Powered by Deep Web Technologies
Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Test Facility Daniil Stolyarov, Accelerator Test Facility User...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Development of the Solid-State Laser System for the Accelerator Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting April 3, 2009 Outline Motivation for...

2

Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAboutTest Facility Vitaly Yakimenko October 6-7,

3

The BNL Accelerator Test Facility control system  

SciTech Connect (OSTI)

Described is the VAX/CAMAC-based control system for Brookhaven National Laboratory's Accelerator Test Facility, a laser/linac research complex. Details of hardware and software configurations are presented along with experiences of using Vsystem, a commercial control system package.

Malone, R.; Bottke, I.; Fernow, R.; Ben-Zvi, I.

1993-01-01T23:59:59.000Z

4

SLAC low emittance accelerator test facility  

SciTech Connect (OSTI)

SLAC is proposing to build a new Accelerator Test Facility (ATF) capable of producing a 50 MeV electron beam with an extremely low geometric tranverse emittance (1.5 x 10/sup -10/ rad.m) for the purpose of testing new methods of acceleration. The low emittance will be achieved by assembling a linear accelerator using one standard SLAC three-meter section and a 400 kV electron gun with a very small photocathode (40 microns in diameter). The photocathode will be illuminated from the back by short bursts (on the order of 6 ps) of visible laser light which will produce bunches of about 10/sup 5/ electrons. Higher currents could be obtained by illuminating the cathode from the front. The gun will be mounted directly against the accelerator section. Calculations show that in the absence of an rf buncher, injection of these 400 keV small radius electron bunches roughly 30/sup 0/ ahead of crest produces negligible transverse emittance growth due to radial rf forces. Acceleration of the electrons up to 50 MeV followed by collimation, energy slits and focusing will provide a 3.2 mm long waist of under 1.5 ..mu..m in diameter where laser acceleration and other techniques can be tested.

Loew, G.A.; Miller, R.H.; Sinclair, C.K.

1986-05-01T23:59:59.000Z

5

E-Print Network 3.0 - accelerator test facility Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Test Facility (ITF) and the Facility for Accelerator Science and Experimental Test Beams ... Source: Cavalli-Sforza, Luigi - Department of Genetics, Stanford University...

6

Powerline Conductor Accelerated Testing Facility (PCAT) The Powerline Conductor Accelerated Testing facility (PCAT) at Oak Ridge National  

E-Print Network [OSTI]

-current situations as well as conductor characterization (e.g., sag, tension, conductor temperature) at rated of the conductor under test up to 600 Vdc and 5000 Adc. The low voltage nature of the facility permits extensive instrumentation of the test conductor's surface and core temperatures by means of thermocouples as well

7

Status and Plans for an SRF Accelerator Test Facility at Fermilab  

E-Print Network [OSTI]

A superconducting RF accelerator test facility is currently under construction at Fermilab. The accelerator will consist of an electron gun, 40 MeV injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, and multiple downstream beam lines for testing diagnostics and performing beam experiments. With 3 cryomodules installed this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. The facility can accommodate up to 6 cryomodules for a total beam energy of 1.5 GeV. This facility will be used to test SRF cryomodules under high intensity beam conditions, RF power equipment, instrumentation, and LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Church, M; Nagaitsev, S

2012-01-01T23:59:59.000Z

8

Ultra-Accelerated Natural Sunlight Exposure Testing Facilities  

DOE Patents [OSTI]

A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS onto a secondary reflector that delivers a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in a chamber that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

Lewandowski, Allan A. (Evergreen, CO); Jorgensen, Gary J. (Pine, CO)

2004-11-23T23:59:59.000Z

9

Ultra-accelerated natural sunlight exposure testing facilities  

DOE Patents [OSTI]

A multi-faceted concentrator apparatus for providing ultra-accelerated natural sunlight exposure testing for sample materials under controlled weathering conditions comprising: facets that receive incident natural sunlight, transmits VIS/NIR and reflects UV/VIS to deliver a uniform flux of UV/VIS onto a sample exposure plane located near a center of a facet array in chamber means that provide concurrent levels of temperature and/or relative humidity at high levels of up to 100.times. of natural sunlight that allow sample materials to be subjected to accelerated irradiance exposure factors for a significant period of time of about 3 to 10 days to provide a corresponding time of about at least a years worth representative weathering of sample materials.

Lewandowski, Allan A.; Jorgensen, Gary J.

2003-08-12T23:59:59.000Z

10

Status and specifications of a Project X front-end accelerator test facility at Fermilab  

SciTech Connect (OSTI)

This paper describes the construction and operational status of an accelerator test facility for Project X. The purpose of this facility is for Project X component development activities that benefit from beam tests and any development activities that require 325 MHz or 650 MHz RF power. It presently includes an H- beam line, a 325 MHz superconducting cavity test facility, a 325 MHz (pulsed) RF power source, and a 650 MHz (CW) RF power source. The paper also discusses some specific Project X components that will be tested in the facility. Fermilab's future involves new facilities to advance the intensity frontier. In the early 2000's, the vision was a pulsed, superconducting, 8 GeV linac capable of injecting directly into the Fermilab Main Injector. Prototyping the front-end of such a machine started in 2005 under a program named the High Intensity Neutrino Source (HINS). While the HINS test facility was being constructed, the concept of a new, more versatile accelerator for the intensity frontier, now called Project X, was forming. This accelerator comprises a 3 GeV CW superconducting linac with an associated experimental program, followed by a pulsed 8 GeV superconducting linac to feed the Main Injector synchrotron. The CW Project X design is now the model for Fermilab's future intensity frontier program. Although CW operation is incompatible with the original HINS front-end design, the installation remains useful for development and testing many Project X components.

Steimel, J.; Webber, R.; Madrak, R.; Wildman, D.; Pasquinelli, R.; Evans-Peoples, E.; /Fermilab

2011-03-01T23:59:59.000Z

11

Indoor Powerline Conductor Accelerated Testing Facility (Indoor-PCAT)  

E-Print Network [OSTI]

conductors in parallel tests. The tension limitations (i.e., the number of conductors) inherent in towers of instrumentation. #12;PCAT offers the unique opportunity to test four full transmission spans (two down and two to 1000 ft per span. Additionally span lengths can be varied since they are not fixed by pole or tower

12

High brightness photocathode injector for BNL Accelerator Test Facility  

SciTech Connect (OSTI)

An analysis of the BNL photocathode (1-1/2 cell) Gun'' operating at 2856 MHZ, is presented. The beam parameters including beam energy, and emittance are calculated. A review of the Gun parameters and full input and output of our analysis with program PARMELA, is given in Section 2, some of our results, are tabulated. The phase plots and the beam parameters, at downstream ends of the elements, from cathode through the cavity, first cell is labeled as element 2; and second cell is labeled as element to the exit of the GUN. The analysis was made for 3 cases, using three different initial values (EO) for the average accelerating gradient (MV/m), for comparison with previous works. For illustration, the field obtained with program SUPERFISH is given, and conclusion including shunt impedances obtained for the cells and the cavity are given in Section 6. PARMELA is used as a standard design program at ATF. At the request of some of the users of program PARMELA, this request of some of the users of program PARMELA, this report include and illustrates some of our data, in the input and output format of the program PARMELA. 5 refs., 7 figs., 3 tabs.

Parsa, Z.; Young, L.

1990-01-01T23:59:59.000Z

13

Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC  

ScienceCinema (OSTI)

Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

Andrei Seryi

2010-01-08T23:59:59.000Z

14

E-Print Network 3.0 - accelerator facilities coefficients Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Mathematics 32 Accelerator Test Facility www.bnl.govatf Summary: Accelerator Test Facility www.bnl.govatf Accelerator Test Facility Contact Information Phone:(631......

15

A Proposal for a TESLA Accelerator Module Test Facility W.D.Moeller, B.Petersen, B.Sparr  

E-Print Network [OSTI]

1 A Proposal for a TESLA Accelerator Module Test Facility W.D.Moeller, B.Petersen, B.Sparr Deutsches Elektronen Synchrotron TESLA Report No. 2001-08 Abstract The Tera-eV Energy Superconducting Linear Accelerator (TESLA), a 32 km long superconducting linear electron/positron collider of 500 GeV (upgradeable

16

Accelerated Testing Validation  

E-Print Network [OSTI]

the University of California. Accelerated Testing Validationmaterials requires relevant Accelerated Stress Tests (ASTs),

Mukundan, Rangachary

2013-01-01T23:59:59.000Z

17

Use of the LEDA Facility as an ADS High-Power Accelerator Test Bed  

SciTech Connect (OSTI)

The Low-Energy Demonstration Accelerator (LEDA) was built to generate high-current proton beams. Its successful full-power operation and testing in 1999-2001 confirmed the feasibility of a high-power linear accelerator (linac) front end, the most technically challenging portion of such a machine. The 6.7-MeV accelerator operates reliably at 95-mA CW beam current with few interruptions orjaults, and qualiJes as one of the most powerful accelerators in the world. LEDA is now available to address the needs of other programs. LEDA can be upgraded in a staged fashion to allow for full-power accelerator demonstrations. The proposed post-h!FQ accelerator structures are 350-MHz superconducting spoke cavities developed for the AAA /APT program. The superconducting portion of the accelerator is designed for a IOO-mA proton beam current. Superconducting cavities were chosen because of the signijkant thermal issues with room-temperature structures, the larger superconducting cavity apertures, and the lower operating costs ('because of improved electrical efficiency) of a superconducting accelerator. Since high reliability is a major issue for an ADS system, the superconducting design architecture alIows operation through faults due to the failure of single magnets or superconducting cavities. The presently installed power capacity of 13 MVA of input ACpower is capable of supporting a 40-MeVproton beam at 100 mA. (The input power is easily expandable to 25 MVA, allowing up to 100-MeV operation). Operation at 40-MeV would provide a complete demonstration of all of the critical accelerator sub-systems ofa full-power ADS system.

Garnett, R. W. (Robert W.); Sheffield, R. L. (Richard L.)

2003-01-01T23:59:59.000Z

18

Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report  

SciTech Connect (OSTI)

This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

Amann, J.; Bane, K.; /SLAC

2009-10-30T23:59:59.000Z

19

Safety of Accelerator Facilities - DOE Directives, Delegations...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Health, Environmental Protection, Facility Authorization, Safety The order defines accelerators and establishes accelerator specific safety requirements and approval authorities...

20

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

2004-07-23T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

2001-01-08T23:59:59.000Z

22

Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Cancels DOE O 420.2B.

2011-07-21T23:59:59.000Z

23

Thomas Jefferson National Accelerator Facility  

SciTech Connect (OSTI)

The Thomas Jefferson National Accelerator Facility (Jefferson Lab) in Newport News, Virginia, USA, is one of ten national laboratories under the aegis of the Office of Science of the U.S. Department of Energy (DOE). It is managed and operated by Jefferson Science Associates, LLC. The primary facility at Jefferson Lab is the Continuous Electron Beam Accelerator Facility (CEBAF) as shown in an aerial photograph in Figure 1. Jefferson Lab was created in 1984 as CEBAF and started operations for physics in 1995. The accelerator uses superconducting radio-frequency (srf) techniques to generate high-quality beams of electrons with high-intensity, well-controlled polarization. The technology has enabled ancillary facilities to be created. The CEBAF facility is used by an international user community of more than 1200 physicists for a program of exploration and study of nuclear, hadronic matter, the strong interaction and quantum chromodynamics. Additionally, the exceptional quality of the beams facilitates studies of the fundamental symmetries of nature, which complement those of atomic physics on the one hand and of high-energy particle physics on the other. The facility is in the midst of a project to double the energy of the facility and to enhance and expand its experimental facilities. Studies are also pursued with a Free-Electron Laser produced by an energy-recovering linear accelerator.

Joseph Grames, Douglas Higinbotham, Hugh Montgomery

2010-09-01T23:59:59.000Z

24

BNL | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home| Visitors| Education|About National Synchrotron

25

SLAC Accelerator Test Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformation InExplosion Monitoring:Home|Physics Research

26

ACCELERATOR TEST FACILITY  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011A FirstEMSLAEMSL341AACEii ABSTRACT This41

27

Colorado and South Carolina: New Wind Test Facilities Open  

Office of Energy Efficiency and Renewable Energy (EERE)

Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

28

Flame acceleration studies in the MINIFLAME facility  

SciTech Connect (OSTI)

Flame acceleration and deflagration-to-detonation transition (DDT) studies have been conducted in a 19.4-cm high, 14.5-cm wide, and 2. 242-m long channel (MINIFLAME) that is a 1:12.6 scale model of the 136-m{sup 3} FLAME facility. Tests were conducted with two levels of hydrogen concentration -- 20% and 30%, with and without obstacles in the channel, and with three levels of transverse top venting -- 0%, 13%, and 50%. The flame acceleration results in MINIFLAME are qualitatively similar to those in FLAME; however, the small-scale results are more benign quantitatively. The results show that insufficient venting, 13% venting in this case, can promote flame acceleration due to turbulence produced by the flow through the vents in smooth channels. However, with obstacle-generated turbulence in the channel, 13% top venting was found to be beneficial. Flame acceleration resulting in DDT was shown to occur in as little as 35 liters of mixture. Comparison of the DDT data with obstacles in MINIFLAME and FLAME supports d/{lambda} scaling of DDT, where {lambda} is the detonation cell width of the mixture and d is the characteristic open diameter of the channel. In the MINIFLAME and FLAME tests, DDT occurred for d/{lambda} greater than approximately three. Comparison with other experiments shows that the value of d/{lambda} for DDT is not constant but depends on the obstacle type, spacing, and channel geometry. The comparison of MINIFLAME and FLAME experiments extends the use of d/{lambda} scaling to different geometries and larger scales than previous studies. Small-scale-model testing of flame acceleration and DDT with the same combustible mixture as the full-scale prototype underpredicts flame speeds, overpressures, and the possibility of DDT. 18 refs., 16 figs.

Tieszen, S.R.; Sherman, M.P.; Benedick, W.B.

1989-07-01T23:59:59.000Z

29

Heavy-ion Accelerators for Testing Microelectronic Components...  

Office of Science (SC) Website

Heavy-ion Accelerators for Testing Microelectronic Components at LBNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of...

30

Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility- August 2008  

Broader source: Energy.gov [DOE]

Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility

31

ACCELERATED EXPOSURE TESTING Accelerated exposure testing has become increasingly  

E-Print Network [OSTI]

is ISO 9001:2000 and ISO Guide 25 certified. SwRI has developed a gaseous contaminants facility to test

Chapman, Clark R.

32

Present Status And First Results of the Final Focus Beam Line at the KEK Accelerator Test Facility  

SciTech Connect (OSTI)

ATF2 is a final-focus test beam line which aims to focus the low emittance beam from the ATF damping ring to a vertical size of about 37 nm and to demonstrate nanometer level beam stability. Several advanced beam diagnostics and feedback tools are used. In December 2008, construction and installation were completed and beam commissioning started, supported by an international team of Asian, European, and U.S. scientists. The present status and first results are described.

Bambade, P.; /Orsay /KEK, Tsukuba; Alabau Pons, M.; /Valencia U., IFIC; Amann, J.; /SLAC; Angal-Kalinin, D.; /Daresbury; Apsimon, R.; /Oxford U., JAI; Araki, S.; Aryshev, A.; /KEK, Tsukuba; Bai, S.; /Beijing, Inst. High Energy Phys.; Bellomo, P.; /SLAC; Bett, D.; /Oxford U., JAI; Blair, G.; /Royal Holloway, U. of London; Bolzon, B.; /Savoie U.; Boogert, S.; Boorman, G.; /Royal Holloway, U. of London; Burrows, P.N.; Christian, G.; Coe, P.; Constance, B.; /Oxford U., JAI; Delahaye, Jean-Pierre; /CERN; Deacon, L.; /Royal Holloway, U. of London; Elsen, E.; /DESY /Valencia U., IFIC /KEK, Tsukuba /Beijing, Inst. High Energy Phys. /Savoie U. /Fermilab /Ecole Polytechnique /KEK, Tsukuba /Kyungpook Natl. U. /KEK, Tsukuba /Pohang Accelerator Lab. /Kyoto U., Inst. Chem. Res. /Savoie U. /Daresbury /Tokyo U. /Royal Holloway, U. of London /Kyungpook Natl. U. /Pohang Accelerator Lab. /Tokyo U. /KEK, Tsukuba /SLAC /University Coll. London /KEK, Tsukuba /SLAC /Royal Holloway, U. of London /KEK, Tsukuba /Tokyo U. /SLAC /Tohoku U. /KEK, Tsukuba /Tokyo U. /Pohang Accelerator Lab. /Brookhaven /SLAC /Oxford U., JAI /SLAC /Orsay /KEK, Tsukuba /Oxford U., JAI /Orsay /Fermilab /Tohoku U. /Manchester U. /CERN /SLAC /Tokyo U. /KEK, Tsukuba /Oxford U., JAI /Hiroshima U. /KEK, Tsukuba /CERN /KEK, Tsukuba /Oxford U., JAI /Ecole Polytechnique /SLAC /Oxford U., JAI /Fermilab /SLAC /Liverpool U. /SLAC /Tokyo U. /SLAC /Tokyo U. /KEK, Tsukuba /SLAC /CERN

2011-11-11T23:59:59.000Z

33

BNL | Accelerator Test Facility Staff  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES Reports EnergyExperimentUsers'MaskingATF

34

BNL | Accelerator Test Facility | Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperiment Start-up ATF HandbookBeam

35

Hyundai Sonata HEV Accelerated Testing - March 2013  

Broader source: Energy.gov (indexed) [DOE]

Hyundai Sonata HEV Accelerated Testing - March 2013 Two model year 2011 Hyundai Sonata hybrid electric vehicles (HEVs) entered Accelerated testing during June 2011 in a fleet in...

36

Accelerated Laboratory Tests Using Simultaneous UV, Temperature...  

Broader source: Energy.gov (indexed) [DOE]

Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Accelerated Laboratory Tests Using Simultaneous UV,...

37

Comparing Accelerated Testing and Outdoor Exposure | Department...  

Broader source: Energy.gov (indexed) [DOE]

Comparing Accelerated Testing and Outdoor Exposure Comparing Accelerated Testing and Outdoor Exposure Presented at the PV Module Reliability Workshop, February 26 - 27 2013,...

38

Chevrolet Malibu HEV Accelerated Testing - June 2013  

Broader source: Energy.gov (indexed) [DOE]

Malibu HEV Accelerated Testing - June 2013 Four model year 2013 Chevrolet Malibu hybrid electric vehicles (HEVs) entered Accelerated testing during November 2012 in a fleet in...

39

PFBC HGCU Test Facility  

SciTech Connect (OSTI)

This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

Not Available

1993-01-01T23:59:59.000Z

40

Accelerator Design Concept for Future Neutrino Facilities  

SciTech Connect (OSTI)

This document summarizes the findings of the Accelerator Working Group (AWG) of the International Scoping Study (ISS) of a Future Neutrino Factory and Superbeam Facility. The work of the group took place at three plenary meetings along with three workshops, and an oral summary report was presented at the NuFact06 workshop held at UC-Irvine in August, 2006. The goal was to reach consensus on a baseline design for a Neutrino Factory complex. One aspect of this endeavor was to examine critically the advantages and disadvantages of the various Neutrino Factory schemes that have been proposed in recent years.

ISS Accelerator Working Group; Zisman, Michael S; Berg, J. S.; Blondel, A.; Brooks, S.; Campagne, J.-E.; Caspar, D.; Cevata, C.; Chimenti, P.; Cobb, J.; Dracos, M.; Edgecock, R.; Efthymiopoulos, I.; Fabich, A.; Fernow, R.; Filthaut, F.; Gallardo, J.; Garoby, R.; Geer, S.; Gerigk, F.; Hanson, G.; Johnson, R.; Johnstone, C.; Kaplan, D.; Keil, E.; Kirk, H.; Klier, A.; Kurup, A.; Lettry, J.; Long, K.; Machida, S.; McDonald, K.; Meot, F.; Mori, Y.; Neuffer, D.; Palladino, V.; Palmer, R.; Paul, K.; Poklonskiy, A.; Popovic, M.; Prior, C.; Rees, G.; Rossi, C.; Rovelli, T.; Sandstrom, R.; Sevior, R.; Sievers, P.; Simos, N.; Torun, Y.; Vretenar, M.; Yoshimura, K.; Zisman, Michael S

2008-02-03T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Accelerator Facility Safety Implementation Guide for DOE O 420.2B, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This document is an aid to understanding and meeting the requirements of DOE O 420.2B, Safety of Accelerator Facilities, dated 7/23/04. It does not impose requirements beyond those stated in that Order or any other DOE Order. No cancellation.

2005-07-01T23:59:59.000Z

42

Accelerated Testing Validation  

SciTech Connect (OSTI)

The DOE Fuel Cell technical team recommended ASTs were performed on 2 different MEAs (designated P5 and HD6) from Ballard Power Systems. These MEAs were also incorporated into stacks and operated in fuel cell bus modules that were either operated in the field (three P5 buses) in Hamburg, or on an Orange county transit authority drive cycle in the laboratory (HD6 bus module). Qualitative agreement was found in the degradation mechanisms and rates observed in the AST and in the field. The HD6 based MEAs exhibited lower voltage degradation rates (due to catalyst corrosion) and slower membrane degradation rates in the field as reflected by their superior performance in the high potential hold and open-circuit potential AST tests. The quantitative correlation of the degradation rates will have to take into account the various stressors in the field including temperature, relative humidity, start/stops and voltage cycles.

Mukundan, Rangachary; James, Greg; Davey, John; Langlois, David; Torraco, Dennis; Yoon, Wonseok; Weber, Adam Z; Borup, Rodney L.

2011-07-01T23:59:59.000Z

43

Bayesian Optimum Planning for Accelerated Life Tests  

E-Print Network [OSTI]

Bayesian Optimum Planning for Accelerated Life Tests Yao Zhang and William Q. Meeker Dept for optimum accelerated life test planning with one accelerating variable, when the acceleration model design; Preposterior; Reliability. 1 #12;2 1 Introduction 1.1 Background and Motivation Accelerated life

44

Acceleration of polarized protons in AHF (Advanced Hadron Facility)  

SciTech Connect (OSTI)

In this paper an analysis of the depolarization expected during acceleration from 0.8 to 45.0 GeV kinetic energy in the Advanced Hadron Facility (AHF) accelerators is performed.

Colton, E.P.

1987-03-20T23:59:59.000Z

45

Accelerated leach test development program  

SciTech Connect (OSTI)

In FY 1989, a draft accelerated leach test for solidified waste was written. Combined test conditions that accelerate leaching were validated through experimental and modeling efforts. A computer program was developed that calculates test results and models leaching mechanisms. This program allows the user to determine if diffusion controls leaching and, if this is the case, to make projections of releases. Leaching mechanisms other than diffusion (diffusion plus source term partitioning and solubility limited leaching) are included in the program is indicators of other processes that may control leaching. Leach test data are presented and modeling results are discussed for laboratory scale waste forms composed of portland cement containing sodium sulfate salt, portland cement containing incinerator ash, and vinyl ester-styrene containing sodium sulfate. 16 refs., 38 figs., 5 tabs.

Fuhrmann, M.; Pietrzak, R.F.; Heiser, J.; Franz, E.M.; Colombo, P.

