Powered by Deep Web Technologies
Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Acceptance Test Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acceptance Test Plan Acceptance Test Plan This template is used to document the plan for performing the systems acceptance test, the roles and responsibilities of individuals...

2

SAPHIRE 8 Software Acceptance Test Plan  

SciTech Connect

This document describe & report the overall SAPHIRE 8 Software acceptance test paln to offically release the SAPHIRE version 8 software to the NRC custoer for distribution.

Ted S. Wood; Curtis L. Smith

2009-07-01T23:59:59.000Z

3

Acceptance Test Plan for Fourth-Generation Corrosion Monitoring Cabinet  

SciTech Connect

This Acceptance Test Plan (ATP) will document the satisfactory operation of the third-generation corrosion monitoring cabinet (Hiline Engineering Part No.0004-CHM-072-C01). This ATP will be performed by the manufacturer of the cabinet prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion monitoring cabinet. The test will consist of a continuity test of the cabinet wiring from the end of cable to be connected to corrosion probe, through the appropriate intrinsic safety barriers and out to the 15 pin D-shell connectors to be connected to the corrosion monitoring instrument. Additional testing will be performed using a constant current and voltage source provided by the corrosion monitoring hardware manufacturer to verify proper operation of corrosion monitoring instrumentation.

NORMAN, E.C.

2000-10-23T23:59:59.000Z

4

Selenide isotope generator for the Galileo mission. ETG acceptance test plan  

DOE Green Energy (OSTI)

Electrically-Heated Thermoelectric Generators (ETGs) shall be subjected to a flight level acceptance test program to certify the design of the SIG/Galileo flight generator. Each test in the test program is designed to simulate critical conditions and environments associated with generator ground handling, spacecraft launch and in-space operations. Successful completion of the test program shall be evidenced by the satisfactory performance of the ETG during and after the application of the various test environments. The ETG Acceptance Test Plan is designed to specify the testing sequence, the severity of the applied test environments and the acceptance criteria for assessing generator performance. Two test facilities shall be required for the execution of the proposed test program. The Teledyne Energy Systems (TES) facility in Timonium, Maryland shall be the site for the ETG thermal performance evaluation testing; and the Naval Surface Weapons Center (NSWC) facility in White Oak, Maryland, shall be the site of the dynamic, mass-properties and magnetic properties testing.

Not Available

1978-12-01T23:59:59.000Z

5

Acceptance Test Refactoring  

E-Print Network (OSTI)

Abstract. In Executable Acceptance Test Driven Development, acceptance tests represent the requirements of a software system. As requirements change over time, the acceptance tests have to be updated and maintained. This process can be time-consuming and risky as acceptance tests lack the regression safety net that production code has. Refactoring of acceptance tests is used to keep the fixtures and the acceptance test definitions consistent.

Heiko Ordelt; Frank Maurer

2008-01-01T23:59:59.000Z

6

W-026 acceptance test plan plant control system software (submittal {number_sign} 216)  

Science Conference Proceedings (OSTI)

Acceptance Testing of the WRAP 1 Plant Control System software will be conducted throughout the construction of WRAP 1 with final testing on the glovebox software being completed in December 1996. The software tests will be broken out into five sections; one for each of the four Local Control Units and one for the supervisory software modules. The acceptance test report will contain completed copies of the software tests along with the applicable test log and completed Exception Test Reports.

Watson, T.L., Fluor Daniel Hanford

1997-02-14T23:59:59.000Z

7

Constructing optimal drug-testing plans using a Bayesian acceptance sampling model  

Science Conference Proceedings (OSTI)

Drug testing has become an accepted strategy for controlling drug use, particularly among individuals in the custody of the criminal justice system. Emphasis has been placed on testing those free in the community, either on pretrial release, probation, ...

Joanna R Baker; Pamela K Lattimore; Lance A Matheson

1993-01-01T23:59:59.000Z

8

Acceptance Test Plan for Fourth-Generation Hanford Corrosion Probe Tree Assembly  

SciTech Connect

This Acceptance Test Procedure (ATP) will document the satisfactory operation of the corrosion probe tree assembly. This ATP will be performed by the manufacturer prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion probe tree assembly. The test will consist of a pressure test to verify leak tightness of the probe tree body, a continuity test of the probe tree wiring, a test of the high level detector wiring, and a test of the operation of the Type K thermocouples.

NORMAN, E.C.

2000-10-17T23:59:59.000Z

9

Acceptance test plan for the 241-AN-105 multi-function corrosion monitoring system  

SciTech Connect

This Acceptance Test Procedure (ATP) will document the satisfactory operation of the corrosion probe tree assembly destined for installation into tank 241-AN-105. This ATP will be performed by the manufacturer prior to delivery to the site. The objective of this procedure is to demonstrate and document the acceptance of the corrosion probe tree assembly to be installed into tank 241-AN-105. The test will consist of a pressure test to verify leak tightness of the probe tree body, a continuity test of the probe tree wiring, a test of the high level detector wiring, a test of the operation of the Type K thermocouples along the probe body, and verification of operation of corrosion monitoring computer and instrumentation.

EDGEMON, G.L.

1999-06-24T23:59:59.000Z

10

W-026 acceptance test plan plant control system hardware (submittal {number_sign} 216)  

SciTech Connect

Acceptance Testing of the WRAP 1 Plant Control System Hardware will be conducted throughout the construction of WRAP I with the final testing on the Process Area hardware being completed in November 1996. The hardware tests will be broken out by the following functional areas; Local Control Units, Operator Control Stations in the WRAP Control Room, DMS Server, PCS Server, Operator Interface Units, printers, DNS terminals, WRAP Local Area Network/Communications, and bar code equipment. This document will contain completed copies of each of the hardware tests along with the applicable test logs and completed test exception reports.

Watson, T.L., Fluor Daniel Hanford

1997-02-14T23:59:59.000Z

11

241-AZ-101 Mixer Pump Demonstration Test Gamma Cart Acceptance Test Procedure and Quality Test Plan (ATP and QTP)  

Science Conference Proceedings (OSTI)

Shop Test of the Gamma Cart System to be used in the AZ-101 Mixer Pump Demonstration Test. Tests hardware and software. This procedure involves testing the Instrumentation involved with the Gamma Cart System, local and remote, including: depth indicators, speed controls, interface to data acquisition software and the raising and lowering functions. This Procedure will be performed twice, once for each Gamma Cart System. This procedure does not test the accuracy of the data acquisition software.

WHITE, D.A.

2000-03-01T23:59:59.000Z

12

241-AZ-101 Mixer Pump Demonstration Test Gamma Cart Acceptance Test Procedure and Quality Test Plan (ATP and QTP)  

SciTech Connect

Shop test of the sludge mobilization cart system to be used in the AZ-101 Mixer Pump Demonstration Test Tests hardware and software. This procedure involves testing the Instrumentation involved with the Gamma Cart System, local and remote, including depth indicators, speed controls, interface to data acquisition software and the raising and lowering functions. This Procedure will be performed twice, once for each Gamma Cart System. This procedure does not test the accuracy of the data acquisition software.

WHITE, D.A.

2000-01-27T23:59:59.000Z

13

Verification/acceptance test plan/procedure for Acromag calibration system  

SciTech Connect

The purpose of this document is to describe and document the test of the Acromag calibration system software. The purpose of this test is to verify that the Acromag Calibration System (ACS) will reliably test the Acromag thermocouple (TC) type input modules and provide a file showing the temperatures at which the modules are tested, the response rom the Acromag station, instrument data, technician data, and date and time of the test. The ACS consists of a thermocouple calibration unit (TCU), a DOS based computer, a hand held resistance temperature detector (RTD) surface probe and connects to a field installed or a bench Acromag unit.

Fordham, C.R.

1994-12-01T23:59:59.000Z

14

W-025, acceptance test report  

SciTech Connect

This acceptance test report (ATR) has been prepared to establish the results of the field testing conducted on W-025 to demonstrate that the electrical/instrumentation systems functioned as intended by design. This is part of the RMW Land Disposal Facility.

Roscha, V.

1994-10-04T23:59:59.000Z

15

L-286 Acceptance Test Record  

SciTech Connect

This document provides a detailed account of how the acceptance testing was conducted for Project L-286, ''200E Area Sanitary Water Plant Effluent Stream Reduction''. The testing of the L-286 instrumentation system was conducted under the direct supervision

HARMON, B.C.

2000-01-14T23:59:59.000Z

16

Test plan  

U.S. Energy Information Administration (EIA)

3.0 TEST PLAN METHODOLOGY 8. 3.1 Assumptions 8. 3.2 Methodology 8. 4.0 COMMENTS ON INITIAL VIEW OF THE DATA 16 1.0 INTRODUCTION. EIA tasked Allied ...

17

W-026, acceptance test report manipulator system  

Science Conference Proceedings (OSTI)

The purpose of the WRAP Manipulator System Acceptance Test Plan (ATP) is to verify that the 4 glovebox sets of WRAP manipulator components, including rail/carriage, slave arm, master controller and auxiliary equipment, meets the requirements of the functional segments of 14590 specification. The demonstration of performance elements of the ATP are performed as a part of the Assembly specifications. Manipulator integration is integrated in the performance testing of the gloveboxes. Each requirement of the Assembly specification will be carried out in conjunction with glovebox performance tests.

Watson, T.L.

1997-04-15T23:59:59.000Z

18

Specific test and evaluation plan  

SciTech Connect

The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AX-B Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP). Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the transfer line addition. The STEP will be utilized in conjunction with the TEP for verification and validation.

Hays, W.H.

1998-03-20T23:59:59.000Z

19

Nevada Test Site Waste Acceptance Criteria (NTSWAC)  

SciTech Connect

This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

NNSA /NSO Waste Management Project

2008-06-01T23:59:59.000Z

20

Nitrogen chiller acceptance test procedure  

SciTech Connect

This document includes the inspection and testing requirements for the Nitrogen Chiller unit. The Chiller will support the Rotary Mode core Sampling System during the summer. The Chiller cools the Nitrogen Purge Gas that is used when drilling in tank wastes to cool the drill bit.

Kostelnik, A.J.

1995-03-07T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA  

Science Conference Proceedings (OSTI)

This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

2005-07-01T23:59:59.000Z

22

Acceptance test report: Backup power system  

SciTech Connect

Acceptance Test Report for construction functional testing of Project W-030 Backup Power System. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. Backup power includes a single 125 KW diesel generator, three 10-kva uninterruptible power supply units, and all necessary control.

Cole, D.B. [Westinghouse Hanford Co., Richland, WA (United States)

1996-01-26T23:59:59.000Z

23

Void fraction instrument acceptance test procedure  

DOE Green Energy (OSTI)

This acceptance test procedure (ATP) was written to test the void fraction instrument (VFI) and verify that the unit is ready for field service. The procedure verifies that the mechanical and electrical features (not specifically addressed in the software ATP) and software alarms are operating as designed.

Pearce, K.L.

1994-09-15T23:59:59.000Z

24

Specific test and evaluation plan  

SciTech Connect

The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AN-A Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a ``lower tier`` document based on the W-314 Test and Evaluation Plan (TEP) This STEP encompasses all testing activities required to demonstrate compliance to the project design criteria as it relates to the modifications of the AN-A valve pit. The Project Design Specifications (PDS) identify the specific testing activities required for the Project. Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the modifications to the 241-AN-A Valve Pit. The STEP will be utilized in conjunction with the TEP for verification and validation.

Hays, W.H.

1997-12-09T23:59:59.000Z

25

Acceptance test report 2721-Z upgrades  

SciTech Connect

This test procedure provides instructions for acceptance testing of modifications to the 2721-Z diesel-generator system made by Project C-189. The modifications include (1) replacing the generator NUMA-LOGIC controller with connection to the PFP distributed control system (DCS), (2) replacing ATSI with a breaker switching scheme for 2736-ZB backup power and (3) providing a method for generator load and system testing.

Keck, R.D.

1998-02-03T23:59:59.000Z

26

Nevada Test Site Waste Acceptance Criteria  

Science Conference Proceedings (OSTI)

This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2005-10-01T23:59:59.000Z

27

Acceptance Test Report for 241-U compressed air system  

SciTech Connect

This Acceptance Test Report (ATR) documents the results of acceptance testing of a newly upgraded compressed air system at 241-U Farm. The system was installed and the test successfully performed under work package 2W-92-01027.

Freeman, R.D.

1994-10-20T23:59:59.000Z

28

Standard-C hydrogen monitoring system. Acceptance test report  

DOE Green Energy (OSTI)

Project W-369, Watch List Tank Hydrogen Monitors, installed a Standard-C Hydrogen Monitoring System (SHMS) on Flammable Gas Watch List waste tank 104-AN. This document is the acceptance test report for the acceptance testing of the SHMS.

Lott, D.T.

1995-05-17T23:59:59.000Z

29

MIT validation probe acceptance test procedure  

SciTech Connect

As part of the Multi-Functional Instrument Trees (MITs) a Validation Probe is being fabricated by Los Alamos National Laboratories (LANL). The Validation Probe assembly is equipped with a Winch, depth counter, and a Resistance Temperature Detector (RTD) which will render a means for verifying the temperature readings of which will render a means for verifying the temperature readings of the MIT thermocouples. The purpose of this Acceptance Test Procedure (ATP) is to provide verification that the Validation Probe functions properly and accordingly to LANL design and specification. This ATP will be used for all Validation Probes procured from LANL. The ATP consists of a receiving inspection, RTD ambient temperature; RTD electrical failure, RTD insulation resistance, and accurate depth counter operation inspections. The Validation Probe is composed of an intank probe, a cable and winching system, and a riser extension (probe guide) which bolts onto the MIT. The validation`s thermal sensor is an RTD that is housed in a 0.062 inch diameter, magnesium oxide fill, 316 stainless steel tube. The sheath configuration provides a means for spring loading the sensor firmly against the validation tube`s inner wall. A 45 pound cylindrical body is connected above the sheath and is used as a force to lower the probe into the tank. This cylindrical body also provides the means to interconnect both electrically and mechanically to the winch system which lowers the probe to a specified location within the validation tube located in the tank.

Escamilla, S.A.

1994-08-23T23:59:59.000Z

30

Acceptance-test specifications for Test Number Four: process sensor and display test. [LMFBR  

SciTech Connect

This document provides the general instructions for performing acceptance Test Number Four as indicated in the Acceptance Test Index (TI-022-130-003). Also indicated are the plant conditions and special equipment required to conduct the test. The acceptance criteria for each portion of the test are specified.

Bell, C.R.

1975-05-09T23:59:59.000Z

31

Test driven: practical tdd and acceptance tdd for java developers  

Science Conference Proceedings (OSTI)

In test driven development, you first write an executable test of what your application code must do. Only then do you write the code itself and, with the test spurring you on, you improve your design. In acceptance test driven development (ATDD), you ...

Lasse Koskela

2007-10-01T23:59:59.000Z

32

Acceptance test procedure MICON software exhaust fan control modifications  

Science Conference Proceedings (OSTI)

This acceptance test verifies the MICON program changes for the new automatic transfer switch ATS-2 alarms, the Closed Loop Cooling isolator status, the CB-3 position alarm, and the alarms for the new emergency fan damper backup air compressor.

SILVAN, G.R.

1999-05-21T23:59:59.000Z

33

W-026, transuranic waste (TRU) glovebox acceptance test report  

SciTech Connect

On July 18, 1997, the Transuranic (TRU) glovebox was tested using glovebox acceptance test procedure 13021A-86. The primary focus of the glovebox acceptance test was to examine control system interlocks, display menus, alarms, and operator messages. Limited mechanical testing involving the drum ports, hoists, drum lifter, compacted drum lifter, drum tipper, transfer car, conveyors, sorting table, lidder/delidder device and the TRU empty drum compactor were also conducted. As of February 25, 1998, 10 of the 102 test exceptions that affect the TRU glovebox remain open. These items will be tracked and closed via the WRAP Master Test Exception Database. As part of Test Exception resolution/closure the responsible individual closing the Test Exception performs a retest of the affected item(s) to ensure the identified deficiency is corrected, and, or to test items not previously available to support testing. Test exceptions are provided as appendices to this report.

Leist, K.J.

1998-03-11T23:59:59.000Z

34

Acceptance test specifications for test number eleven: sodium system filling, heatup, pressurization, and drain. [LMFBR  

SciTech Connect

This document provides the general instructions for performing acceptance test number eleven as indicated in the Acceptance Test Index (TI-022-130-003). Also indicated are the plant conditions and special equipment required to conduct the test. The acceptance criteria for each portion of the test are specified.

Bell, C.R.

1975-05-01T23:59:59.000Z

35

ISOLOK VALVE ACCEPTANCE TESTING FOR DWPF SME SAMPLING PROCESS  

Science Conference Proceedings (OSTI)

Evaluation of the Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. Of the opportunities, a focus area related to optimizing the equipment and efficiency of the sample turnaround time for DWPF Analytical Laboratory was identified. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) evaluated the possibility of using an Isolok{reg_sign} sampling valve as an alternative to the Hydragard{reg_sign} valve for taking process samples. Previous viability testing was conducted with favorable results using the Isolok sampler and reported in SRNL-STI-2010-00749 (1). This task has the potential to improve operability, reduce maintenance time and decrease CPC cycle time. This report summarizes the results from acceptance testing which was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 (2) and which was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNL-RP-2011-00145 (3). The Isolok to be tested is the same model which was tested, qualified, and installed in the Sludge Receipt Adjustment Tank (SRAT) sample system. RW-0333P QA requirements apply to this task. This task was to qualify the Isolok sampler for use in the DWPF Slurry Mix Evaporator (SME) sampling process. The Hydragard, which is the current baseline sampling method, was used for comparison to the Isolok sampling data. The Isolok sampler is an air powered grab sampler used to 'pull' a sample volume from a process line. The operation of the sampler is shown in Figure 1. The image on the left shows the Isolok's spool extended into the process line and the image on the right shows the sampler retracted and then dispensing the liquid into the sampling container. To determine tank homogeneity, a Coliwasa sampler was used to grab samples at a high and low location within the mixing tank. Data from the two locations were compared to determine if the contents of the tank were well mixed. The Coliwasa sampler is a tube with a stopper at the bottom and is designed to obtain grab samples from specific locations within the drum contents. A position paper (4) was issued to address the prototypic flow loop issues and simulant selections. A statistically designed plan (5) was issued to address the total number of samples each sampler needed to pull, to provide the random order in which samples were pulled and to group samples for elemental analysis. The TTR required that the Isolok sampler perform as well as the Hydragard sampler during these tests to ensure the acceptability of the Isolok sampler for use in the DWPF sampling cells. Procedure No.L9.4-5015 was used to document the sample parameters and process steps. Completed procedures are located in R&D Engineering job folder 23269.

Edwards, T.; Hera, K.; Coleman, C.; Jones, M.; Wiedenman, B.

2011-12-05T23:59:59.000Z

36

Acceptance test report for the Westinghouse 100 ton hydraulic trailer  

DOE Green Energy (OSTI)

The SY-101 Equipment Removal System 100 Ton Hydraulic Trailer was designed and built by KAMP Systems, Inc. Performance of the Acceptance Test Procedure at KAMP`s facility in Ontario, California (termed Phase 1 in this report) was interrupted by discrepancies noted with the main hydraulic cylinder. The main cylinder was removed and sent to REMCO for repair while the trailer was sent to Lampson`s facility in Pasco, Washington. The Acceptance Test Procedure was modified and performance resumed at Lampson (termed Phase 2 in this report) after receipt of the repaired cylinder. At the successful conclusion of Phase 2 testing the trailer was accepted as meeting all the performance criteria specified.

Barrett, R.A.

1995-03-06T23:59:59.000Z

37

Multiport riser and flange assemblies acceptance test report  

DOE Green Energy (OSTI)

This document presents the results of the acceptance test for the multiport riser (MPR) and multiport flange (MPF) assemblies. The accepted MPR and MPF assemblies will be used in support of the hydrogen mitigation project for double-shell waste tank 241-SY-101 and other related projects. The testing described in this document verifies that the mechanical and interface features are operating as designed and that the unit is ready for field service. The objectives of the acceptance testing were as follows: Basic equipment functions and mechanical interfaces were verified; Installation and removal of equipment were demonstrated to the degree possible; Operation of the decon spray system and all valving was confirmed; and the accumulated leak rate of the MPR and MPF assemblies was determined.

Precechtel, D.R.; Schroeder, B.K.

1994-09-12T23:59:59.000Z

38

August 5, 2005, Board letter accepting the implementation plan...  

NLE Websites -- All DOE Office Websites (Extended Search)

important safety positions. In its Implementation Plan, DOE commits to Integrated Safety Management (ISM) as the foundation of its safety management system and process....

39

August 5, 2005, Board letter accepting the implementation plan...  

NLE Websites -- All DOE Office Websites (Extended Search)

Samuel W. Bodman Page 2 In its Implementation Plan, DOE commits to Integrated Safety Management (ISM) "as the foundation of its safety management system and process." The...

40

Acceptance test report MICON software exhaust fan control modifications  

Science Conference Proceedings (OSTI)

This report documents the results the acceptance test HNF-4108 which verifies the MICON program changes for the new automatic transfer switch ATS-2 alarms, the Closed Loop Cooling isolator status, the CB-3 position alarm, the alarms for the new emergency fan damper backup air compressor, and the generator sequencer logic.

SILVAN, G.R.

1999-05-20T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Standard-D hydrogen monitoring system acceptance test  

DOE Green Energy (OSTI)

This document details the results of the field Acceptance Testing of the Standard-D Hydrogen Monitoring System on the waste tank exhaust stacks in 241-AW and 241-AN tank farm. The monitors will be used to measure hydrogen and ammonia from the exhaust stacks.

Lott, D.T., Westinghouse Hanford

1996-05-24T23:59:59.000Z

42

Gas characterization system 241-AN-105 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AN-105. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

43

Gas characterization system 241-AW-101 field acceptance test procedure  

DOE Green Energy (OSTI)

This document details the field Acceptance Testing of a gas characterization system being installed on waste tank 241-AW-101. The gas characterization systems will be used to monitor the vapor spaces of waste tanks known to contain measurable concentrations of flammable gases.

Schneider, T.C.

1996-03-01T23:59:59.000Z

44

PUREX (SAMCONS) uninterruptible power supply (UPS) acceptance test procedure  

SciTech Connect

This Acceptance Test Procedure for the PUREX Surveillance and Monitoring and Control System (SAMCONS) Uninterruptible Power Supply (UPS) provides for testing and verifying the proper operation of the control panel alarms and trouble functions, the 6roper functioning of the AC inverter, ability of the battery supply to maintain the SAMCONS load for a minimum of two hours , and proper interaction with the SAMCONS Video graphic displays for alarm displays.

Blackaby, W.B.

1997-09-01T23:59:59.000Z

45

NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006  

Science Conference Proceedings (OSTI)

This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

2006-06-01T23:59:59.000Z

46

Surface moisture measurement system hardware acceptance test report  

SciTech Connect

This document summarizes the results of the hardware acceptance test for the Surface Moisture Measurement System (SMMS). This test verified that the mechanical and electrical features of the SMMS functioned as designed and that the unit is ready for field service. The bulk of hardware testing was performed at the 306E Facility in the 300 Area and the Fuels and Materials Examination Facility in the 400 Area. The SMMS was developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks.

Ritter, G.A., Westinghouse Hanford

1996-05-28T23:59:59.000Z

47

MCO combustible gas management leak test acceptance criteria  

DOE Green Energy (OSTI)

Existing leak test acceptance criteria for mechanically sealed and weld sealed multi-canister overpacks (MCO) were evaluated to ensure that MCOs can be handled and stored in stagnant air without compromising the Spent Nuclear Fuel Project's overall strategy to prevent accumulation of combustible gas mixtures within MCO's or within their surroundings. The document concludes that the integrated leak test acceptance criteria for mechanically sealed and weld sealed MCOs (1 x 10{sup -5} std cc/sec and 1 x 10{sup -7} std cc/sec, respectively) are adequate to meet all current and foreseeable needs of the project, including capability to demonstrate compliance with the NFPA 60 Paragraph 3-3 requirement to maintain hydrogen concentrations [within the air atmosphere CSB tubes] t or below 1 vol% (i.e., at or below 25% of the LFL).

SHERRELL, D.L.

1999-05-11T23:59:59.000Z

48

Heat pipe testing program test plan  

SciTech Connect

A test plan is given which describes the tests to be conducted on several typical solar receiver heat pipes. The hardware to be used, test fixtures and rationale of the test program are discussed. The program objective is to perform life testing under simulated receiver conditions, and to conduct performance tests with selected heat pipes to further map their performance, particularly with regard to their transient behavior. Performance requirements are defined. Test fixtures designed for the program are described in detail, and their capabilities for simulating the receiver conditions and their limitations are discussed. The heat pipe design is given. (LEW)

Bienert, W.B.

1980-03-14T23:59:59.000Z

49

Acceptance test report for project C-157 ``T-Plant electrical upgrade``  

Science Conference Proceedings (OSTI)

This Acceptance Test Report (ATR) documents for record purposes the field results, acceptance, and approvals of the completed acceptance test per WHC-SD-Cl57-ATP-001, Rev. 0, ``Acceptance Test Proceedure for Project C-157 `T Plant Electrical Upgrade``` The test was completed and approved without any problems or exceptions.

Jeppson, L.A.

1997-08-05T23:59:59.000Z

50

Acceptance test procedure for SY Tank Farm replacement exhauster unit  

SciTech Connect

The proper functioning of a new 241-SY Tank Farm replacement exhauster will be acceptance tested, to establish operability and to provide an operational baseline for the equipment. During this test, a verification of all of the alarm and control circuits associated with the exhaust, which provide operating controls and/or signals to local and remote alarm/annunciator panels, shall be performed. Test signals for sensors that provide alarms, warnings, and/or interlocks will be applied to verify that alarm, warning, and interlock setpoints are correct. Alarm and warning lights, controls, and local and remote readouts for the exhauster will be verified to be adequate for proper operation of the exhauster. Testing per this procedure shall be conducted in two phases. The first phase of testing, to verify alarm, warning, and interlock setpoints primarily, will be performed in the MO-566 Fab Shop. The second phase of testing, to verify proper operation and acceptable interface with other tank farm systems, will be conducted after the exhauster and all associated support and monitoring equipment have been installed in the SY Tank Farm. The exhauster, which is mounted on a skid and which will eventually be located in the SY tank farm, receives input signals from a variety of sensors mounted on the skid and associated equipment. These sensors provide information such as: exhauster system inlet vacuum pressure; prefilter and HEPA filter differential pressures; exhaust stack sampler status; exhaust fan status; system status (running/shut down); and radiation monitoring systems status. The output of these sensors is transmitted to the exhauster annunciator panel where the signals are displayed and monitored for out-of-specification conditions.

Becken, G.W.

1994-12-16T23:59:59.000Z

51

Acceptance Test Report for AMS-4 Continuous Air Monitors (CAM) at 241AN Exhausters  

SciTech Connect

This report provides the completed copy and test results of the Acceptance Test Procedure (TWR-4713). Test results were actually hand written in the ATP including redline changes. All acceptance criteria steps were completed satisfactorily without exceptions.

SCAIEF, C.C.

1999-11-11T23:59:59.000Z

52

Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 1 testing  

DOE Green Energy (OSTI)

This document summarizes the results of the Phase 1 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). This acceptance test consisted of a pressure-decay/leak test of the containment bag to verify that the seams along the length of the bag had been adequately sealed. The sealing integrity of the FRS must be verified to ensure that the release of waste and aerosols will be minimized during the removal of the test mixer pump from Tank 241-SY-101. The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the mixer pump. This acceptance test was performed at Lancs Industries in Kirkland, Washington on January 17, 1995. The bag temperature-compensated pressure loss of 575 Pa was below the acceptance criteria of 625 Pa and the test results were therefore found to be acceptable. The bag manufacturer estimates that 80--90% of the pressure loss is attributed to leakage around the bag inflation valve where the pressure gage was connected. A leak detector was applied over the entire bag during the pre-tests and no leakage was found. Furthermore, the leak rate corresponding to this pressure loss is very small when compared to the acceptable leak rate of the completely assembled FRS. The sealing integrity of the assembled FRS is verified in Phase 3 testing.

Ritter, G.A.

1995-02-06T23:59:59.000Z

53

Test Report for Acceptance Test Procedure for Pumping Instrumentation and Control Skid N  

Science Conference Proceedings (OSTI)

This is a Test Report for Acceptance Test Procedure (ATP) RPP-5489. This test report provides the results of the inspection and testing of the new Pumping Instrumentation and Control (PIC) skid designed as ''N''. The ATP was successfully completed. A copy of the completed ATP is in the Appendix of this document.

KOCH, M.R.

2000-02-03T23:59:59.000Z

54

Standard-B hydrogen monitoring system acceptance test report  

DOE Green Energy (OSTI)

Test Engineering was supported by Tank Waste Remediation System Safety Programs Engineering Support in the performance of an Acceptance Test Procedure (ATP) to qualify the Standard Hydrogen Monitoring System (SHMS) cabinet installed on waste tank 241-SY-103. The June 7, 1994 ATP performance was controlled by West Waste Tank Farms work package 2W-94-322. The ATP was conducted following the final installation of a second Whittaker electro-chemical hydrogen monitoring cell. The cabinet had been sited on the waste tank two years earlier, but never connected to the exhaust vent header to monitor Tank 241-SY-103 vent header exhaust gases. The cabinet was then modified, to remove two undesirable solid state hydrogen monitors and install a second Whittaker electro-chemical hydrogen monitoring sensor and signal conditioning. The ATP was used to assure that the cabinet wiring and components were properly installed and labeled and that the two years without operation had not seriously damaged the installed equipment. Electrical and pneumatic tests were performed to assure system integrity.

Tran, T.T.

1994-09-08T23:59:59.000Z

55

Test report for run-in acceptance testing of hydrogen mitigation retrieval Pump-3  

DOE Green Energy (OSTI)

This report will provide the findings of the demonstration test conducted on the Double-Shell Tank (DST) 241-SY-101 HMR Pump-3 in accordance with WHC-SDWM-TP-434 ``Test plan for run-in acceptance testing of hydrogen mitigation/retrieval pump-3`` at the 400 Area Maintenance and Storage Facility (MASF) building from 7 June 1996 through 30 July 1996 per work package 4A-96-92/W. The DST 241-SY-101 hydrogen mitigation retrieval Pump-3 is a 200-HP submersible electric driven pump that has been modified for use in the DST 241-SY-101 containing mixed waste located in the 200W area. The pump has a motor driven rotation mechanism that allows the pump column to rotate through 355{degree}. Prior to operation, pre-operational checks were performed which included loop calibration grooming and alignment of instruments, learning how plumb HMR-3 assembly hung in a vertical position and bump test of the motor to determine rotation direction. The pump was tested in the MASF Large Diameter Cleaning Vessel (LDCV) with process water at controlled temperatures and levels. In addition, the water temperature of the cooling water to the motor oil heat exchanger was recorded during testing. A 480-volt source powered a Variable Frequency Drive (VFD). The VFD powered the pump at various frequencies and voltages to control speed and power output of the pump. A second VFD powered the oil cooling pump. A third VFD was not available to operate the rotational drive motor during the 72 hour test, so it was demonstrated as operational before and after the test. A Mini Acquisition and Control System (Mini-DACS) controls pump functions and monitoring of the pump parameters. The Mini-DACS consists of three computers, software and some Programmable Logic Controllers (PLC). Startup and shutdown of either the pump motor or the oil cooling pump can be accomplished by the Mini-DACS. When the pump was in operation, the Mini-DACS monitors automatically collects data electronically. However, some required data from ancillary systems was collected manually and recorded on log sheets.

Berglin, B.G.

1997-08-15T23:59:59.000Z

56

Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 3 testing  

DOE Green Energy (OSTI)

This document summarizes the results of the phase 3 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). The purpose of this acceptance test is to verify the sealing integrity of the FRS to ensure that the release of waste and aerosols will be minimized during the removal of the test mixer pump from Tank 241-SY-101. The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the mixer pump. This acceptance test was performed at the 306E Facility in the 300 area from January 10, 1995 to January 17, 1995. The Phase 3 test consisted of two parts. Part one was a water leak test of the seal between the blast shield and mock load distribution frame (LDF) to ensure that significant contamination of the pump pit and waste interaction with the aluminum impact-limiting material under the LDF are prevented during the pump removal operation. The second part of this acceptance test was an air leak test of the assembled flexible receiver system. The purpose of this test was to verify that the release of hazardous aerosols will be minimized if the tank dome pressure becomes slightly positive during the decontamination of the mixer pump.

Ritter, G.A.

1995-02-06T23:59:59.000Z

57

Optimized FFTF Acceptance Test Program covering Phases III, IV, and V  

SciTech Connect

A detailed review of Phases III, IV, and V of the FFTF Acceptance Test Program has been completed. The purpose of this review was to formulate that test sequence which not only meets requirements for safe, reliable and useful operation of the plant, but also results in the earliest prudent demonstration of full-power performance. A test sequence based on the underlying assumption that sodium flows into the secondary sodium storage tank (T-44) no later than August 31, 1978, is described in detail. A time-scale which allows extra time to put systems and equipment into operation the first time, debugging, and learning how to operate most effectively has been superimposed on the test sequence. Time is not included for major equipment malfunctions. This test plan provides the basis for coordinating the many and varied activities and interfaces necessary for successful and timely execution of the FFTF Acceptance Test Program. In this report, the need dates have been identified for presently scheduled test articles and standard core components.

Wykoff, W.R.; Jones, D.H.

1977-03-01T23:59:59.000Z

58

Test Plan for K Basin floor sludge consolidated sampling equipment  

SciTech Connect

The purpose of this document is to provide the test procedure for the function and acceptance testing of the K Basin Floor Sludge Consolidated Sampling Equipment. This equipment will be used to transfer K Basin floor sludge to a sludge sampling container for subsequent shipment to an analysis or testing facility. This equipment will provide sampling consistent with data quality objectives and sampling plans currently being developed.

OLIVER, J.W.

1998-10-30T23:59:59.000Z

59

Secondary Waste Cast Stone Waste Form Qualification Testing Plan  

SciTech Connect

The Hanford Tank Waste Treatment and Immobilization Plant (WTP) is being constructed to treat the 56 million gallons of radioactive waste stored in 177 underground tanks at the Hanford Site. The WTP includes a pretreatment facility to separate the wastes into high-level waste (HLW) and low-activity waste (LAW) fractions for vitrification and disposal. The LAW will be converted to glass for final disposal at the Integrated Disposal Facility (IDF). Cast Stone – a cementitious waste form, has been selected for solidification of this secondary waste stream after treatment in the ETF. The secondary-waste Cast Stone waste form must be acceptable for disposal in the IDF. This secondary waste Cast Stone waste form qualification testing plan outlines the testing of the waste form and immobilization process to demonstrate that the Cast Stone waste form can comply with the disposal requirements. Specifications for the secondary-waste Cast Stone waste form have not been established. For this testing plan, Cast Stone specifications are derived from specifications for the immobilized LAW glass in the WTP contract, the waste acceptance criteria for the IDF, and the waste acceptance criteria in the IDF Permit issued by the State of Washington. This testing plan outlines the testing needed to demonstrate that the waste form can comply with these waste form specifications and acceptance criteria. The testing program must also demonstrate that the immobilization process can be controlled to consistently provide an acceptable waste form product. This testing plan also outlines the testing needed to provide the technical basis for understanding the long-term performance of the waste form in the disposal environment. These waste form performance data are needed to support performance assessment analyses of the long-term environmental impact of the secondary-waste Cast Stone waste form in the IDF

Westsik, Joseph H.; Serne, R. Jeffrey

2012-09-26T23:59:59.000Z

60

Cassini RTG Acceptance Test Results and RTG Performance on Galileo and Ulysses  

DOE R&D Accomplishments (OSTI)

Flight acceptance testing has been completed for the RTGs to be used on the Cassini spacecraft which is scheduled for an October 6, 1997 launch to Saturn. The acceptance test program includes vibration tests, magnetic field measurements, properties (weight and c.g.) and thermal vacuum test. This paper presents The thermal vacuum test results. Three RTGs are to be used, F 2, F 6, and F 7. F 5 is tile back up RTG, as it was for the Galileo and Ulysses missions launched in 1989 and 1990, respectively. RTG performance measured during the thermal vacuum tests carried out at die Mound Laboratory facility met all specification requirements. Beginning of mission (BOM) and end of mission (EOM) power predictions have been made based on than tests results. BOM power is predicted to be 888 watts compared to the minimum requirement of 826 watts. Degradation models predict the EOM power after 16 years is to be 640 watts compared to a minimum requirement of 596 watts. Results of small scale module tests are also showing. The modules contain couples from the qualification and flight production runs. The tests have exceeded 28,000 hours (3.2 years) and are continuing to provide increased confidence in the predicted long term performance of the Cassini RTGs. All test results indicate that the power requirements of the Cassini spacecraft will be met. BOM and EOM power margins of over five percent are predicted. Power output from telemetry for the two Galileo RTGs are shown from the 1989 launch to the recent Jupiter encounter. Comparisons of predicted, measured and required performance are shown. Telemetry data are also shown for the RTG on the Ulysses spacecraft which completed its planned mission in 1995 and is now in the extended mission.

Kelly, C. E.; Klee, P. M.

1997-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Acceptance test report, 241-SY-101 Flexible Receiver System, Phase 2 testing  

DOE Green Energy (OSTI)

This document summarizes the results of the Phase 2 acceptance test of the 241-SY-101 Flexible Receiver System (FRS). The FRS is one of six major components of the Equipment Removal System, which has been designed to retrieve, transport, and store the test mixer pump currently installed in Tank 241-SY-101. The purpose of this acceptance test is to verify the strength of the containment bag and bag bottom cinching mechanism. It is postulated that 68 gallons of waste could be trapped inside the pump internals. The bag must be capable of supporting this waste if it shakes loose and drains to the bottom of the bag after the bag bottom has been cinched closed. This acceptance test was performed at the Maintenance and Storage Facility (MASF) Facility in the 400 area on January 23, 1995. The bag assembly supported the weight of 920 kg (2,020 lbs) of water with no leakage or damage to the bag. This value meets the acceptance criteria of 910 kg of water and therefore the results were found to be acceptable. The maximum volume of liquid expected to be held up in the pump internals is 258 L (68 gallons), which corresponds to 410 kg. This test weight gives just over a safety factor of 2. The bag also supported a small shock load while it was filled with water when the crane hoisted the bag assembly up and down. Based on the strength rating of the bag components, the bag assembly should support 2--3 times the test weight of 910 kg.

Ritter, G.A.

1995-02-06T23:59:59.000Z

62

In Shop Acceptance Test Report for the SY Farm Annulus Leak Detectors  

SciTech Connect

The following test report was written for the SY tank farm annulus leak detectors. The test plan used was HNF-4546, Revision 1. The purpose of the test plan was to test the ENRAF series 854 ATG with SPU II card prior to installation. The test plan set various parameters and verifies the gauge and alarms functionality.

SMITH, S.G.

1999-12-07T23:59:59.000Z

63

DOE Does Not Accept SPR Bids and Suspends Plans for Future Purchases |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

SPR Bids and Suspends Plans for Future SPR Bids and Suspends Plans for Future Purchases DOE Does Not Accept SPR Bids and Suspends Plans for Future Purchases May 2, 2007 - 12:45pm Addthis WASHINGTON, DC - The U.S. Department of Energy's Office of Fossil Energy has rejected all offers received from the second solicitation issued this spring that sought to purchase up to four million barrels of crude oil for the United States' crude oil reserve. Both solicitations resulted in no awards because the Department determined that the bids were too high and not a reasonable value for taxpayers. The solicitations for the purchase of crude oil were meant to replace oil sold on an emergency basis after Hurricane Katrina caused significant damage to the production, distribution, and refining capabilities of the

64

Acceptance Test Report for Gamma Carts A and B  

SciTech Connect

Report of Shop Test of the Gamma Cart System to be used in the AZ-101 Mixer Pump Demonstration Test. Reports of the hardware and software tests. The objective of the testing was to verify in the shop that the hardware and software operated according to design specifications before field-testing and installation.

FULLER, P.J.

2000-03-16T23:59:59.000Z

65

EVALUATION OF ARG-1 SAMPLES PREPARED BY CESIUM CARBONATE DISSOLUTION DURING THE ISOLOK SME ACCEPTABILITY TESTING  

Science Conference Proceedings (OSTI)

Evaluation of Defense Waste Processing Facility (DWPF) Chemical Process Cell (CPC) cycle time identified several opportunities to improve the CPC processing time. The Mechanical Systems & Custom Equipment Development (MS&CED) Section of the Savannah River National Laboratory (SRNL) recently completed the evaluation of one of these opportunities - the possibility of using an Isolok sampling valve as an alternative to the Hydragard valve for taking DWPF process samples at the Slurry Mix Evaporator (SME). The use of an Isolok for SME sampling has the potential to improve operability, reduce maintenance time, and decrease CPC cycle time. The SME acceptability testing for the Isolok was requested in Task Technical Request (TTR) HLW-DWPF-TTR-2010-0036 and was conducted as outlined in Task Technical and Quality Assurance Plan (TTQAP) SRNLRP-2011-00145. RW-0333P QA requirements applied to the task, and the results from the investigation were documented in SRNL-STI-2011-00693. Measurement of the chemical composition of study samples was a critical component of the SME acceptability testing of the Isolok. A sampling and analytical plan supported the investigation with the analytical plan directing that the study samples be prepared by a cesium carbonate (Cs{sub 2}CO{sub 3}) fusion dissolution method and analyzed by Inductively Coupled Plasma - Optical Emission Spectroscopy (ICP-OES). The use of the cesium carbonate preparation method for the Isolok testing provided an opportunity for an additional assessment of this dissolution method, which is being investigated as a potential replacement for the two methods (i.e., sodium peroxide fusion and mixed acid dissolution) that have been used at the DWPF for the analysis of SME samples. Earlier testing of the Cs{sub 2}CO{sub 3} method yielded promising results which led to a TTR from Savannah River Remediation, LLC (SRR) to SRNL for additional support and an associated TTQAP to direct the SRNL efforts. A technical report resulting from this work was issued that recommended that the mixed acid method be replaced by the Cs{sub 2}CO{sub 3} method for the measurement of magnesium (Mg), sodium (Na), and zirconium (Zr) with additional testing of the method by DWPF Laboratory being needed before further implementation of the Cs{sub 2}CO{sub 3} method at that laboratory. While the SME acceptability testing of the Isolok does not address any of the open issues remaining after the publication of the recommendation for the replacement of the mixed acid method by the Cs{sub 2}CO{sub 3} method (since those issues are to be addressed by the DWPF Laboratory), the Cs{sub 2}CO{sub 3} testing associated with the Isolok testing does provide additional insight into the performance of the method as conducted by SRNL. The performance is to be investigated by looking to the composition measurement data generated by the samples of a standard glass, the Analytical Reference Glass - 1 (ARG-1), that were prepared by the Cs{sub 2}CO{sub 3} method and included in the SME acceptability testing of the Isolok. The measurements of these samples were presented as part of the study results, but no statistical analysis of these measurements was conducted as part of those results. It is the purpose of this report to provide that analysis, which was supported using JMP Version 7.0.2.

Edwards, T.; Hera, K.; Coleman, C.

2011-12-05T23:59:59.000Z

66

AGSD Task 3.5 Test Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

CMC Bench Scale Material Test Plan TOPICAL REPORT Reporting Period Start Date: February 1, 2006 End Date: May 30, 2006 Principal Authors Mark Fitzsimmons Task Development Lead...

67

Risk-embedded Bayesian acceptance sampling plans via conditional value-at-risk with Type II censoring  

Science Conference Proceedings (OSTI)

An acceptance sampling plan is usually determined by minimizing the expectation of the sum of the relevant costs involved. This expected cost minimization approach, however, could result in a great cost at a probability that is unacceptable to a decision ... Keywords: Bayesian acceptance sampling, Conditional value-at-risk, Life distribution, Reliability, Risk aversion, Type II censoring

Chung-Chi Hsieh, Yu-Ting Lu

2013-08-01T23:59:59.000Z

68

Acceptance test procedure: RMW Land Disposal Facility Project W-025  

SciTech Connect

This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting.

Roscha, V. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-12T23:59:59.000Z

69

Waste retrieval sluicing system data acquisition system acceptance test report  

SciTech Connect

This document describes the test procedure for the Project W-320 Tank C-106 Sluicing Data Acquisition System (W-320 DAS). The Software Test portion will test items identified in the WRSS DAS System Description (SD), HNF-2115. Traceability to HNF-2115 will be via a reference that follows in parenthesis, after the test section title. The Field Test portion will test sensor operability, analog to digital conversion, and alarm setpoints for field instrumentation. The W-320 DAS supplies data to assist thermal modeling of tanks 241-C-106 and 241-AY-102. It is designed to be a central repository for information from sources that would otherwise have to be read, recorded, and integrated manually. Thus, completion of the DAS requires communication with several different data collection devices and output to a usable PC data formats. This test procedure will demonstrate that the DAS functions as required by the project requirements stated in Section 3 of the W-320 DAS System Description, HNF-2115.

Bevins, R.R.

1998-07-31T23:59:59.000Z

70

Experimental Test Plan for Grouting H-3 Calcine  

Science Conference Proceedings (OSTI)

Approximately 4400 cubic meters of solid high-level waste called calcine are stored at the Idaho Nuclear Technology and Engineering Center. Under the Idaho Cleanup Project, dual disposal paths are being investigated. The first path includes calcine retrieval, package "as-is", and ship to the Monitored Geological Repository (MGR). The second path involves treatment of the calcine with such methods as vitrification or grouting. This test plan outlines the hot bench scale tests to grout actual calcine and verify that the waste form properties meet the waste acceptance criteria. This is a necessary sequential step in the process of qualifying a new waste form for repository acceptance. The archive H-3 calcine samples at the Contaminated Equipment Maintenance Building attached to New Waste Calcining Facility will be used in these tests at the Remote Analytical Laboratory. The tests are scheduled for the second quarter of fiscal year 2007.

