle electricity demand. As the number ofcontinually changing electricity demands by using a suite ofif local patterns of electricity demand change significantly

  18. Power Conditioning for Plug-In Hybrid Electric Vehicles 

    E-Print Network [OSTI]

    Farhangi, Babak

    2014-07-25

    , enacted by the United States Congress. Exchanging energy between the vehicle and external sources is performed by the vehicular power conditioner (VPC). This dissertation proposes a design procedure for VPCs. The research mainly focuses on the VPC’s power...

  19. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C. vss018cesiel2010...

  20. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation vss018cesiel2011...

  1. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    09 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C. vss02sell...

  2. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting vss018cesiel2012...

  3. Honey, Did You Plug in the Prius? | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    in my trunk, and smoothly drove off. Nestled in my vehicle's spare tire well, a 200-pound lithium-ion battery pack allowed me to go up to 30 miles on electric power before...

  4. Battery Cathode Developed by Argonne Powers Plug-in Electric...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capacities than conventional cathode materials, resulting in batteries with higher energy density. Because the batteries can store more energy, manufacturers can either use...

  5. Electricity Grid: Impacts of Plug-In Electric Vehicle Charging

    E-Print Network [OSTI]

    Yang, Christopher; McCarthy, Ryan

    2009-01-01

    mail: ccyang@ucdavis.edu. Electricity Grid Impacts of Plug-by either gasoline or electricity, but unlike hybrids, PHEVsto use very low-carbon electricity resources, such as

  6. Plug-In Electric Vehicles' Charging Dr. Alireza Khaligh

    E-Print Network [OSTI]

    Zeng, Ning

    type Price Battery On-Board Charger E-Range Connector type Level 2 Nissan leaf EV $21,300 24kWh LiWh Li-ion 3.3 kW OBC 68 mi SAE J1772 6 hrs Tesla Model S 60kWh EV $71,000 60 kWh Li-ion 10 kW OBC 208 mi battery voltage 320 V ~ 420 V Maximum output power 1 kW Output voltage ripple

  7. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    depends on the assumed drive cycle—a pattern of varyingbattery performance. A drive cycle is usually made up of onemode during the UDDS drive cycle before the gasoline engine

  8. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

    2010-01-01

    depends on the assumed drive cycle—a pattern of varyingbattery performance. A drive cycle is usually made up of oneand (3) a more aggressive drive cycle. Required peak power

  9. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    depends on the assumed drive cycle—a pattern of varyingbattery performance. A drive cycle is usually made up of onemode during the UDDS drive cycle before the gasoline engine

  10. Technical Challenges of Plug-In Hybrid Electric Vehicles and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    S9-a Pumped Hydro, Changeover delay 0 S9-c Pumped Hydro, Changeover delay 4 min NaS Energy storage sizes to meet balancing requirement (GWh) 0 0.2 0.4 0.6 0.8 1 1.2 1.4 S1 S2...

  11. Environmental Assessment of Plug-In Hybrid Electric Vehicles...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    greenhouse gas emissions from the nationwide vehicle fleet. Model the impact of a high level of PHEV adoption on nationwide air quality. Develop a consistent analysis methodology...

  12. Are Batteries Ready for Plug-in Hybrid Buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

    2009-01-01

    PHEV from which those battery requirements flow. The circlesbattery technologies do not meet the requirements that flowflow from them. In summary, policymakers, automakers, battery

  13. Are batteries ready for plug-in hybrid buyers?

    E-Print Network [OSTI]

    Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

    2008-01-01

    PHEV from which those battery requirements flow. The circlesbattery technologies do not meet the requirements that flowflow from them. In summary, policymakers, automakers, battery

  14. Plug-In Hybrid Electric Vehicles | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy AEnergyPresidential PermitDAYS - WE NEED ADr. PeterPV),Year 2016isinvestments

  15. Sample Employee Newsletter Articles: Plug-In Electric Vehicles 101

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy BillsNo. 195 -RobSSL IN PRACTICERENEWABLEExampleVehicle Calculators,

  16. Plug IN Hybrid Vehicle Bus | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying Around with Lighting

  17. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying Around

  18. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying AroundActivity | Department of