1990-11-01T23:59:59.000Z

46

Fusion Test Facilities John Sheffield  

E-Print Network [OSTI]

Fusion Test Facilities John Sheffield ISSE - University of Tennessee FPA meeting Livermore December Stambaugh, and their colleagues #12;Destructive Testing · It is common practice to test engineered components to destruction prior to deployment of a system e.g., - Automobile crash tests - Airplane wing

47

Upgrade of the cryogenic CERN RF test facility  

SciTech Connect (OSTI)

With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B. [CERN - European Organization for Nuclear Research, CH-1211 Geneva 23 (Switzerland); Koettig, T. [ESS - European Spallation Source, Box 176, 221 00 Lund (Sweden)

2014-01-29T23:59:59.000Z

48

ACCELERATED DESTRUCTIVE DEGRADATION TESTS: DATA, MODELS,  

E-Print Network [OSTI]

ACCELERATED DESTRUCTIVE DEGRADATION TESTS: DATA, MODELS, AND ANALYSIS Luis A. Escobar Dept are often accelerated by testing at higher than usual levels of accelerating variables like temperature. This chapter describes an important class of models for accelerated destructive degradation data. We use

49

Status and plans for a SRF accelerator test faciliy at Fermilab  

E-Print Network [OSTI]

A superconducting RF accelerator test facility is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating an 810 MeV electron beam with ILC beam intensity. Expansion plans of the facility are underway that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. In addition to testing accelerator components, this facility will be used to test RF power equipment, instrumentation, LLRF and controls systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

Leibfritz, J; Carlson, K; Chase, B; Church, M; Harms, E; Klebaner, A; Kucera, M; Lackey, S; Martinez, A; Nagaitsev, S; Nobrega, L; Piot, P; Reid, J; Wendt, M; Wesseln, S

2012-01-01T23:59:59.000Z

50

Advanced Test Accelerator (ATA) injector  

SciTech Connect (OSTI)

The ATA injector, developed from experience gained from the Experimental Test Accelerator (ETA) linac, has recently been completed. The injector consists of ten 0.25 MV cells that are used to develop 2.5 MV across a single diode gap. The 10 kA beam is extracted from a 500 cm/sup 2/ plasma cathode at average rates of up to 5 Hz and burst rates to 1 kHz. Pulsed power from 20 water filled blumleins is divided and introduced symmetrically through four ports on each cell. All major insulators are fabricated from filled epoxy castings. With these improvements, the ATA injector is smaller than the ETA injector; has a faster pulse response; has lower voltage stress on insulators and higher ultimate performance. Injector characterization tests began in October 1982. These tests include beam current, energy, and emittance measurements.

Jackson, C.H.; Bubp, D.G.; Fessenden, T.J.; Hester, R.E.; Neil, V.K.; Paul, A.C.; Prono, D.S.

1983-03-09T23:59:59.000Z

51

E-Print Network 3.0 - accelerator beam test Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

interim beam test was completed with the first 7 ring section (2... .8 m) accelerating beams to 55 ... Source: TRIUMF Isotope Separation and ACceleration (ISAC) facility, beta-NMR...

52

Cell Component Accelerated Stress Test Protocols for PEM Fuel...  

Broader source: Energy.gov (indexed) [DOE]

Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells Accelerated Stress Test Protocols for PEM...

53

E-Print Network 3.0 - accelerator facility jefferson Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous Electron Beam Accelerator Facility, Newport News, Virginia (the Big... & Phenomenology Particle Astrophysics & Cosmology Accelerator Physics Health Physics...

54

BARC TIFR Heavy Ion Accelerator Facility  

E-Print Network [OSTI]

enterprise using accelerated heavy ion beams is to unravel the complexities of the nuclear world in all by the accelerator. The projectile impinges on a target nucleus with enough energy to overcome the electrostatic repulsion so that the collision process is governed by the nuclear interactions. Using a variety

Shyamasundar, R.K.

55

Linear Accelerator Facility, Kildee Hall aluminum, brick, concrete, rock, and  

E-Print Network [OSTI]

and demonstration facility for the irradiation of food and non-food materials. It is primarily used for the reduction or elimination of bacteria from foods and feed. Interior Garden is an environmental installation) are examples of the types of foodstuff that is irradiated in the Linear Accelerator Facility. The table has

Mayfield, John

56

New Developments in Planning Accelerated Life Tests.  

E-Print Network [OSTI]

??Accelerated life tests (ALTs) are often used to make timely assessments of the life time distribution of materials and components. The goal of many ALTs… (more)

Ma, Haiming

2009-01-01T23:59:59.000Z

57

ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications  

E-Print Network [OSTI]

We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

Shiltsev, V

2014-01-01T23:59:59.000Z

58

ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.  

SciTech Connect (OSTI)

We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

Shiltsev, V.; Piot, P.

2013-09-01T23:59:59.000Z

59

DOE Cell Component Accelerated Stress Test Protocols for PEM...  

Broader source: Energy.gov (indexed) [DOE]

Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells DOE Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells This document describes test protocols...

60

Test Facility Daniil Stolyarov, Accelerator Test Facility User's Meeting  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassiveSubmittedStatus TomAboutManusScience and How

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Fermilab | Illinois Accelerator Research Center | Fermilab Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphoto FermilabFacilities

62

Fermilab | Illinois Accelerator Research Center | IARC Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest Region service area. TheEPSCI Home It isGasERPSpunphotoIARC Facilities

63

A Staged Muon Accelerator Facility For Neutrino and Collider Physics  

E-Print Network [OSTI]

Muon-based facilities offer unique potential to provide capabilities at both the Intensity Frontier with Neutrino Factories and the Energy Frontier with Muon Colliders. They rely on a novel technology with challenging parameters, for which the feasibility is currently being evaluated by the Muon Accelerator Program (MAP). A realistic scenario for a complementary series of staged facilities with increasing complexity and significant physics potential at each stage has been developed. It takes advantage of and leverages the capabilities already planned for Fermilab, especially the strategy for long-term improvement of the accelerator complex being initiated with the Proton Improvement Plan (PIP-II) and the Long Baseline Neutrino Facility (LBNF). Each stage is designed to provide an R&D platform to validate the technologies required for subsequent stages. The rationale and sequence of the staging process and the critical issues to be addressed at each stage, are presented.

Delahaye, Jean-Pierre; Brice, Stephen; Bross, Alan David; Denisov, Dmitri; Eichten, Estia; Holmes, Stephen; Lipton, Ronald; Neuffer, David; Palmer, Mark Alan; Bogacz, S Alex; Huber, Patrick; Kaplan, Daniel M; Snopok, Pavel; Kirk, Harold G; Palmer, Robert B; Ryne, Robert D

2015-01-01T23:59:59.000Z

64

E-Print Network 3.0 - accelerator facility complex Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

large... of an advanced exotic beam facility evolved from the Rare Isotope Accelerator (RIA) concept. The OMB and the DOE... Focus Research Areas 1. Fundamental Accelerator...

65

Planning Accelerated Destructive Degradation Test with Competing Risks  

E-Print Network [OSTI]

Planning Accelerated Destructive Degradation Test with Competing Risks Ying Shi Dept. of Statistics University Ames, IA 50011 wqmeeker@iastate.edu Abstract Accelerated destructive degradation tests (ADDTs plan specifies the test conditions of accelerating variables, running time, and the corresponding

66

Polarization Losses under Accelerated Stress Test Using Multiwalled...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerated Stress Test Using Multiwalled Carbon Nanotube Supported Pt Catalyst in PEM Fuel Cells. Polarization Losses under Accelerated Stress Test Using Multiwalled Carbon...

67

Honda Gen II Insight HEV Accelerated Testing - August 2012  

Broader source: Energy.gov (indexed) [DOE]

Honda Gen II Insight HEV Accelerated Testing - August 2012 Two model year 2010 Honda Generation II Insight hybrid electric vehicles (HEVs) entered Accelerated testing during July...

68

2011 Chevrolet Volt EREV Accelerated Testing - June 2013  

Broader source: Energy.gov (indexed) [DOE]

Chevrolet Volt EREV Accelerated Testing - June 2013 Two model year 2011 Chevrolet Volt extended range electric vehicles (EREVs) entered Accelerated testing during March 2011 in a...

69

2011 Nissan Leaf BEV Accelerated Testing - June 2013  

Broader source: Energy.gov (indexed) [DOE]

Nissan Leaf BEV Accelerated Testing - June 2013 Two model year 2011 Nissan Leaf battery electric vehicles (BEVs) entered Accelerated testing during March 2011 in a fleet in...

70

Toyota Gen III Prius Hybrid Electric Vehicle Accelerated Testing...  

Broader source: Energy.gov (indexed) [DOE]

HEV Accelerated Testing - September 2011 Two model year 2010 Toyota Generation III Prius hybrid electric vehicles (HEVs) entered Accelerated testing during July 2009 in a fleet in...

71

Dual Axis Radiographic Hydrodynamic Test Facility | National...  

National Nuclear Security Administration (NNSA)

Dual Axis Radiographic Hydrodynamic Test Facility | National Nuclear Security Administration Facebook Twitter Youtube Flickr RSS People Mission Managing the Stockpile Preventing...

72

Power Electronics Field Test Facility (TPET) The Power Electronics Field Test Facility (TPET) is a unique test facility for field testing of  

E-Print Network [OSTI]

Power Electronics Field Test Facility (TPET) Overview: The Power Electronics Field Test Facility (TPET) is a unique test facility for field testing of power electronics that will be located at the TVA the testing of power electronics and energy storage technology from laboratory development and testing through

73

NREL Battery Thermal and Life Test Facility (Presentation)  

SciTech Connect (OSTI)

This presentation describes NREL's Battery Thermal Test Facility and identifies test requirements and equipment and planned upgrades to the facility.

Keyser, M.

2011-05-01T23:59:59.000Z

74

Engineering Test Facilities Having the facilities to develop and test spaceflight hardware  

E-Print Network [OSTI]

Engineering Test Facilities Having the facilities to develop and test spaceflight hardware onsite is a key ingredient to LASP's success. Our extensive test and calibration facilities enable our in-house engineers to work closely with scientists and mission operations staff in "test-like-you-fly" scenarios. Our

Mojzsis, Stephen J.

75

Sandia National Laboratories: National Solar Thermal Test Facility...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FacilityNational Solar Thermal Test Facility Interest Survey National Solar Thermal Test Facility Interest Survey Company Name * Contact Name * Email * Phone Number * Nature of...

76

Accelerated Destructive Degradation Test Planning Dept. of Statistics  

E-Print Network [OSTI]

Accelerated Destructive Degradation Test Planning Ying Shi Dept. of Statistics Iowa State Ames, IA 50011 wqmeeker@iastate.edu Abstract Accelerated Destructive Degradation Tests (ADDTs) provide reliability information quickly. An ADDT plan specifies factor level combinations of an accelerating variable

77

Accelerated Destructive Degradation Tests Robust to Distribution Misspecification  

E-Print Network [OSTI]

1 Accelerated Destructive Degradation Tests Robust to Distribution Misspecification Shuen-Lin Jeng, Taiwan, ROC William Q. Meeker Iowa State University, Ames, IOWA, USA Abstract Accelerated repeated. In certain products, measurements are destructive leading to accelerated destructive degradation test (ADDT

78

FIRST EXPERIMENTS WITH THE RF GUN BASED INJECTOR FOR THE TESLA TEST FACILITY LINAC  

E-Print Network [OSTI]

FIRST EXPERIMENTS WITH THE RF GUN BASED INJECTOR FOR THE TESLA TEST FACILITY LINAC S. Schreiber for the TESLA Collaboration, DESY, 22603 Hamburg, Germany Abstract During 1997 and 1998 a first accelerator module was tested successfully at the TESLA Test Facility Linac (TTFL) at DESY. Eight superconducting

79

E-Print Network 3.0 - acceleration proof-of-principle experiment...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Cyclotron Autoresonance Accelerator... Experiment Intelligent Control System for Accelerators ... Source: Brookhaven National Laboratory - Accelerator Test Facility Collection:...

80

BNL | Accelerator Test Facility Cable Policy  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series to someone6 M. Babzien, I. Ben-Zvi, P. Catravas, J. M. Fang, A.2 T.393ATF

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

BNL | Accelerator Test Facility | Core Capabilities Menu  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES Reports

82

BNL | Accelerator Test Facility | Resources Menu  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperiment Start-up ATF

83

BNL | Accelerator Test Facility | Science Highlights Menu  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperiment Start-up ATFScience

84

Brookhaven National Laboratory | Accelerator Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBESEnergyArchaeology onEnergy InnovationBook 1

85

AEC PHOTOVOLTAIC TEST FACILITY FIRST YEAR TEST DATA James Krumsick  

E-Print Network [OSTI]

AEC PHOTOVOLTAIC TEST FACILITY ­ FIRST YEAR TEST DATA James Krumsick Alternative Energy Consortium@uoregon.edu ABSTRACT Alternative Energy Consortium's Photovoltaic test facility (AEC PV) came on line in August, 2004 is to evaluate different photovoltaic products and to monitor the performance of these products under different

Oregon, University of

86

PIA - Advanced Test Reactor National Scientific User Facility...  

Broader source: Energy.gov (indexed) [DOE]

Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor National Scientific User Facility Users Week 2009 PIA - Advanced Test Reactor...

87

Status of the TESLA Test Facility Linac H. Weise, for the TESLA Collaboration  

E-Print Network [OSTI]

Status of the TESLA Test Facility Linac H. Weise, for the TESLA Collaboration Deutsches Elektronen-Synchrotron DESY D-22603 Hamburg, Germany Abstract The TTF linac, a major effort of the TESLA Test Facility, is now GeV collider is the usage of superconducting (s.c.) accelerating structures. The international TESLA

88

PERFORMANCE STATUS OF THE RF-GUN BASED INJECTOR OF THE TESLA TEST FACILITY LINAC  

E-Print Network [OSTI]

PERFORMANCE STATUS OF THE RF-GUN BASED INJECTOR OF THE TESLA TEST FACILITY LINAC S. SchreiberÂŁ for the TESLA Collaboration, DESY, 22603 Hamburg, Germany Abstract The TESLA Test Facility Linac (TTFL) at DESY uses two modules with 8 TESLA superconducting accelerat- ing structures each to accelerate an electron

89

Cryogenics for the superconducting module test facility  

SciTech Connect (OSTI)

A group of laboratories and universities, with Fermilab taking the lead, are constructing a superconducting cryomodule test facility (SMTF) in the Meson Detector Building (MDB) area at Fermilab. The facility will be used for testing and validating designs for both pulsed and CW systems. A multi phase approach is taken to construct the facility. For the initial phase of the project, cryogens for a single cavity cryomodule will be supplied from the existing Cryogenic Test Facility (CTF) that houses three Tevatron satellite refrigerators. The cooling capacity available for cryomodule testing at MDB results from the liquefaction capacity of the CTF cryogenic system. A cryogenic distribution system to supply cryogens from CTF to MDB is under construction. This paper describes plans, status and challenges of the initial phase of the SMTF cryogenic system.

Klebaner, A.L.; Theilacker, J.C.; /Fermilab

2006-01-01T23:59:59.000Z

90

Advanced Test Reactor National Scientific User Facility Partnerships  

SciTech Connect (OSTI)

In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin-Madison; (8) Illinois Institute of Technology (IIT) Materials Research Collaborative Access Team (MRCAT) beamline at Argonne National Laboratory's Advanced Photon Source; and (9) Nanoindenter in the University of California at Berkeley (UCB) Nuclear Engineering laboratory Materials have been analyzed for ATR NSUF users at the Advanced Photon Source at the MRCAT beam, the NIST Center for Neutron Research in Gaithersburg, MD, the Los Alamos Neutron Science Center, and the SHaRE user facility at Oak Ridge National Laboratory (ORNL). Additionally, ORNL has been accepted as a partner facility to enable ATR NSUF users to access the facilities at the High Flux Isotope Reactor and related facilities.

Frances M. Marshall; Todd R. Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen

2012-03-01T23:59:59.000Z

91

Accelerated Degradation Tests: Modeling and Analysis William Q. Meeker  

E-Print Network [OSTI]

Accelerated Degradation Tests: Modeling and Analysis William Q. Meeker Dept. of Statistics. Frequently few or no failures occur during such tests, even with acceleration. Thus, it is difficult models. Acceleration is modeled by having an acceleration model that describes the effect

92

Accelerated Degradation Tests: Modeling and Analysis William Q. Meeker  

E-Print Network [OSTI]

Accelerated Degradation Tests: Modeling and Analysis William Q. Meeker Dept. of Statistics. Frequently few or no failures occur during such tests, even with acceleration. Thus, it is di cult to assess models. Acceleration is modeled by having an acceleration model that describes the e ect that temperature

93

Performance Evaluation Of An Irradiation Facility Using An Electron Accelerator  

SciTech Connect (OSTI)

Irradiation parameters over a period of seven years have been evaluated for a radiation processing electron accelerator facility. The parameters monitored during this time were the electron beam energy, linearity of beam current, linearity of dose with the reciprocal value of the samples speed, and dose uniformity along the scanning area after a maintenance audit performed by the electron accelerator manufacturer. The electron energy was determined from the depth-dose curve by using a two piece aluminum wedge and measuring the practical range from the obtained curves. The linearity of dose with beam current, and reciprocal value of the speed and dose uniformity along the scanning area of the electron beam were determined by measuring the dose under different beam current and cart conveyor speed conditions using film dosimetry. The results of the experiments have shown that the energy in the range from 1 to 5 MeV has not changed by more than 15% from the High Voltage setting of the machine over the evaluation period, and dose linearity with beam current and cart conveyor speed has not changed. The dose uniformity along the scanning direction of the beam showed a dose uniformity of 90% or better for energies between 2 and 5 MeV, however for 1 MeV electrons this value was reduced to 80%. This parameter can be improved by changing the beam optics settings in the control console of the accelerator though.

Uribe, R. M.; Hullihen, K. [Kent State University, Kent, Ohio (United States); Filppi, E. [Case Western Reserve University, Cleveland OH (United States)

2011-06-01T23:59:59.000Z

94

Accelerator shield design of KIPT neutron source facility  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of a neutron source facility at KIPT utilizing an electron-accelerator-driven subcritical assembly. Electron beam power is 100 kW, using 100 MeV electrons. The facility is designed to perform basic and applied nuclear research, produce medical isotopes, and train young nuclear specialists. The biological shield of the accelerator building is designed to reduce the biological dose to less than 0.5-mrem/hr during operation. The main source of the biological dose is the photons and the neutrons generated by interactions of leaked electrons from the electron gun and accelerator sections with the surrounding concrete and accelerator materials. The Monte Carlo code MCNPX serves as the calculation tool for the shield design, due to its capability to transport electrons, photons, and neutrons coupled problems. The direct photon dose can be tallied by MCNPX calculation, starting with the leaked electrons. However, it is difficult to accurately tally the neutron dose directly from the leaked electrons. The neutron yield per electron from the interactions with the surrounding components is less than 0.01 neutron per electron. This causes difficulties for Monte Carlo analyses and consumes tremendous computation time for tallying with acceptable statistics the neutron dose outside the shield boundary. To avoid these difficulties, the SOURCE and TALLYX user subroutines of MCNPX were developed for the study. The generated neutrons are banked, together with all related parameters, for a subsequent MCNPX calculation to obtain the neutron and secondary photon doses. The weight windows variance reduction technique is utilized for both neutron and photon dose calculations. Two shielding materials, i.e., heavy concrete and ordinary concrete, were considered for the shield design. The main goal is to maintain the total dose outside the shield boundary at less than 0.5-mrem/hr. The shield configuration and parameters of the accelerator building have been determined and are presented in this paper. (authors)

Zhong, Z.; Gohar, Y. [Argonne National Laboratory, 9700 South Cass Avenue, Lemont, IL 60439 (United States)

2013-07-01T23:59:59.000Z

95

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network [OSTI]

essential understanding of accelerator physics to advanceof high- gradient, laser plasma particle accelerators.to conventional particle accelerators, plasmas can sustain

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

96

Colorado and South Carolina: New Wind Test Facilities Open |...  

Energy Savers [EERE]

Act, the new facilities will accelerate the development and deployment of next-generation wind energy technologies for both offshore and land-based applications. Located on a...

97

High current electron linacs (advanced test accelerator/experimental test accelerator)  

SciTech Connect (OSTI)

The high current induction accelerator development at the Lawrence Livermore National Laboratory is described. The ATA facility is designed for 10 kA peak currents, 50 nsec pulse lengths and 50 MeV energies. At this time, half of the design current has been accelerated through the entire machine to particle energies of about 45 MeV. Current problem areas and operational experience to date will be discussed. Several key technical areas required development for the ATA machine; this report will survey these developments. The control of transverse beam instabilities required an accelerating cavity design with very low Q. Electron sources capable of 10 kA operation at high rep rates were developed using a plasma sparkboard approach. The pulse power systems on ATA, using the same type of spark gap switches as ETA, have exhibited excellent operational reliability.

Briggs, R.J.

1984-04-30T23:59:59.000Z

98

Ultra-accelerated natural sunlight exposure testing  

DOE Patents [OSTI]

Process and apparatus for providing ultra accelerated natural sunlight exposure testing of samples under controlled weathering without introducing unrealistic failure mechanisms in exposed materials and without breaking reciprocity relationships between flux exposure levels and cumulative dose that includes multiple concurrent levels of temperature and relative humidity at high levels of natural sunlight comprising: a) concentrating solar flux uniformly; b) directing the controlled uniform sunlight onto sample materials in a chamber enclosing multiple concurrent levels of temperature and relative humidity to allow the sample materials to be subjected to accelerated irradiance exposure factors for a sufficient period of time in days to provide a corresponding time of about at least a years worth of representative weathering of the sample materials.

Jorgensen, Gary J. (Pine, CO); Bingham, Carl (Lakewood, CO); Goggin, Rita (Englewood, CO); Lewandowski, Allan A. (Evergreen, CO); Netter, Judy C. (Westminster, CO)

2000-06-13T23:59:59.000Z

99

Advanced Powertrain Research Facility Vehicle Test Cell Thermal...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Powertrain Research Facility Vehicle Test Cell Thermal Upgrade Advanced Powertrain Research Facility Vehicle Test Cell Thermal Upgrade 2010 DOE Vehicle Technologies and Hydrogen...

100

E-Print Network 3.0 - accelerator-based facility design Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Planning: Assumed to hold flat for next few years. * Proton Accelerator-Based Physics - ATLAS... Facility Department - Linear Collider Department is focused on the design of ......

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

E-Print Network 3.0 - accelerator facilities Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... southwest of The University of Chicago, there are several...

102

E-Print Network 3.0 - accelerator facility project Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... southwest of The University of Chicago, there are several...

103

Using Accelerated Life Tests Results to Predict Product Field Reliability  

E-Print Network [OSTI]

Using Accelerated Life Tests Results to Predict Product Field Reliability William Q. Meeker Dept State University Ames, IA 50011 June 22, 2008 Abstract Accelerated life tests (ALTs) provide timely, invariably, accelerated life tests (ALTs) to assess the effect of the change is accompanied by a question

104

On GoodnessofFit in Accelerated Life Testing VILIJANDAS BAGDONAVI  

E-Print Network [OSTI]

SPb. Math. Society Preprint 2000­05 27 May 2000 On Goodness­of­Fit in Accelerated Life Testing Abstract. Goodness­of­fit test for the generalized Sedyakin's model is proposed when accelerated the approaching alternatives is investigated. Keywords: Accelerated life testing, additive accumulation of damages

105

Gas Test Loop Facilities Alternatives Assessment Report Rev 1  

SciTech Connect (OSTI)

An important task in the Gas Test Loop (GTL) conceptual design was to determine the best facility to serve as host for this apparatus, which will allow fast-flux neutron testing in an existing nuclear facility. A survey was undertaken of domestic and foreign nuclear reactors and accelerator facilities to arrive at that determination. Two major research reactors in the U.S. were considered in detail, the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR), each with sufficient power to attain the required neutron fluxes. HFIR routinely operates near its design power limit of 100 MW. ATR has traditionally operated at less than half its design power limit of 250 MW. Both of these reactors should be available for at least the next 30 years. The other major U.S. research reactor, the Missouri University Research Reactor, does not have sufficient power to reach the required neutron flux nor do the smaller research reactors. Of the foreign reactors investigated, BOR-60 is perhaps the most attractive. Monju and BN 600 are power reactors for their respective electrical grids. Although the Joyo reactor is vigorously campaigning for customers, local laws regarding transport of radioactive material mean it would be very difficult to retrieve test articles from either Japanese reactor for post irradiation examination. PHENIX is scheduled to close in 2008 and is fully booked until then. FBTR is limited to domestic (Indian) users only. Data quality is often suspect in Russia. The only accelerator seriously considered was the Fuel and Material Test Station (FMTS) currently proposed for operation at Los Alamos National Laboratory. The neutron spectrum in FMTS is similar to that found in a fast reactor, but it has a pronounced high-energy tail that is atypical of fast fission reactor spectra. First irradiation in the FMTS is being contemplated for 2008. Detailed review of these facilities resulted in the recommendation that the ATR would be the best host for the GTL.