Alan K. Herbst

2006-01-01T23:59:59.000Z

71

CMC Bench Scale Material Test Plan  

SciTech Connect

The test plan detailed in this topical report supports Task 3.5 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed this test plan with technical assistance from ceramic scientists at the Dept. of Energy Oak Ridge National Laboratory and Albany Research Center who will perform the environmental exposure tests.

Mark Fitzsimmons; Gerard Pelletier; Dave Grimmett

2006-05-30T23:59:59.000Z

72

Monitored Geologic Repository Test Evaluation Plan  

SciTech Connect

The Monitored Geologic Repository test & evaluation program will specify tests, demonstrations, examinations, and analyses, and describe procedures to conduct and document testing necessary to verify meeting Monitored Geologic Repository requirements for a safe and effective geologic repository for radioactive waste. This test program will provide assurance that the repository is performing as designed, and that the barriers perform as expected; it will also develop supporting documentation to support the licensing process and to demonstrate compliance with codes, standards, and regulations. This comprehensive program addresses all aspects of verification from the development of test requirements to the performance of tests and reporting of the test results. The ''Monitored Geologic Repository Test & Evaluation Plan'' provides a detailed description of the test program approach necessary to achieve the above test program objectives. This test plan incorporates a set of test phases focused on ensuring repository safety and operational readiness and implements a project-wide integrated product management team approach to facilitate test program planning, analysis, and implementation. The following sections provide a description of the individual test phases, the methodology for test program planning and analyses, and the management approach for implementing these activities.

M.B. Skorska

2002-01-02T23:59:59.000Z

73

EMERGENCY RESPONSE PLAN DEVINE TEST SITE  

E-Print Network (OSTI)

HSE MANUAL EMERGENCY RESPONSE PLAN DEVINE TEST SITE EXPLORATION GEOPHYSICS LAB FIELD SITE MEDINA THE UNIVERSITY OF TEXAS AT AUSTIN 1 #12;TABLE OF CONTENTS MEMORANDUM PAGE 3 MEDICAL EMERGENCY RESPONSE PLANS PAGE LIST OF CONTACTS ­ SITE MANAGERS AND EMERGENCY RESPONSE PAGE 20 CERTIFICATE OF COMPLETION PAGE 21 2 #12

Texas at Austin, University of

74

Geothermal drill pipe corrosion test plan  

DOE Green Energy (OSTI)

Plans are presented for conducting a field test of drill pipe corrosion, comparing air and nitrogen as drilling fluids. This test will provide data for evaluating the potential of reducing geothermal well drilling costs by extending drill pipe life and reducing corrosion control costs. The 10-day test will take place during fall 1980 at the Baca Location in Sandoval County, New Mexico.

Caskey, B.C.; Copass, K.S.

1980-12-01T23:59:59.000Z

75

CPC thermal collector test plan  

DOE Green Energy (OSTI)

A comprehensive set of test procedures has evolved at Argonne National Laboratory for establishing the performance of compound parabolic and related concentrating thermal collectors with large angular fields of view. The procedures range from separate thermal and optical tests, to overall performance tests. A calorimetric ratio technique has been developed to determine the heat output of a collector without knowledge of the heat transfer fluid's mass flow rate and heat capacity. Sepcial attention is paid to the problem of defining and measuring the incident solar flux with respect to which the collector efficiency is to be calculated.

Reed, K A

1977-01-01T23:59:59.000Z

76

CANMET Gasifier Liner Coupon Material Test Plan  

SciTech Connect

The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

Mark Fitzsimmons; Alan Darby; Fred Widman

2005-10-30T23:59:59.000Z

77

CANMET Gasifier Liner Coupon Material Test Plan  

SciTech Connect

The test plan detailed in this topical report supports Task 1 of the project titled ''Development of Technologies and Capabilities for Coal Energy Resources - Advanced Gasification Systems Development (AGSD)''. The purpose of these tests is to verify that materials planned for use in an advanced gasifier pilot plant will withstand the environments in a commercial gasifier. Pratt & Whitney Rocketdyne (PWR) has developed and designed the cooled liner test assembly article that will be tested at CANMET Energy Technology Centre (CETC-O) in Ottawa, Ontario, Canada (CETC-O). The Test Plan TP-00364 is duplicated in its entirety, with formatting changes to comply with the format required for this Topical Report. The table of contents has been modified to include the additional material required by this topical report. Test Request example and drawings of non-proprietary nature are also included as appendices.

Mark Fitzsimmons; Alan Darby; Fred Widman

2005-10-30T23:59:59.000Z

78

Supervisory Control and Data Acquisition System (SCADA) Substation C3-3 Acceptance Test Procedure  

Science Conference Proceedings (OSTI)

The purpose of this acceptance test procedure (ATP) is to demonstrate that the newly installed Supervisory Control and Data Acquisition (SCADA) computer system functions as intended by the design.

ZAKRAJSEK, M.F.

2000-10-17T23:59:59.000Z

79

Supervisory Control and Data Acquisition System (SCADA) Substation C3S4 Acceptance Test Procedure  

Science Conference Proceedings (OSTI)

The purpose of this acceptance test procedure (ATP) is to demonstrate that the newly installed Supervisory Control and Data Acquisition (SCADA) computer system functions as intended by the design.

ZAKRAJSEK, M.F.

2000-10-17T23:59:59.000Z

80

OUTLINE OF DETAILED TEST PLAN  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

0/ 177 0/ 177 Implementation Plan and Initial Development of Nuclear Concrete Materials Database for Light Water Reactor Sustainability Program September 30, 2010 Prepared by Weiju Ren and Dan Naus Oak Ridge National Laboratory Barry Oland XCEL Engineering DOCUMENT AVAILABILITY Reports produced after January 1, 1996, are generally available free via the U.S. Department of Energy (DOE) Information Bridge. Web site http://www.osti.gov/bridge Reports produced before January 1, 1996, may be purchased by members of the public from the following source. National Technical Information Service 5285 Port Royal Road Springfield, VA 22161 Telephone 703-605-6000 (1-800-553-6847) TDD 703-487-4639 Fax 703-605-6900 E-mail info@ntis.gov

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Test report for run-in acceptance testing of hydrogen mitigation test pump-2  

DOE Green Energy (OSTI)

This document provides the results of the run-in test of the replacement mixer pump for the Tank 241-SY-101. The test was conducted at the 400 Area MASF facility between August 12 and September 29, 1994. The report includes findings, analysis, recommendations, and corrective actions taken.

Brewer, A.K.; Kolowith, R.

1995-01-01T23:59:59.000Z

82

Fueled viking generator S/N 106 acceptance vibration test report  

SciTech Connect

The Viking Generator S/N 106 was vibrated to the Teledyne Isotope Flight Acceptance Schedule (Random Only) with no deviation from normal generator functional output. Radiographic analysis and power tests before and after the vibration test indicated no change in the condition of the generator. The work was conducted in the Alpha Fuels Environmental Test Facility at Mound Laboratory.

Anderson, C.; Brewer, C.O.; Abrahamson, S.G.

1976-06-08T23:59:59.000Z

83

SchlumbergerRES/Field-Test-Plan.PPT/18/06/00/1 Field Test Plan Michigan  

E-Print Network (OSTI)

1 La ©SchlumbergerRES/Field-Test-Plan.PPT/18/06/00/1 Field Test Plan Michigan QLand, QBorehole, R Camp, Well --- Oil/Gas PL Permit Zone - CONFIDENTIAL - #12;8 La ©SchlumbergerRES/Field-Test-Plan.PPT/18/VSP compiled by Andreas Laake, SLB Project Coordinator Status :October 26, 2000 #12;2 La ©SchlumbergerRES/Field

84

Test Methods Standing Technical Committee Strategic Plan - February...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Methods Standing Technical Committee Strategic Plan - February 2012 Test Methods Standing Technical Committee Strategic Plan - February 2012 This document outlines gaps,...

85

Measuring and Test Equipment Assessment Plan,NNSA/Nevada Site...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measuring and Test Equipment Assessment Plan,NNSANevada Site Office Independent Oversight Division Measuring and Test Equipment Assessment Plan,NNSANevada Site Office Independent...

86

Autoquan 3, version 3.11, MIDAC Corporation Computer Software Test Plan  

SciTech Connect

This test plan will be performed in conjunction with or prior to HNF-6936, ''HA-53 Supercritical Fluid Extraction System Acceptance Test Plan'', to operate the Fourier transform infrared spectrophotometer (FTIR) and to perform analyses for water. The test will ensure that the software can be installed properly, will operate the FTIR correctly and will generate a text file with analytical data.

HURLBUT, S.T.

2000-10-24T23:59:59.000Z

87

Phased Startup Initiative Phases 3 and 4 Test Plan and Test Specification (OCRWM)  

SciTech Connect

Construction for the Spent Nuclear Fuel (SNF) Project facilities is continuing per the Level III Baseline Schedule, and installation of the Fuel Retrieval System (FRS) and Integrated Water Treatment System (IWTS) in K West Basin is now complete. In order to accelerate the project, a phased start up strategy to initiate testing of the FRS and IWTS early in the overall project schedule was proposed (Williams 1999). Wilkinson (1999) expands the definition of the original proposal into four functional testing phases of the Phased Startup Initiative (PSI). Phases 1 and 2 are based on performing functional tests using dummy fuel. These tests are described in separate planning documents. This test plan provides overall guidance for Phase 3 and 4 tests, which are performed using actual irradiated N fuel assemblies. The overall objective of the Phase 3 and 4 testing is to verify how the FRS and IWTS respond while processing actual fuel. Conducting these tests early in the project schedule will allow identification and resolution of equipment and process problems before they become activities on the start-up critical path. The specific objectives of this test plan are to: (1) Define the test scope for the FRS and IWTS; (2) Provide detailed test requirements that can be used to write the specific test procedures; (3) Define data required and measurements to be taken. Where existing methods to obtain these do not exist, enough detail will be provided to define required additional equipment; and (4) Define specific test objectives and acceptance criteria.

PITNER, A.L.

2000-02-28T23:59:59.000Z

88

DEEP VADOSE ZONE TREATABILITY TEST PLAN  

Science Conference Proceedings (OSTI)

{sm_bullet} Treatability test plan published in 2008 {sm_bullet} Outlines technology treatability activities for evaluating application of in situ technologies and surface barriers to deep vadose zone contamination (technetium and uranium) {sm_bullet} Key elements - Desiccation testing - Testing of gas-delivered reactants for in situ treatment of uranium - Evaluating surface barrier application to deep vadose zone - Evaluating in situ grouting and soil flushing

GB CHRONISTER; MJ TRUEX

2009-07-02T23:59:59.000Z

89

Standard-B auto grab sampler hydrogen monitoring system, Acceptance Test Report  

DOE Green Energy (OSTI)

Project W-369, Watch List Tank Hydrogen Monitors, installed a Standard-C Hydrogen Monitoring System (SHMS) on the Flammable gas waste tank AN-104. General Support Projects (8K510) was support by Test Engineering (7CH30) in the performance of the Acceptance Test Procedures (ATP) to qualify the SHMS cabinets on the waste tank. The ATP`s performance was controlled by Tank Farm work package. This completed ATP is transmitted by EDT-601748 as an Acceptance Test Report (ATR) in accordance with WHC-6-1, EP 4.2 and EP 1.12.

Lott, D.T.

1995-05-18T23:59:59.000Z

90

System acceptance and operability test report for the RMCS exhauster C on flammable gas tanks  

DOE Green Energy (OSTI)

This test report documents the completion of acceptance and operability testing of the rotary mode core sampling (RMCS) exhauster C, as modified for use as a major stack (as defined by the Washington State Department of Health) on flammable gas tanks.

Waldo, E.J.

1998-03-11T23:59:59.000Z

91

Integrated test vehicle program plan: revision C  

DOE Green Energy (OSTI)

This edition dated August 26, 1977, is Revision C of the Integrated Test Vehicle, Program Plan, Phase II - Deliverable Item 2-7-1. The original edition was issued on May 27, 1977. Corrections were made and issued as Proposed Modifications for Integrated Test Vehicle, Program Plan, dated July 8, 1977. For the purpose of documenting changes, the July 8, 1977, version is caled Revision A. The edition dated August 5, 1977, is called Revision B. Each paragraph in this edition is marked to indicate technical changes from previous editions.

Not Available

1977-08-26T23:59:59.000Z

92

Process Test Plan Shutdown P16 Exhauster  

Science Conference Proceedings (OSTI)

This Process Test Plan was written to gather temperature data to determine the amount of heat load remaining in tank 241-C-106. This process test plan is being conducted to gather the temperature data necessary to determine how much of the initial heat load is still left in 241-C-106. The heat load will be determined by shutting off the C-106 exhaust system, monitoring the change in tank temperature, and plugging the resulting data into the thermal model for this tank.

PARKMAN, D.B.

2000-01-25T23:59:59.000Z

93

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

Science Conference Proceedings (OSTI)

This publication summarizes building energy simulation test for existing homes (BESTEST-EX): instructions for implementing the test procedure, calibration tests reference results, and example acceptance-range criteria.

Judkoff, R.; Polly, B.; Bianchi, M.; Neymark, J.; Kennedy, M.

2011-08-01T23:59:59.000Z

94

AGR-1 Irradiation Experiment Test Plan  

DOE Green Energy (OSTI)

This document presents the current state of planning for the AGR-1 irradiation experiment, the first of eight planned irradiations for the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The objectives of the AGR-1 experiment are: 1. To gain experience with multi-capsule test train design, fabrication, and operation with the intent to reduce the probability of capsule or test train failure in subsequent irradiation tests. 2. To irradiate fuel produced in conjunction with the AGR fuel process development effort. 3. To provide data that will support the development of an understanding of the relationship between fuel fabrication processes, fuel product properties, and irradiation performance. In order to achieve the test objectives, the AGR-1 experiment will be irradiated in the B-10 position of the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). The test will contain six independently controlled and monitored capsules. Each capsule will contain a single type, or variant, of the AGR coated fuel. The irradiation is planned for about 700 effective full power days (approximately 2.4 calendar years) with a time-averaged, volume-average temperature of approximately 1050 °C. Average fuel burnup, for the entire test, will be greater than 17.7 % FIMA, and the fuel will experience fast neutron fluences between 2.4 and 4.5 x 1025 n/m2 (E>0.18 MeV).

John T. Maki

2009-10-01T23:59:59.000Z

95

TESTING AND ACCEPTANCE OF FUEL PLATES FOR RERTR FUEL DEVELOPMENT EXPERIMENTS  

SciTech Connect

This paper discusses how candidate fuel plates for RERTR Fuel Development experiments are examined and tested for acceptance prior to reactor insertion. These tests include destructive and nondestructive examinations (DE and NDE). The DE includes blister annealing for dispersion fuel plates, bend testing of adjacent cladding, and microscopic examination of archive fuel plates. The NDE includes Ultrasonic (UT) scanning and radiography. UT tests include an ultrasonic scan for areas of “debonds” and a high frequency ultrasonic scan to determine the "minimum cladding" over the fuel. Radiography inspections include identifying fuel outside of the maximum fuel zone and measurements and calculations for fuel density. Details of each test are provided and acceptance criteria are defined. These tests help to provide a high level of confidence the fuel plate will perform in the reactor without a breach in the cladding.

J.M. Wight; G.A. Moore; S.C. Taylor

2008-10-01T23:59:59.000Z

96

Test Plan for Composite Hydrogen Getter Materials  

SciTech Connect

The intent of this test plan is to provide details of the Savannah River Technology Center (SRTC) effort to evaluate composite getter materials for eventual use in expanding the wattage limits for transportation of contact-handled transuranic waste (CH-TRU). This effort is funded by the Mixed Waste Focus Area (MWFA) under Technical Task Plan (TTP) SR-1-9-MW-45 and is the result of a competitive process initiated by a MWFA request for proposals. In response to this request, SRTC presented data on several composite getter materials that demonstrated good potential for application in transportation of transuranic wastes. The tests outlined in the SRTC proposal for composite getter materials should demonstrate compliance with functional requirements provided by the MWFA in a Statement of Work (SOW) which accompanied the request for proposals. Completion of Phase 1 testing, as defined in the TTP, should provide sufficient data to determine if composite getters should progress to Phase s 2 and 3. These test results will provide support for future safety reviews as part of the Transuranic Package Transporter-II (TRUPACT-II) certification process to utilize getter technology. This test plan provides details of the test descriptions, test objectives, required measurements, data quality objectives, data analysis, and schedule information relevant to Phase 1 of the TTP. The results of these tests are expected to help identify any potential weaknesses in the use of composite getter for transportation of CH-TRU wastes. Where a potential weakness is identified, this will be addressed as part of Phase 2 of the proposed effort. It is also important to recognize that these tests are focused on the individual composite getter materials and not the engineered system that would eventually be used in a TRUPACT-II. However, these test results will be very helpful in establishing the requirements for the design of a TRUPACT-II getter system that is included as part of the propo sed Phase 3 effort.

Livingston, R.R.

2000-11-09T23:59:59.000Z

97

Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines  

DOE Green Energy (OSTI)

The purpose of these Guidelines is to provide direction for conducting performance acceptance testing for large power tower solar systems that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The recommendations have been developed under a National Renewable Energy Laboratory (NREL) subcontract and reviewed by stakeholders representing concerned organizations and interests throughout the concentrating solar power (CSP) community. An earlier NREL report provided similar guidelines for parabolic trough systems. These Guidelines recommend certain methods, instrumentation, equipment operating requirements, and calculation methods. When tests are run in accordance with these Guidelines, we expect that the test results will yield a valid indication of the actual performance of the tested equipment. But these are only recommendations--to be carefully considered by the contractual parties involved in the Acceptance Tests--and we expect that modifications may be required to fit the particular characteristics of a specific project.

Kearney, D.

2013-03-01T23:59:59.000Z

98

TEST PLAN - SOLIDS ACCUMULATION SCOUTING STUDIES  

SciTech Connect

This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilization Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.

Duignan, M.; Steeper, T.; Steimke, J.; Fowley, M.

2012-05-10T23:59:59.000Z

99

Test Plan - Solids Accumulation Scouting Studies  

Science Conference Proceedings (OSTI)

This plan documents the highlights of the Solids Accumulations Scouting Studies test; a project, from Washington River Protection Solutions (WRPS), that began on February 1, 2012. During the last 12 weeks considerable progress has been made to design and plan methods that will be used to estimate the concentration and distribution of heavy fissile solids in accumulated solids in the Hanford double-shell tank (DST) 241-AW-105 (AW-105), which is the primary goal of this task. This DST will be one of the several waste feed delivery staging tanks designated to feed the Pretreatment Facility (PTF) of the Waste Treatment and Immobilization Plant (WTP). Note that over the length of the waste feed delivery mission AW-105 is currently identified as having the most fill empty cycles of any DST feed tanks, which is the reason for modeling this particular tank. At SRNL an existing test facility, the Mixing Demonstration Tank, which will be modified for the present work, will use stainless steel particles in a simulant that represents Hanford waste to perform mock staging tanks transfers that will allow solids to accumulate in the tank heel. The concentration and location of the mock fissile particles will be measured in these scoping studies to produce information that will be used to better plan larger scaled tests. Included in these studies is a secondary goal of developing measurement methods to accomplish the primary goal. These methods will be evaluated for use in the larger scale experiments. Included in this plan are the several pretest activities that will validate the measurement techniques that are currently in various phases of construction. Aspects of each technique, e.g., particle separations, volume determinations, topographical mapping, and core sampling, have been tested in bench-top trials, as discussed herein, but the actual equipment to be employed during the full test will need evaluation after fabrication and integration into the test facility.

Duignan, M. R.; Steeper, T. J.; Steimke, J. L.; Fowley, M. D.

2012-05-10T23:59:59.000Z

100

Using acceptance tests as a support for clarifying requirements: A series of experiments  

Science Conference Proceedings (OSTI)

One of the main reasons for the failure of many software projects is the late discovery of a mismatch between the customers' expectations and the pieces of functionality implemented in the delivered system. At the root of such a mismatch is often a set ... Keywords: Acceptance testing, Empirical studies, Fit tables, Requirements

Filippo Ricca; Marco Torchiano; Massimiliano Di Penta; Mariano Ceccato; Paolo Tonella

2009-02-01T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development of Performance Acceptance Test Guidelines for Large Commercial Parabolic Trough Solar Fields: Preprint  

DOE Green Energy (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the EPC contractor or owners. In lieu of the present absence of engineering code developed for this purpose, NREL has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The fundamental differences between acceptance of a solar power plant and a conventional fossil-fired plant are the transient nature of the energy source and the necessity to utilize an analytical performance model in the acceptance process. These factors bring into play the need to establish methods to measure steady state performance, potential impacts of transient processes, comparison to performance model results, and the possible requirement to test, or model, multi-day performance within the scope of the acceptance test procedure. The power block and BOP are not within the boundaries of this guideline. The current guideline is restricted to the solar thermal performance of parabolic trough systems and has been critiqued by a broad range of stakeholders in CSP development and technology.

Kearney, D.; Mehos, M.

2010-12-01T23:59:59.000Z

102

Tonopah Test Range closure sites revegetation plan  

SciTech Connect

This document is a revegetation plan for long-term stabilization (revegetation) of land disturbed by activities associated with the closure of a Bomblet Pit and the Five Points Landfill. Both sites are on the Tonopah Test Range (TTR) located in south-central Nevada. This document contains general reclamation practices and procedures that will be followed during the revegetation of these sites. The revegetation procedures proposed have been developed over several years of research and include the results of reclamation trials at Area 11 and Area 19 on the Nevada Test Site (NTS), and more recently at the Double Tracks (Nellis Air Force Range) reclamation demonstration plots. In addition, the results of reclamation efforts and concurrent research efforts at the Yucca Mountain Project have been considered in the preparation of this revegetation plan.

Anderson, D.C.; Hall, D.B.

1997-05-01T23:59:59.000Z

103

GEOCHEMICAL TESTING AND MODEL DEVELOPMENT - RESIDUAL TANK WASTE TEST PLAN  

SciTech Connect

This Test Plan describes the testing and chemical analyses release rate studies on tank residual samples collected following the retrieval of waste from the tank. This work will provide the data required to develop a contaminant release model for the tank residuals from both sludge and salt cake single-shell tanks. The data are intended for use in the long-term performance assessment and conceptual model development.

CANTRELL KJ; CONNELLY MP

2010-03-09T23:59:59.000Z

104

Modeling of a Parabolic Trough Solar Field for Acceptance Testing: A Case Study  

DOE Green Energy (OSTI)

As deployment of parabolic trough concentrating solar power (CSP) systems ramps up, the need for reliable and robust performance acceptance test guidelines for the solar field is also amplified. Project owners and/or EPC contractors often require extensive solar field performance testing as part of the plant commissioning process in order to ensure that actual solar field performance satisfies both technical specifications and performance guaranties between the involved parties. Performance test code work is currently underway at the National Renewable Energy Laboratory (NREL) in collaboration with the SolarPACES Task-I activity, and within the ASME PTC-52 committee. One important aspect of acceptance testing is the selection of a robust technology performance model. NREL1 has developed a detailed parabolic trough performance model within the SAM software tool. This model is capable of predicting solar field, sub-system, and component performance. It has further been modified for this work to support calculation at subhourly time steps. This paper presents the methodology and results of a case study comparing actual performance data for a parabolic trough solar field to the predicted results using the modified SAM trough model. Due to data limitations, the methodology is applied to a single collector loop, though it applies to larger subfields and entire solar fields. Special consideration is provided for the model formulation, improvements to the model formulation based on comparison with the collected data, and uncertainty associated with the measured data. Additionally, this paper identifies modeling considerations that are of particular importance in the solar field acceptance testing process and uses the model to provide preliminary recommendations regarding acceptable steady-state testing conditions at the single-loop level.

Wagner, M. J.; Mehos, M. S.; Kearney, D. W.; McMahan, A. C.

2011-01-01T23:59:59.000Z

105

Parking and routing information system phase 1 evaluation -- Individual evaluation test plans  

Science Conference Proceedings (OSTI)

A parking and routing information system (PARIS) is being designed and deployed at a test site on the Mountain Home Veterans Administration campus in Johnson City, Tennessee using three sensor technologies. The purpose of the PARIS project is to demonstrate innovative integration of vehicle sensing technologies with parking management strategies to improve mobility and relieve congestion associated with a growing medical/technology complex. This technical memorandum presents the four individual evaluation test plans, System Performance Individual Evaluation Test Plan, User Acceptance Individual Evaluation Test Plan, Institutional and Business Issues Individual Evaluation Test Plan, and Transportation Systems Individual Evaluation Test Plan, which were developed to support ORNL`s responsibilities and functions during the four studies. The plans define the level of effort required to satisfy the data collection, processing, and analysis requirements for the assessment of the system performance, user acceptance, institutional and business issues, and transportation systems components of the PARIS phase 1 evaluation. Each plan is divided into three subsections: executive summary, detailed study design, and study management.

Carter, R.J.

1997-04-01T23:59:59.000Z

106

Project development plan for East Mesa Geothermal Test Center  

DOE Green Energy (OSTI)

Plans for a test facility for geothermal energy systems and components designed for moderate temperature/low salinity geothermal fluids available at the East Mesa site in the Imperial Valley of California are discussed. Details of the following phases of development are given: technical plan; management plan; procurement and contracting plan; technology transfer and utilization plan; and resource requirements. (JGB)

Not Available

1975-03-01T23:59:59.000Z

107

Test Plan: WIPP bin-scale CH TRU waste tests  

SciTech Connect

This WIPP Bin-Scale CH TRU Waste Test program described herein will provide relevant composition and kinetic rate data on gas generation and consumption resulting from TRU waste degradation, as impacted by synergistic interactions due to multiple degradation modes, waste form preparation, long-term repository environmental effects, engineered barrier materials, and, possibly, engineered modifications to be developed. Similar data on waste-brine leachate compositions and potentially hazardous volatile organic compounds released by the wastes will also be provided. The quantitative data output from these tests and associated technical expertise are required by the WIPP Performance Assessment (PA) program studies, and for the scientific benefit of the overall WIPP project. This Test Plan describes the necessary scientific and technical aspects, justifications, and rational for successfully initiating and conducting the WIPP Bin-Scale CH TRU Waste Test program. This Test Plan is the controlling scientific design definition and overall requirements document for this WIPP in situ test, as defined by Sandia National Laboratories (SNL), scientific advisor to the US Department of Energy, WIPP Project Office (DOE/WPO). 55 refs., 16 figs., 19 tabs.

Molecke, M.A.

1990-08-01T23:59:59.000Z

108

AGA 12, Part 2 Performance Test Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGA 12, Part 2 Performance Test Plan AGA 12, Part 2 Performance Test Plan Under the guidance and sponsorship of DOE's Office of Electricity Delivery and Energy Reliability, Pacific...

109

100 area excavation treatability test plan  

SciTech Connect

This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Development and screening of remedial alternatives for the 100 Area, using existing data, have been completed and are documented in the 100 Area Feasibility Study, Phases 1 and 2 (DOE-RL 1992a). Based on the results of the FS, the Treatability Study Program Plan (DOE-RL 1992b) identifies and prioritizes treatability studies for the 100 Area. The data from the treatability study program support future focused FS, interim remedial measures (IRM) selection, operable unit final remedy selection, remedial design, and remedial actions. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992b). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications.

Not Available

1993-05-01T23:59:59.000Z

110

PURADYN Oil Bypass Filtration System Evaluation Test Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

& Infrastructure Department PURADYN OIL BYPASS FILTRATION SYSTEM EVALUATION TEST PLAN October 2002 Reviewed: INEEL Fleet Maintenance Supervisor (Thomas) Date Reviewed:...

111

Test report for run-in acceptance testing of Project W-151 300 HP mixing pumps  

SciTech Connect

This report documents the results of a performance demonstration and operational checkout of three 300 HP mixer pumps in accordance with WHC-SD-WI51-TS-001 ``Mixer Pump Test Specification for Project W-151`` and Statement of Work 8K520-EMN-95-004 ``Mixer Pump Performance Demonstration at MASF`` in the 400 Area Maintenance and Storage Facility (MASF) building. Testing of the pumps was performed by Fast Flux Test Facility (FFTF) Engineering and funded by the Tank Waste Remediation System (TWRS) Project W-151. Testing began with the first pump on 04-01-95 and ended with the third pump on 11-01-96. Prior to testing, the MASF was modified and prepared to meet the pump testing requirements set forth by the Test Specification and the Statement of Work.

Berglin, B.G.

1998-01-29T23:59:59.000Z

112

NETEX Test Master Plan Draft 8/15/02  

E-Print Network (OSTI)

NETEX Test Master Plan Draft 8/15/02 1 The Defense Advanced Research Projects Agency (DARPA) Networking in Extreme Environments (NETEX) Program TEST MASTER PLAN FOR THE NETEX PROGRAM 1.0 INTRODUCTION This document provides a plan for testing a number of selected military systems to determine the susceptibility

Buehrer, R. Michael

113

Acceptance Performance Test Guideline for Utility Scale Parabolic Trough and Other CSP Solar Thermal Systems: Preprint  

DOE Green Energy (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. Progress on interim guidelines was presented at SolarPACES 2010. Significant additions and modifications were made to the guidelines since that time, resulting in a final report published by NREL in April 2011. This paper summarizes those changes, which emphasize criteria for assuring thermal equilibrium and steady state conditions within the solar field.

Mehos, M. S.; Wagner, M. J.; Kearney, D. W.

2011-08-01T23:59:59.000Z

114

Utility-Scale Parabolic Trough Solar Systems: Performance Acceptance Test Guidelines, April 2009 - December 2010  

DOE Green Energy (OSTI)

Prior to commercial operation, large solar systems in utility-size power plants need to pass a performance acceptance test conducted by the engineering, procurement, and construction (EPC) contractor or owners. In lieu of the present absence of ASME or other international test codes developed for this purpose, the National Renewable Energy Laboratory has undertaken the development of interim guidelines to provide recommendations for test procedures that can yield results of a high level of accuracy consistent with good engineering knowledge and practice. The Guidelines contained here are specifically written for parabolic trough collector systems with a heat-transport system using a high-temperature synthetic oil, but the basic principles are relevant to other CSP systems.

Kearney, D.

2011-05-01T23:59:59.000Z

115

Nevada Test Site Resource Management Plan  

SciTech Connect

The Nevada Test Site (NTS) Resource Management Plan (RMP) describes the NTS Stewardship Mission and how its accomplishment will preserve the resources of the ecoregion while accomplishing the objectives of the mission. The NTS Stewardship Mission is to manage the land and facilities at the NTS as a unique and valuable national resource. The RMP has defined goals for twelve resource areas based on the principles of ecosystem management. These goals were established using an interdisciplinary team of DOE/NV resource specialists with input from surrounding land managers, private parties, and representatives of Native American governments. The overall goal of the RMP is to facilitate improved NTS land use management decisions within the Great Basin and Mojave Desert ecoregions.

NONE

1998-12-01T23:59:59.000Z

116

The Worlds First Ever Cooling Tower Acceptance Test Using Process Data Reconciliation  

Science Conference Proceedings (OSTI)

The cooling capacity of cooling towers is influenced by multiple constructive and atmospheric parameters in a very complex way. This leads to strong variations of the measured cold-water temperature and causes unacceptable unreliability of conventional acceptance tests, which are based on single point measurements. In order to overcome this lack of accuracy a new approach to acceptance test based on process data reconciliation has been developed by BTB Jansky and applied at a nuclear power plant. This approach uses process data reconciliation according to VDI 2048 to evaluate datasets over a long period covering different operating conditions of the cooling tower. Data reconciliation is a statistical method to determine the true process parameters with a statistical probability of 95% by considering closed material-, mass-and energy balances. Datasets which are not suitable for the evaluation due to strong transient gradients are excluded beforehand, according to well-defined criteria. The reconciled cold-water temperature is then compared, within a wet bulb temperature range of 5 deg. C to 20 deg. C to the manufacturer's guaranteed temperature. Finally, if the average deviation between reconciled and guaranteed value over the evaluated period is below zero, the cooling tower guarantee is fulfilled. (authors)

Magnus Langenstein; Jan Hansen-Schmidt [BTB-Jansky GmbH, Gerlingerstrasse 151, D-71229 Leonberg (Germany)

2006-07-01T23:59:59.000Z

117

Hanford spent nuclear fuel cold vacuum drying test specification and test plan  

SciTech Connect

This document provides the test plan and test specification for SNF cold vacuum drying proof of concept, CVD process equipment validation, and proof of performance testing.

McCracken, K.J., Westinghouse Hanford

1996-07-10T23:59:59.000Z

118

Environmentally Acceptable Transformer Fluids: Phase I State-of-the-Art Review; Phase II Laboratory Testing of Fluids  

Science Conference Proceedings (OSTI)

The objectives of this investigation were to identify, obtain, and test environmentally acceptable dielectric fluids for power transformers. In addition, the report provides a resource guide to the environmental qualities and performances of conventional transformer oils and environmentally acceptable alternatives. A literature review was conducted to identify appropriate candidates and, once identified, samples of the oil were obtained and tested. The findings of the literature review and the laboratory...

2000-11-17T23:59:59.000Z

119

Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria  

NLE Websites -- All DOE Office Websites (Extended Search)

Building Energy Simulation Test for Building Energy Simulation Test for Existing Homes (BESTEST-EX): Instructions for Implementing the Test Procedure, Calibration Test Reference Results, and Example Acceptance-Range Criteria Ron Judkoff, Ben Polly, and Marcus Bianchi National Renewable Energy Laboratory Joel Neymark J. Neymark & Associates Mike Kennedy Mike D. Kennedy, Inc. Link to Accompanying Zipped Data Files (3.9 MB) This document is intended for use with the following documents: Building Energy Simulation Test for Existing Homes (BESTEST-EX), NREL/TP-550-47427 Example Procedures for Developing Acceptance-Range Criteria for BESTEST-EX, NREL/TP-550-47502 Technical Report NREL/TP-5500-52414 August 2011 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy

120

Fast flux test facility, transition project plan  

SciTech Connect

The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Guttenberg, S.

1994-11-15T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Checkout, Testing, and Commissioning Plan RM  

Energy.gov (U.S. Department of Energy (DOE))

The CP RM Module is a tool that assists DOE federal project review teams in evaluating the sufficiency of the Commissioning Plan and its implementation. The CP RM can be used by the DOE federal...

122

Waste Acceptance Testing of Secondary Waste Forms: Cast Stone, Ceramicrete and DuraLith  

SciTech Connect

To support the selection of a waste form for the liquid secondary wastes from WTP, Washington River Protection Solutions has initiated secondary-waste-form testing work at Pacific Northwest National Laboratory (PNNL). In anticipation of a down-selection process for a waste form for the Solidification Treatment Unit to be added to the ETF, PNNL is conducting tests on four candidate waste forms to evaluate their ability to meet potential waste acceptance criteria for immobilized secondary wastes that would be placed in the IDF. All three waste forms demonstrated compressive strengths above the minimum 3.45 MPa (500 psi) set as a target for cement-based waste forms. Further, none of the waste forms showed any significant degradation in compressive strength after undergoing thermal cycling (30 cycles in a 10 day period) between -40 C and 60 C or water immersion for 90 days. The three leach test methods are intended to measure the diffusion rates of contaminants from the waste forms. Results are reported in terms of diffusion coefficients and a leachability index (LI) calculated based on the diffusion coefficients. A smaller diffusion coefficient and a larger LI are desired. The NRC, in its Waste Form Technical Position (NRC 1991), provides recommendations and guidance regarding methods to demonstrate waste stability for land disposal of radioactive waste. Included is a recommendation to conduct leach tests using the ANS 16.1 method. The resulting leachability index (LI) should be greater than 6.0. For Hanford secondary wastes, the LI > 6.0 criterion applies to sodium leached from the waste form. For technetium and iodine, higher targets of LI > 9 for Tc and LI > 11 for iodine have been set based on early waste-disposal risk and performance assessment analyses. The results of these three leach tests conducted for a total time between 11days (ASTM C1308) to 90 days (ANS 16.1) showed: (1) Technetium diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that all the waste forms had leachability indices better than the target LI > 9 for technetium; (2) Rhenium diffusivity: Cast Stone 2M specimens, when tested using EPA 1315 protocol, had leachability indices better than the target LI > 9 for technetium based on rhenium as a surrogate for technetium. All other waste forms tested by ANSI/ANS 16.1, ASTM C1308, and EPA 1315 test methods had leachability indices that were below the target LI > 9 for Tc based on rhenium release. These studies indicated that use of Re(VII) as a surrogate for 99Tc(VII) in low temperature secondary waste forms containing reductants will provide overestimated diffusivity values for 99Tc. Therefore, it is not appropriate to use Re as a surrogate 99Tc in future low temperature waste form studies. (3) Iodine diffusivity: ANSI/ANS 16.1, ASTM C1308, and EPA 1315 tests indicated that the three waste forms had leachability indices that were below the target LI > 11 for iodine. Therefore, it may be necessary to use a more effective sequestering material than silver zeolite used in two of the waste forms (Ceramicrete and DuraLith); (4) Sodium diffusivity: All the waste form specimens tested by the three leach methods (ANSI/ANS 16.1, ASTM C1308, and EPA 1315) exceeded the target LI value of 6; (5) All three leach methods (ANS 16.1, ASTM C1308 and EPA 1315) provided similar 99Tc diffusivity values for both short-time transient diffusivity effects as well as long-term ({approx}90 days) steady diffusivity from each of the three tested waste forms (Cast Stone 2M, Ceramicrete and DuraLith). Therefore, any one of the three methods can be used to determine the contaminant diffusivities from a selected waste form.

Mattigod, Shas V.; Westsik, Joseph H.; Chung, Chul-Woo; Lindberg, Michael J.; Parker, Kent E.

2011-08-12T23:59:59.000Z

123

Fast Flux Test Facility (FFTF) standby plan  

Science Conference Proceedings (OSTI)

The FFTF Standby Plan, Revision 0, provides changes to the major elements and project baselines to maintain the FFTF plant in a standby condition and to continue washing sodium from irradiated reactor fuel. The Plan is consistent with the Memorandum of Decision approved by the Secretary of Energy on January 17, 1997, which directed that FFTF be maintained in a standby condition to permit the Department to make a decision on whether the facility should play a future role in the Department of Energy`s dual track tritium production strategy. This decision would be made in parallel with the intended December 1998 decision on the selection of the primary, long- term source of tritium. This also allows the Department to review the economic and technical feasibility of using the FFTF to produce isotopes for the medical community. Formal direction has been received from DOE-RL and Fluor 2020 Daniel Hanford to implement the FFTF standby decision. The objective of the Plan is maintain the condition of the FFTF systems, equipment and personnel to preserve the option for plant restart within three and one-half years of a decision to restart, while continuing deactivation work which is consistent with the standby mode.

Hulvey, R.K.

1997-03-06T23:59:59.000Z

124

SLURRY MIX EVAPORATOR BATCH ACCEPTABILITY AND TEST CASES OF THE PRODUCT COMPOSITION CONTROL SYSTEM WITH THORIUM AS A REPORTABLE ELEMENT  

SciTech Connect

The Defense Waste Processing Facility (DWPF), which is operated by Savannah River Remediation, LLC (SRR), has recently begun processing Sludge Batch 6 (SB6) by combining it with Frit 418 at a nominal waste loading (WL) of 36%. A unique feature of the SB6/Frit 418 glass system, as compared to the previous glass systems processed in DWPF, is that thorium will be a reportable element (i.e., concentrations of elemental thorium in the final glass product greater than 0.5 weight percent (wt%)) for the resulting wasteform. Several activities were initiated based upon this unique aspect of SB6. One of these was an investigation into the impact of thorium on the models utilized in DWPF's Product Composition and Control System (PCCS). While the PCCS is described in more detail below, for now note that it is utilized by Waste Solidification Engineering (WSE) to evaluate the acceptability of each batch of material in the Slurry Mix Evaporator (SME) before this material is passed on to the melter. The evaluation employs models that predict properties associated with processability and product quality from the composition of vitrified samples of the SME material. The investigation of the impact of thorium on these models was conducted by Peeler and Edwards [1] and led to a recommendation that DWPF can process the SB6/Frit 418 glass system with ThO{sub 2} concentrations up to 1.8 wt% in glass. Questions also arose regarding the handling of thorium in the SME batch acceptability process as documented by Brown, Postles, and Edwards [2]. Specifically, that document is the technical bases of PCCS, and while Peeler and Edwards confirmed the reliability of the models, there is a need to confirm that the current implementation of DWPF's PCCS appropriately handles thorium as a reportable element. Realization of this need led to a Technical Task Request (TTR) prepared by Bricker [3] that identified some specific SME-related activities that the Savannah River National Laboratory (SRNL) was requested to conduct. SRNL issued a Task Technical and Quality Assurance (TT&QA) plan [4] in response to the SRR request. The conclusions provided in this report are that no changes need to be made to the SME acceptability process (i.e., no modifications to WSRC-TR-95-00364, Revision 5, are needed) and no changes need to be made to the Product Composition Control System (PCCS) itself (i.e. the spreadsheet utilized by Waste Solidification Engineering (WSE) for acceptability decisions does not require modification) in response to thorium becoming a reportable element for DWPF operations. In addition, the inputs and results for the two test cases requested by WSE for use in confirming the successful activation of thorium as a reportable element for DWPF operations during the processing of SB6 are presented in this report.

Edwards, T.

2010-10-07T23:59:59.000Z

125

Nevada Test Site Treatment Plan. Revision 2  

SciTech Connect

Treatment Plans (STPS) are required for facilities at which the US Department of Energy (DOE) or stores mixed waste, defined by the Federal Facility Compliance Act (FFCAct) as waste containing both a hazardous waste subject to the Resource Conservation and Recovery Act and a radioactive material subject to the Atomic Energy Act. On April 6, 1993, DOE published a Federal Register notice (58 FR 17875) describing its proposed process for developing the STPs in three phases including a Conceptual, a Draft, and a Proposed Site Treatment Plan (PSTP). All of the DOE Nevada Operations Office STP iterations have been developed with the state of Nevada`s input. The options and schedules reflect a ``bottoms-up`` approach and have been evaluated for impacts on other DOE sites, as well as impacts to the overall DOE program. Changes may have occurred in the preferred option and associated schedules between the PSTP, which was submitted to the state of Nevada and US Environmental Protection Agency April 1995, and the Final STP (hereafter referred to as the STP) as treatment evaluations progressed. The STP includes changes that have occurred since the submittal of the PSTP as a result of state-to-state and DOE-to-state discussions.

1996-03-01T23:59:59.000Z

126

Fast Flux Test Facility project plan. Revision 2  

Science Conference Proceedings (OSTI)

The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

Hulvey, R.K.

1995-11-01T23:59:59.000Z

127

ITS strategic test plan : revision 1.0.  

SciTech Connect

This test plan describes the testing strategy for the ITS (Integrated-TIGER-Series) suite of codes. The processes and procedures for performing both verification and validation tests are described. ITS Version 5.0 was developed under the NNSA's ASC program and supports Sandia's stockpile stewardship mission.

Franke, Brian Claude; Lorence, Leonard Joseph, Jr.; Crawford, Martin James (K-Tech Corporation, Albuquerque, NM); Cordova, Lisa A.; Kensek, Ronald Patrick; Laub, Thomas William

2004-07-01T23:59:59.000Z

128

Microsoft Word - acceptance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Acceptance Checklist Acceptance Checklist The following checklist is intended to provide system owners, project managers, and other information system development and maintenance professionals with guidance in identifying and planning information system acceptance activities. The checklist reflects recognized acceptance management activities to be performed throughout the information systems project lifecycle. Information systems acceptance is generally characterized as a process to officially accept new or modified software components, which, when integrated, form an information system. Within this context, the objectives of software acceptance are summarized as the following: C Verify that the software product meets users= requirements and is fully operational.

129

Test plan for the 34 meter vertical axis wind turbine test bed located at Bushland, Texas  

DOE Green Energy (OSTI)

A plan is presented for the testing and evaluation of a new 500 kw vertical axis wind turbine test bed. The plan starts with the initial measurements made during construction, proceeds through evaluation of the design, the development of control methods, and finally to the test bed phase where new concepts are evaluated and in-depth studies are performed.

Stephenson, W.A.

1986-12-01T23:59:59.000Z

130

In situ vitrification laboratory-scale test work plan  

SciTech Connect

The Buried Waste Program was established in October 1987 to accelerate the studies needed to develop a long-term management plan for the buried mixed waste at the Radioactive Waste Management Complex at Idaho Engineering Laboratory. The In Situ Vitrification Project is being conducted in a Comprehensive Environmental Response, Compensation, and Liability Act feasibility study format to identify methods for the long-term management of mixed buried waste. To support the overall feasibility study, the situ vitrification treatability investigations are proceeding along the three parallel paths: laboratory-scale tests, intermediate field tests, and field tests. Laboratory-scale tests are being performed to provide data to mathematical modeling efforts, which, in turn, will support design of the field tests and to the health and safety risk assessment. This laboratory-scale test work plan provides overall testing program direction to meet the current goals and objectives of the in situ vitrification treatability investigation. 12 refs., 1 fig., 7 tabs.

Nagata, P.K.; Smith, N.L.

1991-05-01T23:59:59.000Z

131

Experimental Test Plan DOE Tidal and River Reference Turbines  

Science Conference Proceedings (OSTI)

Our aim is to provide details of the experimental test plan for scaled model studies in St. Anthony Falls Laboratory (SAFL) Main Channel at the University of Minnesota, including a review of study objectives, descriptions of the turbine models, the experimental set-up, instrumentation details, instrument measurement uncertainty, anticipated experimental test cases, post-processing methods, and data archiving for model developers.