  19. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying AroundActivity | Department

  20. Plug-in Hybrid (PHEV) Vehicle Technology Advancement and Demonstration

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying AroundActivity |

  1. Plug-in Hybrid Battery Development | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills andOrder 422.1,an R7-CompatiblePlaying AroundActivity |in Hybrid

  2. Autonomous Intelligent Plug-In Hybrid Electric Vehicles (PHEVs) |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based Fuels Research atDepartmentAuditsDepartment of(TEG)of

  3. Workplace Charging Challenge Mid-Program Review: Employees Plug In

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy Costs

  4. Microsoft Word - Plug-in Hybrids.doc

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy May2.docTechnicalBARACK of 617138PSRP"ListStudy

  5. Honey, Did You Plug in the Prius? | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergy HeadquartersFuelB IMSofNewsletterGuidingUpdate Webinar Slides HomeHomeServices

  6. Vehicle Technologies Office: Plug-In Electric Vehicles and Batteries |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department of Energy OfficeResourcesmap|Department of Energy

  7. Communities Plug In To Electric Vehicle Readiness | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStatesAInitiativeSponsorsScienceCommunities

  8. Random access wireless networks with controlled mobility

    E-Print Network [OSTI]

    Modiano, Eytan H.

    This paper considers wireless networks where messages arriving randomly (in time and space) are collected by a mobile receiver. The messages are transmitted to the mobile receiver according to a random access scheme and ...

  9. The Access Almanac: Solar Parking Requirements

    E-Print Network [OSTI]

    Shoup, Donald

    2012-01-01

    getting solar power from our parking lots. ? A C C E S STHE ACCESS ALMANAC Solar Parking Requirements DONALD SHOUP SC E I N T H E S U N — on parking lots surrounding commercial

  10. The Access Almanac: The Parking of Nations

    E-Print Network [OSTI]

    Shoup, Donald; Stark, Seth

    2000-01-01

    THE ACCESS ALMANAC The Parking of Nations B Y D O N A L D Spaved paradise and put up a parking lot. — Joni Mitchell V E4.4 billion vehicles. Parking would be a global problem. How

  11. Metadata Value Chain for Open Access Journals 

    E-Print Network [OSTI]

    Mercer, Holly; Dyas-Correia, Sharon

    2011-01-01

    In this session, Holly Mercer presented a case for finding global solutions to improve the metadata that is available for journals, particularly small, independent open access journals. She discussed the scholarly communication lifecycle...

  12. CIVIL ENGINEERING LAB ACCESS REQUEST FORM Instructions

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    CIVIL ENGINEERING LAB ACCESS REQUEST FORM Instructions: 1) Fill out request 2) A request may Estimated Key Return Date/When does job terminate? Section C: Approval Signatures (for Civil Engineering use

  13. Fair resource allocation in multiple access channels

    E-Print Network [OSTI]

    ParandehGheibi, Ali

    2008-01-01

    We consider the problem of resource allocation in a multiple access channel. Our objective is to obtain rate and power allocation policies that maximize a general concave utility function of average transmission rates over ...

  14. The University of Western Ontario's Accessibility Plan

    E-Print Network [OSTI]

    Lennard, William N.

    The University of Western Ontario's Accessibility Plan September 2010 to August .....................................................................................15 #12;3 Introduction In December 2001, Ontario of this report, remain in force. As of March 2010, the University of Western Ontario has reported on its

  15. JOBAID-ACCESSING AND MODIFYING TALENT PROFILE

    Broader source: Energy.gov [DOE]

    The purpose of this job aid is to guide users through the step-by-step process of accessing their talent profiles, adding information to their profiles, and editing existing talent profile...