William J. Skerjanc; William F. Skerjanc

2005-07-01T23:59:59.000Z

106

An Injector Test Facility for the LCLS  

SciTech Connect (OSTI)

SLAC is in the privileged position of being the site for the world's first 4th generation light source as well as having a premier accelerator research staff and facilities. Operation of the world's first x-ray free electron laser (FEL) facility will require innovations in electron injectors to provide electron beams of unprecedented quality. Upgrades to provide ever shorter wavelength x-ray beams of increasing intensity will require significant advances in the state-of-the-art. The BESAC 20-Year Facilities Roadmap identifies the electron gun as ''the critical enabling technology to advance linac-based light sources'' and recognizes that the sources for next-generation light sources are ''the highest-leveraged technology'', and that ''BES should strongly support and coordinate research and development in this unique and critical technology''.[1] This white paper presents an R&D plan and a description of a facility for developing the knowledge and technology required to successfully achieve these upgrades, and to coordinate efforts on short-pulse source development for linac-based light sources.

Colby, E., (ed.); /SLAC

2007-03-14T23:59:59.000Z

107

A Review of Accelerated Test Models Luis A. Escobar  

E-Print Network [OSTI]

A Review of Accelerated Test Models Luis A. Escobar Dept. of Experimental Statistics Louisiana industries have used accelerated test (AT) experiments for many decades. The purpose of AT experiments are subjected to higher-than-usual levels of one or more accelerating variables such as temperature or stress

108

Bayesian Methods for Accelerated Destructive Degradation Test Planning  

E-Print Network [OSTI]

Bayesian Methods for Accelerated Destructive Degradation Test Planning Ying Shi Dept. of Statistics University Ames, IA 50011 wqmeeker@iastate.edu Abstract Accelerated Destructive Degradation Tests (ADDTs methods for ADDT planning under a class of nonlinear degradation models with one accelerating variable. We

109

Methods For Planning Accelerated Repeated Measures Degradation Tests  

E-Print Network [OSTI]

Methods For Planning Accelerated Repeated Measures Degradation Tests Brian P. Weaver Statistical of Statistics Iowa State University Ames, IA 50010 wqmeeker@iastate.edu September 3, 2013 Abstract Accelerated-variable accelerated repeated measures degradation test plan when the (possibly transformed) degradation is linear

110

Laser Plasma Particle Accelerators: Large Fields for Smaller Facility Sources  

E-Print Network [OSTI]

of high- gradient, laser plasma particle accelerators.accelerators that use laser-driven plasma waves. Theseleft) showing the laser (red), plasma wake density (purple-

Geddes, Cameron G.R.

2010-01-01T23:59:59.000Z

111

Modular test facility for HTS insert coils  

SciTech Connect (OSTI)

The final beam cooling stages of a Muon Collider may require DC solenoid magnets with magnetic fields in the range of 40-50 T. In this paper we will present a modular test facility developed for the purpose of investigating very high field levels with available 2G HTS superconducting materials. Performance of available conductors is presented, together with magnetic calculations and evaluation of Lorentz forces distribution on the HTS coils. Finally a test of a double pancake coil is presented.

Lombardo, V; Bartalesi, A.; Barzi, E.; Lamm, M.; Turrioni, D.; Zlobin, A.V.; /Fermilab

2009-10-01T23:59:59.000Z

112

E-Print Network 3.0 - accelerator controls system Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerator Test Facility (ATF) Summary: ., Vista Control Systems, Omega-P Inc., STI Optronics, TR Research Inc. Universities: Catholic U., U... FACTS Accelerator Test Facility...

113

Integrated Disposal Facility FY 2012 Glass Testing Summary Report  

SciTech Connect (OSTI)

PNNL is conducting work to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility for Hanford immobilized low-activity waste (ILAW). Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program, PNNL is implementing a strategy, consisting of experimentation and modeling, to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. Key activities in FY12 include upgrading the STOMP/eSTOMP codes to do near-field modeling, geochemical modeling of PCT tests to determine the reaction network to be used in the STOMP codes, conducting PUF tests on selected glasses to simulate and accelerate glass weathering, developing a Monte Carlo simulation tool to predict the characteristics of the weathered glass reaction layer as a function of glass composition, and characterizing glasses and soil samples exhumed from an 8-year lysimeter test. The purpose of this report is to summarize the progress made in fiscal year (FY) 2012 and the first quarter of FY 2013 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of LAW glasses.

Pierce, Eric M.; Kerisit, Sebastien N.; Krogstad, Eirik J.; Burton, Sarah D.; Bjornstad, Bruce N.; Freedman, Vicky L.; Cantrell, Kirk J.; Snyder, Michelle MV; Crum, Jarrod V.; Westsik, Joseph H.

2013-03-29T23:59:59.000Z

114

Sensor test facilities and capabilities at the Nevada Test Site  

SciTech Connect (OSTI)

Sandia National Laboratories has recently developed two major field test capabilities for unattended ground sensor systems at the Department of energy`s Nevada Test Site (NTS). The first capability utilizes the NTS large area, varied terrain, and intrasite communications systems for testing sensors for detecting and tracking vehicular traffic. Sensor and ground truth data can be collected at either of two secure control centers. This system also includes an automated ground truth capability that consists of differential Global Positioning Satellite (GPS) receivers on test vehicles and live TV coverage of critical road sections. Finally there is a high-speed, secure computer network link between the control centers and the Air Force`s Theater Air Command and Control Simulation Facility in Albuquerque NM. The second capability is Bunker 2-300. It is a facility for evaluating advanced sensor systems for monitoring activities in underground cut-and-cover facilities. The main part of the facility consists of an underground bunker with three large rooms for operating various types of equipment. This equipment includes simulated chemical production machinery and controlled seismic and acoustic signal sources. There has been a thorough geologic and electromagnetic characterization of the region around the bunker. Since the facility is in a remote location, it is well-isolated from seismic, acoustic, and electromagnetic interference.

Boyer, W.B.; Burke, L.J.; Gomez, B.J.; Livingston, L.; Nelson, D.S.; Smathers, D.C.

1996-12-31T23:59:59.000Z

115

Accelerated Testing and On-Sun Failure of CPV Die-Attach (Presentation)  

SciTech Connect (OSTI)

Accelerated Testing and On-Sun Failure of CPV Die-attach. Presentation on CPV accelerated reliability testing.

Bosco, N.; Kurtz, S.; Stokes, A.

2010-10-01T23:59:59.000Z

116

Membrane degradation Accelerated Stress Test | OSTI, US Dept...  

Office of Scientific and Technical Information (OSTI)

Membrane degradation Accelerated Stress Test Re-direct Destination: Abstract Not Provided times redirected to final destination ShortURL Code Published Current state Most recent...

117

DOE Cell Component Accelerated Stress Test Protocols for PEM...  

Broader source: Energy.gov (indexed) [DOE]

CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS (Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies) March 2007 Fuel cells, especially for...

118

Cell Component Accelerated Stress Test Protocols for PEM Fuel...  

Broader source: Energy.gov (indexed) [DOE]

USCAR FUEL CELL TECH TEAM CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS (Electrocatalysts, Supports, Membranes, and Membrane Electrode Assemblies) Revised May...

119

Accelerated Testing of HT-9 with Zirconia Coatings Containing...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of HT-9 with Zirconia Coatings Containing Gallium using Raman Spectroscopy and XPS. Accelerated Testing of HT-9 with Zirconia Coatings Containing Gallium using Raman Spectroscopy...

120

Characterization of the mitral valve using accelerated wear testing.  

E-Print Network [OSTI]

??There is a fundamental need for a better kind of long-term testing for artificial heart valves along with a biologically equivalent artificial mitral valve. Accelerated… (more)

Riggan, Courtney N.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Vitrification Facility integrated system performance testing report  

SciTech Connect (OSTI)

This report provides a summary of component and system performance testing associated with the Vitrification Facility (VF) following construction turnover. The VF at the West Valley Demonstration Project (WVDP) was designed to convert stored radioactive waste into a stable glass form for eventual disposal in a federal repository. Following an initial Functional and Checkout Testing of Systems (FACTS) Program and subsequent conversion of test stand equipment into the final VF, a testing program was executed to demonstrate successful performance of the components, subsystems, and systems that make up the vitrification process. Systems were started up and brought on line as construction was completed, until integrated system operation could be demonstrated to produce borosilicate glass using nonradioactive waste simulant. Integrated system testing and operation culminated with a successful Operational Readiness Review (ORR) and Department of Energy (DOE) approval to initiate vitrification of high-level waste (HLW) on June 19, 1996. Performance and integrated operational test runs conducted during the test program provided a means for critical examination, observation, and evaluation of the vitrification system. Test data taken for each Test Instruction Procedure (TIP) was used to evaluate component performance against system design and acceptance criteria, while test observations were used to correct, modify, or improve system operation. This process was critical in establishing operating conditions for the entire vitrification process.

Elliott, D.

1997-05-01T23:59:59.000Z

122

Accelerators for Testing Radiation Tolerances of Electronics...  

Office of Science (SC) Website

and Lawrence Berkeley National Laboratory 88-Inch Cyclotron Developed in: 1980's (LBNL); 1995, upgrades in 2001, 2003 (TAMU) Result of NP research: Accelerator Physics...

123

Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR), at the Idaho National Laboratory (INL), is a large test reactor for providing the capability for studying the effects of intense neutron and gamma radiation on reactor materials and fuels. The ATR is a pressurized, light-water, high flux test reactor with a maximum operating power of 250 MWth. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material irradiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. This paper highlights the ATR NSUF research program and the associated educational initiatives.

Frances M. Marshall; Jeff Benson; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

124

SASE FEL at the TESLA Facility, Phase 2 The TESLA Test Facility FEL team  

E-Print Network [OSTI]

SASE FEL at the TESLA Facility, Phase 2 The TESLA Test Facility FEL team June 2002, TESLA-FEL 2002-01 #12;SASE FEL at the TESLA Facility, Phase 2 Abstract The last description of the TESLA Test Facility FEL has been written in 1995 (TESLA- FEL report 95-03). Since then, many changes have developed

125

The Great Plains Wind Power Test Facility  

SciTech Connect (OSTI)

This multi-year, multi-faceted project was focused on the continued development of a nationally-recognized facility for the testing, characterization, and improvement of grid-connected wind turbines, integrated wind-water desalination systems, and related educational and outreach topics. The project involved numerous faculty and graduate students from various engineering departments, as well as others from the departments of Geosciences (in particular the Atmospheric Science Group) and Economics. It was organized through the National Wind Institute (NWI), which serves as an intellectual hub for interdisciplinary and transdisciplinary research, commercialization and education related to wind science, wind energy, wind engineering and wind hazard mitigation at Texas Tech University (TTU). Largely executed by an academic based team, the project resulted in approximately 38 peer-reviewed publications, 99 conference presentations, the development/expansion of several experimental facilities, and two provisional patents.

Schroeder, John

2014-01-31T23:59:59.000Z

126

accelerator-based radiobiology facilities: Topics by E-print...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of suitable neutron sources that are compactible with installation in a hospital enviroment. A low-energy accelerator-based neutron source has the potential for meeting...

127

Ground Broken for New Job-Creating Accelerator Research Facility...  

Office of Environmental Management (EM)

our nation in the areas of sustainable energy, a cleaner environment, economic security, health care and national defense. The accelerators of tomorrow have the potential to make...

128

SuperHILAC: Heavy-ion linear accelerator: Summary of capabilities, facilities, operations, and research  

SciTech Connect (OSTI)

This report consists of a description of the accelerator facilities and a review of research programs being conducted there. Lists of SuperHILAC researchers and publications are also given.

McDonald, R.J. (ed.)

1987-09-01T23:59:59.000Z

129

Terrestrial Photovoltaic Module Accelerated Test-To-Failure Protocol  

SciTech Connect (OSTI)

This technical report documents a test-to-failure protocol that may be used to obtain quantitative information about the reliability of photovoltaic modules using accelerated testing in environmental temperature-humidity chambers.

Osterwald, C. R.

2008-03-01T23:59:59.000Z

130

Measurement of wakefields generated in accelerator test structures using the SLC  

SciTech Connect (OSTI)

Research is underway at SLAC to develop accelerator structures for the next generation linear collider. An important feature of the design is a detuning of the dipole modes of the cells to suppress the long-range transverse wakefield by two orders of magnitude. This paper describes a facility, called ASSET, that will be incorporated into the SLAC Linear Collider (SLC) to test the long-range wakefield suppression and also to measure the other components of the wakefields generated in accelerator test structures.

Adolphsen, C.; Bane, K.; Loew, G.; Ruth, R.; Thompson, K.; Wang, J.

1992-10-01T23:59:59.000Z

131

Accelerated Wear Tests on Common Floor-covering Materials.  

E-Print Network [OSTI]

*'r** qd** ""~c- web*- !,* . flccelerated Wear Tests e" f loor-couering materials AGRICULTURAL EXPERIMENT STATION R. D. LEWIS, DIRECTOR, COLLEGE STATION. TEXAS SUMMARY I .. - " : 5: Accelerated wear tests made on six common floor covering... coverings make up a large portion of this interior finish. The costs of maintenance and replacement of floor coverings contribute heavily 1 to the cost of home maintenance. Accelerated wear tests on floor covering ma- als were conducted...

Stewart, B. R.; Kunze, O. R.; Hobgood, Price.

1958-01-01T23:59:59.000Z

132

Testing General Relativity With Laser Accelerated Electron Beams  

E-Print Network [OSTI]

Electron accelerations of the order of $10^{21} g$ obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a uniformly accelerated particle.

L. Á. Gergely; T. Harko

2012-07-16T23:59:59.000Z

133

Testing general relativity with laser accelerated electron beams  

SciTech Connect (OSTI)

Electron accelerations of the order of 10{sup 21} g obtained by laser fields open up the possibility of experimentally testing one of the cornerstones of general relativity, the weak equivalence principle, which states that the local effects of a gravitational field are indistinguishable from those sensed by a properly accelerated observer in flat space-time. We illustrate how this can be done by solving the Einstein equations in vacuum and integrating the geodesic equations of motion for a uniformly accelerated particle.

Gergely, L. A.; Harko, T. [Department of Theoretical Physics, University of Szeged, Szeged 6720, Tisza L. krt. 84, Hungary and Department of Experimental Physics, University of Szeged, 6720 Szeged, Dom ter 9 (Hungary); Department of Physics and Center for Theoretical and Computational Physics, University of Hong Kong, Pok Fu Lam Road (Hong Kong)

2012-07-09T23:59:59.000Z

134

Neutron source in the MCNPX shielding calculating for electron accelerator driven facility  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Inst. of Physics and Technology (KIPT) of Ukraine have been collaborating on the design development of an experimental neutron source facility. It is an accelerator driven system (ADS) utilizing a subcritical assembly driven by electron accelerator. The facility will be utilized for performing basic and applied nuclear researches, producing medical isotopes, and training young nuclear specialists. Monte Carlo code MCNPX has been utilized as a design tool due to its capability to transport electrons, photons, and neutrons at high energies. However the facility shielding calculations with MCNPX need enormous computational resources and the small neutron yield per electron makes sampling difficulty for the Monte Carlo calculations. A method, based on generating and utilizing neutron source file, was proposed and tested. This method reduces significantly the required computer resources and improves the statistics of the calculated neutron dose outside the shield boundary. However the statistical errors introduced by generating the neutron source were not directly represented in the results, questioning the validity of this methodology, because an insufficiently sampled neutron source can cause error on the calculated neutron dose. This paper presents a procedure for the validation of the generated neutron source file. The impact of neutron source statistic on the neutron dose is examined by calculating the neutron dose as a function of the number of electron particles used for generating the neutron source files. When the value of the calculated neutron dose converges, it means the neutron source has scored sufficient records and statistic does not have apparent impact on the calculated neutron dose. In this way, the validity of neutron source and the shield analyses could be verified. (authors)

Zhong, Z.; Gohar, Y. [Nuclear Engineering Div., Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439 (United States)

2012-07-01T23:59:59.000Z

135

E-Print Network 3.0 - accelerated aging tests Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tests Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated aging tests...

136

E-Print Network 3.0 - accelerated life testing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

testing Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated life testing...

137

E-Print Network 3.0 - accelerated ageing tests Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

tests Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated ageing tests...

138

accelerated aging test: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accelerated aging test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Powerline Conductor Accelerated...

139

Accelerator Facility Safety Implementation Guide for DOE Order (0) 420.2C, Safety of Accelerator Facilities  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The revision will address implementation of roles and responsibilities, improve operational efficiency using operating experience, and clarify the use of program requirements such as the Unreviewed Safety Issue and Accelerator Readiness Review.

2013-07-17T23:59:59.000Z

140

Cryogenic system for the Cryomodule Test Facility at Fermilab  

SciTech Connect (OSTI)

This paper provides an overview of the current progress and near-future plans for the cryogenic system at the new Cryomodule Test Facility (CMTF) at Fermilab, which includes the helium compressors, refrigerators, warm vacuum compressors, gas and liquid storage, and a distribution system. CMTF will house the Project X Injector Experiment (PXIE), which is the front end of the proposed Project X. PXIE includes one 162.5 MHz half wave resonator (HWR) cryomodule and one 325 MHz single spoke resonator (SSR) cryomodule. Both cryomodules contain superconducting radio-frequency (SRF) cavities and superconducting magnets operated at 2.0 K. CMTF will also support the Advanced Superconducting Test Accelerator (ASTA), which is located in the adjacent New Muon Lab (NML) building. A cryomodule test stand (CMTS1) located at CMTF will be used to test 1.3 GHz cryomodules before they are installed in the ASTA cryomodule string. A liquid helium pump and transfer line will be used to provide supplemental liquid helium to ASTA.

White, Michael; Martinez, Alex; Bossert, Rick; Dalesandro, Andrew; Geynisman, Michael; Hansen, Benjamin; Klebaner, Arkadiy; Makara, Jerry; Pei, Liujin; Richardson, Dave; Soyars, William; Theilacker, Jay [Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510 (United States)

2014-01-29T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Dynamic Response Testing in an Electrically Heated Reactor Test Facility  

SciTech Connect (OSTI)

Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Standard testing allows one to fully assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. The integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics, and assess potential design improvements at a relatively small fiscal investment. Initial system dynamic response testing was demonstrated on the integrated SAFE-100a heat pipe (HP) cooled, electrically heated reactor and heat exchanger hardware, utilizing a one-group solution to the point kinetics equations to simulate the expected neutronic response of the system. Reactivity feedback calculations were then based on a bulk reactivity feedback coefficient and measured average core temperature. This paper presents preliminary results from similar dynamic testing of a direct drive gas cooled reactor system (DDG), demonstrating the applicability of the testing methodology to any reactor type and demonstrating the variation in system response characteristics in different reactor concepts. Although the HP and DDG designs both utilize a fast spectrum reactor, the method of cooling the reactor differs significantly, leading to a variable system response that can be demonstrated and assessed in a non-nuclear test facility. Planned system upgrades to allow implementation of higher fidelity dynamic testing are also discussed. Proposed DDG testing will utilize a higher fidelity point kinetics model to control core power transients, and reactivity feedback will be based on localized feedback coefficients and several independent temperature measurements taken within the core block. This paper presents preliminary test results and discusses the methodology that will be implemented in follow-on DDG testing and the additional instrumentation required to implement high fidelity dynamic testing.

Bragg-Sitton, Shannon M. [NASA Marshall Space Flight Center, Nuclear and Advanced Propulsion Branch, ER-11, MSFC, AL 35812 (United States); Morton, T. J. [Department of Chemical and Nuclear Engineering, University of New Mexico, Albuquerque, NM 87131 (United States)

2006-01-20T23:59:59.000Z

142

ORNL instrumentation performance for Slab Core Test Facility (SCTF)-Core I Reflood Test Facility  

SciTech Connect (OSTI)

Instrumentation was developed for making measurements in experimental refill-reflood test facilities. These unique instrumentation systems were designed to survive the severe environmental conditions that exist during a simulated pressurized water reactor loss-of-coolant accident (LOCA). Measurement of in-vessel fluid phenomena such as two-phase flow velocity and void fraction and film thickness and film velocity are required for better understanding of reactor behavior during LOCAs. The Advanced Instrumentation for Reflood Studies (AIRS) Program fabricated and delivered instrumentation systems and data reduction software algorithms that allowed the above measurements to be made. Data produced by AIRS sensors during three experimental runs in the Japanese Slab Core Test Facility are presented. Although many of the sensors failed before any useful data could be obtained, the remaining probes gave encouraging and useful results. These results are the first of their kind produced during simulated refill-reflood stage of a LOCA near actual thermohydrodynamic conditions.

Hardy, J E; Hess, R A; Hylton, J O

1983-11-01T23:59:59.000Z

143

"DIANA" - A New, Deep-Underground Accelerator Facility for Astrophysics Experiments  

SciTech Connect (OSTI)

The DIANA project (Dakota Ion Accelerators for Nuclear Astrophysics) is a collaboration between the University of Notre Dame, University of North Carolina, Western Michigan University, and Lawrence Berkeley National Laboratory to build a nuclear astrophysics accelerator facility 1.4 km below ground. DIANA is part of the US proposal DUSEL (Deep Underground Science and Engineering Laboratory) to establish a cross-disciplinary underground laboratory in the former gold mine of Homestake in South Dakota, USA. DIANA would consist of two high-current accelerators, a 30 to 400 kV variable, high-voltage platform, and a second, dynamitron accelerator with a voltage range of 350 kV to 3 MV. As a unique feature, both accelerators are planned to be equipped with either high-current microwave ion sources or multi-charged ECR ion sources producing ions from protons to oxygen. Electrostatic quadrupole transport elements will be incorporated in the dynamitron high voltage column. Compared to current astrophysics facilities, DIANA could increase the available beam densities on target by magnitudes: up to 100 mA on the low energy accelerator and several mA on the high energy accelerator. An integral part of the DIANA project is the development of a high-density super-sonic gas-jet target which can handle these anticipated beam powers. The paper will explain the main components of the DIANA accelerators and their beam transport lines and will discuss related technical challenges.

Leitner, M.; Leitner, D.; Lemut, A.; Vetter, P.; Wiescher, M.

2009-05-28T23:59:59.000Z

144

Sandia National Laboratories: Solar Test Facility Upgrades Complete...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Upgrades Complete, Leading to Better Sandia Capabilities to Support Power Industry Solar Test Facility Upgrades Complete, Leading to Better Sandia Capabilities to Support...

145

New Wind Test Facilities Open in Colorado and South Carolina...  

Energy Savers [EERE]

Clemson facility in North Charleston is ideal for testing the larger multi-megawatt wind turbines that both the United States and international manufacturers are developing for...

146

E-Print Network 3.0 - accelerated reliability testing Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

reliability testing Search Powered by Explorit Topic List Advanced Search Sample search results for: accelerated reliability testing Page: << < 1 2 3 4 5 > >> 1 ACCELERATOR...

147

Feasibility study of a nonequilibrium MHD accelerator concept for hypersonic propulsion ground testing  

SciTech Connect (OSTI)

A National Aeronautics and Space Administration (NASA) funded research study to evaluate the feasibility of using magnetohydrodynamic (MHD) body force accelerators to produce true air simulation for hypersonic propulsion ground testing is discussed in this paper. Testing over the airbreathing portion of a transatmospheric vehicle (TAV) hypersonic flight regime will require high quality air simulation for actual flight conditions behind a bow shock wave (forebody, pre-inlet region) for flight velocities up to Mach 16 and perhaps beyond. Material limits and chemical dissociation at high temperature limit the simulated flight Mach numbers in conventional facilities to less than Mach 12 for continuous and semi-continuous testing and less than Mach 7 for applications requiring true air chemistry. By adding kinetic energy directly to the flow, MHD accelerators avoid the high temperatures and pressures required in the reservoir region of conventional expansion facilities, allowing MHD to produce true flight conditions in flight regimes impossible with conventional facilities. The present study is intended to resolve some of the critical technical issues related to the operation of MHD at high pressure. Funding has been provided only for the first phase of a three to four year feasibility study that would culminate in the demonstration of MHD acceleration under conditions required to produce true flight conditions behind a bow shock wave to flight Mach numbers of 16 or greater. MHD critical issues and a program plan to resolve these are discussed.

