Powered by Deep Web Technologies
Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities...

2

U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX 5: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities U-225: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities August 1, 2012 - 5:37am Addthis PROBLEM: Citrix Access Gateway Plug-in for Windows nsepacom ActiveX Control Vulnerabilities PLATFORM: Citrix Access Gateway 9.x ABSTRACT: Two vulnerabilities in Citrix Access Gateway Plug-in for Windows can be exploited by malicious people to compromise a user's system. reference LINKS: Citrix Knowledge Center Secunia Advisory SA45299 Secunia Research Secunia Research CVE-2011-2592 CVE-2011-2593 IMPACT ASSESSMENT: High Discussion: Research has discovered two vulnerabilities in Citrix Access Gateway Plug-in for Windows, which can be exploited by malicious people to

3

Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Access to Plug-In Access to Plug-In Electric Vehicle (PEV) Registration Records to someone by E-mail Share Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Facebook Tweet about Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Twitter Bookmark Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Google Bookmark Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Delicious Rank Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on Digg Find More places to share Alternative Fuels Data Center: Access to Plug-In Electric Vehicle (PEV) Registration Records on AddThis.com...

4

V-106: Citrix Access Gateway Unspecified Security Bypass Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Citrix Access Gateway Unspecified Security Bypass 6: Citrix Access Gateway Unspecified Security Bypass Vulnerability V-106: Citrix Access Gateway Unspecified Security Bypass Vulnerability March 7, 2013 - 6:00am Addthis PROBLEM: A vulnerability has been reported in Citrix Access Gateway PLATFORM: Standard Edition 5.0.x prior to 5.0.4.223524. Versions 4.5.x and 4.6.x are not affected by this vulnerability ABSTRACT: A vulnerability has been reported in Citrix Access Gateway, which can be exploited by malicious people to bypass certain security restrictions. REFERENCE LINKS: Secunia Advisory SA52479 Security Tracker Alert ID 1028255 com/id/1028255 CVE-2013-2263 Citrix Knowledge Center IMPACT ASSESSMENT: High DISCUSSION: The vulnerability could allow an unauthenticated user to gain access to network resources. IMPACT:

5

Securing information gateways with derivation-constrained access control  

Science Conference Proceedings (OSTI)

In pervasive computing environments, information gateways derive specific information, such as a person's location, from raw data provided by a service, such as a videostream offered by a camera. Here, access control to confidential raw data provided ...

Urs Hengartner; Peter Steenkiste

2006-04-01T23:59:59.000Z

6

U-020: McAfee Web Gateway Web Access Cross Site Scripting Vulnerabilit...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability U-020: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability October 26, 2011 - 9:00am Addthis...

7

T-701: Citrix Access Gateway Enterprise Edition Input Validation Flaw in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1: Citrix Access Gateway Enterprise Edition Input Validation 1: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks T-701: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks August 25, 2011 - 3:33pm Addthis PROBLEM: A vulnerability was reported in Citrix Access Gateway Enterprise Edition. A remote user can conduct cross-site scripting attacks. PLATFORM: Citrix Access Gateway Enterprise Edition 9.2-49.8 and prior. Citrix Access Gateway Enterprise Edition version 9.3 is not affected by this vulnerability. ABSTRACT: Citrix Access Gateway Enterprise Edition Input Validation Flaw in Logon Portal Permits Cross-Site Scripting Attacks. reference LINKS: SecurityTracker Alert ID: 1025973 Citrix Document ID: CTX129971

8

U-020: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0: McAfee Web Gateway Web Access Cross Site Scripting 0: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability U-020: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability October 26, 2011 - 9:00am Addthis PROBLEM: McAfee Web Gateway Web Access Cross Site Scripting Vulnerability. PLATFORM: The vulnerability is reported in versions prior to 7.1.5.2. ABSTRACT: Cross-Site Scripting vulnerabilities allow a third party to manipulate the content or behavior of a web application in a user's browser, without compromising the underlying system. Attackers can exploit this issue by enticing an unsuspecting user to follow a malicious URI. reference LINKS: McAfee Web Gateway Release Notes Bugtraq ID: 50341 Secunia Advisory: SA46570 IMPACT ASSESSMENT: Medium Discussion: A vulnerability has been reported in McAfee Web Gateway, which can be

9

Plug-in Hybrid Links  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Links Plug-in Hybrid Links Exit Fueleconomy.gov The links below are to pages that are not part of the fueleconomy.gov Web site. We offer these external links for your convenience in accessing additional information that may be useful or interesting to you. Plug-in Hybrid Vehicles and Manufacturers Chevrolet Volt Official site for the Chevrolet Volt Cadillac ELR Official site for the Cadillac ELR (arriving early 2014) Ford C-MAX Energi Plug-in Hybrid Official site for the C-MAX Energi Plug-in Hybrid Ford Fusion Energi Plug-in Hybrid Official site for the Fusion Energi Plug-in Hybrid Honda Accord Plug-in Official site for the Honda Accord Plug-in Hybrid Toyota Prius Plug-in Official site for the Toyota Prius Plug-in Hybrid Plug-in-Related Information and Tools

10

An Energy Efficient Protocol for Gateway-Centric Federated Residential Access Networks  

E-Print Network (OSTI)

The proliferation of overlapping, always-on IEEE 802.11 Access Points (APs) in urban areas can cause spectrum sharing conflicts, inefficient bandwidth usage and power waste. Cooperation among APs could address these problems (i) by allowing under-used devices to hand over their clients to nearby APs and temporarily switch off, (ii) by balancing the load of clients among APs and thus offloading congested APs. The federated houses model provides an appealing backdrop to implement cooperation among APs. In this paper, we outline a framework that, assuming the presence of a multipurpose gateway with AP capabilities in every household, allows such cooperation through the monitoring of local wireless resources and the triggering of offloading requests toward other federated gateways. We then present simulation results in realistic settings that provide some insight on the capabilities of our framework.

Rossi, Claudio; Chiasserini, Carla-Fabiana

2011-01-01T23:59:59.000Z

11

NERSC Science Gateway Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Design Forward Design Forward Home » R & D » Science Gateway Development Science Gateway Development Science gateways are conduits for bringing HPC to the web. NERSC assists in the development and hosting of gateways that make NERSC compute and data resources more broadly useful. To ease the development of these gateways, the NERSC Web Toolkit (NEWT) makes science gateways accessible to anyone familiar with HTML and javascript. You can find more detailed information about science gateway development in the related NERSC user documentation and at the NEWT website. What are some use cases? A science gateway can be tailored to the needs within a team of researchers allowing them to share data, simulation results, and information among users who may be geographically distributed.

12

Plugging in the consumer  

E-Print Network (OSTI)

of 1,900 energy consumers and nearly 100 industry executives across the globe reveal major changes commercial customers were satisfied with leaving all the decisions about their energy supply to their trustedPlugging in the consumer Innovating utility business models for the future Energy and Utilities IBM

13

New Plug-in Hybrids  

NLE Websites -- All DOE Office Websites (Extended Search)

Cars 2014 Midsize Cars Fuel Economy Specs 2013 Chevrolet Volt 2012 Fisker Karma Plug-in Hybrid Vehicle 2012 Chevy Volt Plug-in Hybrid Vehicle 2012 Karma Fisker Configuration...

14

The DECIDE Science Gateway  

Science Conference Proceedings (OSTI)

The motivation of this work fits with the general vision to enable e-health for European citizens, irrespective of their social and financial status and their place of residence. Services to be provided include access to a high-quality early diagnostic ... Keywords: Grid computing, Science gateway, Standard-based development and middleware-independent deploy, e-health service

V. Ardizzone; R. Barbera; A. Calanducci; M. Fargetta; E. Ingr; I. Porro; G. La Rocca; S. Monforte; R. Ricceri; R. Rotondo; D. Scardaci; A. Schenone

2012-12-01T23:59:59.000Z

15

NERSC Science Gateways  

NLE Websites -- All DOE Office Websites (Extended Search)

Analytics & Visualization Science Gateways Demos Database services OpenDAP User Surveys NERSC Users Group User Announcements Help Home For Users Science Gateways Science...

16

How Green Is My Plug-In?  

Science Conference Proceedings (OSTI)

A few analysts forecast that by 2020, plug-in vehicles, including plug-in hybrids and purely electric cars, will make up almost a third of new-car sales in the United States. And by 2050, plug-ins could account for most of China's burgeoning vehicular ...

J. Voelcker

2009-03-01T23:59:59.000Z

17

Wind Energy Data and Information Gateway (WENDI) | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Data and Information Gateway (WENDI) Wind Energy Data and Information Gateway (WENDI) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Data and Information Gateway (WENDI) Agency/Company /Organization: United States Department of Energy, Oak Ridge National Laboratory Sector: Energy Focus Area: Wind Topics: Market analysis, Resource assessment, Technology characterizations Resource Type: Dataset, Maps Website: windenergy.ornl.gov/ References: Wind Energy Data and Information Gateway (WENDI)[1] Logo: Wind Energy Data and Information Gateway (WENDI) The WENDI Gateway is an integrated system for the archival, discovery, access, integration, and delivery of wind energy-related data and information. NOTE The WENDI Gateway has been discontinued due to an absence of funding. Oak

18

How Plug-in Hybrids Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

How Plug-in Hybrids Save Money How Plug-in Hybrids Save Money Plug-in hybrid recharging Plug-in hybrids reduce fuel costs by Using high-capacity batteries that allow them to operate on electricity from the outlet for significant distances-electricity typically costs less than half as much as gasoline Using a larger electric motor that typically allows the vehicle to use electricity at higher speeds than regular hybrids Using regenerative braking to recover energy typically wasted when you apply the brakes Plug-in hybrid designs differ, and your driving habits, especially the distance you drive between re-charging, can have a big effect on your fuel bill. My Plug-in Hybrid Calculator estimates gasoline and electricity costs for any available plug-in hybrid using your driving habits and fuel costs.

19

Category:Gateways | Open Energy Information  

Open Energy Info (EERE)

Network (CLEAN) E Gateway:ECOWAS Clean Energy Gateway G Gateway:Geothermal H Gateway:Hydrogen I Gateway:Incentives and Policies Gateway:International Clean Energy Analysis L...

20

Global Science Gateway Agreement Signed in London | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Science Gateway Agreement Signed in London Science Gateway Agreement Signed in London Global Science Gateway Agreement Signed in London January 22, 2006 - 10:15am Addthis DOE Partners With British Library on "Science.world" Initiative LONDON, ENGLAND -- Dr. Raymond L. Orbach, Under Secretary for Science of the U.S. Department of Energy (DOE), yesterday signed an agreement with Lynne Brindley, Chief Executive, the British Library, to partner on the development of a global science gateway. The gateway would eventually make science information resources of many nations accessible via a single Internet portal. "It is timely to make the science offerings of all nations searchable through one global gateway," Dr. Orbach said. "Science is international, and centralizing access will enhance the rate of scientific discovery. It

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

How Plug-in Hybrids Save Money  

NLE Websites -- All DOE Office Websites (Extended Search)

of gasoline's widespread availability and quick refueling. Plug-in hybrids also save energy through regenerative braking, which recovers much of the energy typically lost when...

22

Plug-In Hybrid Electric Vehicles (Presentation)  

DOE Green Energy (OSTI)

Provides an overview on the current status, long-term prospects, and key challenges in the development of plug-in hybrid electric vehicle technology.

Markel, T.

2006-05-08T23:59:59.000Z

23

Plug in America | Open Energy Information  

Open Energy Info (EERE)

by cleaner, cheaper, domestic electricity to reduce our nation's dependence on petroleum and improve the global environment. References Plug-in America1 LinkedIn...

24

Plug-In Hybrid Electric Vehicles - Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

EPRI and Argonne Assess Commercial Viability of Plug-In Hybrid Electric Vehicles The Electric Power Research Institute (EPRI) and Argonne National Laboratory are engaged in a...

25

Plug-in Hybrid Initiative  

SciTech Connect

Our main project objective was to implement Plug-in Electric Vehicles (PEV) and charging infrastructure into our electric distribution service territory and help reduce barriers in the process. Our research demonstrated the desire for some to be early adopters of electric vehicles and the effects lack of education plays on others. The response of early adopters was tremendous: with the initial launch of our program we had nearly 60 residential customers interested in taking part in our program. However, our program only allowed for 15 residential participants. Our program provided assistance towards purchasing a PEV and installation of Electric Vehicle Supply Equipment (EVSE). The residential participants have all come to love their PEVs and are more than enthusiastic about promoting the many benefits of driving electric.

Goodman, Angie; Moore, Ray; Rowden, Tim

2013-09-27T23:59:59.000Z

26

The CIPRES science gateway: a community resource for phylogenetic analyses  

Science Conference Proceedings (OSTI)

The CIPRES Science Gateway (CSG) provides researchers and educators with browser-based access to community codes for inference of phylogenetic relationships from DNA and protein sequence data. The CSG allows users to deploy jobs on the high-performance ... Keywords: CIPRES, GARLI, MAFFT, MrBayes, RAxML, phylogenetics, science gateway

Mark A. Miller; Wayne Pfeiffer; Terri Schwartz

2011-07-01T23:59:59.000Z

27

Electricity Grid: Impacts of Plug-In Electric Vehicle Charging  

E-Print Network (OSTI)

Impacts of Plug-In Hybrid Electric Vehicles on Regionalsuch as plug-in hybrid electric vehicles (PHEVs) and batteryof Plug-In Hybrid Vehicles on Electric Utilities and

Yang, Christopher; McCarthy, Ryan

2009-01-01T23:59:59.000Z

28

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Basics to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Basics on Facebook Tweet about Vehicle Technologies Office: Plug-in...

29

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. , 2006. Plug-in hybrid vehicle analysis. Milestonegas emissions from plug-in hybrid vehicles: implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

30

Environmental Assessment of Plug-In Hybrid Electric Vehicles...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:...

31

Space Heaters, Computers, Cell Phone Chargers: How Plugged In...  

NLE Websites -- All DOE Office Websites (Extended Search)

Space Heaters, Computers, Cell Phone Chargers: How Plugged In Are Commercial Buildings? Title Space Heaters, Computers, Cell Phone Chargers: How Plugged In Are Commercial...

32

Gateway | OpenEI  

Open Energy Info (EERE)

Gateway Gateway Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 110, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Gateway Reliability First Corporation SERC Reliability Corporation Data application/vnd.ms-excel icon AEO2011:Renewable Energy Generation by Fuel - SERC Reliability Corporation / Gateway- Reference Case (xls, 118.9 KiB) Quality Metrics Level of Review Peer Reviewed

33

Plug In Partners | Open Energy Information  

Open Energy Info (EERE)

Plug-In Partners Plug-In Partners Place Austin, Texas Zip 78704 Sector Vehicles Product Focused on promotion of flexible-fuel Plug-in Hybrid Electric Vehicles (PHEV). Coordinates 30.267605°, -97.742984° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.267605,"lon":-97.742984,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

34

Plug-In Hybrid Electric Vehicle  

NLE Websites -- All DOE Office Websites (Extended Search)

* Batteries * Batteries * Downloadable Dynanometer Database (D3) * Modeling * Prototypes * Testing * Assessment PSAT Smart Grid Student Competitions Technology Analysis Transportation Research and Analysis Computing Center Working With Argonne Contact TTRDC Argonne Leads DOE's Effort to Evaluate Plug-in Hybrid Technology aprf testing Argonne's Advanced Powertrain Research Facility (APRF) enables researchers to conduct vehicle benchmarking and testing activities that provide data critical to the development and commercialization of next-generation vehicles such as PHEVs. Argonne's Research Argonne National Laboratory is the U.S. Department of Energy's lead national laboratory for the simulation, validation and laboratory evaluation of plug-in hybrid electric vehicles and the advanced

35

Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Initiatives to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Initiatives on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle Initiatives All solicitation documents that include the purchase of passenger

36

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Information Resource to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Information Resource on

37

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Infrastructure Promotion to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Infrastructure Promotion on AddThis.com... More in this section... Federal

38

Vehicle Technologies Office: Plug-in Electric Vehicle Basics  

NLE Websites -- All DOE Office Websites (Extended Search)

Basics Basics Plug-in electric vehicles (PEVs), which include both plug-in hybrid electric vehicles and all-electric vehicles, use electricity as either their primary fuel or to improve efficiency. Commonly Used PEV Terms All-electric vehicle (AEV) - A vehicle with plug-in capability; driving energy comes entirely from its battery. Plug-in hybrid electric vehicle (PHEV) - A vehicle with plug-in capability; driving energy can come from either its battery or a liquid fuel like gasoline, diesel, or biofuels. Plug-in electric vehicle (PEV) - Any vehicle with plug-in capability. This includes AEVs and PHEVs. Hybrid electric vehicle (HEV) - A vehicle that has an electric drive system and battery but does not have plug-in capability; driving energy comes only from liquid fuel.

39

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles Availability Conversions Emissions Batteries Deployment Maintenance & Safety Laws & Incentives Hybrids

40

Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Draft Plug-In Hybrid Electric Vehicle R&D Plan to someone by E-mail Share Vehicle Technologies Office: Draft Plug-In Hybrid Electric Vehicle R&D Plan on Facebook Tweet about...

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

42

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

M. (2006) Plug-In Hybrid Vehicle Analysis, Milestone Report,gas emissions from plug-in hybrid vehicles: Implications forPresentation at SAE 2008 Hybrid Vehicle Technologies

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

43

Charge It: The Promise of Plug-in Electric Hybrids  

E-Print Network (OSTI)

Impacts of Plug-In Hybrid Electric Vehicles on Energy andthe plug-in hybrid electric vehicle, a variant of theknown self-charging hybrid electric vehicle, is fast gaining

Recker, W.W.; Kang, J.E.

2011-01-01T23:59:59.000Z

44

Charge It: The Promise of Plug-in Electric Hybrids  

E-Print Network (OSTI)

Impacts of Plug-In Hybrid Electric Vehicles on Energy andthe plug-in hybrid electric vehicle, a variant of theknown self-charging hybrid electric vehicle, is fast gaining

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

45

Plug in Electric Vehicle Interactions with a small office Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug in Electric Vehicle Interactions with a small office Building: An Economic Analysis Using DER-CAM Title Plug in Electric Vehicle Interactions with a small office Building: An...

46

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicles on Facebook Tweet about Advanced Vehicle Testing...

47

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Vehicle Charging Rate Reduction - DTE Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Reduction - DTE...

48

NREL: Learning - Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Hybrid Electric Vehicles Photo of a parked blue compact car with large decals on the doors stating that it is a plug-in hybrid achieving more than 120 miles per gallon....

49

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchfor plug- in hybrid electric vehicles: analysis and2007. Plug-in Hybrid Electric Vehicle R&D Plan: Working

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

50

Vehicle Technologies Office: Plug-in Electric Vehicle Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Research and Development to someone by E-mail Share Vehicle Technologies Office: Plug-in Electric Vehicle Research and Development on Facebook Tweet about...

51

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Infrastructure Development to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Development on AddThis.com... More in this section...

52

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

converted plug-in hybrid vehicles. Transportation ResearchM. , 2006. Plug-In Hybrid Vehicle Analysis. Nationalgas emissions from plug-in hybrid vehicles: implications for

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

53

Anticipating plug-in hybrid vehicle energy impacts in California: Constructing consumer-informed recharge profiles  

E-Print Network (OSTI)

of Plug-In Hybrid Electric Vehicles, vol. 1. Nationwidecompetitive plug-in hybrid electric vehicles. EnvironmentalDriving plug-in hybrid electric vehicles: reports from US

Axsen, Jonn; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

54

Energy Management Strategies for Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Summarizes and compares potential energy management strategies for plug-in hybrid electric vehicles, accounting for duty cycle distance.

Gonder, J.; Markel, T.

2007-05-01T23:59:59.000Z

55

gateway | OpenEI Community  

Open Energy Info (EERE)

gateway gateway Home Graham7781's picture Submitted by Graham7781(1992) Super contributor 28 March, 2013 - 15:16 OpenEI launches new Water Power Gateway and Community Forum community forum gateway OpenEI Water power OpenEI has launched a new Water Power Gateway, which contains links to critical public data sets, up-to-date information on technologies and events, a community forum to discuss topics of interest, links to major research and industry reports, and more. Water Power Forum Description: Forum for information related to the Water Power Gateway The Water Power Community Forum provides you with a way to engage with other people in the community about the water power topics you care about forum gateway hydro Power Water Syndicate content 429 Throttled (bot load) Error 429 Throttled (bot load)

56

Edmund G. Brown, Jr. PLUG-IN HYBRID ELECTRIC VEHICLE  

E-Print Network (OSTI)

Edmund G. Brown, Jr. Governor PLUG-IN HYBRID ELECTRIC VEHICLE RESEARCH ROADMAP Davis Plug-In Hybrid Electric Vehicle Research Center June 2011 CEC-500-2010-039 #12; #12; Prepared By: UC Davis Plug-In Hybrid Electric Vehicle Research Center Dr. Thomas Turrentine, University

57

Plug-In Hybrid Electric Vehicles - Prototypes  

NLE Websites -- All DOE Office Websites (Extended Search)

Prototypes Prototypes A PHEV prototype being prepared for testing. A plug-in electric vehicle (PHEV) prototype is prepared for testing at Argonne National Laboratory. What is a PHEV? A plug-in hybrid electric vehicle, or PHEV, is similar to today's hybrid electric vehicles on the market today, but with a larger battery that is charged both by the vehicle's gasoline engine and from plugging into a standard 110 V electrical outlet for a few hours each day. PHEVs and HEVs both use battery-powered motors and gasoline-powered engines for high fuel efficiency, but PHEVs can further reduce fuel usage by employing electrical energy captured through daily charging. Prototype as Rolling Test Bed As part of Argonne's multifaceted PHEV research program, Argonne researchers have constructed a PHEV prototype that serves as a rolling test

58

Plug-in Electric Vehicle Adoption Forecasts  

Science Conference Proceedings (OSTI)

The imminent introduction of plug-in electric vehicles (PEVs) into the automotive marketplace has the potential to dramatically affect electricity service providers. The vehicles will require infrastructure that facilitates recharging, and the resulting electric load could have a combination of positive and negative effects on utility systems. To characterize the effects, it is necessary to forecast the size of the PEV fleet and its electricity consumption. The electricity use must be analyzed over long ...

2010-12-22T23:59:59.000Z

59

Plug-in Electric Vehicle Fleet Valuation  

Science Conference Proceedings (OSTI)

This project investigated the value of plug-in electric vehicles (PEVs) as a grid resource and has created a PEV Fleet Simulator tool and framework for analyzing and reporting on fleet performance. The report is intended for electric utility managers and engineers and automobile manufacturers interested in PEV fleet grid services and their value.Results & FindingsThe report describes the fleet driving behavior and electricity market price data, and it ...

2012-12-14T23:59:59.000Z

60

Design and implementation of a portable and extensible FTP to NFS gateway  

Science Conference Proceedings (OSTI)

In this paper, we present the design and implementation of an FTP to NFS gateway. The gateway exports an "FTP file system" to NFS clients. Once this file system is mounted on a client machine, files and directories accessible through the FTP protocol ...

Deepak Gupta; Vikrant Sharma

2002-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Plug-In Hybrid Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts would be of very high market penetrations of PHEVs. Plug-In Hybrid Electric Vehicles More Documents & Publications

62

Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness  

NLE Websites -- All DOE Office Websites (Extended Search)

Events Events Printable Version Share this resource Send a link to Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop to someone by E-mail Share Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Facebook Tweet about Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Twitter Bookmark Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Google Bookmark Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Delicious Rank Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on Digg Find More places to share Clean Cities: Plug-In Vehicle and Infrastructure Community Readiness Workshop on AddThis.com... Conferences & Workshops

63

Residential Gateways and Controllers  

Science Conference Proceedings (OSTI)

Energy companies are exploring two-way residential communications to help reduce the cost of providing standard energy-related services, such as itemized billing or demand reduction, as well as to provide nontraditional services, such as diagnostic services and e-mail. This report covers the key to development of these services -- residential gateways and controllers. The report was prepared with both technical and financial energy company managers in mind, for use as a reference tool and strategic plann...

1999-08-31T23:59:59.000Z

64

OpenEI Community - gateway  

Open Energy Info (EERE)

http:en.openei.orgcommunitytaxonomyterm2300 en OpenEI launches new Water Power Gateway and Community Forum http:en.openei.orgcommunityblogopenei-launches-new-water-powe...

65

Residential energy gateway system in smart grid.  

E-Print Network (OSTI)

??This project discusses about the residential energy gateway in the Smart Grid. A residential energy gateway is a critical component in the Home Energy Management (more)

Thirumurthy, Vinod Govindswamy

2010-01-01T23:59:59.000Z

66

Global Science Gateway Now Open | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Now Open Now Open Global Science Gateway Now Open June 22, 2007 - 2:07pm Addthis WorldWideScience.org opens public access to more than 200 million pages of international research information WASHINGTON, DC-The U.S. Department of Energy (DOE) and the British Library, along with eight other participating countries, today opened an online global gateway to science information from 15 national portals. The gateway, WorldWideScience.org, gives citizens, researchers and anyone interested in science the capability to search science portals not easily accessible through popular search technology such as that deployed by Google, Yahoo! and many other commercial search engines. "Scientific research results are archived globally in a plethora of sources, many unknown and unreachable through usual search engines," Dr.

67

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Infrastructure Evaluation to someone by E-mail Infrastructure Evaluation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Infrastructure Evaluation on AddThis.com... More in this section... Federal State Advanced Search

68

Social networking and scientific gateways  

Science Conference Proceedings (OSTI)

Online social networking has significantly increased in popularity over the past several years, with sites such as Facebook now boasting over 300 million members. Scientific gateways have much to gain by incorporating social networking functionality. ... Keywords: Elgg, Facebook, Ning, scientific gateways, social networking

Roger Curry; Cameron Kiddle; Rob Simmonds

2009-11-01T23:59:59.000Z

69

Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle...  

NLE Websites -- All DOE Office Websites (Extended Search)

Procedures to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric Vehicle Specifications and Test Procedures on Facebook Tweet about Advanced...

70

Hybrid and Plug-In Electric Vehicles (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-05-01T23:59:59.000Z

71

Hybrid and Plug-In Electric Vehicles (Brochure)  

DOE Green Energy (OSTI)

Describes the basics of electric-drive vehicles, including hybrid electric vehicles, plug-in hybrid electric vehicles, all-electric vehicles, and the various charging options.

Not Available

2011-10-01T23:59:59.000Z

72

Battery Choices for Different Plug-in HEV Configurations (Presentation)  

DOE Green Energy (OSTI)

Presents battery choices for different plug-in hybrid electric vehicle (HEV) configurations to reduce cost and to improve performance and life.

Pesaran, A.

2006-07-12T23:59:59.000Z

73

Optimization of a plug-in hybrid electric vehicle .  

E-Print Network (OSTI)

??A plug-in hybrid electric vehicle (PHEV) is a vehicle powered by a combination of an internal combustion engine and an electric motor with a battery (more)

Golbuff, Sam

2006-01-01T23:59:59.000Z

74

Plug-in Hybrid Electric Vehicles (PHEVs) Overview  

NLE Websites -- All DOE Office Websites (Extended Search)

Program, Advanced Vehicle Testing Activity (AVTA) Plug-in Hybrid Electric Vehicles (PHEVs) Overview Jim Francfort AVTA Principle Investigator Local Climate Leadership Summit May...

75

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Charging Rate Incentive - Hawaiian Electric Company to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Incentive - Hawaiian...

76

Plug-in Hybrid Electric Vehicle Charging Infrastructure Review  

NLE Websites -- All DOE Office Websites (Extended Search)

Vehicle Technologies Program - Advanced Vehicle Testing Activity Plug-in Hybrid Electric Vehicle Charging Infrastructure Review Final Report Battelle Energy Alliance Contract...