  16. Accessible Programming using Program Synthesis Rishabh Singh

    E-Print Network [OSTI]

    Accessible Programming using Program Synthesis by Rishabh Singh Bachelor of Technology (Honors Singh, MMXIV. All rights reserved. The author hereby grants to MIT permission to reproduce singh Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment

  17. Decision Analysis of Dynamic Spectrum Access Rules

    SciTech Connect (OSTI)

    Juan D. Deaton; Luiz A. DaSilva; Christian Wernz

    2011-12-01

    A current trend in spectrum regulation is to incorporate spectrum sharing through the design of spectrum access rules that support Dynamic Spectrum Access (DSA). This paper develops a decision-theoretic framework for regulators to assess the impacts of different decision rules on both primary and secondary operators. We analyze access rules based on sensing and exclusion areas, which in practice can be enforced through geolocation databases. Our results show that receiver-only sensing provides insufficient protection for primary and co-existing secondary users and overall low social welfare. On the other hand, using sensing information between the transmitter and receiver of a communication link, provides dramatic increases in system performance. The performance of using these link end points is relatively close to that of using many cooperative sensing nodes associated to the same access point and large link exclusion areas. These results are useful to regulators and network developers in understanding in developing rules for future DSA regulation.

  18. Audio information access from meeting rooms. 

    E-Print Network [OSTI]

    Renals, Steve; Ellis, Dan

    2003-01-01

    We investigate approaches to accessing information from the streams of audio data that result from multi-channel recordings of meetings. The methods investigated use word-level transcriptions, and information derived ...

  19. Energies 2014, 7, 2027-2050; doi:10.3390/en7042027 OPEN ACCESS

    E-Print Network [OSTI]

    Zhuang, Weihua

    , such as renewable energy sources and combined heat and power plants, microgrids can supply electrical and heat loads of the combined heat and power (CHP) plants. The CHP plants can be used to supply both electrical and heat loads-dependent renewable power generation, energy storage devices, such as batteries, heat buffers and plug-in electric

  20. Application for Permit to Construct Access Driveway Facilities...

    Open Energy Info (EERE)

    relocate an access connection to state ROWs. Published NA Year Signed or Took Effect 2000 Legal Citation Application for Permit to Construct Access Driveway Facilities on...

  1. Green Button: Providing Consumers with Access to Their Energy...

    Broader source: Energy.gov (indexed) [DOE]

    customers in California now have access to their electricity usage data through the Green Button program, and millions more will get access as the program expands. This...

  2. Thanks to Energy Department Funding, Safer Access to Offshore...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine Platforms is Demonstrated Thanks to Energy Department Funding, Safer Access to Offshore Wind Turbine...

  3. Acronyms A AAAP Accelerated Access Authorization Program ACREM...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    12 I IAA Interim Access Authorization ICAM Identity, Credential, and Access Management IEA Office of Independent Enterprise Assessments IG Inspector General IN Office of...

  4. Instructions for using HSPD-12 Authenticated Outlook Web Access...

    Energy Savers [EERE]

    Instructions for using HSPD-12 Authenticated Outlook Web Access (OWA) Instructions for using HSPD-12 Authenticated Outlook Web Access (OWA) Provides instructions for remote Outlook...

  5. Energy Department Announces Funding to Access Higher Quality...

    Office of Environmental Management (EM)

    Energy Department Announces Funding to Access Higher Quality Wind Resources and Lower Costs Energy Department Announces Funding to Access Higher Quality Wind Resources and Lower...

  6. KuppingerCole Leadership Compass Cloud User and Access Management

    E-Print Network [OSTI]

    Chaudhuri, Surajit

    and Access Management Leaders in innovation, product features, and market reach for Cloud User and Access .............................................................................................................................................9 3. Product Rating........................................................................................................................................17 9. Product Leaders

  7. Department of Energy Data Access and Privacy Issues Related To...

    Energy Savers [EERE]

    Department of Energy Data Access and Privacy Issues Related To Smart Grid Technologies Department of Energy Data Access and Privacy Issues Related To Smart Grid Technologies This...

  8. NBP RFI: Data Access, Third Party Use, and Privacy- Comments...

    Energy Savers [EERE]

    & Publications Comments of Oncor Electric Delivery Company LLC Department of Energy Data Access and Privacy Issues Related To Smart Grid Technologies NBP RFI: Data Access,...

  9. Public Roundtable- Data Access and Privacy Issues Related to...

    Energy Savers [EERE]

    Public Roundtable- Data Access and Privacy Issues Related to Smart Grid Technologies Public Roundtable- Data Access and Privacy Issues Related to Smart Grid Technologies Transcript...