Lee, Ying-Ming; Simmons, G.A.; Nelson, G.L. [MSE Inc., Butte, MT (United States)

1995-12-31T23:59:59.000Z

148

Accelerator Modeling for Discovery | Argonne Leadership Computing Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects ofAbout ScienceAboutAcceleration and

149

Design of a horizontal test cryostat for superconducting RF cavities for the FREIA facility at Uppsala University  

SciTech Connect (OSTI)

Uppsala University is constructing a large scale facility, called FREIA (Facility for Research Instrumentation and Accelerator Development). FREIA includes a helium liquefier and an accelerator test facility and has the capacity to test superconducting radio-frequency (RF) cavities with the same RF system and RF power level as in an accelerator. A central element of FREIA is a horizontal test cryostat connected in closed loop to a helium liquefier. This cryostat can house two fully equipped (tuners, piezo, power coupler, helium tank) superconducting cavities to perform full RF high power tests and operate at temperatures between 1.8 K and 4.2 K. The cryostat is designed to accommodate a large array of superconducting cavities and magnets, among which the European Spallation Source (ESS) type spoke and high-? elliptical cavities as well as TESLA/ILC type elliptical cavities. The present status of the project and the design of the cryostat are reported.

Chevalier, N. R.; Thermeau, J.-P.; Bujard, P.; Junquera, T. [Accelerators and Cryogenic Systems (ACS), 86 rue de Paris, 91400 Orsay (France); Hermansson, L.; Kern, R. Santiago; Ruber, R. [Uppsala University, Department of Physics and Astronomy, 75120 Uppsala (Sweden)

2014-01-29T23:59:59.000Z

150

accelerated ageing test: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

ageing test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Powerline Conductor Accelerated Testing...

151

Integrated Disposal Facility FY2010 Glass Testing Summary Report  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Serne, R Jeffrey; Mattigod, Shas V.

2010-09-30T23:59:59.000Z

152

Complex workplace radiation fields at European high-energy accelerators and thermonuclear fusion facilities  

E-Print Network [OSTI]

This report outlines the research needs and research activities within Europe to develop new and improved methods and techniques for the characterization of complex radiation fields at workplaces around high-energy accelerators and the next generation of thermonuclear fusion facilities under the auspices of the COordinated Network for RAdiation Dosimetry (CONRAD) project funded by the European Commission.

Bilski, P; D'Errico, F; Esposito, A; Fehrenbacher, G; Fernŕndez, F; Fuchs, A; Golnik, N; Lacoste, V; Leuschner, A; Sandri, S; Silari, M; Spurny, F; Wiegel, B; Wright, P

2006-01-01T23:59:59.000Z

153

Overview of US fast-neutron facilities and testing capabilities  

SciTech Connect (OSTI)

Rather than attempt a cataloging of the various fast neutron facilities developed and used in this country over the last 30 years, this paper will focus on those facilities which have been used to develop, proof test, and explore safety issues of fuels, materials and components for the breeder and fusion program. This survey paper will attempt to relate the evolution of facility capabilities with the evolution of development program which use the facilities. The work horse facilities for the breeder program are EBR-II, FFTF and TREAT. For the fusion program, RTNS-II and FMIT were selected.

Evans, E.A.; Cox, C.M.; Jackson, R.J.

1982-01-01T23:59:59.000Z

154

Step-Stress Accelerated Degradation Testing for Solar Reflectors: Preprint  

SciTech Connect (OSTI)

To meet the challenge to reduce the cost of electricity generated with concentrating solar power (CSP) new low-cost reflector materials are being developed including metalized polymer reflectors and must be tested and validated against appropriate failure mechanisms. We explore the application of testing methods and statistical inference techniques for quantifying estimates and improving lifetimes of concentrating solar power (CSP) reflectors associated with failure mechanisms initiated by exposure to the ultraviolet (UV) part of the solar spectrum. In general, a suite of durability and reliability tests are available for testing a variety of failure mechanisms where the results of a set are required to understand overall lifetime of a CSP reflector. We will focus on the use of the Ultra-Accelerated Weathering System (UAWS) as a testing device for assessing various degradation patterns attributable to accelerated UV exposure. Depending on number of samples, test conditions, degradation and failure patterns, test results may be used to derive insight into failure mechanisms, associated physical parameters, lifetimes and uncertainties. In the most complicated case warranting advanced planning and statistical inference, step-stress accelerated degradation (SSADT) methods may be applied.

Jones, W.; Elmore, R.; Lee, J.; Kennedy, C.

2011-09-01T23:59:59.000Z

155

advanced test accelerator: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test accelerator First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Mechanical Design of a High Energy...

156

accelerated life test: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accelerated life test First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Bayesian Optimum Planning for...

157

accelerated test method: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accelerated test method First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Bayesian Methods for...

158

accelerated test laboratory: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

test laboratory First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 SLAC National Accelerator Laboratory...

159

accelerated test methods: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

accelerated test methods First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Bayesian Methods for...

160

Accelerated Articles Design and Testing of a Multivariate Optical  

E-Print Network [OSTI]

#12;Accelerated Articles Design and Testing of a Multivariate Optical Element: The First Demonstration of Multivariate Optical Computing for Predictive Spectroscopy O. Soyemi, D. Eastwood, L. Zhang, H Street, Suite 102, Lincoln, Nebraska 68508 A demonstration of multivariate optical computing is presented

Myrick, Michael Lenn

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2  

SciTech Connect (OSTI)

This document is the first volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of an introduction, summary/conclusion, site description and assessment, description of facility, and description of operation.

NONE

1994-10-01T23:59:59.000Z

162

Aeronautics Test Program (ATP) Corporate Management of Aeronautical Facilities  

E-Print Network [OSTI]

Aeronautics Test Program (ATP) Corporate Management of Aeronautical Facilities 44th AIAA Aerospace Propulsion Systems Lab. 3 & 4 · Glenn 10x10 Supersonic Tunnel ATP provides 60%- 75% of fixed costs #12

163

EIS-0228: Dual Axis Radiographic Hydrodynamic Test (DARHT) Facility  

Broader source: Energy.gov [DOE]

This EIS evaluates the potential environmental impact of a proposal to construct and operate the Dual Axis Radiographic Hydrodynamic Test (DARHT) facility at Los Alamos National Laboratory (LANL)...

164

CU-LASP Test Facilities ! and Instrument Calibration Capabilities"  

E-Print Network [OSTI]

­ Star tracker ­ Solar position sensors ­ Test & calibration applications ­ End-to-end instrument;Total Solar Irradiance Radiometer Facility (TRF) · Total Solar Irradiance (TSI) instrument calibrations

Mojzsis, Stephen J.

165

Sandia National Laboratories: Central Receiver Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergy EfficientFacility Central Receiver

166

Sandia National Laboratories: Central Receiver test facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared0Energy AdvancedEnergyEnergy EfficientFacility Central

167

WIND TURBINE DRIVETRAIN TEST FACILITY DATA ACQUISITION SYSTEM  

SciTech Connect (OSTI)

The Wind Turbine Drivetrain Test Facility (WTDTF) is a state-of-the-art industrial facility used for testing wind turbine drivetrains and generators. Large power output wind turbines are primarily installed for off-shore wind power generation. The facility includes two test bays: one to accommodate turbine nacelles up to 7.5 MW and one for nacelles up to 15 MW. For each test bay, an independent data acquisition system (DAS) records signals from various sensors required for turbine testing. These signals include resistance temperature devices, current and voltage sensors, bridge/strain gauge transducers, charge amplifiers, and accelerometers. Each WTDTF DAS also interfaces with the drivetrain load applicator control system, electrical grid monitoring system and vibration analysis system.

Mcintosh, J.

2012-01-03T23:59:59.000Z

168

HEATER TEST PLANNING FOR THE NEAR SURFACE TEST FACILITY AT THE HANFORD RESERVATION  

E-Print Network [OSTI]

Heater Experiment at Hanford. Berkeley, Lawre ;e BerkeleyTest Facility, Hole DC-11, Hanford Reservation. Prepared forof Gable Mountain Basalt Cores, Hanford Nuclear Reservation.

DuBois, A.

2010-01-01T23:59:59.000Z

169

Accelerated life testing : Analysis and optimization Seyyedeh zohreh Fatemi, Fabrice Guerin, Laurent Saintis  

E-Print Network [OSTI]

Accelerated life testing : Analysis and optimization Seyyedeh zohreh Fatemi, Fabrice Guerin to conduct a sequential test defined by an optimal accelerated testing plan. This test plan is based of reliability function, scale and shape parameters ...) and acceleration model (choice of model, model

Boyer, Edmond

170

Design of an XUV FEL Driven by the Laser-Plasma Accelerator at the LBNL LOASIS Facility  

E-Print Network [OSTI]

A445 (2000) 59. [13] W. M. Fawley, LBNL Technical Report No.LBNL-49625 (2002); see also paper MOPPH073, theseLASER-PLASMA ACCELERATOR AT THE LBNL LOASIS FACILITY ? C. B.

Schroeder, Carl B.; Fawley, W.M.; Esarey, Eric; Leemans, W.P.

2006-01-01T23:59:59.000Z

171

ACCELERATOR TEST FACILITY SAFETY ASSESSMENT DOCUMENT TABLE OF...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

feet to the west from Building 820 and 10-feet from Building 355 there are two oil filled transformers that have a 10-foot block wall separating them. Only one is identified;...

172

BNL | Accelerator Test Facility | ES&H Menu  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch HighlightsToolsBES ReportsExperiment Start-up ATF Handbook

173

EA-1917: Wave Energy Test Facility Project, Newport, OR  

Broader source: Energy.gov [DOE]

This EA will evaluate the potential environmental impacts of a Wave Energy Test Facility that will be located near Newport, Oregon. The testing facility will be located within Oregon territorial waters, near the Hatfield Marine Science Center and close to onshore roads and marine support services. The site will not only allow testing of new wave energy technologies, but will also be used to help study any potential environmental impacts on sediments, invertebrates and fish. The project is being jointly funded by the State of Oregon and DOE.

174

Acceptance test procedure: RMW Land Disposal Facility Project W-025  

SciTech Connect (OSTI)

This ATP establishes field testing procedures to demonstrate that the electrical/instrumentation system functions as intended by design for the Radioactive Mixed Waste Land Disposal Facility. Procedures are outlined for the field testing of the following: electrical heat trace system; transducers and meter/controllers; pumps; leachate storage tank; and building power and lighting.

Roscha, V. [Westinghouse Hanford Co., Richland, WA (United States)

1994-12-12T23:59:59.000Z

175

National RF Test Facility as a multipurpose development tool  

SciTech Connect (OSTI)

Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments.

McManamy, T.J.; Becraft, W.R.; Berry, L.A.; Blue, C.W.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Loring, C.M. Jr.; Moeller, F.A.; Ponte, N.S.

1983-01-01T23:59:59.000Z

176

NREL: Photovoltaics Research - Outdoor Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz, Ph.D. Principal ScientistOutdoor Test

177

Sandia National Laboratories: Regional Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik SpoerkeSolar Regional TestClimateResearchRecovery Act (ARRA)3Energy

178

NREL: Wind Research - Dynamometer Test Facilities  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test and EvaluationManagementWorking withDynamometer

179

Improved Accelerated Stress Tests Based on Fuel Cell Vehicle Data  

SciTech Connect (OSTI)

UTC will led a top-tier team of industry and national laboratory participants to update and improve DOE’s Accelerated Stress Tests (AST’s) for hydrogen fuel cells. This in-depth investigation will focused on critical fuel cell components (e.g. membrane electrode assemblies - MEA) whose durability represented barriers for widespread commercialization of hydrogen fuel cell technology. UTC had access to MEA materials that had accrued significant load time under real-world conditions in PureMotion® 120 power plant used in transit buses. These materials are referred to as end-of-life (EOL) components in the rest of this document. Advanced characterization techniques were used to evaluate degradation mode progress using these critical cell components extracted from both bus power plants and corresponding materials tested using the DOE AST’s. These techniques were applied to samples at beginning-of-life (BOL) to serve as a baseline. These comparisons advised the progress of the various failure modes that these critical components were subjected to, such as membrane degradation, catalyst support corrosion, platinum group metal dissolution, and others. Gaps in the existing ASTs predicted the degradation observed in the field in terms of these modes were outlined. Using the gaps, new AST’s were recommended and tested to better reflect the degradation modes seen in field operation. Also, BOL components were degraded in a test vehicle at UTC designed to accelerate the bus field operation.

Patterson, Timothy [Research Engineer] [Research Engineer; Motupally, Sathya [Research Engineer] [Research Engineer

2012-06-01T23:59:59.000Z

180

Development of an accelerator-based BNCT facility at the Berkeley Lab  

SciTech Connect (OSTI)

An accelerator-based BNCT facility is under construction at the Berkeley Lab. An electrostatic-quadrupole (ESQ) accelerator is under development for the production of neutrons via the {sup 7}Li(p,n){sup 7}Be reaction at proton energies between 2.3 and 2.5 MeV. A novel type of power supply, an air-core coupled transformer power supply, is being built for the acceleration of beam currents exceeding 50 mA. A metallic lithium target has been developed for handling such high beam currents. Moderator, reflector and neutron beam delimiter have extensively been modeled and designs have been identified which produce epithermal neutron spectra sharply peaked between 10 and 20 keV. These. neutron beams are predicted to deliver significantly higher doses to deep seated brain tumors, up to 50% more near the midline of the brain than is possible with currently available reactor beams. The accelerator neutron source will be suitable for future installation at hospitals.

Ludewigt, B.A.; Bleuel, D.; Chu, W.T.; Donahue, R.J.; Kwan, J.; Reginato, L.L.; Wells, R.P.

1998-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

The LLNL HFTF (High-Field Test Facility): A flexible superconducting test facility for fusion magnet development  

SciTech Connect (OSTI)

The High-Field Test Facility (HFTF) is a flexible and, in many ways, unique facility at Lawrence Livermore National Laboratory (LLNL) for providing the test capabilities needed to develop the superconducting magnet systems of the next generation fusion machines. The superconducting coil set in HFTF has been operated successfully at LLNL, but in its original configuration, its utility as a test facility was somewhat restricted and cryogenic losses were intolerable. A new cryostat for the coil set allows the magnet system to remain cold indefinitely so the system is available on short notice to provide high fields (about 11 T) inside a reasonably large test volume (0.3-m diam). The test volume is physically and thermally isolated from the coil volume, allowing test articles to be inserted and removed without disturbing the coil cryogenic volume, which is maintained by an on-line refrigerator. Indeed, with the proper precautions, it is even unnecessary to drop the field in the HFTF during such an operation. The separate test volume also allows reduced temperature operation without the expense and complication of subcooling the entire coil set (about 20-t cold mass). The HFTF has thus become a key facility in the LLNL magnet development program, where the primary goal is to demonstrate the technology for producing fields to 15 T with winding-pack current densities of 40 A.mm/sup -2/ in coils sized for fusion applications. 4 refs., 4 figs., 1 tab.

Miller, J.R.; Chaplin, M.R.; Leber, R.L.; Rosdahl, A.R.

1987-09-17T23:59:59.000Z

182

Using Uncertainty Analysis to Guide the Development of Accelerated Stress Tests (Presentation)  

SciTech Connect (OSTI)

Extrapolation of accelerated testing to the long-term results expected in the field has uncertainty associated with the acceleration factors and the range of possible stresses in the field. When multiple stresses (such as temperature and humidity) can be used to increase the acceleration, the uncertainty may be reduced according to which stress factors are used to accelerate the degradation.

Kempe, M.

2014-03-01T23:59:59.000Z

183

ASSESSMENT OF THE PCFBC-EXPOSED AND ACCELERATED LIFE-TESTED CANDLE FILTERS  

SciTech Connect (OSTI)

Development of the hot gas filtration technology has been the focus of DOE/FETC and Siemens Westinghouse Power Corporation during the past twenty years. Systems development during this time has successfully lead to the generation and implementation of high temperature Siemens Westinghouse particulate filtration systems that are currently installed and are operational at Demonstration Plant sites, and which are ready for installation at commercial plant sites. Concurrently, materials development has advanced the use of commercially available oxide- and nonoxide-based monoliths, and has fostered the manufacture and use of second generation, oxide-based, continuous fiber reinforced ceramic composites and filament wound materials. This report summarizes the material characterization results for commercially available and second generation filter materials tested in Siemens Westinghouse's advanced, high temperature, particulate removal system at the Foster Wheeler, pressurized circulating fluidized-bed combustion, pilot-scale test facility in Karhula, Finland, and subsequent extended accelerated life testing of aged elements in Siemens Westinghouse pressurized fluidized-bed combustion simulator test facility in Pittsburgh, PA. The viability of operating candle filters successfully for over 1 year of service life has been shown in these efforts. Continued testing to demonstrate the feasibility of acquiring three years of service operation on aged filter elements is recommended.

M.A. Alvin

1999-09-30T23:59:59.000Z

184

Testing of a loop heat pipe experimental apparatus under varied acceleration.  

E-Print Network [OSTI]

??An experimental apparatus was designed and fabricated to test a Loop Heat Pipe under varied acceleration. The experiment consisted of both flight and ground testing… (more)

Kurwitz, Richard Cable

2012-01-01T23:59:59.000Z

185

Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility  

SciTech Connect (OSTI)

A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

2008-04-01T23:59:59.000Z

186

RMOTC offers unique test facility to oil industry  

SciTech Connect (OSTI)

Testing laboratory developed new tools and techniques in actual field conditions before commercialization has long been a significant problem. Working lab models may fail in the first field applications because of handling, incompatibility with existing equipment, or natural elements such as wind, humidity, or temperature. Further, the risk of damage to the operators wellbore, production, or other operations can be costly and embarrassing. As research dollars are becoming harder to obtain, a neutral, non-competitive, and user friendly test site is needed. This type of facility has been developed at the US Department of Energy`s Naval Petroleum Reserve No. 3 (NPR-3), near Casper, Wyoming, through the Rocky Mountain Oilfield Testing Center (RMOTC). New technologies and processes field tested at this facility include those related to drilling production/lifting costs, P and A methods, and environmental control and remediation.

Opsal, C.M. [Fluor Daniel NPOSR-CUW, Inc., Casper, WY (United States). Rocky Mountain Oilfield Testing Center

1998-12-31T23:59:59.000Z

187

Direct sunlight facility for testing and research in HCPV  

SciTech Connect (OSTI)

A facility for testing different components for HCPV application has been developed in the framework of 'Fotovoltaico ad Alta Efficienza' (FAE) project funded by the Sicilian Regional Authority (PO FESR Sicilia 2007/2013 4.1.1.1). The testing facility is equipped with an heliostat providing a wide solar beam inside the lab, an optical bench for mounting and aligning the HCPV components, electronic equipments to characterize the I-V curves of multijunction cells operated up to 2000 suns, a system to circulate a fluid in the heat sink at controlled temperature and flow-rate, a data logging system with sensors to measure temperatures in several locations and fluid pressures at the inlet and outlet of the heat sink, and a climatic chamber with large test volume to test assembled HCPV modules.

Sciortino, Luisa, E-mail: luisa.sciortino@unipa.it; Agnello, Simonpietro, E-mail: luisa.sciortino@unipa.it; Bonsignore, Gaetano; Cannas, Marco; Gelardi, Franco Mario; Napoli, Gianluca; Spallino, Luisa [Dipartimento di Fisica e Chimica, Universitŕ degli Studi di Palermo, Via Archirafi 36, 90123 PA (Italy); Barbera, Marco [Dipartimento di Fisica e Chimica, Universitŕ degli Studi di Palermo, Via Archirafi 36, 90123 PA, Italy and Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy); Buscemi, Alessandro; Montagnino, Fabio Maria; Paredes, Filippo [IDEA s.r.l., Contrada Molara, Zona Industriale III Fase, 90018 Termini Imerese (Panama) (Italy); Candia, Roberto; Collura, Alfonso; Di Cicca, Gaspare; Cicero, Ugo Lo; Varisco, Salvo [Istituto Nazionale di Astrofisica, Osservatorio Astronomico di Palermo G. S. Vaiana, Piazza del Parlamento 1, 90134 PA (Italy)

2014-09-26T23:59:59.000Z

188

altitude test facility: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

altitude test facility First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Temporary (mobile) storage...

189

Cold Vacuum Drying Facility Stack Air Sampling System Qualification Tests  

SciTech Connect (OSTI)

This report documents tests that were conducted to verify that the air monitoring system for the Cold Vacuum Drying Facility ventilation exhaust stack meets the applicable regulatory criteria regarding the placement of the air sampling probe, sample transport, and stack flow measurement accuracy.

Glissmeyer, John A.

2001-01-24T23:59:59.000Z

190

Cryogenic controls for Fermilab's SRF cavities and test facility  

SciTech Connect (OSTI)

A new superconducting radio frequency (SRF) cavities test facility is now operational at Fermilab's Meson Detector Building (MDB). The facility is supplied cryogens from the Cryogenic Test Facility (CTF) located in a separate building 500-m away. The design incorporates ambient temperature pumping for super-fluid helium production, as well as three 0.6-kW at 4.5-K refrigerators, five screw compressors, a helium purifier, helium and nitrogen inventory, cryogenic distribution system, and a variety of test cryostats. To control and monitor the vastly distributed cryogenic system, a flexible scheme has been developed. Both commercial and experimental physics tools are used. APACS+{trademark}, a process automation control system from Siemens-Moore, is at the heart of the design. APACS+{trademark} allows engineers to configure an ever evolving test facility while maintaining control over the plant and distribution system. APACS+{trademark} nodes at CTF and MDB are coupled by a fiber optic network. DirectLogic205 PLC's by KOYO{reg_sign} are used as the field level interface to most I/O. The top layer of this system uses EPICS (Experimental Physics and Industrial Control System) as a SCADA/HMI. Utilities for graphical display, control loop setting, real time/historical plotting and alarming have been implemented by using the world-wide library of applications for EPICS. OPC client/server technology is used to bridge across each different platform. This paper presents this design and its successful implementation.