77

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Infrastructure Grants on Facebook Tweet about Alternative Fuels...

78

Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)  

DOE Green Energy (OSTI)

This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

Not Available

2012-04-01T23:59:59.000Z

79

Platform Engineering Applied to Plug-In Hybrid Electric Vehicles  

SciTech Connect

This paper quantifies the relative impacts of each platform engineering step on conventional, hybrid, and plug-in hybrid vehicle architectures.

Markel, T.

2007-05-01T23:59:59.000Z

80

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchand Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

including the Hybrid and Electric Vehicle Act of 1976. Suchand Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

82

Environmental Impacts of Plug-in Hybrid Electric Vehicles.  

E-Print Network (OSTI)

??The environmental and electric utility system impacts from plug?in hybrid electric vehicle (PHEV) infiltration in Michigan were examined from years 2010 to 2030 as part (more)

Camere, Aaron; Schafer, Allison; de Monasterio, Caroline

2010-01-01T23:59:59.000Z

83

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

Axsen, Jonn; Kurani, Kenneth S; Burke, Andy

2009-01-01T23:59:59.000Z

84

Vehicle Technologies Office: Plug-in Electric Vehicle Research...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Dramatic improvements in plug-in electric vehicle (PEV) performance and cost will require a well-coordinated research and development effort between DOE...

85

Are batteries ready for plug-in hybrid buyers?  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options for Compactof Plug-In Hybrid Electric Vehicles, Volume 1: Nationwideand Impacts of Hybrid Electric Vehicle Options, EPRI, Palo

Axsen, Jonn; Kurani, Kenneth S.; Burke, Andrew

2008-01-01T23:59:59.000Z

86

Are Batteries Ready for Plug-in Hybrid Buyers?  

E-Print Network (OSTI)

and impacts of hybrid electric vehicle options for compactof plug-in hybrid electric vehicles, vol. 1: nationwideimpacts of hybrid electric vehicle options. Report #1000349,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2010-01-01T23:59:59.000Z

87

News and Information about Plug-in Hybrids  

NLE Websites -- All DOE Office Websites (Extended Search)

New & Upcoming Plug-in Hybrids New 2014 Models Vehicle EPA MPG Estimates Availability & Price (MSRP) 2014 Honda Accord Midsize Car Chevrolet Volt Chart: Electricity, 115 mpge;...

88

Neutron Science TeraGrid Gateway  

Science Conference Proceedings (OSTI)

The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of $1.4 billion and is ramping up operations. The SNS will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.

Lynch, Vickie E [ORNL; Chen, Meili [ORNL; Cobb, John W [ORNL; Kohl, James Arthur [ORNL; Miller, Stephen D [ORNL; Speirs, David A [ORNL; Vazhkudai, Sudharshan S [ORNL

2010-01-01T23:59:59.000Z

89

Border Gateway Protocol - Robustness and Security  

Science Conference Proceedings (OSTI)

Border Gateway Protocol - Robustness and Security. Summary: This project focuses on Robustness, Security, and Scalability ...

2012-05-03T23:59:59.000Z

90

U-173: Symantec Web Gateway Multiple Vulnerabilities | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Symantec Web Gateway Multiple Vulnerabilities U-173: Symantec Web Gateway Multiple Vulnerabilities May 21, 2012 - 7:00am Addthis PROBLEM: Symantec Web Gateway Multiple...

91

Achieving Controllability of Plug-in Electric Ian Hiskens  

E-Print Network (OSTI)

aggregator. The aggregator acquires data from plug-in electric vehicle loads in its area, and builds loads are distributed throughout the grid, they provide the opportunity to devise spatially precise reAchieving Controllability of Plug-in Electric Vehicles Ian Hiskens Electrical Engineering

Hiskens, Ian A.

92

2010 Plug-In Hybrid and Electric Vehicle Research  

E-Print Network (OSTI)

2010 Plug-In Hybrid and Electric Vehicle Research Center TRANSPORTATION ENERGY RESEARCH PIER The PlugIn and Hybrid Electric Vehicle Researc Center conducts research in: · Battery second life applications. Plugin hybrid electric vehicles (PHEVs) and electric vehicles (EVs) are promising

93

DOE Announces International Agreement on Global Science Online Gateway |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Announces International Agreement on Global Science Online Announces International Agreement on Global Science Online Gateway DOE Announces International Agreement on Global Science Online Gateway June 12, 2008 - 1:30pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the establishment of a multilateral alliance to govern the rapidly growing online gateway to international scientific research information--WorldWideScience.org. Officials from organizations representing 38 countries formalized their commitment today in Seoul, Korea, by signing a WorldWideScience Alliance agreement to sustain and build upon joint efforts to provide a single, sophisticated point of access for diverse scientific resources and expertise from nations around the world. "WorldWideScience.org is already a wonderful tool for communication,

94

DOE Announces International Agreement on Global Science Online Gateway |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

International Agreement on Global Science Online International Agreement on Global Science Online Gateway DOE Announces International Agreement on Global Science Online Gateway June 12, 2008 - 1:30pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced the establishment of a multilateral alliance to govern the rapidly growing online gateway to international scientific research information--WorldWideScience.org. Officials from organizations representing 38 countries formalized their commitment today in Seoul, Korea, by signing a WorldWideScience Alliance agreement to sustain and build upon joint efforts to provide a single, sophisticated point of access for diverse scientific resources and expertise from nations around the world. "WorldWideScience.org is already a wonderful tool for communication,

95

Integrating plug-in electric vehicles into the electric power system.  

E-Print Network (OSTI)

??This dissertation contributes to our understanding of how plug-in hybrid electric vehicles (PHEVs) and plug-in battery-only electric vehicles (EVs)collectively termed plug-in electric vehicles (PEVs)could be (more)

Wu, Di

2012-01-01T23:59:59.000Z

96

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

design. Simulations of Prius plug-in hybrids were performedpresented for a plug-in Prius-type vehicle using differentchemistries Simulations of Prius plug-in hybrids have been

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

97

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andUC Davis Plug-in Hybrid Electric Vehicle Research Center and

Burke, Andrew

2009-01-01T23:59:59.000Z

98

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

for Plug-in Hybrid Electric Vehicles (PHEVs): Goals andE. , Plug-in Hybrid-Electric Vehicle Powertrain Design andLithium Batteries for Plug-in Electric Vehicles Andrew Burke

Burke, Andrew

2009-01-01T23:59:59.000Z

99

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

DOE Green Energy (OSTI)

Plug-in electric vehicles (PEVs)--which include all-electric vehicles and plug-in hybrid electric vehicles--provide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructure--from battery manufacturing to communication and control between the vehicle and the grid--must provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

Markel, T.

2010-04-01T23:59:59.000Z

100

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation  

E-Print Network (OSTI)

Plug-in electric vehicles (PEVs)which include all-electric vehicles and plug-in hybrid electric vehiclesprovide a new opportunity for reducing oil consumption by drawing power from the electric grid. To maximize the benefits of PEVs, the emerging PEV infrastructurefrom battery manufacturing to communication and control between the vehicle and the gridmust provide access to clean electricity, satisfy stakeholder expectations, and ensure safety. Currently, codes and standards organizations are collaborating on a PEV infrastructure plan. Establishing a PEV infrastructure framework will create new opportunities for business and job development initiating the move toward electrified transportation. This paper summarizes the components of the PEV infrastructure, challenges and opportunities related to the design and deployment of the infrastructure, and the potential benefits.

T. Markel Nrel; Tony Markel

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

Mgel. 2011. Modeling Electric Vehicle Benefits Connectedenvironmental value of plug-in electric vehicles connectedBattaglia. 2010. Plug-in Electric Vehicle Interactions with

Mendes, Goncalo

2013-01-01T23:59:59.000Z

102

Modeling of Plug-in Electric Vehicles' Interactions with a Sustainable...  

NLE Websites -- All DOE Office Websites (Extended Search)

of Plug-in Electric Vehicles' Interactions with a Sustainable Community Grid in the Azores Title Modeling of Plug-in Electric Vehicles' Interactions with a Sustainable Community...

103

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

supervises testing in the Hybrid Vehicle Propulsion SystemsChemistries for Plug-in Hybrid Vehicles Andrew Burke,batteries, plug-in hybrid vehicles, energy density, pulse

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

104

International Clean Energy Analysis Gateway: Assisting Developing Countries with Clean Energy Deployment (Fact Sheet)  

SciTech Connect

The International Clean Energy Analysis Gateway seeks to enhance developing country access to energy efficiency and renewable energy analysis tools, databases, methods, and other technical resources in a dynamic user interaction environment. In addition to providing information on available tools, the gateway also is a platform for Web seminars, online training, peer networks, and expert assistance. The gateway is sponsored by the U.S. Department of Energy (DOE) and the United Nations Industrial Development Organization (UNIDO) and managed by the National Renewable Energy Laboratory (NREL). Further cooperation is desired with organizations that can help expand the information presented in the portal and assist with outreach and training.

2010-01-01T23:59:59.000Z

105

Microsoft Word - Plug-in Hybrids.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Released on the Potential of Plug- Released on the Potential of Plug- In Hybrid Electric Vehicles JANUARY 2007 A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts would be of very high market penetrations of PHEVs. Researchers also found that in the Midwest and East there is sufficient

106

NREL: Vehicle Systems Analysis - Plug-In Hybrid Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Hybrid Electric Vehicles Plug-In Hybrid Electric Vehicles NREL's vehicle systems analysts work to advance the technology of plug-in hybrid electric vehicles (PHEVs), also known as grid-connected or grid-charged hybrids. Technology Targets and Metrics Analysis We use our Technical Targets Tool to determine pathways for maximizing the potential national impact of plug-in hybrid electric vehicles. This assessment includes consideration of how consumers will value the new vehicle technology based on attributes such as: Acceleration Fuel economy and consumption Cargo capacity Cost. We use the resulting competitiveness index to predict the vehicle's market penetration rate. Then, we can create a total national benefits picture after adding in other factors such as: Existing fleet turnover

107

Honey, Did You Plug in the Prius? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? July 7, 2009 - 5:07pm Addthis Francis X. Vogel Executive Director and Coordinator of the Wisconsin Clean Cities coalition An unexpected snowfall in late March prompted me to take my two daughters, Paloma and Ava, for a memorable afternoon of sledding and hot chocolate. However, before leaving home, I unplugged a cord from the standard 110-volt wall socket in my garage and did likewise from the port on the back of my 2007 Toyota Prius. I rolled up the cord, placed it in my trunk, and smoothly drove off. Nestled in my vehicle's spare tire well, a 200-pound lithium-ion battery pack allowed me to go up to 30 miles on electric power before recharging. Yes, I'm fortunate to be one of the only private owners of a plug-in

108

Honey, Did You Plug in the Prius? | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? Honey, Did You Plug in the Prius? July 7, 2009 - 5:07pm Addthis Francis X. Vogel Executive Director and Coordinator of the Wisconsin Clean Cities coalition An unexpected snowfall in late March prompted me to take my two daughters, Paloma and Ava, for a memorable afternoon of sledding and hot chocolate. However, before leaving home, I unplugged a cord from the standard 110-volt wall socket in my garage and did likewise from the port on the back of my 2007 Toyota Prius. I rolled up the cord, placed it in my trunk, and smoothly drove off. Nestled in my vehicle's spare tire well, a 200-pound lithium-ion battery pack allowed me to go up to 30 miles on electric power before recharging. Yes, I'm fortunate to be one of the only private owners of a plug-in

109

Microsoft Word - PLUG_IN_HYBRID_Manual Rev 2.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-07-12536 U.S. Department of Energy Vehicle Technologies Program Battery Test Manual For Plug-In Hybrid Electric Vehicles REVISION 2 DECEMBER 2010 The Idaho National...

110

Plug-in electric vehicle introduction in the EU  

E-Print Network (OSTI)

Plug-in electric vehicles (PEVs) could significantly reduce gasoline consumption and greenhouse gas (GHG) emissions in the EU's transport sector. However, PEV well-towheel (WTW) emissions depend on improvements in vehicle ...

Sisternes, Fernando J. de $q (Fernando Jos Sisternes Jimnez)

2010-01-01T23:59:59.000Z

111

Plug-In Hybrid Electric Vehicles - PHEV and HEV Batteries  

NLE Websites -- All DOE Office Websites (Extended Search)

Argonne is a major player in the Department of Energy's (DOE's) plug-in hybrid electric vehicle (PHEV) energy storage research and development (R&D) program. DOE has...

112

Cooperative Regulation of Emissions Using Plug-in Hybrid Vehicles  

Science Conference Proceedings (OSTI)

We exploit new types of vehicles, such as Plug-in Hybrid Electric Vehicles (PHEVs), to control transport related emissions in urban environments. By appropriately choosing whether single power-split hybrid vehicles should be operated in fully electric ...

A. Schlote, F. Hausler, T. Hecker, A. Bergmann, E. Crisostomi, I. Radusch, R. Shorten

2012-12-01T23:59:59.000Z

113

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Sorted by Type Plug-In Electric Vehicle (PEV) Charging Discount - GWP Glendale Water and Power (GWP) offers an electricity bill discount of 0.33 per day to residential...

114

Gateway:ECOWAS Clean Energy Gateway | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway ECOWAS Clean Energy Gateway Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo West Africa Organizations, Programs, and Tools Countries (15)

115

Argonne Transportation - Plug-in Hybrid Electric Vehicle Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Plug-in Hybrid Electric Vehicle Research Capabilities at Argonne National Laboratory and Idaho National Laboratory Prius testing by Argonne researchers. The U.S. Department of Energy's (DOE's) FreedomCAR and Vehicle Technologies (FCVT) Program is actively evaluating plug-in hybrid electric vehicle (PHEV) technology and researching the most critical technical barriers to commercializing PHEVs. Argonne National Laboratory, working together with Idaho National Laboratory, leads DOE's efforts to evaluate PHEVs and PHEV technology with the nation’s best vehicle technology evaluation tools and expertise. These two national laboratories are Centers for Excellence that combine state-of-the-art facilities; world-class expertise; long-term collaborative relationships with other DOE national laboratories, industry, and academia;

116

Green Power: Make Your Plug-in Vehicle Even Greener  

NLE Websites -- All DOE Office Websites (Extended Search)

Green Power: Make Your Plug-in Vehicle Even Greener Green Power: Make Your Plug-in Vehicle Even Greener Your plug-in hybrid or all-electric vehicle can help reduce oil dependence. It can also reduce emissions of greenhouse gases (GHGs) that lead to climate change if the electricity you use is produced by renewable energy. Even if most of the electricity in your area is generated by coal or other fossil fuels, you may be able to purchase green power for your vehicle. What Is Green Power? Green Power is electricity generated wholly or in part from renewable energy sources, such as wind and solar power, geothermal, hydropower, and various forms of biomass. The actual electricity delivered to your outlet may not be green, but your purchase of green power ensures that the power company generates that amount of power from renewable energy or purchases it from another provider

117

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Tax Credit

118

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Rebate - PECO to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Rebate - PECO on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Rebate - PECO

119

Plug-In Electric Vehicle Infrastructure Installation Guidelines  

Science Conference Proceedings (OSTI)

In the next five years, major automobile manufacturers are poised to deliver over a dozen electric vehicle (EV) and plug-in hybrid electric (PHEV) models. The cost savings to consumers and the positive impact on the environment will be significant. One of the chief remaining obstacles to widespread adoption of electric vehicles, however, is the scarcity of recharging facilities for PEVs.

2009-09-25T23:59:59.000Z

120

Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)  

DOE Green Energy (OSTI)

Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

Not Available

2012-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Plug-In Electric Vehicle Handbook for Consumers (Brochure)  

DOE Green Energy (OSTI)

Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for consumers describes the basics of PEV technology, PEV benefits, how to select the right PEV, charging a PEV, and PEV maintenance.

Not Available

2011-09-01T23:59:59.000Z

122

Communications Requirements for Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

This report describes a set of functional requirements for Plug-in Electric Vehicle communications in a manner that can be utilized to evaluate multiple technologies. In conjunction with another technical update focusing on test requirements for the communications technologies, this document provides a roadmap to selecting an appropriate communications technology for SAE (Society of Automotive Engineers) Standard J2931.

2010-12-31T23:59:59.000Z

123

Plug-In Electric Vehicle Handbook for Electrical  

E-Print Network (OSTI)

-based fuel while driving and produce no tailpipe emissions . EVSE (electric vehicle supply equipment) deliv a PEV requires plugging in to elec- tric vehicle supply equipment (EVSE, Figure 1). There are various communicates with the vehicle to ensure that an appropriate and safe flow of electricity is supplied. EVSE

124

Plug-In Hybrid Electric Vehicle Value Proposition Study  

E-Print Network (OSTI)

data for modeling the 2030 power system. The load forecasts, fuel price forecasts, and generation.37 Electrical Accessory Load (W) 260 260 260 A/C Load (W)8 1088 1088 1344 Engine Specific Power (W/kg) 920 920Plug-In Hybrid Electric Vehicle Value Proposition Study Phase 1, Task 2: Select Value Propositions

Pennycook, Steve

125

Plug-in Electric Vehicle to Grid Interface Requirements  

Science Conference Proceedings (OSTI)

This document provides technical requirements to ensure that plug-in electric vehicles (PEVs) will be designed for electric grid compatibility. It organizes the applicable current and future standards in an overview format, as well as providing a context as to the importance and usefulness of these standards to the utility industry.

2009-12-08T23:59:59.000Z

126

Plug-in-hybrid electric vehicles park as virtual DVR  

E-Print Network (OSTI)

Plug-in-hybrid electric vehicles park as virtual DVR F.R. Islam and H.R. Pota Dynamic voltage in a real-life low voltage power system. Hybrid-electric power technologies and advances in batteries make electric vehicle (PHEV) batteries and their bidirectional charger in a charging station as virtual dynamic

Pota, Himanshu Roy

127

Investigating Plug-in Electric Vehicle Charging Stations in Microgrid  

Science Conference Proceedings (OSTI)

PHEVs/PEVs have received increasing attention because of their low pollution emissions, low energy dependence, and high fuel economy. In the near future, most PHEV/PEV enabled parking decks are expected to be powered by small-scale and onsite distributed ... Keywords: Plug-in Electric Vehicle, Microgrid, Smart Grid

Mengqi Wang; Tao Jin

2012-10-01T23:59:59.000Z

128

International Clean Energy Analysis Gateway: Assisting Developing...  

NLE Websites -- All DOE Office Websites (Extended Search)

expand the information presented in the portal and assist with outreach and training. openei.orgICEA Expert and International Networks Gateway Design Analysis data, tools, and...

129

U-219: Symantec Web Gateway Input Validation Flaws Lets Remote...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

9: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords U-219: Symantec Web Gateway Input...

130

T-663: Cisco Content Services Gateway ICMP Processing Flaw Lets...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

device. Note: The Cisco Gateway GPRS Support Node (GGSN), the Cisco Mobile Wireless Home Agent (HA), the Cisco Wireless Security Gateway (WSG), the Cisco Broadband Wireless...

131

Northeast Gateway Natural Gas LNG Imports (Price) From Qatar...  

Gasoline and Diesel Fuel Update (EIA)

Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per Thousand Cubic Feet) Northeast Gateway Natural Gas LNG Imports (Price) From Qatar (Dollars per Thousand...

132

GPSI: General-Purpose Science Gateway Infrastructure | Argonne...  

NLE Websites -- All DOE Office Websites (Extended Search)

GPSI: General-Purpose Science Gateway Infrastructure GPSI: General-Purpose Science Gateway Infrastructure GPSI is a generic portal infrastructure for building a wide range of...

133

Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports...  

U.S. Energy Information Administration (EIA) Indexed Site

Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic Feet) Northeast Gateway, LA Natural Gas Liquefied Natural Gas Imports from Egypt (Million Cubic...

134

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SMUD on AddThis.com...

135

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rates - Indianapolis Power & Light on Digg Find More places to share Alternative Fuels Data Center: Plug-In

136

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Information Disclosure to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Information Disclosure on AddThis.com... More in this section... Federal State Advanced Search

137

Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid Electric Vehicle (PHEV) Tax Credit on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

138

Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Qualified Plug-In Qualified Plug-In Electric Drive Motor Vehicle Tax Credit to someone by E-mail Share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Facebook Tweet about Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Twitter Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Google Bookmark Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Delicious Rank Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on Digg Find More places to share Alternative Fuels Data Center: Qualified Plug-In Electric Drive Motor Vehicle Tax Credit on AddThis.com... More in this section...

139

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate - APS to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate - APS on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

140

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Demonstration Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Demonstration Grants on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Parking Regulation to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Parking Regulation on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

142

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - NV Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - NV Energy on AddThis.com...

143

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Parking Requirement to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Parking Requirement on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

144

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Charging Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on AddThis.com...

145

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Rate Incentive - Alabama Power on

146

Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Provision for Plug-In Provision for Plug-In Electric Vehicle (PEV) Charging Incentives to someone by E-mail Share Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Facebook Tweet about Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Twitter Bookmark Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Google Bookmark Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Delicious Rank Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on Digg Find More places to share Alternative Fuels Data Center: Provision for Plug-In Electric Vehicle (PEV) Charging Incentives on AddThis.com...

147

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Dakota Electric on Digg Find More places to share Alternative Fuels Data Center: Plug-In

148

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and Plug-In Hybrid and Plug-In Electric Vehicle Conversions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Conversions on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Vehicles

149

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

Chemistries for Plug-in Hybrid Vehicles, EVS-24, Stavanger,ion batteries in the Hybrid Vehicle Propulsion System Lab atIn the case of plug-in hybrid vehicles, there is much design

Burke, Andrew

2009-01-01T23:59:59.000Z

150

Plug-in Electric Vehicle Interactions with a Small Office Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM Title Plug-in Electric Vehicle Interactions with a Small Office Building: An...

151

V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks June 24, 2013 -...

152

DOE Hydrogen Analysis Repository: Impact of Plug-in Hybrid Vehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Plug-in Hybrid Vehicles on the Electric Grid Project Summary Full Title: Impact of Plug-in Hybrid Vehicles on the Electric Grid Project ID: 228 Principal Investigator:...

153

Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle Charging Rate Incentive - Georgia Power on AddThis.com...

154

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - Indiana Michigan Power on Digg Find More places to share Alternative Fuels Data Center: Plug-In

155

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) Promotion and Coordination to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Promotion and Coordination on AddThis.com... More in this section...

156

Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Hybrid and Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates to someone by E-mail Share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Facebook Tweet about Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Twitter Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Google Bookmark Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Delicious Rank Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on Digg Find More places to share Alternative Fuels Data Center: Plug-In Hybrid and Zero Emission Light-Duty Vehicle Rebates on AddThis.com...

157

Cost-Benefit Analysis of Plug-In Hybrid-Electric Vehicle Technology (Presentation)  

DOE Green Energy (OSTI)

Presents a cost-benefit of analysis of plug-in hybrid electric vehicle technology, including potential petroleum use reduction.

Pesaran, A.; Markel, T.; Simpson, A.

2006-10-01T23:59:59.000Z

158

Description of a Basic Vehicle Control Strategy for a Plug-In Hybrid Vehicle  

Science Conference Proceedings (OSTI)

This report describes development of a basic powertrain control strategy for a plug-in hybrid electric vehicle (PHEV).

2007-03-28T23:59:59.000Z

159

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

of using plug-in hybrid electric vehicle battery packs forImpacts of Plug-In Hybrid Electric Vehicles on RegionalDispatched Plug-in Hybrid Electric Vehicles, National

Momber, Ilan

2010-01-01T23:59:59.000Z

160

Load Scheduling and Dispatch for Aggregators of Plug-In Electric Vehicles  

E-Print Network (OSTI)

and environmental problems worldwide [2], [3]. PEVs--either plug-in hybrid electric vehicles or pure electric1 Load Scheduling and Dispatch for Aggregators of Plug-In Electric Vehicles Di Wu, Student Member proposes an operating framework for aggregators of plug-in electric vehicles (PEVs). First, a minimum- cost

Tesfatsion, Leigh

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Investigation of Enabling Wind Generations Employing Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

1 Investigation of Enabling Wind Generations Employing Plug-in Hybrid Electric Vehicles Mahdi challenges such as mitigating variability. Plug-in hybrid Electric Vehicles (PHEVs) have been considered the variability in wind generation could be to use a fleet of Plug-in Hybrid Electric Vehicles (PHEVs

162

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in  

E-Print Network (OSTI)

Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks Committee Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks) Departmental Member Plug-in hybrid electric vehicles (PHEVs) represent a promising future direction

Victoria, University of

163

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES  

E-Print Network (OSTI)

A STOCHASTIC OPTIMAL CONTROL APPROACH FOR POWER MANAGEMENT IN PLUG-IN HYBRID ELECTRIC VEHICLES.e., the engine and electric machines) in a plug-in hybrid electric vehicle (PHEV). Existing studies focus mostly. INTRODUCTION This paper examines plug-in hybrid electric vehicles (PHEVs), i.e., automobiles that can extract

Krstic, Miroslav

164

Advanced Battery Testing for Plug-in Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The Sprinter van is a Plug-in Hybrid-Electric Vehicle (PHEV) developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. This report provides details of testing conducted on two different types of batteries used in these vehicles: VARTA nickel-metal hydride batteries and SAFT lithium ion batteries. Testing focused on long-term battery durability, using a test profile developed to simulate the battery duty cycle of a PHEV Sprinter

2008-12-18T23:59:59.000Z

165

Comparative Modeling Analysis of Plug-in Electric Vehicle Architectures  

Science Conference Proceedings (OSTI)

This report describes the assumptions and results for advanced vehicle simulation analysis. A midsize sedan was used to investigate the conventional, pre-transmission parallel, input power-split, series, and full electric architectures. Variations of these architectures were also investigated such as charge-sustaining hybrid electric vehicles, charge-depleting plug-in hybrid electric vehicles, and extended-range electric-vehicles (EREVs). The differences in these vehicle architectures and variations are ...

2010-12-21T23:59:59.000Z

166

Plug-In Electric Vehicle Evaluation and Test Data Analysis  

Science Conference Proceedings (OSTI)

The goal of this analysis was to investigate the different impacts that driver behavior and environment can have on fuel economy and battery energy consumption in plug-in hybrid electric vehicles (PHEVs). Specifically, the PHEVs studied were part of the Ford Escape Advanced Research Fleet, which is composed of over 20 vehicles used by utilities and government agencies during a multi-year project. Results of this analysis can be used to educate drivers with more optimal driving practices to maximize ...

2012-12-20T23:59:59.000Z

167

Plug-in Hybrid Electric Vehicle Powertrain Requirements  

Science Conference Proceedings (OSTI)

This study examines the prospects for near-term commercialization of plug-in hybrid electric vehicles (PHEVs) assuming that current commercial hybrid electric vehicle powertrains are scaled up to allow increased electric range. Based on the strict performance requirements of the automotive industry and the requirements for minimizing emissions, these near-term PHEVs will require the engine to be used, even during grid-powered operation. The reasons for this are explained by comparing the acceleration cap...