  10. Request Access to the PARSIIe Project Management Lessons Learned...

    Energy Savers [EERE]

    Request Access to the PARSIIe Project Management Lessons Learned (PMLL) Repository Request Access to the PARSIIe Project Management Lessons Learned (PMLL) Repository PURPOSE...

  11. Increasing Community Access to Solar: Designing and Developing...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Increasing Community Access to Solar: Designing and Developing a Shared Solar Photovoltaic System (Fact Sheet), U.S. Department of Energy (DOE) Increasing Community Access to...

  12. Green Button Energy Data Access Expanding Across America | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Green Button Energy Data Access Expanding Across America Green Button Energy Data Access Expanding Across America October 17, 2012 - 6:01pm Addthis Utilities demonstrating the...

  13. Comparison of collisions on HOV facilities with limited and continuous access

    E-Print Network [OSTI]

    Jang, Kitae; Chung, Koohong; Ragland, David R.; Chan, Ching-Yao

    2008-01-01

    in continuous access while slightly higher proportion ofcontinuous access HOV lanes, limited access HOV lanes have a higher proportion

  14. Enabling Remedyforce Accessibility v1.0 Page 1 Enabling Remedyforce Accessibility

    E-Print Network [OSTI]

    Guillas, Serge

    SERVICES DIVISION #12;Enabling Remedyforce Accessibility v1.0 Page 2 DOCUMENT HISTORY Version Amendments...................................................................................................................................11 Internet Explorer...............................................................................................................................11 Internet Explorer

  15. GUIDELINES ON IMPLEMENTING A SECURE SOCKETS LAYER (SSL) VIRTUAL PRIVATE NETWORK (VPN)

    E-Print Network [OSTI]

    that leads to many other resources. Remote users access the SSL VPN gateway using any modern Web browser, identify themselves to the gateway using an authentication method supported by the gateway (or support) active content. Thus, SSL portal VPNs are accessible to more users than SSL tunnel VPNs

  16. Energy Efficient Computing with the Low Power, Energy Aware Processing (LEAP) Architecture

    E-Print Network [OSTI]

    McIntire, Dustin Hale

    2012-01-01

    openvpn tunnel enables direct SSH access to the gateway unittunnel provides a secure and reliable method for remote operators to access the gatewayGateway units then initiate a cellular connection to a remote server using openvpn to create a tunnel

  17. Access Nets: Modeling Access to Physical Robert Frohardt, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan

    E-Print Network [OSTI]

    Chang, Bor-Yuh Evan

    Access Nets: Modeling Access to Physical Spaces Robert Frohardt, Bor-Yuh Evan Chang, and Sriram) Robert Frohardt, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan University of Colorado, Boulder, Colorado, USA {frohardt,bec,srirams}@cs.colorado.edu Abstract. Electronic, software-managed mechanisms

  18. ETSU College of Medicine CBORD Door Access Authorization Form

    E-Print Network [OSTI]

    Karsai, Istvan

    ETSU College of Medicine CBORD Door Access Authorization Form 6/13/2011 Please grant access to: This access will remain in effect until the individual is no longer an active ETSU faculty list areas this individual will need access to: ____ ALL AREAS - ETSU Service Personnel Only ­ (i

  19. Cooperative Cache-Based Data Access in Ad Hoc Networks

    E-Print Network [OSTI]

    Yener, Aylin

    1 Cooperative Cache-Based Data Access in Ad Hoc Networks Guohong Cao, Liangzhong Yin and Chita R: Cooperative cache-based data access framework #12;6 Data Access Framework The cooperative cache-based data data authentication based on sensitivity. #12;16 Conclusion A cooperative cache-based data access

  20. A Mobility Management Scheme for Wireless Mesh Rongsheng Huang, Chi Zhang, and Yuguang Fang

    E-Print Network [OSTI]

    Fang, Yuguang "Michael"

    -host routing and tunneling techniques to reduce the signaling cost as well as to shorten the handoff latency of various types of entities: gateways, mesh routers, access points (AP) and mesh clients. Gateways

  1. Quantum internet using code division multiple access

    E-Print Network [OSTI]