Norris, B.; Bossert, R.; Klebaner, A.; Lackey, S.; Martinez, A.; Pei, L.; Soyars, W.; Sirotenko, V.; /Fermilab

2007-07-01T23:59:59.000Z

191

CLOSEOUT REPORT FOR HYBRID SULFUR PRESSURIZED BUTTON CELL TEST FACILITY  

SciTech Connect (OSTI)

This document is the Close-Out Report for design and partial fabrication of the Pressurized Button Cell Test Facility at Savannah River National Laboratory (SRNL). This facility was planned to help develop the sulfur dioxide depolarized electrolyzer (SDE) that is a key component of the Hybrid Sulfur Cycle for generating hydrogen. The purpose of this report is to provide as much information as possible in case the decision is made to resume research. This report satisfies DOE Milestone M3GSR10VH030107.0. The HyS Cycle is a hybrid thermochemical cycle that may be used in conjunction with advanced nuclear reactors or centralized solar receivers to produce hydrogen by watersplitting. The HyS Cycle utilizes the high temperature (>800 C) thermal decomposition of sulfuric acid to produce oxygen and regenerate sulfur dioxide. The unique aspect of HyS is the generation of hydrogen in a water electrolyzer that is operated under conditions where dissolved sulfur dioxide depolarizes the anodic reaction, resulting in substantial voltage reduction. Low cell voltage is essential for both high thermodynamic efficiency and low hydrogen cost. Sulfur dioxide is oxidized at the anode, producing sulfuric acid that is sent to the high temperature acid decomposition portion of the cycle. Sulfur dioxide from the decomposer is cycled back to electrolyzers. The electrolyzer cell uses the membrane electrode assembly (MEA) concept. Anode and cathode are formed by spraying a catalyst, typically platinized carbon, on both sides of a Proton Exchange Membrane (PEM). SRNL has been testing SDEs for several years including an atmospheric pressure Button Cell electrolyzer (2 cm{sup 2} active area) and an elevated temperature/pressure Single Cell electrolyzer (54.8 cm{sup 2} active area). SRNL tested 37 MEAs in the Single Cell electrolyzer facility from June 2005 until June 2009, when funding was discontinued. An important result of the final months of testing was the development of a method that prevents the formation of a sulfur layer previously observed in MEAs used in the Hybrid Sulfur Cycle electrolyzer. This result is very important because the sulfur layer increased cell voltage and eventually destroyed the MEA that is the heart of the cell. Steimke and Steeper [2005, 2006, 2007, 2008] reported on testing in the Single Cell Electrolyzer test facility in several periodic reports. Steimke et. al [2010] issued a final facility close-out report summarizing all the testing in the Single Cell Electrolyzer test facility. During early tests, significant deterioration of the membrane occurred in 10 hours or less; the latest tests ran for at least 200 hours with no sign of deterioration. Ironically, the success with the Single Cell electrolyzer meant that it became dedicated to long runs and not available for quick membrane evaluations. Early in this research period, the ambient pressure Button Cell Electrolyzer test facility was constructed to quickly evaluate membrane materials. Its small size allowed testing of newly developed membranes that typically were not available in sizes large enough to test in the Single Cell electrolyzer. The most promising membranes were tested in the Single Cell Electrolyzer as soon as sufficient large membranes could be obtained. However, since the concentration of SO{sub 2} gas in sulfuric acid decreases rapidly with increasing temperature, the ambient pressure Button Cell was no longer able to achieve the operating conditions needed to evaluate the newer improved high temperature membranes. Significantly higher pressure operation was required to force SO{sub 2} into the sulfuric acid to obtain meaningful concentrations at increased temperatures. A high pressure (200 psig), high temperature (120 C) Button Cell was designed and partially fabricated just before funding was discontinued in June 2009. SRNL completed the majority of the design of the test facility, including preparation of a process and instrument drawing (P&ID) and preliminary designs for the major components. SRNL intended to complete the designs and procu

Steeper, T.

2010-09-15T23:59:59.000Z

192

Using Accelerated Testing To Predict Module Reliability: Preprint  

SciTech Connect (OSTI)

Long-term reliability is critical to the cost effectiveness and commercial success of photovoltaic (PV) products. Today most PV modules are warranted for 25 years, but there is no accepted test protocol to validate a 25-year lifetime. The qualification tests do an excellent job of identifying design, materials, and process flaws that are likely to lead to premature failure (infant mortality), but they are not designed to test for wear-out mechanisms that limit lifetime. This paper presents a method for evaluating the ability of a new PV module technology to survive long-term exposure to specific stresses. The authors propose the use of baseline technologies with proven long-term field performance as controls in the accelerated stress tests. The performance of new-technology modules can then be evaluated versus that of proven-technology modules. If the new-technology demonstrates equivalent or superior performance to the proven one, there is a high likelihood that they will survive versus the tested stress in the real world.

Wohlgemuth, J. H.; Kurtz, S.

2011-07-01T23:59:59.000Z

193

Using Accelerated Tests to Predict Service Life in HighlyVariable Environments  

E-Print Network [OSTI]

Chapter xx Using Accelerated Tests to Predict Service Life in Highly­Variable Environments William in record time while im­ proving productivity, reliability, and quality. This requires improved accelerated tests attempt to accelerate time by ``speeding up the clock.'' This is done by increasing average level

194

Using Accelerated Tests to Predict Service Life in Highly-Variable Environments  

E-Print Network [OSTI]

Chapter xx Using Accelerated Tests to Predict Service Life in Highly-Variable Environments William while im- proving productivity, reliability, and quality. This requires improved accelerated test (AT in actual use, in an attempt to simulate and accelerate outdoor aging. Such experiments violate some

195

High-energy lattice for first-beam operation of the SRF test accelerator at NML  

SciTech Connect (OSTI)

The Superconducting Radio Frequency Test Accelerator, a linear electron accelerator currently in construction at Fermilab's New Muon Laboratory, will eventually reach energies of {approx} 900 MeV using four ILC-type superconducting accelerating cryomodules. The accelerator's construction is staged according to cryomodules availability. The first phase that will support first beam operation incorporates one cryomodule. In this Note, we summarize a possible design for the first-beam accelerator configuration.

Prokop, C.; /NICADD, DeKalb; Piot, P.; /NICADD, DeKalb /Fermilab; Church, M.; /Fermilab

2011-09-01T23:59:59.000Z

196

Psychrometric Testing Facility Restoration and Cooling Capacity Testing  

E-Print Network [OSTI]

......................... 17 Table 5 Correlation between the primary and secondary cooling capacity methods for each test...................................................................... 21 Table 6 Comparison of the performance for the different tests... 80.05 0.05 0.45 0.07 95.03 0.03 0.52 0.17 1A WB 67.06 0.06 0.29 0.11 2A DB 80.03 0.03 0.43 0.07 95.01 0.01 0.49 0.12 2A WB 66.83 -0.17 0.09 0.02 3A DB 79.94 -0.06 0.41 0.07 95.11 0.11 0.27 0.09 3A WB 66.88 -0.12 0...

Cline, Vincent E.

2010-10-12T23:59:59.000Z

197

A passive solar test facility for Saudi Arabia  

SciTech Connect (OSTI)

A passive solar test facility has been designed for Dammam, Saudi Arabia. It will be located on the campus of King Faisal University, adjacent to the Persian Gulf. This maritime desert climate is terribly sevre, and one for which it is a formidable challenge to design a year around thermally efficient building. This facility incorporates seven different passive strategies: proper orientation, operable shading for windows, flow-through ventilation, externally insulated thermal mass, wind tower with direct evaporative cooling, indirect evaporative cooling through a double shell, and solar water heating. Construction should begin in June of 1983. Upon completion, the building will be monitored for at least two years.

Woods, P.K.

1983-06-01T23:59:59.000Z

198

East Mesa geothermal pump test facility (EMPTF). Final report  

SciTech Connect (OSTI)

Barber-Nichols has completed the design, fabrication and installation of a geothermal pump test facility at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment. The facility consists of a skid-mounted brine control module, a 160 foot below ground test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility to attract the largest number of potential users. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

199

East Mesa geothermal pump test facility (EMPTF). Final report  

SciTech Connect (OSTI)

The design, fabrication and installation of a geothermal pump test facility (EMPFT) at the DOE geothermal site at East Mesa, California which is capable of testing 70 to 750 horsepower downwell pumps in a controlled geothermal environment were completed. The facility consists of a skid-mounted brine control module, a 160 foot below test well section, a hydraulic turbine for power recovery, a gantry-mounted hoist for pump handling and a 3-phase, 480 VAC, 1200 amp power supply to handle pump electric requirements. Geothermal brine is supplied to the EMPTF from one of the facility wells at East Mesa. The EMPTF is designed with a great amount of flexibility. The 20-inch diameter test well can accommodate a wide variety of pumps. The controls are interactive and can be adjusted to obtain a full complement of pump operation data, or set to maintain constant conditions to allow long-term testing with a minimum of operator support. The hydraulic turbine allows the EMPTF user to recover approximately 46% of the input pump power to help defray the operating cost of the unit. The hoist is provided for material handling and pump servicing and reduces the equipment that the user must supply for pump installation, inspection and removal.

Olander, R.G.; Roberts, G.K.

1984-11-28T23:59:59.000Z

200

E-Print Network 3.0 - accelerated tests Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Study on Video Acceleration Pan Pan, Yi Cui Summary: in China) is chosen as our test website instead of YouTube 5 because currently no accelerator is designed... specially for...

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Biological shield design and analysis of KIPT accelerator-driven subcritical facility.  

SciTech Connect (OSTI)

Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology of Ukraine have been collaborating on the conceptual design development of an electron accelerator-driven subcritical facility. The facility will be utilized for performing basic and applied nuclear research, producing medical isotopes, and training young nuclear specialists. This paper presents the design and analyses of the biological shield performed for the top section of the facility. The neutron source driving the subcritical assembly is generated from the interaction of a 100-kW electron beam with a natural uranium target. The electron energy is in the range of 100 to 200 MeV, and it has a uniform spatial distribution. The shield design and the associated analyses are presented including different parametric studies. In the analyses, a significant effort was dedicated to the accurate prediction of the radiation dose outside the shield boundary as a function of the shield thickness without geometrical approximations or material homogenization. The MCNPX Monte Carlo code was utilized for the transport calculation of electrons, photons, and neutrons. Weight window variance-reduction techniques were introduced, and the dose equivalent outside the shield can be calculated with reasonably good statistics.

Zhong, Z.; Gohar, Y.; Nuclear Engineering Division

2009-12-01T23:59:59.000Z

202

Moving Bed, Granular Bed Filter Development Program: Option 1, Component Test Facility. Task 3, Test plan  

SciTech Connect (OSTI)

In the base contract, Combustion Power Co. developed commercial designs for a moving granular-bed filter (GBF). The proposed filter is similar to previous designs in terms of its shape and method of filtration. The commercial designs have scaled the filter from a 5 ft diameter to as large as a 20 ft diameter filter. In Task 2 of the Moving Bed-Granular Filter Development Program, all technical concerns related to the further development of the filter are identified. These issues are discussed in a Topical Report which has been issued as part of Task 2. Nineteen issues are identified in this report. Along with a discussion of these issues are the planned approaches for resolving each of these issues. These issues will be resolved in either a cold flow component test facility or in pilot scale testing at DOE`s Power System Development Facility (PSDF) located at Southem Company Services` Wilsonville facility. Task 3 presents a test plan for resolving those issues which can be addressed in component test facilities. The issues identified in Task 2 which will be addressed in the component test facilities are: GBF scale-up; effect of filter cone angle and sidewall materials on medium flow and ash segregation; maximum gas filtration rate; lift pipe wear; GBF media issues; mechanical design of the gas inlet duct; and filter pressure drop. This document describes a test program to address these issues, with testing to be performed at Combustion Power Company`s facility in Belmont, California.

Haas, J.C.; Purdhomme, J.W.; Wilson, K.B.

1994-04-01T23:59:59.000Z

203

The Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

In 2007, the Advanced Test Reactor (ATR), located at Idaho National Laboratory (INL), was designated by the Department of Energy (DOE) as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by approved researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide those researchers with the best ideas access to the most advanced test capability, regardless of the proposer’s physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, obtained access to additional PIE equipment, taken steps to enable the most advanced post-irradiation analysis possible, and initiated an educational program and digital learning library to help potential users better understand the critical issues in reactor technology and how a test reactor facility could be used to address this critical research. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program invited universities to nominate their capability to become part of a broader user facility. Any university is eligible to self-nominate. Any nomination is then peer reviewed to ensure that the addition of the university facilities adds useful capability to the NSUF. Once added to the NSUF team, the university capability is then integral to the NSUF operations and is available to all users via the proposal process. So far, six universities have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these university capabilities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user’s technical needs. The current NSUF partners are shown in Figure 1. This article describes the ATR as well as the expanded capabilities, partnerships, and services that allow researchers to take full advantage of this national resource.

Todd R. Allen; Collin J. Knight; Jeff B. Benson; Frances M. Marshall; Mitchell K. Meyer; Mary Catherine Thelen

2011-08-01T23:59:59.000Z

204

Test program element II blanket and shield thermal-hydraulic and thermomechanical testing, experimental facility survey  

SciTech Connect (OSTI)

This report presents results of a survey conducted by EG and G Idaho to determine facilities available to conduct thermal-hydraulic and thermomechanical testing for the Department of Energy Office of Fusion Energy First Wall/Blanket/Shield Engineering Test Program. In response to EG and G queries, twelve organizations (in addition to EG and G and General Atomic) expressed interest in providing experimental facilities. A variety of methods of supplying heat is available.

Ware, A.G.; Longhurst, G.R.

1981-12-01T23:59:59.000Z

205

Cryosorption Pumps for a Neutral Beam Injector Test Facility  

SciTech Connect (OSTI)

We present the experiences of the manufacturing and the operating of a system of two identical cryosorption pumps used in a neutral beam injector test facility for fusion reactors. Calculated and measured heat loads of the cryogenic liquid helium and liquid nitrogen circuits of the cryosorption pumps are discussed. The design calculations concerning the thermo-hydraulics of the helium circuit are compared with experiences from the operation of the cryosorption pumps. Both cryopumps are integrated in a test facility of a neutral beam injector that will be used to heat the plasma of a nuclear fusion reactor with a beam of deuterium or hydrogen molecules. The huge gas throughput into the vessel of the test facility results in challenging needs on the cryopumping system.The developed cryosorption pumps are foreseen to pump a hydrogen throughput of 20 - 30 mbar{center_dot}l/s. To establish a mean pressure of several 10-5 mbar in the test vessel a pumping speed of about 350 m3/s per pump is needed. The pressure conditions must be maintained over several hours pumping without regeneration of the cryopanels, which necessitates a very high pumping capacity. A possibility to fulfill these requirements is the use of charcoal coated cryopanels to pump the gasloads by adsorption. For the cooling of the cryopanels, liquid helium at saturation pressure is used and therefore a two-phase forced flow in the cryopump system must be controlled.

Dremel, M.; Mack, A.; Day, C.; Jensen, H. [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, 76021 Karlsruhe (Germany)

2006-04-27T23:59:59.000Z

206

AGS SUPER NEUTRINO BEAM FACILITY ACCELERATOR AND TARGET SYSTEM DESIGN (NEUTRINO WORKING GROUP REPORT-II).  

SciTech Connect (OSTI)

This document describes the design of the accelerator and target systems for the AGS Super Neutrino Beam Facility. Under the direction of the Associate Laboratory Director Tom Kirk, BNL has established a Neutrino Working Group to explore the scientific case and facility requirements for a very long baseline neutrino experiment. Results of a study of the physics merit and detector performance was published in BNL-69395 in October 2002, where it was shown that a wide-band neutrino beam generated by a 1 MW proton beam from the AGS, coupled with a half megaton water Cerenkov detector located deep underground in the former Homestake mine in South Dakota would be able to measure the complete set of neutrino oscillation parameters: (1) precise determination of the oscillation parameters {Delta}m{sub 32}{sup 2} and sin{sup 2} 2{theta}{sub 32}; (2) detection of the oscillation of {nu}{sub {mu}}-{nu}{sub e} and measurement of sin{sup 2} 2{theta}{sub 13}; (3) measurement of {Delta}m{sub 21}{sup 2} sin 2{theta}{sub 12} in a {nu}{sub {mu}} {yields} {nu}{sub e} appearance mode, independent of the value of {theta}{sub 13}; (4) verification of matter enhancement and the sign of {Delta}m{sub 32}{sup 2}; and (5) determination of the CP-violation parameter {delta}{sub CP} in the neutrino sector. This report details the performance requirements and conceptual design of the accelerator and the target systems for the production of a neutrino beam by a 1.0 MW proton beam from the AGS. The major components of this facility include a new 1.2 GeV superconducting linac, ramping the AGS at 2.5 Hz, and the new target station for 1.0 MW beam. It also calls for moderate increase, about 30%, of the AGS intensity per pulse. Special care is taken to account for all sources of proton beam loss plus shielding and collimation of stray beam halo particles to ensure equipment reliability and personal safety. A preliminary cost estimate and schedule for the accelerator upgrade and target system are also included.

DIWAN,M.; MARCIANO,W.; WENG,W.; RAPARIA,D.

2003-04-21T23:59:59.000Z

207

Final safety analysis report for the Ground Test Accelerator (GTA), Phase 2  

SciTech Connect (OSTI)

This document is the second volume of a 3 volume safety analysis report on the Ground Test Accelerator (GTA). The GTA program at the Los Alamos National Laboratory (LANL) is the major element of the national Neutral Particle Beam (NPB) program, which is supported by the Strategic Defense Initiative Office (SDIO). A principal goal of the national NPB program is to assess the feasibility of using hydrogen and deuterium neutral particle beams outside the Earth`s atmosphere. The main effort of the NPB program at Los Alamos concentrates on developing the GTA. The GTA is classified as a low-hazard facility, except for the cryogenic-cooling system, which is classified as a moderate-hazard facility. This volume consists of failure modes and effects analysis; accident analysis; operational safety requirements; quality assurance program; ES&H management program; environmental, safety, and health systems critical to safety; summary of waste-management program; environmental monitoring program; facility expansion, decontamination, and decommissioning; summary of emergency response plan; summary plan for employee training; summary plan for operating procedures; glossary; and appendices A and B.

NONE

1994-10-01T23:59:59.000Z

208

A high resolution cavity BPM for the CLIC Test Facility  

E-Print Network [OSTI]

In frame of the development of a high resolution BPM system for the CLIC Main Linac we present the design of a cavity BPM prototype. It consists of a waveguide loaded dipole mode resonator and a monopole mode reference cavity, both operating at 15 GHz, to be compatible with the bunch frequencies at the CLIC Test Facility. Requirements, design concept, numerical analysis, and practical considerations are discussed.

Chritin, N; Soby, L; Lunin, A; Solyak, N; Wendt, M; Yakovlev, V

2012-01-01T23:59:59.000Z

209

Step-Stress Accelerated Degradation Testing (SSADT) for Photovoltaic (PV) Devices and Cells (Presentation)  

SciTech Connect (OSTI)

Presentation on step-stress accelerated degradation testing (SSADT) for photovoltaics (PV). Developed are a step-stress degradation test (SSADT) for PV reliability tests and a lifetime prediction model for PV products.

Lee, J.; Elmore, R.; Suh, C.; Jones, W.

2010-10-01T23:59:59.000Z

210

A nuclear physics program at the Rare Isotope Beams Accelerator Facility in Korea  

SciTech Connect (OSTI)

This paper outlines the new physics possibilities that fall within the field of nuclear structure and astrophysics based on experiments with radioactive ion beams at the future Rare Isotope Beams Accelerator facility in Korea. This ambitious multi-beam facility has both an Isotope Separation On Line (ISOL) and fragmentation capability to produce rare isotopes beams (RIBs) and will be capable of producing and accelerating beams of wide range mass of nuclides with energies of a few to hundreds MeV per nucleon. The large dynamic range of reaccelerated RIBs will allow the optimization in each nuclear reaction case with respect to cross section and channel opening. The low energy RIBs around Coulomb barrier offer nuclear reactions such as elastic resonance scatterings, one or two particle transfers, Coulomb multiple-excitations, fusion-evaporations, and direct capture reactions for the study of the very neutron-rich and proton-rich nuclides. In contrast, the high energy RIBs produced by in-flight fragmentation with reaccelerated ions from the ISOL enable to explore the study of neutron drip lines in intermediate mass regions. The proposed studies aim at investigating the exotic nuclei near and beyond the nucleon drip lines, and to explore how nuclear many-body systems change in such extreme regions by addressing the following topics: the evolution of shell structure in areas of extreme proton to neutron imbalance; the study of the weak interaction in exotic decay schemes such as beta-delayed two-neutron or two-proton emission; the change of isospin symmetry in isobaric mirror nuclei at the drip lines; two protons or two neutrons radioactivity beyond the drip lines; the role of the continuum states including resonant states above the particle-decay threshold in exotic nuclei; and the effects of nuclear reaction rates triggered by the unbound proton-rich nuclei on nuclear astrophysical processes.

Moon, Chang-Bum, E-mail: cbmoon@hoseo.edu [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)] [Hoseo University, Asan, Chung-Nam 336-795 (Korea, Republic of)

2014-04-15T23:59:59.000Z

211

Design and operation of an outdoor microalgae test facility  

SciTech Connect (OSTI)

The objective of the project covered in this report is to establish and operate a facility in the American Southwest to test the concept of producing microalgae on a large scale. This microalgae would then be used as a feedstock for producing liquid fuels. The site chosen for this project was an existing water research station in Roswell, New Mexico; the climate and water resources are representative of those in the Southwest. For this project, researchers tested specific designs, modes of operation, and strains of microalgae; proposed and evaluated modifications to technological concepts; and assessed the progress toward meeting cost objectives.

Weissman, J.C.; Tillett, D.M.; Goebel, R.P. (Microbial Products, Inc., Vacaville, CA (USA))

1989-10-01T23:59:59.000Z

212

Degradation mechanisms and accelerated testing in PEM fuel cells  

SciTech Connect (OSTI)

The durability of PEM fuel cells is a major barrier to the commercialization of these systems for stationary and transportation power applications. Although there has been recent progress in improving durability, further improvements are needed to meet the commercialization targets. Past improvements have largely been made possible because of the fundamental understanding of the underlying degradation mechanisms. By investigating component and cell degradation modes; defining the fundamental degradation mechanisms of components and component interactions new materials can be designed to improve durability. Various factors have been shown to affect the useful life of PEM fuel cells. Other issues arise from component optimization. Operational conditions (such as impurities in either the fuel and oxidant stream), cell environment, temperature (including subfreezing exposure), pressure, current, voltage, etc.; or transient versus continuous operation, including start-up and shutdown procedures, represent other factors that can affect cell performance and durability. The need for Accelerated Stress Tests (ASTs) can be quickly understood given the target lives for fuel cell systems: 5000 hours ({approx} 7 months) for automotive, and 40,000 hrs ({approx} 4.6 years) for stationary systems. Thus testing methods that enable more rapid screening of individual components to determine their durability characteristics, such as off-line environmental testing, are needed for evaluating new component durability in a reasonable turn-around time. This allows proposed improvements in a component to be evaluated rapidly and independently, subsequently allowing rapid advancement in PEM fuel cell durability. These tests are also crucial to developers in order to make sure that they do not sacrifice durability while making improvements in costs (e.g. lower platinum group metal [PGM] loading) and performance (e.g. thinner membrane or a GDL with better water management properties). To achieve a deeper understanding and improve PEM fuel cell durability LANL is conducting research to better define fuel cell component degradation mechanisms and correlate AST measurements to component in 'real-world' situations.

Borup, Rodney L [Los Alamos National Laboratory; Mukundan, Rangachary [Los Alamos National Laboratory

2010-01-01T23:59:59.000Z

213

The proton injector for the accelerator facility of antiproton and ion research (FAIR)  

SciTech Connect (OSTI)

The new international accelerator facility for antiproton and ion research (FAIR) at GSI in Darmstadt, Germany, is one of the largest research projects worldwide and will provide an antiproton production rate of 7 × 10{sup 10} cooled pbars per hour. This is equivalent to a primary proton beam current of 2 × 10{sup 16} protons per hour. For this request a high intensity proton linac (p-linac) will be built with an operating rf-frequency of 325 MHz to accelerate a 35 mA proton beam at 70 MeV, using conducting crossed-bar H-cavities. The repetition rate is 4 Hz with beam pulse length of 36 ?s. The microwave ion source and low energy beam transport developed within a joint French-German collaboration GSI/CEA-SACLAY will serve as an injector of the compact proton linac. The 2.45 GHz ion source allows high brightness ion beams at an energy of 95 keV and will deliver a proton beam current of 100 mA at the entrance of the radio frequency quadrupole (RFQ) within an acceptance of 0.3? mm?mrad (norm., rms)

Ullmann, C., E-mail: c.ullmann@gsi.de; Kester, O. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany) [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Institut für Angewandte Physik, Goethe-Universität Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main (Germany); Berezov, R.; Fils, J.; Hollinger, R.; Vinzenz, W. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany)] [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Planckstr. 1, 64291 Darmstadt (Germany); Chauvin, N.; Delferriere, O. [Commissariat ŕ l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)] [Commissariat ŕ l’Energie Atomique et aux Energies Alternatives, IRFU, F-91191-Gif-sur-Yvette (France)

2014-02-15T23:59:59.000Z

214

Tested by Fire - How two recent Wildfires affected Accelerator Operations at LANL  

SciTech Connect (OSTI)

In a little more than a decade two large wild fires threatened Los Alamos and impacted accelerator operations at LANL. In 2000 the Cerro Grande Fire destroyed hundreds of homes, as well as structures and equipment at the DARHT facility. The DARHT accelerators were safe in a fire-proof building. In 2011 the Las Conchas Fire burned about 630 square kilometers (250 square miles) and came dangerously close to Los Alamos/LANL. LANSCE accelerator operations Lessons Learned during Las Conchas fire: (1) Develop a plan to efficiently shut down the accelerator on short notice; (2) Establish clear lines of communication in emergency situations; and (3) Plan recovery and keep squirrels out.