Neary, Vincent S [ORNL; Hill, Craig [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Chamorro, Leonardo [St. Anthony Falls Laboratory, 2 Third Avenue SE, Minneapolis, MN 55414; Gunawan, Budi [ORNL

2012-09-01T23:59:59.000Z

132

Mixer pump test plan for double shell tank AZ-101  

Science Conference Proceedings (OSTI)

Mixer pump systems have been chosen as the method for retrieval of tank wastes contained in double shell tanks at Hanford. This document describes the plan for testing and demonstrating the ability of two 300 hp mixer pumps to mobilize waste in tank AZ-101. The mixer pumps, equipment and instrumentation to monitor the test were installed by Project W-151.

STAEHR, T.W.

1999-05-12T23:59:59.000Z

133

Flammable gas interlock spoolpiece flow response test plan and procedure  

DOE Green Energy (OSTI)

The purpose of this test plan and procedure is to test the Whittaker electrochemical cell and the Sierra Monitor Corp. flammable gas monitors in a simulated field flow configuration. The sensors are used on the Rotary Mode Core Sampling (RMCS) Flammable Gas Interlock (FGI), to detect flammable gases, including hydrogen and teminate the core sampling activity at a predetermined concentration level.

Schneider, T.C., Fluor Daniel Hanford

1997-02-13T23:59:59.000Z

134

User Acceptance of Agile Information Systems: A Model and Empirical Test  

Science Conference Proceedings (OSTI)

In response to the rapid changes in users' requirements, a new generation of information systems (IS), namely, agile IS, has emerged. Agile IS, defined as information systems developed using agile methods, are characterized by frequent upgrades with ... Keywords: Agile Methods, Agile Systems, Availability Heuristic, Comfort With Change, Habit, Information Systems Continuance, Omission Bias, Personal Innovativeness, Status Quo Bias, Unified Theory Of Acceptance And Use Of Technology (Utau T)

Weiyin Hong; James Thong; Lewis Chasalow; Gurpreet Dhillon

2011-07-01T23:59:59.000Z

135

ORCWM test and evaluaton master plan. Revision 00  

SciTech Connect

The Office of Civilian Radioactive Waste Management (OCRWM) Test and Evaluation Master Plan (TEMP) describes the program Test and Evaluation (T&E) policy, objectives, requirements, general methodology (test flow and description of each T&E phase), responsibilities, and scheduling of test phases for the Civilian Radioactive Waste Management System (CRWMS). This TEMP is a program-level management planning document for al CRWMS T&E activities and will be used in conjunction with Section 11 of the Quality Assurance Requirements and Description (QARD), as appropriate, as a guide for the projects in developing their T&E plans. In the OCRWM document hierarchy, that is described in the OCRWM Systems Engineering Management Plan (SEMP), the TEMP is subordinate to the program SEMP. To ensure CRWMS operates as an integrated system, the plans for verifying the performance and evaluating the operational suitability and effectiveness of the overall system are also described. Test and evaluation is an integral part of the systems engineering process. Key aspects of the systems engineering process, more fully described in the OCRWM SEMP, are discussed in this TEMP to illustrate how T&E supports the overall systems engineering process.

NONE

1995-08-01T23:59:59.000Z

136

Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site  

SciTech Connect

The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure process for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.

NSTec Environmental Management

2008-09-01T23:59:59.000Z

137

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou  

E-Print Network (OSTI)

IFE Chamber Technology Testing Program In NIF and Chamber Development Test Plan Mohamed A. Abdou chamber technology testing program in NIF involoving: criteria for evaluation prior to NIF testing were addressed in this paper. In order to maximize the benefits of testing program

Abdou, Mohamed

138

Field test plan: Buried waste technologies, Fiscal Year 1995  

SciTech Connect

The US Department of Energy, Office of Technology Development, supports the applied research, development, demonstration, testing, and evaluation of a suite of advanced technologies that, when integrated with commercially available baseline technologies, form a comprehensive remediation system for the effective and efficient remediation of buried waste. The Fiscal Year 1995 effort is to deploy and test multiple technologies from four functional areas of buried waste remediation: site characterization, waste characterization, retrieval, and treatment. This document is the basic operational planning document for the deployment and testing of the technologies that support the field testing in Fiscal Year 1995. Discussed in this document are the scope of the tests; purpose and objective of the tests; organization and responsibilities; contingency plans; sequence of activities; sampling and data collection; document control; analytical methods; data reduction, validation, and verification; quality assurance; equipment and instruments; facilities and utilities; health and safety; residuals management; and regulatory management.

Heard, R.E.; Hyde, R.A. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Engleman, V.S.; Evans, J.D.; Jackson, T.W. [Science Applications International Corp., San Diego, CA (United States)

1995-06-01T23:59:59.000Z

139

Tips for Planning, Building, and Testing a Model Car  

NLE Websites -- All DOE Office Websites (Extended Search)

Tips for Planning, Building, and Testing Your Lithium- Ion Battery Powered Car CONTENTS: ï‚¢ Teacher Overview ï‚¢ What Teachers Can Do To Help ï‚¢ Student Design Plan ï‚¢ Brainstorming ï‚¢ Materials ï‚¢ Chassis Design ï‚¢ Transmission ï‚¢ Gear Ratio ï‚¢ Wheels and Bearings ï‚¢ Battery ï‚¢ Testing ï‚¢ Trouble Shooting TEACHER OVERVIEW ï‚¢ The Lithium-ion battery powered car competition is designed to be an engineering challenge for middle school students. ï‚¢ Students will be exploring the following concepts while planning, building and testing their cars: ï‚— Alternative energy sources ï‚— Engineering design ï‚— Aerodynamics ï‚— Force and motion ï‚— Teamwork ï‚— Problem solving ï‚¢ Teams who do not have a completed car at the

140

Test Methods Standing Technical Committee Strategic Plan - February 2012  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Test Methods Standing Technical Committee Test Methods Standing Technical Committee 2011 Strategic Plan V1.1 - Draft 2/24/2012 Committee Chair: 2011-2012 Dane Christensen National Renewable Energy Laboratory 2 Prioritization of Gaps, Barriers and Needs The following table prioritizes the Gaps, Barriers and Needs described in this document. Rank Description Estimated Priority Effort 1 Heat Pump Water Heater Field Test Protocol H M 2a Method for infinitely variable fan airflow measurement H H 2b Non-Intrusive Natural Gas Flow Measurement H H 3 Data Logger with Increased Data Capabilities M M 4 Room Air Mixing Analysis M H Contents Summary of Test Methods STC Strategic Plan .......................................................................................................... 3

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Acceptance test report for the AN valve pit leak detection and low point drain assembly mock up test procedure  

SciTech Connect

This document describes The Performance Mock-up Test Procedure for the Valve Pit Leak Detection and Low Point Drain Assembly Performance Mock-Up Test Procedure.

EWER, K.L.

1999-07-20T23:59:59.000Z

142

Microsoft Word - S05979_DOE-LM_Executable Plan2009-Final_Rev 2changes accepted_.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Order 430.2B Order 430.2B Executable Plan for LM (DOE FEMP Final) December 2009 LMS/S05979 This page intentionally left blank Signature for Site DOE Order 430.2B Executable Plan for LM (DOE FEMP Final) Office Concurrence This page intentionally left blank U.S. Department of Energy DOE Order 430.2B Executable Plan for LM (DOE FEMP Draft) December 2009 Doc. No. S05979 Page i Contents 1.0 Executive Summary ............................................................................................................ 1 2.0 DOE Order 430.2B Goal Summary Progress ..................................................................... 2 3.0 Energy Intensity ..................................................................................................................

143

Acceptance of repeat population-based voluntary counseling and testing for HIV in rural Malawi  

E-Print Network (OSTI)

and testing intervention in rural Uganda. Health Policy andestimates: The case of rural Malawi. Paper presented at theof the AIDS epidemic in a rural area in Tanzania with a

2008-01-01T23:59:59.000Z

144

Santa Clara 2MW Fuel Cell Demonstration Power Plant: Interim Acceptance Test Report  

Science Conference Proceedings (OSTI)

Power generation testing of the world's largest carbonate fuel cell power system began in Spring 1996. Lessons learned will enable developers to advance the commercialization of megawatt- scale, carbonate fuel cell systems for distributed generation applications.

1997-02-01T23:59:59.000Z

145

Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing  

DOE Green Energy (OSTI)

This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

2007-08-17T23:59:59.000Z

146

Vibration test plan for a space station heat pipe subassembly  

SciTech Connect

This test plan describes the Sundstrand portion of task two of Los Alamos National Laboratory (LANL) contract 9-x6H-8102L-1. Sundstrand Energy Systems was awarded a contract to investigate the performance capabilities of a potassium liquid metal heat pipe as applied to the Organic Rankine Cycle (ORC) solar dynamic power system for the Space Station. The test objective is to expose the heat pipe subassembly to the random vibration environment which simulates the space shuttle launch condition. The results of the test will then be used to modify as required future designs of the heat pipe.

Parekh, M.B. [Sundstrand Energy Systems, Rockford, IL (United States)

1987-09-29T23:59:59.000Z

147

Test Plan: Phase 1, Hanford LLW melter tests, GTS Duratek, Inc.  

SciTech Connect

This document provides a test plan for the conduct of vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384215] is GTS Duratek, Inc., Columbia, Maryland. The GTS Duratek project manager for this work is J. Ruller. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass with Hanford LLW Double-Shell Slurry Feed waste simulant in a DuraMelter{trademark} vitrification system.

Eaton, W.C.

1995-06-14T23:59:59.000Z

148

Hanford Tank Farms Waste Certification Flow Loop Test Plan  

Science Conference Proceedings (OSTI)

A future requirement of Hanford Tank Farm operations will involve transfer of wastes from double shell tanks to the Waste Treatment Plant. As the U.S. Department of Energy contractor for Tank Farm Operations, Washington River Protection Solutions anticipates the need to certify that waste transfers comply with contractual requirements. This test plan describes the approach for evaluating several instruments that have potential to detect the onset of flow stratification and critical suspension velocity. The testing will be conducted in an existing pipe loop in Pacific Northwest National Laboratory’s facility that is being modified to accommodate the testing of instruments over a range of simulated waste properties and flow conditions. The testing phases, test matrix and types of simulants needed and the range of testing conditions required to evaluate the instruments are described

Bamberger, Judith A.; Meyer, Perry A.; Scott, Paul A.; Adkins, Harold E.; Wells, Beric E.; Blanchard, Jeremy; Denslow, Kayte M.; Greenwood, Margaret S.; Morgen, Gerald P.; Burns, Carolyn A.; Bontha, Jagannadha R.

2010-01-01T23:59:59.000Z

149

INEL test plan for evaluating waste assay systems  

SciTech Connect

A test bed is being established at the Idaho National Engineering Laboratory (INEL) Radioactive Waste Management Complex (RWMC). These tests are currently focused on mobile or portable radioassay systems. Prior to disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP), radioassay measurements must meet the quality assurance objectives of the TRU Waste Characterization Quality Assurance Program Plan. This test plan provides technology holders with the opportunity to assess radioassay system performance through a three-tiered test program that consists of: (a) evaluations using non-interfering matrices, (b) surrogate drums with contents that resemble the attributes of INEL-specific waste forms, and (c) real waste tests. Qualified sources containing a known mixture and range of radionuclides will be used for the non-interfering and surrogate waste tests. The results of these tests will provide technology holders with information concerning radioassay system performance and provide the INEL with data useful for making decisions concerning alternative or improved radioassay systems that could support disposal of waste at WIPP.

Mandler, J.W.; Becker, G.K.; Harker, Y.D.; Menkhaus, D.E.; Clements, T.L. Jr.

1996-09-01T23:59:59.000Z

150

Acceptance test procedure for removal of CS1K circuit switcher block and trip schemes  

Science Conference Proceedings (OSTI)

This supporting document provides a detailed process to test the functions of the circuit switcher, protective relays, alarms, SCADA and 125VDC control logic of 115kV and 13.8kV systems at B3S4 substation following the removal of trip and blocking schemes to Transformer No.1 Circuit Switcher B594.

HACHE, J.M.

1999-08-25T23:59:59.000Z

151

ERDA Geothermal Component Test Facility (GCTF), East Mesa, Imperial Valley, California. Test operations management plan  

DOE Green Energy (OSTI)

Discussion of the operation of the Geothermal Component Test Facility (GCTF), established for testing heat extraction and energy conversion equipment and materials, is presented under the following section headings: purposes of the facility; operating policies: service, conflicts, safety and environmental, investigator activities, shops and equipment, and test certification; organization: chart; Lawrence Berkely Laboratory: organization, responsibilities, individual responsibilities, and funding; Bureau of Reclamation: organization, responsibilities, and funding; operations contractor: contract, qualifications, and personnel; Test Operations Advisory Board; experiment processing: test acceptance, scheduling and priorities, cost reimbursement, and activities flow chart.

Not Available

1976-01-01T23:59:59.000Z

152

Project W-314 specific test and evaluation plan for transfer line SN-633 (241-AX-B to 241-AY-02A)  

SciTech Connect

The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-633 transfer line by the W-314 Project. The STEP develops the outline for test procedures that verify the system`s performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP). This STEP encompasses all testing activities required to demonstrate compliance to the project design criteria as it relates to the addition of transfer line SN-633. The Project Design Specifications (PDS) identify the specific testing activities required for the Project. Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the transfer line addition. The STEP will be utilized in conjunction with the TEP for verification and validation.

Hays, W.H.

1998-03-20T23:59:59.000Z

153

Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Gearbox Reliability Collaborative Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan H. Link, J. Keller, and Y. Guo National Renewable Energy Laboratory B. McNiff McNiff Light Industry Technical Report NREL/TP-5000-58190 April 2013 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 15013 Denver West Parkway Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan H. Link, J. Keller, and Y. Guo National Renewable Energy Laboratory B. McNiff McNiff Light Industry Prepared under Task No. WE11.0301 Technical Report

154

Selenide isotope generator for the Galileo Mission: safety test plan  

DOE Green Energy (OSTI)

The intent of this safety test plan is to outline particular kinds of safety tests designed to produce information which would be useful in the safety analysis process. The program deals primarily with the response of the RTG to accident environments; accordingly two criteria were established: (1) safety tests should be performed for environments which are the most critical in terms of risk contribution; and (2) tests should be formulated to determine failure conditions for critical heat source components rather than observe heat source response in reference accident environments. To satisfy criterion 1. results of a recent safety study were used to rank various accidents in terms of expected source terms. Six kinds of tests were then proposed which would provide information meeting the second criterion.

Not Available

1979-01-31T23:59:59.000Z

155

In situ redox manipulation treatability test -- waste management plan  

DOE Green Energy (OSTI)

This Waste Management Plan provides guidance for the management of waste generated from groundwater well installations in the 100-HR-3 Operable Unit. The well installations are necessary to implement the In Situ Redox Manipulation Treatability Test to determine methods for in situ remedial efforts to prevent discharge of hexavalent chromium at levels above those considered protective of aquatic life in the Columbia River and riverbed sediments

A. J. Knepp

1997-12-31T23:59:59.000Z

156

Test plan : reducing soft costs of rooftop solar installations attributed to structural considerations.  

SciTech Connect

This test plan is a document that provides a systematic approach to the planned testing of rooftop structures to determine their actual load carrying capacity. This document identifies typical tests to be performed, the responsible parties for testing, the general feature of the tests, the testing approach, test deliverables, testing schedule, monitoring requirements, and environmental and safety compliance.

Dwyer, Stephen F.

2013-05-01T23:59:59.000Z

157

Test plan for demonstration of Rapid Transuranic Monitoring Laboratory  

Science Conference Proceedings (OSTI)

This plan describes tests to demonstrate the capability of the Rapid Transuranic Monitoring Laboratory (RTML) to monitor airborne alpha-emitting radionuclides and analyze soil, smear, and filter samples for alpha- and gamma-emitting radionuclides under field conditions. The RTML will be tested during June 1993 at a site adjacent to the Cold Test Pit at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. Measurement systems installed in the RTML that will be demonstrated include two large-area ionization chamber alpha spectrometers, an x-ray/gamma-ray spectrometer, and four alpha continuous air monitors. Test objectives, requirements for data quality, experimental apparatus and procedures, and safety and logistics issues are described.

McIsaac, C.V.; Sill, C.W.; Gehrke, R.J.; Killian, E.W.; Watts, K.D.

1993-06-01T23:59:59.000Z

158

Hydrologic test plan for the Environmental Remediation Disposal Facility  

SciTech Connect

Hydrologic tests are planned at seven wells that will be drilled at the proposed Environmental Remediation Disposal Facility (ERDF). These wells are supporting hydrologic, geologic, and hydrochemical characterization at this new facility. Hydrologic testing will consist of instantaneous slug tests, slug interference tests, step-drawdown tests, and constant rate discharge tests (generally single-well). These test results and later groundwater monitoring data will be used to determine groundwater flow directions, flow rates, and the chemical makeup of the groundwater below the proposed ERDF. The seven wells will be drilled in two phases. In Phase I four wells will be drilled and tested: Two to the top of the uppermost aquifer (water table) and two as characterization boreholes to the top of basalt. The Phase I wells are located in the northern portion of the proposed ERDF site (699-32-72, 699-SDF-6, -7 and -8) (Figure 1). If Phase II drilling proceeds, the remaining three wells will be installed and tested (two deep and one shallow). A phased approach to drilling is warranted because of current uncertainty in the land use requirements at the proposed ERDF.

Swanson, L.C.

1993-09-30T23:59:59.000Z

159

Field testing plan for unsaturated zone monitoring and field studies  

Science Conference Proceedings (OSTI)

The University of Arizona, in cooperation with the Bureau of Economic Geology at The University of Texas at Austin, and Stephens and Associates in Albuquerque, New Mexico has developed a field testing plan for evaluating subsurface monitoring systems. The U.S. Nuclear Regulatory Commission has requested development of these testing plans for low-level radioactive waste disposal sites (LLW) and for monitoring at decommissioned facilities designated under the {open_quotes}Site Decommissioning Management Plan{close_quotes} (SDMP). The tests are conducted on a 50 m by 50 m plot on the University of Arizona`s Maricopa Agricultural Center. Within the 50 m by 50 m plot one finds: (1) an instrumented buried trench, (2) monitoring islands similar to those proposed for the Ward Valley, California LLW Facility, (3) deep borehole monitoring sites, (4) gaseous transport monitoring, and (5) locations for testing non-invasive geophysical measurement techniques. The various subplot areas are instrumented with commercially available instruments such as neutron probes, time domain reflectometry probes, tensiometers, psychrometers, heat dissipation sensors, thermocouples, solution samplers, and cross-hole geophysics electrodes. Measurement depths vary from ground surface to 15 m. The data from the controlled flow and transport experiments, conducted over the plot, will be used to develop an integrated approach to long-term monitoring of the vadose zone at waste disposal sites. The data will also be used to test field-scale flow and transport models. This report describes in detail the design of the experiment and the methodology proposed for evaluating the data.

Young, M.H.; Wierenga, P.J.; Warrick, A.W. [and others

1996-10-01T23:59:59.000Z

160

Hanford Permanent Isolation Barrier Program: Asphalt technology test plan  

SciTech Connect

The Hanford Permanent Isolation Barriers use engineered layers of natural materials to create an integrated structure with backup protective features. The objective of current designs is to develop a maintenance-free permanent barrier that isolates wastes for a minimum of 1000 years by limiting water drainage to near-zero amounts. Asphalt is being used as an impermeable water diversion layer to provide a redundant layer within the overall barrier design. Data on asphalt barrier properties in a buried environment are not available for the required 100-year time frame. The purpose of this test plan is to outline the activities planned to obtain data with which to estimate performance of the asphalt layers.

Freeman, H.D.; Romine, R.A.

1994-05-01T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Acceptance Test Procedure for Project 251W, WBS 3, Substation A-8, Building 251-W, Bus {number_sign}2 switchgear replacement  

Science Conference Proceedings (OSTI)

This document records the steps taken and results of the acceptance testing of the new 13.8kV switchgear installed at 251W. This gear is under the administrative control of Electrical Utilities.

VanBaalen, R.A.

1995-02-01T23:59:59.000Z

162

TEST PLAN CHARACTERIZATION OF JET FORCES UPON WASTE TANK COMPONENTS  

Science Conference Proceedings (OSTI)

Westinghouse Hanford Company plans to install mixer pumps in double-shell waste tanks to mobilize and suspend settled sludge to allow eventual retrieval for treatment and permanent storage. The mixer pumps produce high momentum, horizontally directed jets that impact and mobilize the sludge and mix it into slurry for removal. There is concern that the force of the jet may damage tank internal components in its path. This test plan describes scaled experiments designed to characterize the velocity profiles of a near floor jet and to quantify the impact farces and drag coefficients of three tank components: radiation dry well, airlift circulator, and steam coil. The experiments will be conducted in water, at approximately 1/6-scale, using one stationary nozzle to simulate the jet. To measure and confirm the velocity profile of the free, submerged jet, the horizontal and vertical velocity profiles will be measured at several distances from the nozzle. The profile will also be measured after the jet impinges upon the tank floor to determine the·extent of the change in the profile caused by impingement. The jet forces upon the test articles will be measured at a maximum of four velocities and a variety of test article orientations. Each orientation will represent a unique position of the test article relative to the jet and the tank floor. In addition, the steam coil will be tested in three rotational orientations because it is not symmetric. The highest jet velocity will be selected so that the Reynolds number of the test article in the model will match that of the prototype when operating at design conditions. The forces measured upon the model components will be used to calculate the force on the prototype components using geometric scaling factors. In addition, the model force measurements will be used to calculate the component's drag coefficient as a function of the component Reynolds number.

Bamberger, J. A.

1992-01-01T23:59:59.000Z

163

100 Area excavation treatability test plan. Revision 1  

SciTech Connect

This test plan documents the requirements for a treatability study on field radionuclide analysis and dust control techniques. These systems will be used during remedial actions involving excavation. The data from this treatability study will be used to support the feasibility study (FS) process. Excavation is one of the high-priority, near-term, treatability study needs identified in the program plan (DOE-RL 1992f). Excavation of contaminated soils and buried solid wastes is included in several of the alternatives identified in the 100 Area FS. Although a common activity, excavation has only been used occasionally at the Hanford Site for waste removal applications. The most recent applications are excavation of the 618-9 burial ground and partial remediation of the 316-5 process trenches (DOE-RL 1992a, 1992b). Both projects included excavation of soil and dust control (using water sprays). Excavation is a well-developed technology and equipment is readily available; however, certain aspects of the excavation process require testing before use in full-scale operations. These include the following: Measurement and control of excavation-generated dust and airborne contamination; verification of field analytical system capabilities; demonstration of soil removal techniques specific to the 100 Area waste site types and configurations. The execution of this treatability test may produce up to 500 yd{sub 3} of contaminated soil, which will be used for future treatability tests. These tests may include soil washing with vitrification of the soil washing residuals. Other tests will be conducted if soil washing is not a viable alternative.

Not Available

1993-08-01T23:59:59.000Z

164

TRUPACT-II Hydrogen G-Valve Program Test Plan  

DOE Green Energy (OSTI)

This test plan describes the objectives, scope, participants, and components of the Transuranic Package Transporter-II (TRUPACT-II) Hydrogen G-Value Program (GH2P). The GH2P builds on the experience, results, and experimental setup of the TRUPACT-II Matrix Depletion Program (MDP) to establish effective hydrogen G-values (G-values) for additional waste matrices. This plan details the experimental design and test matrices for experiments to measure the G-value for additional waste matrices, including first- and second-stage sludges at the Idaho National Engineering and Environmental Laboratory, and molten salt extraction residues with varying amounts of residual moisture (i.e., unbound water). Data collected from the GH2P will be used to support an application to the US Nuclear Regulatory Commission for G-values and corresponding wattage limits for the TRUPACT-II payloads containing these waste matrices. The testing will also evaluate the ability to determine G-values on a waste stream basis.

Mroz, Eugene J.

1999-01-01T23:59:59.000Z

165

Updated FY12 Ceramic Fuels Irradiation Test Plan  

SciTech Connect

The Fuel Cycle Research and Development program is currently devoting resources to study of numerous fuel types with the aim of furthering understanding applicable to a range of reactors and fuel cycles. In FY11, effort within the ceramic fuels campaign focused on planning and preparation for a series of rabbit irradiations to be conducted at the High Flux Isotope Reactor located at Oak Ridge National Laboratory. The emphasis of these planned tests was to study the evolution of thermal conductivity in uranium dioxide and derivative compositions as a function of damage induced by neutron damage. Current fiscal realities have resulted in a scenario where completion of the planned rabbit irradiations is unlikely. Possibilities for execution of irradiation testing within the ceramic fuels campaign in the next several years will thus likely be restricted to avenues where strong synergies exist both within and outside the Fuel Cycle Research and Development program. Opportunities to augment the interests and needs of modeling, advanced characterization, and other campaigns present the most likely avenues for further work. These possibilities will be pursued with the hope of securing future funding. Utilization of synthetic microstructures prepared to better understand the most relevant actors encountered during irradiation of ceramic fuels thus represents the ceramic fuel campaign's most efficient means to enhance understanding of fuel response to burnup. This approach offers many of the favorable attributes embraced by the Separate Effects Testing paradigm, namely production of samples suitable to study specific, isolated phenomena. The recent success of xenon-imbedded thick films is representative of this approach. In the coming years, this strategy will be expanded to address a wider range of problems in conjunction with use of national user facilities novel characterization techniques to best utilize programmatic resources to support a science-based research program.

Nelson, Andrew T. [Los Alamos National Laboratory

2012-05-24T23:59:59.000Z

166

Flow reference method testing and analysis: Field test plan, Texas Utilities Decordova Steam Electric Station  

SciTech Connect

This report describes the experimental design and test plan for the first of three field tests that the US Environmental Protection Agency (EPA) conducted in 1997 as part of a major study to evaluate potential improvements to Method 2, EPA`s test method for measuring flue gas volumetric flow in stacks. The experimental design involved four test teams taking concurrent in-stack measurements with velocity sensing probes. Seven types of probes were included in the study. Three test matrices were used to gather data for inter-probe and inter-team comparisons and to assess the impact of velocity decline near the stack wall on volumetric flow measurements.

Lieberman, E.; Werner, A.S.

1997-05-30T23:59:59.000Z

167

DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

OE National SCADA Test Bed Fiscal Year 2009 Work Plan DOEOE National SCADA Test Bed Fiscal Year 2009 Work Plan This document is designed to help guide and strengthen the DOEOE...

168

OTEC-1 Power System Test Program: test plan for first deployment  

DOE Green Energy (OSTI)

This report describes in detail all tests planned for the first eight-month deployment of OTEC-1, a test facility constructed by the US Department of Energy in order to test heat exchangers for closed-cycle power plants using ocean thermal energy. Tests to be performed during the first-deployment period are aimed primarily at determining (1) the effectiveness of countermeasures in preventing biofouling of the heat exchanters, (2) the extent of environmental impacts associated with operation of an OTEC facility, and (3) the performance of a 1-MWe, titanium shell-and-tube evaporator and condenser pair. The condenser to be tested has plain tubes, and the evaporator employs the Linde High Flux surface on the working-fluid (ammonia) side to enhance the heat-transfer rate. This plan provides a statement of the objectives and priorities of the test program, describes the test equipment, gives a detailed account of all tests to be performed and the test schedule, and discusses provisions for management of the test program.

None

1980-03-01T23:59:59.000Z

169

Plans for an Integrated Front-End Test Stand at the Spallation Neutron Source  

SciTech Connect

A spare Radio-Frequency Quadrupole (RFQ) is presently being fabricated by industry with delivery to Oak Ridge National Laboratory planned in late 2012. The establishment of a test stand at the Spallation Neutron Source site is underway so that complete acceptance testing can be performed during the winter of 2012-2013. This activity is the first step in the establishment of an integrated front-end test stand that will include an ion source, low-energy beam transport (LEBT), RFQ, medium-energy beam transport, diagnostics, and a beam dump. The test stand will be capable of delivering an H- ion beam of up to 50 mA with a pulse length of 1 ms and a repetition rate of 60 Hz or a proton beam of up to 50 mA, 100us, 1Hz. The test stand will enable the following activities: complete ion source characterization; development of a magnetic LEBT chopper; development of a two-source layout; development of beam diagnostics; and study of beam dynamics of high intensity beam.

Champion, Mark S [ORNL; Aleksandrov, Alexander V [ORNL; Crofford, Mark T [ORNL; Heidenreich, Dale A [ORNL; Kang, Yoon W [ORNL; Moss, John [ORNL; Roseberry, Jr., R Tom [ORNL; Schubert, James Phillip [ORNL

2012-01-01T23:59:59.000Z

170

DOE National SCADA Test Bed Program Multi-Year Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

National SCADA Test Bed Program Multi-Year Plan National SCADA Test Bed Program Multi-Year Plan DOE National SCADA Test Bed Program Multi-Year Plan This document presents the National SCADA Test Bed Program Multi-Year Plan, a coherent strategy for improving the cyber security of control systems in the energy sector. The NSTB Program is conducted within DOE's Office of Electricity Delivery and Energy Reliability (OE), which leads national efforts to modernize the electric grid, enhance the security and reliability of the energy infrastructure, and facilitate recovery from disruptions to the energy supply. The Plan covers the planning period of fiscal year 2008 to 2013. DOE National SCADA Test Bed Program Multi-Year Plan More Documents & Publications DOE/OE National SCADA Test Bed Fiscal Year 2009 Work Plan

171

WORLD TRADE CENTER INDOOR DUST TEST AND CLEAN PROGRAM PLAN  

E-Print Network (OSTI)

Background: This Test and Clean Program plan is the result of ongoing efforts to monitor the current environmental conditions for residents and workers impacted by the collapse of the World Trade Center (WTC) towers. In March 2004, EPA convened an expert technical review panel to provide individual guidance and assistance to the Agency in its use of available exposure and health surveillance databases and registries to characterize any remaining exposures and risks, identify unmet public health needs, and to individually recommend steps to further minimize the risks associated with the aftermath of the WTC attack. The WTC Expert Technical Review Panel (WTC Panel) members met periodically in open meetings to interact with EPA and the public about plans to monitor for the presence of WTC dust in indoor environments and to individually suggest additional measures that could be undertaken by EPA and others to evaluate the dispersion of the plume and the geographic extent of environmental impact from the collapse of the WTC towers. The WTC Panel members were charged, in part, with reviewing data from post-cleaning verification sampling to be done by EPA in the residential areas included in EPA Region 2's 2002-3 Indoor Air Residential Assistance Program to verify that recontamination has not

unknown authors

2005-01-01T23:59:59.000Z

172

LOWER MANHATTAN INDOOR DUST TEST AND CLEAN PROGRAM PLAN  

E-Print Network (OSTI)

Background: This Test and Clean Program plan is the result of ongoing efforts to respond to concerns of residents and workers impacted by the collapse of the World Trade Center (WTC) towers. In March 2004, EPA convened an expert technical review panel to provide individual guidance and assistance to the Agency in its use of available exposure and health surveillance databases and registries to characterize any remaining exposures and risks, identify unmet public health needs, and individually recommend steps to further minimize the risks associated with the aftermath of the WTC attack. The WTC Expert Technical Review Panel (WTC Panel) members met periodically in open meetings to interact with EPA and the public about plans to monitor for the presence of WTC dust in indoor environments and to individually suggest additional measures that could be undertaken by EPA and others to evaluate the dispersion of the plume and the geographic extent of environmental impact from the collapse of the WTC towers. The WTC Panel members were charged, in part, with reviewing data from post-cleaning verification sampling to be done by EPA in the residential areas included in EPA Region 2's 2002-2003 Indoor Air Residential Assistance Program to verify that recontamination has not

unknown authors

2006-01-01T23:59:59.000Z

173

Prototype steam generator test at SCTI/ETEC. Acoustic program test plan. [LMFBR  

SciTech Connect

This document is an integrated test plan covering programs at General Electric (ARSD), Rockwell International (RI) and Argonne National Laboratory (CT). It provides an overview of the acoustic leak detection test program which will be completed in conjunction with the prototype LMFBR steam generator at the Energy Technology Engineering Laboratory. The steam generator is installed in the Sodium Components Test Installation (SCTI). Two acoustic detection systems will be used during the test program, a low frequency system developed by GE-ARSD (GAAD system) and a high frequency system developed by RI-AI (HALD system). These systems will be used to acquire data on background noise during the thermal-hydraulic test program. Injection devices were installed during fabrication of the prototype steam generator to provide localized noise sources in the active region of the tube bundle. These injectors will be operated during the steam generator test program, and it will be shown that they are detected by the acoustic systems.

Greene, D.A.; Thiele, A.; Claytor, T.N.

1981-10-01T23:59:59.000Z

174

Work plan for transition of SY-101 hydrogen mitigation test project data acquisition and control system (DACS-1)  

DOE Green Energy (OSTI)

The purpose of this effort is to transfer operating and maintenance responsibility for the 241-SY-101 data acquisition and control system (DACS-1) from Los Alamos National Laboratory to Westinghouse Hanford Company. This work plan defines the tasks required for a successful turnover. It identifies DACS-1 transition, deliverables, responsible organizations and individuals, interfaces, cost, and schedule. The transition plan will discuss all required hardware, software, documentation, maintenance, operations, and training for use at Hanford Waste Tank 241-SY-101. The transfer of responsibilities for DACS-1 to WHC is contingent on final approval of applicable Acceptance for Beneficial Use documentation by Waste Tank Operations. The DACS-1 was designed to provide data monitoring, display, and storage for Tank 241-SY-101. The DACS-1 also provides alarm and control of all the hydrogen mitigation testing systems, as well as ancillary systems and equipment (HVAC, UPS, etc.) required to achieve safe and reliable operation of the testing systems in the tank.

McClees, J.; Truitt, R.W.

1994-10-12T23:59:59.000Z

175

Test plan/procedure for the SPM-1 shipping container system. Revision 0  

SciTech Connect

The 49 CFR 173.465 Type A packaging tests will verify that SPM-1 will provide adequate protection and pass as a Type A package. Test will determine that the handle of the Pig will not penetrate through the plywood spacer and rupture the shipping container. Test plan/procedure provides planning, pre-test, setup, testing, and post-testing guidelines and procedures for conducting the {open_quotes}Free Drop Test{close_quotes} procedure for the SPM-1 package.

Flanagan, B.D.

1995-07-01T23:59:59.000Z

176

Transmission Planning  

NLE Websites -- All DOE Office Websites (Extended Search)

Planning Transmission Planning We accept requests from electric utilities, firm-power customers, private power developers, and independent power generators to interconnect...

177

Closure Plan for the Area 3 Radioactive Waste Management Site at the Nevada Test Site  

Science Conference Proceedings (OSTI)

The Area 3 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec) for the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the interim closure plan for the Area 3 RWMS, which was presented in the Integrated Closure and Monitoring Plan (ICMP) (DOE, 2005). The format and content of this plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). The major updates to the plan include a new closure date, updated closure inventory, the new institutional control policy, and the Title II engineering cover design. The plan identifies the assumptions and regulatory requirements, describes the disposal sites and the physical environment in which they are located, presents the design of the closure cover, and defines the approach and schedule for both closing and monitoring the site. The Area 3 RWMS accepts low-level waste (LLW) from across the DOE Complex in compliance with the NTS Waste Acceptance Criteria (NNSA/NSO, 2006). The Area 3 RWMS accepts both packaged and unpackaged unclassified bulk LLW for disposal in subsidence craters that resulted from deep underground tests of nuclear devices in the early 1960s. The Area 3 RWMS covers 48 hectares (119 acres) and comprises seven subsidence craters--U-3ax, U-3bl, U-3ah, U-3at, U-3bh, U-3az, and U-3bg. The area between craters U-3ax and U-3bl was excavated to form one large disposal unit (U-3ax/bl); the area between craters U-3ah and U-3at was also excavated to form another large disposal unit (U-3ah/at). Waste unit U-3ax/bl is closed; waste units U-3ah/at and U-3bh are active; and the remaining craters, although currently undeveloped, are available for disposal of waste if required. This plan specifically addresses the closure of the U-3ah/at and the U-3bh LLW units. A final closure cover has been placed on unit U-3ax/bl (Corrective Action Unit 110) at the Area 3 RWMS. Monolayer-evapotranspirative closure cover designs for the U-3ah/at and U-3bh units are provided in this plan. The current-design closure cover thickness is 3 meters (10 feet). The final design cover will have an optimized cover thickness, which is expected to be less than 3 m (10 ft). Although waste operations at the Area 3 RWMS have ceased at the end of June 2006, disposal capacity is available for future disposals at the U-3ah/at and U-3bh units. The Area 3 RWMS is expected to start closure activities in fiscal year 2025, which include the development of final performance assessment and composite analysis documents, closure plan, closure cover design for construction, cover construction, and initiation of the post-closure care and monitoring activities. Current monitoring at the Area 3 RWMS includes monitoring the cover of the closed mixed waste unit U-3ax/bl as required by the Nevada Department of Environmental Protection, and others required under federal regulations and DOE orders. Monitoring data, collected via sensors and analysis of samples, are needed to evaluate radiation doses to the general public, for performance assessment maintenance, to demonstrate regulatory compliance, and to evaluate the actual performance of the RWMSs. Monitoring provides data to ensure the integrity and performance of waste disposal units. The monitoring program is designed to forewarn management and regulators of any failure and need for mitigating actions. The plan describes the program for monitoring direct radiation, air, vadose zone, biota, groundwater, meteorology, and subsidence. The requirements of post-closure cover maintenance and monitoring will be determined in the final closure plan.

NSTec Environmental Management

2007-09-01T23:59:59.000Z

178

Microsoft Word - DOE HBU Demo - Draft Test Plan Report - Rev...  

NLE Websites -- All DOE Office Websites (Extended Search)

at the national lab(s). The Fuel Examination Facility would need to have either a hot cell or pool large enough to accept the TN-32. The facility would need a 125-ton crane...

179

Recommendations to the NRC on acceptable standard format and content for the Fundamental Nuclear Material Control (FNMC) Plan required for low-enriched uranium enrichment facilities  

SciTech Connect

A new section, 10 CFR 74.33, has been added to the material control and accounting (MC A) requirements of 10 CFR Part 74. This new section pertains to US Nuclear Regulatory Commission (NRC)-licensed uranium enrichment facilities that are authorized to produce and to possess more than one effective kilogram of special nuclear material (SNM) of low strategic significance. The new section is patterned after 10 CFR 74.31, which pertains to NRC licensees (other than production or utilization facilities licensed pursuant to 10 CFR Part 50 and 70 and waste disposal facilities) that are authorized to possess and use more than one effective kilogram of unencapsulated SNM of low strategic significance. Because enrichment facilities have the potential capability of producing SNM of moderate strategic significance and also strategic SNM, certain performance objectives and MC A system capabilities are required in 10 CFR 74.33 that are not contained in 10 CFR 74.31. This document recommends to the NRC information that the licensee or applicant should provide in the fundamental nuclear material control (FNMC) plan. This document also describes methods that should be acceptable for compliance with the general performance objectives. While this document is intended to cover various uranium enrichment technologies, the primary focus at this time is gas centrifuge and gaseous diffusion.

Moran, B.W.; Belew, W.L. (Oak Ridge K-25 Site, TN (United States)); Hammond, G.A.; Brenner, L.M. (21st Century Industries, Inc., Gaithersburg, MD (United States))

1991-11-01T23:59:59.000Z

180

Generating custom test plans for CASE{sup *}Dictionary 5.0  

Science Conference Proceedings (OSTI)

Most database development organizations use a formal software development methodology that requires a certain amount of formal testing. The amount of formal testing that will be performed will vary from methodology to methodology and from site to site. If a very detailed formal test plan is required for each module in a system, the work involved to produce the test plan can be tedious and costly. After a system has been designed and developed using Oracle*CASE, there is much useful information in the CASE*Dictionary repository. If this information could be tied to specific test requirements, a test plan could be generated automatically, saving much time and resources. This paper shows how CASE*Dictionary can be used to store test plan information that can then be used to generate a specific test plan for each module based on it`s detailed data usage.

Atkins, K.D. [Boeing Computer Services, Richland, WA (United States)

1994-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Test plan for BWID Phase 2 electric arc melter vitrification tests  

SciTech Connect

This test plan describes the Buried Waste Integrated Demonstration (BWID), Phase 2, electric arc melter, waste treatment evaluation tests to be performed at the US Bureau of Mines (USBM) Albany Research Center. The BWID Arc Melter Vitrification Project is being conducted to evaluate and demonstrate existing industrial arc melter technology for thermally treating mixed transuranic-contaminated wastes and soils. Phase 1 baseline tests, performed during fiscal year 1993 at the USBM, were conducted on waste feeds representing incinerated buried mixed wastes and soils. In Phase 2, surrogate feeds will be processed that represent actual as-retrieved buried wastes from the Idaho National Engineering Laboratory`s Subsurface Disposal Area at the Radioactive Waste Management Complex.

Soelberg, N.R.; Turner, P.C.; Oden, L.L.; Anderson, G.L.

1994-10-01T23:59:59.000Z

182

Ice-making heat exchanger evaluation and test plan  

DOE Green Energy (OSTI)

Several approaches to making ice for district cooling are identified and their current status discussed. Recommendations for future work are given, with a detailed plan for one phase of the work. 13 refs., 5 figs.

Andrews, J.W.; Leigh, R.W.; Piraino, M.W.

1990-01-01T23:59:59.000Z

183

Development and Test Plans for a small Vertical Axis Turbine...  

NLE Websites -- All DOE Office Websites (Extended Search)

and Transport Urban and Regional Air Quality Research Facilities Advanced Windows Test Facility BATT Fabrication Laboratory Cookstove Efficiency and Emissions Testing...

184

STREAMLINED APPROACH FOR ENVIRONMENTAL RESTORATION PLAN FOR CORRECTIVE ACTION UNIT 116: AREA 25 TEST CELL C FACILITYNEVADA TEST SITE, NEVADA  

SciTech Connect

This Streamlined Approach for Environmental Restoration Plan identifies the activities required for the closure of Corrective Action Unit 116, Area 25 Test Cell C Facility. The Test Cell C Facility is located in Area 25 of the Nevada Test Site approximately 25 miles northwest of Mercury, Nevada.

NONE

2006-07-01T23:59:59.000Z

185

Project W-314 updated acceptance test report HNF-4649 for HNF-4648 241-AN-A pit leak detection ANA-WT-LDSTA-331 for project W-314  

SciTech Connect

The purpose of the test was to verify that the AN Tank Farm AN-A Pit Leak Detector components are functionally integrated and operate in accordance with engineering design specifications. The Acceptance Test Procedure HNF-4648,24l-AN-A-Pit Leak Detection ANA-WT-LDSTA-331 was conducted between 23 June and 01 July 1999 at the 200E AN Tank Farm. The test has been completed with no open test exceptions. The test was conducted prior to final engineering ''as built'' activities being completed this had no impact on the procedure or test results. All components, identified in the procedure were found to be labeled and identified as written in the procedure.

HAMMERS, J.S.

1999-09-30T23:59:59.000Z

186

Project W-314 acceptance test report HNF-4651 for HNF-4650 SN-268 encasement leak detection ANA-WT-LDSTA-335 for project W-314  

SciTech Connect

The purpose of the test was to verify that the AN Tank Farm Encasement Leak Detector components are functionally integrated and operate in accordance with engineering design specifications The Acceptance Test Procedure HNF-4650, SN-268 Encasement Leak Detection ANA-W-LDSTA-335, was conducted between 22 June and 01 July 1999 at the 200E AN Tank Farm. The test has been completed with no open test exceptions The test was conducted prior to final engineering ''as built'' activities being completed this had no impact on the procedure or test results. All components, identified in the procedure, were found to be labeled and identified as written in the procedure.

HAMMERS, J.S.

1999-09-30T23:59:59.000Z

187

Project W-314 acceptance test report HNF-4647 for HNF-4646 241-B pit leak detection ANB-WT-LDSTA-231 for project W-314  

SciTech Connect

The purpose of the test was to verify that the AN Tank Farm B Pit Leak Detector components are functionally integrated and operate in accordance with engineering design specifications. The Acceptance Test Procedure HNF-4646,241-AN-B-Pit Leak Detection ANB-WT-LDSTA-231 was conducted between 26 June and 02 July 1999 at the 200E AN Tank Farm. The test has been completed with no open test exceptions. The test was conducted prior to final engineering ''as built'' activities being completed this had no impact on the procedure or test results. All components, identified in the procedure were found to be labeled and identified as written in the procedure.

HAMMERS, J.S.

1999-09-30T23:59:59.000Z

188

NISTIR 7297-A FS-TST 2.0: Forensic Software Testing Support Tools Test Plan, Test Design Specifications, and Test Case Specification  

E-Print Network (OSTI)

imaging tools typically used in forensic investigations. The package includes programs that initialize disk drives, detect changes in disk content, and compare pairs of disks. This Internal Report consists of three parts. This is Part A, Test Plan, Test Design Specifications, and Test Case Specification. It covers the planning, design, and specification of testing of FS-TST 2.0. The setup of disk drives and the testing is to be performed in the Linux environment; however, some tests will require interaction with the MS-DOS operating system. Part B, Test Summary Report, is a companion document. It reports the result of testing the FS-TST 2.0 package according to Part A. Two programs might have had slightly more convenient behavior in erroneous cases, but no anomalies were found in testing. Part C, Code Review Report, is an additional companion document. It covers the planning and specification of reviewing all the source code in the package and reports the results of the code reviews. Nothing was found in the code reviews that should cause invalid results, that is, that should lead to an imaging tool with systematic errors being incorrectly passed as adhering to the assertions. The intended audience for this document should be familiar with the Linux operating system, computer operation, and computer hardware components such as hard drives.