2006-11-21T23:59:59.000Z

168

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onof using plug-in hybrid electric vehicle battery packs forN ATIONAL L ABORATORY Plug-in Electric Vehicle Interactions

Momber, Ilan

2010-01-01T23:59:59.000Z

169

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

detour? Presentation at SAE 2008 Hybrid Vehicle Technologiesdrive vehicles, including plug-in hybrid vehicles. -vi-including plug-in hybrid vehicles. 7.0 References Anderman,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

170

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

and Batteries for Hybrid Vehicle Applications, 23 rdSimulations of Plug-in Hybrid Vehicles using Advancedultracapacitors in plug-in hybrid vehicles (PHEVs) with high

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

171

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

of advanced batteries for plug-in hybrid electric vehicle (Advanced Lithium-Ion Batteries for Plug- in Hybrid-Electric Vehicles,

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

172

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM  

E-Print Network (OSTI)

Environmental Benefits of Electric Vehicles Integration onusing plug-in hybrid electric vehicle battery packs for gridL ABORATORY Plug-in Electric Vehicle Interactions with a

Momber, Ilan

2010-01-01T23:59:59.000Z

173

Definition: Plug-in Electric Vehicle Charging Station | Open Energy  

Open Energy Info (EERE)

Plug-in Electric Vehicle Charging Station Plug-in Electric Vehicle Charging Station Jump to: navigation, search Dictionary.png Plug-in Electric Vehicle Charging Station A device or station that provides power to charge the batteries of an electric vehicle. These chargers are classified according to output voltage and the rate at which they can charge a battery. Level 1 charging is the slowest, and can be done through most wall outlets at 120 volts and 15 amps AC. Level 2 charging is faster, and is done at less than or equal to 240 volts and 60 amps AC, with a power output of less than or equal to 14.4 kW. Level 3 charging is fastest, and can be done with power output of greater than 14.4 kW. Level 1 and 2 charging can be done at home with the proper equipment, and Level 2 and 3 charging can be done at fixed public charging

174

Study Released on the Potential of Plug-In Hybrid Electric Vehicles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts

175

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Definition to someone by E-mail Definition to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Definition on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type Plug-In Electric Vehicle (PEV) Definition A PEV is defined as a vehicle that:

176

Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Maintenance and Safety Maintenance and Safety of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Maintenance and Safety of Hybrid and Plug-In Electric Vehicles on AddThis.com...

177

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

178

Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Availability of Hybrid Availability of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Availability of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

179

Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

UC Davis Pioneers UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Google Bookmark Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Delicious Rank Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: UC Davis Pioneers Research for Plug-In Hybrid Electric Vehicles on AddThis.com...

180

Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Fisher Coachworks Fisher Coachworks Develops Plug-In Electric Bus in Michigan to someone by E-mail Share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Facebook Tweet about Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Twitter Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Google Bookmark Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Delicious Rank Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on Digg Find More places to share Alternative Fuels Data Center: Fisher Coachworks Develops Plug-In Electric Bus in Michigan on AddThis.com...

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

North Carolina Airport North Carolina Airport Advances With Plug-In Electric Buses to someone by E-mail Share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Facebook Tweet about Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Twitter Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Google Bookmark Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Delicious Rank Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on Digg Find More places to share Alternative Fuels Data Center: North Carolina Airport Advances With Plug-In Electric Buses on AddThis.com...

182

Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Authorization for Authorization for Plug-In Electric Vehicle Charging Rate Incentives to someone by E-mail Share Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Facebook Tweet about Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Twitter Bookmark Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Google Bookmark Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Delicious Rank Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on Digg Find More places to share Alternative Fuels Data Center: Authorization for Plug-In Electric Vehicle Charging Rate Incentives on

183

Study Released on the Potential of Plug-In Hybrid Electric Vehicles |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles Study Released on the Potential of Plug-In Hybrid Electric Vehicles January 19, 2007 - 10:44am Addthis Study Released on the Potential of Plug-In Hybrid Electric Vehicles A new study released on Plug-in Hybrid Electric Vehicles (PHEVs) found there is enough electric capacity to power plug-in vehicles across much of the nation. The Office of Electricity Delivery and Energy Reliability supported researchers at the Pacific Northwest National Laboratory to develop this study that found "off-peak" electricity production and transmission capacity could fuel 84 percent of the 198 million cars, pickup trucks, and sport utility vehicles (SUVs) in the nation if they were plug-in hybrid electrics. This is the first review of what the impacts

184

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) High Occupancy Vehicle (HOV) Lane and Parking Fee Exemptions on Digg

185

Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Oregon Leads the Oregon Leads the Charge for Plug-In Vehicles and Infrastructure to someone by E-mail Share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Facebook Tweet about Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Twitter Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Google Bookmark Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Delicious Rank Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on Digg Find More places to share Alternative Fuels Data Center: Oregon Leads the Charge for Plug-In Vehicles and Infrastructure on AddThis.com...

186

Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Deployment of Hybrid Deployment of Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Deployment of Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

187

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Electric Vehicle Supply Equipment (EVSE) Grants on Digg

188

Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Commercial Plug-In Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power to someone by E-mail Share Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Facebook Tweet about Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Twitter Bookmark Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Google Bookmark Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Delicious Rank Alternative Fuels Data Center: Commercial Plug-In Electric Vehicle (PEV) Grant Program - Central Maine Power on Digg Find More places to share Alternative Fuels Data Center: Commercial

189

Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Batteries for Hybrid Batteries for Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Batteries for Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

190

Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Developing Developing Infrastructure to Charge Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Developing Infrastructure to Charge Plug-In Electric Vehicles on AddThis.com...

191

Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Los Angeles' Sets the Los Angeles' Sets the Stage for Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Los Angeles' Sets the Stage for Plug-In Electric Vehicles on AddThis.com... April 18, 2011

192

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction and Rebate - Consumers Energy on Digg

193

Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Los Angeles Saves With Los Angeles Saves With Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Los Angeles Saves With Hybrid and Plug-In Electric Vehicles on AddThis.com...

194

Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions from Hybrid Emissions from Hybrid and Plug-In Electric Vehicles to someone by E-mail Share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Facebook Tweet about Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Twitter Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Google Bookmark Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Delicious Rank Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on Digg Find More places to share Alternative Fuels Data Center: Emissions from Hybrid and Plug-In Electric Vehicles on AddThis.com... More in this section... Electricity Basics Benefits & Considerations

195

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-In Electric Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Road Impact Fee Study on Digg

196

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Plug-in Electric Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) and Hybrid Electric Vehicle (HEV) Registration Fees on Digg

197

Solid State Lighting: GATEWAY and CALiPER  

NLE Websites -- All DOE Office Websites (Extended Search)

Marc Ledbetter Marc Ledbetter Pacific Northwest National Laboratory Marc.Ledbetter@pnnl.gov 503.417.7557 April 3, 2013 Solid State Lighting: GATEWAY & CALiPER Solid State Lighting: GATEWAY & CALiPER 2 | Building Technologies Office eere.energy.gov GATEWAY Problem Statement GATEWAY includes Muni Consortium Multi-Year Market Development Support Plan * IDs 5 key market barriers. Most relevant to GATEWAY are: - Lack of information for buyers and lighting professionals - High transaction costs

198

Solid State Lighting: GATEWAY and CALiPER  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Marc Ledbetter Marc Ledbetter Pacific Northwest National Laboratory Marc.Ledbetter@pnnl.gov 503.417.7557 April 3, 2013 Solid State Lighting: GATEWAY & CALiPER Solid State Lighting: GATEWAY & CALiPER 2 | Building Technologies Office eere.energy.gov GATEWAY Problem Statement GATEWAY includes Muni Consortium Multi-Year Market Development Support Plan * IDs 5 key market barriers. Most relevant to GATEWAY are: - Lack of information for buyers and lighting professionals - High transaction costs

199

Bond strength of cementitious borehole plugs in welded tuff  

Science Conference Proceedings (OSTI)

Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

Akgun, H.; Daemen, J.J.K. [Arizona Univ., Tucson, AZ (USA). Dept. of Mining and Geological Engineering

1991-02-01T23:59:59.000Z

200

Influence of driving patterns on life cycle cost and emissions of hybrid and plug-in electric vehicle powertrains  

E-Print Network (OSTI)

assessment Plug-in hybrid electric vehicles a b s t r a c t We compare the potential of hybrid, extended-range plug-in hybrid, and battery electric vehicles to reduce lifetime cost and life cycle greenhouse gas, 2009­04­11). Plug-in vehicles, including plug-in hybrid electric vehicles (PHEVs) and battery electric

Michalek, Jeremy J.

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Compact Fluorescent Plug-In Ballast-in-a-Socket  

Science Conference Proceedings (OSTI)

The primary goal of this program was to develop a ballast system for plug-in CFLs (compact fluorescent lamps) that will directly replace standard metal shell, medium base incandescent lampholders (such as Levition No. 6098) for use with portable lamp fixtures, such as floor, table and desk lamps. A secondary goal was to identify a plug-in CFL that is optimized for use with this ballast. This Plug-in CFL Ballastin-a-Socket system will allow fixture manufacturers to easily manufacture CFL-based high-efficacy portable fixtures that provide residential and commercial consumers with attractive, cost-effective, and energy-efficient fixtures for use wherever portable incandescent fixtures are used today. The advantages of this proposed system over existing CFL solutions are that the fixtures can only be used with high-efficacy CFLs, and they will be more attractive and will have lower life-cycle costs than screw-in or adapter-based CFL retrofit solutions. These features should greatly increase the penetration of CFL's into the North American market. Our work has shown that using integrated circuits it is quite feasible to produce a lamp-fixture ballast of a size comparable to the current Edison-screw 3-way incandescent fixtures. As for price points for BIAS-based fixtures, end-users polled by the Lighting Research Institute at RPI indicated that they would pay as much as an additional $10 for a lamp containing such a ballast. The ballast has been optimized to run with a 26 W amalgam triple biax lamp in the base-down position, yet can accept non-amalgam versions of the lamp. With a few part alterations, the ballast can be produced to support 32 W lamps as well. The ballast uses GE's existing L-Comp[1] power topology in the circuit so that the integrated circuit design would be a design that could possibly be used by other CFL and EFL products with minor modifications. This gives added value by reducing cost and size of not only the BIAS, but also possibly other integral CFL and future dimmable integral and plug-in versions of the EFL products.

Rebecca Voelker

2001-12-21T23:59:59.000Z

202

Plug-In Hybrid Vehicle Analysis (Milestone Report)  

DOE Green Energy (OSTI)

NREL's plug-in hybrid electric vehicle (PHEV) analysis activities made great strides in FY06 to objectively assess PHEV technology, support the larger U.S. Department of Energy PHEV assessment effort, and share technical knowledge with the vehicle research community and vehicle manufacturers. This report provides research papers and presentations developed in FY06 to support these efforts. The report focuses on the areas of fuel economy reporting methods, cost and consumption benefit analysis, real-world performance expectations, and energy management strategies.

Markel, T.; Brooker, A.; Gonder, J.; O'Keefe, M.; Simpson, A.; Thornton, M.

2006-11-01T23:59:59.000Z

203

Plug-In Electric Vehicle Adoption and Load Forecasting  

Science Conference Proceedings (OSTI)

This report provides a status update on the Electric Power Research Institutes (EPRIs) ongoing research into the market adoption of plug-in electric vehicles (PEVs). The PEV market currently includes 13 passenger vehicle models, with 5 more expected by the end of 2013. More than 58,000 PEVs were sold during the 23 months since vehicles became available from major manufacturers, and cumulative sales are expected to surpass 500,000 vehicles by 2015.To help utility planners ...

2012-12-31T23:59:59.000Z

204

Plug-In Hybrid Electric Vehicle Performance Analysis  

Science Conference Proceedings (OSTI)

This report describes the performance testing of two configurations of the Plug-in Hybrid-Electric Vehicle (PHEV) Sprinter van developed by EPRI and Daimler for use in delivering cargo, carrying passengers, or fulfilling a variety of specialty applications. One configuration, California 1 (CA-1) has a Nickel Metal Hydride (NiMH) battery pack. The other, California 2 (CA-2) has a Lithium Ion (Li-Ion) battery pack. California 2 showed better fuel and energy economy in all aspects of testing.

2008-03-27T23:59:59.000Z

205

Method for preventing plugging in the pyrolysis of agglomerative coals  

SciTech Connect

To prevent plugging in a pyrolysis operation where an agglomerative coal in a nondeleteriously reactive carrier gas is injected as a turbulent jet from an opening into an elongate pyrolysis reactor, the coal is comminuted to a size where the particles under operating conditions will detackify prior to contact with internal reactor surfaces while a secondary flow of fluid is introduced along the peripheral inner surface of the reactor to prevent backflow of the coal particles. The pyrolysis operation is depicted by two equations which enable preselection of conditions which insure prevention of reactor plugging.

Green, Norman W. (Upland, CA)

1979-01-23T23:59:59.000Z

206

Plug-In Hybrid Electric Vehicle Penetration Scenarios  

DOE Green Energy (OSTI)

This report examines the economic drivers, technology constraints, and market potential for plug-in hybrid electric vehicles (PHEVs) in the U.S. A PHEV is a hybrid vehicle with batteries that can be recharged by connecting to the grid and an internal combustion engine that can be activated when batteries need recharging. The report presents and examines a series of PHEV market penetration scenarios. Based on input received from technical experts and industry representative contacted for this report and data obtained through a literature review, annual market penetration rates for PHEVs are presented from 2013 through 2045 for three scenarios. Each scenario is examined and implications for PHEV development are explored.

Balducci, Patrick J.

2008-04-03T23:59:59.000Z

207

Advanced Components for Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

Adoption of plug-in electric vehicles (PEVs) and battery electric vehicles (BEVs) is expected to grow in the near future. The cost of several key subcomponents must decrease in order to make them a commercial success. The battery and power train are some of these key components. This report looks at the cost of lithium-ion batteries, the status of current technologies, feasibility and prospects of advanced technologies such as lithium-air, and recent developments in electric propulsion motors. The first ...

2011-12-23T23:59:59.000Z

208

Experimental investigations on sodium plugging in narrow flow channels.  

SciTech Connect

A series of experiments was performed to investigate the potential for plugging of narrow flow channels of sodium by impurities (e.g., oxides). In the first phase of the experiments, clean sodium was circulated through the test sections simulating flow channels in a compact diffusion-bonded heat exchanger such as a printed circuit heat exchanger. The primary objective was to see if small channels whose cross sections are semicircles of 2, 4, and 6 mm in diameter are usable in liquid sodium applications where sodium purity is carefully controlled. It was concluded that the 2-mm channels, the smallest of the three, could be used in clean sodium systems at temperatures even as low as 100 to 110 C without plugging. In the second phase, sodium oxide was added to the loop, and the oxygen concentration in the liquid sodium was controlled by means of varying the cold-trap temperature. Intentional plugging was induced by creating a cold spot in the test sections, and the subsequent plugging behavior was observed. It was found that plugging in the 2-mm test section was initiated by lowering the cold spot temperature below the cold-trap temperature by 10 to 30 C. Unplugging of the plugged channels was accomplished by heating the affected test section.

Momozaki, Y.; Cho, D. H.; Sienicki, J. J.; Moisseytsev, A.; Nuclear Engineering Division

2010-08-01T23:59:59.000Z

209

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

210

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

SCE to someone by E-mail SCE to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - SCE on AddThis.com... More in this section... Federal State Advanced Search

211

Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Alternative Fuel and Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations to someone by E-mail Share Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Facebook Tweet about Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Twitter Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Google Bookmark Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Delicious Rank Alternative Fuels Data Center: Alternative Fuel and Plug-in Hybrid Electric Vehicle Retrofit Regulations on Digg Find More places to share Alternative Fuels Data Center: Alternative

212

Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

in Electric in Electric Vehicle (PEV) Charging Regulation Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Google Bookmark Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Delicious Rank Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-in Electric Vehicle (PEV) Charging Regulation Exemption on AddThis.com...

213

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Emissions Inspection Exemption to someone by E-mail Emissions Inspection Exemption to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Emissions Inspection Exemption on AddThis.com... More in this section...

214

Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions to someone by E-mail Share Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Facebook Tweet about Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Twitter Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Google Bookmark Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Delicious Rank Alternative Fuels Data Center: Hybrid and Plug-In Electric Vehicle Emissions Data Sources and Assumptions on Digg

215

Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

in Public to someone by E-mail in Public to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on Digg Find More places to share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles in Public on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Charging at Home Charging in Public

216

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1:  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions In the most comprehensive environmental assessment of electric transportation to date, the Electric Power Research Institute (EPRI) and the Natural Resources Defense Council (NRDC) are examining the greenhouse gas emissions and air quality impacts of plug-in hybrid electric vehicles (PHEV). Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions More Documents & Publications Asia/ITS Vehicle Electrification is Key to Reducing Petroleum Dependency and Greenhouse Gas Emission Plug-In Hybrid Electric Vehicles

217

Charging Your Plug-in Electric Vehicle at Home | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home Charging Your Plug-in Electric Vehicle at Home May 13, 2013 - 3:45pm Addthis Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute. Consider the convenient options for plugging in an electric vehicle at home. | Photo courtesy of Tony Markel , NREL 18488. Chart showing EV Level 2 electricity compared with other home appliances. | Image courtesy of Pecan Street Research Institute.

218

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

219

Fun Fact Friday: Plug-in Hybrid Edition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fun Fact Friday: Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition September 27, 2013 - 11:50am Addthis Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Paul Lester Communications Specialist for the Office of Energy Efficiency and Renewable Energy Today we are introducing a new weekly feature on EERE Blog that highlights-you guessed it-fun facts about clean energy. For our inaugural edition, we are spotlighting plug-in hybrid electric vehicles (PHEVs). With the ability to use their internal combustion engine after

220

Fun Fact Friday: Plug-in Hybrid Edition | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-in Hybrid Edition Plug-in Hybrid Edition Fun Fact Friday: Plug-in Hybrid Edition September 27, 2013 - 11:50am Addthis Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Plug-in electric vehicles, such as the Chevrolet Volt, run on electricity for short trips but use gasoline for longer trips. | Department of Energy photo Paul Lester Communications Specialist, Office of Energy Efficiency and Renewable Energy Today we are introducing a new weekly feature on EERE Blog that highlights-you guessed it-fun facts about clean energy. For our inaugural edition, we are spotlighting plug-in hybrid electric vehicles (PHEVs). With the ability to use their internal combustion engine after

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

In Electric In Electric Vehicle (PEV) Charging Signage and Parking Regulations to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Signage and Parking Regulations on

222

NREL: Fleet Test and Evaluation - Electric and Plug-In Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Electric and Plug-In Hybrid Electric Drive Systems Electric and Plug-In Hybrid Electric Drive Systems NREL's Fleet Test and Evaluation Team conducts performance evaluations of electric and plug-in hybrid electric drive systems in medium-duty trucks operated by fleets. Photo of medium-duty truck with the words "All Electric Vehicle" and "Plug-in" written on its side. NREL evaluates the performance of electric and plug-in hybrid electric vehicles in fleet operation. All-electric vehicles (EVs) use batteries to store the electric energy that powers the motor. EV batteries are charged by plugging the vehicle into an electric power source. Plug-in hybrid electric vehicles (PHEVs) are powered by an internal combustion engine that can run on conventional or alternative fuels and an electric motor that uses energy stored in batteries. The vehicle can be

223

Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Local Government Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements to someone by E-mail Share Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Facebook Tweet about Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Twitter Bookmark Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Google Bookmark Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Delicious Rank Alternative Fuels Data Center: Local Government Plug-in Electric Vehicle (PEV) Infrastructure Requirements on Digg Find More places to share Alternative Fuels Data Center: Local

224

Alternative Fuels Data Center: Electricity Provider and Plug-In Electric  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Electricity Provider Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations to someone by E-mail Share Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Facebook Tweet about Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Twitter Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Google Bookmark Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Delicious Rank Alternative Fuels Data Center: Electricity Provider and Plug-In Electric Vehicle (PEV) Charging Rate Regulations on Digg Find More places to share Alternative Fuels Data Center: Electricity

225

Clean Cities Coalitions Charge Up Plug-In Electric Vehicles | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Cities Coalitions Charge Up Plug-In Electric Vehicles Cities Coalitions Charge Up Plug-In Electric Vehicles Clean Cities Coalitions Charge Up Plug-In Electric Vehicles May 9, 2013 - 4:22pm Addthis Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Workers put the finishing touches on installing a plug-in electric vehicle charger that is part of the West Coast Electric Highway. | Photo courtesy of Columbia-Willamette Clean Cities Coalition. Shannon Brescher Shea Communications Manager, Clean Cities Program What are the key facts? Clean Cities coalitions all across the country are using local knowledge to help their communities get ready for plug-in electric vehicles

226

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

LADWP to someone by E-mail LADWP to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Rate Reduction - LADWP on AddThis.com... More in this section... Federal State

227

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Charging Requirements to someone by E-mail Charging Requirements to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on Digg Find More places to share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) Charging Requirements on AddThis.com... More in this section... Federal State Advanced Search All Laws & Incentives Sorted by Type

228

Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

at Home to someone by E-mail at Home to someone by E-mail Share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Facebook Tweet about Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Twitter Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Google Bookmark Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Delicious Rank Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on Digg Find More places to share Alternative Fuels Data Center: Charging Plug-In Electric Vehicles at Home on AddThis.com... More in this section... Electricity Basics Benefits & Considerations Stations Locations Infrastructure Development Charging at Home Charging in Public Vehicles

229

Plug-In Hybrid Electric Vehicle Energy Storage System Design: Preprint  

DOE Green Energy (OSTI)

This paper discusses the design options for a plug-in hybrid electric vehicle, including power, energy, and operating strategy as they relate to the energy storage system.

Markel, T.; Simpson, A.

2006-05-01T23:59:59.000Z

230

Understanding the effects and infrastrcuture needs of plug-in electric vehicle (pev) charging.  

E-Print Network (OSTI)

??Plug-in electric vehicles (PEV) are any vehicle that uses electricity to propel the vehicle, potentially in combination with other fuels like gasoline, diesel or hydrogen. (more)

Davis, Barbara Morgan

2010-01-01T23:59:59.000Z

231

Modeling of Plug-in Electric Vehicles Interactions with a Sustainable Community Grid in the Azores  

E-Print Network (OSTI)

storage. Keywords: Distributed Generation, Plug-in Electrichighly efficient distributed generation sources such as fuelprofiles of a set of distributed generation technologies

Mendes, Goncalo

2013-01-01T23:59:59.000Z

232

Plug-in Hybrid Modeling and Application: Cost/Benefit Analysis (Presentation)  

DOE Green Energy (OSTI)

Presents data from a simulation of plug-in hybrid electric vehicle efficiency and cost, including baseline vehicle assumptions, powertrain technology scenarios, and component modeling.

Simpson, A.

2006-08-24T23:59:59.000Z

233

Battery Choices and Potential Requirements for Plug-In Hybrids (Presentation)  

DOE Green Energy (OSTI)

Plug-in Hybrid vehicles energy storage and drive cycle impacts presentation given at the 7th Advanced Automotive Battery Conference.

Pesaran, A.

2007-02-13T23:59:59.000Z

234

Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

Gonder, J.; Simpson, A.

2006-11-01T23:59:59.000Z

235

Dynamic Programming Applied to Investigate Energy Management Strategies for a Plug-in HEV  

DOE Green Energy (OSTI)

This paper explores two basic plug-in hybrid electric vehicle energy management strategies: an electric vehicle centric control strategy and an engine-motor blended control strategy.

O'Keefe. M. P.; Markel, T.

2006-11-01T23:59:59.000Z

236

Advanced Vehicle Testing Activity - Plug-in Hybrid ElectricVehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

INL and testing partner Electric Transportation Engineering Corporation conduct Plug-in Hybrid Electric Vehicle (PHEV) and Extended Range Electric Vehicle (EREV) testing as part...

237

Significant potential for plug-in vehicles exists in U.S. housing ...  

U.S. Energy Information Administration (EIA)

Certain housing characteristics limit potential for electric (either plug-in hybrid or all-electric) vehicles, especially the type of housing.

238

Plug-in Electric Vehicle Interactions with a Small Office Building...  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER-CAM Ilan Momber, Toms Gmez, Giri Venkataramanan, Michael Stadler, Sebastian...

239

Plug-in 2011: Initial PEV and Charging Infrastructure Test Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug in 2011: Initial PEV and Charging in 2011: Initial PEV and Charging Infrastructure Test Results Infrastructure Test Results Jim Francfort Jim Francfort Jim Francfort Jim...

240

EV Everywhere: Americas Plug-In Electric Vehicle Market Charges Forward  

Energy.gov (U.S. Department of Energy (DOE))

Find out how the Energy Department, partnering with industry and national laboratories, is helping make plug-in electric vehicles more affordable and convenient for American families.

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Battery Requirements for Plug-In Hybrid Electric Vehicles -- Analysis and Rationale  

DOE Green Energy (OSTI)

Presents analysis, discussions, and resulting requirements for plug-in hybrid electric vehicle batteries adopted by the US Advanced Battery Consortium.

Pesaran, A. A.; Markel, T.; Tataria, H. S.; Howell, D.

2009-07-01T23:59:59.000Z

242

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure)  

DOE Green Energy (OSTI)

This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, and considerations for station owners, property owners, and station hosts.

Not Available

2012-04-01T23:59:59.000Z

243

Measuring and Reporting Fuel Economy of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This paper reviews techniques used to characterize plug-in hybrid electric vehicle fuel economy, discussing their merits, limitations, and best uses.

Gonder, J.; Simpson, A.

2007-01-01T23:59:59.000Z

244

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology  

DOE Green Energy (OSTI)

This paper presents a comparison of the costs and benefits (reduced petroleum consumption) of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

Markel, T.; Simpson, A.

2006-01-01T23:59:59.000Z

245

Field Testing Plug-in Hybrid Electric Vehicles with Charge Control...  

NLE Websites -- All DOE Office Websites (Extended Search)

over future resource availability and the environmental impacts of continued fossil-fuel consumption. Plug-in hybrid electric vehicles (PHEVs), electric vehicles, and fuel cell...

246

Plug-in electric vehicles as dispersed energy storage interactions with a smart office building  

Science Conference Proceedings (OSTI)

Renewable energy resources (RESs) with plug-in electric vehicles (PEVs) are being gradually accepted by society for their low carbon emission merits. However

Qian Dai; Shanxu Duan; Tao Cai; Changsong Chen

2013-01-01T23:59:59.000Z

247

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Control Strategy  

NLE Websites -- All DOE Office Websites (Extended Search)

Control Strategy Assessment of PHEVs Control Strategy Assessment of PHEVs A generic global optimization algorithm for plug-in hybrid electric vehicle (PHEV) powertrain flows has been developed based on the Bellman optimality principle. Optimization results are used to isolate control patterns, both dependent and independent of the cycle characteristics, in order to develop real-time control strategies in Simulink/Stateflow. These controllers are then implemented in PSAT to validate their performances. Heuristic optimization algorithms (such as DIRECT or genetic algorithms) are then used to tune the parameters of the real-time controller implemented in PSAT. The control strategy development process is described below. PHEV control strategy development process diagram Control Strategy Development Process

248

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Not Available

2008-03-01T23:59:59.000Z

249

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-09-01T23:59:59.000Z

250

Battery Test Manual For Plug-In Hybrid Electric Vehicles  

SciTech Connect

This battery test procedure manual was prepared for the United States Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Vehicle Technologies Program. It is based on technical targets established for energy storage development projects aimed at meeting system level DOE goals for Plug-in Hybrid Electric Vehicles (PHEV). The specific procedures defined in this manual support the performance and life characterization of advanced battery devices under development for PHEVs. However, it does share some methods described in the previously published battery test manual for power-assist hybrid electric vehicles. Due to the complexity of some of the procedures and supporting analysis, a revision including some modifications and clarifications of these procedures is expected. As in previous battery and capacitor test manuals, this version of the manual defines testing methods for full-size battery systems, along with provisions for scaling these tests for modules, cells or other subscale level devices.

Jeffrey R. Belt

2010-12-01T23:59:59.000Z

251

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Technologies  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Impact on Fuel Efficiency Technologies Impact on Fuel Efficiency One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle (PHEV) R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. Overall fuel efficiency is affected by component technologies from a component sizing and efficiency aspect. To properly define component requirements, several technologies for each of the main components (energy storage, engine and electric machines) are being compared at Argonne using PSAT. Per the R&D plan, several Li-ion battery materials are being modeled to evaluate their impacts on fuel efficiency and vehicle mass. Different Power to Energy ratios are being considered to understand the relative impact of power and energy.