Spickermann, Thomas [Los Alamos National Laboratory

2012-08-01T23:59:59.000Z

215

Integrated Disposal Facility FY2011 Glass Testing Summary Report  

SciTech Connect (OSTI)

Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), planned for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.

Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.; Windisch, Charles F.; Cantrell, Kirk J.; Valenta, Michelle M.; Burton, Sarah D.; Westsik, Joseph H.

2011-09-29T23:59:59.000Z

216

Development of an underwater spin facility for combined environment testing  

SciTech Connect (OSTI)

In response to a request from the US Government, Sandia National Laboratories has developed an instrumentation system to monitor the conditions along an underwater, rotating drive shaft. It was desired to study the structural integrity and signal acquisition capabilities of the Shaft Instrumentation System (SIS) in an environment which closely simulates the actual deployment conditions. In this manner, the SIS response to ill-defined conditions, such as flow field turbulence or temperature fluctuations, could be determined. An Underwater Spin Facility was developed in order to verify the operation of the instrumentation and telemetric data acquisition system in a combined environment of external pressure, transient axial loads and centrifugal force. The main components of the Underwater Spin Facility are a large, five foot diameter pressure vessel, a dynamically sealed shaft, a drive train assembly and a shaker table interface which is used to apply the axial loads. This paper presents a detailed description of the design of the Underwater Spin Facility. It also discusses the SIS certification test program in order to demonstrate the successful performance of the Underwater Spin Facility. 8 refs., 10 figs.

Roach, D.P.; Nusser, M.A.

1991-01-01T23:59:59.000Z

217

E-Print Network 3.0 - accelerated pavement testing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Accelerated LoadTesting... , on geosynthetics benefits and ... Source: Louisiana Forest Products Development Center Collection: Renewable Energy 2 SOURCE: UNIVERSITY OF...

218

Accelerated test methods for evaluating alkali-silica reactivity of recycled concrete aggregates.  

E-Print Network [OSTI]

??This thesis reports the findings of a study carried out to determine the effectiveness of Accelerated Tests in evaluating the Alkali-Silica Reactivity of Recycled Concrete… (more)

Johnson, Robert C (Author)

2011-01-01T23:59:59.000Z

219

Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site  

SciTech Connect (OSTI)

The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

Patton, S.E.; Novo, M.G.; Shinn, J.H.

1986-04-01T23:59:59.000Z

220

YALINA facility a sub-critical Accelerator- Driven System (ADS) for nuclear energy research facility description and an overview of the research program (1997-2008).  

SciTech Connect (OSTI)

The YALINA facility is a zero-power, sub-critical assembly driven by a conventional neutron generator. It was conceived, constructed, and put into operation at the Radiation Physics and Chemistry Problems Institute of the National Academy of Sciences of Belarus located in Minsk-Sosny, Belarus. This facility was conceived for the purpose of investigating the static and dynamic neutronics properties of accelerator driven sub-critical systems, and to serve as a neutron source for investigating the properties of nuclear reactions, in particular transmutation reactions involving minor-actinide nuclei. This report provides a detailed description of this facility and documents the progress of research carried out there during a period of approximately a decade since the facility was conceived and built until the end of 2008. During its history of development and operation to date (1997-2008), the YALINA facility has hosted several foreign groups that worked with the resident staff as collaborators. The participation of Argonne National Laboratory in the YALINA research programs commenced in 2005. For obvious reasons, special emphasis is placed in this report on the work at YALINA facility that has involved Argonne's participation. Attention is given here to the experimental program at YALINA facility as well as to analytical investigations aimed at validating codes and computational procedures and at providing a better understanding of the physics and operational behavior of the YALINA facility in particular, and ADS systems in general, during the period 1997-2008.

Gohar, Y.; Smith, D. L.; Nuclear Engineering Division

2010-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Modification of Central Solenoid Model Coil Test Facility for Rapid Testing of CICC  

SciTech Connect (OSTI)

This document describes preliminary design modifications to the CSMC Test Facility in JAEA, Naka, Japan that will allow rapid test and change-out of CS conductor samples while simultaneously achieving more precise and reliable characterization of those samples than is presently achievable elsewhere. The current philosophy for CS conductor testing is to test an Insert in CSMC followed by SULTAN testing. The SULTAN facility has very short length in field and a short length between the High Field Zone and the joints. This makes it difficult to obtain uniform distribution of current in the cable at low voltage levels, which defines the current sharing temperature. In a real magnet, like ITER CS, there is a long length of conductor in the highest field. Such conditions provide a more uniform current distribution near current sharing. The modified facility will serve as an economical tool for ITER conductor testing. The test item will be a three turn sample, approximately 15 m long, placed in the background field of the CSMC. This new mode of operation will reduce the time of cool-down, warm-up and installation of the sample into the CSMC facility, which should significantly reduce the cost of a test per sample.

Hatfield, Daniel R [ORNL] [ORNL; Miller, John L [ORNL] [ORNL; Martovetsky, Nicolai N [ORNL] [ORNL; Kenney, Steven J [ORNL] [ORNL

2010-01-01T23:59:59.000Z

222

Pyroprocessing of Fast Flux Test Facility Nuclear Fuel  

SciTech Connect (OSTI)

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electrorefined uranium products exceeded 99%.

B.R. Westphal; G.L. Fredrickson; G.G. Galbreth; D. Vaden; M.D. Elliott; J.C. Price; E.M. Honeyfield; M.N. Patterson; L. A. Wurth

2013-10-01T23:59:59.000Z

223

Pyroprocessing of fast flux test facility nuclear fuel  

SciTech Connect (OSTI)

Used nuclear fuel from the Fast Flux Test Facility (FFTF) was recently transferred to the Idaho National Laboratory and processed by pyroprocessing in the Fuel Conditioning Facility. Approximately 213 kg of uranium from sodium-bonded metallic FFTF fuel was processed over a one year period with the equipment previously used for the processing of EBR-II used fuel. The peak burnup of the FFTF fuel ranged from 10 to 15 atom% for the 900+ chopped elements processed. Fifteen low-enriched uranium ingots were cast following the electrorefining and distillation operations to recover approximately 192 kg of uranium. A material balance on the primary fuel constituents, uranium and zirconium, during the FFTF campaign will be presented along with a brief description of operating parameters. Recoverable uranium during the pyroprocessing of FFTF nuclear fuel was greater than 95% while the purity of the final electro-refined uranium products exceeded 99%. (authors)

Westphal, B.R.; Wurth, L.A.; Fredrickson, G.L.; Galbreth, G.G.; Vaden, D.; Elliott, M.D.; Price, J.C.; Honeyfield, E.M.; Patterson, M.N. [Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID, 83415 (United States)

2013-07-01T23:59:59.000Z

224

The Fast Flux Test Facility built on safety  

SciTech Connect (OSTI)

No other high-tech industry has grown as fast as the nuclear industry. The information available to the general public has not kept pace with the rapid growth of nuclear data---its growth has outpaced its media image and the safety of nuclear facilities has become a highly debated issue. This book is an attempt to bridge the gap between the high-tech information of the nuclear industry and its understanding by the general public. It explains the three levels of defense at the Fast Flux Test Facility (FFTF) and why these levels provide an acceptable margin to protect the general public and on-site personnel, while achieving FFTF's mission to provide research and development for the US Department of Energy (DOE).

Not Available

1989-01-01T23:59:59.000Z

225

Final Turbine and Test Facility Design Report Alden/NREC Fish...  

Broader source: Energy.gov (indexed) [DOE]

Final Turbine and Test Facility Design Report AldenNREC Fish Friendly Turbine Final Turbine and Test Facility Design Report AldenNREC Fish Friendly Turbine The final report...

226

Framework for a Comparative Accelerated Testing Standard for PV Modules: Preprint  

SciTech Connect (OSTI)

As the photovoltaic industry has grown, the interest in comparative accelerated testing has also grown. Private test labs offer testing services that apply greater stress than the standard qualification tests as tools for differentiating products and for gaining increased confidence in long-term PV investments. While the value of a single international standard for comparative accelerated testing is widely acknowledged, the development of a consensus is difficult. This paper strives to identify a technical basis for a comparative standard.

Kurtz, S.; Wohlgemuth, J.; Yamamichi, M.; Sample, T.; Miller, D.; Meakin, D.; Monokroussos, C.; TamizhMani, M.; Kempe, M.; Jordan, D.; Bosco, N.; Hacke, P.; Bermudez, V.; Kondo, M.

2013-08-01T23:59:59.000Z

227

E-Print Network 3.0 - accelerator-based bnct facility Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

for Beam Physics Research at The University of Chicago Summary: Accelerator (RIA) project for a state-of -the-art ion accelerator based of super- conducting rf...

228

Reversing Flow Test Facility. Technical report, March 1986  

SciTech Connect (OSTI)

The Reversing Flow Test Facility (RFTF) is intended for the study of fluid flow and heat transfer under the reversing-flow conditions that occur in Stirling engines. the facility consists of four major parts: (1) Mechanical Drive - two cylinders with cam-driven pistons which generate the reversing gas flow, (2) Test Section - a U-shaped section containing instrumented test pieces, (3) Instruments -l high-speed transducers for measuring gas pressure and temperature, piston positions, and other system parameters, and (4) Data Acquisition System - a computer-based system able to acquire, store, display and analyze the data from the instruments. The RFTF can operate at pressures up to 8.0 MPa, hot-side temperatures to 800/sup 0/C, and flow-reversal frequencies to 50 Hz. Operation to data has used helium as the working gas at pressures of 3.0 and 6.0 MPa, at ambient temperature, and at frequencies from 1 to 50 Hz. The results show that both frictional and inertial parts of the pressure drop are significant in the heater, coolers and connecting tubes; the inertial part is negligible in the regenerators. In all cases, the frictional part of the pressure drop is nearly in phase with the mass flow. 18 refs., 22 figs., 13 tabs.

Roach, P.D.

1986-04-01T23:59:59.000Z

229

Fast Flux Test Facility final safety analysis report. Amendment 73  

SciTech Connect (OSTI)

This report provides Final Safety Analysis Report (FSAR) Amendment 73 for incorporation into the Fast Flux Test Facility (FFTR) FSAR set. This page change incorporates Engineering Change Notices (ECNs) issued subsequent to Amendment 72 and approved for incorparoration before May 6, 1993. These changes include: Chapter 3, design criteria structures, equipment, and systems; chapter 5B, reactor coolant system; chapter 7, instrumentation and control systems; chapter 9, auxiliary systems; chapter 11, reactor refueling system; chapter 12, radiation protection and waste management; chapter 13, conduct of operations; chapter 17, technical specifications; chapter 20, FFTF criticality specifications; appendix C, local fuel failure events; and appendix Fl, operation at 680{degrees}F inlet temperature.

Gantt, D.A.

1993-08-01T23:59:59.000Z

230

2014 WIND POWER PROGRAM PEER REVIEW-TEST FACILITIES  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-Up from theDepartment(October-December 2013 issueTest Facilities March 24-27, 2014 Wind

231

Target design optimization for an electron accelerator driven subcritical facility with circular and square beam profiles.  

SciTech Connect (OSTI)

A subcritical facility driven by an electron accelerator is planned at the Kharkov Institute of Physics and Technology (KIPT) in Ukraine for medical isotope production, materials research, training, and education. The conceptual design of the facility is being pursued through collaborations between ANL and KIPT. As part of the design effort, the high-fidelity analyses of various target options are performed with formulations to reflect the realistic configuration and the three dimensional geometry of each design. This report summarizes the results of target design optimization studies for electron beams with two different beam profiles. The target design optimization is performed via the sequential neutronic, thermal-hydraulic, and structural analyses for a comprehensive assessment of each configuration. First, a target CAD model is developed with proper emphasis on manufacturability to provide a basis for separate but consistent models for subsequent neutronic, thermal-hydraulic, and structural analyses. The optimizations are pursued for maximizing the neutron yield, streamlining the flow field to avoid hotspots, and minimizing the thermal stresses to increase the durability. In addition to general geometric modifications, the inlet/outlet channel configurations, target plate partitioning schemes, flow manipulations and rates, electron beam diameter/width options, and cladding material choices are included in the design optimizations. The electron beam interactions with the target assembly and the neutronic response of the subcritical facility are evaluated using the MCNPX code. the results for the electron beam energy deposition, neutron generation, and utilization in the subcritical pile are then used to characterize the axisymmetric heat generation profiles in the target assembly with explicit simulations of the beam tube, the coolant, the clad, and the target materials. Both tungsten and uranium are considered as target materials. Neutron spectra from tungsten and uranium are very similar allowing the use of either material in the subcritical assembly without changing its characteristics. However, the uranium target has a higher neutron yield, which increases the neutron flux of the subcritical assembly. Based on the considered dimensions and heat generation profiles, the commercial CFD software Star-CD is used for the thermal-hydraulic analysis of each target design to satisfy a set of thermal criteria, the most limiting of which being to maintain the water temperature 50 below the boiling point. It is found that the turbulence in the inlet channels dissipates quickly in narrow gaps between the target plates and, as a result, the heat transfer is limited by the laminar flow conditions. On average, 3-D CFD analyses of target assemblies agree well with 1-D calculations using RELAP (performed by KIPT). However, the recirculation and stagnation zones predicted with the CFD models prove the importance of a 3-D analysis to avoid the resulting hotspots. The calculated temperatures are subsequently used for the structural analysis of each target configuration to satisfy the other engineering design requirements. The thermo-structural calculations are performed mostly with NASTRAN and the results occasionally compared with the results from MARC. Both, NASTRAN and MARC are commercially available structural-mechanics analysis software. Although, a significant thermal gradient forms in target elements along the beam direction, the high thermal stresses are generally observed peripherally around the edge of thin target disks/plates. Due to its high thermal conductivity, temperatures and thermal stresses in tungsten target are estimated to be significantly lower than in uranium target. The deformations of the target disks/plates are found to be insignificant, which eliminate concerns for flow blockages in narrow coolant channels. Consistent with the specifications of the KIPT accelerator to be used in this facility, the electron beam power is 100-kW with electron energy in the range of 100 to 200 MeV. As expected, the 100 MeV el

Gohar, M. Y. A; Sofu, T.; Zhong, Z.; Belch, H.; Naberezhnev, D.; Nuclear Engineering Division

2008-10-30T23:59:59.000Z

232

Testing of a loop heat pipe experimental apparatus under varied acceleration  

E-Print Network [OSTI]

An experimental apparatus was designed and fabricated to test a Loop Heat Pipe under varied acceleration. The experiment consisted of both flight and ground testing as well as comparisons to a model developed from models found in literature...

Kurwitz, Richard Cable

1997-01-01T23:59:59.000Z

233

Adapting to Limitations of a Wind Tunnel Test Facility in the Aerodynamic Testing of a new UAV  

E-Print Network [OSTI]

Adapting to Limitations of a Wind Tunnel Test Facility in the Aerodynamic Testing of a new UAV Dr K section for aerodynamic tests of aircraft models and aerodynamic devices. Improvements over the years have aerodynamic testing facility, albeit with much reduced capability. This paper reports on initial progress

Wong, K. C.

234

PEROXIDE DESTRUCTION TESTING FOR THE 200 AREA EFFLUENT TREATMENT FACILITY  

SciTech Connect (OSTI)

The hydrogen peroxide decomposer columns at the 200 Area Effluent Treatment Facility (ETF) have been taken out of service due to ongoing problems with particulate fines and poor destruction performance from the granular activated carbon (GAC) used in the columns. An alternative search was initiated and led to bench scale testing and then pilot scale testing. Based on the bench scale testing three manganese dioxide based catalysts were evaluated in the peroxide destruction pilot column installed at the 300 Area Treated Effluent Disposal Facility. The ten inch diameter, nine foot tall, clear polyvinyl chloride (PVC) column allowed for the same six foot catalyst bed depth as is in the existing ETF system. The flow rate to the column was controlled to evaluate the performance at the same superficial velocity (gpm/ft{sup 2}) as the full scale design flow and normal process flow. Each catalyst was evaluated on peroxide destruction performance and particulate fines capacity and carryover. Peroxide destruction was measured by hydrogen peroxide concentration analysis of samples taken before and after the column. The presence of fines in the column headspace and the discharge from carryover was generally assessed by visual observation. All three catalysts met the peroxide destruction criteria by achieving hydrogen peroxide discharge concentrations of less than 0.5 mg/L at the design flow with inlet peroxide concentrations greater than 100 mg/L. The Sud-Chemie T-2525 catalyst was markedly better in the minimization of fines and particle carryover. It is anticipated the T-2525 can be installed as a direct replacement for the GAC in the peroxide decomposer columns. Based on the results of the peroxide method development work the recommendation is to purchase the T-2525 catalyst and initially load one of the ETF decomposer columns for full scale testing.

HALGREN DL

2010-03-12T23:59:59.000Z

235

Power Systems Development Facility Gasification Test Run TC11  

SciTech Connect (OSTI)

This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

Southern Company Services

2003-04-30T23:59:59.000Z

236

Advanced Test Reactor National Scientific User Facility Progress  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL) is one of the world’s premier test reactors for studying the effects of intense neutron radiation on reactor materials and fuels. The ATR began operation in 1967, and has operated continuously since then, averaging approximately 250 operating days per year. The combination of high flux, large test volumes, and multiple experiment configuration options provide unique testing opportunities for nuclear fuels and material researchers. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected highly-enriched uranium fueled, reactor with a maximum operating power of 250 MWth. The ATR peak thermal flux can reach 1.0 x1015 n/cm2-sec, and the core configuration creates five main reactor power lobes (regions) that can be operated at different powers during the same operating cycle. In addition to these nine flux traps there are 68 irradiation positions in the reactor core reflector tank. The test positions range from 0.5” to 5.0” in diameter and are all 48” in length, the active length of the fuel. The INL also has several hot cells and other laboratories in which irradiated material can be examined to study material radiation effects. In 2007 the US Department of Energy (DOE) designated the ATR as a National Scientific User Facility (NSUF) to facilitate greater access to the ATR and the associated INL laboratories for material testing research by a broader user community. Goals of the ATR NSUF are to define the cutting edge of nuclear technology research in high temperature and radiation environments, contribute to improved industry performance of current and future light water reactors, and stimulate cooperative research between user groups conducting basic and applied research. The ATR NSUF has developed partnerships with other universities and national laboratories to enable ATR NSUF researchers to perform research at these other facilities, when the research objectives cannot be met using the INL facilities. The ATR NSUF program includes a robust education program enabling students to participate in their research at INL and the partner facilities, attend the ATR NSUF annual User Week, and compete for prizes at sponsored conferences. Development of additional research capabilities is also a key component of the ATR NSUF Program; researchers are encouraged to propose research projects leading to these enhanced capabilities. Some ATR irradiation experiment projects irradiate more specimens than are tested, resulting in irradiated materials available for post irradiation examination by other researchers. These “extra” specimens comprise the ATR NSUF Sample Library. This presentation will highlight the ATR NSUF Sample Library and the process open to researchers who want to access these materials and how to propose research projects using them. This presentation will provide the current status of all the ATR NSUF Program elements. Many of these were not envisioned in 2007, when DOE established the ATR NSUF.

Frances M. Marshall; Todd R. Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen

2012-10-01T23:59:59.000Z

237

Feasibility study of channeling acceleration experiment at the Fermilab ASTA facility  

E-Print Network [OSTI]

Crystal channeling technology has offered various opportunities in accelerator community with a viability of ultrahigh gradient (TV/m) acceleration for future HEP collider in Energy Frontier. The major challenge of the channeling acceleration is that ultimate acceleration gradients might require high power driver at hard x-ray regime (~ 40 keV), exceeding those conceivable for x-rays as of today, though x-ray lasers can efficiently excite solid plasma and accelerate particles inside a crystal channel. Moreover, only disposable crystal accelerators are possible at such high externally excited fields which would exceed the ionization thresholds destroying the atomic structure, so acceleration will take place only in a short time before full dissociation of the lattice. Carbon- based nanostructures have great potential with a wide range of flexibility and superior physical strength, which can be applied to channeling acceleration. This paper present beam-driven channeling acceleration concept with CNTs and discu...

Shin, Young-Min; Still, Dean A; Shiltsev, Vladimir

2015-01-01T23:59:59.000Z

238

Power Systems Development Facility Gasification Test Campaing TC18  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details Test Campaign TC18 of the PSDF gasification process. Test campaign TC18 began on June 23, 2005, and ended on August 22, 2005, with the gasifier train accumulating 1,342 hours of operation using Powder River Basin (PRB) subbituminous coal. Some of the testing conducted included commissioning of a new recycle syngas compressor for gasifier aeration, evaluation of PCD filter elements and failsafes, testing of gas cleanup technologies, and further evaluation of solids handling equipment. At the conclusion of TC18, the PSDF gasification process had been operated for more than 7,750 hours.

Southern Company Services

2005-08-31T23:59:59.000Z

239

Capture cavity cryomodule for quantum beam experiment at KEK superconducting RF test facility  

SciTech Connect (OSTI)

A capture cavity cryomodule was fabricated and used in a beam line for quantum beam experiments at the Superconducting RF Test Facility (STF) of the High Energy Accelerator Research Organization in Japan. The cryomodule is about 4 m long and contains two nine-cell cavities. The cross section is almost the same as that of the STF cryomodules that were fabricated to develop superconducting RF cavities for the International Linear Collider. An attempt was made to reduce the large deflection of the helium gas return pipe (GRP) that was observed in the STF cryomodules during cool-down and warm-up. This paper briefly describes the structure and cryogenic performance of the captures cavity cryomodule, and also reports the measured displacement of the GRP and the cavity-containing helium vessels during regular operation.

Tsuchiya, K.; Hara, K.; Hayano, H.; Kako, E.; Kojima, Y.; Kondo, Y.; Nakai, H.; Noguchi, S.; Ohuchi, N.; Terashima, A. [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Horikoshi, A.; Semba, T. [Hitachi, Ltd., Hitachi Works, Hitachi, Ibaraki 317-8511 (Japan)

2014-01-29T23:59:59.000Z

240

Knowledge Management at the Fast Flux Test Facility  

SciTech Connect (OSTI)

One of the goals of the Department of Energy’s Office of Nuclear Energy, initiated under the Fuel Cycle Research and Development Program (FCRD) and continued under the Advanced Reactor Concepts Program (ARC) is to preserve the knowledge that has been gained in the United States on Liquid Metal Reactors (LMRs) that could support the development of an environmentally and economically sound nuclear fuel cycle. The Fast Flux Test Facility (FFTF) is the most recent LMR to operate in the United States, from 1982 to 1992, and was designed as a fully instrumented test reactor with on-line, real time test control and performance monitoring of components and tests installed in the reactor. The 10 years of operation of the FFTF provided a very useful framework for testing the advances in LMR safety technology based on passive safety features that may be of increased importance to new designs after the events at Fukushima. Knowledge preservation at the FFTF is focused on the areas of design, construction, and startup of the reactor, as well as on preserving information obtained from 10 years of successful operating history and extensive irradiation testing of fuels and materials. In order to ensure protection of information at risk, the program to date has sequestered reports, files, tapes, and drawings to allow for secure retrieval. The FFTF knowledge management program includes a disciplined and orderly approach to respond to client’s requests for documents and data in order to minimize the search effort and ensure that future requests for this information can be readily accommodated.

Wootan, David W.; Omberg, Ronald P.