Serban I. Gavrila

2005-01-01T23:59:59.000Z

189

Testing operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) |  

Open Energy Info (EERE)

operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Report: Testing operations plan: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) Details Activities (1) Areas (1) Regions (0) Abstract: Coso Geothermal Exploratory Hole No. 1 (CGEH-1) was drilled to investigate the potential of the Coso Hot Springs Known Geothermal Resource Area (KGRA) in southeastern California. Detailed background information is contained in the drilling plan, Coso Geothermal Exploratory Hole No. 1 (CGEH-1), NVO-184, dated June 1977. The purpose of this supplement to NVO-184 is to establish a plan of operations for testing the resource after completion of well drilling activities. Major elements of this plan include

190

Test plan for the irradiation of nonmetallic materials.  

SciTech Connect

A comprehensive test program to evaluate nonmetallic materials use in the Hanford tank farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

Brush, Laurence H.; Farnum, Cathy Ottinger; Dahl, M. [ARES Corporation, Richland, WA; Joslyn, C. C. [Washington River Protection Solutions, Richland, WA; Venetz, T. J. [Washington River Protection Solutions, Richland, WA

2013-05-01T23:59:59.000Z

191

Test plan for the irradiation of nonmetallic materials.  

SciTech Connect

A comprehensive test program to evaluate nonmetallic materials use in the Hanford Tank Farms is described in detail. This test program determines the effects of simultaneous multiple stressors at reasonable conditions on in-service configuration components by engineering performance testing.

Brush, Laurence H.; Farnum, Cathy Ottinger; Gelbard, Fred; Dahl, M. [ARES Corporation, Richland, WA; Joslyn, C. C. [Washington River Protection Solutions, Richland, WA; Venetz, T. J. [Washington River Protection Solutions, Richland, WA

2013-03-01T23:59:59.000Z

192

Testing, planning, and redrilling of Geothermal Test Hole GT-2, Phases IV and V. Progress report  

DOE Green Energy (OSTI)

Holes GT-2 and EE-1 comprise the two deep drill holes of the Los Alamos Hot Dry Rock Geothermal Energy Extraction Experiment. EE-1 had been directionally drilled to intersect a hydraulic fracture extending outward from near the bottom of GT-2, thus completing the underground circulation loop. After the drilling of EE-1, a 16-month period of experimental testing ensued to determine the characteristics of the reservoir. This period is designated as Phase IV and includes work done in GT-2 and EE-1. As a result of this testing, it was determined that parallel fracture zones existed at the bottoms of both holes, and that the impedance to flow between the holes was too high for a meaningful flow experiment. A plan was then adopted to directionally drill out of GT-2 at a depth of about 2600 m (8500 ft) to intersect the fracture zone near the bottom of EE-1 to create a better connection. The directional drilling strategy, cementing practices, bit selections, coring procedures, and logging results comprise the Phase V work.

Pettitt, R.A.

1978-12-01T23:59:59.000Z

193

INEL/Snake River plain geothermal drilling and testing plan - INEL - 1 well  

DOE Green Energy (OSTI)

A plan for drilling a 7500 ft exploratory hole is described. This hole would be drilled at the Idaho National Engineering Laboratory, so that it could be immediately used by one of the government facilties. The plan details the hole design, describes the drilling program, proposes a testing program, and estimates costs. (MHR)

Miller, L.G.; Prestwich, S.M.; Griffith, J.L.

1978-12-01T23:59:59.000Z

194

Deflagration studies on waste Tank 101-SY: Test plan  

DOE Green Energy (OSTI)

This report discusses test procedures and calibration of equipment to study the flammability and deflagration of hydrogen, nitrous oxide, and air in waste tanks. (JL)

Cashdollar, K.L.; Zlochower, I.A.; Hertzberg, M.

1991-06-01T23:59:59.000Z

195

Microsoft Word - AGA12 TestPlan 2-6-07.doc  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

AGA 12, Part 2 AGA 12, Part 2 Performance Test Plan U.S. Department of Energy Office of Electricity Delivery and Energy Reliability Enhancing control systems security in the energy sector NSTB Mark Hadley, Kristy Huston Pacific Northwest National Laboratories November 2006 Acknowledgements The authors wish to thank Bill Rush and Aakash Shah of the Gas Technology Institute as well as the members of the NERC Control Systems Security Working Group and Sandia National Laboratory for their contributions towards the development of this test plan. NSTB AGA 12, Part 2 Performance Test Plan i EXECUTIVE SUMMARY Under the guidance and sponsorship of DOE's Office of Electricity Delivery and Energy Reliability, Pacific Northwest National Laboratory (PNNL) developed a test plan for AGA 12, Part 2 compliant

196

Vadose zone transport field study: Detailed test plan for simulated leak tests  

Science Conference Proceedings (OSTI)

The US Department of Energy (DOE) Groundwater/Vadose Zone Integration Project Science and Technology initiative was created in FY 1999 to reduce the uncertainty associated with vadose zone transport processes beneath waste sites at DOE's Hanford Site near Richland, Washington. This information is needed not only to evaluate the risks from transport, but also to support the adoption of measures for minimizing impacts to the groundwater and surrounding environment. The principal uncertainties in vadose zone transport are the current distribution of source contaminants and the natural heterogeneity of the soil in which the contaminants reside. Oversimplified conceptual models resulting from these uncertainties and limited use of hydrologic characterization and monitoring technologies have hampered the understanding contaminant migration through Hanford's vadose zone. Essential prerequisites for reducing vadose transport uncertainly include the development of accurate conceptual models and the development or adoption of monitoring techniques capable of delineating the current distributions of source contaminants and characterizing natural site heterogeneity. The Vadose Zone Transport Field Study (VZTFS) was conceived as part of the initiative to address the major uncertainties confronting vadose zone fate and transport predictions at the Hanford Site and to overcome the limitations of previous characterization attempts. Pacific Northwest National Laboratory (PNNL) is managing the VZTFS for DOE. The VZTFS will conduct field investigations that will improve the understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. Ideally, these methods will capture the extent of contaminant plumes using existing infrastructure (i.e., more than 1,300 steel-cased boreholes). The objectives of the VZTFS are to conduct controlled transport experiments at well-instrumented field sites at Hanford to: identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford's waste disposal sites; reduce uncertainty in conceptual models; develop a detailed and accurate database of hydraulic and transport parameters for validation of three-dimensional numerical models; identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. This plan provides details for conducting field tests during FY 2000 to accomplish these objectives. Details of additional testing during FY 2001 and FY 2002 will be developed as part of the work planning process implemented by the Integration Project.

AL Ward; GW Gee

2000-06-23T23:59:59.000Z

197

Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan  

SciTech Connect

Gearboxes in wind turbines have not been achieving their expected design life even though they commonly meet or exceed the design criteria specified in current design standards. One of the basic premises of the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) is that the low gearbox reliability results from the absence of critical elements in the design process or insufficient design tools. Key goals of the GRC are to improve design approaches and analysis tools and to recommend practices and test methods resulting in improved design standards for wind turbine gearboxes that lower the cost of energy (COE) through improved reliability. The GRC uses a combined gearbox testing, modeling and analysis approach, along with a database of information from gearbox failures collected from overhauls and investigation of gearbox condition monitoring techniques to improve wind turbine operations and maintenance practices. Testing of Gearbox 2 (GB2) using the two-speed turbine controller that has been used in prior testing. This test series will investigate non-torque loads, high-speed shaft misalignment, and reproduction of field conditions in the dynamometer. This test series will also include vibration testing using an eddy-current brake on the gearbox's high speed shaft.

Link, H.; Keller, J.; Guo, Y.; McNiff, B.

2013-04-01T23:59:59.000Z

198

Gearbox Reliability Collaborative Phase 3 Gearbox 2 Test Plan  

DOE Green Energy (OSTI)

Gearboxes in wind turbines have not been achieving their expected design life even though they commonly meet or exceed the design criteria specified in current design standards. One of the basic premises of the National Renewable Energy Laboratory (NREL) Gearbox Reliability Collaborative (GRC) is that the low gearbox reliability results from the absence of critical elements in the design process or insufficient design tools. Key goals of the GRC are to improve design approaches and analysis tools and to recommend practices and test methods resulting in improved design standards for wind turbine gearboxes that lower the cost of energy (COE) through improved reliability. The GRC uses a combined gearbox testing, modeling and analysis approach, along with a database of information from gearbox failures collected from overhauls and investigation of gearbox condition monitoring techniques to improve wind turbine operations and maintenance practices. Testing of Gearbox 2 (GB2) using the two-speed turbine controller that has been used in prior testing. This test series will investigate non-torque loads, high-speed shaft misalignment, and reproduction of field conditions in the dynamometer. This test series will also include vibration testing using an eddy-current brake on the gearbox's high speed shaft.

Link, H.; Keller, J.; Guo, Y.; McNiff, B.

2013-04-01T23:59:59.000Z

199

Victor J. Daniel Jr. CO2 Injection Test Site Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Mississippi Test Site JAF02664.PPT 1 1.1 SITE BACKGROUND 1.2 GENERAL IDENTIFICATION DATA 1.3 REGULATORY CLASSIFICATION 1.4 WELL DATA - INJECTION WELL NO. 1 1.5 WELL DATA -...

200

Corrective Action Investigation Plan for the Central Nevada Test...  

Office of Legacy Management (LM)

focus on the subset of the test related contaminants that are found to be critical in terms of health and safety (e.g., 3 H, 90 Sr, 137 Cs). The uncertainty of the composite (4...

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Test plan for the Parallex CANDU-MOX irradiation  

Science Conference Proceedings (OSTI)

One of several options being considered by the United States and the Russian Federation for the disposition of excess plutonium from dismantled weapons is to convert it to mixed-oxide (MOX) fuel for use in Canadian uranium-deuterium (CANDU) reactors. This report describes an irradiation test demonstrating the feasibility of this concept with laboratory quantities of MOX fuel placed in the pressurized loops of the National Research Universal test reactor at the Atomic Energy of Canada, Ltd., Chalk River Laboratories. The objective of the Parallex (for parallel experiment) test is to simultaneously test laboratory-produced quantities of US and R.F. MOX fuel in a test reactor under heat generation rates representing those expected in the CANDU reactors. The MOX fuel will be produced with plutonium from disassembled weapons at the Los Alamos National Laboratory in the United States and at the Bochvar Institute in the Russian Federation. Thus, the test will serve to demonstrate the accomplishment of many parts of the disposition mission: disassembly of weapons, conversion of the plutonium to oxide, fabrication of MOX fuel, assembly of fuel elements and bundles, shipment to a reactor, irradiation, and finally, storage of the spent fuel elements awaiting eventual disposition in a geologic repository in Canada.

Copeland, G.L.

1997-06-01T23:59:59.000Z

202

Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Methane Hydrate Multi-Year R&D Program Plan NATIONAL METHANE HYDRATE MULTI-YEAR R&D PROGRAM PLAN U.S. Department of Energy Office of Fossil Energy Federal Energy Technology Center...

203

Test Plan for Hydrogen Getters Project - Phase II  

DOE Green Energy (OSTI)

Hydrogen levels in many transuranic (TRU) waste drums are above the compliance threshold, therefore deeming the drums non-shippable to the Waste Isolation Pilot Plant (WIPP). Hydrogen getters (alkynes and dialkynes) are known to react irreversibly with hydrogen in the presence of certain catalysts. The primary purpose of this investigation is to ascertain the effectiveness of a hydrogen getter in an environment that contains gaseous compounds commonly found in the headspace of drums containing TRU waste. It is not known whether the volatile organic compounds (VOCs) commonly found in the headspace of TRU waste drums will inhibit (''poison'') the effectiveness of the hydrogen getter. The result of this study will be used to assess the feasibility of a hydrogen-getter system, which is capable of removing hydrogen from the payload containers or the Transuranic Package Transporter-II (TRUPACT-II) inner containment vessel to increase the quantity of TRU waste that can be shipped to the WIPP. Phase II for the Hydrogen Getters Project will focus on four primary objectives: Conduct measurements of the relative permeability of hydrogen and chlorinated VOCs through Tedlar (and possibly other candidate packaging materials) Test alternative getter systems as alternatives to semi-permeable packaging materials. Candidates include DEB/Pd/Al2O3 and DEB/Cu-Pd/C. Develop, test, and deploy kinetic optimization model Perform drum-scale test experiments to demonstrate getter effectiveness

Mroz, G.

1999-02-05T23:59:59.000Z

204

Corrective Action Investigation Plan for Corrective Action Unit 500: Test Cell A Septic System, Nevada Test Site, Nevada  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s), and may include solid waste management units, individual disposal sites, or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP will be used in conjunction with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998c), hereafter referred to as the Leachfield Work Plan. Under the FFACO, a work plan is an optional planning document that provides information for a CAU or group of CAUs where significant commonality exists. This CAIP contains CAU-specific information including a facility description, environmental sample collection objectives, and the criteria for conducting site investigation activities at CAU 500. This CAIP addresses one of three leachfield systems associated with Test Cell A, which is located in Area 25 at the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (see Leachfield Work Plan Figure 1-1). Corrective Action Unit 500 is comprised of the Test Cell A Septic System (CAS 25-04-05) and the associated leachfield system presented in Figure 1-1 (FFACO, 1996).

IT Las Vegas

1999-01-27T23:59:59.000Z

205

Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan  

SciTech Connect

This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

Shank, D.R.

1994-12-29T23:59:59.000Z

206

Test plan for phase II of the Retained Gas Sampler system  

DOE Green Energy (OSTI)

The Retained Gas Sampler (RGS) system is being developed to permit characterization of the gas phase component of waste tank core samples. Several laboratory experiments have been conducted which have affirmed the proof-of-principle for separating the gas phase materials from waste tank material in a quantitative manner. However, experiments conducted thus far have dealt only with representative materials and simulated hardware mock-ups. This test plan deals with the operation and testing of actual devices in the hot cell environment. This test plan coves all aspects of the RGS system including: sampler load-in, extrusion, gas extraction, quantitative separation, sample collection, and quantitative analysis. Sample material used in this test plan will be waste tank simulants and will not be radioactive. The work environment, however, will be an operating hot cell facility and will have radioactive contaminated surfaces. Operation of the system will therefore require an official radiation work permit (RWP).

Hey, B.E.

1995-06-19T23:59:59.000Z

207

Deflagration studies on waste Tank 101-SY: Test plan  

DOE Green Energy (OSTI)

Waste slurries produced during the recovery of plutonium and uranium from irradiated fuel are stored in underground storage tanks. While a variety of waste types have been generated, of particular concern are the wastes stored in Tank 101-SY. A slurry growth-gas evolution cycle has been observed since 1981. The waste consists of a thick slurry, consisting of a solution high in NaOH, NaNO{sub 3}, NaAlO{sub 2}, dissolved organic complexants (EDTA, HEDTA, NTA, and degradation products), other salts (sulfates and phosphates), and radionuclides (primarily cesium and strontium). During a gas release the major gaseous species identified include: hydrogen and nitrous oxide (N{sub 2}O). Significant amounts of nitrogen may also be present. Traces of ammonia, carbon oxides, and other nitrogen oxides are also detected. Air and water vapor are also present in the tank vapor space. The purpose of the deflagration study is to determine risks of the hydrogen, nitrous oxide, nitrogen, and oxygen system. To be determined are pressure and temperature as a function of composition of reacting gases and the concentration of gases before and after the combustion event. Analyses of gases after the combustion event will be restricted to those tests that had an initial concentration of {le}8% hydrogen. This information will be used to evaluate safety issues related to periodic slurry growth and flammable gas releases from Tank 101-SY. the conditions to be evaluated will simulate gases in the vapor space above the salt cake as well as gases that potentially are trapped in pockets within/under the waste. The deflagration study will relate experimental laboratory results to conditions in the existing tanks.

Cashdollar, K.L.; Zlochower, I.A.; Hertzberg, M.

1991-07-01T23:59:59.000Z

208

Underground Test Area Quality Assurance Project Plan Nevada National Security Site, Nevada, Revision 0  

SciTech Connect

This Quality Assurance Project Plan (QAPP) provides the overall quality assurance (QA) program requirements and general quality practices to be applied to the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) Underground Test Area (UGTA) Sub-Project (hereafter the Sub-Project) activities. The requirements in this QAPP are consistent with DOE Order 414.1C, Quality Assurance (DOE, 2005); U.S. Environmental Protection Agency (EPA) Guidance for Quality Assurance Project Plans for Modeling (EPA, 2002); and EPA Guidance on the Development, Evaluation, and Application of Environmental Models (EPA, 2009). The QAPP Revision 0 supersedes DOE--341, Underground Test Area Quality Assurance Project Plan, Nevada Test Site, Nevada, Revision 4.

Irene Farnham

2011-05-01T23:59:59.000Z

209

HEATER TEST PLANNING FOR THE NEAR SURFACE TEST FACILITY AT THE HANFORD RESERVATION  

E-Print Network (OSTI)

B. C. , 1978. Report on Hydrofracturing Tests for In SituStress Measurements, Near Surface Test Facility, Hole DC-11,Layout for Hanford Near-Surface Test Facility. Submitted to

DuBois, A.

2010-01-01T23:59:59.000Z

210

Conceptual design and analysis of a 100-MWe line focus solar central power plant. Test plan  

DOE Green Energy (OSTI)

Plans for a test program are presented whose objectives are: to verify the overall efficiency of a linear parabolic trough solar collector with varied receiver tube subsystem configurations; to compare surface temperatures, and efficiency values to derived values from an analytical model; and to identify the optimal receivr tube and annulus combination as determined by economical, optical, and thermal efficiency. The test facility to be used is described with the aid ofnumerous photographs. The range in conditions under which testing is to be done is briefly described. The instrumentation and measurement plans for the tests are described, and include thermal, flow, and meteorological data. Th data acquisition and processing system is outlined. Means are discussed for calculating efficiency and thermal loss, and requirements for statistical data are given. The test schedule is diagrammed and discussed. (LEW)

Semmens, M.G.; Fong, A.; Collaros, G.J.; Dascher, R.E.; Grassberger, R.E.; Griego, D.B.; Suteber, T.F.

211

Intertechnology Corporation proposed test and evaluation plan, commercial buildings. National Solar Demonstration Program  

DOE Green Energy (OSTI)

This report has three major parts. The first of these derives the requirements for the Test and Evaluation plan from the System Level Plan which is summarized in Section II. The second part contains the proposed plan to fill these requirements and includes hardware and software recommendations as well as procedures and management considerations. Primary emphasis has been given to the remote site because this is the area in which the commercial part of the demonstration is most unique. Finally, some pre-demonstration activities are described. The pilot program is intended to resolve a number of issues which arose in the course of the T and E plan. These relate to choice of scan frequencies, compression algorithms, etc. It is also intended to confirm performance and cost effectiveness of the site data collection package. The base line measurements of attitudes, etc. provide a reference mark against which one can measure the non-technical effectiveness of the demonstration program. (WDM)

None

1976-09-01T23:59:59.000Z

212

Development and Test Plans for a small Vertical Axis Turbine Designed and  

NLE Websites -- All DOE Office Websites (Extended Search)

Development and Test Plans for a small Vertical Axis Turbine Designed and Development and Test Plans for a small Vertical Axis Turbine Designed and Built by the Russian State Rocket Center under Berkeley Lab auspices Speaker(s): Anthony Radspieler Jr. Glen Dahlbacka Joseph Rasson Date: March 4, 2010 - 12:00pm Location: 90-3122 Berkeley Lab Engineering Division teamed with Empire Magnetics, Rohnert Park and the Makeyev State Rocket Center under a DOE NNSA non-proliferation project to develop and test a series of small wind turbines of vertical axis design. Over the years, about 100 Russian scientists and engineers worked on the project and the hydrodynamic, aerodynamic and mechanical test facilities of the SRC were used. The objective was to create a highly manufacturable Darieus unit with a modest Tip Speed Ratio (quiet and low

213

Underground Test Area Project Waste Management Plan (Rev. No. 2, April 2002)  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Operations Office (NNSA/NV) initiated the UGTA Project to characterize the risk posed to human health and the environment as a result of underground nuclear testing activities at the Nevada Test Site (NTS). The UGTA Project investigation sites have been grouped into Corrective Action Units (CAUs) in accordance with the most recent version of the Federal Facility Agreement and Consent Order. The primary UGTA objective is to gather data to characterize the groundwater aquifers beneath the NTS and adjacent lands. The investigations proposed under the UGTA program may involve the drilling and sampling of new wells; recompletion, monitoring, and sampling of existing wells; well development and hydrologic/ aquifer testing; geophysical surveys; and subsidence crater recharge evaluation. Those wastes generated as a result of these activities will be managed in accordance with existing federal and state regulations, DOE Orders, and NNSA/NV waste minimization and pollution prevention objectives. This Waste Management Plan provides a general framework for all Underground Test Area (UGTA) Project participants to follow for the characterization, storage/accumulation, treatment, and disposal of wastes generated by UGTA Project activities. The objective of this waste management plan is to provide guidelines to minimize waste generation and to properly manage wastes that are produced. Attachment 1 to this plan is the Fluid Management Plan and details specific strategies for management of fluids produced under UGTA operations.

IT Corporation, Las Vegas

2002-04-24T23:59:59.000Z

214

Corrective Action Plan for Corrective Action Unit 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada  

SciTech Connect

This corrective action plan provides the closure implementation methods for the Area 3 Landfill Complex, Corrective Action Unit (CAU) 424, located at the Tonopah Test Range. The Area 3 Landfill Complex consists of 8 landfill sites, each designated as a separate corrective action site.

Bechtel Nevada

1998-08-31T23:59:59.000Z

215

Test Plan for Long-Term Operation of a Ten-Cell High Temperature Electrolysis Stack  

DOE Green Energy (OSTI)

This document defines a test plan for a long-term (2500 Hour) test of a ten-cell high-temperature electrolysis stack to be performed at INL during FY09 under the Nuclear Hydrogen Initiative. This test was originally planned for FY08, but was removed from our work scope as a result of the severe budget cuts in the FY08 NHI Program. The purpose of this test is to evaluate stack performance degradation over a relatively long time period and to attempt to identify some of the degradation mechanisms via post-test examination. This test will be performed using a planar ten-cell Ceramatec stack, with each cell having dimensions of 10 cm × 10 cm. The specific makeup of the stack will be based on the results of a series of shorter duration ten-cell stack tests being performed during FY08, funded by NGNP. This series of tests was aimed at evaluating stack performance with different interconnect materials and coatings and with or without brazed edge rails. The best performing stack from the FY08 series, in which five different interconnect/coating/edge rail combinations were tested, will be selected for the FY09 long-term test described herein.

James E. O'Brien; Carl M. Stoots; J. Stephen Herring

2008-07-01T23:59:59.000Z

216

Second Line of Defense Megaports Initiative Operational Testing and Evaluation Plan - Kingston Container Terminal, Port of Kingston, Jamaica  

SciTech Connect

Operational Testing and Evaluation Plan - Kingston Container Terminal, Port of Kingston, Jamaica was written for the Second Line of Defense Megaports Initiative. The purpose of the Operational Testing and Evaluation (OT&E) phase of the project is to prepare for turnover of the Megaports system supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA) located at the Kingston Container Terminal (KCT) of the Port of Kingston, Jamaica to the Government of Jamaica (GOJ). Activities conducted during the OT&E phase must demonstrate that the Megaports system can be operated effectively in real time by Jamaica Customs and KCT personnel to the satisfaction of the DOE/NNSA. These activities will also determine if the Megaports system, as installed and accepted, is performing according to the Megaports Program objectives such that the system is capable of executing the mission of the Second Line of Defense Megaports Initiative. The OT&E phase of the project also provides an opportunity to consider potential improvements to the system and to take remedial action if performance deficiencies are identified during the course of evaluation. Changes to the system should be considered under an appropriate change-control process. DOE/NNSA will determine that OT&E is complete by examining whether the Megaports system is performing as intended and that the GOJ is fully capable of operating the system independently without continued onsite support from the U.S. team.

Deforest, Thomas J.; VanDyke, Damon S.

2012-03-01T23:59:59.000Z

217

OECD 2-D Core Concrete Interaction (CCI) tests : CCI-2 test plan, Rev. 0 January 31, 2004.  

Science Conference Proceedings (OSTI)

The Melt Attack and Coolability Experiments (MACE) program addressed the issue of the ability of water to cool and thermally stabilize a molten core-concrete interaction when the reactants are flooded from above. These tests provided data regarding the nature of corium interactions with concrete, the heat transfer rates from the melt to the overlying water pool, and the role of noncondensable gases in the mixing processes that contribute to melt quenching. As a follow-on program to MACE, The Melt Coolability and Concrete Interaction Experiments (MCCI) project is conducting reactor material experiments and associated analysis to achieve the following objectives: (1) resolve the ex-vessel debris coolability issue through a program that focuses on providing both confirmatory evidence and test data for the coolability mechanisms identified in MACE integral effects tests, and (2) address remaining uncertainties related to long-term two-dimensional molten core-concrete interactions under both wet and dry cavity conditions. Achievement of these two program objectives will demonstrate the efficacy of severe accident management guidelines for existing plants, and provide the technical basis for better containment designs for future plants. In terms of satisfying these objectives, the Management Board (MB) approved the conduct of two long-term 2-D Core-Concrete Interaction (CCI) experiments designed to provide information in several areas, including: (i) lateral vs. axial power split during dry core-concrete interaction, (ii) integral debris coolability data following late phase flooding, and (iii) data regarding the nature and extent of the cooling transient following breach of the crust formed at the melt-water interface. The first of these two tests, CCI-1, was conducted on December 19, 2003. This test investigated the interaction of a fully oxidized 400 kg PWR core melt, initially containing 8 wt % calcined siliceous concrete, with a specially designed two-dimensional siliceous concrete test section with an initial cross-sectional area of 50 cm x 50 cm. The second of these two planned tests, CCI-2, will be conducted with a nearly identical test facility and experiment boundary conditions, but with a Limestone/Common Sand (LCS) concrete test section to investigate the effect of concrete type on the two-dimensional core-concrete interaction and debris cooling behavior. The objective of this report is to provide the overall test plan for CCI-2 to enable pretest calculations to be carried out. The report begins by providing a summary description of the CCI-2 test apparatus, followed by a description of the planned test operating procedure. Overall specifications for CCI-2 are provided in Table 1-1.

Farmer, M. T.; Kilsdonk, D. J.; Lomperski, S.; Aeschlimann, R. W.; Basu, S. (Nuclear Engineering Division)

2011-05-23T23:59:59.000Z

218

Advanced Nuclear Technology: Final Test Results on 80% Service Test and Implementation Plans  

Science Conference Proceedings (OSTI)

Current practice within the nuclear power industry is to use performance discharge tests for condition monitoring to determine when a battery has reached 80% of its rated capacity, which is considered the end of its service life. A service test is now used every refueling outage to verify that a battery can satisfy its design basis function as defined by the battery duty cycle. A modified performance test is used at ...

2013-04-03T23:59:59.000Z

219

HEATER TEST PLANNING FOR THE NEAR SURFACE TEST FACILITY AT THE HANFORD RESERVATION  

E-Print Network (OSTI)

Heater Experiment at Hanford. Berkeley, Lawre ;e BerkeleyTest Facility, Hole DC-11, Hanford Reservation. Prepared forof Gable Mountain Basalt Cores, Hanford Nuclear Reservation.

DuBois, A.

2010-01-01T23:59:59.000Z

220

Treatment plan for aqueous/organic/decontamination wastes under the Oak Ridge Reservation FFCA Development, Demonstration, Testing, and Evaluation Program  

SciTech Connect

The U.S. Department of Energy (DOE) Oak Ridge Operations Office and the U.S. Environmental Protection Agency (EPA)-Region IV have entered into a Federal Facility Compliance Agreement (FFCA) which seeks to facilitate the treatment of low-level mixed wastes currently stored at the Oak Ridge Reservation (ORR) in violation of the Resource, Conservation and Recovery Act Land Disposal Restrictions. The FFCA establishes schedules for DOE to identify treatment for wastes, referred to as Appendix B wastes, that current have no identified or existing capacity for treatment. A development, demonstration, testing, and evaluation (DDT&E) program was established to provide the support necessary to identify treatment methods for mixed was meeting the Appendix B criteria. The Program has assembled project teams to address treatment development needs for major categories of the Appendix B wastes based on the waste characteristics and possible treatment technologies. The Aqueous, Organic, and Decontamination (A/O/D) project team was established to identify pretreatment options for aqueous and organic wastes which will render the waste acceptable for treatment in existing waste treatment facilities and to identify the processes to decontaminate heterogeneous debris waste. In addition, the project must also address the treatment of secondary waste generated by other DDT&E projects. This report details the activities to be performed under the A/O/D Project in support of the identification, selection, and evaluation of treatment processes. The goals of this plan are (1) to determine the major aqueous and organic waste streams requiring treatment, (2) to determine the treatment steps necessary to make the aqueous and organic waste acceptable for treatment in existing treatment facilities on the ORR or off-site, and (3) to determine the processes necessary to decontaminate heterogeneous wastes that are considered debris.

Backus, P.M.; Benson, C.E.; Gilbert, V.P.

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Toward an acceptable nuclear future  

SciTech Connect

The nuclear option is in danger of being foreclosed. The trend toward antinuclearism may be reversed if concerns about low-level radiation insult can be shown ultimately to be without foundation; evidence for this speculation is presented. Nevertheless it is suggested that the nuclear enterprise itself must propose new initiatives to increase the acceptability of nuclear energy. A key element of an acceptable nuclear future is cluster siting of reactors. This siting plan might be achieved by confining new reactors essentially to existing sites.

Weinberg, A.M.

1977-11-01T23:59:59.000Z

222

Demonstration testing and evaluation of in situ soil heating. Management Plan, Revision 2  

SciTech Connect

This is the second revision to the Management Plan for US DOE contract entitled, ``Demonstration Testing and Evaluation of In Situ Soil Heating,`` Contract Number DE-AC05-93OR22160, IITRI Project Number C06787. The cost plan and schedule have been revised herein. The Management Plan was revised once before, in March 1994. In this project IITRI will demonstrate its in situ soil heating and decontamination technology which uses 60 Hz AC power to heat soil to a temperature of about 900C. This technology is aimed at the decontamination of soil by the removal of organic hazardous constituents by the action of heat and a vacuum gas collection system.

Dev, H.

1995-03-06T23:59:59.000Z

223

Thermal Energy Storage Evaluation Program: 1986 annual report. [Economic planning, technical assessment, field tests  

DOE Green Energy (OSTI)

The Thermal Energy Storage Evaluation Program activities were initiated to provide economic planning, technical assessment and field testing support for the thermal energy storage program, as well as management of the overall program for the DOE. Economic planning included two assessment studies. In technical assessment, issues that might affect an assessment were outlined for the development of a standard methodology to conduct assessments; work is underway to establish ''market-based'' cost and performance goals for cool storage technologies in residential applications; planning has begun for investigation of benefits in incorporating aquifer thermal energy storage with heat pumps; and plans are being formulated to evaluate the potential benefit of using aquifer thermal energy storage to augment power plant cooling. Field testing to develop technologies for the recovery and reuse of industrial waste heat began with the instrumentation design for the ceramic/salt matrix in an operating brick-making plant. Work in advanced studies by Lawrence Berkeley Laboratory continued on thermochemical conversion and storage using small particles as the heat exchanger catalyst. In SO/sub 3/ dissociation experiments at 645/sup 0/C using light and dark conditions, results clearly demonstrated the benefit in directly radiantly heating the catalyst to accomplish the endothermic step of a thermochemical storage reaction.

Drost, M.K.; Bates, J.M.; Brown, D.R.; Weijo, R.O.

1987-07-01T23:59:59.000Z

224

Geopressured-Geothermal Drilling and Testing Plan, Volume II, Testing Plan; Dow Chemical Co. - Dept. of Energy Dow-DOE Sweezy No. 1 Well, Vermilion Parish, Louisiana  

DOE Green Energy (OSTI)

The Dow/D.O.E. L. R. Sweezy No. 1 geopressured geothermal production well was completed in August of 1981. The well was perforated and gravel packed in approximately 50 feet of sand from 13,344 feet to 13,395 feet. Permeabilities of 6 to 914 millidarcies were measured with porosity of 25 to 36%. Static surface pressure after well clean-up was 5000 psi. At 1000 B/D flow rate the drawdown was 50 psi. The water produced in clean-up contained 100,000 ppm TDS. This report details the plan for testing this well with the goal of obtaining sufficient data to define the total production curve of the small, 939 acre, reservoir. A production time of six to nine months is anticipated. The salt water disposal well is expected to be completed and surface equipment installed such that production testing will begin by April 1, 1982. The program should be finished and reports written by February 28, 1983. The brine will be produced from the No.1 well, passed through a separator where the gas is removed, then reinjected into the No.2 (SWD) well under separator pressure. Flow rates of up to 25,000 B/D are expected. The tests are divided into a two-week short-term test and six to nine-month long-term tests with periodic downhole measurement of drawdown and buildup rates. Data obtained in the testing will be relayed by phoneline computer hookup to Otis Engineering in Dallas, Texas, where the reservoir calculations and modeling will be done. At the point where sufficient data has been obtained to reach the objectives of the program, production will be ended, the wells plugged and abandoned, and a final report will be issued.

None

1982-02-01T23:59:59.000Z

225

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 538: Spill Sites, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the closure of Corrective Action Unit (CAU) 538: Spill Sites, Nevada Test Site, Nevada. It has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. A SAFER may be performed when the following criteria are met: (1) Conceptual corrective actions are clearly identified (although some degree of investigation may be necessary to select a specific corrective action before completion of the Corrective Action Investigation [CAI]). (2) Uncertainty of the nature, extent, and corrective action must be limited to an acceptable level of risk. (3) The SAFER Plan includes decision points and criteria for making data quality objective (DQO) decisions. The purpose of the investigation will be to document and verify the adequacy of existing information; to affirm the decision for either clean closure, closure in place, or no further action; and to provide sufficient data to implement the corrective action. The actual corrective action selected will be based on characterization activities implemented under this SAFER Plan. This SAFER Plan identifies decision points developed in cooperation with the Nevada Division of Environmental Protection (NDEP) and where DOE will reach consensus with NDEP before beginning the next phase of work.

Alfred Wickline

2006-04-01T23:59:59.000Z

226

Test Plan for Heat Cycle Research Program, Phase I Supercritical Cycle Tests  

DOE Green Energy (OSTI)

The 60 kW Heat Cycle Research Facility (HCRF) provides a means of examining different concepts and components associated with the generation of electrical power from a geothermal resource using a binary power cycle. In this power cycle the heat or energy in a hot geothermal fluid is transferred to a secondary working fluid. This working fluid is vaporized in the heat exchange process and the vapor is in turn expanded through a turbine which drives a generator producing electrical power. the heat or energy in the vapor leaving the turbine is transferred to a circulating cooling water in the condenser where the working fluid is condensed to a liquid which can be pumped back to the heaters, completing the cycle. This waste heat load in the condenser is in turn transferred from the cooling water to the atmosphere in a cooling tower. The HCRF allows the different components described in the cycle above to be tested as well as the basic cycle itself. This cycle may vary in that the heaters, condenser, cooling system, pumps, etc. may differ in number and type, however the basic cycle does not change significantly. During this sequence of tests, the HCRF is operated using a supercritical vapor generator and a vertical condenser where the condensation occurs inside of the tubes as opposed to the shell side more commonly used in these applications. In addition to providing the data to be used to evaluate the design of these heat exchangers, these supercritical tests provide cycle and component performance data with both single component working fluids and working fluids comprised of different mixtures of hydrocarbons. The use of these mixtures promises to improve cycle performance, in terms of watt-hours per pound of geothermal fluid, provided the countercurrent flow paths can be maintained between the fluids in both the condenser and the heaters. The supercritical heaters and the condenser to be used in this series of tests were designed to provide the desired countercurrent flow paths.

Mines, Greg L.

1983-06-01T23:59:59.000Z

227

Corrective action investigation plan for CAU Number 453: Area 9 Landfill, Tonopah Test Range  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains the environmental sample collection objectives and criteria for conducting site investigation activities at the Area 9 Landfill, Corrective Action Unit (CAU) 453/Corrective Action (CAS) 09-55-001-0952, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, Nevada. The Area 9 Landfill is located northwest of Area 9 on the TTR. The landfill cells associated with CAU 453 were excavated to receive waste generated from the daily operations conducted at Area 9 and from range cleanup which occurred after test activities.

NONE

1997-05-14T23:59:59.000Z

228

Vadose Zone Transport Field Study: Detailed Test Plan for Simulated Leak Tests  

Science Conference Proceedings (OSTI)

This report describes controlled transport experiments at well-instrumented field tests to be conducted during FY 2000 in support of DOE?s Vadose Zone Transport Field Study (VZTFS). The VZTFS supports the Groundwater/Vadose Zone Integration Project Science and Technology Initiative. The field tests will improve understanding of field-scale transport and lead to the development or identification of efficient and cost-effective characterization methods. These methods will capture the extent of contaminant plumes using existing steel-cased boreholes. Specific objectives are to 1) identify mechanisms controlling transport processes in soils typical of the hydrogeologic conditions of Hanford?s waste disposal sites; 2) reduce uncertainty in conceptual models; 3) develop a detailed and accurate data base of hydraulic and transport parameters for validation of three-dimensional numerical models; and 4) identify and evaluate advanced, cost-effective characterization methods with the potential to assess changing conditions in the vadose zone, particularly as surrogates of currently undetectable high-risk contaminants. Pacific Northwest National Laboratory (PNNL) manages the VZTFS for DOE.

Ward, Anderson L.; Gee, Glendon W.

2000-06-23T23:59:59.000Z

229

Test Plan for Characterization Testing of SO2-depolarized Electrolyzer Cell Designs  

DOE Green Energy (OSTI)

SRNL received funding in FY 2005 to test the Hybrid Sulfur (HyS) Process for generating hydrogen. This technology employs an electrolyzer that uses a sulfur dioxide depolarized anode to greatly reduce the electrical energy requirement. The required current is the same as for conventional electrolysis of water, but the required cell voltage is reduced. The electrolyzer is a key part of HyS technology. Completing the material loop for HyS requires a high temperature decomposition of sulfuric acid to regenerate the sulfur dioxide gas needed for the anode reaction. Oxygen is also produced and could be sold. The decomposition of sulfuric acid is being studied by others in a separately funded task. It is not included in this SRNL task.

Steimke, J. L.

2006-02-15T23:59:59.000Z

230

Resource Conservation and Recovery Act Industrial Sites quality assurance project plan: Nevada Test Site, Nevada  

SciTech Connect

This quality assurance project plan (QAPjP) describes the measures that shall be taken to ensure that the environmental data collected during characterization and closure activities of Resource Conservation and Recovery Act (RCRA) Industrial Sites at the Nevada Test Site (NTS) are meaningful, valid, defensible, and can be used to achieve project objectives. These activities are conducted by the US Department of Energy Nevada Operations Office (DOE/NV) under the Nevada Environmental Restoration (ER) Project. The Nevada ER Project consists of environmental restoration activities on the NTS, Tonopah Test Range, Nellis Air Force Range, and eight sites in five other states. The RCRA Industrial Sites subproject constitutes a component of the Nevada ER Project. Currently, this QAPjP is limited to the seven RCRA Industrial Sites identified within this document that are to be closed under an interim status and pertains to all field-investigation, analytical-laboratory, and data-review activities in support of these closures. The information presented here supplements the RCRA Industrial Sites Project Management Plan and is to be used in conjunction with the site-specific subproject sampling and analysis plans.

Not Available

1994-06-01T23:59:59.000Z

231

March 18, 2005, Department letter accepting Board Recommendation...  

NLE Websites -- All DOE Office Websites (Extended Search)

factors as intrinsically safe form or containerization of the nuclear hazards, declining nuclear material inventories, and planned decommissioning in the near future. We accept...

232

Demonstration testing and evaluation of in situ soil heating: Management Plan  

Science Conference Proceedings (OSTI)

This document is the Management Plan for US DOE contract entitled, {open_quotes}Demonstration, Testing and Evaluation of In Situ Soil Heating,{close_quotes} Contract No. DE-AC05-93OR22160, IITRI Project No. C06787. In this project IITRI will demonstrate an in situ soil heating technology for the removal of hazardous organic contaminants present in the soil. In situ heating will be accomplished by the application of 60 Hz ac power to the soil. The soil will be heated to a temperature of about 90{degrees}C. This technology is suited for the removal of those organic compounds which have a normal boiling point in the range of 100{degrees} to 210{degrees}C, or else for those which exhibit a pure component vapor pressure of at least 10 mm Hg in the 90{degrees} to 100{degrees}C temperature range. For example, perchloroethylene, dichlorobenzene, trichlorobenzene, etc. may be removed by in situ ac heating. It is planned to demonstrate the technology by heating approximately 400 tons of soil in the K-1070 Classified Burial Ground located at DOE`s K-25 Site located in Oak Ridge, TN. It is estimated that the heating portion of the demonstration will take approximately 3 weeks at an average power input rate of 150 to 175 kW. IITRI expects to spend considerable time in the front end reviewing site characteristics, preparing detail design, developing Health and Safety Plans and other documents needed to obtain regulatory approval for the demonstration, arranging for site sampling, infrastructure development and document preparation. It is anticipated that site activities will begin in approximately 5 to 6 months. This contract was signed on September 30, 1993. IITRI started work on it in October 1993. It is planned to complete the demonstration and submit approved final reports by September 30, 1994. This project has 12 tasks and four major milestones. The major milestones and their planned completion dates are shown.

Dev, H.

1993-12-31T23:59:59.000Z

233

DOE/NETL's Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing  

NLE Websites -- All DOE Office Websites (Extended Search)

Phase II Plans for Full-Scale Phase II Plans for Full-Scale Mercury Removal Technology Field-Testing Air Quality III September 12, 2002 Arlington, Va Scott Renninger, Project Manager for Mercury Control Technology Enviromental Projects Division Presentation Outline * Hg Program goals & objectives * Focus on Future Hg control R&D * Q&As President Bush's Clear Skies Initiative Current Mid-Term 2008-2010 2018 SO 2 11 million tons 4.5 million tons 3 million tons NOx 5 million tons 2.1 million tons 1.7 million tons Mercury 48 tons 26 tons 15 tons Annual U.S. Power Plant Emissions Mercury Control * Developing technologies ready for commercial demonstration: - By 2005, reduce emissions 50-70% - By 2010, reduce emissions by 90% - Cost 25-50% less than current estimates 2000 Year 48 Tons $2 - 5 Billion @ 90% Removal w/Activated

234

Test Plan to Evaluate the Relationship Among IAQ, Comfort, Moisture, and Ventilation in Humid Climates  

Science Conference Proceedings (OSTI)

This experimental plan describes research being conducted by Pacific Northwest National Laboratory (PNNL), in coordinatation with Florida Solar Energy Center (FSEC), Florida HERO, and Lawrence Berkeley National Laboratory (LBNL) to evaluate the impact of ventilation rate on interior moisture levels, temperature distributions, and indoor air contaminant concentrations. Specifically, the research team will measure concentrations of indoor air contaminants, ventilation system flow rates, energy consumption, and temperature and relative humidity in ten homes in Gainesville, FL to characterize indoor pollutant levels and energy consumption associated with the observed ventilation rates. PNNL and FSEC have collaboratively prepared this experimental test plan, which describes background and context for the proposed study; the experimental design; specific monitoring points, including monitoring equipment, and sampling frequency; key research questions and the associated data analysis approach; experimental logistics, including schedule, milestones, and team member contact information; and clearly identifies the roles and responsibilities of each team in support of project objectives.

Widder, Sarah H.; Martin, Eric

2013-03-15T23:59:59.000Z

235

Detailed technical plan for Test Program Element-III (TPE-III) of the first wall/blanket shield engineering test program  

Science Conference Proceedings (OSTI)

The experimental requirements, test-bed design, and computational requirements are reviewed and updated. Next, in Sections 3, 4 and 5, the experimental plan, instrumentation, and computer plan, respectively, are described. Finally, Section 6 treats other considerations, such as personnel, outside participation, and distribution of results.

Turner, L.R.; Praeg, W.F.

1982-03-01T23:59:59.000Z

236

Measuring and Testing Equipment Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measuring and Test Equipment Measuring and Test Equipment Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The objective of this assessment is to determine whether a program is in place which assures that Measuring and Test Equipment (M&TE) used in activities affecting quality and safety are properly controlled, calibrated, and adjusted at specified times to maintain accuracy within necessary limits. Criteria: All M&TE is uniquely identified, calibrated, controlled, and provides accuracy traceability. A recall program maintains the total inventory and status of all M&TE. Out-of-tolerance M&TE is removed from service. Plant equipment calibrated with out-of-tolerance M&TE is evaluated in a timely manner for impact on previous output, current operability and is re-

237

Measuring and Testing Equipment Assessment plan - Developed By NNSA/Nevada Site Office Facility Representative Division  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Measuring and Test Equipment Measuring and Test Equipment Assessment Plan NNSA/Nevada Site Office Independent Oversight Division Performance Objective: The objective of this assessment is to determine whether a program is in place which assures that Measuring and Test Equipment (M&TE) used in activities affecting quality and safety are properly controlled, calibrated, and adjusted at specified times to maintain accuracy within necessary limits. Criteria: All M&TE is uniquely identified, calibrated, controlled, and provides accuracy traceability. A recall program maintains the total inventory and status of all M&TE. Out-of-tolerance M&TE is removed from service. Plant equipment calibrated with out-of-tolerance M&TE is evaluated in a timely manner for impact on previous output, current operability and is re-

238

Quality Assurance Program Plan for TRUPACT-II Gas Generation Test Program  

Science Conference Proceedings (OSTI)

The Gas Generation Test Program (GGTP), referred to as the Program, is designed to establish the concentration of flammable gases and/or gas generation rates in a test category waste container intended for shipment in the Transuranic Package Transporter-II (TRUPACT-II). The phrase "gas generationtesting" shall refer to any activity that establishes the flammable gas concentration or the flammable gas generation rate. This includes, but is not limited to, measurements performed directly on waste containers or during tests performed on waste containers. This Quality Assurance Program Plan (QAPP) documents the quality assurance (QA) and quality control (QC) requirements that apply to the Program. The TRUPACT-II requirements and technical bases for allowable flammable gas concentration and gas generation rates are described in the TRUPACT-II Authorized Methods for Payload Control (TRAMPAC).