252

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Powertrain Configuration  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of Powertrain Configuration on Fuel Efficiency To evaluate the fuel efficiency potential of plug-in hybrid electric vehicles, it is necessary to compare the advantages and drawbacks of several powertrain configurations, ranging from power split to parallel and series. PSAT offers the unique ability to simulate and compare hundreds of powertrain configurations. The goal of the effort is to define the most promising configurations depending on the particular usage. Component sizes, fuel efficiency and cost will be used to make appropriate decisions. The configurations currently being considered include, but are not limited to: Pre-transmission parallel HEV Post-transmission parallel HEV Power split HEV (including THS II and GM 2 Mode) Series The figure below shows an example comparison of three powertrain configurations (parallel, series and power split).

253

T-566: Citrix Secure Gateway Unspecified Vulnerability | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6: Citrix Secure Gateway Unspecified Vulnerability 6: Citrix Secure Gateway Unspecified Vulnerability T-566: Citrix Secure Gateway Unspecified Vulnerability February 28, 2011 - 11:22pm Addthis PROBLEM: Citrix Secure Gateway Unspecified Vulnerability. PLATFORM: Citrix Secure Gateway version 3.1.4 ABSTRACT: A vulnerability has been reported in Citrix Secure Gateway, which can be exploited by malicious people to compromise a vulnerable system. reference LINKS: Citrix ID:CTX128168 Secunia Advisory SA43497 Citrix Support IMPACT ASSESSMENT: High Discussion: This vulnerability only affects Secure Gateway version 3.1.4. Secure Gateway version 3.2.0 is not affected by this vulnerability, but Citrix recommends that customers currently using this version upgrade their deployments to version 3.2.1 in line with the guidance provided in

254

SimpleGrid toolkit: Enabling geosciences gateways to cyberinfrastructure  

Science Conference Proceedings (OSTI)

Cyberinfrastructure science and engineering gateways have become an important modality to connect science and engineering communities and cyberinfrastructure. The use of cyberinfrastructure through gateways is fundamental to the advancement of science ... Keywords: Component-based software engineering, Cyberinfrastructure, Grid computing, Science and engineering gateways, Service-oriented architecture, Spatial interpolation

Shaowen Wang; Yan Liu; Nancy Wilkins-Diehr; Stuart Martin

2009-12-01T23:59:59.000Z

255

Tracking Progress Last updated 5/24/2013 Plug-in Electric Vehicle 1  

E-Print Network (OSTI)

Tracking Progress Last updated 5/24/2013 Plug-in Electric Vehicle 1 Plug-in Electric Vehicles Over 26 million cars and almost one million trucks consume 40 million gallons of gasoline and 7 million, advanced technology cars and trucks, vehicle manufacturing, and fueling infrastructure are intended

256

Volante -Principal A minha vida com o Toyota Prius Plug-In  

E-Print Network (OSTI)

Volante - Principal A minha vida com o Toyota Prius Plug-In Autor: N.D. Editora: Medipress, Lda Id A minha vida com o Toyota Prius Plug-In Autor: N.D. Editora: Medipress, Lda Id: 1633751 Data Publicação

Instituto de Sistemas e Robotica

257

Plug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size tradeoffs  

E-Print Network (OSTI)

with 85% ethanol EIA ­ Energy Information Administration EVSE ­ Electric vehicle supply equipment gPlug-in hybrid electric vehicles: battery degradation, grid support, emissions, and battery size to get this thesis finished. #12;iv Intentionally blank #12;v Abstract Plug-in hybrid electric vehicles

258

Optimized Parameter Matching Method of Plug-in Series Hybrid Electric Bus  

Science Conference Proceedings (OSTI)

This research attempts to deal with the coupling-influence among different powertrain parameters in the parameter matching process of Plug-in Series Hybrid Electric Bus(PSHEB), the research target is a PSHEB (with no gearbox) which is currently under ... Keywords: Plug-in, hybrid electric vehicle, parameter matching, Matlab simulation

Kai Xu, Bin Qiu

2012-12-01T23:59:59.000Z

259

Demand Dispatch Based on Smart Charging of Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

Uncontrolled charging of Plug-in Electric Vehicles (PEVs) has a negative impact on the peak load and brings potential challenges to electric utility. In this paper, we apply a statistical load model of PEVs charging demand to simulate the driving habits ... Keywords: Plug-in Electric Vehicles, Demand dispatch, Smart charging, Driving habits, Load model

Ting Wu, Gang Wu, Zhejing Bao, Wenjun Yan, Yiyan Zhang

2012-07-01T23:59:59.000Z

260

Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles  

E-Print Network (OSTI)

.S. roads alone by 2015. PEVs-- either plug-in hybrid electric vehicles (PHEVs) or pure electric vehicles (EVs)--adopt similar drivetrain configurations as hybrid electric vehicles (HEVs) [21 Electric Energy and Power Consumption by Light-Duty Plug-in Electric Vehicles Di Wu, Student

Tesfatsion, Leigh

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

A Multiphase Traction/Fast-Battery-Charger Drive for Electric or Plug-in Hybrid Vehicles Solutions and torque ripples. Keywords- Electric Vehicle, Plug-in Hybrid Vehicle, On-board Battery Charger, H on an original electric drive [1]-[3] dedicated to the vehicle traction and configurable as a battery charger

Paris-Sud XI, Université de

262

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic  

E-Print Network (OSTI)

Plug-in Electric Vehicle Interactions with a Small Office Building: An Economic Analysis using DER, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation Jul 2010, Minneapolis MNis MN 1 Abstract--It is generally believed that plug-in electric vehicles

263

ARM-UAV Mission Gateway System  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM-UAV Mission Gateway System ARM-UAV Mission Gateway System S. T. Moore and S. Bottone Mission Research Corporation Santa Barbara, California Introduction The Atmospheric Radiation Measurement-unmanned aerospace vehicle (ARM-UAV) Mission Gateway System (MGS) is a new field support system for the recently reconfigured ARM-UAV payload. The MGS is responsible for the following critical tasks: * Provides an interface for command and control of the ARM-UAV payload during a flight. * Receives and displays mid-flight state of health information, to help ensure the integrity and safety of the payload. * Receives and displays data snapshots, averaged data, or sub-sampled data. * Provides a user configurable, moving map display to enable the Mission Controller and the science

264

Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

and Natural Gas Infrastructure Charging Rate Reduction - and Natural Gas Infrastructure Charging Rate Reduction - SDG&E to someone by E-mail Share Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Facebook Tweet about Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Twitter Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Google Bookmark Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Delicious Rank Alternative Fuels Data Center: Plug-In Electric Vehicle (PEV) and Natural Gas Infrastructure Charging Rate Reduction - SDG&E on Digg

265

Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales  

NLE Websites -- All DOE Office Websites (Extended Search)

1: October 29, 1: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China to someone by E-mail Share Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Facebook Tweet about Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Twitter Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Google Bookmark Vehicle Technologies Office: Fact #751: October 29, 2012 Plug-in Car Sales Higher in the U.S. Compared to Western Europe and China on Delicious Rank Vehicle Technologies Office: Fact #751: October 29, 2012

266

DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million for Plug-in Hybrid Electric Vehicle 0 Million for Plug-in Hybrid Electric Vehicle Projects DOE Announces $30 Million for Plug-in Hybrid Electric Vehicle Projects June 12, 2008 - 1:30pm Addthis Adds Plug-in Hybrid Vehicle to Department's Fleet WASHINGTON - U.S. Department of Energy (DOE) Assistant Secretary of Energy Efficiency and Renewable Energy Andy Karsner today announced up to $30 million in funding over three years for three cost-shared Plug-in Hybrid Electric Vehicles (PHEVs) demonstration and development projects. The selected projects will accelerate the development of PHEVs capable of traveling up to 40 miles without recharging, which includes most daily roundtrip commutes and satisfies 70 percent of the average daily travel in the U. S. The projects will also address critical barriers to achieving

267

Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

5: November 2, 5: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost to someone by E-mail Share Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Facebook Tweet about Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Twitter Bookmark Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Google Bookmark Vehicle Technologies Office: Fact #595: November 2, 2009 Plug-in Hybrid Vehicle Purchases May Depend on Fuel Savings and Incremental Cost on Delicious Rank Vehicle Technologies Office: Fact #595: November 2, 2009

268

NREL: Continuum Magazine - Maximizing the Benefits of Plug-in Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Maximizing the Benefits of Plug-in Electric Vehicles Maximizing the Benefits of Plug-in Electric Vehicles Issue 4 Print Version Share this resource Maximizing the Benefits of Plug-in Electric Vehicles Advancing electric vehicle charging options and grid readiness reduces oil consumption and vehicle emissions. A photo of two electric vehicles in a research facility. Enlarge image Electric vehicle charging stations in NREL's parking garage. Photo by Dennis Schroder, NREL Plug-in electric vehicles (PEVs)-including all-electric vehicles and plug-in hybrid electric vehicles-offer the opportunity to reduce oil consumption and vehicle emissions by drawing on power from the utility grid. When the grid uses electricity generated from clean, domestic energy sources, the emerging PEV infrastructure will increasingly maximize

269

Oil and Gas Gateway | Open Energy Information  

Open Energy Info (EERE)

Oil and Gas Gateway Oil and Gas Gateway Jump to: navigation, search Oil and Gas Companies The oil and gas industry is the largest energy industry in the world, with companies spanning the globe. The map below depicts the top oil companies. Anyone can add another company to this list. Add a new Oil and Gas Company Loading map... {"format":"googlemaps3","type":"ROADMAP","types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"limit":500,"offset":0,"link":"all","sort":[""],"order":[],"headers":"show","mainlabel":"","intro":"","outro":"","searchlabel":"\u2026

270

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

in and Batttery Electric Vehicles, The 5 th IEEE VehiclePlug-in and Battery Electric Vehicles, The 1 st IEEE EnergyE. Plug-in Hybrid-Electric Vehicle Powertrain Design and

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

271

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

Plug-in Hybrid Kits for Toyota and Ford Hybrids," in Greenfactsheet.pdf, 2006. J. Rosebro, "Toyota Ratchets Up Plug-InCongress, 23 April ed, 2006. "Toyota to Unveil Prius with

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

272

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

Early Markets for Hybrid Electric Vehicles," University ofof Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Power Assist Hybrid Electric Vehicles, and Plug-In Hybrid

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

273

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

experiences with plug-in hybrid vehicles (PHEVs). At theA.A. (2007) Plug-in Hybrid Vehicles for a SustainableAssessment of Plug-in Hybrid Vehicles on Electric Utilities

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

274

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

Analysis of Plug-in Hybrid Electric Vehicle Technology,Impacts of Plug-In Hybrid Electric Vehicles on Energy andImpacts of Plug-In Hybrid Electric Vehicles on Energy and

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

275

The Potential of Plug-in Hybrid and Battery Electric Vehicles as Grid Resources: the Case of a Gas and Petroleum Oriented Elecricity Generation System  

E-Print Network (OSTI)

2010). Plug-in hybrid electric vehicles as regulating powervalue of plug-in hybrid electric vehicles as grid resources.of using plug-in hybrid electric vehicle battery packs for

Greer, Mark R

2012-01-01T23:59:59.000Z

276

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

of Plug-in Hybrid Electric Vehicle Technology, Nationalof Plug-In Hybrid Electric Vehicles on Energy and Emissionsof Plug-In Hybrid Electric Vehicles on Energy and Emissions

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

277

Plug-In Hybrid Electric Vehicles - PHEV Modeling - Component Requirement  

NLE Websites -- All DOE Office Websites (Extended Search)

Requirement Definition for PHEVs Requirement Definition for PHEVs One of the main objectives of the U.S. Department of Energy's (DOE's) Plug-in Hybrid Electric Vehicle R&D Plan (2.2Mb pdf) is to "determine component development requirements" through simulation analysis. PSAT has been used to design and evaluate a series of PHEVs to define the requirements of different components, focusing on the energy storage system's power and energy. Several vehicle classes (including midsize car, crossover SUV and midsize SUV) and All Electric Range (AER from 10 to 40 miles) were considered. The preliminary simulations were performed at Argonne using a pre-transmission parallel hybrid configuration with an energy storage system sized to run the Urban Dynanometer Driving Schedule (UDDS) in electric mode. Additional powertrain configurations and sizing algorithm are currently being considered. Trade-off studies are being performed as ways to achieve some level of performance while easing requirements on one area or another. As shown in the figure below, the FreedomCAR Energy Storage Technical Team selected a short term and a long term All Electric Range (AER) goals based on several vehicle simulations.

278

An Optimization Model for Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

The necessity for environmentally conscious vehicle designs in conjunction with increasing concerns regarding U.S. dependency on foreign oil and climate change have induced significant investment towards enhancing the propulsion portfolio with new technologies. More recently, plug-in hybrid electric vehicles (PHEVs) have held great intuitive appeal and have attracted considerable attention. PHEVs have the potential to reduce petroleum consumption and greenhouse gas (GHG) emissions in the commercial transportation sector. They are especially appealing in situations where daily commuting is within a small amount of miles with excessive stop-and-go driving. The research effort outlined in this paper aims to investigate the implications of motor/generator and battery size on fuel economy and GHG emissions in a medium-duty PHEV. An optimization framework is developed and applied to two different parallel powertrain configurations, e.g., pre-transmission and post-transmission, to derive the optimal design with respect to motor/generator and battery size. A comparison between the conventional and PHEV configurations with equivalent size and performance under the same driving conditions is conducted, thus allowing an assessment of the fuel economy and GHG emissions potential improvement. The post-transmission parallel configuration yields higher fuel economy and less GHG emissions compared to pre-transmission configuration partly attributable to the enhanced regenerative braking efficiency.

Malikopoulos, Andreas [ORNL; Smith, David E [ORNL

2011-01-01T23:59:59.000Z

279

Plug-in privacy for Smart Metering billing  

E-Print Network (OSTI)

Smart Metering is a concept that allows to collect fine-grained consumption profiles from customers by replacing traditional electricity meters with Smart Meters in customers' households. The recorded consumption profile is the basis for the calculation of time-dependent tariffs but also allows deduction of the inhabitant's personal schedules and habits. The current reporting of such consumption profiles only protects this data from 3rd parties but falls short to protect the customer's privacy from illegitimate abuse by the supplier itself. We propose a privacy-preserving profile reporting protocol that enables billing for time-dependent tariffs without disclosing the actual data of the consumption profile to the supplier. Our approach relies on a zero-knowledge proof based on Pedersen Commitments performed by a plug-in privacy component that is put into the communication link between Smart Meter and supplier's back-end systems and requires no change to Smart Meter hardware and only little change to the softw...

Jawurek, Marek; Kerschbaum, Florian

2010-01-01T23:59:59.000Z

280

Hybrid Powertrain Optimization for Plug-In Microgrid Power Generation Automated Modeling Laboratory Slide 1 of 28  

E-Print Network (OSTI)

Hybrid Powertrain Optimization for Plug-In Microgrid Power Generation Automated Modeling LaboratoryPlug--InIn MicrogridMicrogrid Power GenerationPower Generation Scott J. MouraScott J. Moura DongsukDongsuk KumKum Hosam Powertrain Optimization for Plug-In Microgrid Power Generation Automated Modeling Laboratory Slide 2 of 28

Krstic, Miroslav

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

market, plug-in hybrid vehicles (PHEVs) are now consideredof Current Knowledge of Hybrid Vehicle Characteristics andalso called PHEV (Plug-in Hybrid Vehicle) because they are

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

282

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

for Flex-Fuel Vehicles Including E85, Plug-in Hybrids Peakfor-flex-fuel-vehicles-including-e85-plug-in- hybrids-peak-

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

283

Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

Not Available

2011-10-01T23:59:59.000Z

284

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

285

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology | Open  

Open Energy Info (EERE)

Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Cost-Benefit Analysis of Plug-In Hybrid Electric Vehicle Technology Focus Area: Electricity Topics: Policy Impacts Website: www.nrel.gov/vehiclesandfuels/vsa/pdfs/40485.pdf Equivalent URI: cleanenergysolutions.org/content/cost-benefit-analysis-plug-hybrid-ele Language: English Policies: "Regulations,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. Regulations: Fuel Efficiency Standards This paper presents a comparison of the costs and benefits of plug-in hybrid electric vehicles (PHEVs) relative to hybrid electric and conventional vehicles. A detailed simulation model is used to predict

286

Plug-In Demo Charges up Clean Cities Coalitions | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions Plug-In Demo Charges up Clean Cities Coalitions January 27, 2011 - 4:07pm Addthis Dennis A. Smith Director, National Clean Cities The closest most people get to a vehicle before it is offered to the general public is seeing it on TV or at an auto show. But five fortunate Clean Cities coordinators were able to test Toyota's plug-in hybrid electric vehicle (PHEV) as part of the demonstration project for the PHEV Prius, which is expected to be released in 2012. Clean Cities is an initiative in the Department's Vehicle Technologies Program that is focused on reducing petroleum use in transportation - which makes this demonstration a perfect fit. A PHEV Prius can run for up to 13 miles on all-electric power before

287

DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Sweden Sign MOU to Advance Market Integration of Plug-in Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles DOE and Sweden Sign MOU to Advance Market Integration of Plug-in Hybrid Vehicles July 7, 2008 - 2:15pm Addthis GOTLAND, SWEDEN - U.S. Department of Energy's (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Alexander Karsner and Director General of the Swedish Energy Agency, Tomas Kåberger today signed a memorandum of understanding (MOU) to collaboratively work on accelerating consumer acceptance and commercialization of plug-in hybrid vehicles. The MOU outlines a one year, $1 million cost-sharing arrangement that will be equally funded by DOE and the Swedish Energy Agency. "Today's announcement furthers the historic energy cooperation commitment between the United States and Sweden as we work together to advance the

288

Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Ready for Electric Drive: the Plug-In Vehicle and Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop Getting Ready for Electric Drive: the Plug-In Vehicle and Infrastructure Workshop August 18, 2010 - 5:30pm Addthis Matt Rogers Matt Rogers McKinsey & Company Blogs have been abuzz on electric vehicles and advanced batteries recently, and likely in no small part due to some of the programs that are kicking into high gear at the Department of Energy right now. On July 22, we hosted a Plug-In Vehicle & Infrastructure Workshop that brought together nearly 200 attendees and 600 web participants to discuss near-term actions to accelerate deployment of electric-drive vehicles. The program demonstrated how federal leadership can speed up preparation for vehicles expected in showrooms at the end of this year. This leadership complements the Obama

289

V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Google Chrome Flash Plug-in Lets Remote Users Conduct 4: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks V-184: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks June 24, 2013 - 12:56am Addthis PROBLEM: Google Chrome Flash Plug-in Lets Remote Users Conduct Clickjacking Attacks PLATFORM: Google Chrome prior to 27.0.1453.116 ABSTRACT: A vulnerability was reported in Google Chrome. REFERENCE LINKS: Stable Channel Update SecurityTracker Alert ID: 1028694 CVE-2013-2866 IMPACT ASSESSMENT: Medium DISCUSSION: A remote user can create specially crafted Flash content that, when loaded by the target user, will display the Flash settings in a transparent manner, which may allow the remote user to cause the target user to modify their Flash settings. This may allow the remote user to obtain potentially

290

Cost-Benefit Analysis of Plug-in Hybrid Electric Vehicle Technology  

DOE Green Energy (OSTI)

This paper presents a comparison of vehicle purchase and energy costs, and fuel-saving benefits of plug-in hybrid electric vehicles relative to hybrid electric and conventional vehicles.

Simpson, A.

2006-11-01T23:59:59.000Z

291

Assessment of Plug-in Electric Vehicles Charging on Distribution Networks.  

E-Print Network (OSTI)

??The demand for plug-in electric vehicles has grown rapidly in recent years due to lower operation costs and lower emissions in comparison to conventional, gas-powered (more)

Au, Tsz Kin

2012-01-01T23:59:59.000Z

292

Analysis of Integration of Plug-in Hybrid Electric Vehicles in the Distribution Grid.  

E-Print Network (OSTI)

?? The new generation of cars are so-called Plug-in Hybrid Electric Vehicles (PHEVs) which has the grid connection capability. By the introduction of these vehicles, (more)

Karnama, Ahmad

2009-01-01T23:59:59.000Z

293

Residential Customer Rate Options for Electric Vehicles and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

This paper summarizes results of a survey conducted in the summer of 2006 that examined residential electric rates available to Californias electric vehicle EV and plug-in hybrid electric vehicle PHEV customers.

2008-03-31T23:59:59.000Z

294

A simulation-based assessment of plug-in hybrid electric vehicle architectures  

E-Print Network (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are vehicles that utilize power from both an internal combustion engine and an electric battery that can be recharged from the grid. Simulations of series, parallel, and split-architecture ...

Sotingco, Daniel (Daniel S.)

2012-01-01T23:59:59.000Z

295

Secretary Chu Announces up to $10 Million to Support Plug-In...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

announced the selection of a new demonstration and testing project to develop a plug-in hybrid electric vehicle (PHEV) school bus to be used in fleets across the country....

296

Do More Batteries Make A Plug-in Hybrid Better? Implications...  

NLE Websites -- All DOE Office Websites (Extended Search)

Do More Batteries Make A Plug-in Hybrid Better? Implications from Optimal Vehicle Design and Allocation Speaker(s): Chin-Shin Shiau Date: June 18, 2010 - 2:00pm Location: 90-3122...

297

Prospects for plug-in hybrid electric vehicles in the United States : a general equilibrium analysis  

E-Print Network (OSTI)

The plug-in hybrid electric vehicle (PHEV) could significantly contribute to reductions in carbon dioxide emissions from personal vehicle transportation in the United States over the next century, depending on the ...

Karplus, Valerie Jean

2008-01-01T23:59:59.000Z

298

Performance, Charging, and Second-use Considerations for Lithium Batteries for Plug-in Electric Vehicles  

E-Print Network (OSTI)

chemistries Simulations of Prius plug-in hybrids have beenSimulation results for Prius PHEVs using various lithium-ionSimulation results for Prius PHEVs using various lithium-ion

Burke, Andrew

2009-01-01T23:59:59.000Z

299

Plug-in Electric Vehicle Real-World Data from DOE's AVTA (SAE...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experience 32 illi il l d 5 500 l i d i * 32 million test miles accumulated on 5,500 electric drive vehicles representing 111 models * Plug-in hybrid electric vehicles: 14 models,...

300

Plug-in Electric Vehicle Real-World Data from DOE's AVTA (Project...  

NLE Websites -- All DOE Office Websites (Extended Search)

Experience 24 illi il l d 5 500 l i d i * 24 million test miles accumulated on 5,500 electric drive vehicles representing 111 models * Plug-in hybrid electric vehicles: 14 models,...

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle...  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Share this resource Send a link to Alternative Fuels Data Center: Signage for Plug-In Electric Vehicle Charging Stations to someone by E-mail Share Alternative Fuels Data Center:...

302

Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and...  

NLE Websites -- All DOE Office Websites (Extended Search)

INLEXT-09-16343 Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results James E. Francfort Richard B. Carlson Mindy L. Kirkpatrick Matthew G. Shirk John G. Smart...

303

Advanced Vehicle Testing Activity: Plug-in Hybrid ElectricVehicles...  

NLE Websites -- All DOE Office Websites (Extended Search)

VehiclesExtended Range Electric Vehicles Testing Reports to someone by E-mail Share Advanced Vehicle Testing Activity: Plug-in Hybrid Electric VehiclesExtended Range Electric...

304

Federal Tax Credits for Plug-in Hybrids Purchased in or after...  

NLE Websites -- All DOE Office Websites (Extended Search)

Hybrids Photo of cash and keys Federal Tax Credit Up To 7,500 Plug-in hybrid-electric vehicles (PHEVs) purchased in or after 2010 may be eligible for a federal income tax...

305

Fault-Delayed Voltage Recovery Control with Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

This paper presents an investigation into the impact that plug-in hybrid electric vehicles (PHEVs) could have to mitigate the effects of fault-delayed voltage recovery. The energy storage and conversion system in PHEVs, given potentially high levels ...

Curtis Roe; Yousef M. Al-Abdullah; Dhwanil Desai; George K. Stefopoulos; George J. Cokkinides; A. P. Meliopoulos

2010-01-01T23:59:59.000Z

306

Nonlinear and linear models for losses of plug in hybrid electric vehicle: A computation approach  

Science Conference Proceedings (OSTI)

This paper presents nonlinear and linear models for the losses of Plug in Hybrid Electric Vehicle (PHEV). An accurate model to calculate the PHEV losses for just one vehicle is not remarkable. However

2013-01-01T23:59:59.000Z

307

Incorporation of plug in hybrid electric vehicle in the reactive power market  

Science Conference Proceedings (OSTI)

This paper incorporates plug in hybrid electric vehicle(PHEV) in the reactive power market. The PHEV capability curve is first extracted considering the operation limit of PHEV. In order to offer price in the reactive power market

H. Feshki Farahani; H. A. Shayanfar; M. S. Ghazizadeh

2012-01-01T23:59:59.000Z

308

Performance Characteristics of Lithium-ion Batteries of Various Chemistries for Plug-in Hybrid Vehicles  

E-Print Network (OSTI)

Battery, Hybrid and Fuel Cell Electric Vehicle Symposiumof a plug-in hybrid-electric vehicle is the selection of theHybrid and Fuel Cell Electric Vehicle Symposium negative)

Burke, Andrew; Miller, Marshall

2009-01-01T23:59:59.000Z

309

NREL: Learning - Fuel Cell, Hybrid Electric, and Plug-In Hybrid...  

NLE Websites -- All DOE Office Websites (Extended Search)

Cell, Hybrid Electric, and Plug-In Hybrid Vehicles Photo of a small blue subcompact vehicle in a roadway with other vehicles and foothills in the background. Experimental fuel...

310

Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0 Million to Support Plug-In Hybrid 0 Million to Support Plug-In Hybrid Electric School Buses Secretary Chu Announces up to $10 Million to Support Plug-In Hybrid Electric School Buses April 17, 2009 - 12:00am Addthis WASHINGTON, DC -- As part of the Department of Energy's commitment to advancing the next generation of electric vehicles in the United States, Energy Secretary Steven Chu today announced the selection of a new demonstration and testing project to develop a plug-in hybrid electric vehicle (PHEV) school bus to be used in fleets across the country. Navistar Corporation (Fort Wayne, IN) has been selected by the Department of Energy (DOE) for negotiation of a cost-shared award of up to $10 million to develop, test, and deploy an electric hybrid school bus. PHEVs will play an important role in achieving America's energy independence by

311

Measurement of Initial Market Acceptance of Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

EPRI has been tracking the evolution of the plug-in electric vehicle (PEV) market, using historic hybrid electric vehicle (HEV) sales for comparison and to provide a context for understanding how a completely novel automotive technology beginning with a limited number of vehicles with small sales can steadily grow to market success. This Technical Update provides background on why EPRI considers hybrid sales a useful context for plug-in electric vehicle sales. It introduces a methodology for ...

2013-12-18T23:59:59.000Z

312

A Comparative Evaluation of Candidate Plug-in Hybrid Powertrain Architectures  

Science Conference Proceedings (OSTI)

This report evaluates three existing plug-in hybrid powertrain architecturespre-transmission, power-split, and series. Using simulation software, these powertrains were scaled so they could be compared side-to-side, each vehicle's components meeting the all-electric range targets for plug-in hybrid vehicle (PHEV) configurations. These powertrains were evaluated according to performance, emissions, fuel economy / fuel consumption, equivalent electric range, powertrain design, battery selection, and vehicl...

2007-12-17T23:59:59.000Z

313

Plug-In Electric Vehicle Lithium-Ion Battery Cost and Advanced Battery Technologies Forecasts  

Science Conference Proceedings (OSTI)

Batteries are a critical cost factor for plug-in electric vehicles, and the current high cost of lithium ion batteries poses a serious challenge for the competitiveness of Plug-In Electric Vehicles (PEVs). Because the market penetration of PEVs will depend heavily on future battery costs, determining the direction of battery costs is very important. This report examines the cost drivers for lithium-ion PEV batteries and also presents an assessment of recent advancements in the growing attempts to ...