    Jing Zhang; Yu-xi Liu; Sahin Kaya Ozdemir; Re-Bing Wu; Feifei Gao; Xiang-Bin Wang; Lan Yang; Franco Nori

    2013-09-12

    A crucial open problem in large-scale quantum networks is how to efficiently transmit quantum data among many pairs of users via a common data-transmission medium. We propose a solution by developing a quantum code division multiple access (q-CDMA) approach in which quantum information is chaotically encoded to spread its spectral content, and then decoded via chaos synchronization to separate different sender-receiver pairs. In comparison to other existing approaches, such as frequency division multiple access (FDMA), the proposed q-CDMA can greatly increase the information rates per channel used, especially for very noisy quantum channels.

  2. DATA ACCESS POLICY As NJIT has moved to a distributed data access environment, policy has been established

    E-Print Network [OSTI]

    DATA ACCESS POLICY As NJIT has moved to a distributed data access environment, policy has been established to protect the computer-based institutional data from unauthorized (c.q. other improprietary) access and us. Attached is a policy statement regarding data access at the New Jersey Institute

  3. AIM Access Request Access to confidential student information is protected under the Family Educational Rights and Privacy Act (FERPA), and

    E-Print Network [OSTI]

    Hart, Gus

    of the options below and provide the required information to the right. Replace an existing employee who hasAIM Access Request Access to confidential student information is protected under the Family Educational Rights and Privacy Act (FERPA), and access should only be requested when there is a need to access

  4. Supplemental Note 1. Access to datasets.................................................................pg. 5 Table S1: Accession IDs and internet URLs for access to datasets

    E-Print Network [OSTI]

    Lonardi, Stefano

    SI Guide Supplemental Note 1. Access to datasets.................................................................pg. 5 Table S1: Accession IDs and internet URLs for access to datasets Supplemental Note 2. Physical map statistics of barley HICF map S2.2 Selection of "gene-bearing" BAC clones Supplemental Note 3. Genomic

  5. Special Library Access Enrollment Form INSTRUCTIONS

    E-Print Network [OSTI]

    California at Berkeley, University of

    by the borrowing library. (National ILL code, 1980, IV.I) I accept full responsibility for compliance with USpecial Library Access Enrollment Form INSTRUCTIONS: Complete form, enclose payment, and send to: SLA Service, 133 Doe Library, University of California, Berkeley, CA 94720-6000 Minimum deposit

  6. INTERNET AND FREE ACCESS TO SCHOLARLY PUBLICATIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 INTERNET AND FREE ACCESS TO SCHOLARLY PUBLICATIONS Jean-Philippe Rennard Grenoble Graduate School of this evolution and presents the path toward a new economic model of scholarly publications. "If I have seen., Encyclopaedia of E-Commerce, E-Government and Mobile Commerce, IGR, 2006. Abstract: The mean price of scholarly

  7. OUTLOOK -MOBILE DEVICE ACCESS QUICK REFERENCE GUIDE

    E-Print Network [OSTI]

    Liley, David

    th OUTLOOK - MOBILE DEVICE ACCESS QUICK REFERENCE GUIDE Quick Reference Guide is designed to step you through the initial set up of your Outlook email account on your Mac. Note: If you're opening Microsoft Outlook 2011 for the first time, you will see the Welcome to Microsoft Outlook for Mac window

  8. OUTLOOK -MOBILE DEVICE ACCESS QUICK REFERENCE GUIDE

    E-Print Network [OSTI]

    Liley, David

    th OUTLOOK - MOBILE DEVICE ACCESS QUICK REFERENCE GUIDE This Quick Reference Guide is designed to step you through the setup of your Outlook email account on your mobile device. When to use this Guide is Outlook. NOTE: After you have set up your account you must remove your old GWSync account ITS

  9. Improving School Governance | 3 Open access publishing

    E-Print Network [OSTI]

    Rambaut, Andrew

    proposed. We would especially like to thank David Carr and Robert Kiley for their attention and support Access Article Processing Charges Bo-Christer Björk and David Solomon March 2014 #12;1 Developing of the Steering Group for their thoughtful feedback throughout the project. Funding group representatives: David