Carlsbad Field Office

2002-03-01T23:59:59.000Z

239

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

SciTech Connect

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M.; Leibfritz, J.; Nagaitsev, S.; /Fermilab

2011-07-29T23:59:59.000Z

240

HWMA/RCRA CLOSURE PLAN FOR THE MATERIALS TEST REACTOR WING (TRA-604) LABORATORY COMPONENTS VOLUNTARY CONSENT ORDER ACTION PLAN VCO-5.8 D REVISION2  

SciTech Connect

This Hazardous Waste Management Act/Resource Conservation and Recovery Act closure plan was developed for the laboratory components of the Test Reactor Area Catch Tank System (TRA-630) that are located in the Materials Test Reactor Wing (TRA-604) at the Reactor Technology Complex, Idaho National Laboratory Site, to meet a further milestone established under Voluntary Consent Order Action Plan VCO-5.8.d. The TRA-604 laboratory components addressed in this closure plan were deferred from the TRA-630 Catch Tank System closure plan due to ongoing laboratory operations in the areas requiring closure actions. The TRA-604 laboratory components include the TRA-604 laboratory warm wastewater drain piping, undersink drains, subheaders, and the east TRA-604 laboratory drain header. Potentially contaminated surfaces located beneath the TRA-604 laboratory warm wastewater drain piping and beneath the island sinks located in Laboratories 126 and 128 (located in TRA-661) are also addressed in this closure plan. The TRA-604 laboratory components will be closed in accordance with the interim status requirements of the Hazardous Waste Management Act/Resource Conservation and Recovery Act as implemented by the Idaho Administrative Procedures Act 58.01.05.009 and 40 Code of Federal Regulations 265, Subparts G and J. This closure plan presents the closure performance standards and the methods for achieving those standards.

KIRK WINTERHOLLER

2008-02-25T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Demonstration testing and evaluation of in situ soil heating. Treatability study work plan (Revision 2)  

SciTech Connect

A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85{degrees} to 95{degrees}C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern. This document is a Treatability Study Work Plan for the demonstration program. The document contains a description of the proposed treatability study, background of the EM heating process, description of the field equipment, and demonstration test design.

Sresty, G.C.

1994-12-30T23:59:59.000Z

242

Corrective Action Plan for Corrective Action Unit 261: Area 25 Test Cell A Leachfield System, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Corrective Action Plan (CAP) has been prepared for the Corrective Action Unit (CAU)261 Area 25 Test Cell A Leachfield System in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 1999). Investigation of CAU 261 was conducted from February through May of 1999. There were no Constituents of Concern (COCs) identified at Corrective Action Site (CAS) 25-05-07 Acid Waste Leach Pit (AWLP). COCs identified at CAS 25-05-01 included diesel-range organics and radionuclides. The following closure actions will be implemented under this plan: Because COCs were not found at CAS 25-05-07 AWLP, no action is required; Removal of septage from the septic tank (CAS 25-05-01), the distribution box and the septic tank will be filled with grout; Removal of impacted soils identified near the initial outfall area; and Upon completion of this closure activity and approval of the Closure Report by NDEP, administrative controls, use restrictions, and site postings will be used to prevent intrusive activities at the site.

T. M. Fitzmaurice

2000-08-01T23:59:59.000Z

243

ART CCIM Phase II-A Off-Gas System Evaluation Test Plan  

Science Conference Proceedings (OSTI)

This test plan defines testing to be performed using the Idaho National Laboratory (INL) engineering-scale cold crucible induction melter (CCIM) test system for Phase II-A of the Advanced Remediation Technologies (ART) CCIM Project. The multi-phase ART-CCIM Project is developing a conceptual design for replacing the joule-heated melter (JHM) used to treat high level waste (HLW) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) with a cold crucible induction melter. The INL CCIM test system includes all feed, melter off-gas control, and process control subsystems needed for fully integrated operation and testing. Testing will include operation of the melter system while feeding a non-radioactive slurry mixture prepared to simulate the same type of waste feed presently being processed in the DWPF. Process monitoring and sample collection and analysis will be used to characterize the off-gas composition and properties, and to show the fate of feed constituents, to provide data that shows how the CCIM retrofit conceptual design can operate with the existing DWPF off-gas control system.

Nick Soelberg; Jay Roach

2009-01-01T23:59:59.000Z

244

Test plan for long-term, low-temperature oxidation of BWR spent fuel  

Science Conference Proceedings (OSTI)

Preliminary studies indicated the need for more spent fuel oxidation data in order to determine the probable behavior of spent fuel in a tuff repository. Long-term, low-temperature testing was recommended in a comprehensive technical approach to (1) confirm the findings of the short-term thermogravimetric analysis tests; (2) evaluate the effects of variables such as burnup, atmospheric moisture,and fuel type on the oxidation rate; and (3) extend the oxidation data base to representative repository temperatures and better define the temperature dependence of the operative oxidation mechanisms. This document presents the test plan to study the effects of atmospheric moisture and temperature on oxidation rate and phase formation using a large number of boiling-water reactor fuel samples. Tests will run for up to two years, use characterized fragmented and pulverized fuel samples, cover a temperature range of 110{degree}C to 175{degree}C, and be conducted with an atmospheric moisture content ranging from <{minus}55{degree}C to {approximately}80{degree}C dew point. After testing, the samples will be examined and made available for leaching testing. 15 refs., 2 figs., 2 tabs.

Einziger, R.E.

1988-12-01T23:59:59.000Z

245

Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab  

Science Conference Proceedings (OSTI)

The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J.; Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Kucera, M.; Martinez, A.; Nagaitsev, S.; /Fermilab

2012-05-01T23:59:59.000Z

246

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 496: Buried Rocket Site, Antelope Lake, Tonopah Test Range  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) plan details the activities necessary to close Corrective Action Unit 496: Buried Rocket Site, Antelope Lake. CAU 496 consists of one site located at the Tonopah Test Range, Nevada.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Bechtel Nevada

2004-05-01T23:59:59.000Z

247

Joint Test Plan to Identify the Gaseous By-Products of CH3I Loading on AgZ  

SciTech Connect

The objective of this test plan is to describe research to determine the gaseous by-products of the adsorption of CH3I on hydrogen reduced silver exchanged mordenite (AgZ).

R. T. Jubin; N. R. Soelberg; D. M. Strachan; T. M. Nenoff; B. B. Spencer

2012-12-01T23:59:59.000Z

248

Test Planning for Mixed-Signal SOCs with Wrapped Analog Cores Anuja Sehgal, Fang Liu, Sule Ozev and Krishnendu Chakrabarty  

E-Print Network (OSTI)

Test Planning for Mixed-Signal SOCs with Wrapped Analog Cores Anuja Sehgal, Fang Liu, Sule Ozev. Even though the test cost for such mixed-signal SOCs is significantly higher than that for digital SOCs, most prior research in this area has focused exclusively on digital cores. We propose a low-cost test

Paris-Sud XI, Université de

249

Design and Experimental Test Plan for Hybrid Sulfur Single Cell Pressurized Electrolyzer  

DOE Green Energy (OSTI)

The Hybrid Sulfur (HyS) process is one of the leading thermochemical cycles being studied as part of the DOE Nuclear Hydrogen Initiative (NHI). SRNL is conducting analyses and research and development for the Department of Energy on the HyS process. A conceptual design report and development plan for the HyS process was issued on April 1, 2005 [Buckner, et. al., 2005] , and a report on atmospheric testing of a sulfur dioxide depolarized electrolyzer (SDE), a major component of the HyS process, was issued on August 1, 2005 [Steimke, 2005]. The purpose of this report is to document work related to the design and experimental test plan for a pressurized SDE. Pressurized operation of the SDE is a key requirement for development of an efficient and cost-effective HyS process. The HyS process, a hybrid thermochemical cycle proposed and investigated in the 1970s and early 1980s by Westinghouse Electric Corporation, is a high priority candidate for NHI due to the potential for high efficiency and its relatively high level of technical maturity. It was demonstrated in laboratory experiments by Westinghouse in 1978. Process improvements and component advancements that build on that work are being pursued. One of the objectives of the current work is to develop the SDE in order to permit the demonstration of a closed-loop laboratory model of the HyS process. The heart of the HyS process for generating hydrogen is a bank of electrolyzers incorporating sulfur dioxide depolarized anodes. SRNL planned, designed, built and operated a facility for testing single cell electrolyzers at ambient temperature and near atmospheric pressure during the spring and summer of 2005. The major contribution of the SRNL work was the establishment of the proof-of-concept for utilizing the proton-exchange-membrane (PEM) cell design for the SDE operation. Since PEM cells are being extensively developed for automotive fuel cell use, they offer significant potential for cost-effective application for the HyS Process. This report discusses the modifications necessary to the existing SRNL sulfur dioxide depolarized electrolyzer test facility to allow testing at up to 80 C and 90 psig. Because of the need for significant additional equipment and the ability to infer performance results to higher pressures, it recommends delaying further modifications to support testing at up to 300 psig (the commercial goal) until other, higher priority technical issues are addressed. These issues include membrane material selection, component designs, catalyst type and loading, etc. The factors and rationale that should be considered in developing and executing a detailed test matrix for pressurized operation are also discussed. In addition, an electrolyzer assembly design has been developed to allow the testing of different Membrane Electrode Assemblies (MEA's) as part of the planned FY06 HyS Development Program to complete selection of component design specifications for the HyS electrolyzer. MEA's are used in PEM cells to allow intimate contact and minimal resistance between the electrodes and the electrolyte layer. The pressurized electrolyzer assembly presented in this report will facilitate rapid change-out and testing of various MEA designs as part of the electrolyzer development effort.

Steeper, T. J.; Steimke, J. L.

2005-09-01T23:59:59.000Z

250

Corrective Action Plan for Corrective Action Unit 453: Area 9 UXO Landfill, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This corrective action plan proposes the closure method for the area 9 unexploded Ordnance landfill, corrective action unit 453 located at the Tonopah Test Range. The area 9 UXO landfill consists of corrective action site no. 09-55-001-0952 and is comprised of three individual landfill cells designated as A9-1, A9-2, and A9-3. The three landfill cells received wastes from daily operations at area 9 and from range cleanups which were performed after weapons testing. Cell locations and contents were not well documented due to the unregulated disposal practices commonly associated with early landfill operations. However, site process knowledge indicates that the landfill cells were used for solid waste disposal, including disposal of UXO.

Bechtel Nevada

1998-09-30T23:59:59.000Z

251

Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan  

Science Conference Proceedings (OSTI)

This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

TEMPLETON, A.M.

2000-03-06T23:59:59.000Z

252

Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan  

Science Conference Proceedings (OSTI)

This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification. Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

TEMPLETON, A.M.

2000-04-10T23:59:59.000Z

253

Tank 241-AZ-101 Mixer Pump Test Vapor Sampling and Analysis Plan  

SciTech Connect

This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for vapor samples obtained during the operation of mixer pumps in tank 241-AZ-101. The primary purpose of the mixer pump test (MPT) is to demonstrate that the two 300 horsepower mixer pumps installed in tank 241-AZ-101 can mobilize the settled sludge so that it can be retrieved for treatment and vitrification Sampling will be performed in accordance with Tank 241-AZ-101 Mixer Pump Test Data Quality Objective (Banning 1999) and Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis (Mulkey 1999). The sampling will verify if current air emission estimates used in the permit application are correct and provide information for future air permit applications.

TEMPLETON, A.M.

2000-01-31T23:59:59.000Z

254

Supplemental Investigation Plan for FFACO Use Restrictions, Nevada Test Site, Nevada, Revision 0  

SciTech Connect

This document is part of an effort to re-evaluate all FFACO URs against the current RBCA criteria (referred to in this document as the Industrial Sites [IS] RBCA process) as defined in the Industrial Sites Project Establishment of Final Action Levels (NNSA/NSO, 2006a). After reviewing all of the existing FFACO URs, the 12 URs addressed in this Supplemental Investigation Plan (SIP) could not be evaluated against the current RBCA criteria as sufficient information about the contamination at each site was not available. This document presents the plan for conducting field investigations to obtain the needed information. This SIP includes URs from Corrective Action Units (CAUs) 326, 339, 358, 452, 454, 464, and 1010, located in Areas 2, 6, 12, 19, 25, and 29 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada; and CAU 403, located in Area 3 of the Tonopah Test Range, which is approximately 165 miles north of Las Vegas, Nevada.

Lynn Kidman

2008-02-01T23:59:59.000Z

255

Engineering Task Plan for the Ultrasonic Inspection of Hanford Double Shell Tanks (DST) FY2000  

SciTech Connect

This document facilitates the ultrasonic examination of Hanford double-shell tanks. Included are a plan for engineering activities (individual responsibilities), plan for performance demonstration testing, and a plan for field activities (tank inspection). Also included are a Statement of Work for contractor performance of the work and a protocol to be followed should tank flaws that exceed the acceptance criteria be discovered.

JENSEN, C.E.

2000-01-10T23:59:59.000Z

256

Laboratory development of sludge washing and alkaline leaching processes: Test plan for FY 1994  

Science Conference Proceedings (OSTI)

The US Department of Energy plans to vitrify (as borosilicate glass) the large volumes of high-level radioactive wastes at the Hanford site. To reduce costs, pretreatment processes will be used to reduce the volume of borosilicate glass required for disposal. Several options are being considered for the pretreatment processes: (1) sludge washing with water or dilute hydroxide: designed to remove most of the Na from the sludge, thus significantly reducing the volume of waste to be vitrified; (2) sludge washing plus caustic leaching and/or metathesis (alkaline sludge leaching): designed to dissolve large quantities of certain nonradioactive elements, such as Al, Cr and P, thus reducing the volume of waste even more; (3) sludge washing, sludge dissolution, and separation of radionuclides from the dissolved sludge solutions (advanced processing): designed to remove all radionuclides for concentration into a minimum waste volume. This report describes a test plan for work that will be performed in FY 1994 under the Sludge Washing and Caustic Leaching Studies Task (WBS 0402) of the Tank Waste Remediation System (TWRS) Pretreatment Project. The objectives of the work described here are to determine the effects of sludge washing and alkaline leaching on sludge composition and the physical properties of the washed sludge and to evaluate alkaline leaching methods for their impact on the volume of borosilicate glass required to dispose of certain Hanford tank sludges.

Rapko, B.M.; Lumetta, G.J.

1994-07-01T23:59:59.000Z

257

Independent Verification and Validation Of SAPHIRE 8 System Test Plan Project Number: N6423 U.S. Nuclear Regulatory Commission  

Science Conference Proceedings (OSTI)

The purpose of the Independent Verification and Validation (IV&V) role in the evaluation of the SAPHIRE System Test Plan is to assess the approach to be taken for intended testing activities associated with the SAPHIRE software product. The IV&V team began this endeavor after the software engineering and software development of SAPHIRE had already been in production.

Kent Norris

2010-02-01T23:59:59.000Z

258

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 489: WWII UXO Sites, Tonopah Test Range, Nevada; May 2005  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 489: WWII UXO Sites, Tonopah Test Range. CAU 489 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996.

Bechtel Nevada; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2005-05-01T23:59:59.000Z

259

DOE-STD-3026-99; DOE Standard Filter Test Facility Quality Program Plan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

6-99 6-99 February 1999 Superseding DOE NE F 3-44 July 1986 DOE STANDARD FILTER TEST FACILITY QUALITY PROGRAM PLAN U.S. Department of Energy FSC 4460 Washington, D.C. 20585 DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited. This document has been reproduced from the best available copy. Available to DOE and DOE contractors from ES&H Technical Information Services, U.S. Department of Energy, (800) 473-4375, fax: (301) 903-9823. Available to the public from the U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161; (703) 605-6000. DOE-STD-3026-99 iii FOREWORD This Department of Energy standard supercedes DOE NE F 3-44 and is approved for use by all DOE components and their contractors.

260

Corrective action investigation plan for CAU No. 424: Area 3 Landfill Complex, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Correction Action Investigation Plan contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the Area 3 Landfill Complex, CAU No. 424, which is located at the Tonopah Test Range (TTR). The TTR, included in the Nellis Air Force Range, is approximately 255 kilometers (140 miles) northwest of Las Vegas, nevada. The CAU 424 is comprised of eight individual landfill sites that are located around and within the perimeter of the Area 3 Compound. Due to the unregulated disposal activities commonly associated with early landfill operations, an investigation will be conducted at each CAS to complete the following tasks: identify the presence and nature of possible contaminant migration from the landfills; determine the vertical and lateral extent of possible contaminant migration; ascertain the potential impact to human health and the environment; and provide sufficient information and data to develop and evaluate appropriate corrective action strategies for each CAS.

NONE

1997-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Closure plan for CAU No. 93: Area 6 steam cleaning effluent ponds, Nevada Test Site  

SciTech Connect

The steam cleaning effluent ponds (SCEP) waste unit is located in Area 6 at the Nevada Test Site (NTS). Nevada Operations Office operates the NTS and has entered into a trilateral agreement with the State of Nevada and the Defense Special Weapons Agency (DSWA). The trilateral agreement provides a framework for identifying, characterizing, remediating, and closing environmental sites on the NTS and associated bombing ranges. The SCEP waste unit consists of: two steam cleaning effluent ponds; layout pad and associated grease trap; Building 6-623 steam cleaning pad; test pad; Building 6-623 grease trap; Building 6-800 steam cleaning pad; Building 6-800 separator; Building 6-621 sump; and the concrete asbestos piping connecting these components to both SCEPs. Clean closure is the recommended closure strategy for the majority of the components within this CAU. Four components of the unit (Building 6-621 Sump, Test Pad Grease Trap, Building 6-623 Steam Cleaning Pad, and North SCEP pipeline) are recommended to be closed in place. This closure plan provides the strategy and backup information necessary to support the clean closure of each of the individual components within CAU 93. Analytical data generated during the characterization field work and earlier sampling events indicates the majority of CAU 93 soil and infrastructure is non-hazardous (i.e., impacted primarily with petroleum hydrocarbons).

NONE

1997-04-01T23:59:59.000Z

262

Demonstration testing and evaluation of in situ soil heating. Treatability study work plan, Revision 1  

SciTech Connect

A Treatability Study planned for the demonstration of the in situ electromagnetic (EM) heating process to remove organic solvents is described in this Work Plan. The treatability study will be conducted by heating subsurface vadose-zone soils in an organic plume adjacent to the Classified Burial Ground K-1070-D located at K-25 Site, Oak Ridge. The test is scheduled to start during the fourth quarter of FY94 and will be completed during the first quarter of FY95. The EM heating process for soil decontamination is based on volumetric heating technologies developed during the `70s for the recovery of fuels from shale and tar sands by IIT Research Institute (IITRI) under a co-operative program with the US Department of Energy (DOE). Additional modifications of the technology developed during the mid `80s are currently used for the production of heavy oil and waste treatment. Over the last nine years, a number of Government agencies (EPA, Army, AF, and DOE) and industries sponsored further development and testing of the in situ heating and soil decontamination process for the remediation of soils containing hazardous organic contaminants. In this process the soil is heated in situ using electrical energy. The contaminants are removed from the soil due to enhanced vaporization, steam distillation and stripping. IITRI will demonstrate the EM Process for in situ soil decontamination at K-25 Site under the proposed treatability study. Most of the contaminants of concern are volatile organics which can be removed by heating the soil to a temperature range of 85 to 95 C. The efficiency of the treatment will be determined by comparing the concentration of contaminants in soil samples. Samples will be obtained before and after the demonstration for a measurement of the concentration of contaminants of concern.

Sresty, G.C.

1994-07-07T23:59:59.000Z

263

Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect

This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

1997-11-01T23:59:59.000Z

264

Acceptable NSLS Safety Documentation  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceptable NSLS Safety Documentation Print NSLS users who have completed NSLS Safety Module must present a copy of one of the following documents to receive ALS 1001: Safety at the...

265

Industrial Sites Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (including Record of Technical Change Nos. 1, 2, 3, and 4)  

SciTech Connect

This Leachfield Corrective Action Units (CAUs) Work Plan has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the U.S. Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the U.S. Department of Defense (FFACO, 1996). Under the FFACO, a work plan is an optional planning document that provides information for a CAU or group of CAUs where significant commonality exists. A work plan may be developed that can be referenced by leachfield Corrective Action Investigation Plans (CAIPs) to eliminate redundant CAU documentation. This Work Plan includes FFACO-required management, technical, quality assurance (QA), health and safety, public involvement, field sampling, and waste management documentation common to several CAUs with similar site histories and characteristics, namely the leachfield systems at the Nevada Test Site (NTS) and the Tonopah Test Range (TT R). For each CAU, a CAIP will be prepared to present detailed, site-specific information regarding contaminants of potential concern (COPCs), sampling locations, and investigation methods.

DOE /NV

1998-12-18T23:59:59.000Z

266

Appendix C: DOE Super-ESPC Project Acceptance Guidelines and Checklist  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Guidelines, Checklist, and Contract Clauses for Government Acceptance Guidelines, Checklist, and Contract Clauses for Government Acceptance of DOE Super-ESPC Projects  ECM Installation: All ECMs are installed in accordance with plans, specifications, standards, and other contract documents (sometimes by the Contractor, often by a subcontractor and always over a period of months).  Inspection, start-up, testing and commissioning. All ECMs are inspected, brought on line, tested, and commissioned interactively with all related Government-owned or Contractor-installed ECMs. Again, the ECMs should be operating in accordance with the design, plans, specifications, standards and other contract documents and manufacturer's recommendations. Individual ECMs may go through start-up and testing, but all interrelated

267

Corrective Action Plan for Corrective Action Unit 417: Central Nevada Test Area Surface, Nevada  

Science Conference Proceedings (OSTI)

This Corrective Action Plan provides methods for implementing the approved corrective action alternative as provided in the Corrective Action Decision Document for the Central Nevada Test Area (CNTA), Corrective Action Unit (CAU) 417 (DOE/NV, 1999). The CNTA is located in the Hot Creek Valley in Nye County, Nevada, approximately 137 kilometers (85 miles) northeast of Tonopah, Nevada. The CNTA consists of three separate land withdrawal areas commonly referred to as UC-1, UC-3, and UC-4, all of which are accessible to the public. CAU 417 consists of 34 Corrective Action Sites (CASs). Results of the investigation activities completed in 1998 are presented in Appendix D of the Corrective Action Decision Document (DOE/NV, 1999). According to the results, the only Constituent of Concern at the CNTA is total petroleum hydrocarbons (TPH). Of the 34 CASs, corrective action was proposed for 16 sites in 13 CASs. In fiscal year 1999, a Phase I Work Plan was prepared for the construction of a cover on the UC-4 Mud Pit C to gather information on cover constructibility and to perform site management activities. With Nevada Division of Environmental Protection concurrence, the Phase I field activities began in August 1999. A multi-layered cover using a Geosynthetic Clay Liner as an infiltration barrier was constructed over the UC-4 Mud Pit. Some TPH impacted material was relocated, concrete monuments were installed at nine sites, signs warning of site conditions were posted at seven sites, and subsidence markers were installed on the UC-4 Mud Pit C cover. Results from the field activities indicated that the UC-4 Mud Pit C cover design was constructable and could be used at the UC-1 Central Mud Pit (CMP). However, because of the size of the UC-1 CMP this design would be extremely costly. An alternative cover design, a vegetated cover, is proposed for the UC-1 CMP.

K. Campbell

2000-04-01T23:59:59.000Z

268

Corrective Action Plan for Corrective Action Unit 407: Roller Coaster RADSAFE Area, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Corrective Action Plan (CAP) has been prepared for the Roller Coaster RADSAFE Area Corrective Action Unit 407 in accordance with the Federal Facility and Consent Order (Nevada Division of Environmental Protection [NDEP] et al., 1996). This CAP provides the methodology for implementing the approved Corrective Action Alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 1999). The RCRSA was used during May and June of 1963 to decontaminate vehicles, equipment, and personnel from the Clean Slate tests. The Constituents of Concern (COCs) identified during the site characterization include plutonium, uranium, and americium. No other COCS were identified. The following closure actions will be implemented under this plan: (1) Remove and dispose of surface soils which are over three times background for the area. Soils identified for removal will be disposed of at an approved disposal facility. Excavated areas will be backfilled with clean borrow soil fi-om a nearby location. (2) An engineered cover will be constructed over the waste disposal pit area where subsurface COCS will remain. (3) Upon completion of the closure and approval of the Closure Report by NDEP, administrative controls, use restrictions, and site postings will be used to prevent intrusive activities at the site. Barbed wire fencing will be installed along the perimeter of this unit. Post closure monitoring will consist of site inspections to determine the condition of the engineered cover. Any identified maintenance and repair requirements will be remedied within 90 working days of discovery and documented in writing at the time of repair. Results of all inspections/repairs for a given year will be addressed in a single report submitted annually to the NDEP.

T. M. Fitzmaurice

2000-05-01T23:59:59.000Z

269

Corrective Action Plan for Corrective Action Unit 139: Waste Disposal Sites, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 139, Waste Disposal Sites, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 139 consists of seven Corrective Action Sites (CASs) located in Areas 3, 4, 6, and 9 of the Nevada Test Site (NTS), which is located approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1). CAU 139 consists of the following CASs: CAS 03-35-01, Burn Pit; CAS 04-08-02, Waste Disposal Site; CAS 04-99-01, Contaminated Surface Debris; CAS 06-19-02, Waste Disposal Site/Burn Pit; CAS 06-19-03, Waste Disposal Trenches; CAS 09-23-01, Area 9 Gravel Gertie; and CAS 09-34-01, Underground Detection Station. Details of the site history and site characterization results for CAU 139 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007). The purpose of this Corrective Action Plan (CAP) is to present the detailed scope of work required to implement the recommended corrective actions as specified in Section 4.0 of the approved CADD (NNSA/NSO, 2007). The approved closure activities for CAU 139 include removal of soil and debris contaminated with plutonium (Pu)-239, excavation of geophysical anomalies, removal of surface debris, construction of an engineered soil cover, and implementation of use restrictions (URs). Table 1 presents a summary of CAS-specific closure activities and contaminants of concern (COCs). Specific details of the corrective actions to be performed at each CAS are presented in Section 2.0 of this report.

NSTec Environmental Restoration

2007-07-01T23:59:59.000Z

270

Nuclear fuels technologies fiscal year 1998 research and development test plan  

Science Conference Proceedings (OSTI)

A number of research and development (R and D) activities are planned at Los Alamos National Laboratory (LANL) in FY98 in support of the Department of Energy Office of Fissile Materials Disposition (DOE-MD). During the past few years, the ability to fabricate mixed oxide (MOX) nuclear fuel using surplus-weapons plutonium has been researched, and various experiments have been performed. This research effort will be continued in FY98 to support further development of the technology required for MOX fuel fabrication for reactor-based plutonium disposition. R and D activities for FY98 have been divided into four major areas: (1) feed qualification/supply, (2) fuel fabrication development, (3) analytical methods development, and (4) gallium removal. Feed qualification and supply activities encompass those associated with the production of both PuO{sub 2} and UO{sub 2} feed materials. Fuel fabrication development efforts include studies with a new UO{sub 2} feed material, alternate sources of PuO{sub 2}, and determining the effects of gallium on the sintering process. The intent of analytical methods development is to upgrade and improve several analytical measurement techniques in support of other R and D and test fuel fabrication tasks. Finally, the purpose of the gallium removal system activity is to develop and integrate a gallium removal system into the Pit Disassembly and Conversion Facility (PDCF) design and the Phase 2 Advanced Recovery and Integrated Extraction System (ARIES) demonstration line. These four activities will be coordinated and integrated appropriately so that they benefit the Fissile Materials Disposition Program. This plan describes the activities that will occur in FY98 and presents the schedule and milestones for these activities.

Alberstein, D.; Blair, H.T.; Buksa, J.J. [and others

1998-06-01T23:59:59.000Z

271

Project Management Plan for the Idaho National Engineering Laboratory Waste Isolation Pilot Plant Experimental Test Program  

SciTech Connect

EG&G Idaho, Inc. and Argonne National Laboratory-West (ANL-W) are participating in the Idaho National Engineering Laboratory`s (INEL`s) Waste Isolation Pilot Plant (WIPP) Experimental Test Program (WETP). The purpose of the INEL WET is to provide chemical, physical, and radiochemical data on transuranic (TRU) waste to be stored at WIPP. The waste characterization data collected will be used to support the WIPP Performance Assessment (PA), development of the disposal No-Migration Variance Petition (NMVP), and to support the WIPP disposal decision. The PA is an analysis required by the Code of Federal Regulations (CFR), Title 40, Part 191 (40 CFR 191), which identifies the processes and events that may affect the disposal system (WIPP) and examines the effects of those processes and events on the performance of WIPP. A NMVP is required for the WIPP by 40 CFR 268 in order to dispose of land disposal restriction (LDR) mixed TRU waste in WIPP. It is anticipated that the detailed Resource Conservation and Recovery Act (RCRA) waste characterization data of all INEL retrievably-stored TRU waste to be stored in WIPP will be required for the NMVP. Waste characterization requirements for PA and RCRA may not necessarily be identical. Waste characterization requirements for the PA will be defined by Sandia National Laboratories. The requirements for RCRA are defined in 40 CFR 268, WIPP RCRA Part B Application Waste Analysis Plan (WAP), and WIPP Waste Characterization Program Plan (WWCP). This Project Management Plan (PMP) addresses only the characterization of the contact handled (CH) TRU waste at the INEL. This document will address all work in which EG&G Idaho is responsible concerning the INEL WETP. Even though EG&G Idaho has no responsibility for the work that ANL-W is performing, EG&G Idaho will keep a current status and provide a project coordination effort with ANL-W to ensure that the INEL, as a whole, is effectively and efficiently completing the requirements for WETP.

Connolly, M.J.; Sayer, D.L.

1993-11-01T23:59:59.000Z

272

ERRATA SHEET for Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

SciTech Connect

Section 2.1.1.3 of the Table of Contents reference on Page v and on Page 12 of the Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada erroneously refers to the Nevada Environmental Policy Act Determination. The correct title of the referenced document is the National Environmental Policy Act Determination.

K. B. Campbell

2002-04-01T23:59:59.000Z

273

Geopressured-geothermal drilling and testing plan: Magma Gulf/Technadril-Dept. of Energy MGT-DOE AMOCO Fee No. 1 well, Cameron Parish, Lousiana  

DOE Green Energy (OSTI)

The following topics are covered: generalized site activities, occupational health and safety, drilling operations, production testing, environmental assessment and monitoring plan, permits, program management, reporting, and schedule. (MHR)

Not Available

1980-07-01T23:59:59.000Z

274

Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 543: Liquid Disposal Units is listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO) which was agreed to by the state of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (FFACO, 1996). CAU 543 sites are located in Areas 6 and 15 of the Nevada Test Site (NTS), which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven Corrective Action Sites (CASs) (Figure 1): CAS 06-07-01, Decon Pad; CAS 15-01-03, Aboveground Storage Tank; CAS 15-04-01, Septic Tank; CAS 15-05-01, Leachfield; CAS 15-08-01, Liquid Manure Tank; CAS 15-23-01, Underground Radioactive Material Area; and CAS 15-23-03, Contaminated Sump, Piping. All Area 15 CASs are located at the former U.S. Environmental Protection Agency (EPA) Farm, which operated from 1963 to 1981 and was used to support animal experiments involving the uptake of radionuclides. Each of the Area 15 CASs, except CAS 15-23-01, is associated with the disposal of waste effluent from Building 15-06, which was the primary location of the various tests and experiments conducted onsite. Waste effluent disposal from Building 15-06 involved piping, sumps, outfalls, a septic tank with leachfield, underground storage tanks, and an aboveground storage tank (AST). CAS 15-23-01 was associated with decontamination activities of farm equipment potentially contaminated with radiological constituents, pesticides, and herbicides. While the building structures were removed before the investigation took place, all the original tanks, sumps, piping, and concrete building pads remain in place. The Area 6 CAS is located at the Decontamination Facility in Area 6, a facility which operated from 1971 to 2001 and was used to decontaminate vehicles, equipment, clothing, and other materials that had become contaminated during nuclear testing activities. The CAS includes the effluent collection and distribution systems for Buildings 6-605, 6-606, and 6-607, which consists of septic tanks, sumps, piping, floor drains, drain trenches, cleanouts, and a concrete foundation. Additional details of the site history are provided in the CAU 543 Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2004a), and the CAU 543 Corrective Action Decision Document (CADD) (NNSA/NSO, 2005).

NSTec Environmental Restoration

2007-04-01T23:59:59.000Z

275

Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons, Nevada Test Site, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

The Corrective Action Investigation Plan for Corrective Action Unit 232, Area 25 Sewage Lagoons, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U. S. Department of Defense. Corrective Action Unit 232 consists of Corrective Action Site 25-03-01, Sewage Lagoon. Corrective Action Unit 232, Area 25 Sewage Lagoons, received sanitary effluent from four buildings within the Test Cell ''C'' Facility from the mid-1960s through approximately 1996. The Test Cell ''C'' Facility was used to develop nuclear propulsion technology by conducting nuclear test reactor studies. Based on the site history collected to support the Data Quality Objectives process, contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, Resource Conservation and Recovery Act metals, petroleum hydrocarbons, polychlorinated biphenyls, pesticides, herbicides, gamma emitting radionuclides, isotopic plutonium, isotopic uranium, and strontium-90. A detailed conceptual site model is presented in Section 3.0 and Appendix A of this Corrective Action Investigation Plan. The conceptual model serves as the basis for the sampling strategy. Under the Federal Facility Agreement and Consent Order, the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the Corrective Action Decision Document.

USDOE /NV

1999-05-01T23:59:59.000Z

276

Barrier erosion control test plan: Gravel mulch, vegetation, and soil water interactions  

Science Conference Proceedings (OSTI)

Soil erosion could reduce the water storage capacity of barriers that have been proposed for the disposal of near-surface waste at the US Department of Energy's Hanford Site. Gravel mixed into the top soil surface may create a self-healing veneer that greatly retards soil loss. However, gravel admixtures may also enhance infiltration of rainwater, suppress plant growth and water extraction, and lead to the leaching of underlying waste. This report describes plans for two experiments that were designed to test hypotheses concerning the interactive effects of surface gravel admixtures, revegetation, and enhanced precipitation on soil water balance and plant abundance. The first experiment is a factorial field plot set up on the site selected as a soil borrow area for the eventual construction of barriers. The treatments, arranged in a a split-split-plot design structure, include two densities of gravel admix, a mixture of native and introduced grasses, and irrigation to simulate a wetter climate. Changes in soil water storage and plant cover are monitored with neutron moisture probes and point intercept sampling, respectively. The second experiment consists of an array of 80 lysimeters containing several different barrier prototypes. Surface treatments are similar to the field-plot experiment. Drainage is collected from a valve at the base of each lysimeter tube, and evapotranspiration is estimated by subtraction. The lysimeters are also designed to be coupled to a whole-plant gas exchange system that will be used to conduct controlled experiments on evapotranspiration for modeling purposes. 56 refs., 6 figs., 8 tabs.

Waugh, W.J.; Link, S.O. (Pacific Northwest Lab., Richland, WA (USA))

1988-07-01T23:59:59.000Z

277

Comprehensive Test Ban Treaty research and development FY95-96 program plan  

SciTech Connect

The Department of Energy (DOE) is responsible for the United States Government`s (USG) research and development (R&D) functions for monitoring nuclear explosions in the context of a Comprehensive Test Ban Treaty (CTBT). This responsibility includes the November 1993 transfer of the Department of Defense`s (DoD) CTBT R&D responsibility to DOE. The DOE research program builds on the broad base of USG expertise developed historically and includes R&D for detecting, locating, identifying, and characterizing nuclear explosions in all environments. The Office of Research and Development (NN-20), within the Department of Energy`s Office of Nonproliferation and National Security, formulates and executes the efforts necessary to meet the Department`s responsibilities. The following DOE laboratories as a team will support NN-20 in implementing the program plan: Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Pacific Northwest Laboratory, and Sandia National Laboratories. DOE has committed to a cooperative program that draws upon the core competencies of the national laboratories and upon the strengths of other government agencies and the private sector (academia and industry). The integration of resources under a common direction will allow the program to be flexible and responsive to changing technical and policy requirements while maximizing the effectiveness of funding appropriations. DOE will develop and demonstrate appropriate technologies, algorithms, procedures, and integrated systems in a cost-effective and timely manner. The program comprises seismic, radionuclide, hydroacoustic, and infrasound monitoring; on-site inspection; space-based monitoring; and automated data processing elements.

1994-11-01T23:59:59.000Z

278

Mt. Hood geothermal exploratory drilling and testing plan. Old Maid Flat holes No. 1 and No. 7A  

DOE Green Energy (OSTI)

This plan has been prepared to establish the objectives and set forth the procedures and guidelines for conducting geothermal exploratory drilling and testing operations in the Old Maid Flat area of Mt. Hood, Oregon, approximately 50 miles east of Portland. The project will be conducted on lands within the Mt. Hood National Forest, which are currently under Federal Lease OR 13994 to the Northwest Geothermal Corporation. The exploratory geothermal operations will consist of (1) testing an existing 4,000-foot temperature gradient hole to determine the quality of geothermal fluids, and (2) drilling and testing a new 5,000-foot hole to determine overall geothermal reservoir characteristics.

Not Available

1980-05-01T23:59:59.000Z

279

Planning and design of additional East Mesa Geothermal Test Facilities. Phase 1B. Volume I. Final report  

DOE Green Energy (OSTI)

The planning and design of additions to the ERDA East Mesa Geothermal Component Test Facility are discussed. The ERDA East Mesa Geothermal Component Test Facility will provide moderate temperature/low salinity fluids to facilitate comprehensive testing of conversion systems and components under realistic field conditions. The project objectives included development of designs of new wells and modifications to existing wells to improve definitive reservoir evaluations and design of additional test facilities integrated with the limited-scale facilities to accommodate diverse commercial utilization technology experiments. A reservoir utilization evaluation was conducted to establish locations and design drilling programs for three new wells and modifications to existing wells to improve reservoir definition and provide a comprehensive inventory of geothermal well fluids for testing. Ten test facility additions were developed as individual procurement packages of specifications and drawings to facilitate near term construction activation.

Pearson, R.O.

1976-10-01T23:59:59.000Z

280

Plans for Crash-Tested Bridge Railings for Longitudinal Wood Decks on Low-Volume Roads  

E-Print Network (OSTI)

The plans for crashworthy bridge railings for low-volume roads were developed through a cooperative research program involving the USDA Forest Service, Forest Products Laboratory (FPL); the Midwest Roadside Safety Facility, University of Nebraska-Lincoln

United States; Forest Service; Michael A. Ritter; Ronald K. Faller; Steve Bunnell; Paula D. Hilbrich Lee; Barry T. Rosson Abstract

1998-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site, Nevada, Rev. No. 0  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions necessary for the closure of Corrective Action Unit (CAU) 553: Areas 19, 20 Mud Pits and Cellars, Nevada Test Site (NTS), Nevada. It has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. A SAFER may be performed when the following criteria are met: (1) Conceptual corrective actions are clearly identified (although some degree of investigation may be necessary to select a specific corrective action before completion of the Corrective Action Investigation [CAI]); (2) Uncertainty of the nature, extent, and corrective action must be limited to an acceptable level of risk; (3) The SAFER Plan includes decision points and criteria for making data quality objective (DQO) decisions. The purpose of the investigation will be to document and verify the adequacy of existing information; to affirm the decision for clean closure, closure in place, or no further action; and to provide sufficient data to implement the corrective action. The actual corrective action selected will be based on characterization activities implemented under this SAFER Plan. This SAFER Plan identifies decision points developed in cooperation with the Nevada Department of Environmental Protection (NDEP), where the DOE, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) will reach consensus with the NDEP before beginning the next phase of work. Corrective Action Unit 553 is located in Areas 19 and 20 of the NTS, approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 553 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: 19-99-01, Mud Spill; 19-99-11, Mud Spill; 20-09-09, Mud Spill; and 20-99-03, Mud Spill. There is sufficient information and process knowledge from historical documentation and investigations of similar sites (i.e., the expected nature and extent of contaminants of potential concern [COPCs]) to recommend closure of CAU 553 using the SAFER process (FFACO, 1996).

Boehlecke, Robert F.

2006-11-01T23:59:59.000Z

282

Test plan for evaluation of plasma melter technology for vitrification of high-sodium content low-level radioactive liquid wastes  

SciTech Connect

This document provides a test plan for the conduct of plasma arc vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. The vendor providing this test plan and conducting the work detailed within it [one of seven selected for glass melter testing under Purchase Order MMI-SVV-384212] is the Westinghouse Science and Technology Center (WSTC) in Pittsburgh, PA. WSTC authors of the test plan are D. F. McLaughlin, E. J. Lahoda, W. R. Gass, and N. D`Amico. The WSTC Program Manager for this test is D. F. McLaughlin. This test plan is for Phase I activities described in the above Purchase Order. Test conduct includes melting of glass frit with Hanford LLW Double-Shell Slurry Feed waste simulant in a plasma arc fired furnace.

McLaughlin, D.F.; Lahoda, E.J.; Gass, W.R.; D`Amico, N. [ed.

1994-10-20T23:59:59.000Z

283

Test plan for glass melter system technologies for vitrification of high-sodium content low-level radioactive liquid waste, Project No. RDD-43288  

Science Conference Proceedings (OSTI)

This document provides a test plan for the conduct of combustion fired cyclone vitrification testing by a vendor in support of the Hanford Tank Waste Remediation System, Low-Level Waste Vitrification Program. The vendor providing this test plan and conducting the work detailed within it is the Babcock & Wilcox Company Alliance Research Center in Alliance, Ohio. This vendor is one of seven selected for glass melter testing.

Higley, B.A.

1995-03-15T23:59:59.000Z

284

An experimental test plan for the characterization of molten salt thermochemical properties in heat transport systems  

SciTech Connect

Molten salts are considered within the Very High Temperature Reactor program as heat transfer media because of their intrinsically favorable thermo-physical properties at temperatures starting from 300 C and extending up to 1200 C. In this context two main applications of molten salt are considered, both involving fluoride-based materials: as primary coolants for a heterogeneous fuel reactor core and as secondary heat transport medium to a helium power cycle for electricity generation or other processing plants, such as hydrogen production. The reference design concept here considered is the Advanced High Temperature Reactor (AHTR), which is a large passively safe reactor that uses solid graphite-matrix coated-particle fuel (similar to that used in gas-cooled reactors) and a molten salt primary and secondary coolant with peak temperatures between 700 and 1000 C, depending upon the application. However, the considerations included in this report apply to any high temperature system employing fluoride salts as heat transfer fluid, including intermediate heat exchangers for gas-cooled reactor concepts and homogenous molten salt concepts, and extending also to fast reactors, accelerator-driven systems and fusion energy systems. The purpose of this report is to identify the technical issues related to the thermo-physical and thermo-chemical properties of the molten salts that would require experimental characterization in order to proceed with a credible design of heat transfer systems and their subsequent safety evaluation and licensing. In particular, the report outlines an experimental R&D test plan that would have to be incorporated as part of the design and operation of an engineering scaled facility aimed at validating molten salt heat transfer components, such as Intermediate Heat Exchangers. This report builds on a previous review of thermo-physical properties and thermo-chemical characteristics of candidate molten salt coolants that was generated as part of the same project [1]. However, this work focuses on two materials: the LiF-BeF2 eutectic (67 and 33 mol%, respectively, also known as flibe) as primary coolant and the LiF-NaF-KF eutectic (46.5, 11.5, and 52 mol%, respectively, also known as flinak) as secondary heat transport fluid. At first common issues are identified, involving the preparation and purification of the materials as well as the development of suitable diagnostics. Than issues specific to each material and its application are considered, with focus on the compatibility with structural materials and the extension of the existing properties database.

Pattrick Calderoni

2010-09-01T23:59:59.000Z

285

Corrective Action Plan for Corrective Action Unit 563: Septic Systems, Nevada Test Site, Nevada  

SciTech Connect

This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 563, Septic Systems, in accordance with the Federal Facility Agreement and Consent Order. CAU 563 consists of four Corrective Action Sites (CASs) located in Areas 3 and 12 of the Nevada Test Site. CAU 563 consists of the following CASs: #2; CAS 03-04-02, Area 3 Subdock Septic Tank #2; CAS 03-59-05, Area 3 Subdock Cesspool #2; CAS 12-59-01, Drilling/Welding Shop Septic Tanks #2; CAS 12-60-01, Drilling/Welding Shop Outfalls Site characterization activities were performed in 2007, and the results are presented in Appendix A of the CAU 563 Corrective Action Decision Document. The scope of work required to implement the recommended closure alternatives is summarized below. #2; CAS 03-04-02, Area 3 Subdock Septic Tank, contains no contaminants of concern (COCs) above action levels. No further action is required for this site; however, as a best management practice (BMP), all aboveground features (e.g., riser pipes and bumper posts) will be removed, the septic tank will be removed, and all open pipe ends will be sealed with grout. #2; CAS 03-59-05, Area 3 Subdock Cesspool, contains no COCs above action levels. No further action is required for this site; however, as a BMP, all aboveground features (e.g., riser pipes and bumper posts) will be removed, the cesspool will be abandoned by filling it with sand or native soil, and all open pipe ends will be sealed with grout. #2; CAS 12-59-01, Drilling/Welding Shop Septic Tanks, will be clean closed by excavating approximately 4 cubic yards (yd3) of arsenic- and chromium-impacted soil. In addition, as a BMP, the liquid in the South Tank will be removed, the North Tank will be removed or filled with grout and left in place, the South Tank will be filled with grout and left in place, all open pipe ends will be sealed with grout or similar material, approximately 10 yd3 of chlordane-impacted soil will be excavated, and debris within the CAS boundary will be removed. #2; CAS 12-60-01, Drilling/Welding Shop Outfalls, contains no COCs above action levels. No further action is required for this site; however, as a BMP, three drain pipe openings will be sealed with grout.