2013-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

FFTF (Fast Flux Test Facility) reactor shutdown system reliability reevaluation  

SciTech Connect (OSTI)

The reliability analysis of the Fast Flux Test Facility reactor shutdown system was reevaluated. Failure information based on five years of plant operating experience was used to verify original reliability numbers or to establish new ones. Also, system modifications made subsequent to performance of the original analysis were incorporated into the reevaluation. Reliability calculations and sensitivity analyses were performed using a commercially available spreadsheet on a personal computer. The spreadsheet was configured so that future failures could be tracked and compared with expected failures. A number of recommendations resulted from the reevaluation including both increased and decreased surveillance intervals. All recommendations were based on meeting or exceeding existing reliability goals. Considerable cost savings will be incurred upon implementation of the recommendations.

Pierce, B.F.

1986-07-01T23:59:59.000Z

242

Diagnostic development and support of MHD (magnetohydrodynamics) test facilities  

SciTech Connect (OSTI)

Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.

Not Available

1989-07-01T23:59:59.000Z

243

Power Systems Development Facility Gasification Test Campaing TC14  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device (PCD), advanced syngas cleanup systems, and high pressure solids handling systems. This report details test campaign TC14 of the PSDF gasification process. TC14 began on February 16, 2004, and lasted until February 28, 2004, accumulating 214 hours of operation using Powder River Basin (PRB) subbituminous coal. The gasifier operating temperatures varied from 1760 to 1810 F at pressures from 188 to 212 psig during steady air blown operations and approximately 160 psig during oxygen blown operations.

Southern Company Services

2004-02-28T23:59:59.000Z

244

Power Systems Development Facility Gasification Test Run TC09  

SciTech Connect (OSTI)

This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

Southern Company Services

2002-09-30T23:59:59.000Z

245

Power Systems Development Facility Gasification Test Campaign TC17  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results gasification operation with Illinois Basin bituminous coal in PSDF test campaign TC17. The test campaign was completed from October 25, 2004, to November 18, 2004. System startup and initial operation was accomplished with Powder River Basin (PRB) subbituminous coal, and then the system was transitioned to Illinois Basin coal operation. The major objective for this test was to evaluate the PSDF gasification process operational stability and performance using the Illinois Basin coal. The Transport Gasifier train was operated for 92 hours using PRB coal and for 221 hours using Illinois Basin coal.

Southern Company Services

2004-11-30T23:59:59.000Z

246

Design and operation of a counter-rotating aspirated compressor blowdown test facility  

E-Print Network [OSTI]

A unique counter-rotating aspirated compressor was tested in a blowdown facility at the Gas Turbine Laboratory at MIT. The facility expanded on experience from previous blowdown turbine and blowdown compressor experiments. ...

Parker, David V. (David Vickery)

2005-01-01T23:59:59.000Z

247

EIS-0017: Fusion Materials Irradiation Testing Facility, Hanford Reservation, Richland, Washington  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this statement to evaluate the environmental impacts associated with proposed construction and operation of an irradiation test facility, the Deuterium-Lithium High Flux Neutron Source Facility, at the Hanford Reservation.

248

Power Systems Development Facility Gasification Test Run TC07  

SciTech Connect (OSTI)

This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

Southern Company Services

2002-04-05T23:59:59.000Z

249

Power Systems Development Facility Gasification Test Campaign TC25  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC25, the second test campaign using a high moisture lignite coal from the Red Hills mine in Mississippi as the feedstock in the modified Transport Gasifier configuration. TC25 was conducted from July 4, 2008, through August 12, 2008. During TC25, the PSDF gasification process operated for 742 hours in air-blown gasification mode. Operation with the Mississippi lignite was significantly improved in TC25 compared to the previous test (TC22) with this fuel due to the addition of a fluid bed coal dryer. The new dryer was installed to dry coals with very high moisture contents for reliable coal feeding. The TC25 test campaign demonstrated steady operation with high carbon conversion and optimized performance of the coal handling and gasifier systems. Operation during TC25 provided the opportunity for further testing of instrumentation enhancements, hot gas filter materials, and advanced syngas cleanup technologies. The PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane with syngas from the Transport Gasifier.

Southern Company Services

2008-12-01T23:59:59.000Z

250

Design of a Gas Test Loop Facility for the Advanced Test Reactor  

SciTech Connect (OSTI)

The Office of Nuclear Energy within the U.S. Department of Energy (DOE-NE) has identified the need for irradiation testing of nuclear fuels and materials, primarily in support of the Generation IV (Gen-IV) and Advanced Fuel Cycle Initiative (AFCI) programs. These fuel development programs require a unique environment to test and qualify potential reactor fuel forms. This environment should combine a high fast neutron flux with a hard neutron spectrum and high irradiation temperature. An effort is presently underway at the Idaho National Laboratory (INL) to modify a large flux trap in the Advanced Test Reactor (ATR) to accommodate such a test facility [1,2]. The Gas Test Loop (GTL) Project Conceptual Design was initiated to determine basic feasibility of designing, constructing, and installing in a host irradiation facility, an experimental vehicle that can replicate with reasonable fidelity the fast-flux test environment needed for fuels and materials irradiation testing for advanced reactor concepts. Such a capability will be needed if programs such as the AFCI, Gen-IV, the Next Generation Nuclear Plant (NGNP), and space nuclear propulsion are to meet development objectives and schedules. These programs are beginning some irradiations now, but many call for fast flux testing within this decade.

C. A. Wemple

2005-09-01T23:59:59.000Z

251

Test Results From The Idaho National Laboratory 15kW High Temperature Electrolysis Test Facility  

SciTech Connect (OSTI)

A 15kW high temperature electrolysis test facility has been developed at the Idaho National Laboratory under the United States Department of Energy Nuclear Hydrogen Initiative. This facility is intended to study the technology readiness of using high temperature solid oxide cells for large scale nuclear powered hydrogen production. It is designed to address larger-scale issues such as thermal management (feed-stock heating, high temperature gas handling, heat recuperation), multiple-stack hot zone design, multiple-stack electrical configurations, etc. Heat recuperation and hydrogen recycle are incorporated into the design. The facility was operated for 1080 hours and successfully demonstrated the largest scale high temperature solid-oxide-based production of hydrogen to date.

Carl M. Stoots; Keith G. Condie; James E. O'Brien; J. Stephen Herring; Joseph J. Hartvigsen

2009-07-01T23:59:59.000Z

252

Power Systems Development Facility Gasification Test Campaign TC24  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC24, the first test campaign using a bituminous coal as the feedstock in the modified Transport Gasifier configuration. TC24 was conducted from February 16, 2008, through March 19, 2008. The PSDF gasification process operated for about 230 hours in air-blown gasification mode with about 225 tons of Utah bituminous coal feed. Operational challenges in gasifier operation were related to particle agglomeration, a large percentage of oversize coal particles, low overall gasifier solids collection efficiency, and refractory degradation in the gasifier solids collection unit. The carbon conversion and syngas heating values varied widely, with low values obtained during periods of low gasifier operating temperature. Despite the operating difficulties, several periods of steady state operation were achieved, which provided useful data for future testing. TC24 operation afforded the opportunity for testing of various types of technologies, including dry coal feeding with a developmental feeder, the Pressure Decoupled Advanced Coal (PDAC) feeder; evaluating a new hot gas filter element media configuration; and enhancing syngas cleanup with water-gas shift catalysts. During TC24, the PSDF site was also made available for testing of the National Energy Technology Laboratory's fuel cell module and Media Process Technology's hydrogen selective membrane.

Southern Company Services

2008-03-30T23:59:59.000Z

253

Critical Current Test Facilities for LHC Superconducting NbTi Cable Strands  

E-Print Network [OSTI]

The Rutherford-type superconducting Cu/NbTi cables of the LHC accelerator are currently mass-produced by a few industrial firms. As a part of the acceptance tests, the critical current of superconducting multifilamentary wires is systematically measured on virgin strands to qualify the wires and on extracted strands to qualify the cables. For this purpose, four test stations are in operation at CERN to measure the critical current of strands at both 4.2 K and 1.9 K in magnetic fields in the 6-11 T range. The measurement setup and procedures of these facilities are reported in this article. The quality of the critical current test is guaranteed by supervising the SPC (Statistical Process Control) charts of a reference sample. The measurement repeatability and reproducibility of the stations are found to be excellent. Moreover, the measured critical current of a strand is found to be almost independent of the test station in which the measurement is performed.

Boutboul, T; Denarié, C H; Oberli, L R; Richter, D

2001-01-01T23:59:59.000Z

254

Parametric Thermal Models of the Transient Reactor Test Facility (TREAT)  

SciTech Connect (OSTI)

This work supports the restart of transient testing in the United States using the Department of Energy’s Transient Reactor Test Facility at the Idaho National Laboratory. It also supports the Global Threat Reduction Initiative by reducing proliferation risk of high enriched uranium fuel. The work involves the creation of a nuclear fuel assembly model using the fuel performance code known as BISON. The model simulates the thermal behavior of a nuclear fuel assembly during steady state and transient operational modes. Additional models of the same geometry but differing material properties are created to perform parametric studies. The results show that fuel and cladding thermal conductivity have the greatest effect on fuel temperature under the steady state operational mode. Fuel density and fuel specific heat have the greatest effect for transient operational model. When considering a new fuel type it is recommended to use materials that decrease the specific heat of the fuel and the thermal conductivity of the fuel’s cladding in order to deal with higher density fuels that accompany the LEU conversion process. Data on the latest operating conditions of TREAT need to be attained in order to validate BISON’s results. BISON’s models for TREAT (material models, boundary convection models) are modest and need additional work to ensure accuracy and confidence in results.

Bradley K. Heath

2014-03-01T23:59:59.000Z

255

Power Systems Development Facility Gasification Test Campaign TC16  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR (formerly Kellogg Brown & Root) Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report discusses Test Campaign TC16 of the PSDF gasification process. TC16 began on July 14, 2004, lasting until August 24, 2004, for a total of 835 hours of gasification operation. The test campaign consisted of operation using Powder River Basin (PRB) subbituminous coal and high sodium lignite from the North Dakota Freedom mine. The highest gasifier operating temperature mostly varied from 1,760 to 1,850 F with PRB and 1,500 to 1,600 F with lignite. Typically, during PRB operations, the gasifier exit pressure was maintained between 215 and 225 psig using air as the gasification oxidant and between 145 and 190 psig while using oxygen as the oxidant. With lignite, the gasifier operated only in air-blown mode, and the gasifier outlet pressure ranged from 150 to 160 psig.

Southern Company Services

2004-08-24T23:59:59.000Z

256

Compact Accelerated Life Testing with Expanded Measurement Suite John Raguse, Russell Geisthardt, Jennifer Drayton, James R. Sites  

E-Print Network [OSTI]

Compact Accelerated Life Testing with Expanded Measurement Suite John Raguse, Russell Geisthardt -- An accelerated-life-testing (ALT) system has been built at the Colorado State University Photovoltaics Laboratory, electroluminescence, current measurement. I. INTRODUCTION A state-of-the-art accelerated-life-testing (ALT) system

Sites, James R.

257

Fast Flux Test Facility (FFTF) Briefing Book 1 Summary  

SciTech Connect (OSTI)

This report documents the results of evaluations preformed during 1997 to determine what, if an, future role the Fast Flux Test Facility (FFTF) might have in support of the Department of Energy’s tritium productions strategy. An evaluation was also conducted to assess the potential for the FFTF to produce medical isotopes. No safety, environmental, or technical issues associated with producing 1.5 kilograms of tritium per year in the FFTF have been identified that would change the previous evaluations by the Department of Energy, the JASON panel, or Putnam, Hayes & Bartlett. The FFTF can be refitted and restated by July 2002 for a total expenditure of $371 million, with an additional $64 million of startup expense necessary to incorporate the production of medical isotopes. Therapeutic and diagnostic applications of reactor-generated medical isotopes will increase dramatically over the next decade. Essential medical isotopes can be produced in the FFTF simultaneously with tritium production, and while a stand-alone medical isotope mission for the facility cannot be economically justified given current marker conditions, conservative estimates based on a report by Frost &Sullivan indicate that 60% of the annual operational costs (reactor and fuel supply) could be offset by revenues from medical isotope production within 10 yeas of restart. The recommendation of the report is for the Department of Energy to continue to maintain the FFTF in standby and proceed with preparation of appropriate Nations Environmental Policy Act documentation in full consultation with the public to consider the FFTF as an interim tritium production option (1.5 kilograms/year) with a secondary mission of producing medical isotopes.

WJ Apley

1997-12-01T23:59:59.000Z

258

Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to "major modifications" and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed.

Tomberlin, Terry Alan

2002-06-01T23:59:59.000Z

259

Advanced Test Reactor (ATR) Facility 10CFR830 Safety Basis Related to Facility Experiments  

SciTech Connect (OSTI)

The Idaho National Engineering and Environmental Laboratory (INEEL) Advanced Test Reactor (ATR), a DOE Category A reactor, was designed to provide an irradiation test environment for conducting a variety of experiments. The ATR Safety Analysis Report, determined by DOE to meet the requirements of 10 CFR 830, Subpart B, provides versatility in types of experiments that may be conducted. This paper addresses two general types of experiments in the ATR facility and how safety analyses for experiments are related to the ATR safety basis. One type of experiment is more routine and generally represents greater risks; therefore this type of experiment is addressed with more detail in the safety basis. This allows individual safety analyses for these experiments to be more routine and repetitive. The second type of experiment is less defined and is permitted under more general controls. Therefore, individual safety analyses for the second type of experiment tend to be more unique from experiment to experiment. Experiments are also discussed relative to ''major modifications'' and DOE-STD-1027-92. Application of the USQ process to ATR experiments is also discussed.

Tomberlin, T.A.

2002-06-19T23:59:59.000Z

260

Analysis of Transmitted Optical Spectrum Enabling Accelerated Testing of CPV Designs: Preprint  

SciTech Connect (OSTI)

Reliability of CPV systems' materials is not well known; methods for accelerated UV testing have not been developed. UV and IR spectra transmitted through representative optical systems are evaluated.

Miller, D. C.; Kempe, M. D.; Kennedy, C. E.; Kurtz, S. R.

2009-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

E-Print Network 3.0 - accelerated corrosion tests Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Powered by Explorit Topic List Advanced Search Sample search results for: accelerated corrosion tests Page: << < 1 2 3 4 5 > >> 1 ACI Materials JournalMay-June 2008 243 ACI...

262

E-Print Network 3.0 - accelerator target facilities Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The experiments were performed using... (University of Michigan) Multi-MeV ion beams accelerated using ... Source: Levine, Alex J. - Department of Chemistry and...

263

E-Print Network 3.0 - accelerator facility target Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

The experiments were performed using... (University of Michigan) Multi-MeV ion beams accelerated using ... Source: Levine, Alex J. - Department of Chemistry and...

264

Multivariate accelerated shelf-life testing: a novel approach for determining the shelf-life of foods  

E-Print Network [OSTI]

Multivariate accelerated shelf-life testing: a novel approach for determining the shelf-lives, accelerated studies have to be conducted and a third parameter has to be estimated: the acceleration factor approach for determining the shelf-life of industrialised food products, the Multivariate Accelerated Shelf

Ferreira, Márcia M. C.

265

Interface Control Document for the Interface between the Central Solenoid Insert Coil and the Test Facility  

SciTech Connect (OSTI)

This document provides the interface definition and interface control between the Central Solenoid Insert Coil and the Central Solenoid Model Coil Test Facility in Japan.

Smirnov, Alexandre [ORNL; Martovetsky, Nicolai N [ORNL; Nunoya, Yoshihiko [Japan Atomic Energy Agency (JAEA), Naka

2011-06-01T23:59:59.000Z

266

Voluntary Protection Program Onsite Review, Fluor Hanford Fast Flux Test Facility Recertification- October 2007  

Broader source: Energy.gov [DOE]

Evaluation to determine whether Fluor Hanford Fast Flux Test Facility is continuing to perform at a level deserving DOE-VPP Star recognition.

267

Seismic requirements for design of nuclear power plants and nuclear test facilities  

SciTech Connect (OSTI)

This standard establishes engineering requirements for the design of nuclear power plants and nuclear test facilities to accommodate vibratory effects of earthquakes.

Not Available

1985-02-01T23:59:59.000Z

268

E-Print Network 3.0 - antenna test facility Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

to create a new-generation space radio facility 12;LOFAR Low... Frequency Array Netherland, Lower Saxony, Schleswig- Holstein... Test station at Exloo, full scale......

269

Supported by the National Science Foundation and the State of Florida New Testing Facilities Available  

E-Print Network [OSTI]

outside the laboratory, both from the government and commercial sectors. Presently, the facilities include: Facilities Electrical A variety of large, high current electrical equipment is available1 Supported by the National Science Foundation and the State of Florida New Testing Facilities

Weston, Ken

270

Power Systems Development Facility Gasification Test Campaign TC22  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, routinely demonstrates gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a KBR Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This report summarizes the results of TC22, the first test campaign using a high moisture lignite from Mississippi as the feedstock in the modified Transport Gasifier configuration. TC22 was conducted from March 24 to April 17, 2007. The gasification process was operated for 543 hours, increasing the total gasification operation at the PSDF to over 10,000 hours. The PSDF gasification process was operated in air-blown mode with a total of about 1,080 tons of coal. Coal feeder operation was challenging due to the high as-received moisture content of the lignite, but adjustments to the feeder operating parameters reduced the frequency of coal feeder trips. Gasifier operation was stable, and carbon conversions as high as 98.9 percent were demonstrated. Operation of the PCD and other support equipment such as the recycle gas compressor and ash removal systems operated reliably.

Southern Company Services

2008-11-01T23:59:59.000Z

271

A component test facility based on the spherical tokamak  

SciTech Connect (OSTI)

Recent experiments (Synakowski et al 2004 Nucl. Fusion 43 1648, Lloyd et al 2004 Plasma Phys. Control. Fusion 46 13477) on the Spherical Tokamak (or Spherical Torus, ST) (Peng 2000 Phys. Plasmas 7 1681) have discovered robust plasma conditions, easing shaping, stability limits, energy confinement, self-driven current and sustainment. This progress has encouraged an update of the plasma conditions and engineering of a Component Test Facility (CTF), (Cheng 1998 Fusion Eng. Des. 38 219) which is a very valuable step in the development of practical fusion energy. The testing conditions in a CTF are characterized by high fusion neutron fluxes Gamma(n) approximate to 8.8 x 10(13) n s(-1) cm(-2) ('wall loading' W-L approximate to 2 MW m(-2)), over size-scale > 10(5) cm(2) and depth-scale > 50 cm, delivering > 3 accumulated displacement per atom per year ('neutron fluence' > 0.3 MW yr(-1) m(-2)) (Abdou et al 1999 Fusion Technol. 29 1). Such conditions are estimated to be achievable in a CTF with R-0 = 1.2 m, A = 1.5, elongation similar to 3, I-p similar to 12 MA, B-T similar to 2.5 T, producing a driven fusion burn using 47 MW of combined neutral beam and RF heating power. A design concept that allows straight-line access via remote handling to all activated fusion core components is developed and presented. The ST CTF will test the lifetime of single-turn, copper alloy centre leg for the toroidal field coil without an induction solenoid and neutron shielding and require physics data on solenoid-free plasma current initiation, ramp-up to and sustainment at multiple megaampere level. A systems code that combines the key required plasma and engineering science conditions of CTF has been prepared and utilized as part of this study. The results show high potential for a family of relatively low cost CTF devices to suit a range of fusion engineering and technology test missions.

Peng, Yueng Kay Martin [ORNL; Fogarty, P. J. [Oak Ridge National Laboratory (ORNL); Burgess, Thomas W [ORNL; Strickler, Dennis J [ORNL; Nelson, Brad E [ORNL; Tsai, C. C. [Oak Ridge National Laboratory (ORNL)

2005-01-01T23:59:59.000Z

272

Development and Commissioning of a Small/Mid-Size Wind Turbine Test Facility: Preprint  

SciTech Connect (OSTI)

This paper describes the development and commissioning tests of the new Clarkson University/Center for Evaluation of Clean Energy Technology Blade Test Facility. The facility is a result of the collaboration between the New York State Energy Research and Development Authority and Intertek, and is supported by national and international partners. This paper discusses important aspects associated with blade testing and includes results associated with modal, static, and fatigue testing performed on the Sandia National Laboratories' Blade Systems Design Studies blade. An overview of the test capabilities of the Blade Test Facility are also provided.

Valyou, D.; Arsenault, T.; Janoyan, K.; Marzocca, P.; Post, N.; Grappasonni, G.; Arras, M.; Coppotelli, G.; Cardenas, D.; Elizalde, H.; Probst, O.

2015-01-01T23:59:59.000Z

273

Calendar Year 2004 annual site environmental report : Tonopah Test Range, Nevada & Kauai Test Facility, Hawaii.  

SciTech Connect (OSTI)

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, manages TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2004. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2005) and DOE Order 231.1A, Environment, Safety, and Health Reporting (DOE 2004b).

Montoya, Amber L.; Wagner, Katrina; Goering, Teresa Lynn; Koss, Susan I.; Salinas, Stephanie A.

2005-09-01T23:59:59.000Z

274

Analysis of lead-acid battery accelerated testing data. Final report  

SciTech Connect (OSTI)

Battelle conducted an independent review and analysis of the accelerated test procedures and test data obtained by Exide in the 3-year Phase I program to develop advanced lead-acid batteries for utility load leveling. Of special importance is the extensive data obtained in deep-discharge cycling tests on 60 cells at elevated temperatures over a 2-1/2 year period. The principal uncertainty in estimating cell life relates to projecting cycle life data at elevated temperature to the lower operating temperatures. The accelerated positive-grid corrosion test involving continuous overcharge at 50/sup 0/C provided some indication of the degree of grid corrosion that might be tolerable before failure. The accelerated positive-material shedding test was not examined in any detail. Recommendations are made for additional studies.

Clifford, J.E.; Thomas, R.E.

1983-08-01T23:59:59.000Z

275

RELAP5 Prediction of Transient Tests in the RD-14 Test Facility  

SciTech Connect (OSTI)

Although the RELAP5 computer code has been developed for best-estimate transient simulation of a pressurized water reactor and its associated systems, it could not assess the thermal-hydraulic behavior of a Canada deuterium uranium (CANDU) reactor adequately. However, some studies have been initiated to explore the applicability for simulating a large-break loss-of-coolant accident in CANDU reactors. In the present study, the small-reactor inlet header break test and the steam generator secondary-side depressurization test conducted in the RD-14 test facility were simulated with the RELAP5/MOD3.2.2 code to examine its extended capability for all the postulated transients and accidents in CANDU reactors. The results were compared with experimental data and those of the CATHENA code performed by Atomic Energy of Canada Limited.In the RELAP5 analyses, the heated sections in the facility were simulated as a multichannel with five pipe models, which have identical flow areas and hydraulic elevations, as well as a single-pipe model.The results of the small-reactor inlet header break and the steam generator secondary-side depressurization simulations predicted experimental data reasonably well. However, some discrepancies in the depressurization of the primary heat transport system after the header break and consequent time delay of the major phenomena were observed in the simulation of the small-reactor inlet header break test.

Lee, Sukho [Korea Institute of Nuclear Safety (Korea, Republic of); Kim, Manwoong [Korea Institute of Nuclear Safety (Korea, Republic of); Kim, Hho-Jung [Korea Institute of Nuclear Safety (Korea, Republic of); Lee, John C. [University of Michigan (United States)

2005-09-15T23:59:59.000Z

276

Advanced Test Reactor National Scientific User Facility 2010 Annual Report  

SciTech Connect (OSTI)

This is the 2010 ATR National Scientific User Facility Annual Report. This report provides an overview of the program for 2010, along with individual project reports from each of the university principal investigators. The report also describes the capabilities offered to university researchers here at INL and at the ATR NSUF partner facilities.

Mary Catherine Thelen; Todd R. Allen

2011-05-01T23:59:59.000Z

277

Operating experience with ABB Power Plant Laboratories multi-use combustion test facility  

SciTech Connect (OSTI)

Combustion Engineering, Inc.'s ABB Power Plant Laboratories (PPL) has installed a new Multi-Use Combustion Test Facility to support the product development needs for ABB Group's Power Generation Businesses. This facility provides the flexibility to perform testing under fluidized bed combustion, conventional pulverized-coal firing, and gasification firing conditions, thus addressing the requirements for several test facilities. Initial operation of the facility began in late 1997. This paper will focus on the design and application of this Multi-Use Combustion Test Facility for fluidized bed product development. In addition, this paper will present experimental facility results from initial circulating fluidized bed operation, including combustion and environmental performance, heat transfer, and combustor profiles.