2012-12-12T23:59:59.000Z

314

PRE-SW Plug-in Electric Vehicle Load Estimator 0.81 BETA  

Science Conference Proceedings (OSTI)

The Plug-in Electric Vehicle Load Estimator generates forecasts of new plug-in vehicle sales in a specific geographical area and calculates relevant data including cumulative PEV market penetration, electricity demand of PEVs, and gasoline saved. The software calculates results for any time period from calendar year 2010 through 2050 based on a user-defined list of counties and a set of assumptions such as electricity and gasoline price forecasts. The county list may optionally include fractions that def...

2010-08-09T23:59:59.000Z

315

Gateway:Low Emission Development Strategies | Open Energy Information  

Open Energy Info (EERE)

icon Gateway:Low Emission Development Strategies (Redirected from Developing LED Scenarios) Jump to: navigation, search Leds-Graphics 03.PNG Low Emission Development...

316

Gateway:International/Global News | Open Energy Information  

Open Energy Info (EERE)

InternationalGlobal News Jump to: navigation, search Africen Energy Policy Research Network (AFREPREN) - Energy News Retrieved from "http:en.openei.orgwindex.php?titleGateway...

317

Solid-State Lighting: Solid-State Lighting GATEWAY Demonstrations  

NLE Websites -- All DOE Office Websites (Extended Search)

download the following reports: Smithsonian American Art Museum J. Paul Getty Museum Jordan Schnitzer Museum of Art Field Museum of Natural History DOE GATEWAY demonstrations...

318

High-performance parallel interface to synchronous optical network gateway  

DOE Patents (OSTI)

A system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway.

St. John, Wallace B. (Los Alamos, NM); DuBois, David H. (Los Alamos, NM)

1996-01-01T23:59:59.000Z

319

High-performance parallel interface to synchronous optical network gateway  

DOE Patents (OSTI)

Disclosed is a system of sending and receiving gateways interconnects high speed data interfaces, e.g., HIPPI interfaces, through fiber optic links, e.g., a SONET network. An electronic stripe distributor distributes bytes of data from a first interface at the sending gateway onto parallel fiber optics of the fiber optic link to form transmitted data. An electronic stripe collector receives the transmitted data on the parallel fiber optics and reforms the data into a format effective for input to a second interface at the receiving gateway. Preferably, an error correcting syndrome is constructed at the sending gateway and sent with a data frame so that transmission errors can be detected and corrected in a real-time basis. Since the high speed data interface operates faster than any of the fiber optic links the transmission rate must be adapted to match the available number of fiber optic links so the sending and receiving gateways monitor the availability of fiber links and adjust the data throughput accordingly. In another aspect, the receiving gateway must have sufficient available buffer capacity to accept an incoming data frame. A credit-based flow control system provides for continuously updating the sending gateway on the available buffer capacity at the receiving gateway. 7 figs.

St. John, W.B.; DuBois, D.H.

1996-12-03T23:59:59.000Z

320

Open grid computing environments: advanced gateway support activities  

Science Conference Proceedings (OSTI)

We describe three case studies for providing advanced support for TeraGrid Science Gateways as part of our participation in the Advanced User Support (AUS) team. These case studies include providing workflow support, robust job management, and mass job ... Keywords: ASTA, OGCE software, science gateways workflow suite

Marlon Pierce; Suresh Marru; Raminder Singh; Archit Kulshrestha; Karthik Muthuraman

2010-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

U-173: Symantec Web Gateway Multiple Vulnerabilities | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Symantec Web Gateway Multiple Vulnerabilities 3: Symantec Web Gateway Multiple Vulnerabilities U-173: Symantec Web Gateway Multiple Vulnerabilities May 21, 2012 - 7:00am Addthis PROBLEM: Symantec Web Gateway Multiple Vulnerabilities PLATFORM: 5.0.x prior to 5.0.3 ABSTRACT: Several vulnerabilities were reported in Symantec Web Gateway. A remote user can include and execute arbitrary code on the target system. A remote user can conduct cross-site scripting attacks. A remote user can view/delete/upload files on the target system. Reference Links: SecurityTracker Alert ID: 1027078 CVE-2012-0296 CVE-2012-0297 CVE-2012-0298 CVE-2012-0299 IMPACT ASSESSMENT: Medium Discussion: The management interface does not properly authenticate remote users and does not properly validate user-supplied input. A remote user can cause arbitrary scripting code to be executed by the

322

Gateway:International/About | Open Energy Information  

Open Energy Info (EERE)

International/About International/About Jump to: navigation, search The International Clean Energy Analysis (ICEA) gateway seeks to catalyze the use of renewable energy and energy efficiency decision support tools to inform policy, program, and project development. Through a U.S. Department of Energy (DOE), National Renewable Energy Laboratory (NREL), and United Nations Industrial Development Organization (UNIDO) collaborative initiative, this community web portal will provide outreach and training programs to foster dissemination and application of analysis tools, with special emphasis on developing countries. It complements existing forums that provide technical information on clean energy policies and project development, with a unique focus on analysis tools and methods.

323

Using GPS Travel Data to Assess the Real World Driving Energy Use of Plug-In Hybrid Electric Vehicles (PHEVs)  

DOE Green Energy (OSTI)

Highlights opportunities using GPS travel survey techniques and systems simulation tools for plug-in hybrid vehicle design improvements, which maximize the benefits of energy efficiency technologies.

Gonder, J.; Markel, T.; Simpson, A.; Thornton, M.

2007-05-01T23:59:59.000Z

324

Effect of Temperature on Lithium-Iron Phosphate Battery Performance and Plug-in Hybrid Electric Vehicle Range.  

E-Print Network (OSTI)

??Increasing pressure from environmental, political and economic sources are driving the development of an electric vehicle powertrain. The advent of hybrid electric vehicles (HEVs), plug-in (more)

Lo, Joshua

2013-01-01T23:59:59.000Z

325

Power draw scheduling of electric and plug-in hybrid electric vehicles with unidirectional vehicle-to-grid benefits.  

E-Print Network (OSTI)

??This thesis addresses power scheduling aspects of electric and plug-in hybrid vehicles. The use of electric vehicles (EVs) as demand response resources and the unidirectional (more)

Fasugba, McDavis A.

2011-01-01T23:59:59.000Z

326

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

T. et al. (2006), Plug-in hybrid vehicle analysis, Milestonein conversions of hybrid vehicles are being made availablein Table 3: household hybrid vehicle ownership, respondents

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

327

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

Toyota Ratchets Up Plug-In Prius Talk," in Green Cared, 2006. "Toyota to Unveil Prius with Large Auxiliary Powerfive, including several Prius conversions in various stages

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

328

Interpersonal Influence within Car Buyers Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whyearly market for hybrid electric vehicles." TransportationPlug-in Hybrid Electric Vehicle (PHEV) Demonstration and

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

329

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

for plug-in hybrid electric vehicles (PHEVs): Goals and thetechnology: California's electric vehicle program. Scienceand Impacts of Hybrid Electric Vehicle Options for a Compact

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

330

DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Provide up to $14 Million to Develop Advanced Batteries for to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles DOE to Provide up to $14 Million to Develop Advanced Batteries for Plug-in Hybrid Electric Vehicles April 5, 2007 - 12:17pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today announced that it will provide up to $14 million in funding for a $28 million cost-shared solicitation by the United States Advanced Battery Consortium (USABC), for plug-in hybrid electric vehicle (PHEV) battery development. This research aims to find solutions to improving battery performance so vehicles can deliver up to 40 miles of electric range without recharging. This would include most roundtrip daily commutes. "President Bush is committed to developing alternative fuels and

331

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-in Hybrid Electric Vehicles Plug-in Hybrid Electric Vehicles Learn More About the New Label Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Vehicle Technology & Fuel The upper right corner of the label will display text and a related icon to identify it as a vehicle that can be powered by both gasoline and electricity. You will see different text and icons on the labels for other vehicles: Gasoline Vehicle Diesel Vehicle Compressed Natural Gas Vehicle Hydrogen Fuel Cell Vehicle Flexible-Fuel Vehicle: Gasoline-Ethanol (E85)

332

Federal Tax Credits for Plug-in Hybrids Purchased in or after 2010  

NLE Websites -- All DOE Office Websites (Extended Search)

Federal Tax Credits for Plug-in Hybrids Federal Tax Credits for Plug-in Hybrids Photo of cash and keys Federal Tax Credit Up To $7,500! Plug-in hybrid-electric vehicles (PHEVs) purchased in or after 2010 may be eligible for a federal income tax credit of up to $7,500. The credit amount will vary based on the capacity of the battery used to fuel the vehicle. Small neighborhood electric vehicles do not qualify for this credit, but they may qualify for another credit. Vehicle Make & Model Full Credit Phase Out No Credit 50% 25% BMW Jan. 1, 2010, to Present TBD TBD TBD 2014 BMW i3 Sedan w/ Range Extender 2014 i3 Sedan w/ Range Extender $7,500 -- -- -- Fisker Jan. 1, 2010, to Present TBD TBD TBD Fisker Karma 2012 Fisker Karma Sedan $7,500 -- -- -- Ford Motor Co. Jan. 1, 2010, to Present TBD TBD TBD

333

Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid car this summer, FuelEconomy.gov's side-by-side comparisons can help you pick the right one. I love to look at new cars! Even though I'm not interested at buying one, I love looking at all the cool features. Back-up cameras and GPSes! Music, playlists, touchpads and phones! There are so many cool things

334

Comparing Hybrid and Plug-in Electric Vehicles | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles Comparing Hybrid and Plug-in Electric Vehicles June 6, 2013 - 11:02am Addthis A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. A variety of hybrid and all-electric vehicles are available for consumers. | Photo courtesy of Andrew Hudgins, NREL 17078. Elizabeth Spencer Communicator, National Renewable Energy Laboratory How can I participate? If you're shopping for a new hybrid car this summer, FuelEconomy.gov's side-by-side comparisons can help you pick the right one. I love to look at new cars! Even though I'm not interested at buying one, I love looking at all the cool features. Back-up cameras and GPSes! Music, playlists, touchpads and phones! There are so many cool things

335

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles | Open  

Open Energy Info (EERE)

Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles Agency/Company /Organization: International Energy Agency Focus Area: Vehicles Topics: Potentials & Scenarios Resource Type: Reports, Journal Articles, & Tools Website: www.iea.org/papers/2011/EV_PHEV_Roadmap.pdf The primary role of this EV/PHEV Roadmap is to help establish a vision for technology deployment; set approximate, feasible targets; and identify steps required to get there. It also outlines the role for different stakeholders and how they can work together to reach common objectives, and the role for government policy to support the process. References

336

Q&A: Plugging In with a Power Lineman | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Q&A: Plugging In with a Power Lineman Q&A: Plugging In with a Power Lineman Q&A: Plugging In with a Power Lineman October 18, 2012 - 4:17pm Addthis To commemorate what BPA considers a 75-year partnership with the Columbia River, which is the cornerstone of BPA's relationship with the people and utilities of the Northwest, BPA releases the second video of a series detailing its history. You can see the rest of the series on BPA's 75th Anniversary YouTube channel. Teresa Waugh Public Affairs Specialist, Bonneville Power Administration What does a power lineman do? Linemen work on the complex electrical systems that power our homes and businesses. They climb poles to perform maintenance and work to restore downed power lines after storms. This Q&A and video are part of a series produced by the Bonneville Power

337

Hybrid and Plug-In Electric Vehicles (Brochure), Vehicle Technologies Program (VTP)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Hybrid and plug-in electric vehicles Hybrid and plug-in electric vehicles use electricity as their primary fuel or to improve the efficiency of conventional vehicle designs. This new generation of vehicles, often called electric drive vehicles, can be divided into three cat- egories: hybrid electric vehicles (HEVs), plug-in hybrid electric vehicles (PHEVs), and all-electric vehicles (EVs). Together, they have great potential to reduce U.S. petroleum use. Hybrid Electric Vehicles HEVs are powered by an internal combus- tion engine or other propulsion source that runs on conventional or alternative fuel and an electric motor that uses energy stored in a battery. The extra power provided by the electric motor allows for a smaller engine, resulting in better fuel

338

Photovoltaic Performance and Reliability Database: A Gateway to Experimental Data Monitoring Projects for PV at the Florida Solar Energy Center  

DOE Data Explorer (OSTI)

This site is the gateway to experimental data monitoring projects for photovoltaic (PV) at the Florida Solar Energy Center. The website and the database were designed to facilitate and standardize the processes for archiving, analyzing and accessing data collected from dozens of operational PV systems and test facilities monitored by FSEC's Photovoltaics and Distributed Generation Division. [copied from http://www.fsec.ucf.edu/en/research/photovoltaics/data_monitoring/index.htm

339

Regulatory Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles  

NLE Websites -- All DOE Office Websites (Extended Search)

Influences That Will Likely Influences That Will Likely Affect Success of Plug-in Hybrid and Battery Electric Vehicles By Dan Santini Argonne National Laboratory dsantini@anl.gov Clean Cities Coordinators' Webinar Sept. 16, 2010 Vehicle fuel use regulation/policy measures differ. Which should measure plug-in success?  Corporate average fuel economy (CAFE) ratings do not represent real world fuel use. However, the range ratings of EVs and PHEVs are based on CAFE tests.  "Window sticker" information on vehicle fuel use predicts more gasoline and electricity use than CAFE ratings. - The GREET model (basis of GHG saving estimates) is based on real world fuel use

340

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions Environmental Assessment of Plug-In Hybrid Electric Vehicles Volume 1: Nationwide Greenhouse Gas Emissions 1015325 Final Report, July 2007 Each of the ... scenarios showed significant Greenhouse Gas reductions due to PHEV fleet penetration ... ... PHEVs adoption results in significant reduction in the consumption of petroleum fuels. ' ' DISCLAIMER OF WARRANTIES AND LIMITATION OF LIABILITIES THIS DOCUMENT WAS PREPARED BY THE ORGANIZATION(S) NAMED BELOW AS AN ACCOUNT OF WORK SPONSORED OR COSPONSORED BY THE ELECTRIC POWER RESEARCH INSTITUTE, INC. (EPRI). NEITHER EPRI, ANY MEMBER OF EPRI, ANY COSPONSOR, THE ORGANIZATION(S) BELOW, NOR ANY PERSON ACTING

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets  

DOE Green Energy (OSTI)

This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

Short, W.; Denholm, P.

2006-04-01T23:59:59.000Z

342

The Construction Information Gateway Stephen R Lockley, Construction Informatics, Newcastle University  

E-Print Network (OSTI)

are overcome. 1 Parand, F. (1996) The Construction Information Gateway Demonstrator, CIBSE Journal (see also

Amor, Robert

343

User:GregZiebold/Gateway test | Open Energy Information  

Open Energy Info (EERE)

test test < User:GregZiebold Jump to: navigation, search List of Gateways (by category): {{#ask: [[Category:Gateways]] | format=ul }} América Latina Buildings Clean Energy Economy Coordinated Low Emissions Assistance Network (CLEAN) ECOWAS Clean Energy Gateway Geothermal Hydrogen Incentives and Policies International Clean Energy Analysis Low Emission Development Strategies Old Geothermal Gateway OldGeoGateway Smart Grid Solar U.S. OpenLabs Utilities Water Power Wind List of Gateways (by namespace): {{#ask: [[Gateway:+]]}} América Latina América Latina/Aprender más sobre las ERNC América Latina/Aprender más sobre las ERNC/Construcción y Montaje/Eolica América Latina/Aprender más sobre las ERNC/Estudios de Ingeniería y Selección de Equipos/Biomasa América Latina/Aprender más sobre las ERNC/Estudios de Ingeniería

344

Gateway:Low Emission Development Strategies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Facebook icon Twitter icon » Gateway:Low Emission Development Strategies Jump to: navigation, search Leds-Graphics 03.PNG Low Emission Development Strategies (LEDS) Gateway This website supports the creation and implementation of country-driven, analytically rigorous low emission development strategies (LEDS). LEDS will enable countries to transition to low carbon economic development resulting in sustained growth in employment and investment, increased financial flows through carbon markets, reduced greenhouse gas (GHG) emissions, and other social, economic, and environmental benefits.

345

Keeping plug-in electric vehicles connected to the grid - Patterns of vehicle use  

Science Conference Proceedings (OSTI)

In 2005 Kempton and Tomic laid out a vision for V2G which presumed that use of V2G technology could provide a high revenue stream to early plug-in electric vehicles, enabling market penetration of relatively high cost early-to-market electric drive vehicles. ...

Y. Zhou; A. Vyas

2012-01-01T23:59:59.000Z

346

Options and UTP RSM code plug-ins to iSIGHT and Options  

E-Print Network (OSTI)

. Provide two C routines (one through a .tgen file) to create a new Tcl package and Tcl com- mand your technique to iSIGHT 4. Any GUI interfaces need to be programmed (in Tcl/Tk) & incor- porated into the overall control structure. Basis for iSIGHT plug- in development ­ the Tcl language: · Tcl language

Sóbester, András

347

Plug-in Hybrid Electric Bus Demonstration: Long Island, New York  

Science Conference Proceedings (OSTI)

Initiated in 2003, this plug-in hybrid electric vehicle (PHEV) bus program has three major phases: Odyne/EPRI Design and Build Phases coupled with Odyne/Long Island Power Authority (LIPA) Demonstration Phase. This interim report describes completion of an initial demonstration with Long Island Bus (LI Bus) Mass Transit Authority (MTA).

2008-10-21T23:59:59.000Z

348

Integration of plug-in electric vehicle charging and wind energy scheduling on electricity grid  

Science Conference Proceedings (OSTI)

Plug-in electric vehicles (PEVs) and wind energy are both key new energy technologies. However, they also bring challenges to the operation of the electricity grid. Charging a large number of PEVs requires a lot of grid energy, and scheduling wind energy ...

Chiao-Ting Li; Changsun Ahn; Huei Peng; Jing Sun

2012-01-01T23:59:59.000Z

349

Research Experience with a Plug-In Hybrid Electric Vehicle: Preprint  

DOE Green Energy (OSTI)

This technical document reports on the exploratory research conducted by NREL on PHEV technology using a Toyota Prius that has been converted to a plug-in hybrid electric vehicle. The data includes both controlled dynamometer and on-road test results, particularly for hilly driving. The results highlight the petroleum savings and benefits of PHEV technology.

Markel, T.; Pesaran, A.; Kelly, K.; Thornton, M.; Nortman, P.

2007-12-01T23:59:59.000Z

350

Impact of SiC Devices on Hybrid Electric and Plug-in Hybrid Electric Vehicles  

E-Print Network (OSTI)

is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices is the 2004 Toyota Prius HEV, which has a split powertrain architecture shown in Fig. 1. The other is a plug

Tolbert, Leon M.

351

Well-to-Wheels Analysis of Biofuels and Plug-In Hybrids  

E-Print Network (OSTI)

Well-to-Wheels Analysis of Biofuels and Plug-In Hybrids Michael Wang Center for Transportation such as hydrogen and biofuels Pursuing reductions in transportation GHG emissions now demands for intensive sorghum GREET Includes Some of the Potential Biofuel Production Pathways Starch Crops for EtOH Corn

Argonne National Laboratory

352

Stavanger, Norway, May 13-16, 2009 Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

for the charging of PHEV batteries. Keywords: Plug-in hybrid electric vehicles, lithium battery, battery cost by examining the main technical, cost and infrastructure issues faced by PHEVs, and shows that these issues are yielding to progress. The paper concludes that this progress, in combination with the rising costs

California at Davis, University of

353

Multi-information integrated trip specific optimal power management for plug-in hybrid electric vehicles  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEV) are widely received as a promising means of green mobility by utilizing more battery power. Recently, we have proposed a scheme of two-scale spatial-domain dynamic programming (DP) as a nearly global optimization ...

Yang Bin; Yaoyu Li; Qiuming Gong; Zhong-Ren Peng

2009-06-01T23:59:59.000Z

354

On charging equipment and batteries in plug-in vehicles: Present status  

Science Conference Proceedings (OSTI)

In 2005 Kempton and Tomic laid out a vision for V2G which presumed that use of V2G technology could provide a high revenue stream to early plug-in electric vehicles, enabling market penetration of relatively high cost early-to-market electric drive vehicles. ...

E. Rask; T. Bohn; K. Gallagher

2012-01-01T23:59:59.000Z

355

Power management of plug-in hybrid electric vehicles using neural network based trip modeling  

Science Conference Proceedings (OSTI)

The plug-in hybrid electric vehicles (PHEV), utilizing more battery power, has become a next-generation HEV with great promise of higher fuel economy. Global optimization charge-depletion power management would be desirable. This has so far been hampered ...

Qiuming Gong; Yaoyu Li; Zhongren Peng

2009-06-01T23:59:59.000Z

356

Charging station selection optimization for plug-in electric vehicles: An oligopolistic game-theoretic framework  

Science Conference Proceedings (OSTI)

In this paper, we describe a framework for the selection of the best charging station when plug-in electric vehicles (PEV) need to recharge their batteries, while at the same time the power utilities, which own the charging stations (CS), optimize their ...

J. Joaquin Escudero-Garzas; Gonzalo Seco-Granados

2012-01-01T23:59:59.000Z

357

Plug-in Hybrid Electric Vehicles and Petroleum Displacement: A Regional Economic Impact Assessment  

Science Conference Proceedings (OSTI)

Interest in alternatives to conventional vehicles such as plug-in hybrid electric vehicles (PHEVs) has risen because of the environmental and energy security concerns associated with petroleum dependence, but what would be the economic impact of the widespread use of such vehicles? This study quantified the regional economic impacts associated with an increased market penetration of PHEVs in the household vehicle market.

2007-11-27T23:59:59.000Z

358

OR Forum---Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles (PHEVs) have been touted as a transportation technology with lower fuel costs and emissions impacts than other vehicle types. Most analyses of PHEVs assume that the power system operator can either directly or indirectly ... Keywords: environment, plug-in hybrid electric vehicles, pricing

Ramteen Sioshansi

2012-05-01T23:59:59.000Z

359

Optimal Charging of Plug-in Hybrid Electric Vehicles in Smart Grids Somayeh Sojoudi Steven H. Low  

E-Print Network (OSTI)

1 Optimal Charging of Plug-in Hybrid Electric Vehicles in Smart Grids Somayeh Sojoudi Steven H. Low Abstract-- Plug-in hybrid electric vehicles (PHEVs) play an important role in making a greener future-in hybrid electric vehicles (PHEVs) are becoming more popular as we move toward a greener future. PHEVs

Low, Steven H.

360

Consumer Ready Plug-in Hybrid Electric Vehicle Andrew Shabashevich, Douglas Saucedo, Terrence Williams, Christian Reif, Cuyler Lattoraca,  

E-Print Network (OSTI)

1 Year 3 Consumer Ready Plug-in Hybrid Electric Vehicle Andrew Shabashevich, Douglas Saucedo as an all-electric vehicle, and a as a charge-sustaining, or a conventional Hybrid Electric Vehicle (HEV) is developing a Plug-in Hybrid Electric Vehicle (PHEV) to participate in the 2007 Challenge X competition

California at Davis, University of

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Plug-in Fuel Cell Vehicle Technology and Value Analysis Phase 1: Preliminary Findings and Plan for Detailed Study  

Science Conference Proceedings (OSTI)

This report summarizes the results and conclusions of a first study of the technical, cost, and environmental characteristics of representative plug-in fuel cell vehicle configurations and their comparison with similar-sized fuel cell vehicles, battery electric vehicles (BEVs), and plug-in electric vehicles (PHEVs).

2010-07-29T23:59:59.000Z

362

Gateway Energy (formerly Econnergy) | Open Energy Information  

Open Energy Info (EERE)

(formerly Econnergy) (formerly Econnergy) Jump to: navigation, search Name Gateway Energy Services Address 400 Rella Blvd., Suite 300 Place Montebello, New York Zip 10901 Sector Services Product Green Power Marketer Website http://www.gesc.com/ Coordinates 41.11592°, -74.105664° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.11592,"lon":-74.105664,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

363

T-544: Cisco Security Advisory: Cisco Content Services Gateway  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Cisco Security Advisory: Cisco Content Services Gateway 4: Cisco Security Advisory: Cisco Content Services Gateway Vulnerabilities T-544: Cisco Security Advisory: Cisco Content Services Gateway Vulnerabilities January 27, 2011 - 7:00am Addthis PROBLEM: Cisco Security Advisory: Cisco Content Services Gateway Vulnerabilities PLATFORM: Cisco IOS Software Release 12.4(24)MD1 on the Cisco CSG2 ABSTRACT: Cisco IOS Software Release 12.4(24)MD1 on the Cisco CSG2 contains two vulnerabilities that can be exploited by a remote, unauthenticated attacker to create a denial of service condition that prevents traffic from passing through the CSG2. These vulnerabilities require only a single content service to be active on the Cisco CSG2 and can be exploited via crafted TCP packets. A three-way handshake is not required to exploit either of these

364

T-544: Cisco Security Advisory: Cisco Content Services Gateway  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

4: Cisco Security Advisory: Cisco Content Services Gateway 4: Cisco Security Advisory: Cisco Content Services Gateway Vulnerabilities T-544: Cisco Security Advisory: Cisco Content Services Gateway Vulnerabilities January 27, 2011 - 2:04pm Addthis PROBLEM: Cisco Security Advisory: Cisco Content Services Gateway Vulnerabilities PLATFORM: Cisco IOS Software Release 12.4(24)MD1 on the Cisco CSG2 ABSTRACT: Cisco IOS Software Release 12.4(24)MD1 on the Cisco CSG2 contains two vulnerabilities that can be exploited by a remote, unauthenticated attacker to create a denial of service condition that prevents traffic from passing through the CSG2. These vulnerabilities require only a single content service to be active on the Cisco CSG2 and can be exploited via crafted TCP packets. A three-way handshake is not required to exploit either of these

365

Gateway:Low Emission Development Strategies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Facebook icon Twitter icon » Gateway:Low Emission Development Strategies (Redirected from Gateway:International/LEDS) Jump to: navigation, search Leds-Graphics 03.PNG Low Emission Development Strategies (LEDS) Gateway This website supports the creation and implementation of country-driven, analytically rigorous low emission development strategies (LEDS). LEDS will enable countries to transition to low carbon economic development resulting in sustained growth in employment and investment, increased financial flows through carbon markets, reduced greenhouse gas (GHG) emissions, and other social, economic, and environmental benefits.

366

Gateways, Meters and Demand Response: Opportunity or Folly  

NLE Websites -- All DOE Office Websites (Extended Search)

Gateways, Meters and Demand Response: Opportunity or Folly Speaker(s): Roger Levy Date: November 15, 2001 - 12:00pm Location: Bldg. 90 For technologists, electric utilities provide...

367

Price of Northeast Gateway Natural Gas LNG Imports (Dollars per...  

Gasoline and Diesel Fuel Update (EIA)

(Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

368

Price of Northeast Gateway Natural Gas LNG Imports from Egypt...  

Annual Energy Outlook 2012 (EIA)

Egypt (Nominal Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports from Egypt (Nominal Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2...

369

Price of Northeast Gateway Natural Gas LNG Imports from Trinidad...  

Annual Energy Outlook 2012 (EIA)

and Tobago (Dollars per Thousand Cubic Feet) Price of Northeast Gateway Natural Gas LNG Imports from Trinidad and Tobago (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1...

370

Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports (Million...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

371

Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Trinidad and Tobago (Million Cubic Feet) Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3...

372

Northeast Gateway Natural Gas Liquefied Natural Gas Imports ...  