NSTec Environmental Restoration

2009-03-31T23:59:59.000Z

286

Lakeview GCAP Acceptance | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Lakeview GCAP Acceptance Lakeview GCAP Acceptance Lakeview GCAP Acceptance July 12, 2013 - 1:19pm Addthis The Lakeview, Oregon, Processing Site's groundwater compliance action plan (GCAP) received U.S. Nuclear Regulatory Commission (NRC) concurrence last month. This makes Lakeview the first Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, as amended, Title I site where a finalized GCAP has selected a "no remediation" compliance strategy because concentration limits for regulated constituents have been met. Lakeview, Oregon, location map. The Lakeview processing site, located in south-central Oregon, was once a privately owned and operated facility that processed uranium ore from the nearby Lucky Lass and White King mines from 1958 through 1960. The 258-acre site, including the areas formerly occupied

287

Streamlined Approach for Environmental Restoration Work Plan for Corrective Action Unit 461: Joint Test Assembly Sites and Corrective Action Unit 495: Unconfirmed Joint Test Assembly Sites Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration plan addresses the action necessary for the clean closure of Corrective Action Unit 461 (Test Area Joint Test Assembly Sites) and Corrective Action Unit 495 (Unconfirmed Joint Test Assembly Sites). The Corrective Action Units are located at the Tonopah Test Range in south central Nevada. Closure for these sites will be completed by excavating and evaluating the condition of each artillery round (if found); detonating the rounds (if necessary); excavating the impacted soil and debris; collecting verification samples; backfilling the excavations; disposing of the impacted soil and debris at an approved low-level waste repository at the Nevada Test Site

Jeff Smith

1998-08-01T23:59:59.000Z

288

AN EXAMINATION OF PROPOSED ACCEPTANCE TESTING METHODS  

E-Print Network (OSTI)

requirements are defined by local, State, and Fed eral agencies. It is intended that new HRI's meet stip ulated

Columbia University

289

Corrective Action Investigation Plan for Corrective Action Unit 528: Polychlorinated Biphenyls Contamination, Nevada Test Site, Nevada, Rev. 0  

DOE Green Energy (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach to collect the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 528, Polychlorinated Biphenyls Contamination (PCBs), Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in the southwestern portion of Area 25 on the NTS in Jackass Flats (adjacent to Test Cell C [TCC]), CAU 528 consists of Corrective Action Site 25-27-03, Polychlorinated Biphenyls Surface Contamination. Test Cell C was built to support the Nuclear Rocket Development Station (operational between 1959 and 1973) activities including conducting ground tests and static firings of nuclear engine reactors. Although CAU 528 was not considered as a direct potential source of PCBs and petroleum contamination, two potential sources of contamination have nevertheless been identified from an unknown source in concentrations that could potentially pose an unacceptable risk to human health and/or the environment. This CAU's close proximity to TCC prompted Shaw to collect surface soil samples, which have indicated the presence of PCBs extending throughout the area to the north, east, south, and even to the edge of the western boundary. Based on this information, more extensive field investigation activities are being planned, the results of which are to be used to support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2003-05-08T23:59:59.000Z

290

Management Plan: Demonstration testing and evaluation of in situ soil heating  

Science Conference Proceedings (OSTI)

In this project IITRI will demonstrate an in situ soil heating technology for the removal of hazardous organic contaminants present in the soil. In Situ heating will be accomplished by the application of 60 Hz AC power to the soil. The soil will be heated to a temperature of about 90{degree}C. This technology is suited for the removal of those organic compounds which have a normal boiling point in the range of 100{degree} to 210{degree}C, or else for those which exhibit a pure component vapor pressure of at least 10 mm Hg in the 90{degree} to 100{degree}C temperature range. For example, perchloroethylene, dichlorobenzene, trichlorobenzene, etc. may be removed by in situ AC heating. It is planned to demonstrate the technology by heating approximately 400 tons of soil in the K-1070 Classified Burial Ground located at DOE`s K-25 Site located in Oak Ridge, TN. It is estimated that the heating portion of the demonstration will take approximately 3 weeks at an average power input rate of 150 to 175 kill. IITRI expects to spend considerable time in the front end reviewing site characteristics, preparing detail design, developing Health and Safety Plans and other documents needed to obtain regulatory approval for the demonstration, arranging for site sampling, infrastructure development and document preparation. It is anticipated that site activities will begin in approximately 5 to 6 months. This contract was signed on September 30, 1993. IITRI started work on it in October 1993. It is planned to complete the demonstration and submit approved final reports by September 30, 1994. This project has 12 tasks and four major milestones. The major milestones and their planned completion dates are presented.

Dev, H.

1993-11-01T23:59:59.000Z

291

Common Information Model (CIM) 2012 Update: EPRI Development, Testing Activity, and Plans  

Science Conference Proceedings (OSTI)

This report provides a synopsis of the Electric Power Research Institute’s (EPRI’s) plan for Common Information Model (CIM) support going forward. This report also includes the activity of the International Electrotechnical Commission (IEC) Technical Committee (TC) Working Groups 13 and 14 for the year 2012. Additionally, it incorporates the proceedings of the two CIM International User Group meetings in Windsor, England, and New Orleans, Louisiana, in 2012. Finally, executive summaries ...

2013-03-20T23:59:59.000Z

292

Generalized beta prior models on fraction defective in reliability test planning  

Science Conference Proceedings (OSTI)

In many reliability analyses, the probability of obtaining a defective unit in a production process should not be considered constant even though the process is stable and in control. Engineering experience or previous data of similar or related products ... Keywords: 62N03, 62N05, Average producer and consumer risks, Generalized beta distribution, Maximum entropy prior, Quantiles, Reliability demonstration sampling plan, Shifted exponential distribution

Arturo J. Fernández; Carlos J. Pérez-González

2012-07-01T23:59:59.000Z

293

Work plan for upgrade of SY-101 Hydrogen Mitigation Test Project Data Acquisition and Control System (DACS-1)  

DOE Green Energy (OSTI)

The purpose of this effort is to upgrade the existing DACS-1 used for control and data acquisition in support of the hydrogen mitigation program for tank 101-SY. The planned upgrades will enhance the system capabilities to support additional mitigation projects and improve the system operability by implementing changes identified during operation of the system to date. Once the upgrades have been implemented, the DACS-1 system should operate as it did prior to the upgrade, but with greatly increased speed and capability. No retraining of Test Engineers will be required; the upgrade is designed to be transparent to those who operate it, with only a noticeable increase in the speed of the system. This work plan defines the tasks required for implementing the upgrade. It identifies deliverables, responsible organizations and individuals, interfaces, and schedule. This upgrade effort employs system engineering principles wherever applicable.

Truitt, R.W.

1994-08-01T23:59:59.000Z

294

Order acceptance using genetic algorithms  

Science Conference Proceedings (OSTI)

This paper uses a genetic algorithm to solve the order-acceptance problem with tardiness penalties. We compare the performance of a myopic heuristic and a genetic algorithm, both of which do job acceptance and sequencing, using an upper bound based on ... Keywords: Genetic algorithms, Order acceptance, Scheduling

Walter O. Rom; Susan A. Slotnick

2009-06-01T23:59:59.000Z

295

Test Planning for Mixed-Signal SOCs with Wrapped Analog Cores  

E-Print Network (OSTI)

Many SOCs today contain both digital and analog embedded cores. Even though the test cost for such mixed-signal SOCs is significantly higher than that for digital SOCs, most prior research in this area has focused exclusively on digital cores. We propose a low-cost test development methodology for mixed-signal SOCs that allows the analog and digital cores to be tested in a unified manner, thereby minimizing the overall test cost. The analog cores in the SOC are wrapped such that they can be accessed using a digital test access mechanism (TAM). We evaluate the impact of the use of analog test wrappers on area overhead and test time. To reduce area overhead, we present an analog test wrapper optimization technique, which is then combined with TAM optimization in a cost-oriented heuristic approach for test scheduling. We also demonstrate the feasibility of using analog wrappers by presenting transistor-level simulations for an analog wrapper and a representative core. We present experimental results on test sche...

Sehgal, Anuja; Ozev, Sule; Chakrabarty, Krishnendu

2011-01-01T23:59:59.000Z

296

Liquid Effluent Monitoring Information System test plans releases 2.0 and 3.0  

Science Conference Proceedings (OSTI)

The Liquid Effluent Monitoring Information System (LEMIS) is being developed as the organized information repository facility in support of the liquid effluent monitoring requirements of the Tri-Party Agreement. It is necessary to provide an automated repository into which the results from liquid effluent sampling will be placed. This repository must provide for effective retention, review, and retrieval of selected sample data by authorized persons and organizations. This System Architecture document is the aggregation of the DMR P+ methodology project management deliverables. Together they represent a description of the project and its plan through four Releases, corresponding to the definition and prioritization of requirements defined by the user.

Guettler, D.A.

1995-05-26T23:59:59.000Z

297

Nuclear fuels technologies: Thermally induced gallium removal system (TIGRS), fiscal year 1998 research and development test plan  

SciTech Connect

This document details the research and development (R and D) activities that will be conducted in Fiscal Year 1998 (FY98) by the Thermally Induced Gallium Removal System (TIGRS) team for the Department of Energy Office of Fissile Materials Disposition. This work is a continuation and extension of experimental activities that have been conducted in support of using weapons-derived plutonium in the fabrication of mixed-oxide (MOX) nuclear fuel for reactor-based plutonium disposition. The ultimate purpose of this work is to demonstrate adequate Thermally Induced Gallium Removal with a prototypic system. This Test Plan presents more than the FY98 R and D efforts in order to frame the Task in its entirety. To achieve the TIGRS Program objectives, R and D activities during the next two years will be focused on (1) process development leading to a prototypic TIGRS design, and (2) prototypic TIGRS design and testing leading to and including a prototypic demonstration of TIGRS operation. Both the process development and system testing efforts will consist of a series of surrogate-based cold tests and plutonium-based hot tests. Some of this testing has already occurred and will continue into FY99.

Buksa, J.J.; Butt, D.P.; Chidester, K.; DeMuth, S.F.; Havrilla, G.J.; James, C.A.; Kolman, D.G.

1997-12-24T23:59:59.000Z

298

Hanford Site solid waste acceptance criteria  

SciTech Connect

Order 5820.2A requires that each treatment, storage, and/or disposal facility (referred to in this document as TSD unit) that manages low-level or transuranic waste (including mixed waste and TSCA PCB waste) maintain waste acceptance criteria. These criteria must address the various requirements to operate the TSD unit in compliance with applicable safety and environmental requirements. This document sets forth the baseline criteria for acceptance of radioactive waste at TSD units operated by WMH. The criteria for each TSD unit have been established to ensure that waste accepted can be managed in a manner that is within the operating requirements of the unit, including environmental regulations, DOE Orders, permits, technical safety requirements, waste analysis plans, performance assessments, and other applicable requirements. Acceptance criteria apply to the following TSD units: the Low-Level Burial Grounds (LLBG) including both the nonregulated portions of the LLBG and trenches 31 and 34 of the 218-W-5 Burial Ground for mixed waste disposal; Central Waste Complex (CWC); Waste Receiving and Processing Facility (WRAP); and T Plant Complex. Waste from all generators, both from the Hanford Site and from offsite facilities, must comply with these criteria. Exceptions can be granted as provided in Section 1.6. Specific waste streams could have additional requirements based on the 1901 identified TSD pathway. These requirements are communicated in the Waste Specification Records (WSRds). The Hanford Site manages nonradioactive waste through direct shipments to offsite contractors. The waste acceptance requirements of the offsite TSD facility must be met for these nonradioactive wastes. This document does not address the acceptance requirements of these offsite facilities.

Ellefson, M.D.

1998-07-01T23:59:59.000Z

299

Spray nozzle pattern test for the DWPF HEME task technical plan  

SciTech Connect

The DWPF melter off-gas systems have two High-Efficiency Mist Eliminators (HEME) upstream of the High-Efficiency Particulates Air filters (HEPA) to remove fine droplets and particulates from the off-gas. The HEMEs consist of three filter candles. Each filter candle consists of a 0.5 inch layer of 30 micron diameter glass fiber on the upstream face followed by a 2.5 inch layer of 8-micron-diameter glass fiber packed at 11 lbs per cubic foot. The coarse 30-micron filter serves as a prefilter and extends the life of the HEME filter. To have an acceptable fitter life and an efficient HEMIE operation, air atomized water is sprayed into the off-gas stream entering the 14EME and onto the HEMEE surface. The water spray keeps the HEME wet which would dissolve the soluble particulates and enhance the HEME efficiency. A properly designed spray nozzle should wet the three candies of the HEME filter completely.

Lee, L.

1991-11-15T23:59:59.000Z

300

Engineering design and test plan for demonstrating DETOX treatment of mixed wastes  

SciTech Connect

DETOX is a cocatalyzed wet oxidation process in which the catalysts are a relatively great concentration of iron ions (typically as iron(III) chloride) in the presence of small amounts of platinum and ruthenium ions. Organic compounds are oxidized completely to carbon dioxide, water, and (if chlorinated) hydrogen chloride. The process has shown promise as a non-thermal alternative to incineration for treatment and/or volume reduction of hazardous, radioactive, and mixed wastes. Design and fabrication of a demonstration unit capable of destroying 25. Kg/hr of organic material is now in progress. This paper describes the Title 2 design of the demonstration unit, and the planned demonstration effort at Savannah River Site (SRS) and Weldon Spring Site Remedial Action Project (WSSRAP).

Goldblatt, S.; Dhooge, P.

1995-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Demonstration testing and evaluation of in situ soil heating. Health and safety plan (Revision 2)  

SciTech Connect

This document is the Health and Safety Plan (HASP) for the demonstration of IITRI`s EM Treatment Technology. In this process, soil is heated in situ by means of electrical energy for the removal of hazardous organic contaminants. This process will be demonstrated on a small plot of contaminated soil located in the Pit Area of Classified Burial Ground K-1070-D, K-25 Site, Oak Ridge, TN. The purpose of the demonstration is to remove organic contaminants present in the soil by heating to a temperature range of 85{degrees} to 95{degrees}C. The soil will be heated in situ by applying 60-Hz AC power to an array of electrodes placed in boreholes drilled through the soil. In this section a brief description of the process is given along with a description of the site and a listing of the contaminants found in the area.

Dev, H.

1994-12-28T23:59:59.000Z

302

Corrective Action Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada  

SciTech Connect

The purpose of this Corrective Action Plan is to provide the strategy and methodology to close the Area 25 Vehicle Washdown. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was performed during March 1999 at each CAS. Soil samples were collected at each CAS using a direct-push method. Soil samples were collected from the surface to depths of up to 2.7 m (9 ft) below ground surface. In addition, the gravel sump at CAS 25-07-02 (F and J Roads Pad) was sampled using a backhoe. Soil samples were collected from depths of 0 to 0.6 m (0 to 2 ft) below the gravel layer in the sump.

D. S. Tobiason

2000-05-01T23:59:59.000Z

303

Designing and testing the neutron source deployment system and calibration plan for a dark matter detector  

E-Print Network (OSTI)

In this thesis, we designed and tested a calibration and deployment system for the MiniCLEAN dark matter detector. The deployment system uses a computer controlled winch to lower a canister containing a neutron source into ...

Westerdale, Shawn (Shawn S.)

2011-01-01T23:59:59.000Z

304

Inlet Air Spray Cooler for Gas Turbine Power Augmentation: Plans, Specifications and Test Results  

Science Conference Proceedings (OSTI)

Field tests on a commercial combustion turbine generator show that novel cooling technology economically augments power output. This report details the results and presents key spray cooler design parameters.

1997-07-28T23:59:59.000Z

305

Tobacco industry consumer research on socially acceptable cigarettes  

E-Print Network (OSTI)

Callaham P. Philip Morris. Ambrosia II (Aromatek 245) FocusBurnett Co. Philip Morris. Ambrosia Test Planning Session.Morris. Research Results On Ambrosia Concept Test. 1989. (

Ling, P M; Glantz, Stanton A. Ph.D.

2005-01-01T23:59:59.000Z

306

Test Plan for Evaluating Hammer and Fixed Cutter Grinders Using Multiple Varieties and Moistures of Biomass Feedstock  

Science Conference Proceedings (OSTI)

Biomass preprocessing is a critical operation in the preparation of feedstock for the front-end of a cellulosic ethanol biorefinery. Its purpose is to chop, grind, or otherwise format the biomass material into a suitable feedstock for optimum conversion to ethanol and other bioproducts. Without this operation, the natural size, bulk density, and flowability characteristics of harvested biomass would decrease the capacities and efficiencies of feedstock assembly unit operations and biorefinery conversion processes to the degree that programmatic cost targets could not be met. The preprocessing unit operation produces a bulk flowable material that 1) improves handling and conveying efficiencies throughout the feedstock assembly system and biorefinery 2) increases biomass surface areas for improved pretreatment efficiencies, 3) reduces particle sizes for improved feedstock uniformity and density, and 4) fractionates structural components for improved compositional quality. The Idaho National Laboratory (INL) is tasked with defining the overall efficiency/effectiveness of current commercial hammer and fixed cutter grinding systems and other connecting systems such as harvest and collection, storage, transportation, and handling for a wide variety of feedstock types used in bioethanol or syngas production. This test plan details tasks and activities for two separate full-scale grinding tests: Material Characterization Test and Machine Characterization Test. For the Material Characterization Test, a small amount (~5-7 tons each) of several feedstock varieties will be ground. This test will define the fractionation characteristics of the grinder that affect the bulk density, particle size distribution, and quality of the size reduced biomass resulting from different separation screen sizes. A specific screen size will be selected based on the characteristics of the ground material. The Machine Characterization Test will then use this selected screen to grind several 30-ton batches of different feedstock varieties and moistures. This test will focus on identifying the performance parameters of the grinding system specific to the feed, fractionation, and screen separation components and their affect on machine capacity and efficiency.

Not listed

2007-07-01T23:59:59.000Z

307

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada Test Site, Nevada, Revision 1  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. The Test Cell C (TCC) Facility is located in Area 25 of the Nevada Test Site (NTS) approximately 25 miles northwest of Mercury, Nevada (Figure 1). CAU 116 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) of 1996 (as amended February 2008) and consists of two Corrective Action Sites (CASs): (1) CAS 25-23-20, Nuclear Furnace Piping; and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 is described in the FFACO as the TCC Facility but actually includes Building 3210 and attached concrete shield wall only. CAU 116 will be closed by demolishing Building 3210, the attached concrete shield wall, and the nuclear furnace piping. In addition, as a best management practice (BMP), Building 3211 (moveable shed) will be demolished due to its close proximity to Building 3210. This will aid in demolition and disposal operations. Radiological surveys will be performed on the demolition debris to determine the proper disposal pathway. As much of the demolition debris as space allows will be placed into the Building 3210 basement structure. After filling to capacity with demolition debris, the basement structure will be mounded or capped and closed with administrative controls. Prior to beginning demolition activities and according to an approved Sampling and Analysis Plan (SAP), representative sampling of surface areas that are known, suspected, or have the potential to contain hazardous constituents such as lead or polychlorinated biphenyls (PCBs) will be performed throughout all buildings and structures. Sections 2.3.2, 4.2.2.2, 4.2.2.3, 4.3, and 6.2.6.1 address the methodologies employed that assure the solid debris placed in the basement structure will not contain contaminants of concern (COCs) above hazardous waste levels. The anticipated post-closure-posting requirements for the mounded/capped basement structure, as well as for the entire CAU, are addressed in Section 4.2.10. The site contains radiologically impacted surfaces and hazardous materials. Based on review of the historical information for CAU 116 and recent site inspections, there is sufficient process knowledge to close CAU 116 using the SAFER process. CAUs that may be closed using the SAFER process have conceptual corrective actions that are clearly identified. Consequently, corrective action alternatives can be chosen prior to completing a corrective action investigation, given anticipated investigation results. The SAFER process combines elements of the data quality objective (DQO) process and the observational approach to plan and conduct closure activities. The DQOs are used to identify the problem and define the type and quality of data needed to complete the investigation phase of the SAFER process. The purpose of the investigation phase is to verify the adequacy of existing information used to determine the chosen corrective action. The observational approach provides a framework for managing uncertainty during the planning and decision-making phases of the project. The SAFER process allows for technical decisions to be made based on information gathered during site visits, interviews, meetings, research, and a consensus of opinion by the decontamination and decommissioning (D&D) team members. Any uncertainties are addressed by documented assumptions that are verified by sampling and analysis, data evaluation, onsite observations, and contingency plans, as necessary. Closure activities may proceed simultaneously with site characterization as sufficient data are gathered to confirm or disprove the assumptions made during selection of the corrective action. If, at any time during the closure process, new information is discovered that indicates that closure activities should be revised, closure activities will be reevaluated as appropriate. Based on a detailed review of historical documentation, there is sufficient process know

NSTec Environmental Restoration

2008-12-01T23:59:59.000Z

308

C:\WINNT\Profiles\caseys\DESKTOP\L T R C\PICs Program\Permanent Markers\PM Test Plan.PDF  

NLE Websites -- All DOE Office Websites (Extended Search)

0-3175 0-3175 Permanent Markers Testing Program Plan September 28, 2000 United States Department of Energy Waste Isolation Pilot Plant Carlsbad Area Office Carlsbad, New Mexico Permanent Markers Testing Program Plan Waste Isolation Pilot Plant Carlsbad, New Mexico DOE/WIPP 00-3175 September 28, 2000 DOE/WIPP 00-3175 -i- Table of Contents List of Abbreviations and Acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 1.0 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 2.0 Markers Testing Program Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 3.0 Markers Systems Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 3.1 Screening Phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.1.1 Large Surface Markers . . . . . . . . . . . .

309

WIPP - Passive Institutional Controls (PICs) Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Plans Files below are in PDF format and can be viewed with Adobe Acrobat Reader. PICs Implementation Plan Permanent Markers Implementation Plan Permanent Markers Testing Plan...

310

Quality Assurance Project Plan for the Gas Generation Testing Program at the INEL  

SciTech Connect

The data quality objectives (DQOs) for the Program are to evaluate compliance with the limits on total gas generation rates, establish the concentrations of hydrogen and methane in the total gas flow, determine the headspace concentration of VOCs in each drum prior to the start of the test, and obtain estimates of the concentrations of several compounds for mass balance purposes. Criteria for the selection of waste containers at the INEL and the parameters that must be characterized prior to and during the tests are described. Collection of gaseous samples from 55-gallon drums of contact-handled transuranic waste for the gas generation testing is discussed. Analytical methods and calibrations are summarized. Administrative quality control measures described in this QAPjP include the generation, review, and approval of project documentation; control and retention of records; measures to ensure that personnel, subcontractors or vendors, and equipment meet the specifications necessary to achieve the required data quality for the project.

NONE

1994-10-01T23:59:59.000Z

311

Moving granular-bed filter development program, Option III: Development of moving granular-bed filter technology for multi-contaminant control. Task 14: Test plan; Topical report  

Science Conference Proceedings (OSTI)

An experimental test plan has been prepared for DOE/METC review and approval to develop a filter media suitable for multi-contaminant control in granular-bed filter (GBF) applications. The plan includes identification, development, and demonstration of methods for enhanced media morphology, chemical reactivity, and mechanical strength. The test plan includes media preparation methods, physical and chemical characterization methods for fresh and reacted media, media evaluation criteria, details of test and analytical equipment, and test matrix of the proposed media testing. A filter media composed of agglomerated limestone and clay was determined to be the best candidate for multi-contaminate control in GBF operation. The combined limestone/clay agglomerate has the potential to remove sulfur and alkali species, in addition to particulate, and possibly halogens and trace heavy metals from coal process streams.

Haas, J.C.; Olivo, C.A.; Wilson, K.B.

1994-04-01T23:59:59.000Z

312

Corrective Action Decision Document/ Corrective Action Plan for Corrective Action Unit 443: Central Nevada Test Area-Subsurface Central Nevada Test Area, Nevada, Rev. No. 0  

DOE Green Energy (OSTI)

This Corrective Action Decision Document/Corrective Action Plan (CADD/CAP) has been prepared for the subsurface at the Central Nevada Test Area (CNTA) Corrective Action Unit (CAU) 443, CNTA - Subsurface, Nevada, in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). CAU 443 is located in Hot Creek Valley in Nye County, Nevada, north of U.S. Highway 6, about 48 kilometers north of Warm Springs, Nevada. The CADD/CAP combines the decision document (CADD) with the corrective action plan (CAP) and provides or references the specific information necessary to recommend corrective actions for the UC-1 Cavity (Corrective Action Site 58-57-001) at CAU 443, as provided in the FFACO. The purpose of the CADD portion of the document (Section 1.0 to Section 4.0) is to identify and provide a rationale for the selection of a recommended corrective action alternative for the subsurface at CNTA. To achieve this, the following tasks were required: (1) Develop corrective action objectives; (2) Identify corrective action alternative screening criteria; (3) Develop corrective action alternatives; (4) Perform detailed and comparative evaluations of the corrective action alternatives in relation to the corrective action objectives and screening criteria; and (5) Recommend a preferred corrective action alternative for the subsurface at CNTA. A Corrective Action Investigation (CAI) was performed in several stages from 1999 to 2003, as set forth in the ''Corrective Action Investigation Plan for the Central Nevada Test Area Subsurface Sites (Corrective Action Unit No. 443)'' (DOE/NV, 1999). Groundwater modeling was the primary activity of the CAI. Three phases of modeling were conducted for the Faultless underground nuclear test. The first involved the gathering and interpretation of geologic and hydrogeologic data into a three-dimensional numerical model of groundwater flow, and use of the output of the flow model for a transport model of radionuclide release and migration behavior (Pohlmann et al., 2000). The second modeling phase (known as a Data Decision Analysis [DDA]) occurred after the Nevada Division of Environmental Protection reviewed the first model and was designed to respond to concerns regarding model uncertainty (Pohll and Mihevc, 2000). The third modeling phase updated the original flow and transport model to incorporate the uncertainty identified in the DDA, and focused the model domain on the region of interest to the transport predictions. This third phase culminated in the calculation of contaminant boundaries for the site (Pohll et al., 2003).

Susan Evans

2004-11-01T23:59:59.000Z

313

Second Line of Defense, Megaports Initiative, Operational Testing and Evaluation Plan, Port of Lazaro Cardenas, Mexico  

Science Conference Proceedings (OSTI)

The purpose of the Operational Testing and Evaluation (OT&E) phases of the project is to prepare for turnover of the Megaports System supplied by U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA)—located at the Export Lanes of the Port of Lazaro Cardenas, Mexico—to the Government of Mexico (GOM).

Hughes, Jamie D.

2012-05-30T23:59:59.000Z

314

Corrective Action Investigation Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada: Revision 0  

SciTech Connect

The general purpose of this Corrective Action Investigation Plan is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective action alternatives (CAAs) for Corrective Action Unit (CAU) 543: Liquid Disposal Units, Nevada Test Site (NTS), Nevada. Located in Areas 6 and 15 on the NTS, CAU 543 is comprised of a total of seven corrective action sites (CASs), one in Area 6 and six in Area 15. The CAS in Area 6 consists of a Decontamination Facility and its components which are associated with decontamination of equipment, vehicles, and materials related to nuclear testing. The six CASs in Area 15 are located at the U.S. Environmental Protection Agency Farm and are related to waste disposal activities at the farm. Sources of possible contamination at Area 6 include potentially contaminated process waste effluent discharged through a process waste system, a sanitary waste stream generated within buildings of the Decon Facility, and radiologically contaminated materials stored within a portion of the facility yard. At Area 15, sources of potential contamination are associated with the dairy operations and the animal tests and experiments involving radionuclide uptake. Identified contaminants of potential concern include volatile organic compounds, semivolatile organic compounds, petroleum hydrocarbons, pesticides, herbicides, polychlorinated biphenyls, metals, and radionuclides. Three corrective action closure alternatives - No Further Action, Close in Place, or Clean Closure - will be recommended for CAU 543 based on an evaluation of all the data quality objective-related data. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of CAAs that will be presented in the Corrective Action Decision Document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2004-05-03T23:59:59.000Z

315

Planning, drilling, logging, and testing of energy extraction hole EE-1, Phases I and II  

DOE Green Energy (OSTI)

Energy Extraction Hole No. 1 (EE-1) is the second deep hole drilled into the Precambrian-age granitic rocks of the Jemez Mountains of north-central New Mexico. EE-1 was drilled to intersect a hydraulic fracture extending outward from near the bottom of previously drilled hole GT-2, thus completing the underground circulation loop required for the hot dry rock geothermal energy extraction experiment. Directional drilling techniques were used to intersect the fracture zone. In addition, high-temperature instrumentation and equipment development, hydraulic fracturing experiments, pressure-flow testing of the fracture systems, and fracture mapping and borehole-ranging technique activities were conducted. The drilling, logging, and testing operations in EE-1 are described.

Pettitt, R.A.

1977-08-01T23:59:59.000Z

316

Treatability Test Plan for 300 Area Uranium Stabilization through Polyphosphate Injection  

Science Conference Proceedings (OSTI)

The U.S. Department of Energy has initiated a study into possible options for stabilizing uranium at the 300 Area using polyphosphate injection. As part of this effort, PNNL will perform bench- and field-scale treatability testing designed to evaluate the efficacy of using polyphosphate injections to reduced uranium concentrations in the groundwater to meet drinking water standards (30 ug/L) in situ. This technology works by forming phosphate minerals (autunite and apatite) in the aquifer that directly sequester the existing aqueous uranium in autunite minerals and precipitates apatite minerals for sorption and long term treatment of uranium migrating into the treatment zone, thus reducing current and future aqueous uranium concentrations. Polyphosphate injection was selected for testing based on technology screening as part of the 300-FF-5 Phase III Feasibility Study for treatment of uranium in the 300-Area.

Vermeul, Vincent R.; Williams, Mark D.; Fritz, Brad G.; Mackley, Rob D.; Mendoza, Donaldo P.; Newcomer, Darrell R.; Rockhold, Mark L.; Williams, Bruce A.; Wellman, Dawn M.

2007-06-01T23:59:59.000Z

317

Performance Criteria and Test Plans for Grid Integration of Renewable Generation  

Science Conference Proceedings (OSTI)

Distribution utilities are expected to face challenges in the grid integration of renewable generation as relative numbers and penetration levels increase. This report describes the ongoing development of performance criteria, test protocols and facilities to support the smooth integration of distributed generation (DG). It is specifically aimed at requirements for relatively high penetration of distributed generation, with emphasis on inverters as the primary interfacing device. Brief discussions of exi...

2010-12-31T23:59:59.000Z

318

Consumers (Consumer Acceptance and Charging Infrastructure) Consumer...  

NLE Websites -- All DOE Office Websites (Extended Search)

CONSUMERS (CONSUMER ACCEPTANCE AND CHARGING INFRASTRUCTURE) EV Everywhere Workshop July 30, 2012 Consumer Acceptance Group A Breakout Session 1 - Brainstorm Consumer Acceptance...

319

Corrective Action Investigation Plan for Corrective Action Unit 375: Area 30 Buggy Unit Craters, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 375 is located in Areas 25 and 30 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 375 comprises the two corrective action sites (CASs) listed below: • 25-23-22, Contaminated Soils Site • 30-45-01, U-30a, b, c, d, e Craters Existing information on the nature and extent of potential contamination present at the CAU 375 CASs is insufficient to evaluate and recommend corrective action alternatives (CAAs). This document details an investigation plan that will provide for the gathering of sufficient information to evaluate and recommend CAAs. Corrective Action Site 25-23-22 is composed of the releases associated with nuclear rocket testing at Test Cell A (TCA). Test Cell A was used to test and develop nuclear rocket motors as part of the Nuclear Rocket Development Station from its construction in 1958 until 1966, when rocket testing began being conducted at Test Cell C. The rocket motors were built with an unshielded nuclear reactor that produced as much as 1,100 kilowatts (at full power) to heat liquid hydrogen to 4,000 degrees Fahrenheit, at which time the expanded gases were focused out a nozzle to produce thrust. The fuel rods in the reactor were not clad and were designed to release fission fragments to the atmosphere, but due to vibrations and loss of cooling during some operational tests, fuel fragments in excess of planned releases became entrained in the exhaust and spread in the immediate surrounding area. Cleanup efforts have been undertaken at times to collect the fuel rod fragments and other contamination. Previous environmental investigations in the TCA area have resulted in the creation of a number of use restrictions. The industrial area of TCA is encompassed by a fence and is currently posted as a radioactive material area. Corrective Action Site 30-45-01 (releases associated with the Buggy Plowshare test) is located in Area 30 on Chukar Mesa. It was a Plowshare test where five nuclear devices were buried 140 feet (ft) deep in a row at 150-ft intervals. These devices were detonated on March 12, 1968, to produce a trench 254 ft wide, 865 ft long, and 70 ft deep. The mesa where the test was conducted is surrounded on three sides by ravines, and the entire end of the mesa is fenced and posted as a contamination area. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend CAAs. Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on December 2, 2009, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 375.

Patrick Matthews

2010-03-01T23:59:59.000Z

320

test | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

test test test test More Documents & Publications Software Testing Checklist February2GuidanceMemorandum.pdf Site Transition Plan Guidance...

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS  

Science Conference Proceedings (OSTI)

Deactivation activities are currently in progress at the Fast Flux Test Facility. These deactivation activities are intended to remove most hazardous materials and prepare the facility for final disposition. The two major hazards to be removed are the nuclear fuel and the alkali metal (most sodium) coolant. The fuel and coolant removal activities are proceeding well and are expected to complete in 2006. Plant systems are being shut down as allowed by completion of various fuel and coolant removal actions. A Decommissioning Environmental Impact Statement is in progress to evaluate a range of potential final disposition end states.

BURKE, T.M.

2005-04-13T23:59:59.000Z

322

Engineering test plan for Tank 241-SY-101 in situ viscometer. Revision 1  

DOE Green Energy (OSTI)

To obtain in situ measurements of the rheological properties within tank 241-SY-101, this document will implement the test strategy defined in PNLMIT-041994, Acquisition and Reduction of Data Obtained in Tank SY-101 with the Ball Rheometer. Instructions for all sequences are defined within the procedure. All safety requirements as defined in LA-UR-92-3196, A Safety Assessment for Proposed Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-101-SY have been implemented into this procedure.

Stokes, T.I.; Pearce, K.L.

1994-10-12T23:59:59.000Z

323

Corrective Action Plan for Corrective Action Unit 490: Station 44 Burn Area, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 490, Station 44 Burn Area is located on the Tonopah Test Range (TTR). CAU 490 is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) and includes for Corrective Action Sites (CASs): (1) Fire Training Area (CAS 03-56-001-03BA); (2) Station 44 Burn Area (CAS RG-56-001-RGBA); (3) Sandia Service Yard (CAS 03-58-001-03FN); and (4) Gun Propellant Burn Area (CAS 09-54-001-09L2).

K. B. Campbell

2002-04-01T23:59:59.000Z

324

Dry Coal Feed System and Multi-Element Injector Test Plan  

DOE Green Energy (OSTI)

Pratt & Whitney Rocketdyne (PWR) has developed an innovative gasifier concept that uses rocket engine technology to significantly improve gasifier performance, life, and cost compared to current state-of-the-art systems. One key feature of the PWR concept is the use of an ultra-dense phase feed system to provide dry coal to the multi-element injector. This report describes the layout, test procedures, instrumentation and data acquisition requirements for an ultradense phase multi-element injector and feed system to be operated at the University of North Dakota Energy and Environmental Research Center (UNDEERC).

Ken Sprouse; Fred Widman; Alan Darby

2006-08-30T23:59:59.000Z

325

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 499: Hydrocarbon Spill Site, Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the action necessary for the closure of Corrective Action Unit (CAU) 499, Hydrocarbon Spill Site, Tonopah Test Range (TTR). This CAU is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996). CAU 499 is located on the TTR and consists of the following single Corrective Action Site (CAS) (Figure 1): CAS RG-25-001-RD24 - Radar 24 Diesel Spill Site is a diesel fuel release site that is assumed to have been cased by numerous small historical over fillings, spills and leaks from an above-ground storage tank (AST) over a period of 36 years. The tank was located on the north side of Building 24-50 on the TTR approximately 4.0 kilometers (2.5 miles) southwest of the Area 3 Compound at the end of the Avenue 24.

T. M. Fitzmaurice

2001-09-01T23:59:59.000Z

326

Recovery Efficiency Test Project: Phase 1, Activity report. Volume 1: Site selection, drill plan preparation, drilling, logging, and coring operations  

SciTech Connect

The recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. BDM corporation located, planned, and drilled a long radius turn horizontal well in the Devonian shale Lower Huron section in Wayne County, West Virginia, demonstrating that state-of-the-art technology is capable of drilling such wells. BDM successfully tested drilling, coring, and logging in a horizontal well using air as the circulating medium; conducted reservoir modeling studies to protect flow rates and reserves in advance of drilling operations; observed two phase flow conditions in the wellbore not observed previously; cored a fracture zone which produced gas; observed that fractures in the core and the wellbore were not systematically spaced (varied from 5 to 68 feet in different parts of the wellbore); observed that highest gas show rates reported by the mud logger corresponded to zone with lowest fracture spacing (five feet) or high fracture frequency. Four and one-half inch casting was successfully installed in the borehole and was equipped to isolate the horizontal section into eight (8) zones for future testing and stimulation operations. 6 refs., 48 figs., 10 tabs.

Overbey, W.K. Jr.; Carden, R.S.; Kirr, J.N.

1987-04-01T23:59:59.000Z

327

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 408: Bomblet Target Area, Tonopah Test Range, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration Plan provides the details for the closure of Corrective Action Unit (CAU) 408, Bomblet Target Area. CAU 408 is located at the Tonopah Test Range and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. One Corrective Action Site (CAS) is included in CAU 408: {lg_bullet} CAS TA-55-002-TAB2, Bomblet Target Areas Based on historical documentation, personnel interviews, process knowledge, site visits, aerial photography, multispectral data, preliminary geophysical surveys, and the results of data quality objectives process (Section 3.0), clean closure will be implemented for CAU 408. CAU 408 closure activities will consist of identification and clearance of bomblet target areas, identification and removal of depleted uranium (DU) fragments on South Antelope Lake, and collection of verification samples. Any soil containing contaminants at concentrations above the action levels will be excavated and transported to an appropriate disposal facility. Based on existing information, contaminants of potential concern at CAU 408 include explosives. In addition, at South Antelope Lake, bomblets containing DU were tested. None of these contaminants is expected to be present in the soil at concentrations above the action levels; however, this will be determined by radiological surveys and verification sample results. The corrective action investigation and closure activities have been planned to include data collection and hold points throughout the process. Hold points are designed to allow decision makers to review the existing data and decide which of the available options are most suitable. Hold points include the review of radiological, geophysical, and analytical data and field observations.

NSTec Environmental Management

2006-10-01T23:59:59.000Z

328

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (FFACO, 1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. (1) CAS 01-23-02, Atmospheric Test Site - High Alt; (2) CAS 02-23-02, Contaminated Areas (2); (3) CAS 02-23-03, Contaminated Berm; (4) CAS 02-23-10, Gourd-Amber Contamination Area; (5) CAS 02-23-11, Sappho Contamination Area; (6) CAS 02-23-12, Scuttle Contamination Area; (7) CAS 03-23-24, Seaweed B Contamination Area; (8) CAS 03-23-27, Adze Contamination Area; (9) CAS 03-23-28, Manzanas Contamination Area; (10) CAS 03-23-29, Truchas-Chamisal Contamination Area; (11) CAS 04-23-02, Atmospheric Test Site T4-a; (12) CAS 05-23-06, Atmospheric Test Site; (13) CAS 09-23-06, Mound of Contaminated Soil; (14) CAS 10-23-04, Atmospheric Test Site M-10; and (15) CAS 18-23-02, U-18d Crater (Sulky). Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107. CAU 107 closure activities will consist of verifying that the current postings required under Title 10 Code of Federal Regulations (CFR) Part 835 are in place and implementing use restrictions (URs) at two sites, CAS 03-23-29 and CAS 18-23-02. The current radiological postings combined with the URs are adequate administrative controls to limit site access and worker dose.

NSTec Environmental Restoration

2008-09-30T23:59:59.000Z

329

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 107: Low Impact Soil Sites, Nevada Test Site, Nevada  

SciTech Connect

This Streamlined Approach for Environmental Restoration Plan covers activities associated with Corrective Action Unit (CAU) 107 of the Federal Facility Agreement and Consent Order (1996 [as amended February 2008]). CAU 107 consists of the following Corrective Action Sites (CASs) located in Areas 1, 2, 3, 4, 5, 9, 10, and 18 of the Nevada Test Site. {sm_bullet} CAS 01-23-02, Atmospheric Test Site - High Alt{sm_bullet} CAS 02-23-02, Contaminated Areas (2){sm_bullet} CAS 02-23-03, Contaminated Berm{sm_bullet} CAS 02-23-10, Gourd-Amber Contamination Area{sm_bullet} CAS 02-23-11, Sappho Contamination Area{sm_bullet} CAS 02-23-12, Scuttle Contamination Area{sm_bullet} CAS 03-23-24, Seaweed B Contamination Area{sm_bullet} CAS 03-23-27, Adze Contamination Area{sm_bullet} CAS 03-23-28, Manzanas Contamination Area{sm_bullet} CAS 03-23-29, Truchas-Chamisal Contamination Area{sm_bullet} CAS 04-23-02, Atmospheric Test Site T4-a{sm_bullet} CAS 05-23-06, Atmospheric Test Site{sm_bullet} CAS 09-23-06, Mound of Contaminated Soil{sm_bullet} CAS 10-23-04, Atmospheric Test Site M-10{sm_bullet} CAS 18-23-02, U-18d Crater (Sulky) Based on historical documentation, personnel interviews, site process knowledge, site visits, photographs, engineering drawings, field screening, analytical results, and the results of data quality objectives process (Section 3.0), closure in place with administrative controls or no further action will be implemented for CAU 107.

NSTec Environmental Restoration

2009-03-31T23:59:59.000Z

330

Second Line of Defense Megaports Initiative Operational Testing and Evaluation Plan Colon Container Terminal (CCT) Panama  

SciTech Connect

Report on the Operational Testing and Evaluation to validate and baseline an operable system that meets the Second Line of Defense (SLD) mission requirements. An SLD system is defined as the detection technology and associated equipment, the system operators from the host country, the standard operating procedures (SOPs), and other elements such as training and maintenance which support long-term system sustainment. To this end, the activities conducted during the OT&E phase must demonstrate that the Megaports System can be operated effectively in real-time by Panama Direccion General de Aduanas (DGA Panama Customs) personnel to the standards of the U.S. Department of Energy/National Nuclear Security Administration (DOE/NNSA).

Newhouse, Robert N.

2010-01-01T23:59:59.000Z

331

Corrective Action Plan for Corrective Action Unit 428: Area 3 Septic Waste Systems 1 and 5 Tonopah Test Range, Nevada  

SciTech Connect

Area 3 Septic Waste Systems 1 and 5 are located in Area 3 of the Tonopah Test Range (TTR) (Figure 1). The site is listed in the Federal Facility Agreement and Consent Order (FFACO, 1996) as Corrective Action Unit (CAU) 428 and includes Corrective Action Sites 03-05-002-SW01 (Septic Waste System 1 [SWS 1]), and 03-05-002-SW05 (Septic Waste System 5 [SWS 5]). The site history for the CAU is provided in the Corrective Action Investigation Plan (U.S. Department of Energy, Nevada Operations Office [DOE/NV], 1999). SWS 1 consists of two leachfields and associated septic tanks. SWS 1 received effluent from both sanitary and industrial sources from various buildings in Area 3 of the TTR (Figure 2). SWS 5 is comprised of one leachfield and outfall with an associated septic tank. SWS 5 received effluent from sources in Building 03-50 in Area 3 of the TTR (Figure 2). Both systems were active until 1990 when a consolidated sewer system was installed. The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 3 SWS 1 and 5. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during May and June 1999. Samples of the tank contents, leachfield soil, and soil under the tanks and pipes were collected. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE/NV, 2000). Additional sampling was done in May 2000, the results of which are presented in this plan. Soil sample results indicated that two constituents of concern were detected above Preliminary Action Levels (PALs). Total arsenic was detected at a concentration of 68.7 milligrams per kilogram (mg/kg). The arsenic was found under the center distribution line at the proximal end of the SWS 5 Leachfield (Figure 3). Total benzo(a)pyrene was detected at a concentration of 480 micrograms per kilogram ({micro}g/kg). The benzo(a)pyrene was found in the soil under the discharge line at SWS 1 Septic Tank 33-1A (Figure 3). These concentrations are above the PALs of 3.0 mg/kg and 360 {micro}g/kg, respectively (DOE/NV, 1999) but are below the hazardous regulatory levels for these constituents. The soil will be excavated and disposed in the Nevada Test Site (NTS) Area 23 Sanitary Landfill.