  10. TRANSMISSION OPEN ACCESS IN CHILE Hugh Rudnick

    E-Print Network [OSTI]

    Catholic University of Chile (Universidad Católica de Chile)

    considered or are considering deregulating their electric power sectors to allow for competition among implemented in Chilean electric power systems, the incorporation of an open access scheme, the application conditions in interconnected power systems. One line of thinking has viewed the third party use

  11. Special Access Program Policies, Responsibilities, and Procedure

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2007-10-29

    This Manual is for OFFICIAL USE ONLY and will not be distributed on the Directives Portal. For distribution, please contact the Executive Secretary of the Special Access Program Oversight Committee at 202-586-6775. Cancels DOE M 471.2-3A. Canceled by DOE O 471.5.

  12. Special Access Program Policies, Responsibilities, and Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2002-07-11

    Special Access Program Policies, Responsibilities, and Procedures This Manual is for OFFICIAL USE ONLY and will not be distributed on the Directives Portal. For distribution, please contact the Director, Office of Security, at 202-586-6775. Cancels: DOE M 471.2-3

  13. fort jackson UNIVERSITY OF SOUTH CAROLINA accessible

    E-Print Network [OSTI]

    Almor, Amit

    fort jackson UNIVERSITY OF SOUTH CAROLINA accessible dream choose convenient think form your own at the University of South Carolina Fort Jackson. Our program offers immediate benefits--convenience, flexibility can be applied to a four-year program at South Carolina and are transferable to most other colleges

  14. Information Access and Privacy Protection Office

    E-Print Network [OSTI]

    deYoung, Brad

    Information Access and Privacy Protection Office I A P P Guidelines for Using Personal Information in Email and Faxes Memorial University employees are required to protect personal information (defined personal information ­ your own or someone else's. Email and faxes, in particular, pose challenges

  15. Top Tips for Accessing Oxford's Information Resources

    E-Print Network [OSTI]

    Oxford, University of

    Top Tips for Accessing Oxford's Information Resources And How Brasenose College Library Fits In #12, electronic journals and books Top Tip 1: Attend the Bodleian induction sessions for your subject #12;Oxford ­ departmental, faculty, college Top Tip 2: Explore smaller libraries ­ www

  16. Top Tips for Accessing Oxford's Information Resources

    E-Print Network [OSTI]

    Oxford, University of

    Top Tips for Accessing Oxford's Information Resources And How Brasenose College Library Fits In #12, electronic journals and books Top Tip 1: Attend the induction session in your departmental library #12;Oxford ­ departmental, faculty, college Top Tip 2: Explore smaller libraries ­ www

  17. Open Access and the Chemical Semantic Web

    E-Print Network [OSTI]

    Murray-Rust, Peter; Rzepa, Henry S

    2004-11-21

    stream_source_info mini-abstract.html.txt stream_content_type text/plain stream_size 1868 Content-Encoding ISO-8859-1 stream_name mini-abstract.html.txt Content-Type text/plain; charset=ISO-8859-1 Open Access and the Chemical...

  18. The University of Western Ontario's Accessibility Plan

    E-Print Network [OSTI]

    Lennard, William N.

    The University of Western Ontario's Accessibility Plan September 2009 to August 2010 Prepared;3 Introduction In December 2001, Ontario passed the Ontarians with Disabilities Act, 2001 (the "Act Ontario will report on customer service standard pursuant to Ontario regulations 429/07 and 430/07 which

  19. Raphael Rom Moshe Sidi Multiple Access Protocols

    E-Print Network [OSTI]

    of networks by those who are responsible for their operation as well as by those whose task it is to design. This book concentrates on mechanisms for link access in multiaccess communication systems including local, some knowl- edge in stochastic processes and just a bit of elementary queueing systems

  20. RESEARCH Open Access Reconciling taxonomy and phylogenetic

    E-Print Network [OSTI]

    Matsen, Frederick A. "Erick"

    RESEARCH Open Access Reconciling taxonomy and phylogenetic inference: formalism and algorithms: Although taxonomy is often used informally to evaluate the results of phylogenetic inference and the root that solves a "subcoloring" problem to express the difference between a taxonomy and a phylogeny at a given