U.S. Energy Information Administration (EIA) Indexed Site

(Million Cubic Feet) Northeast Gateway Natural Gas Liquefied Natural Gas Imports (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9...

373

Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Qatar (Million Cubic Feet) Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from Qatar (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7...

374

Northeast Gateway Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

from Trinidad and Tobago (Million Cubic Feet) Northeast Gateway Natural Gas Liquefied Natural Gas Imports from Trinidad and Tobago (Million Cubic Feet) Decade Year-0 Year-1 Year-2...

375

Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Malaysia (Million Cubic Feet) Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from Malaysia (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

376

Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from...  

U.S. Energy Information Administration (EIA) Indexed Site

Nigeria (Million Cubic Feet) Gulf Gateway, LA Natural Gas Liquefied Natural Gas Imports from Nigeria (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6...

377

Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results  

NLE Websites -- All DOE Office Websites (Extended Search)

Solid-State Lighting GATEWAY Solid-State Lighting GATEWAY Demonstration Results to someone by E-mail Share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Facebook Tweet about Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Twitter Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Google Bookmark Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Delicious Rank Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on Digg Find More places to share Solid-State Lighting: Solid-State Lighting GATEWAY Demonstration Results on AddThis.com... LED Lighting Facts CALiPER Program Standards Development Technical Information Network Gateway Demonstrations FAQs Results

378

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

Plug-in Hybrid Kits for Toyota and Ford Hybrids," in Greenfactsheet.pdf, 2006. J. Rosebro, "Toyota Ratchets Up Plug-InCongress, 23 April ed, 2006. "Toyota to Unveil Prius with

Williams, Brett D

2010-01-01T23:59:59.000Z

379

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

Plug-in Hybrid Kits for Toyota and Ford Hybrids," in Greenfactsheet.pdf, 2006. J. Rosebro, "Toyota Ratchets Up Plug-InCongress, 23 April ed, 2006. "Toyota to Unveil Prius with

Williams, Brett D

2007-01-01T23:59:59.000Z

380

An Activity-Based Assessment of the Potential Impacts of Plug-In Hybrid Electric Vehicles on Energy and Emissions Using One-Day Travel Data  

E-Print Network (OSTI)

Cost-benefit Analysis of Plug-in Hybrid Electric Vehicle Technology, National Renewable EnergyCost and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory, National Renewable

Recker, W. W.; Kang, J. E.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Introduction to the OR Forum Article: Modeling the Impacts of Electricity Tariffs on Plug-in Hybrid Electric Vehicle Charging, Costs, and Emissions by Ramteen Sioshansi  

Science Conference Proceedings (OSTI)

Comment on Modeling the Impacts of Electricity Tariffs on Plug-In Hybrid Electric Vehicle Charging, Costs, and Emissions by Ramteen Sieshansi. Keywords: energy, environment, plug-in hybrid electric vehicles, pricing

Edieal J. Pinker

2012-05-01T23:59:59.000Z

382

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure investment for reducing US gasoline consumption  

E-Print Network (OSTI)

Cost-effectiveness of plug-in hybrid electric vehicle battery capacity and charging infrastructure online 22 October 2012 Keywords: Plug-in hybrid electric vehicle Charging infrastructure Battery size a b for plug-in hybrid electric vehicles as alternate methods to reduce gasoline consumption for cars, trucks

McGaughey, Alan

383

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce operational and capacity expansion costs for electric  

E-Print Network (OSTI)

Estimating the potential of controlled plug-in hybrid electric vehicle charging to reduce quantify the benefits of controlled charging of plug-in hybrid electric vehicles. Costs are determined expansion Plug-in hybrid electric vehicles Controlled charging Wind power integration a b s t r a c

McGaughey, Alan

384

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in  

NLE Websites -- All DOE Office Websites (Extended Search)

The "Other" Energy in Buildings: Wireless Power Metering of Plug-in The "Other" Energy in Buildings: Wireless Power Metering of Plug-in Devices in Building 90 and Homes Speaker(s): Steven Lanzisera Date: June 17, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Anita Estner Miscellaneous and electronic devices consume about one-third of the primary energy used in U.S. buildings, and their energy use is increasing faster than other end-uses. Although these devices have been studied for 30 years, they are not as well understood as the other end-uses due to their great variety and difficulty in collecting representative energy data for them. This talk describes a method for collecting device-level energy use data for these devices using a relatively low-cost wireless mesh networking technology. Over 600 meters were deployed across B90 and three homes to

385

Fuel Economy of the 2014 Toyota Prius Plug-in Hybrid  

NLE Websites -- All DOE Office Websites (Extended Search)

Toyota Prius Plug-in Hybrid Toyota Prius Plug-in Hybrid Search for Other Vehicles View the Mobile Version of This Page Compare Side-by-Side 4 cyl, 1.8 L Automatic (variable gear ratios) Regular Gas and Electricity EPA Fuel Economy Miles per Gallon Personalize Regular Gas 50 Combined 51 City 49 Highway Elec+Reg. Gas 95 Combined 29 kw-hrs/100 miles *Miles per Gallon Equivalent - 1 gallon of gasoline=33.7 kw-hr Unofficial MPG Estimates Shared by Vehicle Owners My MPG Owner MPG Estimates are not yet available for this vehicle. How can I Share My MPG? Vehicle Specification Data EPA Size Class Additional Information Midsize Cars Drive Front-Wheel Drive Gas Guzzler no Turbocharger no Supercharger no Passenger Volume 94ft3 (Hatchback) Luggage Volume 22ft3 (Hatchback) Engine Descriptor Additional Information PHEV

386

Summary Report: Clean Cities Plug-In Electric Vehicle Community Readiness Partners Discussion Group  

NLE Websites -- All DOE Office Websites (Extended Search)

2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org 2101 Wilson Blvd., Suite 550 | Arlington, VA 22201 | 703-516-4146 | www.C2ES.org MAY 7, 2012 4:30 PM - 6:00 PM LOS ANGELES, CA SUMMARY REPORT: CLEAN CITIES PLUG-IN ELECTRIC VEHICLE COMMUNITY READINESS PARTNERS DISCUSSION GROUP By: Nick Nigro, Center for Climate and Energy Solutions An opportunity to discuss challenges and share best practices regarding efforts to prepare your community/region for plug-in electric vehicles and charging infrastructure deployment Center for Climate and Energy Solutions 2 Table of Contents Table of Contents 2 About this Report 3 Disclaimer 3 Acknowledgements 3 Session Overview 4 Vehicle Demand and Availability 4 Law and Regulatory Environment 5 Public EVSE Signage 5 ADA Compliance 7 Multi-unit Dwellings 7

387

An Integrated Onboard Charger and Accessary Power Converter for Plug-in Electric Vehicles  

SciTech Connect

Abstract: In this paper, an integrated onboard battery charger and accessary dc-dc converter for plug-in electric vehicles (PEVs) is presented. The idea is to utilize the already available traction drive inverters and motors of a PEV as the frond converter of the charger circuit and the transformer of the 14 V accessary dc-dc converter to provide galvanic isolation. The topology was verified by modeling and experimental results on a 5 kW charger prototype

Su, Gui-Jia [ORNL; Tang, Lixin [ORNL

2013-01-01T23:59:59.000Z

388

Plug-In Hybrid Electric Vehicle Environmental Analysis--Electric Sector Modeling of CO2 Emissions  

Science Conference Proceedings (OSTI)

This Electric Power Research Institute has initiated a comprehensive collaborative study to quantify the environmental impacts of electric transportation, specifically with respect to plug-in hybrid electric vehicles (PHEVs). This technical update describes the adaptation of the EPRI electric sector model for the analysis of CO2 emissions from the charging on PHEVs on the electrical grid. A "PHEV Base Case" was developed using baseline assumptions from the "EPRI Base Case," a nominal set of key assumptio...

2006-11-29T23:59:59.000Z

389

Evaluation of Emerging Battery Technologies for Plug-in Hybrid Vehicles  

Science Conference Proceedings (OSTI)

The performance, cycle life, and cost of available batteries are key issues in determining the marketability of plug-in hybrid-electric vehicles (PHEVs). The California Air Resources Board (CARB) initiated a project to evaluate emerging lithiumion battery technologies for PHEV applications. Work initially focused on the determination of the characteristics of one of the most interesting of the emerging lithium-ion batteries, the lithium titanate battery in commercial development by Altairnano, but other ...

2009-08-24T23:59:59.000Z

390

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 3: California Assessment Report  

Science Conference Proceedings (OSTI)

National interest in electric transportation, particularly plug-in hybrid electric vehicles (PHEVs), has increased dramatically in recent years. Much of this interest is based on the potential of PHEVs to reduce petroleum consumption, reduce greenhouse gases, and improve air quality. The Electric Power Research Institute (EPRI) previously conducted a detailed assessment of the impacts on air quality and greenhouse gas emissions if significant numbers of Americans drove cars that were fueled by the power ...

2009-09-30T23:59:59.000Z

391

Plug-in Hybrid Electric Vehicle (PHEV) Prototype Testing and Evaluation -- Data Collection and Analysis  

Science Conference Proceedings (OSTI)

In 2003, EPRI and DaimlerChrysler initiated a collaborative effort to develop and demonstrate a Plug-in Hybrid Electric Vehicle (PHEV) version of DaimlerChrysler's Sprinter commercial van. PHEV Sprinters were subsequently developed and used in limited fleet testing at several locations within the United States. As part of this effort, EPRI took on the responsibility of managing data acquisition and analysis. This report describes the data analysis toolkit EPRI created as part of an ongoing effort to eval...

2008-12-16T23:59:59.000Z

392

Emerging Technology and Architecture Approaches for Plug-in Electric Vehicles to Smart Grid Connectivity  

Science Conference Proceedings (OSTI)

This report provides an overview of the latest advances in technologies evolving to facilitate plug-in electric vehicles (PEVs) to Smart Grid integration. It reiterates applicable requirements based on fundamental principles as well as provides a status on the evolving relevant standards space. Multiple technological approaches are presented, compared, and contrasted; and an update on the status of each is provided. The document concludes with early recommendations for utility and automotive industry pra...

2011-12-21T23:59:59.000Z

393

A Plug-In Electric Vehicle Simulator for Electric Vehicles Supply Equipment Evaluation  

Science Conference Proceedings (OSTI)

The Electric Power Research Institute (EPRI) is developing a portable plug-in electric vehicle simulator to support laboratory testing and evaluation of electric vehicle supply equipment. The device implements the signaling required in the Society of Automotive Engineers J1772 Recommended Practice, SAE Electric Vehicle Conductive Charge Coupler, and provides connection of power quality monitoring and simulated load equipment. The complete unit is self contained and battery powered for ease of field use, ...

2010-12-22T23:59:59.000Z

394

Preliminary Assessment of Plug-In Hybrid and Electric Vehicle Value Elements  

Science Conference Proceedings (OSTI)

Plug-in Hybrid Electric Vehicles (PHEVs) are expected to start production in late 2010. Their batteries are a potential energy storage resource that could supply power to the grid in peak hours or provide ancillary services by providing emergency reserves and helping regulate voltage and frequency during short-term variations in the power balance. This report estimates what the value of PHEV-supplied ancillary services and electric power would have been in the California Independent System Operator (ISO)...

2008-09-30T23:59:59.000Z

395

Power Quality Analysis of On-Board Plug-in Electric Vehicle Chargers  

Science Conference Proceedings (OSTI)

As society begins to pay more attention to energy efficiency and alternate forms of transportation, plug in electric vehicles (PEVs) are likely to become more prevalent as car manufacturers turn toward this technology. Before widespread adoption of PEV charging can occur, the impacts of these chargers must be evaluated. Electric utilities and Electric Power Research Institute (EPRI) are working together to test both on-board and off-board systems with respect to system loading, transformer life, and powe...

2011-12-30T23:59:59.000Z

396

Total Cost of Ownership Model for Current Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

The plug-in electric vehicle (PEV) market has grown dramatically in the past three years, but the central question concerning PEV acceptance in the marketplace still remains: When compared to a hybrid or conventional vehicle, is a PEV worth the additional up-front cost to consumers? Given the incomplete understanding of changes in driving patterns due to vehicle purchases, the baseline analysis described in this report does not model customer adaptation, nor does it attempt to address non-tangible ...

2013-06-10T23:59:59.000Z

397

Evaluation of Power Line Carrier Technologies for Plug-In Electric Vehicle Communications  

Science Conference Proceedings (OSTI)

In support of the Society of Automotive Engineers (SAE) efforts to develop standard means of communication with plug-in electric vehicles (PEVs), EPRI conducted an evaluation of several power line carrier (PLC) technologies. Evaluation of the technologies was based on a test plan developed in the SAE Hybrid Task Force. Direct PEV communication enables signaling of grid conditions to the PEV allowing for remote, intelligent management of vehicle charging. The interface can also support the use of ...

2012-12-12T23:59:59.000Z

398

Microsoft Forefront Threat Management Gateway (TMG) Administrator's Companion, 1st edition  

Science Conference Proceedings (OSTI)

Get your Web security, network perimeter security, and application layer security gateway up and running smoothly. This indispensible, single-volume reference details the features and capabilities of Microsoft Forefront Threat Management Gateway (TMG). ...

Jim Harrison; Yuri Diogenes; Mohit Saxena

2010-02-01T23:59:59.000Z

399

OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big...  

NLE Websites -- All DOE Office Websites (Extended Search)

OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets OpenMSI: A Science Gateway to Sort Through Bio-Imaging's Big Datasets August 27, 2013 | Tags: Basic Energy...

400

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Plug-In Electric Vehicle Handbook Plug-In Electric Vehicle Handbook for Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Interpersonal Influence within Car Buyers Social Networks: Five Perspectives on Plug-in Hybrid Electric Vehicle Demonstration Participants  

E-Print Network (OSTI)

my money in my beliefsand buy a hybrid car to help promotethe production of further hybrid carsthat year they wereCar Buyers Social Networks: Five Perspectives on Plug-in Hybrid

Axsen, Jonn; Kurani, Kenneth S.

2009-01-01T23:59:59.000Z

402

Prospects for Plug-in Hybrid Electric Vehicles in the United States and Japan: A General Equilibrium Analysis  

E-Print Network (OSTI)

The plug-in hybrid electric vehicle (PHEV) may offer a potential near term, low carbon alternative to today's gasoline- and diesel-powered vehicles. A representative vehicle technology that runs on electricity in addition ...

Reilly, John M.

403

Commercializing light-duty plug-in/plug-out hydrogen-fuel-cell vehicles: Mobile Electricity technologies and opportunities  

E-Print Network (OSTI)

H 2 FCVs, plug- in hybrids, and vehicle-to-grid (V2G) power.markets using primarily hybrid vehicles in fleet and otherin hybrid, Plug-out hybrid, Vehicle-to-grid power, Vehicular

Williams, Brett D; Kurani, Kenneth S

2007-01-01T23:59:59.000Z

404

Field Testing Plug-in Hybrid Electric Vehicles with Charge Control Technology in the Xcel Energy Territory  

DOE Green Energy (OSTI)

Results of a joint study by Xcel Energy and NREL to understand the fuel displacement potential, costs, and emissions impacts of market introduction of plug in hybrid electric vehicles.

Markel, T.; Bennion K.; Kramer, W.; Bryan, J.; Giedd, J.

2009-08-01T23:59:59.000Z

405

Batteries for Plug-in Hybrid Electric Vehicles (PHEVs): Goals and the State of Technology circa 2008  

E-Print Network (OSTI)

New Type of Battery for Next Prius, The Wall Street Journal,typified by the Toyota Prius. Currently, interest has turneda plug-in version of the Prius, General Motors is working

Axsen, Jonn; Burke, Andy; Kurani, Kenneth S

2008-01-01T23:59:59.000Z

406

Simulations of Plug-in Hybrid Vehicles Using Advanced Lithium Batteries and Ultracapacitors on Various Driving Cycles  

E-Print Network (OSTI)

Gelder E. Plug-in Hybrid-Electric Vehicle Powertrain DesignIntegration for Hybrid Electric Vehicles, IEEE Transactionsmodels [1-3] of hybrid-electric vehicles using Advisor have

Burke, Andy; Zhao, Hengbing

2010-01-01T23:59:59.000Z

407

Learning from Consumers: Plug-In Hybrid Electric Vehicle (PHEV) Demonstration and Consumer Education, Outreach, and Market Research Program  

E-Print Network (OSTI)

Vehicles: What Hybrid Electric Vehicles (HEVs) Mean and Whys early market for hybrid electric vehicles. TransportationDriving Plug-In Hybrid Electric Vehicles: Reports from U.S.

Kurani, Kenneth S; Axsen, Jonn; Caperello, Nicolette; Davies, Jamie; Stillwater, Tai

2009-01-01T23:59:59.000Z

408

Effect of plug-in hybrid electric vehicles charging/discharging management on planning of smart microgrid  

Science Conference Proceedings (OSTI)

Plug-in hybrid electric vehicles(PHEVs) are recently being widely touted as a viable alternative to conventional vehicles due to their environment friendly and energy-wise features. Assuming that moving into the future

S. M. Hakimi; S. M. Moghaddas-Tafreshi

2012-01-01T23:59:59.000Z

409

Accelerating science gateway development with Web 2.0 and Swift  

Science Conference Proceedings (OSTI)

A Science Gateway is a computational web portal that enables scientists to run scientific simulations, data analysis, and visualization through their web browsers. The major problem of building a science gateway on TeraGrid is how to deploy scientific ... Keywords: OpenSocial, Web2.0, science gateway, workflow

Wenjun Wu; Thomas Uram; Michael Wilde; Mark Hereld; Michael E. Papka

2010-08-01T23:59:59.000Z

410

Gateway:Incentives and Policies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Facebook icon Twitter icon » Gateway:Incentives and Policies (Redirected from Gateway:Incentives) Jump to: navigation, search Incentives and Policies for Renewable Energy and Energy Efficiency Renewables & Energy Efficiency Incentives and Policies by State Click on a state to view summaries included from the Database of State Incentives for Renewables & Efficiency (DSIRE) for that state. A separate map is available for summaries included in the Eastern Interconnect Energy Zones Policy Inventory. Help Improve the Policy Databases Are we missing something? Do you see an entry that needs updates?

411

Clyde Gateway (Smart Grid Project) | Open Energy Information  

Open Energy Info (EERE)

Clyde Gateway (Smart Grid Project) Clyde Gateway (Smart Grid Project) Jump to: navigation, search Project Name Clyde Gateway Country United Kingdom Coordinates 55.378052°, -3.435973° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":55.378052,"lon":-3.435973,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

412

A Reference Design for Residential Energy Gateways: Development and  

NLE Websites -- All DOE Office Websites (Extended Search)

A Reference Design for Residential Energy Gateways: Development and A Reference Design for Residential Energy Gateways: Development and Implications Speaker(s): Daniel Arnold Date: October 28, 2011 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Janie Page Recent advances in communications, policy, and the installation of smart meters in residences across America has opened the realm of the residence to the possibility of advanced electrical load monitoring and control. With no concrete standards or roadmaps governing communications and capabilities, a fractured market of Gateways, IHDs (In Home Displays), load control switches, and smart appliances has emerged in an attempt to take advantage of this burgeoning opportunity. What results from this mixture is a lack of interoperability amongst products, which limits consumer

413

ECOWAS Clean Energy Gateway-Transportation | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Transportation ECOWAS Clean Energy Gateway-Transportation Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Introduction→ Step 1 Step 2 Step 3 Step 4

414

ECOWAS Clean Energy Gateway-About | Open Energy Information  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-About ECOWAS Clean Energy Gateway-About Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo The ECOWAS Centre for Renewable Energy and Energy Efficiency (ECREEE) is

415

ECOWAS Clean Energy Gateway-Organizations and Networks | Open Energy  

Open Energy Info (EERE)

ECOWAS Clean Energy Gateway-Organizations and Networks ECOWAS Clean Energy Gateway-Organizations and Networks Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo Registered Technical and Research Organizations

416

West African Clean Energy Gateway-Resource Assessment | Open Energy  

Open Energy Info (EERE)

African Clean Energy Gateway-Resource Assessment African Clean Energy Gateway-Resource Assessment Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo SWERA-thumb.jpg The SWERA landing page allows for the quick browsing of global data layers.

417

REEGLE - Clean Energy Information Gateway | Open Energy Information  

Open Energy Info (EERE)

REEGLE - Clean Energy Information Gateway REEGLE - Clean Energy Information Gateway (Redirected from Reegle Search Engine for Renewable Energy and Energy Efficiency) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: reegle.info - clean energy information portal Agency/Company /Organization: Renewable Energy and Energy Efficiency Partnership (REEEP) Sector: Climate, Energy Focus Area: Renewable Energy, Biomass, Energy Efficiency, People and Policy, Solar, Wind Phase: Evaluate Options, Prepare a Plan, Develop Finance and Implement Projects Topics: Background analysis, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Resource Type: Dataset, Maps, Publications Website: www.reegle.info/ Web Application Link: www.reegle.info/ RelatedTo: REEEP Toolkits

418

OpenEI:Old Geothermal Gateway | Open Energy Information  

Open Energy Info (EERE)

Gateway Gateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST HOMER REFTI GeoR&D.png Geothermal RD&D Enhanced Geothermal Systems

419

Battery Requirements for Plug-In Hybrid Electric Vehicles: Analysis and Rationale (Presentation)  

DOE Green Energy (OSTI)

Slide presentation to EVS-23 conference describing NREL work to help identify appropriate requirements for batteries to be useful for plug-in hybrid-electric vehicles (PHEVs). Suggested requirements were submitted to the U.S. Advanced Battery Consortium, which used them for a 2007 request for proposals. Requirements were provided both for charge-depleting mode and charge-sustaining mode and for high power/energy ratio and hige energy/power ration batteries for each (different modes of PHEV operation), along with battery and system level requirements.

Pesaran, A.

2007-12-01T23:59:59.000Z

420

On-Board Smart Charging Requirements for Plug-in Electric Vehicles  

Science Conference Proceedings (OSTI)

The first plug-in electric vehicles (PEVs) are expected to start production in late 2010. Both vehicle owners and utility companies would benefit if PEVs could draw power during off peak periods, but implementing a demand response program will require grid-to-PEV bidirectional communications to allow the utility system to influence the timing and amount of energy the PEV draws from the grid. This report defines the technology needed for such "Smart Charging" and reviews the current status of the initiati...

2008-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Plug-in Hybrid Electric Vehicle Evaluation and Test Data Analysis  

Science Conference Proceedings (OSTI)

In 2003, EPRI and DaimlerChrysler initiated a three-part collaborative effort to 1) develop and demonstrate a plug-in hybrid electric vehicle (PHEV) based on the Sprinter vehicle platform, 2) deliver prototype Sprinter PHEVs to fleets within the United States, and 3) explore these benefits in the context of commercial fleet use. As part of this effort, EPRI assumed the responsibility of managing data acquisition and analysis. This report focuses on evaluation of the PHEV Sprinter tested by the South Coas...

2009-12-07T23:59:59.000Z

422

Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energys (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

John G. Smart; Sera White; Michael Duoba

2009-05-01T23:59:59.000Z

423

Plug-in Hybrid Electric Vehicle Yard Tractor: Field Demonstration Results  

Science Conference Proceedings (OSTI)

The fuel economy results for US Hybrid's plug-in hybrid electric vehicle (PHEV) yard tractor, like all PHEVs, is sensitive to the manner in which the operator uses the vehicle and also to different duty cycles, terrain, temperature, and the frequency of charging. At three of the ports, the PHEV operated with a fuel consumption of 1.0 to 1.2 gallons per hour (gph) and 2.3 to 5.7 miles per gallon (mpg) in various duty modes. At the Port of Savannah, where it was solidly operated for only a week, it obtaine...

2011-12-29T23:59:59.000Z

424

Total Cost of Ownership for Current Plug-in Electric Vehicles: Fall 2013 Update  

Science Conference Proceedings (OSTI)

Dramatic growth over the last three years in the plug-in electric vehicle (PEV) market has resulted in many unanswered questions concerning total cost of ownership (TCO). In June 2013, EPRI released a public study that presented a new way of analyzing driving data for the purpose of calculating TCO for PEV ownership (EPRI report 3002001728). That studywhich focused on the 2013 Chevrolet Volt and 2013 Nissan LEAFused a full years worth of driving data to calculate the TCO of ...

2013-12-06T23:59:59.000Z

425

Plug-In Electric Vehicle Charging Load Profile Forecasts for the Salt River Project Service Area  

Science Conference Proceedings (OSTI)

As plug-in electric vehicles (PEVs) enter the marketplace, it is important to understand the impacts of the potentially significant new load caused by PEV charging. Time-of-use (TOU) electricity pricing will help shift PEV charging loads to off-peak hours, mitigating the potential problem of raising the system peak load. However, there is a potential for a secondary peak to develop if the TOU plan causes a large PEV load to appear on the grid at a specific time in the evening. So-called smart chargingbid...

2011-06-30T23:59:59.000Z

426

Plug-In Hybrid Electric Sprinter Van Prototype: Initial Test Results  

Science Conference Proceedings (OSTI)

EPRI and DaimlerChrysler are collaborating on a major program to design and demonstrate plug-in hybrid electric vehicles (PHEVs) based on the Sprinter commercial van platform. This team developed a PHEV architecture and system design for the Sprinter Van. DaimlerChrysler is currently in the process of manufacturing six prototype PHEV Sprinters at its Competency Center for Emissions-Free Vehicles (KEN) in Mannheim, Germany. Four of these prototype vehicles will be demonstrated for a three-year period at f...

2005-03-29T23:59:59.000Z

427

Environmental Assessment of Plug-In Hybrid Electric Vehicles, Volume 1: Nationwide Greenhouse Gas Emissions  

Science Conference Proceedings (OSTI)

How would air quality and greenhouse gas emissions be affected if significant numbers of Americans drove cars that were fueled by the power grid? A recently completed assessment conducted by the Electric Power Research Institute and the Natural Resources Defense Council made a detailed study of the question looking at a variety of scenarios involving the U.S. fleet of power generation and its fleet of light-duty and medium-duty cars and trucks.The study focused on plug-in hybrid electric vehicles (PHEVs)...

2007-07-23T23:59:59.000Z

428

Impact of Plug-in Electric Vehicle Technology Diffusion on Electricity Infrastructure  

Science Conference Proceedings (OSTI)

This report covers the evaluation of macro-level grid capacity impact of plug-in electric vehicles (PEVs) over the next two decades. The document covers both the EPRI PRISM base case of 30 PEVs in 2030 and a more realistic penetration scenario that results in about 6 PEVs in 2030, mimicking the growth rate of hybrid-electric vehicles in the last decade. Also evaluated is the impact of the smart grid on load shifting and economic benefits in terms of deferred capacity investment.

2008-12-22T23:59:59.000Z

429

Plug-In Hybrid Electric Vehicle Yard Tractor: Performance Characterization Report  

Science Conference Proceedings (OSTI)

Diesel-powered tractors, called yard tractors, are used to shuttle cargo trailers from point to point within the confines of a port facility, terminal, or yard. A plug-in hybrid electric vehicle (PHEV) yard tractor design was proposed as a way to reduce operation emissions and diesel fuel use. In 2007, the Electric Power Research Institute (EPRI) began work on the design and construction of a first-of-a-kind PHEV yard tractor. In 2009, Southern California Edison (SCE) tested the completed PHEV yard trac...

2012-02-20T23:59:59.000Z

430

The Web Services Architecture and the UNICORE Gateway  

Science Conference Proceedings (OSTI)

Since its inception a significant asset of the UNICORE Grid middleware has been the Gateway which presents a single point of entry to services available at a particular UNICORE site. This paper presents the design and implementation of the SOAP and WS-Addressing ...