D. S. Tobiason

2000-08-01T23:59:59.000Z

332

New Pump and Treat Facility Remedial Action Work Plan For Test Area North Final Groundwater Remediation, Operable Unit 1-07B  

Science Conference Proceedings (OSTI)

This remedial action work plan identifies the approach and requirements for implementing the medial zone remedial action for Test Area North, Operable Unit 1-07B, at the Idaho National Laboratory. This plan details the management approach for the construction and operation of the New Pump and Treat Facility (NPTF). As identified in the remediatial design/remedial action scope of work, a separate remedial design/remedial action work plan will be prepared for each remedial component of the Operable Unit 1-07B remedial action.

Nelson, L. O.

2007-06-12T23:59:59.000Z

333

Corrective Action Plan for Corrective Action Unit 543: Liquid Disposal Units, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 543, Liquid Disposal Units, is listed in Appendix III of the Federal Facility Agreement and Consent Order of 1996. CAU 543 consists of seven Corrective Action Sites (CASs) located in Areas 6 and 15 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 543 consists of the following seven CASs: {sm_bullet} CAS 06-07-01, Decon Pad {sm_bullet} CAS 15-01-03, Aboveground Storage Tank {sm_bullet} CAS 15-04-01, Septic Tank {sm_bullet} CAS 15-05-01, Leachfield {sm_bullet} CAS 15-08-01, Liquid Manure Tank {sm_bullet} CAS 15-23-01, Underground Radioactive Material Area {sm_bullet} CAS 15-23-03, Contaminated Sump, Piping From January 24, 2005 through April 14, 2005, CAU 543 site characterization activities were conducted, and are reported in Appendix A of the CAU 543 Corrective Action Decision Document (CADD) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2005). The recommended corrective action as stated in the approved CADD is No Further Action for five of the CAU 543 CASs, and Closure In Place for the remaining two CASs.

NSTec Environmental Restoration

2006-09-01T23:59:59.000Z

334

Corrective Action Investigation Plan for Corrective Action Unit 261: Test Cell A Leachfield System, Nevada Test Site, Nevada UPDATED WITH TECHNICAL CHANGE No.1  

DOE Green Energy (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (FFACO, 1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 261, the Area 25 Test Cell A Leachfield System, which is located in Area 25 at the Nevada Test Site (NTS). The NTS is approximately 88 kilometers (km) (55 miles [mi]) northwest of Las Vegas, Nevada. As presented, CAU 261 is comprised of CASs 25-05-01 and 25-05-07, respectively known as the Leachfield and the Acid Waste Leach Pit (AWLP) (FFACO, 1996). The leachfield is an area with dimensions of approximately 23 by 17 meters (m) (75 by 55 feet [ft]) and is located south of Building 3124, which is southwest and adjacent to Test Cell A. Test Cell A was operational during the 1960s to test nuclear rocket reactors in support of the Nuclear Rocket Development Station (NRDS) (SNPO, 1970). Various operations within Building 3124, from 1962 through 1972, have resulted in liquid waste releases to the leachfield and the AWLP (DOE, 1988a). The surface and subsurface soils in the vicinity of the collection system and leachfield have potentially been impacted by radioactive and other contaminants of potential concern (COPCs) associated with decontamination activities of equipment from Test Cell A.

DOE /NV

1998-09-18T23:59:59.000Z

335

Corrective Action Investigation Plan for Corrective Action Unit 375: Area 30 Buggy Unit Craters, Nevada Test Site, Nevada  

DOE Green Energy (OSTI)

atmosphere, but due to vibrations and loss of cooling during some operational tests, fuel fragments in excess of planned releases became entrained in the exhaust and spread in the immediate surrounding area. Cleanup efforts have been undertaken at times to collect the fuel rod fragments and other contamination. Previous environmental investigations in the TCA area have resulted in the creation of a number of use restrictions. The industrial area of TCA is encompassed by a fence and is currently posted as a radioactive material area. Corrective Action Site 30-45-01 (releases associated with the Buggy Plowshare test) is located in Area 30 on Chukar Mesa. It was a Plowshare test where five nuclear devices were buried 140 feet (ft) deep in a row at 150-ft intervals. These devices were detonated on March 12, 1968, to produce a trench 254 ft wide, 865 ft long, and 70 ft deep. The mesa where the test was conducted is surrounded on three sides by ravines, and the entire end of the mesa is fenced and posted as a contamination area. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend CAAs. Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on December 2, 2009, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 375.

Patrick Matthews

2010-03-01T23:59:59.000Z

336

Corrective Action Investigation Plan for Corrective Action Unit 232: Area 25 Sewage Lagoons Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense. The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and criteria for conducting site investigation activities at CAU 232, Area 25 Sewage Lagoons. Corrective Action Unit 232 consists of CAS 25-03-01, Sewage Lagoon, located in Area 25 of the Nevada Test Site (NTS). The NTS is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Area 25 Sewage Lagoons (Figure 1-2) (IT, 1999b) are located approximately 0.3 mi south of the Test Cell 'C' (TCC) Facility and were used for the discharge of sanitary effluent from the TCC facility. For purposes of this discussion, this site will be referred to as either CAU 232 or the sewage lagoons.

DOE /NV Operations Office

1999-05-01T23:59:59.000Z

337

Initial Tests Of The Dual-Sweep Streak Camera System Planned For Aps Particle-Beam Diagnostics*  

E-Print Network (OSTI)

Initial tests of a dual-sweep streak system planned for use on the Advanced Photon Source (APS) have been performed using assets of the Argonne Wakefield Accelerator (AWA) facility. The short light pulses from the photoelectric injector drive laser in both the visible (l=496 nm, Dt~1.5 ps (FWHM)), and the ultraviolet (l= 248 nm, Dt~5 ps (FWHM)) were used. Both a UV-visible S20 photocathode streak tube and a UV-tox -ray Au photocathode streak tube were tested. Calibration data with an etalon were also obtained. A sample of dualsweep streak data using optical synchrotron radiation on the APS injector synchrotron is also presented. I. INTRODUCTION The Advanced Photon Source will be a third-generation synchrotron radiation facility for the hard x-ray (10-100 keV) research community. The need to measure and monitor particle and photon beam parameters in the single bunch (10 ps), bunch-to-bunch (3 to 180 ns), and turn-by-turn (3.68 s) timescales has resulted in the choice of a dual-sweep s...

Lumpkin Yang And; A. Lumpkin; B. Yang; W. Gai; W. Cieslik

1995-01-01T23:59:59.000Z

338

A model of organizational employees' e-learning systems acceptance  

Science Conference Proceedings (OSTI)

This study examines the factors that influence employees' adoption and use of e-learning systems and tests the applicability of the technology acceptance model (TAM) in the organizational context. We examined the relationship of employees' perceptions ... Keywords: Computer self-efficacy, Organizational support, Subjective norm, Task equivocality, Technology acceptance model

Yi-Hsuan Lee; Yi-Chuan Hsieh; Chun-Yuan Ma

2011-04-01T23:59:59.000Z

339

Automated Transportation Management System (ATMS) V2.0 logistics module PBI acceptance criteria  

Science Conference Proceedings (OSTI)

This document defines the acceptance criteria for the Automated Transportation Management System V2.0 Logistics Module Performance Based Incentive (PBI). This acceptance criteria will be the primary basis for the generation of acceptance test procedures. The purpose of this document is to define the minimum criteria that must be fulfilled to guarantee acceptance of the Logistics Module.

Weidert, R.S.

1995-02-28T23:59:59.000Z

340

Corrective Action Investigation Plan for Corrective Action Unit 562: Waste Systems Nevada Test Site, Nevada, Revision 0  

SciTech Connect

Corrective Action Unit 562 is located in Areas 2, 23, and 25 of the Nevada Test Site, which is approximately 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 562 is comprised of the 13 corrective action sites (CASs) listed below: • 02-26-11, Lead Shot • 02-44-02, Paint Spills and French Drain • 02-59-01, Septic System • 02-60-01, Concrete Drain • 02-60-02, French Drain • 02-60-03, Steam Cleaning Drain • 02-60-04, French Drain • 02-60-05, French Drain • 02-60-06, French Drain • 02-60-07, French Drain • 23-60-01, Mud Trap Drain and Outfall • 23-99-06, Grease Trap • 25-60-04, Building 3123 Outfalls These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on December 11, 2008, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 562. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the corrective action investigation for CAU 562 includes the following activities: • Move surface debris and/or materials, as needed, to facilitate sampling. • Conduct radiological surveys. • Perform field screening. • Collect and submit environmental samples for laboratory analysis to determine the nature and extent of any contamination released by each CAS. • Collect samples of source material to determine the potential for a release. • Collect samples of potential remediation wastes. • Collect quality control samples. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996; as amended February 2008). Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted following approval of the plan.

Alfred Wickline

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Corrective Action Plan for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada  

DOE Green Energy (OSTI)

This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for Corrective Action Unit (CAU) 262, Area 25 Septic Systems and Underground Discharge Point. CAU 262 is identified in the Federal Facility Agreement and Consent Order (FFACO) of 1996. Remediation of CAU 262 is required under the FFACO. CAU 262 is located in Area 25 of the Nevada Test Site (NTS), approximately 100 kilometers (km) (62 miles [mi]) northwest of Las Vegas, Nevada. The nine Corrective Action Sites (CASs) within CAU 262 are located in the Nuclear Rocket Development Station complex. Individual CASs are located in the vicinity of the Reactor Maintenance, Assembly, and Disassembly (R-MAD); Engine Maintenance, Assembly, and Disassembly (E-MAD); and Test Cell C compounds. CAU 262 includes the following CASs as provided in the FFACO (1996); CAS 25-02-06, Underground Storage Tank; CAS 25-04-06, Septic Systems A and B; CAS 25-04-07, Septic System; CAS 25-05-03, Leachfield; CAS 25-05-05, Leachfield; CAS 25-05-06, Leachfield; CAS 25-05-08, Radioactive Leachfield; CAS 25-05-12, Leachfield; and CAS 25-51-01, Dry Well. Figures 2, 3, and 4 show the locations of the R-MAD, the E-MAD, and the Test Cell C CASs, respectively. The facilities within CAU 262 supported nuclear rocket reactor engine testing. Activities associated with the program were performed between 1958 and 1973. However, several other projects used the facilities after 1973. A significant quantity of radioactive and sanitary waste was produced during routine operations. Most of the radioactive waste was managed by disposal in the posted leachfields. Sanitary wastes were disposed in sanitary leachfields. Septic tanks, present at sanitary leachfields (i.e., CAS 25-02-06,2504-06 [Septic Systems A and B], 25-04-07, 25-05-05,25-05-12) allowed solids to settle out of suspension prior to entering the leachfield. Posted leachfields do not contain septic tanks. All CASs located in CAU 262 are inactive or abandoned. However, some leachfields may still receive liquids from runoff during storm events. Results from the 2000-2001 site characterization activities conducted by International Technology (IT) Corporation, Las Vegas Office are documented in the Corrective Action Investigation Report for Corrective Action Unit 262: Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. This document is located in Appendix A of the Corrective Action Decision Document for CAU 262. Area 25 Septic Systems and Underground Discharge Point, Nevada Test Site, Nevada. (DOE/NV, 2001).

K. B. Campbell

2002-06-01T23:59:59.000Z

342

The road to renewables : a case study of wind energy, local ownership and social acceptance at Samsø.  

E-Print Network (OSTI)

??The aim of this thesis is to investigate how local participation and local ownership enhances social acceptance of wind energy. In Norway many planned wind… (more)

Jakobsen, Ina

2008-01-01T23:59:59.000Z

343

AEP Interoperability Test Plan  

Science Conference Proceedings (OSTI)

To meet consumers' growing electricity demand and society's desire to reduce carbon dioxide emissions from electric generation while ensuring the continued availability of economical and reliable electricity, AEP has partnered with the U.S. Department of Energy (DOE) in the AEP Ohio gridSMARTsm Demonstration Project. The project will integrate commercially available products, new technologies, and new consumer products and services within a single, secure, two-way communication network between the utilit...

2010-08-10T23:59:59.000Z

344

Corrective Action Investigation Plan for Corrective Action Unit 98: Frenchman Flat, Nevada Test Site, Nevada (Revision 1)  

Science Conference Proceedings (OSTI)

This Corrective Action Investigation Plan (CAIP) has been developed for Frenchman Flat Corrective Action Unit (CAU) 98. The Frenchman Flat CAU is located along the eastern border of the Nevada Test Site (NTS) and includes portions of Areas 5 and 11. The Frenchman Flat CAU constitutes one of several areas of the Nevada Test Site used for underground nuclear testing in the past. The nuclear tests resulted in groundwater contamination in the vicinity as well as downgradient of the underground test areas. The CAIP describes the Corrective Action Investigation (CAI) to be conducted at the Frenchman Flat CAU to evaluate the extent of contamination in groundwater due to the underground nuclear testing. The Frenchman Flat CAI will be conducted by the Underground Test Area (UGTA) Project which is a part of the U.S. Department of Energy, Nevada Operations Office (DOE/NV) Environmental Restoration Project. The CAIP is a requirement of the Federal Facility Agreement and Consent Order (FFACO) (1996 ) agreed to by the U.S. Department of Energy (DOE), the Nevada Division of Environmental Protection (NDEP), and the U.S. Department of Defense (DoD). Based on the general definition of a CAI from Section IV.14 of the FFACO, the purpose of the CAI is ''...to gather data sufficient to characterize the nature, extent, and rate of migration or potential rate of migration from releases or discharges of pollutants or contaminants and/or potential releases or discharges from corrective action units identified at the facilities...'' (FFACO, 1996). However, for the Underground Test Area (UGTA) CAUs, ''...the objective of the CAI process is to define boundaries around each UGTA CAU that establish areas that contain water that may be unsafe for domestic and municipal use.'', as stated in Appendix VI of the FFACO (1996). According to the UGTA strategy (Appendix VI of the FFACO), the CAI of a given CAU starts with the evaluation of the existing data. New data collection activities are generally contingent upon the results of the modeling and may or may not be part of the CAI. Such is the case for the Frenchman Flat CAU. The current scope of the Frenchman Flat CAI includes the development and use of a three-dimensional (3-D), numerical, CAU-scale groundwater flow and contaminant transport model to predict the location of the contaminant boundary. The CAU model will be developed and used to predict the location of the contaminant boundary. The scope of this CAI does not currently include any characterization activities; however, such activities will be conducted if the CAU model results indicate that further characterization information is needed to develop a sufficiently reliable CAU model. Two areas of importance to the CAU model are the model area and the investigation area. The CAU-model area will be selected to encompass the Frenchman Flat CAU and the region located immediately downgradient where contamination may migrate. The extent of the CAU-model area is dependent on the extent of contamination and is uncertain at this point. The extent of the investigation area is not expected to increase during the CAI.

USDOE /NV

1999-07-01T23:59:59.000Z

345

Consumer Acceptance Of Smart Grid  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Consumer Acceptance Of Smart Consumer Acceptance Of Smart Grid Electricity Advisory Committee June 6, 2013 Thanks To * Sonny Popowsky * Sue Kelly * Phyllis Reha * Bob Curry * Paul Centolella * Chris Peters * David Till * Paul Hudson * Tom Sloan * Wanda Reder Paper Objective * End-Use Consumer Acceptance Of Smart Grid Critical To Infrastructure Investments Being Fully Realized * While Utilities & Regulators Have Prime Role In Shaping SG, There Is Role For DOE As Facilitator & Educator * Focus Of This Paper Is On Systems Installed Inside Homes & Businesses Issues Experienced In Early Smart Grid Roll-Outs * Initial Resistance By Some End-Use Consumer Groups To Smart Grid Installation * Early Technology Roll-Outs Were Not Prepared For This Pushback * Since These Initial Efforts, Lessons-Learned

346

TEST PLAN AND PROCEDURE FOR THE EXAMINATION OF TANK 241-AY-101 MULTI-PROBE CORROSION MONITORING SYSTEM  

SciTech Connect

This test plan describes the methods to be used in the forensic examination of the Multi-probe Corrosion Monitoring System (MPCMS) installed in the double-shell tank 241-AY-101 (AY-101). The probe was designed by Applied Research and Engineering Sciences (ARES) Corporation. The probe contains four sections, each of which can be removed from the tank independently (H-14-107634, AY-101 MPCMS Removable Probe Assembly) and one fixed center assembly. Each removable section contains three types of passive corrosion coupons: bar coupons, round coupons, and stressed C-rings (H-14-l07635, AY-101 MPCMS Details). Photographs and weights of each coupon were recorded and reported on drawing H-14-107634 and in RPP-RPT-40629, 241-AY-101 MPCMS C-Ring Coupon Photographs. The coupons will be the subject of the forensic analyses. The purpose of this examination will be to document the nature and extent of corrosion of the 29 coupons. This documentation will consist of photographs and photomicrographs of the C-rings and round coupons, as well as the weights of the bar and round coupons during corrosion removal. The total weight loss of the cleaned coupons will be used in conjunction with the surface area of each to calculate corrosion rates in mils per year. The bar coupons were presumably placed to investigate the liquid-air-interface. An analysis of the waste level heights in the waste tank will be investigated as part of this examination.

WYRWAS RB; PAGE JS; COOKE GS

2012-04-19T23:59:59.000Z

347

Test plan for headspace gas sampling of remote-handled transuranic waste containers at Los Alamos National Laboratory  

DOE Green Energy (OSTI)

Seventeen remote-handled (RH) transuranic (TRU) waste canisters currently are stored in vertical, underground shafts at Technical Area (TA)-54, Area G, at Los Alamos National Laboratory (LANL). These 17 RH TRU waste canisters are destined to be shipped to the Waste Isolation Pilot Plant (WIPP) for permanent disposal in the geologic repository. As the RH TRU canister is likely to be the final payload container prior to placement into the 72-B cask and shipment to the WIPP, these waste canisters provide a unique opportunity to ascertain representative flammable gas concentrations in packaged RH-TRU waste. Hydrogen, which is produced by the radiolytic decomposition of hydrogenous constituents in the waste matrix, is the primary flammable gas of concern with RH TRU waste. The primary objectives of the experiment that is described by this test plan are to sample and analyze the waste canister headspace gases to determine the concentration of hydrogen in the headspace gas and to calculate the hydrogen gas generation rate for comparison to the applicable maximum allowable hydrogen generation rate (mole/sec) limits. It is a goal of this experiment to determine the headspace gas concentrations of other gases (e.g., oxygen, nitrogen, carbon dioxide, carbon monoxide, and volatile organic compounds (VOCs) with molecular weights less than 60 g/mole) that are produced by radiolysis or present when the waste was packaged. Additionally, the temperature, pressure, and flow rate of the headspace gas will be measured.

Field, L.R.; Villarreal, R. [Los Alamos National Lab., NM (United States)

1998-02-24T23:59:59.000Z

348

Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown Nevada Test Site, Nevada  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 240, Area 25 Vehicle Washdown, which is located on the Nevada Test Site (NTS).

DOE /NV

1999-01-25T23:59:59.000Z

349

Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks Nevada Test Site, Nevada  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO, CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites (FFACO, 1996). Corrective Action Units consist of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at CAU 135, Area 25 Underground Storage Tanks (USTs), which is located on the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada.

U.S. Department of Energy, Nevada Operations Office

1999-05-05T23:59:59.000Z

350

Corrective Action Plan for Corrective Action Unit 271: Areas 25, 26, and 27 Septic Systems, Nevada Test Site, Nevada  

SciTech Connect

The Areas 25, 26 and 27 Septic Systems are in the Federal Facility Agreement and Consent Order (FFACO) of 1996 as Corrective Action Unit (CAU) 271. This Corrective Action Plan (CAP) provides selected corrective action alternatives and proposes the closure methodology for CAU 271. CAU 271 is located on the Nevada Test Site (NTS) approximately 105 kilometers (65 miles) northwest of Las Vegas, Nevada, and consists of the following 15 Corrective Action Sites (CAS): CAS 25-04-1, Septic System; CAS 25-04-03, Septic System; CAS25-04-04, Septic System; CAS 25-04-08, Septic System; CAS 25-04-09, Septic System; CAS 25-04-10, Septic System; CAS 25-04-11, Septic System; CAS 26-03-01, Contaminated Water Reservoir; CAS 26-04-1, Septic System; CAS 26-04-02, Septic System; CAS 26-05-01, Radioactive Leachfield; CAS-26-05-03, Septic System; CAS 26-05-04, Septic System; CAS 26-05-05, Septic System; and CAS 27-05-02, Leachfield.

R. B. Jackson

2003-05-01T23:59:59.000Z

351

Corrective Action Plan for Corrective Action Unit 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada  

SciTech Connect

This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 143: Area 25 Contaminated Waste Dumps, Nevada Test Site, Nevada, in accordance with the Federal Facility Agreement and Consent Order of 1996. This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (U.S. Department of Energy, Nevada Operations Office, 2000). The CAU includes two Corrective Action Sites (CASs): 25-23-09, Contaminated Waste Dump Number 1; and 25-23-03, Contaminated Waste Dump Number 2. Investigation of CAU 143 was conducted in 1999. Analytes detected during the corrective action investigation were evaluated against preliminary action levels to determine constituents of concern for CAU 143. Radionuclide concentrations in disposal pit soil samples associated with the Reactor Maintenance, Assembly, and Disassembly Facility West Trenches, the Reactor Maintenance, Assembly, and Disassembly Facility East Trestle Pit, and the Engine Maintenance, Assembly, and Disassembly Facility Trench are greater than normal background concentrations. These constituents are identified as constituents of concern for their respective CASs. Closure-in-place with administrative controls involves use restrictions to minimize access and prevent unauthorized intrusive activities, earthwork to fill depressions to original grade, placing additional clean cover material over the previously filled portion of some of the trenches, and placing secondary or diversion berm around pertinent areas to divert storm water run-on potential.

D. L. Gustafason

2001-02-01T23:59:59.000Z

352

Corrective action plan for CAU No. 404: Roller Coaster Sewage Lagoons and North Disposal Trench, Tonopah Test Range  

Science Conference Proceedings (OSTI)

This Corrective Action Plan (CAP) provides the selected corrective action alternative and proposes the closure implementation methodology for the Roller Coaster Sewage Lagoons and North Disposal Trench Corrective Action Unit (CAU) No. 404. The site is located on the Tonopah Test Range. CAU 404 consists of two Corrective Action Sites (CAS): the Roller Coaster Lagoons (CAS No TA-03-001-TA-RC) and the North Disposal Trench (CAS No TA-21-001-TA-RC). A site map of the lagoons and trench is provided. The Roller Coaster Sewage Lagoons are comprised of two unlined lagoons that received liquid sanitary waste in 1963 from the Operation Roller Coaster Man Camp and debris from subsequent construction and range cleanup activities. The North Disposal Trench was excavated in approximately 1963 and received solid waste and debris from the man camp and subsequent construction and range cleanup activities. A small hydrocarbon spill occurred during the 1995 Voluntary Corrective Action (VCA) activities in an area associated with the North Disposal Trench CAS.

NONE

1997-07-01T23:59:59.000Z

353

Corrective Action Investigation Plan for Corrective Action Unit 552: Area 12 Muckpile and Ponds, Nevada Test Site, Nevada: Revision 0  

Science Conference Proceedings (OSTI)

This Corrective Action Investigation Plan contains the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office's approach for collecting the data necessary to evaluate corrective action alternatives appropriate for the closure of Corrective Action Unit (CAU) 552: Area 12 Muckpile and Ponds, Nevada Test Site (NTS), Nevada, under the Federal Facility Agreement and Consent Order. Located in Area 12 on the NTS, CAU 552 consists of two Corrective Action Sites (CASs): 12-06-04, Muckpile; 12-23-05, Ponds. Corrective Action Site 12-06-04 in Area 12 consists of the G-Tunnel muckpile, which is the result of tunneling activities. Corrective Action Site 12-23-05 consists of three dry ponds adjacent to the muckpile. The toe of the muckpile extends into one of the ponds creating an overlap of two CASs. The purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technic ally viable corrective actions. The results of the field investigation will support a defensible evaluation of corrective action alternatives in the corrective action decision document.

U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office

2004-04-06T23:59:59.000Z

354

Corrective Action Plan for Corrective Action Unit 166: Storage Yards and Contaminated Materials, Nevada Test Site, Nevada  

SciTech Connect

Corrective Action Unit (CAU) 166, Storage Yards and Contaminated Materials, is listed in the Federal Facility Agreement and Consent Order (FFACO) of 1996 (FFACO, 1996). CAU 166 consists of seven Corrective Action Sites (CASs) located in Areas 2, 3, 5, and 18 of the Nevada Test Site (NTS), which is located approximately 65 miles northwest of Las Vegas, Nevada (Figure 1). CAU 166 consists of the following CASs: (1) CAS 02-42-01, Cond. Release Storage Yd - North; (2) CAS 02-42-02, Cond. Release Storage Yd - South; (3) CAS 02-99-10, D-38 Storage Area; (4) CAS 03-42-01, Conditional Release Storage Yard; (5) CAS 05-19-02, Contaminated Soil and Drum; (6) CAS 18-01-01, Aboveground Storage Tank; and (7) CAS 18-99-03, Wax Piles/Oil Stain. Details of the site history and site characterization results for CAU 166 are provided in the approved Corrective Action Investigation Plan (CAIP) (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2006) and in the approved Corrective Action Decision Document (CADD) (NNSA/NSO, 2007).

NSTec Environmental Restoration

2007-10-01T23:59:59.000Z

355

Corrective Action Investigation Plan for Corrective Action Unit 554: Area 23 Release Site, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 554: Area 23 Release Site, Nevada Test Site, Nevada. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 554 is located in Area 23 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 554 is comprised of one Corrective Action Site (CAS), which is: 23-02-08, USTs 23-115-1, 2, 3/Spill 530-90-002. This site consists of soil contamination resulting from a fuel release from underground storage tanks (USTs). Corrective Action Site 23-02-08 is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation prior to evaluating corrective action alternatives and selecting the appropriate corrective action for this CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document for CAU 554. Corrective Action Site 23-02-08 will be investigated based on the data quality objectives (DQOs) developed on July 15, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; and contractor personnel. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 554.

David A. Strand

2004-10-01T23:59:59.000Z

356

Corrective Action Investigation Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage, Nevada Test Site, Nevada  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the US Department of Energy, Nevada Operations Office (DOE/NV); the State of Nevada Division of Environmental Protection (NDEP); and the US Department of Defense (FFACO, 1996). The CAIP is a document that provides or references all of the specific information for investigation activities associated with Corrective Action Units (CAUs) or Corrective Action Sites (CASs). According to the FFACO (1996), CASs are sites potentially requiring corrective action(s) and may include solid waste management units or individual disposal or release sites. A CAU consists of one or more CASs grouped together based on geography, technical similarity, or agency responsibility for the purpose of determining corrective actions. This CAIP contains the environmental sample collection objectives and the criteria for conducting site investigation activities at the CAU 321 Area 22 Weather Station Fuel Storage, CAS 22-99-05 Fuel Storage Area. For purposes of this discussion, this site will be referred to as either CAU 321 or the Fuel Storage Area. The Fuel Storage Area is located in Area 22 of the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1-1) (DOE/NV, 1996a). The Fuel Storage Area (Figure 1-2) was used to store fuel and other petroleum products necessary for motorized operations at the historic Camp Desert Rock facility which was operational from 1951 to 1958 at the Nevada Test Site, Nevada. The site was dismantled after 1958 (DOE/NV, 1996a).

DOE /NV

1999-01-28T23:59:59.000Z

357

ERRATA Sheet for ''Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada''  

Science Conference Proceedings (OSTI)

In Appendix A the second sentence of the first paragraph on Page A-1-1 of the Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 425: Area 9 Main Lake Construction Debris Disposal Area, Tonopah Test Range, Nevada, erroneously cites the EPA DQO guidance outline as (EPA, 1994). The correct citation is (EPA, 2000).

K. B. Campbell

2003-03-01T23:59:59.000Z

358

Corrective Action Decision Document/Corrective Action Plan for Corrective Action Unit 104: Area 7 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0  

SciTech Connect

CAU 104 comprises the following corrective action sites (CASs): • 07-23-03, Atmospheric Test Site T-7C • 07-23-04, Atmospheric Test Site T7-1 • 07-23-05, Atmospheric Test Site • 07-23-06, Atmospheric Test Site T7-5a • 07-23-07, Atmospheric Test Site - Dog (T-S) • 07-23-08, Atmospheric Test Site - Baker (T-S) • 07-23-09, Atmospheric Test Site - Charlie (T-S) • 07-23-10, Atmospheric Test Site - Dixie • 07-23-11, Atmospheric Test Site - Dixie • 07-23-12, Atmospheric Test Site - Charlie (Bus) • 07-23-13, Atmospheric Test Site - Baker (Buster) • 07-23-14, Atmospheric Test Site - Ruth • 07-23-15, Atmospheric Test Site T7-4 • 07-23-16, Atmospheric Test Site B7-b • 07-23-17, Atmospheric Test Site - Climax These 15 CASs include releases from 30 atmospheric tests conducted in the approximately 1 square mile of CAU 104. Because releases associated with the CASs included in this CAU overlap and are not separate and distinguishable, these CASs are addressed jointly at the CAU level. The purpose of this CADD/CAP is to evaluate potential corrective action alternatives (CAAs), provide the rationale for the selection of recommended CAAs, and provide the plan for implementation of the recommended CAA for CAU 104. Corrective action investigation (CAI) activities were performed from October 4, 2011, through May 3, 2012, as set forth in the CAU 104 Corrective Action Investigation Plan.

Patrick Matthews

2012-10-01T23:59:59.000Z

359

Corrective Action Investigation Plan for Corrective Action Unit 565: Stored Samples, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 565 is located in Area 26 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 565 is comprised of one corrective action site (CAS) listed--CAS 26-99-04, Ground Zero Soil Samples. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend closure of CAU 565. Additional information will be obtained by conducting a corrective action investigation before evaluating closure objectives and selecting the appropriate corrective action. The results of the field investigation will support closure and waste management decisions that will be presented in the Corrective Action Decision Document/Closure Report. The site will be investigated based on the data quality objectives (DQOs) developed on June 1, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was utilized to identify and define the type, amount, and quality of data needed to develop and evaluate closure for CAU 565. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to this CAS. The scope of the corrective action investigation for CAU 565 includes the following activities: (1) Remove stored samples, shelves, and debris from the interior of Building 26-2106. (2) Perform field screening on stored samples, shelves, and debris. (3) Dispose of stored samples, shelves, and debris. (4) Collect samples of investigation-derived waste, as needed, for waste management purposes. (5) Conduct radiological surveys of Building 26-2106 in accordance with the requirements in the ''NV/YMP Radiological Control Manual'' to determine if there is residual radiological contamination that would prevent the release of the building for unrestricted use. This Corrective Action Investigation has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan.

Wickline, Alfred; McCall, Robert

2006-08-01T23:59:59.000Z

360

Corrective Action Plan for Corrective Action Unit 335: Area 6 Injection Well and Drain Pit Nevada Test Site, Nevada  

SciTech Connect

This Corrective Action Plan (CAP) has been prepared for Corrective Action Unit (CAU) 335, Area 6 Injection Well and Drain Pit, in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996). This CAP provides the methodology for implementing the approved corrective action alternative as listed in the Corrective Action Decision Document (CADD). However, there is one modification to the selected alternative. Due to the large area that would require fencing, it is proposed that instead of fencing, an appropriate number of warning signs attached to tee posts be used to delineate the use restriction area. CAU 335 is located in Area 6 of the Nevada Test Site (NTS) which is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada. CAU 335 is located in the Area 6 Well 3 Yard approximately 39 km (24 mi) north of Mercury, on the Mercury Highway and several hundred feet (ft) west along Road 6-06. CAU 335 consists of the following three Corrective Action Sites (CASs): CAS 06-20-01, Drums, Oil Waste, Spill; CAS 06-20-02, 20-inch Cased Hole; CAS 06-23-03, Drain Pit. The site history for CAU 335 is provided in the Corrective Action Investigation Plan (DOE/NV, 2000). Briefly, CAS 06-20-01, was used for storing material that was pumped out of CAS 06-20-02 and placed into four 208-liter (L) (55-gall [gal]) drums. The drums were taken to the NTS Area 5 Hazardous Waste Accumulation Site in 1991. CAS 06-20-01 will be closed with no further action required. Any spills associated with CAS 06-20-01 are addressed and considered part of CAS 06-20-02. CAS 06-20-02 was used for disposal of used motor oil, wastewater, and debris for an undetermined amount of time. In 1991, the casing was emptied of its contents, excavated, and backfilled. CAS 06-23-03 was used as a depository for effluent waste from truck-washing activities from 1960-1991.

K. B. Campbell

2002-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Corrective Action Investigation Plan for Corrective Action Unit 565: Stored Samples, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 565 is located in Area 26 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 565 is comprised of one corrective action site (CAS) listed--CAS 26-99-04, Ground Zero Soil Samples. This site is being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend closure of CAU 565. Additional information will be obtained by conducting a corrective action investigation before evaluating closure objectives and selecting the appropriate corrective action. The results of the field investigation will support closure and waste management decisions that will be presented in the Corrective Action Decision Document/Closure Report. The site will be investigated based on the data quality objectives (DQOs) developed on June 1, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was utilized to identify and define the type, amount, and quality of data needed to develop and evaluate closure for CAU 565. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to this CAS. The scope of the corrective action investigation for CAU 565 includes the following activities: (1) Remove stored samples, shelves, and debris from the interior of Building 26-2106. (2) Perform field screening on stored samples, shelves, and debris. (3) Dispose of stored samples, shelves, and debris. (4) Collect samples of investigation-derived waste, as needed, for waste management purposes. (5) Conduct radiological surveys of Building 26-2106 in accordance with the requirements in the ''NV/YMP Radiological Control Manual'' to determine if there is residual radiological contamination that would prevent the release of the building for unrestricted use. This Corrective Action Investigation has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan.

Wickline, Alfred; McCall, Robert

2006-08-01T23:59:59.000Z

362

Acceptable Materials for Recycling at Colorado State University Mixed Paper -Acceptable Items  

E-Print Network (OSTI)

Acceptable Materials for Recycling at Colorado State University Mixed Paper - Acceptable Items - Acceptable Items Refrigerators Microwave ovens Electrical Equipment: computers, monitors, TV's, etc. Remember

363

Corrective Action Investigation Plan for Corrective Action Unit 542: Disposal Holes, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

Corrective Action Unit (CAU) 542 is located in Areas 3, 8, 9, and 20 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 542 is comprised of eight corrective action sites (CASs): (1) 03-20-07, ''UD-3a Disposal Hole''; (2) 03-20-09, ''UD-3b Disposal Hole''; (3) 03-20-10, ''UD-3c Disposal Hole''; (4) 03-20-11, ''UD-3d Disposal Hole''; (5) 06-20-03, ''UD-6 and UD-6s Disposal Holes''; (6) 08-20-01, ''U-8d PS No.1A Injection Well Surface Release''; (7) 09-20-03, ''U-9itsy30 PS No.1A Injection Well Surface Release''; and (8) 20-20-02, ''U-20av PS No.1A Injection Well Surface Release''. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation before evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on January 30, 2006, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 542. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. The scope of the CAI for CAU 542 includes the following activities: (1) Move surface debris and/or materials, as needed, to facilitate sampling. (2) Conduct radiological surveys. (3) Conduct geophysical surveys to locate previously unidentified features at CASs 03-20-07, 03-20-09, 03-20-10, 03-20-11, and 06-20-03. (4) Perform field screening. (5) Collect and submit environmental samples for laboratory analysis to determine whether contaminants of concern (COCs) are present. (6) Collect quality control samples for laboratory analyses to evaluate the performance of measurement systems and controls based on the requirements of the data quality indicators. (7) If COCs are present at the surface/near surface (< 15 feet below ground surface), collect additional step-out samples to define the extent of the contamination. (8) If COCs are present in the subsurface (i.e., base of disposal hole), collect additional samples to define the vertical extent of contamination. A conservative use restriction will be used to encompass the lateral extent of subsurface contamination. (9) Stake or flag sample locations in the field, and record coordinates through global positioning systems surveying. (10) Collect samples of investigation-derived waste, as needed, for waste management and minimization purposes. This Corrective Action Investigation Plan has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. Under the ''Federal Facility Agreement and Consent Order'', this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan.

Laura Pastor

2006-05-01T23:59:59.000Z

364

Stochastic Market Equilibrium Model For Generation Planning  

Science Conference Proceedings (OSTI)

It is widely accepted that medium-term generation planning can be advantageously modeled through market equilibrium representation. There exist several methods to define and solve this kind of equilibrium in a deterministic way. Medium-term planning ...

J. Barquín; E. Centeno; J. Reneses

2005-10-01T23:59:59.000Z

365

ACCEPTANCE SUMMARY FOR LHC MAGNETS BUILT AT BNL Magnet D4L102  

NLE Websites -- All DOE Office Websites (Extended Search)

2 2 Date of this summary: September 2, 2004 This document contains a short summary of the acceptance status (in italics, just below), the minutes of the acceptance meeting, and actions taken after the acceptance meeting [in square brackets within the text of the minutes, or as footnotes]. Acceptance status: The BNL Acceptance Committee met on September 2, 2004 and approved the magnet for shipment to CERN. On July 28, R. Ostojic reported that CERN accepted the waiver on QQS locations (M0324). The survey data were sent to D. Missiaen on July 28, 2004. The field quality data have been loaded into the CERN data base. It is planned that the ID card will be sent by Sept. 15. MINUTES OF ACCEPTANCE MEETING Date of acceptance meeting: September 2, 2004

366

Corrective Action Investigation Plan for Corrective Action Unit 555: Septic Systems Nevada Test Site, Nevada, Rev. No.: 0 with Errata  

Science Conference Proceedings (OSTI)

This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 555: Septic Systems, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 555 is located in Areas 1, 3 and 6 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada, and is comprised of the five corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-59-01, Area 1 Camp Septic System; (2) CAS 03-59-03, Core Handling Building Septic System; (3) CAS 06-20-05, Birdwell Dry Well; (4) CAS 06-59-01, Birdwell Septic System; and (5) CAS 06-59-02, National Cementers Septic System. An FFACO modification was approved on December 14, 2005, to include CAS 06-20-05, Birdwell Dry Well, as part of the scope of CAU 555. The work scope was expanded in this document to include the investigation of CAS 06-20-05. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 555 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before the evaluation and selection of corrective action alternatives.

Pastor, Laura

2005-12-01T23:59:59.000Z

367

Corrective Action Investigation Plan for Corrective Action Unit 145: Wells and Storage Holes, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains project-specific information for conducting site investigation activities at Corrective Action Unit (CAU) 145: Wells and Storage Holes. Information presented in this CAIP includes facility descriptions, environmental sample collection objectives, and criteria for the selection and evaluation of environmental samples. Corrective Action Unit 145 is located in Area 3 of the Nevada Test Site, which is 65 miles northwest of Las Vegas, Nevada. Corrective Action Unit 145 is comprised of the six Corrective Action Sites (CASs) listed below: (1) 03-20-01, Core Storage Holes; (2) 03-20-02, Decon Pad and Sump; (3) 03-20-04, Injection Wells; (4) 03-20-08, Injection Well; (5) 03-25-01, Oil Spills; and (6) 03-99-13, Drain and Injection Well. These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives. Additional information will be obtained by conducting a corrective action investigation (CAI) prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable corrective action alternatives that will be presented in the Corrective Action Decision Document. One conceptual site model with three release scenario components was developed for the six CASs to address all releases associated with the site. The sites will be investigated based on data quality objectives (DQOs) developed on June 24, 2004, by representatives of the Nevada Division of Environmental Protection; U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and Bechtel Nevada. The DQOs process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 145.

David A. Strand

2004-09-01T23:59:59.000Z

368

Corrective Action Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada  

SciTech Connect

The Area 25 Underground Storage Tanks site Corrective Action Unit (CAU) 135 will be closed by unrestricted release decontamination and verification survey, in accordance with the Federal Facility Agreement and Consert Order (FFACO, 1996). The CAU includes one Corrective Action Site (CAS). The Area 25 Underground Storage Tanks, (CAS 25-02-01), referred to as the Engine-Maintenance Assembly and Disassembly (E-MAD) Waste Holdup Tanks and Vault, were used to receive liquid waste from all of the radioactive drains at the E-MAD Facility. Based on the results of the Corrective Action Investigation conducted in June 1999 discussed in the Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada (DOE/NV,1999a), one sample from the radiological survey of the concrete vault interior exceeded radionuclide preliminary action levels. The analytes from the sediment samples that exceeded the preliminary action levels are polychlorinated biphenyls, Resource Conservation and Recovery Act metals, total petroleum hydrocarbons as diesel-range organics, and radionuclides. Unrestricted release decontamination and verification involves removal of concrete and the cement-lined pump sump from the vault. After verification that the contamination has been removed, the vault will be repaired with concrete, as necessary. The radiological- and chemical-contaminated pump sump and concrete removed from the vault would be disposed of at the Area 5 Radioactive Waste Management Site. The vault interior will be field surveyed following removal of contaminated material to verify that unrestricted release criteria have been achieved.

D. H. Cox

2000-07-01T23:59:59.000Z

369

Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions.

David A. Strand

2004-06-01T23:59:59.000Z

370

Corrective Action Investigation Plan for Corrective Action Unit 551: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No. 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 551, Area 12 muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 551 is located in Area 12 of the NTS, which is approximately 110 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 miles beyond the main gate to the NTS. Corrective Action Unit 551 is comprised of the four Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: (1) 12-01-09, Aboveground Storage Tank and Stain; (2) 12-06-05, Muckpile; (3) 12-06-07, Muckpile; and (4) 12-06-08, Muckpile. Corrective Action Site 12-01-09 is located in Area 12 and consists of an above ground storage tank (AST) and associated stain. Corrective Action Site 12-06-05 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. Corrective Action Site 12-06-07 is located in Area 12 and consists of a muckpile associated with the U12 C-, D-, and F-Tunnels. Corrective Action Site 12-06-08 is located in Area 12 and consists of a muckpile associated with the U12 B-Tunnel. In keeping with common convention, the U12B-, C-, D-, and F-Tunnels will be referred to as the B-, C-, D-, and F-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and sampling of media, where appropriate. Data will also be obtained to support waste management decisions.

Robert F. Boehlecke

2004-06-01T23:59:59.000Z

371

Corrective Action Investigation Plan for Corrective Action Unit 137: Waste Disposal Sites, Nevada Test Site, Nevada, Rev. No.:0  

Science Conference Proceedings (OSTI)

This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 137: Waste Disposal Sites. This CAIP has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense. Corrective Action Unit 137 contains sites that are located in Areas 1, 3, 7, 9, and 12 of the Nevada Test Site (NTS), which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Corrective Action Unit 137 is comprised of the eight corrective action sites (CASs) shown on Figure 1-1 and listed below: (1) CAS 01-08-01, Waste Disposal Site; (2) CAS 03-23-01, Waste Disposal Site; (3) CAS 03-23-07, Radioactive Waste Disposal Site; (4) CAS 03-99-15, Waste Disposal Site; (5) CAS 07-23-02, Radioactive Waste Disposal Site; (6) CAS 09-23-07, Radioactive Waste Disposal Site; (7) CAS 12-08-01, Waste Disposal Site; and (8) CAS 12-23-07, Waste Disposal Site. The Corrective Action Investigation (CAI) will include field inspections, radiological surveys, geophysical surveys, sampling of environmental media, analysis of samples, and assessment of investigation results, where appropriate. Data will be obtained to support corrective action alternative evaluations and waste management decisions. The CASs in CAU 137 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and the environment. Existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives for the CASs. Additional information will be generated by conducting a CAI before evaluating and selecting corrective action alternatives.

Wickline, Alfred

2005-12-01T23:59:59.000Z

372

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 398: Area 25 Spill Sites, Nevada Test Site, Nevada  

DOE Green Energy (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) plan addresses the activities necessary to close Corrective Action Unit (CAU) 398: Area 25 Spill Sites. CAU 398, located in Area 25 of the Nevada Test Site, is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996), and consists of the following 13 Corrective Action Sites (CASs) (Figure 1): (1) CAS 25-44-01 , a fuel spill on soil that covers a concrete pad. The origins and use of the spill material are unknown, but the spill is suspected to be railroad bedding material. (2) CAS 25-44-02, a spill of liquid to the soil from leaking drums. (3) CAS 25-44-03, a spill of oil from two leaking drums onto a concrete pad and surrounding soil. (4) CAS 25-44-04, a spill from two tanks containing sulfuric acid and sodium hydroxide used for a water demineralization process. (5) CAS 25-25-02, a fuel or oil spill from leaking drums that were removed in 1992. (6) CAS 25-25-03, an oil spill adjacent to a tipped-over drum. The source of the drum is not listed, although it is noted that the drum was removed in 1991. (7) CAS 25-25-04, an area on the north side of the Engine-Maintenance, Assembly, and Disassembly (E-MAD) facility, where oils and cooling fluids from metal machining operations were poured directly onto the ground. (8) CAS 25-25-05, an area of oil and/or hydraulic fluid spills beneath the heavy equipment once stored there. (9) CAS 25-25-06, an area of diesel fuel staining beneath two generators that have since been removed. (10) CAS 25-25-07, an area of hydraulic oil spills associated with a tunnel-boring machine abandoned inside X-Tunnel. (11) CAS 25-25-08, an area of hydraulic fluid spills associated with a tunnel-boring machine abandoned inside Y-Tunnel. (12) CAS 25-25-16, a diesel fuel spill from an above-ground storage tank located near Building 3320 at Engine Test Stand-1 (ETS-1) that was removed in 1998. (13) CAS 25-25-17, a hydraulic oil spill associated with the historical operations of a vacuum pump oil recovery system at the E-MAD facility.