Roger Menday

2006-02-01T23:59:59.000Z

431

DP9: an OAI gateway service for web crawlers  

Science Conference Proceedings (OSTI)

Many libraries and databases are closed to general-purpose Web crawlers, and they expose their content only through their own search engines. At the same time many researchers attempt to locate technical papers through general-purpose Web search engines. ... Keywords: deep web, gateway service, open archives initiative

Xiaoming Liu; Kurt Maly; Mohammad Zubair; Michael L. Nelson

2002-07-01T23:59:59.000Z

432

Plug-in Hybrid Electric Vehicle Fuel Use Reporting Methods and Results  

DOE Green Energy (OSTI)

The Plug-in Hybrid Electric Vehicle (PHEV) Fuel Use Reporting Methods and Results report provides real world test results from PHEV operations and testing in 20 United States and Canada. Examples are given that demonstrate the significant variations operational parameters can have on PHEV petroleum use. In addition to other influences, PHEV mpg results are significantly impacted by driver aggressiveness, cold temperatures, and whether or not the vehicle operator has charged the PHEV battery pack. The U.S. Department of Energys (DOEs) Advanced Vehicle Testing Activity (AVTA) has been testing plug-in hybrid electric vehicles (PHEVs) for several years. The AVTA http://avt.inl.gov/), which is part of DOEs Vehicle Technology Program, also tests other advanced technology vehicles, with 12 million miles of total test vehicle and data collection experience. The Idaho National Laboratory is responsible for conducting the light-duty vehicle testing of PHEVs. Electric Transportation Engineering Corporation also supports the AVTA by conducting PHEV and other types of testing. To date, 12 different PHEV models have been tested, with more than 600,000 miles of PHEV operations data collected.

James E. Francfort

2009-07-01T23:59:59.000Z

433

Predicting the Market Potential of Plug-In Electric Vehicles Using Multiday GPS Data  

E-Print Network (OSTI)

GPS data for a years worth of travel by 255 Seattle households illuminate how plug-in electric vehicles can match household needs. The results suggest that a battery-electric vehicle (BEV) with 100 miles of range should meet the needs of 50 % of one-vehicle households and 80 % of multiple-vehicle households, when charging once a day and relying on another vehicle or mode just 4 days a year. Moreover, the average one-vehicle Seattle household uses each vehicle 23 miles per day and should be able to electrify close to 80 % of its miles using a plug-in hybrid electric vehicle (PHEV) with 40-mile all-electric-range. Households owning two or more vehicles can electrify 50 to 70 % of their miles using a PHEV40, depending on how they assign the vehicle across drivers each day. Cost comparisons between the average single-vehicle household owning a Chevrolet Cruze versus a Volt PHEV suggest that when gas prices are $3.50 per gallon and electricity rates at 11.2 ct per kWh, the Volt will save the household $535 per year in operating costs. Similarly, the Toyota Prius PHEV will provide an annual savings of $538 per year over the Corolla.

Mobashwir Khan; Kara M. Kockelman; William J. Murray Jr. Fellow

2011-01-01T23:59:59.000Z

434

Factors Affecting the Fuel Consumption of Plug-In Hybrid Electric Vehicles  

DOE Green Energy (OSTI)

Primary Factors that Impact the Fuel Consumption of Plug-In Hybrid Electric Vehicles RICHARD BARNEY CARLSON, MATTHEW G. SHIRK Idaho National Laboratory 2525 N. Fremont Ave., Idaho Falls, ID 83415, USA richard.carlson@inl.gov Abstract Plug-in Hybrid Electric Vehicles (PHEV) have proven to significantly reduce petroleum consumption as compared to conventional internal combustion engine vehicles (ICE) by utilizing electrical energy for propulsion. Through extensive testing of PHEVs, analysis has shown that the fuel consumption of PHEVs is more significantly affected than conventional vehicles by either the drivers input or by the environmental inputs around the vehicle. Six primary factors have been identified that significantly affect the fuel consumption of PHEVs. In this paper, these primary factors are analyzed from on-road driving and charging data from over 200 PHEVs throughout North America that include Hymotion Prius conversions and Hybrids Plus Escape conversions. The Idaho National Laboratory (INL) tests plug-in hybrid electric (PHEV) vehicles as part of its conduct of DOEs Advanced Vehicle Testing Activity (AVTA). In collaboration with its 75 testing partners located in 23 states and Canada, INL has collected data on 191 PHEVs, comprised of 12 different PHEV models (by battery manufacturer). With more than 1 million PHEV test miles accumulated to date, the PHEVs are fleet, track, and dynamometer tested. Six Primary Factors The six primary factors that significantly impact PHEV fuel consumption are listed below. Some of the factors are unique to plug-in vehicles while others are common for all types of vehicles. 1. Usable Electrical Energy is dictated by battery capacity, rate of depletion as well as when the vehicle was last plugged-in. With less electrical energy available the powertrain must use more petroleum to generate the required power output. 2. Driver Aggressiveness impacts the fuel consumption of nearly all vehicles but this impact is greater for high efficiency powertrains. 3. Accessory Utilization like air conditioner systems or defroster systems can use a significant amount of additional energy that is not contributing to the propulsion of the vehicle. 4. Route Type such as city, highway or mountainous driving can affect the fuel consumption since it can involve stop and go driving or ascending a step grade. 5. Cold Start / Key On includes control strategies to improve cold start emissions as well as control routines to quickly supply cabin heat. These control strategies are necessary for consumer acceptance even though fuel consumption is negatively impacted. 6. Ambient Temperature can reduce the efficiency of many powertrain components by significantly increasing fluid viscosity. For vehicles that utilize battery energy storage systems, the temperature of the battery system can greatly affect the power output capability therefore reducing its system effectiveness. The analysis of the six primary factors that impact fuel economy of PHEVs helped to identify areas of potential further development as well as may assist in informing drivers of these effects in an effort to modify driving behavior to reduce petroleum consumption.

Richard "Barney" Carlson; Matthew G. Shirk; Benjamin M. Geller

2001-11-01T23:59:59.000Z

435

Non-isolated integrated motor drive and battery charger based on the split-phase PM motor for plug-in vehicles.  

E-Print Network (OSTI)

??In electric vehicles and plug-in hybrid electric vehicles, the utility grid charges the vehicle battery through a battery charger. Different solutions have been proposed to (more)

Serrano Guilln, Isabel

2013-01-01T23:59:59.000Z

436

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles:Mobile Electricity Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

Toyota Ratchets Up Plug-In Prius Talk," in Green Cared, 2006. "Toyota to Unveil Prius with Large Auxiliary Powerfive, including several Prius conversions in various stages

Williams, Brett D

2007-01-01T23:59:59.000Z

437

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

Toyota Ratchets Up Plug-In Prius Talk," in Green Cared, 2006. "Toyota to Unveil Prius with Large Auxiliary Powerfive, including several Prius conversions in various stages

Williams, Brett D

2010-01-01T23:59:59.000Z

438

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Early Market for Hybrid Electric Vehicles. TransportationVehicles: What Hybrid Electric Vehicles (HEVs) Mean and WhyPower Assist Hybrid Electric Vehicles, and Plug-in Hybrid

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

439

Driving Plug-In Hybrid Electric Vehicles: Reports from U.S. Drivers of HEVs converted to PHEVs, circa 2006-07  

E-Print Network (OSTI)

Assessment for Battery Electric Vehicles, PowerAssist Hybrid Electric Vehicles, and Plug-in Hybrid Electric Vehicles. EPRI: Palo Alto, CA.

Kurani, Kenneth S; Heffner, Reid R.; Turrentine, Tom

2008-01-01T23:59:59.000Z

440

Commercializing Light-Duty Plug-In/Plug-Out Hydrogen-Fuel-Cell Vehicles: "Mobile Electricity" Technologies, Early California Household Markets, and Innovation Management  

E-Print Network (OSTI)

assessment for fuel cell electric vehicles." Argonne, Ill. :of Plug-In Hybrid Electric Vehicles on Wind Energy Markets,"Recharging and Household Electric Vehicle Market: A Near-

Williams, Brett D

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Within-Day Recharge of Plug-In Hybrid Electric Vehicles: Energy Impact of Public Charging Infrastructure  

SciTech Connect

This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.

Dong, Jing [ORNL; Lin, Zhenhong [ORNL

2012-01-01T23:59:59.000Z

442

Impact of Plug-in Hybrid Vehicles on the Electric Grid  

SciTech Connect

Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

Hadley, Stanton W [ORNL

2006-11-01T23:59:59.000Z

443

Impact of Plug-in Hybrid Vehicles on the Electric Grid  

Science Conference Proceedings (OSTI)

Plug-in hybrid vehicles (PHEVs) are being developed around the world; much work is going on to optimize engine and battery operations for efficient operation, both during discharge and when grid electricity is available for recharging. However, there has generally been the expectation that the grid will not be greatly affected by the use of the vehicles, because the recharging would only occur during offpeak hours, or the number of vehicles will grow slowly enough that capacity planning will respond adequately. But this expectation does not incorporate that endusers will have control of the time of recharging and the inclination for people will be to plug in when convenient for them, rather than when utilities would prefer. It is important to understand the ramifications of introducing a number of plug-in hybrid vehicles onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require both the addition of new electric capacity along with an increase in the utilization of existing capacity. Local distribution grids will see a change in their utilization pattern, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to recharge the vehicles will be different depending on the region of the country and timing when the PHEVs recharge. We conducted an analysis of what the grid impact may be in 2018 with one million PHEVs added to the VACAR sub-region of the Southeast Electric Reliability Council, a region that includes South Carolina, North Carolina, and much of Virginia. To do this, we used the Oak Ridge Competitive Electricity Dispatch model, which simulates the hourly dispatch of power generators to meet demand for a region over a given year. Depending on the vehicle, its battery, the charger voltage level, amperage, and duration, the impact on regional electricity demand varied from 1,400 to 6,000 MW. If recharging occurred in the early evening, then peak loads were raised and demands were met largely by combustion turbines and combined cycle plants. Nighttime recharging had less impact on peak loads and generation adequacy, but the increased use of coal-fired generation changed the relative amounts of air emissions. Costs of generation also fluctuated greatly depending on the timing. However, initial analysis shows that even charging at peak times may be less costly than using gasoline to operate the vehicles. Even if the overall region may have sufficient generating power, the region's transmission system or distribution lines to different areas may not be large enough to handle this new type of load. A largely residential feeder circuit may not be sized to have a significant proportion of its customers adding 1.4 to 6 kW loads that would operate continuously for two to six hours beginning in the early evening. On a broader scale, the transmission lines feeding the local substations may be similarly constrained if they are not sized to respond to this extra growth in demand. This initial analysis identifies some of the complexities in analyzing the integrated system of PHEVs and the grid. Depending on the power level, timing, and duration of the PHEV connection to the grid, there could be a wide variety of impacts on grid constraints, capacity needs, fuel types used, and emissions generated. This paper provides a brief description of plug-in hybrid vehicle characteristics in Chapter 2. Various charging strategies for vehicles are discussed, with a consequent impact on the grid. In Chapter 3 we describe the future electrical demand for a region of the country and the impact on this demand with a number of plug-in hybrids. We apply that demand to an inventory of power plants for the region using the Oak Ridge Competitive Electricity Dispatch (ORCED) model to evaluate the change in power production and emissions. In Chapter 4 we discuss the impact of demand increases on local distribution systems. In Chapter 5 we conclude and provide insights into the impacts of plug-ins. Future

Hadley, Stanton W [ORNL

2006-11-01T23:59:59.000Z

444

Plug-In Electric Vehicle Handbook for Public Charging Station Hosts (Brochure), NREL (National Renewable Energy Laboratory)  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

Public Charging Public Charging Station Hosts Plug-In Electric Vehicle Handbook for Public Charging Station Hosts 2 Table of Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3 PEV Basics . . . . . . . . . . . . . . . . . . . . . . . . . 4 Charging Basics . . . . . . . . . . . . . . . . . . . . . 6 Benefits and Costs of Hosting a Charging Station . . . . . . . . . . . 9 Charging Station Locations and Hosts . . . . . . . . . . . . . . . . . 12 Ownership and Payment Models . . . . . . 14 Installing and Maintaining Charging Stations . . . . . . . . . . . . . . . . . . . 15 Electrifying the Future . . . . . . . . . . . . . . 19 Clean Cities Helps Establish PEV Charging Stations Establishing plug-in electric vehicle (PEV) charging stations requires unique knowledge and skills . If you need help, contact your local Clean Cities coordinator . Clean Cities is the U .S . Department of Energy's flagship alterna- tive-transportation deployment initiative . It is supported

445

Understanding the Grid Impacts of Plug-In Electric Vehicles (PEV): Phase 1 Study -- Distribution Impact Case Studies  

Science Conference Proceedings (OSTI)

A new era of plug-in electric vehicles (PEVs) has begun. Nissan and General Motors launched production PEVs in December 2010, and in 2011 and 2012, Ford, Mitsubishi, Toyota, Honda, Chrysler, Tesla, and others have introduced such vehicles to the US market which can create peak loads of up to 19.2 kW. In addition, with the rapidly approaching commercialization of plug-in hybrid (PHEVs) and battery electric vehicles (BEVs) utilities need to ensure that they can support customers use of such ...

2012-12-31T23:59:59.000Z

446

ACCESS CONTROL  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

TERMSDEFINITIONS FROM DOE M 470.4-7 ACCESS CONTROL. The process of permitting access or denying access to information, facilities, nuclear materials, resources, or designated...

447

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

NLE Websites -- All DOE Office Websites (Extended Search)

7951 7951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

448

Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation: Preprint  

Alternative Fuels and Advanced Vehicles Data Center (EERE)

951 951 April 2010 Plug-in Electric Vehicle Infrastructure: A Foundation for Electrified Transportation Preprint T. Markel To be presented at the MIT Energy Initiative Transportation Electrification Symposium Cambridge, Massachusetts April 8, 2010 NOTICE The submitted manuscript has been offered by an employee of the Alliance for Sustainable Energy, LLC (ASE), a contractor of the US Government under Contract No. DE-AC36-08-GO28308. Accordingly, the US Government and ASE retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any

449

2011 Chevrolet Volt VIN 0815 Plug-In Hybrid Electric Vehicle Battery Test Results  

SciTech Connect

The U.S. Department of Energy (DOE) Advanced Vehicle Testing Activity (AVTA) program consists of vehicle, battery, and infrastructure testing on advanced technology related to transportation. The activity includes tests on plug-in hybrid electric vehicles (PHEVs), including testing the PHEV batteries when both the vehicles and batteries are new and at the conclusion of 12,000 miles of on-road fleet testing. This report documents battery testing performed for the 2011 Chevrolet Volt PHEV (VIN 1G1RD6E48BU100815). The battery testing was performed by the Electric Transportation Engineering Corporation (eTec) dba ECOtality North America. The Idaho National Laboratory and ECOtality North America collaborate on the AVTA for the Vehicle Technologies Program of the DOE.

Tyler Gray; Matthew Shirk; Jeffrey Wishart

2013-07-01T23:59:59.000Z

450

Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint  

DOE Green Energy (OSTI)

The main barriers to increased market share of hybrid electric vehicles (HEVs) and commercialization of plug-in HEVs are the cost, safety, and life of lithium ion batteries. Significant effort is being directed to address these issues for lithium ion cells. However, even the best cells may not perform as well when integrated into packs for vehicles because of the environment in which vehicles operate. This paper discusses mechanical, electrical, and thermal integration issues and vehicle interface issues that could impact the cost, life, and safety of the system. It also compares the advantages and disadvantages of using many small cells versus a few large cells and using prismatic cells versus cylindrical cells.

Pesaran, A. A.; Kim, G. H.; Keyser, M.

2009-05-01T23:59:59.000Z

451

Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation  

DOE Green Energy (OSTI)

Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

2008-01-01T23:59:59.000Z

452

Self-learning control system for plug-in hybrid vehicles  

DOE Patents (OSTI)

A system is provided to instruct a plug-in hybrid electric vehicle how optimally to use electric propulsion from a rechargeable energy storage device to reach an electric recharging station, while maintaining as high a state of charge (SOC) as desired along the route prior to arriving at the recharging station at a minimum SOC. The system can include the step of calculating a straight-line distance and/or actual distance between an orientation point and the determined instant present location to determine when to initiate optimally a charge depleting phase. The system can limit extended driving on a deeply discharged rechargeable energy storage device and reduce the number of deep discharge cycles for the rechargeable energy storage device, thereby improving the effective lifetime of the rechargeable energy storage device. This "Just-in-Time strategy can be initiated automatically without operator input to accommodate the unsophisticated operator and without needing a navigation system/GPS input.

DeVault; Robert C. (Knoxville, TN)

2010-12-14T23:59:59.000Z

453

Potential Impacts of Plug-in Hybrid Electric Vehicles on Regional Power Generation  

SciTech Connect

Plug-in hybrid electric vehicles (PHEVs) are being developed around the world, with much work aiming to optimize engine and battery for efficient operation, both during discharge and when grid electricity is available for recharging. However, the general expectation has been that the grid will not be greatly affected by the use of PHEVs because the recharging will occur during off-peak hours, or the number of vehicles will grow slowly enough so that capacity planning will respond adequately. This expectation does not consider that drivers will control the timing of recharging, and their inclination will be to plug in when convenient, rather than when utilities would prefer. It is important to understand the ramifications of adding load from PHEVs onto the grid. Depending on when and where the vehicles are plugged in, they could cause local or regional constraints on the grid. They could require the addition of new electric capacity and increase the utilization of existing capacity. Usage patterns of local distribution grids will change, and some lines or substations may become overloaded sooner than expected. Furthermore, the type of generation used to meet the demand for recharging PHEVs will depend on the region of the country and the timing of recharging. This paper analyzes the potential impacts of PHEVs on electricity demand, supply, generation structure, prices, and associated emission levels in 2020 and 2030 in 13 regions specified by the North American Electric Reliability Corporation (NERC) and the U.S. Department of Energy's (DOE's) Energy Information Administration (EIA), and on which the data and analysis in EIA's Annual Energy Outlook 2007 are based (Figure ES-1). The estimates of power plant supplies and regional hourly electricity demand come from publicly available sources from EIA and the Federal Energy Regulatory Commission. Electricity requirements for PHEVs are based on analysis from the Electric Power Research Institute, with an optimistic projection of 25% market penetration by 2020, involving a mixture of sedans and sport utility vehicles. The calculations were done using the Oak Ridge Competitive Electricity Dispatch (ORCED) model, a model developed over the past 12 years to evaluate a wide variety of critical electricity sector issues. Seven scenarios were run for each region for 2020 and 2030, for a total of 182 scenarios. In addition to a base scenario of no PHEVs, the authors modeled scenarios assuming that vehicles were either plugged in starting at 5:00 p.m. (evening) or at 10:00 p.m.(night) and left until fully charged. Three charging rates were examined: 120V/15A (1.4 kW), 120V/20A (2 kW), and 220V/30A (6 kW). Most regions will need to build additional capacity or utilize demand response to meet the added demand from PHEVs in the evening charging scenarios, especially by 2030 when PHEVs have a larger share of the installed vehicle base and make a larger demand on the system. The added demands of evening charging, especially at high power levels, can impact the overall demand peaks and reduce the reserve margins for a region's system. Night recharging has little potential to influence peak loads, but will still influence the amount and type of generation.

Hadley, Stanton W [ORNL; Tsvetkova, Alexandra A [ORNL

2008-01-01T23:59:59.000Z

454

A Dynamic Algorithm for Facilitated Charging of Plug-In Electric Vehicles  

E-Print Network (OSTI)

Plug-in Electric Vehicles (PEVs) are a rapidly developing technology that can reduce greenhouse gas emissions and change the way vehicles obtain power. PEV charging stations will most likely be available at home and at work, and occasionally be publicly available, offering flexible charging options. Ideally, each vehicle will charge during periods when electricity prices are relatively low, to minimize the cost to the consumer and maximize societal benefits. A Demand Response (DR) service for a fleet of PEVs could yield such charging schedules by regulating consumer electricity use during certain time periods, in order to meet an obligation to the market. We construct an automated DR mechanism for a fleet of PEVs that facilitates vehicle charging to ensure the demands of the vehicles and the market are met. Our dynamic algorithm depends only on the knowledge of a few hundred driving behaviors from a previous similar day, and uses a simple adjusted pricing scheme to instantly assign feasible and satisfactory c...

Taheri, Nicole; Ye, Yinyu

2011-01-01T23:59:59.000Z

455

A Queueing Based Scheduling Approach to Plug-In Electric Vehicle Dispatch in Distribution Systems  

E-Print Network (OSTI)

Large-scale integration of plug-in electric vehicles (PEV) in power systems can cause severe issues to the existing distribution system, such as branch congestions and significant voltage drops. As a consequence, smart charging strategies are crucial for the secure and reliable operation of the power system. This paper tries to achieve high penetration level of PEVs with the existing distribution system infrastructure by proposing a smart charging algorithm that can optimally utilize the distribution system capacity. Specifically, the paper proposes a max-weight PEV dispatch algorithm to control the PEV charging rates, subject to power system physical limits. The proposed max-weight PEV dispatch algorithm is proved to be throughput optimal under very mild assumptions on the stochastic dynamics in the system. This suggests that the costly distribution system infrastructure upgrade can be avoided, or failing that, at least successfully deferred. The proposed PEV dispatch algorithm is particularly attractive in ...

Li, Qiao; Ilic, Marija D

2012-01-01T23:59:59.000Z

456

U-219: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19: Symantec Web Gateway Input Validation Flaws Lets Remote 19: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords U-219: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords July 24, 2012 - 7:00am Addthis PROBLEM: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords PLATFORM: Symantec Web Gateway 5.0.x.x ABSTRACT: Several vulnerabilities were reported in Symantec Web Gateway. REFERENCE LINKS: Security Advisories Relating to Symantec Products SecurityTracker Alert ID: 1027289 Bugtraq ID: 54424 Bugtraq ID: 54425 Bugtraq ID: 54426 Bugtraq ID: 54427 Bugtraq ID: 54429 Bugtraq ID: 54430

457

U-219: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

19: Symantec Web Gateway Input Validation Flaws Lets Remote 19: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords U-219: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords July 24, 2012 - 7:00am Addthis PROBLEM: Symantec Web Gateway Input Validation Flaws Lets Remote Users Inject SQL Commands, Execute Arbitrary Commands, and Change User Passwords PLATFORM: Symantec Web Gateway 5.0.x.x ABSTRACT: Several vulnerabilities were reported in Symantec Web Gateway. REFERENCE LINKS: Security Advisories Relating to Symantec Products SecurityTracker Alert ID: 1027289 Bugtraq ID: 54424 Bugtraq ID: 54425 Bugtraq ID: 54426 Bugtraq ID: 54427 Bugtraq ID: 54429 Bugtraq ID: 54430

458

V-225: McAfee Email Gateway SMTP Processing Flaw Lets Remote Users Deny  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

5: McAfee Email Gateway SMTP Processing Flaw Lets Remote Users 5: McAfee Email Gateway SMTP Processing Flaw Lets Remote Users Deny Service V-225: McAfee Email Gateway SMTP Processing Flaw Lets Remote Users Deny Service August 23, 2013 - 1:26am Addthis PROBLEM: A vulnerability was reported in McAfee Email Gateway. A remote user can cause denial of service conditions. PLATFORM: McAfee Email Gateway (MEG) 7.5 ABSTRACT: A remote user can cause the SMTP proxy to stop responding. REFERENCE LINKS: SecurityTracker Alert ID: 1028941 GENERIC-MAP-NOMATCH IMPACT ASSESSMENT: High DISCUSSION: A vulnerability was reported in McAfee Email Gateway. A remote user can cause denial of service conditions.A remote user can send a specially crafted e-mail to cause the ws_inv-smtp process to enter an infinite loop and cause the target SMTP proxy to stop responding.

459

Gateway:Incentives and Policies | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Gateway Edit History Facebook icon Twitter icon » Gateway:Incentives and Policies Jump to: navigation, search Incentives and Policies for Renewable Energy and Energy Efficiency Renewables & Energy Efficiency Incentives and Policies by State Click on a state to view summaries included from the Database of State Incentives for Renewables & Efficiency (DSIRE) for that state. A separate map is available for summaries included in the Eastern Interconnect Energy Zones Policy Inventory. Help Improve the Policy Databases Are we missing something? Do you see an entry that needs updates? Click on the "add new" links below, enter suggested edits into existing

460

ECOWAS Clean Energy Gateway-Technology Data | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Technology Data Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

REEGLE - Clean Energy Information Gateway | Open Energy Information  

Open Energy Info (EERE)

REEGLE - Clean Energy Information Gateway REEGLE - Clean Energy Information Gateway Jump to: navigation, search Tool Summary LAUNCH TOOL Name: reegle.info - clean energy information portal Agency/Company /Organization: Renewable Energy and Energy Efficiency Partnership (REEEP) Sector: Climate, Energy Focus Area: Renewable Energy, Biomass, Energy Efficiency, People and Policy, Solar, Wind Phase: Evaluate Options, Prepare a Plan, Develop Finance and Implement Projects Topics: Background analysis, Implementation, Low emission development planning, -LEDS, Policies/deployment programs Resource Type: Dataset, Maps, Publications Website: www.reegle.info/ Web Application Link: www.reegle.info/ RelatedTo: REEEP Toolkits Cost: Free OpenEI Keyword(s): energy data, policy, regulation, open data, LOD, tagging

462

ECOWAS Clean Energy Gateway-Finance | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Finance Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

463

ECOWAS Clean Energy Gateway-Links | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Links Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png Ivory Coast Liberia Mali Niger Nigeria Senegal Sierra Leone Togo

464

ECOWAS Clean Energy Gateway-Help | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » ECOWAS Clean Energy Gateway-Help Jump to: navigation, search Economic Community of West African States (ECOWAS) Clean Energy Gateway Home | About | News | Links | Help | Countries Benin | Burkina Faso | Cape Verde | Gambia | Ghana | Guinea| Guinea-Bissau | Ivory Coast | Liberia | Mali | Niger | Nigeria | Senegal | Sierra Leone | Togo Countries ECREEE light.JPG FBenin.png FBurkinaFaso.png FCapeVerde.png FGambia.png FGhana.png FGuinea.png FGuinea-Bissau.png Benin Burkina Faso Cape Verde Gambia Ghana Guinea Guinea-Bissau FIvoryCoast.png FLiberia.png FMali.png FNiger.png FNigeria.png FSenegal.png FSierraLeone.png FTogo.png

465

Plug-in HEVs: A Near-Term Option to Reduce Petroleum Consumption from FY05 Milestone Report (Presentation)  

DOE Green Energy (OSTI)

Presented to DOE management staff on September 14, 2005 at the DOE headquarters in Washington DC. Content was updated January 19, 2006 for publication. This presentation addresses plug-in hybrid electric vehicle (PHEV) market and technology issues for research and development efforts.

Markel, T.; O'Keefe, M.; Simpson, A.; Gonder, J.; Brooker, A.

2006-01-19T23:59:59.000Z

466

Battery life and performance depend strongly on temperature; thus there exists a need for thermal conditioning in plug-in  

E-Print Network (OSTI)

ABSTRACT Battery life and performance depend strongly on temperature; thus there exists a need battery life depends on the design of thermal management used as well as the specific battery chemistry of an air cooled plug-in hybrid electric vehicle battery pack with cylindrical LiFePO4/graphite cell design

Michalek, Jeremy J.

467

Intelligent energy management: impact of demand response and plug-in electric vehicles in a smart grid environment  

Science Conference Proceedings (OSTI)

Modernization of the power grid to meet the growing demand requires significant amount of operational, technological, and infrastructural overhaul. The Department of Energy's "Grid 2030" strategic vision outlines the action plan to alleviate the concerns ... Keywords: controlled charging, demand response, plug in hybrid electric vehicles, smart grid

Seshadri Srinivasa Raghavan; Alireza Khaligh

2012-03-01T23:59:59.000Z

468

Well-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles  

E-Print Network (OSTI)

Analyzed distribution of vehicles by last trip ending time for each region Generated PHEVs load profiles PSAT were adjusted to on-road values for this analysis PHEV miles driven by grid electricity and onWell-to-Wheels Energy Use and Greenhouse Gas Emissions of Plug-In Hybrid Electric Vehicles Amgad

469

The Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas  

E-Print Network (OSTI)

Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett Kerrigan B.Eng., Carleton UniversityThe Techno-economic Impacts of Using Wind Power and Plug-In Hybrid Electric Vehicles for Greenhouse Gas Mitigation in Canada by Brett William Kerrigan B.Eng., Carleton University, 2008 A Thesis

Victoria, University of

470

The challenges and policy options for integrating plug-in hybrid electric vehicle into the electric grid  

SciTech Connect

Plug-in hybrid electric vehicle may be prime candidates for the next generation of vehicles, but they offer several technological and economical challenges. This article assesses current progress in PHEV technology, market trends, research needs, challenges ahead and policy options for integrating PHEVs into the electric grid. (author)

Srivastava, Anurag K.; Annabathina, Bharath; Kamalasadan, Sukumar

2010-04-15T23:59:59.000Z

471

Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles  

E-Print Network (OSTI)

incentives. The federal Qualified Plug-In Electric Drive Motor Vehicle Tax Credit is available for PEV. Advances in electric-drive technologies enabled commercializa- tion of hybrid electric vehicles (HEVs That Affect All-Electric and Hybrid Electric Vehicle Efficiency and Range section). The time required to fully

Michalek, Jeremy J.

472

500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric  

E-Print Network (OSTI)

500 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 The Evolution of Plug-In Electric;502 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 supply equipment (EVSE) and PEV, Zig;504 IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 1, MARCH 2012 TABLE I PROGRESSION OF PEV-GRID INTERACTIONS

Baldick, Ross

473

The development of a south Texas health information gateway : negotiating the construction of information.  

E-Print Network (OSTI)

??This study examines the challenges, issues and complexities surrounding the construction of information for a South Texas Internet-based, health information gateway. It explores the collaborative (more)

Kaercher, Deborah J.

2007-01-01T23:59:59.000Z

474

T-581: Novell Access Manager Java Double Literal Denial of Service  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81: Novell Access Manager Java Double Literal Denial of Service 81: Novell Access Manager Java Double Literal Denial of Service Vulnerability T-581: Novell Access Manager Java Double Literal Denial of Service Vulnerability March 17, 2011 - 3:05pm Addthis PROBLEM: Novell has acknowledged a vulnerability in Novell Access Manager, which can be exploited by malicious people to cause a DoS (Denial of Service). PLATFORM: Novell Access Manager 3.1 Linux Access Gateway Novell Access Manager 3.1 Access Administration Novell Access Manager 3.1 SSLVPN Server Novell Access Manager 3.1 Windows Novell Identity Server Novell Access Manager 3.1 Linux Novell Identity Server Novell Access Manager 3.1 Java Agents ABSTRACT: Novell Access Manager Java Double Literal Denial of Service Vulnerability. reference LINKS: Secunia Advisory: SA43769 CVE-2010-4476

475

Sorting through the many total-energy-cycle pathways possible with early plug-in hybrids.  

SciTech Connect

Using the 'total energy cycle' methodology, we compare U.S. near term (to {approx}2015) alternative pathways for converting energy to light-duty vehicle kilometers of travel (VKT) in plug-in hybrids (PHEVs), hybrids (HEVs), and conventional vehicles (CVs). For PHEVs, we present total energy-per-unit-of-VKT information two ways (1) energy from the grid during charge depletion (CD); (2) energy from stored on-board fossil fuel when charge sustaining (CS). We examine 'incremental sources of supply of liquid fuel such as (a) oil sands from Canada, (b) Fischer-Tropsch diesel via natural gas imported by LNG tanker, and (c) ethanol from cellulosic biomass. We compare such fuel pathways to various possible power converters producing electricity, including (i) new coal boilers, (ii) new integrated, gasified coal combined cycle (IGCC), (iii) existing natural gas fueled combined cycle (NGCC), (iv) existing natural gas combustion turbines, (v) wood-to-electricity, and (vi) wind/solar. We simulate a fuel cell HEV and also consider the possibility of a plug-in hybrid fuel cell vehicle (FCV). For the simulated FCV our results address the merits of converting some fuels to hydrogen to power the fuel cell vs. conversion of those same fuels to electricity to charge the PHEV battery. The investigation is confined to a U.S. compact sized car (i.e. a world passenger car). Where most other studies have focused on emissions (greenhouse gases and conventional air pollutants), this study focuses on identification of the pathway providing the most vehicle kilometers from each of five feedstocks examined. The GREET 1.7 fuel cycle model and the new GREET 2.7 vehicle cycle model were used as the foundation for this study. Total energy, energy by fuel type, total greenhouse gases (GHGs), volatile organic compounds (VOC), carbon monoxide (CO), nitrogen oxides (NO{sub x}), fine particulate (PM2.5) and sulfur oxides (SO{sub x}) values are presented. We also isolate the PHEV emissions contribution from varying kWh storage capability of battery packs in HEVs and PHEVs from {approx}16 to 64 km of charge depleting distance. Sensitivity analysis is conducted with respect to the effect of replacing the battery once during the vehicle's life. The paper includes one appendix that examines several recent studies of interactions of PHEVs with patterns of electric generation and one that provides definitions, acronyms, and fuel consumption estimation steps.

Gaines, L.; Burnham, A.; Rousseau, A.; Santini, D.; Energy Systems

2008-01-01T23:59:59.000Z

476

Learn More About the Fuel Economy Label for Plug-in Hybrid Electric  

NLE Websites -- All DOE Office Websites (Extended Search)

Híbridos Eléctricos Enchufables Híbridos Eléctricos Enchufables Aprenda más acerca del Nuevo Engomado Plug-in Hybrid Fuel Economy Label Vehicle Technology & Fuel Comparing Fuel Economy to Other Vehicles You Save/Spend More over 5 Years Compared to Average Vehicle Estimated Annual Fuel Cost Fuel Economy and Greenhouse Gas Rating CO2 Emissions Information Smog Rating QR Code fueleconomy.gov Driving Range Charge Time 1. Tecnología y Combustible para Vehículos La esquina superior derecha del engomado muestra el texto y el ícono que identifica que el vehículo puede utilizar gasolina y electricidad. Usted verá otro texto e íconos diferentes en los engomados de otros vehículos; Vehículo de Gasolina Vehículo de Diesel Vehículo de Gas Natural Comprimido Vehículo de Célula de Combustible

477

A Plug-in Hybrid Consumer Choice Model with Detailed Market Segmentation  

DOE Green Energy (OSTI)

This paper describes a consumer choice model for projecting U.S. demand for plug-in hybrid electric vehicles (PHEV) in competition among 13 light-duty vehicle technologies over the period 2005-2050. New car buyers are disaggregated by region, residential area, attitude toward technology risk, vehicle usage intensity, home parking and work recharging. The nested multinomial logit (NMNL) model of vehicle choice incorporates daily vehicle usage distributions, refueling and recharging availability, technology learning by doing, and diversity of choice among makes and models. Illustrative results are presented for a Base Case, calibrated to the Annual Energy Outlook (AEO) 2009 Reference Updated Case, and an optimistic technology scenario reflecting achievement of U.S. Department of Energy s (DOE s) FreedomCAR goals. PHEV market success is highly dependent on the degree of technological progress assumed. PHEV sales reach one million in 2037 in the Base Case but in 2020 in the FreedomCARGoals Case. In the FreedomCARGoals Case, PHEV cumulative sales reach 1.5 million by 2015. Together with efficiency improvements in other technologies, petroleum use in 2050 is reduced by about 45% from the 2005 level. After technological progress, PHEV s market success appears to be most sensitive to recharging availability, consumers attitudes toward novel echnologies, and vehicle usage intensity. Successful market penetration of PHEVs helps bring down battery costs for electric vehicles (EVs), resulting in a significant EV market share after 2040.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2010-01-01T23:59:59.000Z

478

Impact Assessment of Plug-in Hybrid Vehicles on the U.S. Power Grid  

Science Conference Proceedings (OSTI)

The US electricity grid is a national infrastructure that has the potential to deliver significant amounts of the daily driving energy of the US light duty vehicle (cars, pickups, SUVs, and vans) fleet. This paper discusses a 2030 scenario with 37 million plug-in hybrid electric vehicles (PHEVs) on the road in the US demanding electricity for an average daily driving distance of about 33 miles (53 km). The paper addresses the potential grid impacts of the PHEVs fleet relative to their effects on the production cost of electricity, and the emissions from the electricity sector. The results of this analysis indicate significant regional difference on the cost impacts and the CO2 emissions. Battery charging during the day may have twice the cost impacts than charging during the night. The CO2 emissions impacts are very region-dependent. In predominantly coal regions (Midwest), the new PHEV load may reduce the CO2 emission intensity (ton/MWh), while in others regions with significant clean generation (hydro and renewable energy) the CO2 emission intensity may increase. Discussed will the potential impact of the results with the valuation of carbon emissions.

Kintner-Meyer, Michael CW; Nguyen, Tony B.; Jin, Chunlian; Balducci, Patrick J.; Secrest, Thomas J.

2010-09-30T23:59:59.000Z

479

2007. Impacts Assessment of Plug-in Hybrid Vehicles on Electric  

E-Print Network (OSTI)

The U.S. electric power infrastructure is a strategic national asset that is underutilized most of the time. With the proper changes in the operational paradigm, it could generate and deliver the necessary energy to fuel the majority of the U.S. light-duty vehicle (LDV) fleet. In doing so, it would reduce greenhouse gas emissions, improve the economics of the electricity industry, and reduce the U.S. dependency on foreign oil. Two companion papers investigate the technical potential and economic impacts of using the existing idle capacity of the electric infrastructure in conjunction with the emerging plug-in hybrid electric vehicle (PHEV) technology to meet the majority of the daily energy needs of the U.S. LDV fleet. This initial paper estimates the regional percentages of the energy requirements for the U.S. LDV stock that could potentially be supported by the existing infrastructure, based on the 12 modified North American Electric Reliability Council regions, as of 2002. For the United States as a whole, up to 84% of U.S. cars, pickup trucks, and sport utility vehicles (SUVs) could be supported by the existing infrastructure, although the local percentages vary by region. Using the LDV fleet classification, which includes cars, pickup trucks, SUVs, and vans, the technical potential is 73%. This has an estimated gasoline displacement potential of 6.5 million barrels of oil equivalent per day, or approximately 52 % of

Michael Kintner-meyer; Kevin Schneider; Robert Pratt

2007-01-01T23:59:59.000Z

480

Promoting the Market for Plug-in Hybrid and Battery Electric Vehicles: Role of Recharge Availability  

Science Conference Proceedings (OSTI)

Much recent attention has been drawn to providing adequate recharge availability as a means to promote the battery electric vehicle (BEV) and plug-in hybrid electric vehicle (PHEV) market. The possible role of improved recharge availability in developing the BEV-PHEV market and the priorities that different charging options should receive from the government require better understanding. This study reviews the charging issue and conceptualizes it into three interactions between the charge network and the travel network. With travel data from 3,755 drivers in the National Household Travel Survey, this paper estimates the distribution among U.S. consumers of (a) PHEV fuel-saving benefits by different recharge availability improvements, (b) range anxiety by different BEV ranges, and (c) willingness to pay for workplace and public charging in addition to home recharging. With the Oak Ridge National Laboratory MA3T model, the impact of three recharge improvements is quantified by the resulting increase in BEV-PHEV sales. Compared with workplace and public recharging improvements, home recharging improvement appears to have a greater impact on BEV-PHEV sales. The impact of improved recharging availability is shown to be amplified by a faster reduction in battery cost.

Lin, Zhenhong [ORNL; Greene, David L [ORNL

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "access gateway plug-in" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Impact of SiC Devices on Hybrid Electric and Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

The application of SiC devices (as battery interface, motor controller, etc.) in a hybrid electric vehicle (HEV) will benefit from their high-temperature capability, high-power density, and high efficiency. Moreover, the light weight and small volume will affect the whole power train system in a HEV, and thus performance and cost. In this work, the performance of HEVs is analyzed using PSAT (powertrain system analysis tool, vehicle simulation software). Power loss models of a SiC inverter are incorporated into PSAT powertrain models in order to study the impact of SiC devices on HEVs. Two types of HEVs are considered. One is the 2004 Toyota Prius HEV, the other is a plug-in HEV (PHEV), whose powertrain architecture is the same as that of the 2004 Toyota Prius HEV. The vehicle-level benefits from the introduction of the SiC devices are demonstrated by simulations. Not only the power loss in the motor controller but also those in other components in the vehicle powertrain are reduced. As a result, the system efficiency is improved and the vehicles consume less energy and emit less harmful gases. It also makes it possible to improve the system compactness with simplified thermal management system. For the PHEV, the benefits are more distinct. Especially, the size of battery bank can be reduced for optimum design.

Zhang, Hui [ORNL; Tolbert, Leon M [ORNL; Ozpineci, Burak [ORNL

2008-01-01T23:59:59.000Z

482

Plug-In Electric Vehicle Fast Charge Station Operational Analysis with Integrated Renewables: Preprint  

SciTech Connect

The growing, though still nascent, plug-in electric vehicle (PEV) market currently operates primarily via level 1 and level 2 charging in the United States. Fast chargers are still a rarity, but offer a confidence boost to oppose 'range anxiety' in consumers making the transition from conventional vehicles to PEVs. Because relatively no real-world usage of fast chargers at scale exists yet, the National Renewable Energy Laboratory developed a simulation to help assess fast charging needs based on real-world travel data. This study documents the data, methods, and results of the simulation run for multiple scenarios, varying fleet sizes, and the number of charger ports. The grid impact of this usage is further quantified to assess the opportunity for integration of renewables; specifically, a high frequency of fast charging is found to be in demand during the late afternoons and evenings coinciding with grid peak periods. Proper integration of a solar array and stationary battery thus helps ease the load and reduces the need for new generator construction to meet the demand of a future PEV market.

Simpson, M.; Markel, T.

2012-08-01T23:59:59.000Z

483

On-line Decentralized Charging of Plug-In Electric Vehicles in Power Systems  

E-Print Network (OSTI)

Plug-in electric vehicles (PEV) are gaining increasing popularity in recent years, due to the growing societal awareness of reducing greenhouse gas (GHG) emissions and the dependence on foreign oil or petroleum. Large-scale implementation of PEVs in the power system currently faces many challenges. One particular concern is that the PEV charging can potentially cause significant impact on the existing power distribution system, due to the increase in peak load. As such, this work tries to mitigate the PEV charging impact by proposing a decentralized smart PEV charging algorithm to minimize the distribution system load variance, so that a 'flat' total load profile can be obtained. The charging algorithm is on-line, in that it controls the PEV charging processes in each time slot based entirely on the current power system state. Thus, compared to other forecast based smart charging approaches in the literature, the charging algorithm is robust against various uncertainties in the power system, such as random PE...

Li, Qiao; Negi, Rohit; Franchetti, Franz; Ilic, Marija D

2011-01-01T23:59:59.000Z

484

Trestles: a high-productivity HPC system targeted to modest-scale and gateway users  

Science Conference Proceedings (OSTI)

Trestles is a new 100TF HPC resource at SDSC designed to enhance scientific productivity for modest-scale and gateway users within the TeraGrid. This paper discusses the Trestles hardware and user environment, as well as the rationale for targeting ... Keywords: allocations, capacity computing, gateways, on-demand, scheduling

Richard L. Moore; David L. Hart; Wayne Pfeiffer; Mahidhar Tatineni; Kenneth Yoshimoto; William S. Young

2011-07-01T23:59:59.000Z

485

A history of the TeraGrid science gateway program: a personal view  

Science Conference Proceedings (OSTI)

This paper describes the NSF TeraGrid Science Gateways program, its formation, progress, lessons learned and current contributions over its seven-year life and new directions in the NSF XSEDE program. Early requirements analysis work with path-finding ... Keywords: computational science, middleware, portals, science gateways

Nancy Wilkins-Diehr

2011-11-01T23:59:59.000Z

486

Integrating CyberGIS gateway with Windows Azure: a case study on MODFLOW groundwater simulation  

Science Conference Proceedings (OSTI)

The CyberGIS Gateway represents a cutting-edge cyberin-frastructure-based geographic information system that facilitates computationally intensive and collaborative spatial analysis and modeling. As more and more geospatial problems are becoming increasingly ... Keywords: CyberGIS, MODFLOW, Windows Azure, cloud computing, science gateway

Babak Behzad; Anand Padmanabhan; Yong Liu; Yan Liu; Shaowen Wang

2011-11-01T23:59:59.000Z

487

Scientific Access  

NLE Websites -- All DOE Office Websites (Extended Search)

Scientific Access The APS is a open user facility that makes beam time available to the international scientific community through a peer-reviewed proposal process. Two access...

488

V-153: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

3: Symantec Brightmail Gateway Input Validation Flaw Permits 3: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting Attacks V-153: Symantec Brightmail Gateway Input Validation Flaw Permits Cross-Site Scripting Attacks May 10, 2013 - 6:00am Addthis PROBLEM: A vulnerability was reported in Symantec Brightmail Gateway PLATFORM: The vulnerabilities are reported in versions prior to 9.5.x ABSTRACT: Symantec's Brightmail Gateway management console is susceptible to stored cross-site scripting (XSS) issues found in some of the administrative interface pages. REFERENCE LINKS: Security Tracker Alert ID: 1028530 Symantec Security Advisory CVE-2013-1611 IMPACT ASSESSMENT: Medium DISCUSSION: The administrative interface does not properly filter HTML code from user-supplied input before displaying the input. A remote user can cause

489

OpenEI:OldGeoGateway | Open Energy Information  

Open Energy Info (EERE)

Project page Project page Edit History Facebook icon Twitter icon » OpenEI:OldGeoGateway Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Print PDF Geothermalpower.jpg GeoInfo.png Geothermal Information Geothermal Energy Overview Types of Geothermal Resources Energy Conversion Technologies Cooling Technologies Exploration Techniques Reference Materials GeoModels.png Geothermal Models & Tools GETEM SAM Geothermal Prospector Exploration Cost and Time Metric Georesource.png Resource Assessments USGS Maps (2008) Geothermal Resource Potential Map Geothermal Areas Geothermal Regions Installed.png Installed & Planned Capacity Geothermal Generation Installed Capacity Planned Capacity Geofinancing.png Geothermal Financing Developers' Financing Handbook RE Project Finance CREST

490

DP9: An OAI Gateway Service for Web Crawlers  

E-Print Network (OSTI)

Many libraries and databases are closed to general-purpose Web crawlers, and they expose their content only through their own search engines. At the same time many researchers attempt to locate technical papers through general-purpose Web search engines. DP9 is an open source gateway service that allows general search engines, (e.g. Google, Inktomi) to index OAI-compliant archives. DP9 does this by providing consistent URLs for repository records, and converting them to OAI queries against the appropriate repository when the URL is requested. This allows search engines that do not support the OAI protocol to index the "deep Web" contained within OAI compliant repositories.

Xiaoming Liu; Kurt Maly; Mohammad Zubair; Michael L. Nelson

2002-01-01T23:59:59.000Z

491

Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory  

NLE Websites -- All DOE Office Websites (Extended Search)

Costs and Emissions Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Technical Report NREL/TP-640-41410 May 2007 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 Costs and Emissions Associated with Plug-In Hybrid Electric Vehicle Charging in the Xcel Energy Colorado Service Territory K. Parks, P. Denholm, and T. Markel Prepared under Task No. WR61.2001 Technical Report NREL/TP-640-41410 May 2007 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle

492

Automated Discovery of Plug-in Electric Vehicle Charging Using AMI Meter Data: Initial Algorithm Development and Validation  

Science Conference Proceedings (OSTI)

It is believed that the potential stresses on power delivery systems can be mitigated through asset management, system design practices, controlled charging of plug-in electric vehicles (PEVs), or some combination of the three. Given the likely variability in customers electric vehicle (EV) choices, car types, charging patterns, charging speed preferences, and participation in utility-centric time-of-use (TOU) charging options, we believe that a utility will not be able to manage to manage ...

2013-12-22T23:59:59.000Z

493

Test Profile Development for the Evaluation of Battery Cycle Life for Plug-In Hybrid Electric Vehicles  

Science Conference Proceedings (OSTI)

EPRI and DaimlerChrysler have developed a plug-in hybrid electric vehicle (PHEV) concept for the DaimlerChrysler Sprinter Van in an effort to reduce the emissions, fuel consumption, and operating costs of the vehicle while maintaining equivalent or superior functionality and performance. This report describes the development of a test profile to evaluate the life cycle of the batteries for the PHEV vehicle.

2004-03-29T23:59:59.000Z

494

Unified Plug-in Electric Vehicle (PEV) to Smart Grid Integration Approach within Automotive and Utility Industries  

Science Conference Proceedings (OSTI)

This technical update is a status report on the OEM (Original Equipment Manufacturer) Central Server Phase 1 project through 2013. The OEM Central Server is a server-based application that enables utilities to manage charging for the entire installed base of Plug-in Electric Vehicles (PEVs) as controllable loads. The application uses a set of open, interoperable standards-based interfaces either via aggregated, indirect Demand Response (DR) programs using Open Automated Demand Response ...

2013-12-30T23:59:59.000Z

495

Assessing the Battery Cost at Which Plug-In Hybrid Medium-Duty Parcel Delivery Vehicles Become Cost-Effective  

DOE Green Energy (OSTI)

The National Renewable Energy Laboratory (NREL) validated diesel-conventional and diesel-hybrid medium-duty parcel delivery vehicle models to evaluate petroleum reductions and cost implications of hybrid and plug-in hybrid diesel variants. The hybrid and plug-in hybrid variants are run on a field data-derived design matrix to analyze the effect of drive cycle, distance, engine downsizing, battery replacements, and battery energy on fuel consumption and lifetime cost. For an array of diesel fuel costs, the battery cost per kilowatt-hour at which the hybridized configuration becomes cost-effective is calculated. This builds on a previous analysis that found the fuel savings from medium duty plug-in hybrids more than offset the vehicles' incremental price under future battery and fuel cost projections, but that they seldom did so under present day cost assumptions in the absence of purchase incentives. The results also highlight the importance of understanding the application's drive cycle specific daily distance and kinetic intensity.

Ramroth, L. A.; Gonder, J. D.; Brooker, A. D.

2013-04-01T23:59:59.000Z

496

Open Access  

NLE Websites -- All DOE Office Websites (Extended Search)

Communication » Communication » Open Access Open Access Open access (OA) is the practice of providing unrestricted access via the Internet to peer-reviewed scholarly journal articles. Learn more below... Questions? Open Access Email Open access publishing and publications have experienced substantial growth, expansion and uptake in recent years. What exactly is an open access publication? There are many definitions, but in a nutshell an open access publication is a publication that provides immediately free online access to all users worldwide. This may sound like a tall order, and yet there are to date over 4000 journal publications that fit this definition. The need for this type of access has been driven by the out-of-control costs for scholarly publications. Statistics kept by the Association for Research Libraries

497

ACCESS Magazine Fall 2005  

E-Print Network (OSTI)

hybrid gasoline-electric vehicles (HEVs), plug-in HEVs, and advanced batter y-powered electric vehicleselectric drive-train components for hybrid vehicles, and advanced

Cervero, Robert; Koppelman, Frank S.; Lipman, Timothy; Ogden, Joan; Varaiya, Pravin

2005-01-01T23:59:59.000Z

498

ACCESS Magazine Spring 2009  

E-Print Network (OSTI)

and Impacts of Hybrid Electric Vehicle Options. (EPRI: PaloEvaluation of Hybrid Electric Vehicles: Toyotas Prius vs.Making Plug-In Hybrid Electric Vehicles Cost-Effective

2009-01-01T23:59:59.000Z

499

Plug-In Hybrid Electric Vehicle Market Introduction Study: Final Report  

SciTech Connect

Oak Ridge National Laboratory (ORNL), Sentech, Inc., Pacific Northwest National Laboratory (PNNL)/University of Michigan Transportation Research Institute (UMTRI), and the U.S. Department of Energy (DOE) have conducted a Plug-in Hybrid Electric Vehicle (PHEV) Market Introduction Study to identify and assess the effect of potential policies, regulations, and temporary incentives as key enablers for a successful market debut. The timeframe over which market-stimulating incentives would be implemented - and the timeframe over which they would be phased out - are suggested. Possible sources of revenue to help fund these mechanisms are also presented. In addition, pinch points likely to emerge during market growth are identified and proposed solutions presented. Finally, modeling results from ORNL's Market Acceptance of Advanced Automotive Technologies (MA3T) Model and UMTRI's Virtual AutoMotive MarketPlace (VAMMP) Model were used to quantify the expected effectiveness of the proposed policies and to recommend a consensus strategy aimed at transitioning what begins as a niche industry into a thriving and sustainable market by 2030. The primary objective of the PHEV Market Introduction Study is to identify the most effective means for accelerating the commercialization of PHEVs in order to support national energy and economic goals. Ideally, these mechanisms would maximize PHEV sales while minimizing federal expenditures. To develop a robust market acceleration program, incentives and policies must be examined in light of: (1) clarity and transparency of the market signals they send to the consumer; (2) expenditures and resources needed to support them; (3) expected impacts on the market for PHEVs; (4) incentives that are compatible and/or supportive of each other; (5) complexity of institutional and regulatory coordination needed; and (6) sources of funding.

Sikes, Karen [Sentech, Inc.; Gross, Thomas [Sentech, Inc.; Lin, Zhenhong [ORNL; Sullivan, John [University of Michigan Transportation Research Institute; Cleary, Timothy [Sentech, Inc.; Ward, Jake [U.S. Department of Energy

2010-02-01T23:59:59.000Z

500

Hybrid Electric and Plug-in Hybrid Electric Vehicle Testing Activities  

DOE Green Energy (OSTI)

The Advanced Vehicle Testing Activity (AVTA) conducts hybrid electric vehicle (HEV) and plug-in hybrid electric vehicle (PHEV) testing in order to provide benchmark data for technology modeling and research and development programs, and to be an independent source of test data for fleet managers and other early adaptors of advanced-technology vehicles. To date, the AVTA has completed baseline performance testing on 12 HEV models and accumulated 2.7 million fleet testing miles on 35 HEVs. The HEV baseline performance testing includes dynamometer and closed-track testing to document HEV performance in a controlled environment. During fleet testing, two of each HEV model accumulate 160,000 test miles within 36 months, during which maintenance and repair events and fuel use were recorded. Three models of PHEVs, from vehicle converters Energy CS and Hymotion and the original equipment manufacturer Renault, are currently in testing. The PHEV baseline performance testing includes 5 days of dynamometer testing with a minimum of 26 test drive cycles, including the Urban Dynamometer Driving Schedule, the Highway Fuel Economy Driving Schedule, and the US06 test cycle, in charge-depleting and charge-sustaining modes. The PHEV accelerated testing is conducted with dedicated drivers for 4,240 miles, over a series of 132 driving loops that range from 10 to 200 miles over various combinations of defined 10-mile urban and 10-mile highway loops, with 984 hours of vehicle charging. The AVTA is part of the U.S. Department of Energys FreedomCAR and Vehicle Technologies Program. These AVTA testing activities were conducted by the Idaho National Laboratory and Electric Transportation Applications, with dynamometer testing conducted at Argonne National Laboratory. This paper discusses the testing methods and results.

Donald Karner

2007-12-01T23:59:59.000Z