K. B. Campbell

2001-11-01T23:59:59.000Z

373

Test plan for the M-100 container, (model M-101/7A/12/90) docket 96-43-7A, type A container. Revision 1  

Science Conference Proceedings (OSTI)

This report concerns the packaging configurations being tested by the U.S. DOE and its contractors, and according to U.S. DOT specification 7A Type A (DOT-7A) requirements. The objective of this Test Plan is to describe the testing for the qualification of the M-100 Container, Model M-101/7A/12/90 as a DOT-7A Type A packaging. This packaging system is designed to ship Type A solid radioactive materials, normal form, Form Number 1, Form Number 2, and Form Number 3.

Kelly, D.L.

1997-07-22T23:59:59.000Z

374

Acceptability of reactors in space  

SciTech Connect

Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it does not appear that reactors add measurably to the risk associated with the Space Transportation System.

Buden, D.

1981-01-01T23:59:59.000Z

375

Acceptability of reactors in space  

SciTech Connect

Reactors are the key to our future expansion into space. However, there has been some confusion in the public as to whether they are a safe and acceptable technology for use in space. The answer to these questions is explored. The US position is that when reactors are the preferred technical choice, that they can be used safely. In fact, it dies not appear that reactors add measurably to the risk associated with the Space Transportation System.

Buden, D.

1981-04-01T23:59:59.000Z

376

Streamlined Approach for Environmental Restoration (SAFER) Plan for Corrective Action Unit 130: Storage Tanks, Nevada Test Site, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan addresses the actions needed to achieve closure for Corrective Action Unit (CAU) 130, Storage Tanks, identified in the Federal Facility Agreement and Consent Order (FFACO) (1996, as amended February 2008). Corrective Action Unit 130 consists of the seven following corrective action sites (CASs) located in Areas 1, 7, 10, 20, 22, and 23 of the Nevada Test Site: • 01-02-01, Underground Storage Tank • 07-02-01, Underground Storage Tanks • 10-02-01, Underground Storage Tank • 20-02-03, Underground Storage Tank • 20-99-05, Tar Residue • 22-02-02, Buried UST Piping • 23-02-07, Underground Storage Tank This plan provides the methodology for field activities needed to gather the necessary information for closing each CAS. There is sufficient information and process knowledge from historical documentation and investigations of similar sites regarding the expected nature and extent of potential contaminants to recommend closure of CAU 130 using the SAFER process. Additional information will be obtained by conducting a field investigation before selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible recommendation that no further corrective action is necessary. This will be presented in a Closure Report that will be prepared and submitted to the Nevada Division of Environmental Protection (NDEP) for review and approval. The sites will be investigated based on the data quality objectives (DQOs) finalized on April 3, 2008, by representatives of NDEP; U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office; Stoller-Navarro Joint Venture; and National Security Technologies, LLC. The DQO process was used to identify and define the type, amount, and quality of data needed to determine and implement appropriate corrective actions for each CAS in CAU 130. The DQO process developed for this CAU identified the following expected closure options: (1) investigation and confirmation that no contamination exists above the final action levels, leading to a no further action declaration; (2) characterization of the nature and extent of contamination, leading to closure in place with use restrictions; or (3) clean closure by remediation and verification. The following text summarizes the SAFER activities that will support the closure of CAU 130: • Perform site preparation activities (e.g., utilities clearances, geophysical surveys). • Move or remove and dispose of debris at various CASs, as required. • Collect environmental samples from designated target populations (e.g., stained soil) to confirm or disprove the presence of contaminants of concern (COCs) as necessary to supplement existing information. • If no COCs are present at a CAS, establish no further action as the corrective action. • If COCs exist, collect environmental samples from designated target populations (e.g., clean soil adjacent to contaminated soil) and submit for laboratory analyses to define the extent of COC contamination. • If a COC is present at a CAS, either: - Establish clean closure as the corrective action. The material to be remediated will be removed, disposed of as waste, and verification samples will be collected from remaining soil, or - Establish closure in place as the corrective action and implement the appropriate use restrictions. • Obtain consensus from NDEP that the preferred closure option is sufficient to protect human health and the environment. • Close the underground storage tank(s) and their contents, if any, in accordance with Nevada Administrative Code regulations. • Remove the lead brick(s) found at any CAS in accordance with the Resource Conservation and Recovery Act.

Alfred Wickline

2008-07-01T23:59:59.000Z

377

Corrective Action Investigation Plan for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No.: 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) contains project-specific information including facility descriptions, environmental sample collection objectives, and criteria for conducting site investigation activities at Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada. This CAIP has been developed in accordance with the Federal Facility Agreement and Consent Order (FFACO) (1996) that was agreed to by the State of Nevada, the U.S. Department of Energy (DOE), and the U.S. Department of Defense (DoD). Corrective Action Unit 309 is located in Area 12 of the NTS, which is approximately 65 miles (mi) northwest of Las Vegas, Nevada (Figure 1-1). Area 12 is approximately 40 mi beyond the main gate to the NTS. Corrective Action Unit 309 is comprised of the three Corrective Action Sites (CASs) shown on Figure 1-1 and listed below: CAS 12-06-09, Muckpile; CAS 12-08-02, Contaminated Waste Dump (CWD); and CAS 12-28-01, I, J, and K-Tunnel Debris. Corrective Action Sites 12-06-09 and 12-08-02 will be collectively referred to as muckpiles in this document. Corrective Action Site 12-28-01 will be referred to as the fallout plume because of the extensive lateral area of debris and fallout contamination resulting from the containment failures of the J-and K-Tunnels. The corrective action investigation (CAI) will include field inspections, radiological surveys, and media sampling, where appropriate. Data will also be obtained to support waste management decisions. The CASs in CAU 309 are being investigated because hazardous and/or radioactive constituents may be present in concentrations that could potentially pose a threat to human health and/or the environment. Existing information on the nature and extent of potential contamination at these sites are insufficient to evaluate and recommend corrective action alternatives for the CASs. Therefore, additional information will be obtained by conducting a CAI prior to evaluating corrective action alternatives and selecting the appropriate corrective action for each CAS.

David A. Strand

2004-12-01T23:59:59.000Z

378

Generalized Test Plan for the Vitrification of Simulated High-Level -Waste Calcine in the Idaho National Laboratory‘s Bench -Scale Cold Crucible Induction Melter  

SciTech Connect

This Preliminary Idaho National Laboratory (INL) Test Plan outlines the chronological steps required to initially evaluate the validity of vitrifying INL surrogate (cold) High-Level-Waste (HLW) solid particulate calcine in INL's Cold Crucible Induction Melter (CCIM). Its documentation and publication satisfies interim milestone WP-413-INL-01 of the DOE-EM (via the Office of River Protection) sponsored work package, WP 4.1.3, entitled 'Improved Vitrification' The primary goal of the proposed CCIM testing is to initiate efforts to identify an efficient and effective back-up and risk adverse technology for treating the actual HLW calcine stored at the INL. The calcine's treatment must be completed by 2035 as dictated by a State of Idaho Consent Order. A final report on this surrogate/calcine test in the CCIM will be issued in May 2012-pending next fiscal year funding In particular the plan provides; (1) distinct test objectives, (2) a description of the purpose and scope of planned university contracted pre-screening tests required to optimize the CCIM glass/surrogate calcine formulation, (3) a listing of necessary CCIM equipment modifications and corresponding work control document changes necessary to feed a solid particulate to the CCIM, (4) a description of the class of calcine that will be represented by the surrogate, and (5) a tentative tabulation of the anticipated CCIM testing conditions, testing parameters, sampling requirements and analytical tests. Key FY -11 milestones associated with this CCIM testing effort are also provided. The CCIM test run is scheduled to be conducted in February of 2012 and will involve testing with a surrogate HLW calcine representative of only 13% of the 4,000 m3 of 'hot' calcine residing in 6 INL Bin Sets. The remaining classes of calcine will have to be eventually tested in the CCIM if an operational scale CCIM is to be a feasible option for the actual INL HLW calcine. This remaining calcine's make-up is HLW containing relatively high concentrations of zirconium and aluminum, representative of the cladding material of the reprocessed fuel that generated the calcine. A separate study to define the CCIM testing needs of these other calcine classifications in currently being prepared under a separate work package (WP-0) and will be provided as a milestone report at the end of this fiscal year.

Vince Maio

2011-08-01T23:59:59.000Z

379

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 484: Surface Debris, Waste Sites, and Burn Area, Tonopah Test Range, Nevada  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration plan details the activities necessary to close Corrective Action Unit (CAU) 484: Surface Debris, Waste Sites, and Burn Area (Tonopah Test Range). CAU 484 consists of sites located at the Tonopah Test Range, Nevada, and is currently listed in Appendix III of the Federal Facility Agreement and Consent Order. CAU 484 consists of the following six Corrective Action Sites: (1) CAS RG-52-007-TAML, Davis Gun Penetrator Test; (2) CAS TA-52-001-TANL, NEDS Detonation Area; (3) CAS TA-52-004-TAAL, Metal Particle Dispersion Test; (4) CAS TA-52-005-TAAL, Joint Test Assembly DU Sites; (5) CAS TA-52-006-TAPL, Depleted Uranium Site; and (6) CAS TA-54-001-TANL, Containment Tank and Steel Structure

Bechel Nevada

2004-05-01T23:59:59.000Z

380

10-MWe solar-thermal central-receiver pilot plant, solar-facilities design integration: system integration laboratory test plan (RADL item 6-4)  

DOE Green Energy (OSTI)

A general demonstration test plan is provided for the activities to be accomplished at the Systems Integration Laboratory. The Master Control System, Subsystem Distributed Process Control, Representative Signal Conditioning Units, and Redline Units from the Receiver Subsystem and the Thermal Storage Subsystem and other external interface operational functions will be integrated and functionally demonstrated. The Beckman Multivariable Control Unit will be tested for frequency response, static checks, configuration changes, switching transients, and input-output interfaces. Maximum System Integration Laboratory testing will demonstrate the operational readiness of Pilot Plant controls and external interfaces that are available. Minimum System Integration Laboratory testing will be accomplished with reduced set of hardware, which will provide capability for continued development and demonstration of Operational Control System plant control application software. Beam Control System Integration Laboratory testing will demonstrate the operational readiness of the Beam Control System equipment and software. (LEW)

Not Available

1980-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Strategic Plan  

NLE Websites -- All DOE Office Websites (Extended Search)

Plan Strategic Plan Print ALS Strategic Plan Update: March 2013 The Advanced Light Source Strategic Plan, originally published in 2009, has been revised to reflect completed...

382

Test plan for the M-100 container model M-101/7A/12/90 Docket 96-43-7A, type A container  

SciTech Connect

This document describes the test plan for the M-100 Container, Model M-101/7A/12/90. This packaging system is designed to ship Type A solid, radioactive materials, normal form, Form Nos. 1, 2, and 3. The nominal overall dimensions, including risers, of the M-100 Container are 79 x 54 x 42 inches. The capacity of the container is approximately 89.9 ft. The estimated gross weight of the packaging and contents is 9,000 lb.

Kelly, D.L.

1997-05-30T23:59:59.000Z

383

Streamlined approach for environmental restoration plan, CAU No. 400: Bomblet Pit and Five Points landfill Tonopah test range  

SciTech Connect

This plan was prepared under the Streamlined Approach for Environmental Restoration (SAFER) concept. The SAFER process is employed at Corrective Action Units (CAUs) where enough information exists about the nature and extent of contamination to propose an appropriate corrective action prior to the implementation of a Corrective Action Investigation (CAI). This process combines elements of the Data Quality Objectives (DQO) process and the observational approach to help plan and conduct corrective actions. DQOs are used to identify the problem and define the type and quality of data needed to complete the investigation phase of the process. The observational approach provides a framework for managing uncertainty and planning decision-making. The purpose of the investigation in the SAFER process is to document and verify the adequacy of existing information (such as process knowledge); to affirm the decision for clean closure, closure in place, or to take no further action; and to provide sufficient data to implement the corrective action.

NONE

1996-04-01T23:59:59.000Z

384

Corrective Action Investigation Plan for Corrective Action Unit 309: Area 12 Muckpiles, Nevada Test Site, Nevada, Rev. No. 0  

SciTech Connect

This Corrective Action Investigation Plan (CAIP) for Corrective Action Unit (CAU) 309, Area 12 Muckpiles, Nevada Test Site (NTS), Nevada, has been developed in accordance with the ''Federal Facility Agreement and Consent Order'' (FFACO) that was agreed to by the State of Nevada, the U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure that adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select technically viable corrective actions. Corrective Action Unit 309 is comprised of the following three corrective action sites (CASs) in Area 12 of the NTS: (1) CAS 12-06-09, Muckpile; (2) CAS 12-08-02, Contaminated Waste Dump (CWD); and (3) CAS 12-28-01, I-, J-, and K-Tunnel Debris. Corrective Action Site 12-06-09 consists of a muckpile and debris located on the hillside in front of the I-, J-, and K-Tunnels on the eastern slopes of Rainier Mesa in Area 12. The muckpile includes mining debris (muck) and debris generated during the excavation and construction of the I-, J-, and K-Tunnels. Corrective Action Site 12-08-02, CWD, consists of a muckpile and debris and is located on the hillside in front of the re-entry tunnel for K-Tunnel. For the purpose of this investigation CAS 12-28-01 is defined as debris ejected by containment failures during the Des Moines and Platte Tests and the associated contamination that is not covered in the two muckpile CASs. This site consists of debris scattered south of the I-, J-, and K-Tunnel muckpiles and extends down the hillside, across the valley, and onto the adjacent hillside to the south. In addition, the site will cover the potential contamination associated with ''ventings'' along the fault, fractures, and various boreholes on the mesa top and face. One conceptual site model was developed for all three CASs to address possible contamination migration pathways associated with CAU 309. The data quality objective (DQO) process was used to identify and define the type, quantity, and quality of data needed to complete the investigation phase of the corrective action process. The DQO process addresses the primary problem that sufficient information is not available to determine the appropriate corrective action for the CAU. Due to the practical constraints posed by steep slopes on and around the CAU 309 muckpiles, a conservative, simplifying strategy was developed to resolve the presence and nature of contaminants. This strategy includes the use of historical data from similar sites (i.e., previously investigated NTS muckpiles) and the collection of samples from accessible areas of the muckpiles. Based on site history, process knowledge, and previous investigations of similar sites, contaminants of potential concern for CAU 309 collectively include radionuclides, total petroleum hydrocarbons (diesel range only), polychlorinated biphenyls, ''Resource Conservation and Recovery Act'' metals, volatile organic compounds, and semivolatile organic compounds.

Robert F. Boehlecke

2004-12-01T23:59:59.000Z

385

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 121: Storage Tanks and Miscellaneous Sites, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 121, Storage Tanks and Miscellaneous Sites. CAU 121 is currently listed in Appendix III of the ''Federal Facility Agreement and Consent Order'' (FFACO, 1996) and consists of three Corrective Action Sites (CASs) located in Area 12 of the Nevada Test Site (NTS): CAS 12-01-01, Aboveground Storage Tank; CAS 12-01-02, Aboveground Storage Tank; and CAS 12-22-26, Drums; 2 AST's. CASs 12-01-01 and 12-01-02 are located to the west of the Area 12 Camp, and CAS 12-22-26 is located near the U-12g Tunnel, also known as G-tunnel, in Area 12 (Figure 1). The aboveground storage tanks (ASTs) present at CASs 12-01-01 and 12-01-02 will be removed and disposed of at an appropriate facility. Soil below the ASTs will be sampled to identify whether it has been impacted with chemicals or radioactivity above action levels. If impacted soil above action levels is present, the soil will be excavated and disposed of at an appropriate facility. The CAS 12-22-26 site is composed of two overlapping areas, one where drums had formerly been stored, and the other where an AST was used to dispense diesel for locomotives used at G-tunnel. This area is located above an underground radioactive materials area (URMA), and within an area that may have elevated background radioactivity because of containment breaches during nuclear tests and associated tunnel reentry operations. CAS 12-22-26 does not include the URMA or the elevated background radioactivity. An AST that had previously been used to store liquid magnesium chloride (MgCl) was properly disposed of several years ago, and releases from this tank are not an environmental concern. The diesel AST will be removed and disposed of at an appropriate facility. Soil at the former drum area and the diesel AST area will be sampled to identify whether it has been impacted by releases, from the drums or the AST, with chemicals or radioactivity above action levels. CAS 12-22-26 has different potential closure pathways that are dependent upon the concentrations and chemicals detected. If only petroleum hydrocarbons are detected above action levels, then the area will be use-restricted. It will not be excavated because of the more significant hazard of excavating within a URMA. Similarly, polychlorinated biphenyls (PCBs) will only be excavated for concentrations of 50 parts per million (ppm) or greater, if there are no other factors that require excavation. For PCBs at concentrations above 1 ppm, the area will be use-restricted as required by Title 40, Code of Federal Regulations (CFR) Part 761 for PCBs (CFR, 2006), in the ''Toxic Substances Control Act'' (TSCA). Other chemicals at concentrations above the final action levels (FALs) will be excavated. If radioactivity is above action levels, then the soil will be excavated only to a depth of 1 foot (ft) below ground surface (bgs) and replaced with clean fill. This action is intended to remove the ''hot spot'' on the surface caused by leakage from a drum, and not to remediate the URMA.

NSTec Environmental Restoration

2007-06-01T23:59:59.000Z

386

Operational test report for LERF Basin 242AL-44 integrity test  

SciTech Connect

This operational test report documents the results of LERF operational testing per operational test procedure (OTP) TFPE-WP-0231, ``LERF Basin Integrity Testing.`` The primary purpose of the OTP was to resolve test exceptions generated as a result of TFPE-WP-0184. The TOP was prepared and performed in accordance with WHC-SD-534-OTP-002, ``Operational Test Plan for the 242-A Evaporator Upgrades and the Liquid Effluent Retention Facility.`` WHC-S-086, ``Specification for Operational Testing of the Liquid Effluent Retention Facility, Basin Integrity Testing,`` identified the test requirements and acceptance criteria. The completed, signed-off test procedure is contained in Appendix A. The test log is contained in Appendix B. Section 2.1 describes all the test exceptions written during performance of the Operational Test Procedure. The test revisions generated during the testing are discussed in Section 2.2. The dispositioned test exception forms are contained in Appendix C.

Galioto, T.M.

1994-11-08T23:59:59.000Z

387

Corrective Action Investigation Plan for Corrective Action Unit 500: Test Cell A Septic System, Nevada Test Site, Nevada, Revision 0, DOE/NV--528 UPDATED WITH TECHNICAL CHANGE No.1  

DOE Green Energy (OSTI)

This Corrective Action Investigation Plan (CAIP) addresses one of three leachfield systems associated with Test Cell A, which is located in Area 25 at the Nevada Test Site (NTS). The NTS is approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (see Leachfield Work Plan Figure 1-1). Corrective Action Unit 500 is comprised of the Test Cell A Septic System (CAS 25-04-05) and the associated leachfield system presented in Figure 1-1 (FFACO, 1996). The leachfield is located 60 meters (m) (200 feet [ft]) southeast of the Building 3124 gate, and approximately 45 m (150 ft) southwest of Building 3116 at Test Cell A. Test Cell A operated during the 1960s to support nuclear rocket reactor testing as part of the Nuclear Rocket Development Station (NRDS) (SNPO, 1970). Various operations within Buildings 3113B (Mechanical Equipment Room), 3115 (Helium Compressor Station), 3116 (Pump House), a water tank drain and overflow, a ''yard and equipment drain system'' outside of Building 3116, and a trailer have resulted in potentially hazardous effluent releases to the leachfield system (DOE, 1988a). The leachfield system components include discharge lines, manways, a septic tank, an outfall line, a diversion chamber, and a 15 by 30 m (50 by 100 ft) leachfield (see Leachfield Work Plan Figure 3-1 for explanation of terminology). In addition, engineering drawings show an outfall system that may or may not be connected to the CAU 500 leachfield. In general, effluent contributed to the leachfield was sanitary wastewater associated with floor drains, toilet and lavatory facilities in Building 3113B and floor drains in the remaining source buildings. The surface and subsurface soils in the vicinity of the collection system, outfall, and leachfield may have been impacted by effluent containing contaminants of potential concern (COPCs) generated by support activities associated with Test Cell A reactor testing operations.

ITLV

1998-12-01T23:59:59.000Z

388

The Acceptance Strategy for Nuclear Power Plant In Indonesia  

SciTech Connect

Indonesia has planned to build nuclear power plants. Some feasibility studies have been conducted intensively. However, the processes of NPP introduction are still uncertain. National Energy Plan in Indonesia, which has been made by some governmental agencies, does not yet give positive impact to the government decision to construct the nuclear power plant (NPP). This paper discusses the process of NPP introduction in Indonesia, which has been colored with debate of stakeholder and has delayed decision for go-nuclear. The technology paradigm is used to promote NPP as an alternative of reliable energy resources. This paradigm should be complemented with international politic-economic point of view. The international politic-economic point of view shows that structural powers, consisting of security, production, finance, and knowledge structures, within which the NPP is introduced, have dynamic characteristics. The process of NPP introduction in Indonesia contains some infrastructure development (R and D, legislation, regulation, energy planning, site study, public acceptance efforts, etc), but they need a better coherent NPP implementation program and NPP Acceptance Program. Strategic patterns for NPP acceptance described in this paper are made by considering nuclear regulation development and the interest of basic domestic participation. The first NPP program in Indonesia having proven technology and basic domestic participation is and important milestone toward and optimal national energy-mix.

Suhaemi, Tjipta [Centre for Reactor Technology and Nuclear Safety, National Nuclear Energy Agency of Indonesia (Indonesia); Syaukat, Achmad [Centre for Nuclear Technology Business, National Nuclear Energy Agency of Indonesia, Kawasan PUSPIPTEK, Serpong-Tangerang Selatan (Indonesia)

2010-06-22T23:59:59.000Z

389

Streamlined Approach for Environmental Restoration Plan for Corrective Action Unit 134: Aboveground Storage Tanks, Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

This Streamlined Approach for Environmental Restoration (SAFER) Plan identifies the activities required for the closure of Corrective Action Unit (CAU) 134, Aboveground Storage Tanks. CAU 134 is currently listed in Appendix III of the Federal Facility Agreement and Consent Order (FFACO) (FFACO, 1996; as amended February 2008) and consists of four Corrective Action Sites (CASs) located in Areas 3, 15, and 29 of the Nevada Test Site (NTS) (Figure 1): (1) CAS 03-01-03, Aboveground Storage Tank; (2) CAS 03-01-04, Tank; (3) CAS 15-01-05, Aboveground Storage Tank; and (4) CAS 29-01-01, Hydrocarbon Stain. CAS 03-01-03 consists of a mud tank that is located at the intersection of the 3-07 and the 3-12 Roads in Area 3 of the NTS. The tank and its contents are uncontaminated and will be dispositioned in accordance with applicable federal, state, and local regulations. This CAS will be closed by taking no further action. CAS 03-01-04 consists of a potable water tank that is located at the Core Complex in Area 3 of the NTS. The tank will be closed by taking no further action. CAS 15-01-05 consists of an aboveground storage tank (AST) and associated impacted soil, if any. This CAS is located on a steep slope near the Climax Mine in Area 15 of the NTS. The AST is empty and will be dispositioned in accordance with applicable federal, state, and local regulations. Soil below the AST will be sampled to identify whether it has been impacted by chemicals at concentrations exceeding the action levels. It appears that the tank is not at its original location. Soil will also be sampled at the original tank location, if it can be found. If soil at either location has been impacted at concentrations that exceed the action levels, then the extent of contamination will be identified and a use restriction (UR) will be implemented. The site may be clean closed if contamination is less than one cubic yard in extent and can be readily excavated. If action levels are not exceeded, then no further action is required. CAS 29-01-01 consists of soil that has been impacted by a release or operations from an active diesel AST that fuels the generator at the Shoshone Receiver Site in Area 29 of the NTS. Soil below the AST will be sampled to identify whether it has been impacted at concentrations exceeding the action levels. If it is, then the extent of contamination will be identified and a UR will be implemented. The site may be clean closed if contamination is less than one cubic yard in extent, can be readily excavated, and it is determined that clean closure is feasible based upon site conditions. If action levels are not exceeded, then no further action is required. Based on review of the preliminary assessment information for CAU 134 and recent site inspections, there is sufficient process knowledge to close CAU 134 using the SAFER process.

NSTec Environmental Restoration

2008-05-31T23:59:59.000Z

390

REGIONAL WATER SUPPLY PLANNING AND  

E-Print Network (OSTI)

accepted standards, which is an important planning aspect for water supply agencies. Yeh et al. (2000CHAPTER 3 REGIONAL WATER SUPPLY PLANNING AND CAPACITY EXPANSION MODELS Messele Z. Ejeta California Department of Water Resources Sacramento, California Larry W. Mays Department of Civil and Environmental

Mays, Larry W.

391

Research Experience in Carbon Sequestration 2010 Now Accepting Applications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2010 Now Accepting 2010 Now Accepting Applications Research Experience in Carbon Sequestration 2010 Now Accepting Applications April 20, 2010 - 1:00pm Addthis Washington, DC - Students and early career professionals can gain hands-on experience in areas related to carbon capture and storage (CCS) by participating in the Research Experience in Carbon Sequestration (RECS) program. The initiative, supported by DOE's Office of Fossil Energy (FE), is currently accepting applications for RECS 2010, scheduled for July 18-28 in Albuquerque, N.M., and the deadline to apply is May 15. An intensive science-based program, RECS 2010 will combine classroom instruction with field activities at a geologic storage test site and visits to a power plant and coal mine. Topics cover the range of CCS

392

Corrective action plan for CAU Number 339: Area 12 Fleet Operations, Steam Cleaning Discharge Area, Nevada Test Site  

Science Conference Proceedings (OSTI)

The purpose of this Corrective Action Plan (CAP) is to provide the method for implementing the corrective action alternative as provided in the Corrective Action Decision Document (CADD). Detailed information of the site history and results of previous characterizations can be found in the Work Plan, the Preliminary Investigation Report, and the Phase 2 Characterization Report. Previous characterization investigations were completed as a condition of the Temporary Water Pollution Control Permit issued by the Nevada Division of Environmental Protection (NDEP) on July 14, 1992. The scope of this report is to prepare a CAP based upon the selected remedial alternative for closure of the Area 12, Building 12-16 Fleet Operations steam cleaning discharge area. The effluent discharge area has been impacted by volatile organic compounds (VOCs) and total petroleum hydrocarbons (TPH) as oil. The maximum hydrocarbon and VOC concentrations detected in the Preliminary and Phase 2 Site Characterization Investigations are summarized.

NONE

1997-05-01T23:59:59.000Z

393

Program on Technology Innovation: Using Scenario Planning to “Stress Test” EPRI’s Research and Development Portfolio  

Science Conference Proceedings (OSTI)

Working closely with electricity industry, public advisors, and the Electric Power Research Institute (EPRI) Board of Directors, EPRI has developed a research and development (R&D) roadmap for overarching strategic issues that offers both opportunities and challenges to the continued delivery of reliable, affordable, and environmentally responsible electricity. EPRI has subsequently identified key R&D challenges and action plans to respond to this roadmap.This report summarizes a ...

2013-05-14T23:59:59.000Z

394

Planning and design of additional East Mesa Geothermal Test Facilities. Phase 1B. Volume II. Procurement package  

DOE Green Energy (OSTI)

Procurement packages of technical specifications and construction drawings for eleven test facility additions to the ERDA East Mesa Geothermal Component Test Facility are presented. Each of the specifications includes all of the technical requirements needed for procurement and construction starting with Division 2. The information is presented under the following subject headings: injection pump system: 52-2 injection pipeline; control and instrumentation spools; calibration test bench; test pad modifications; test pad piping headers; production and injection wells; well 5-2 modifications; well 8-1 down-hole pump; well 6-1 down-hole pump; and well 8-1 booster pump. (JGB)

Pearson, R.O.

1976-10-15T23:59:59.000Z

395

Corrective Action Investigation Plan for Corrective Action Unit 105: Area 2 Yucca Flat Atmospheric Test Sites Nevada National Security Site, Nevada, Revision 0  

Science Conference Proceedings (OSTI)

Corrective Action Unit (CAU) 105 is located in Area 2 of the Nevada National Security Site, which is approximately 65 miles northwest of Las Vegas, Nevada. CAU 105 is a geographical grouping of sites where there has been a suspected release of contamination associated with atmospheric nuclear testing. This document describes the planned investigation of CAU 105, which comprises the following corrective action sites (CASs): • 02-23-04, Atmospheric Test Site - Whitney • 02-23-05, Atmospheric Test Site T-2A • 02-23-06, Atmospheric Test Site T-2B • 02-23-08, Atmospheric Test Site T-2 • 02-23-09, Atmospheric Test Site - Turk These sites are being investigated because existing information on the nature and extent of potential contamination is insufficient to evaluate and recommend corrective action alternatives (CAAs). Additional information will be obtained by conducting a corrective action investigation before evaluating CAAs and selecting the appropriate corrective action for each CAS. The results of the field investigation will support a defensible evaluation of viable CAAs that will be presented in the Corrective Action Decision Document. The sites will be investigated based on the data quality objectives (DQOs) developed on April 30, 2012, by representatives of the Nevada Division of Environmental Protection and the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office. The DQO process was used to identify and define the type, amount, and quality of data needed to develop and evaluate appropriate corrective actions for CAU 105. The site investigation process will also be conducted in accordance with the Soils Activity Quality Assurance Plan, which establishes requirements, technical planning, and general quality practices to be applied to this activity. The potential contamination sources associated with all CAU 105 CASs are from atmospheric nuclear testing activities. The presence and nature of contamination at CAU 105 will be evaluated based on information collected from a field investigation. Radiological contamination will be evaluated based on a comparison of the total effective dose at sample locations to the dose-based final action level. The total effective dose will be calculated as the total of separate estimates of internal and external dose. Results from the analysis of soil samples will be used to calculate internal radiological dose. Thermoluminescent dosimeters placed at the center of each sample location will be used to measure external radiological dose. Appendix A provides a detailed discussion of the DQO methodology and the DQOs specific to each CAS. This Corrective Action Investigation Plan has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada; DOE, Environmental Management; U.S. Department of Defense; and DOE, Legacy Management. Under the Federal Facility Agreement and Consent Order, this Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Fieldwork will be conducted after the plan is approved.

Patrick Matthews

2012-09-01T23:59:59.000Z

396

Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1  

SciTech Connect

This Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select viable corrective actions. This Corrective Action Investigation Plan provides investigative details for CAU 511, whereas programmatic aspects of this project are discussed in the ''Project Management Plan'' (DOE/NV, 1994). General field and laboratory quality assurance and quality control issues are presented in the ''Industrial Sites Quality Assurance Project Plan'' (NNSA/NV, 2002). Health and safety aspects of the project are documented in the current version of the Environmental Engineering Services Contractor's Health and Safety Plan and will be supplemented with a site-specific safety basis document. Corrective Action Unit 511 is comprised of the following nine corrective action sites in Nevada Test Site Areas 3, 4, 6, 7, 18, and 19: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). Corrective Action Sites 18-99-10 and 19-19-03 were identified after a review of the ''1992 RCRA Part B Permit Application for Waste Management Activities at the Nevada Test Site, Volume IV, Section L Potential Solid Waste Management Unit'' (DOE/NV, 1992). The remaining seven sites were first identified in the 1991 Reynolds Electrical & Engineering Co., Inc. document entitled, ''Nevada Test Site Inventory of Inactive and Abandoned Facilities and Waste Sites''. The seven-step data quality objectives (DQO) process was used to identify and define the type, quantity, and quality of data needed to complete the investigation phase of the corrective action process. The DQOs address the primary problem that sufficient information is not available to determine the appropriate corrective action for the CASs. Corrective action closure alternatives (i.e., no further action, close in place, or clean closure) will be recommended for CAU 511 based on an evaluation of all the DQO required data. Under the ''Federal Facility Agreement and Consent Order'', the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives that will be presented in the Corrective Action Decision Document.

David A. Strand

2004-08-01T23:59:59.000Z

397

Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, Rev. No.: 0 with ROTC 1  

SciTech Connect

This Corrective Action Investigation Plan for Corrective Action Unit 511: Waste Dumps (Piles & Debris), Nevada Test Site, Nevada, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the State of Nevada, U.S. Department of Energy, and the U.S. Department of Defense. The general purpose of the investigation is to ensure adequate data are collected to provide sufficient and reliable information to identify, evaluate, and select viable corrective actions. This Corrective Action Investigation Plan provides investigative details for CAU 511, whereas programmatic aspects of this project are discussed in the ''Project Management Plan'' (DOE/NV, 1994). General field and laboratory quality assurance and quality control issues are presented in the ''Industrial Sites Quality Assurance Project Plan'' (NNSA/NV, 2002). Health and safety aspects of the project are documented in the current version of the Environmental Engineering Services Contractor's Health and Safety Plan and will be supplemented with a site-specific safety basis document. Corrective Action Unit 511 is comprised of the following nine corrective action sites in Nevada Test Site Areas 3, 4, 6, 7, 18, and 19: (1) 03-08-02, Waste Dump (Piles & Debris); (2) 03-99-11, Waste Dump (Piles); (3) 03-99-12, Waste Dump (Piles & Debris); (4) 04-99-04, Contaminated Trench/Berm; (5) 06-16-01, Waste Dump (Piles & Debris); (6) 06-17-02, Scattered Ordnance/Automatic Weapons Range; (7) 07-08-01, Contaminated Mound; (8) 18-99-10, Ammunition Dump; and (9) 19-19-03, Waste Dump (Piles & Debris). Corrective Action Sites 18-99-10 and 19-19-03 were identified after a review of the ''1992 RCRA Part B Permit Application for Waste Management Activities at the Nevada Test Site, Volume IV, Section L Potential Solid Waste Management Unit'' (DOE/NV, 1992). The remaining seven sites were first identified in the 1991 Reynolds Electrical & Engineering Co., Inc. document entitled, ''Nevada Test Site Inventory of Inactive and Abandoned Facilities and Waste Sites''. The seven-step data quality objectives (DQO) process was used to identify and define the type, quantity, and quality of data needed to complete the investigation phase of the corrective action process. The DQOs address the primary problem that sufficient information is not available to determine the appropriate corrective action for the CASs. Corrective action closure alternatives (i.e., no further action, close in place, or clean closure) will be recommended for CAU 511 based on an evaluation of all the DQO required data. Under the ''Federal Facility Agreement and Consent Order'', the Corrective Action Investigation Plan will be submitted to the Nevada Division of Environmental Protection for approval. Field work will be conducted following approval of the plan. The results of the field investigation will support a defensible evaluation of corrective action alternatives that will be presented in the Corrective Action Decision Document.

David A. Strand

2004-08-01T23:59:59.000Z

398

MINUTES - ACCEPTANCE MEETING FOR LHC MAGNETS BUILT AT BNL  

NLE Websites -- All DOE Office Websites (Extended Search)

ACCEPTANCE MEETING FOR LHC MAGNETS BUILT AT BNL ACCEPTANCE MEETING FOR LHC MAGNETS BUILT AT BNL Magnet: D1L101 Date of meeting: 29 January 2004 Date of these minutes: 30 January 2004 Attending: M. Anerella, J. Cozzolino, J. Durnan, J. Escallier, H. Hocker, A. Jain, J. Muratore, S. Plate, C. Porretto, P. Wanderer, E. Willen Summary. The acceptance committee previously reviewed this magnet in March 2003 and May 2003. Since the last review, the magnet has been cold-tested to check whether the high- resistance short between one of the two strip heaters and the magnet coil affected the magnet operation (including quench performance). It was concluded that the heater-to- coil short did not affect the magnet operation during the cold test. The committee also reviewed the field quality data, which indicated that the yoke keys were stainless steel,

399

Corrective Action Investigation Plan for Corrective Action Unit 135: Area 25 Underground Storage Tanks, Nevada Test Site, Nevada  

SciTech Connect

This CAIP presents a plan to investigate the nature and extent of the contaminants of potential concern (COPCs) at CAU 135. The purpose of the corrective action investigation described in this CAIP is to: (1) Identify the presence and nature of COPCs; (2) Determine the location of radiological contamination within the vault and determine the extent of COPCs in the sump area and on the floor; and (3) Provide sufficient information and data to develop and evaluate appropriate corrective actions for CAS 25-02-01. This CAIP was developed using the U.S. Environmental Protection Agency's (EPA) Data Quality Objectives (DQOs) (EPA, 1994) process to clearly define the goals for collecting environmental data, to determine data uses, and to design a data collection program that will satisfy these uses. A DQO scoping meeting was held prior to preparation of this plan; a brief summary of the DQOs is presented in Section 3.4. A more detailed summary of the DQO process and results is included in Appendix A.

DOE /NV

1999-05-01T23:59:59.000Z

400

Registered Charity Number 207890 Accepted Manuscript  

NLE Websites -- All DOE Office Websites (Extended Search)

Accepted Manuscript, which has been through the RSC Publishing peer Accepted Manuscript, which has been through the RSC Publishing peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, which is prior to technical editing, formatting and proof reading. This free service from RSC Publishing allows authors to make their results available to the community, in citable form, before publication of the edited article. This Accepted Manuscript will be replaced by the edited and formatted Advance Article as soon as this is available. To cite this manuscript please use its permanent Digital Object Identifier (DOI®), which is identical for all formats of publication. More information about Accepted Manuscripts can be found in the Information for Authors.

Note: This page contains sample records for the topic "acceptance test plan" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Record of Technical Change {number_sign}2 for ''Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada,'' Revision 0, DOE/NV--532  

Science Conference Proceedings (OSTI)

This Record of Technical Change updates the technical informatioin provided in ''Corrective Action Investigation Plan for Corrective Action Unit 240: Area 25 Vehicle Washdown, Nevada Test Site, Nevada,'' Revision 0, DOE/NV--532.

USDOE Nevada Operations Office

2000-03-16T23:59:59.000Z

402

Status and Plan of the System Codes Development for ITER Test Blanket Module and Fusion Breeding Blanket in Korea  

Science Conference Proceedings (OSTI)

Test Blanket, Fuel Cycle, and Breeding / Proceedings of the Twentieth Topical Meeting on the Technology of Fusion Energy (TOFE-2012) (Part 2) Nashville, Tennessee, August 27-31, 2012

Dong Won Lee et al.

403

Geopressured-geothermal drilling and testing plan. General Crude Oil--Dept. of Energy Pleasant Bayou No. 1 well, Brazoria County, Texas  

DOE Green Energy (OSTI)

As a result of geopressured resource assessment studies in the Gulf Coast region, the Brazoria fairway, located in Brazoria County, Texas was determined to be an optimum area for additional studies. A plan is presented for drilling, completion, and testing of one geopressured-geothermal well and two disposal wells in Brazoria County, Texas. The objectives of the well drilling and testing program are to determine the following parameters: reservoir permeability, porosity, thickness, rock material properties, depth, temperature, and pressure; reservoir fluid content, specific gravity, resistivity, viscosity, and hydrocarbons in solution; reservoir fluid production rates, pressure, temperature, production decline, and pressure decline; geopressured well and surface equipment design requirements for high-volume production and possible sand production; specific equipment design for surface operations, hydrocarbons distribution, and effluent disposal; and possibilities of reservoir compaction and/or surface subsidence. (JGB)

Not Available

1978-05-01T23:59:59.000Z

404

Corrective Action Investigation Plan for Corrective Action Unit 266: Area 25 Building 3124 Leachfield, Nevada Test Site, Nevada, Revision 1, February 1999  

SciTech Connect

The Corrective Action Investigation Plan for Corrective Action Unit 266, Area 25 Building 3124 Leachfield, has been developed in accordance with the Federal Facility Agreement and Consent Order that was agreed to by the U.S. Department of Energy, Nevada Operations Office; the State of Nevada Division of Environmental Protection; and the U.S. Department of Defense. Corrective Action Unit 266 consists of the Corrective Action Site 25-05-09 sanitary leachfield and associated collection system. This Corrective Action Investigation Plan is used in combination with the Work Plan for Leachfield Corrective Action Units: Nevada Test Site and Tonopah Test Range, Nevada (DOE/NV, 1998d). This Corrective Action Investigation Plan provides investigative details specific to Corrective Action Unit 266. Corrective Action Unit 266 is located southwest of Building 3124 which is located southwest and adjacent to Test Cell A. Test Cell A was operational during the 1960s to test nuclear rocket reactors in support of the Nuclear Rocket Development Station. Operations within Building 3124 from 1962 through the early 1990s resulted in effluent releases to the leachfield and associated collection system. The subsurface soils in the vicinity of the collection system and leachfield may have been impacted by effluent containing contaminants of potential concern generated by support activities associated with Test Cell A reactor testing operations, various laboratories including a high-level radioactivity environmental sample handling laboratory, and possibly the Treatability Test Facility. Based on site history collected to support the Data Quality Objectives process, contaminants of potential concern for the site include radionuclides, oil/diesel range total petroleum hydrocarbons, and Resource Conservation and Recovery Act characteristic volatile organic compounds, semivolatile organic compounds, and metals. Samples will also be analyzed for radionuclides and polychlorinated biphenyls not considered during the DQO process. Additional samples will be analyzed for geotechnical and hydrological properties and a bioassessment may be performed. The technical approach for investigating this Corrective Action Unit consists of the following activities: (1) Perform a radiological walkover survey. (2) Perform video and radiation surveys of the discharge and outfall lines. (3) Collect samples from within the septic tank. (4) Mark approximate locations of leachfield distribution lines on the ground surface. (5) Collect subsurface soil samples in areas of the collection system including the septic tank and outfall end of the diversion chamber. (6) Collect subsurface soil samples underlying the leachfield distribution pipes. (7) Field screen samples for volatile organic compounds and radiological activity. (8) Drill boreholes and collect subsurface soil samples if required. (9) Analyze soil samples for total volatile organic compounds, total semivolatile organic compounds, total Resource Conservation and Recovery Act metals, total petroleum hydrocarbons (oil/diesel-range organics), and polychlorinated biphenyls. (1) Analyze a minimum of 25 percent of the soil samples for gamma-emitting radionuclides, isotopic uranium, isotopic plutonium, isotopic americium, and strontium-90 if radiological field screening levels are exceeded. (2) Collect samples from native soils beneath the distribution system and analyze for geotechnical/hydrologic parameters. (3) Collect and analyze bioassessment samples at Site Supervisors discretion if volatile organic compounds exceed field-screening levels. Additional sampling and analytical details are presented.

U.S. Department Of Energy, Nevada Operations Office

1999-02-24T23:59:59.000Z

405

Waste acceptance criteria for closure generated waste  

Science Conference Proceedings (OSTI)

The PORTS Facility has been operating since 1954. The PORTS Facility is used to enrich uranium for nuclear navy applications and commercial nuclear reactors. The PORTS process uses molecular diffusion techniques to separate the U-235 isotope from the U-238 isotope. The PORTS Facility consists of a complex cascade of compressors and converters through which gaseous uranium hexafluoride feed is processed. The feed contains approximately 0.7 percent U-235 by weight while products contain from 4 to 97 percent U-235 by weight, depending on the final application. In general, the majority of the closure wastes generated at PORTS consists of personal protective equipment (PPE), rags, soils, decontamination solutions, and construction related debris. These hazardous wastes will be predominately characterized on the basis of process knowledge. PORTS assumes its conservative waste characterizations that are based on process knowledge are correct unless and until further investigation and/or analysis proves the constituents are not present or are present at concentrations below characteristic regulatory thresholds. Waste Acceptance Criteria for wastes generated by the closure of active and inactive RCRA facilities at PORTS has been developed. The criteria presented in this document govern the activities that are performed during the closure and subsequent generation of waste and relocation from the closure locations to the storage unit. These criteria are intended to ensure the proper handling, classification, processing, and storage of wastes in order to prevent hazardous waste release that may pose a threat to human health or the environment. Any wastes currently stored at each of the facilities that are to be closed will be transferred to the X-326 or X-7725 Storage Units. The waste transfers will be accomplished in accordance with the Container Transfer Plan.

Not Available

1992-05-01T23:59:59.000Z

406

Restrictions on Federal Employees Acceptance of Gifts  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Restrictions on Federal Employees Acceptance of Gifts Restrictions on Federal Employees Acceptance of Gifts As the holiday season approaches, it is important to remember there are restrictions on Federal employees accepting gifts from outside sources and from other Federal employees. Just as there is no "working lunch" exception to the gift prohibition, there is no "holiday party" exception. A gift includes anything of monetary value, including a gratuity, favor, discount, entertainment, training, transportation, lodging, and meals. Gifts from outside sources. Generally, as a Federal employee, you may not solicit or accept a gift (1) from a "prohibited source" or (2) if given because of your official position. A "prohibited

407

Venture Acceleration Fund now accepting 2012 applications  

NLE Websites -- All DOE Office Websites (Extended Search)

2012 applications Venture Acceleration Fund now accepting 2012 applications The three companies selected will receive up to 100,000 each to commercialize technology and take it to...

408

Corrective Action Plan for Corrective Action Unit 321: Area 22 Weather Station Fuel Storage Nevada Test Site, Nevada  

Science Conference Proceedings (OSTI)

The purpose of this Corrective Action Plan (CAP) is to provide the strategy and methodology to close the Area 22 Weather Station Fuel Storage. The CAU will be closed following state and federal regulations and the FFACO (1996). Site characterization was done during February 1999. Soil samples were collected using a direct-push method. Soil samples were collected at 0.6-m (2-ft) intervals from the surface to 1.8 m (6 ft) below ground surface. The results of the characterization were reported in the Corrective Action Decision Document (CADD) (DOE, 1999b). Soil sample results indicated that two locations in the bermed area contain total petroleum hydrocarbons (TPH) as diesel at concentrations of 124 milligrams per kilogram (mg/kg) and 377 mg/kg. This exceeds the Nevada Division of Environmental Protection (NDEP) regulatory action level for TPH of 100 mg/kg (Nevada Administrative Code, 1996). The TPH-impacted soil will be removed and disposed as part of the corrective action.

D. S. Tobiason

2000-06-01T23:59:59.000Z