Jukkola, G.; Levasseur, A.; Mylchreest, D.; Turek, D.

1999-07-01T23:59:59.000Z

278

Dynamic system characterization of an integral test facility of an advanced PWR  

E-Print Network [OSTI]

This work characterizes the dynamic behavior for the modified Large Scale Test Facility (LSTF), which has been selected by the U.S. Nuclear Regulatory Commission for confirmatory testing of the Westinghouse AP600 design. The LSTF is performing a...

Smith, Simon Gregory

1995-01-01T23:59:59.000Z

279

18th AIAA Aerospace Ground Testing Survey of Short Duration, Hypersonic and Hypervelocity Facilities  

E-Print Network [OSTI]

18th AIAA Aerospace Ground Testing Conference #12;94-2491 Survey of Short Duration, Hypersonic 76019-0018 Hypersonic and hypervelocity testing relies to a large extent on short duration facilities activity con- fined mostly to hypersonic and hypervelocity regimes. Early development of such facilities

Texas at Arlington, University of

280

OPERATIONAL EXPERIENCE WITH THE TEST FACILITIES FOR TESLA H. Weise, DESY, Hamburg, Germany  

E-Print Network [OSTI]

OPERATIONAL EXPERIENCE WITH THE TEST FACILITIES FOR TESLA H. Weise, DESY, Hamburg, Germany Abstract The TESLA superconducting electron-positron linear collider with an integrated X-ray laser laboratory government in matters of science. In preparation of this, the TESLA Test Facility was set up at DESY. More

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Future Accelerators (?)  

E-Print Network [OSTI]

I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

John Womersley

2003-08-09T23:59:59.000Z

282

Test particle simulation of direct laser acceleration in a density-modulated plasma waveguide  

SciTech Connect (OSTI)

Direct laser acceleration (DLA) of electrons by the use of the intense axial electric field of an ultrafast radially polarized laser pulse is a promising technique for future compact accelerators. Density-modulated plasma waveguides can be implemented for guiding the propagation of the laser pulse to extend the acceleration distance and for the quasi-phase-matching between the accelerated electrons and the laser pulse. A test particle model is developed to study the optimal axial density modulation structure of plasma waveguides for laser pulses to efficiently accelerate co-propagating electrons. A simple analytical approach is also presented, which can be used to estimate the energy gain in DLA. The analytical model is validated by the test particle simulation. The effect of injection phase and acceleration of electrons injected at various radial positions are studied. The results indicate that a positively chirped density modulation of the waveguide structure is required to accelerate electron with low initial energies, and can be effectively optimized. A wider tolerance on the injection phase and radial distance from the waveguide axis exists for electrons injected with a higher initial energy.

Lin, M.-W.; Jovanovic, I. [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

2012-11-15T23:59:59.000Z

283

Rutting Performance of Airport Hot-Mix Asphalt Characterized by Laboratory Performance Testing, Full-Scale Accelerated Pavement Testing, and Finite Element Modeling  

E-Print Network [OSTI]

potential laboratory tests, (b) comparisons of laboratory tests results to full-scale accelerated pavement test results, and (c) analyses of results from finite element simulations. The laboratory study evaluated of the repeated load test, the static creep...

Rushing, John Ford

2014-04-25T23:59:59.000Z

284

FLAME facility: The effect of obstacles and transverse venting on flame acceleration and transition on detonation for hydrogen-air mixtures at large scale  

SciTech Connect (OSTI)

This report describes research on flame acceleration and deflagration-to-detonation transition (DDT) for hydrogen-air mixtures carried out in the FLAME facility, and describes its relevance to nuclear reactor safety. Flame acceleration and DDT can generate high peak pressures that may cause failure of containment. FLAME is a large rectangular channel 30.5 m long, 2.44 m high, and 1.83 m wide. It is closed on the ignition end and open on the far end. The three test variables were hydrogen mole fraction (12--30%), degree of transverse venting (by moving steel top plates---0%, 13%, and 50%), and the absence or presence of certain obstacles in the channel (zero or 33% blockage ratio). The most important variable was the hydrogen mole fraction. The presence of the obstacles tested greatly increased the flame speeds, overpressures, and tendency for DDT compared to similar tests without obstacles. Different obstacle configurations could have greater or lesser effects on flame acceleration and DDT. Large degrees of transverse venting reduced the flame speeds, overpressures, and possibility of DDT. For small degrees of transverse venting (13% top venting), the flame speeds and overpressures were higher than for no transverse venting with reactive mixtures (>18% H/sub 2/), but they were lower with leaner mixtures. The effect of the turbulence generated by the flow out the vents on increasing flame speed can be larger than the effect of venting gas out of the channel and hence reducing the overpressure. With no obstacles and 50% top venting, the flame speeds and overpressures were low, and there was no DDT. For all other cases, DDT was observed above some threshold hydrogen concentration. DDT was obtained at 15% H/sub 2/ with obstacles and no transverse venting. 67 refs., 62 figs.

Sherman, M.P.; Tieszen, S.R.; Benedick, W.B.

1989-04-01T23:59:59.000Z

285

E-Print Network 3.0 - accelerator facilities doe Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

JUSTIFICATION MEMO ON REVISION OF DOE O Summary: ON REVISION OF DOE O 5480.19, CONDUCT OF OPERATIONS REQUIREMENTS FOR DOE FACILITIES Executive Summary... will be applicable to DOE...

286

EIS-0003: Proton-Proton Storage Accelerator Facility (Isabelle), Brookhaven National Laboratory, Upton, NY  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy developed this EIS to analyze the significant environmental effects associated with construction and operation of the ISABELLE research facility to be built at Brookhaven National Laboratory.

287

Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report  

SciTech Connect (OSTI)

This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

J. Francfort (INEEL); J. Argueta; M. Wehrey (Southern California Edison); D. Karner; L. Tyree (Electric Transportation Applications)

1999-07-01T23:59:59.000Z

288

Hydraulic testing of accelerator-production-of-tritium rod bundles  

SciTech Connect (OSTI)

Hydraulic tests have been performed on small pitch-to-diameter-ratio rod bundles using light water (1.7 < P/D < 1.17, and d = 3.175 mm). Flows cover the range from greater-than-nominal Reynolds numbers (fully turbulent) to low-speed laminar flows. Differential pressure measurements were made across the support plates holding the rod bundles, across the rod bundles, and across the entire assembly. Flow rates, temperatures, and gauge pressures also were measured. The data from these hydraulic tests have been compared to correlating literature for tightly pitched rod bundles. The prototypic geometry of these tests did not compare directly to any geometry found in the literature because of the variety of subchannels along the outer wall of the rod bundle. Under that constraint, there was excellent comparison of the rod-bundle friction factor with those factors given in the literature. The results show a large range of the Reynolds number over which the flow is in transition from laminar to turbulent (e.g., 580 < Re{sub Tr} < 13,000). Also presented is the comparison of the overall rung pressure drop to a solution based on hydraulic-resistance handbook calculations.

Spatz, T.L.; Siebe, D.A.

1999-01-01T23:59:59.000Z

289

Vertical and horizontal test results of 3.9-GHz accelerating cavities at FNAL  

SciTech Connect (OSTI)

The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve the beam performance of the VUV FEL, FLASH. In the frame of a collaborative agreement, Fermilab will provide DESY with a cryomodule containing a string of four cavities. Seven 9-cell Nb cavities were tested and six of them did reach accelerating gradient up to 24 MV/m almost twice more than design value of 14 MV/m. Two of these cavities are with new HOM couplers with improved design. In this paper we present all results of the vertical and horizontal tests.

Khabiboulline, T.; Edwards, H.; Foley, M.; Harms, E.; Hocker, James Andrew; Mitchell, D.; Rowe, A.; Solyak, N.; /Fermilab

2008-06-01T23:59:59.000Z

290

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements  

SciTech Connect (OSTI)

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

291

Installation of a Devonian Shale Reservoir Testing Facility and acquisition of reservoir property measurements. Final report  

SciTech Connect (OSTI)

In October, a contract was awarded for the Installation of a Devonian Shale Reservoir Testing Facility and Acquisition of Reservoir Property measurements from wells in the Michigan, Illinois, and Appalachian Basins. Geologic and engineering data collected through this project will provide a better understanding of the mechanisms and conditions controlling shale gas production. This report summarizes the results obtained from the various testing procedures used at each wellsite and the activities conducted at the Reservoir Testing Facility.

Locke, C.D.; Salamy, S.P.

1991-09-01T23:59:59.000Z

292

Proceedings of the Advanced Hadron Facility accelerator design workshop, February 20--25, 1989  

SciTech Connect (OSTI)

The International Workshop on Hadron Facility Technology was held February 20--25, 1989, at the Study Center at Los Alamos National Laboratory. This volume (second of two) included papers on computer controls, polarized beam, rf, magnet and power supplies, experimental areas, and instabilities. Participants included groups from AHF, Brookhaven National Laboratory, European Hadron Facility, Fermilab, and the Moscow Meson Factory. The workshop was well attended by members of the Los Alamos staff. The interchange of information and the opportunity by criticism by peers was important to all who attended.

Thiessen, H.A. (comp.)

1990-04-01T23:59:59.000Z

293

Kenneth J. Turner and Qian Bing. Protocol Techniques for Testing Radiotherapy Accelerators. In Moshe Vardi and Doron Peled, editors,  

E-Print Network [OSTI]

Kenneth J. Turner and Qian Bing. Protocol Techniques for Testing Radiotherapy Accelerators Radiotherapy Accelerators Kenneth J. Turner and Qian Bing Computing Science and Mathematics, University accelerators is briefly explained. It is ar- gued that these complex safety-critical systems need a systematic

Turner, Ken

294

BETA BEAMS: AN ACCELERATOR BASED FACILITY TO EXPLORE NEUTRINO OSCILLATION PHYSICS  

E-Print Network [OSTI]

them decay in a race-track shaped stor- age ring. EURO Beta Beams are based on CERNs infras- tructure to get high neutrino flux at a gamma boost of 100. INTRODUCTION Production of (anti-)neutrinos from beta facility, using the isotope pair 6 He/18 Ne and detector in the Fr´ejus tunnel (France) has been studied

Paris-Sud XI, Université de

295

Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1998  

SciTech Connect (OSTI)

This Mitigation Action Plan Annual Report (MAPAR) has been prepared as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP) to protect workers, soils, water, and biotic and cultural resources in and around the facility.

Haagenstad, T.

1999-01-15T23:59:59.000Z

296

Non Nuclear Testing of Reactor Systems In The Early Flight Fission Test Facilities (EFF-TF)  

SciTech Connect (OSTI)

The Early Flight Fission-Test Facility (EFF-TF) can assist in the design and development of systems through highly effective non-nuclear testing of nuclear systems when technical issues associated with near-term space fission systems are 'non-nuclear' in nature (e.g. system's nuclear operations are understood). For many systems, thermal simulators can be used to closely mimic fission heat deposition. Axial power profile, radial power profile, and fuel pin thermal conductivity can be matched. In addition to component and subsystem testing, operational and lifetime issues associated with the steady state and transient performance of the integrated reactor module can be investigated. Instrumentation at the EFF-TF allows accurate measurement of temperature, pressure, strain, and bulk core deformation (useful for accurately simulating nuclear behavior). Ongoing research at the EFF-TF is geared towards facilitating research, development, system integration, and system utilization via cooperative efforts with DOE laboratories, industry, universities, and other Nasa centers. This paper describes the current efforts for the latter portion of 2003 and beginning of 2004. (authors)

Van Dyke, Melissa; Martin, James [Marshall Space Flight Center, National Aeronautics and Space Administration, Huntsville, Alabama, 35812 (United States)

2004-07-01T23:59:59.000Z

297

Summary of Construction Activities and Results from Six Initial Accelerated Pavement Tests Conducted on Asphalt Concrete Pavement Section for Modified-Binder Overlay  

E-Print Network [OSTI]

Testing on the Asphalt Concrete FWD testing was conducted onin asphalt concrete modulus after HVS testing for Sectionsconcrete pavements under accelerated pavement testing. This

Bejarano, Manuel O.; Morton, Bruce S.; Scheffy, Clark

2005-01-01T23:59:59.000Z

298

USCAR FUEL CELL TECH TEAM CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS  

E-Print Network [OSTI]

USCAR FUEL CELL TECH TEAM CELL COMPONENT ACCELERATED STRESS TEST PROTOCOLS FOR PEM FUEL CELLS of polymer electrolyte membrane (PEM) fuel cell components under simulated automotive drive cycle conditions of PEM fuel cells. Corrosion of high-surface area carbon supports poses significant concerns at high

299

Lessons from two field tests on pipeline damage detection using acceleration measurement (Invited Paper)  

E-Print Network [OSTI]

Lessons from two field tests on pipeline damage detection using acceleration measurement (Invited, Irvine, CA USA 92697-2700 ABSTRACT Early detection of pipeline damages has been highlighted in water supply industry. Water pressure change in pipeline due to a sudden rupture causes pipe to vibrate

Shinozuka, Masanobu

300

Lifetime Prediction for Degradation of Solar Mirrors using Step-Stress Accelerated Testing (Presentation)  

SciTech Connect (OSTI)

This research is to illustrate the use of statistical inference techniques in order to quantify the uncertainty surrounding reliability estimates in a step-stress accelerated degradation testing (SSADT) scenario. SSADT can be used when a researcher is faced with a resource-constrained environment, e.g., limits on chamber time or on the number of units to test. We apply the SSADT methodology to a degradation experiment involving concentrated solar power (CSP) mirrors and compare the results to a more traditional multiple accelerated testing paradigm. Specifically, our work includes: (1) designing a durability testing plan for solar mirrors (3M's new improved silvered acrylic "Solar Reflector Film (SFM) 1100") through the ultra-accelerated weathering system (UAWS), (2) defining degradation paths of optical performance based on the SSADT model which is accelerated by high UV-radiant exposure, and (3) developing service lifetime prediction models for solar mirrors using advanced statistical inference. We use the method of least squares to estimate the model parameters and this serves as the basis for the statistical inference in SSADT. Several quantities of interest can be estimated from this procedure, e.g., mean-time-to-failure (MTTF) and warranty time. The methods allow for the estimation of quantities that may be of interest to the domain scientists.

Lee, J.; Elmore, R.; Kennedy, C.; Gray, M.; Jones, W.

2011-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Report of Survey of the Los Alamos Tritium Systems Test Assembly Facility  

Broader source: Energy.gov [DOE]

The purpose of this document is to report the results of a survey conducted at the Los Alamos Tritium Systems Test Assembly (TSTA Facility). The survey was conducted during the week of 3/20/00.

302

EA-0993: Shutdown of the Fast Flux Testing Facility, Richland, Washington  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the U.S. Department of Energy's Hanford Site's proposal to place the Fast Flux Test Facility (FFTF) in a radiologically and industrially safe shutdown...

303

Recovery Act-Funded 90-m Blade Test Facility Commissioned May...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(WTTC) in Boston, Massachusetts, now offers a full suite of certification tests for turbine blades up to 90 m in length as the state-of-the-art facility opened May 18, 2011. The...

304

Idaho Waste Treatment Facility Startup Testing Suspended To Evaluate System  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun withconfinementEtching. | EMSLtheIndustry |MentoringFacilityIdaho Waste

305

Category:Hydrodynamic Testing Facility Type | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160Benin: EnergyBostonFacilityCascadeJump to: navigation,Areas Jump to:Jumphelp

306

DOE's New Large Blade Test Facility in Massachusetts Completes...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

(WTTC), in Boston, Massachusetts, has come up to full speed testing the long wind turbine blades produced for today's larger wind turbines. Constructed with a combination of...

307

Design and Development of a Vacuum Dehumidification Test Facility  

E-Print Network [OSTI]

Control Variables .............................................................................. 103 xvii Table 23: Tabulated Test Results ................................................................................... 106 Table 24: ARPA-E..., a design operating condition for testing was determined. The Advanced Research Projects Agency-Energy (ARPA-E) specified feed-air inlet and outlet operation conditions that the membrane cooling system was to be evaluated in for comparison...

Schaff, Francesco Nima

2014-08-13T23:59:59.000Z

308

Early test facilities and analytic methods for radiation shielding: Proceedings  

SciTech Connect (OSTI)

This report represents a compilation of eight papers presented at the 1992 American Nuclear Society/European Nuclear Society International Meeting. The meeting is of special significance since it commemorates the fiftieth anniversary of the first controlled nuclear chain reaction. The papers contained in this report were presented in a special session organized by the Radiation Protection and Shielding Division in keeping with the historical theme of the meeting. The paper titles are good indicators of their content and are: (1) The origin of radiation shielding research: The Oak Ridge experience, (2) Shielding research at the hanford site, (3) Aircraft shielding experiments at General Dynamics Fort Worth, 1950-1962, (4) Where have the neutrons gone , a history of the tower shielding facility, (5) History and evolution of buildup factors, (6) Early shielding research at Bettis atomic power laboratory, (7) UK reactor shielding: then and now, (8) A very personal view of the development of radiation shielding theory.

Ingersoll, D.T. (comp.) (Oak Ridge National Lab., TN (United States)); Ingersoll, J.K. (comp.) (Tec-Com, Knoxville, TN (United States))

1992-11-01T23:59:59.000Z

309

The Conversion of CESR to Operate as the Test Accelerator, CesrTA, Part 1: Overview  

E-Print Network [OSTI]

Cornell's electron/positron storage ring (CESR) was modified over a series of accelerator shutdowns beginning in May 2008, which substantially improves its capability for research and development for particle accelerators. CESR's energy span from 1.8 to 5.6 GeV with both electrons and positrons makes it ideal for the study of a wide spectrum of accelerator physics issues and instrumentation related to present light sources and future lepton damping rings. Additionally a number of these are also relevant for the beam physics of proton accelerators. This paper outlines the motivation, design and conversion of CESR to a test accelerator, CesrTA, enhanced to study such subjects as low emittance tuning methods, electron cloud (EC) effects, intra-beam scattering, fast ion instabilities as well as general improvements to beam instrumentation. While the initial studies of CesrTA focussed on questions related to the International Linear Collider (ILC) damping ring design, CesrTA is a very flexible storage ring, capabl...

Billing, M G

2015-01-01T23:59:59.000Z

310

Accelerator Technology Division progress report, FY 1993  

SciTech Connect (OSTI)

This report discusses the following topics: A Next-Generation Spallation-Neutron Source; Accelerator Performance Demonstration Facility; APEX Free-Electron Laser Project; The Ground Test Accelerator (GTA) Program; Intense Neutron Source for Materials Testing; Linac Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Radio-Frequency Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operation.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-12-31T23:59:59.000Z

311

Predictive tools for coolant development: An accelerated aging procedure for modeling fleet test results  

SciTech Connect (OSTI)

The objective of this study was to develop an accelerated aging test (AAT) for conventional and extended life coolants that will predict coolant composition and performance after 100,000 or more miles (160,930 km) of use. The procedure was developed by examining the effects of a series of cooling system metals, their surface area and the amount of each used, test temperature, glycol concentration, and test time on important chemical and physical properties of the test coolant. The chemical and physical properties evaluated included the accumulation of glycol degradation products, the depletion rate of active inhibitors, the pH drop, and the presence of corrosion products in solution. In addition, the test coolant performance was evaluated in ASTM D 1384 and D 4340. The effects of variation in the test procedure on the coolant were compared to actual coolant from extended duration fleet tests. The test procedure selected gave test coolant with composition, physical properties, and performance that compared favorably with the fleet test fluid. The test performance was validated by comparing the properties of a series fluids after this test to corresponding fluids removed from vehicles after extended use. An example of fluid development using this procedure is presented. Further areas of investigation are suggested. It is recommended that the general test procedure be considered for adoption as an ASTM test method for evaluation of the extended performance of fluids in automotive and light duty cooling systems.

Gershun, A.V.; Mercer, W.C. [Prestone Products Corp., Danbury, CT (United States)

1999-08-01T23:59:59.000Z

312

Safety training and safe operating procedures written for PBFA (Particle Beam Fusion Accelerator) II and applicable to other pulsed power facilities  

SciTech Connect (OSTI)

To ensure that work in advancing pulsed power technology is performed with an acceptably low risk, pulsed power research facilities at Sandia National Laboratories must satisfy general safety guidelines established by the Department of Energy, policies and formats of the Environment, Safety, and Health (ES and H) Department, and detailed procedures formulated by the Pulsed Power Sciences Directorate. The approach to safety training and to writing safe operating procedures, and the procedures presented here are specific to the Particle Beam Fusion Accelerator II (PBFA II) Facility but are applicable as guidelines to other research and development facilities which have similar hazards.

Donovan, G.L.; Goldstein, S.A.

1986-12-01T23:59:59.000Z

313

Handling Radioactive Waste from the Proton Accelerator Facility at the Paul Scherrer Institut (PSI) - Always Surprising? - 13320  

SciTech Connect (OSTI)

The Paul Scherrer Institut (PSI) is the largest national research centre in Switzerland. Its multidisciplinary research is dedicated to a wide field in natural science and technology as well as particle physics. In this context, PSI is operating, amongst others, a large proton accelerator facility since more than 30 years. In two cyclotrons, protons are accelerated to high speeds and then guided along roughly 100 m of beam line to three different target stations to produce secondary particles like mesons and neutrons for experiments and a separately beam line for UCN. The protons induce spallation processes in the target materials, and also at other beam loss points along the way, with emission of protons, neutrons, hydrogen, tritium, helium, heavier fragments and fission processes. In particular the produced neutrons, due to their large penetration depth, will then interact also with the surrounding materials. These interactions of radiation with matter lead to activation and partly to contamination of machine components and the surrounding infrastructures. Maintenance, operation and decommissioning of installations generate inevitably substantial amounts of radioactive operational and dismantling waste like targets, magnets, collimators, shielding (concrete, steel) and of course secondary waste. To achieve an optimal waste management strategy for interim storage or final disposal, radioactive waste has to be characterized, sorted and treated. This strategy is based on radiation protection demands, raw waste properties (size, material, etc.), and requirements to reduce the volume of waste, mainly for legal and economical reasons. In addition, the radiological limitations for transportation of the waste packages to a future disposal site have to be taken into account, as well as special regulatory demands. The characterization is a task of the waste producer. The conditioning processes and quality checks for radioactive waste packages are part of an accredited waste management process of PSI, especially of the Section Dismantling and Waste Management. Strictly proven and accepted methods needed to be developed and enhanced for safe treatment, transport, conditioning and storage. But in the field of waste from research activities, individual and new solutions have to be found in an increasingly growing administrative environment. Furthermore, a wide variety of components, with a really large inventory of radioactive nuclides, has to be handled. And there are always surprising challenges concerning the unusual materials or the nuclide inventory. In case of the operational and dismantling radioactive accelerator waste, the existing conditioning methods are in the process of a continuous enhancement - technically and administratively. The existing authorized specifications of conditioning processes have to be extended to optimize and fully describe the treatment of the inevitably occurring radioactive waste from the accelerator facility. Additional challenges are the changes with time concerning the legal and regulatory requirements - or do we have to consider it as business as usual? This paper gives an overview of the current practices in radioactive waste management and decommissioning of the existing operational accelerator waste. (authors)

Mueth, Joachim [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)] [Paul Scherrer Institute, CH-5232 Villigen (Switzerland)

2013-07-01T23:59:59.000Z

314

Accelerator Technology Division progress report, FY 1992  

SciTech Connect (OSTI)

This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

1993-07-01T23:59:59.000Z

315

Burnup calculations for KIPT accelerator driven subcritical facility using Monte Carlo computer codes-MCB and MCNPX.  

SciTech Connect (OSTI)

Argonne National Laboratory (ANL) of USA and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have been collaborating on the conceptual design development of an electron accelerator driven subcritical (ADS) facility, using the KIPT electron accelerator. The neutron source of the subcritical assembly is generated from the interaction of 100 KW electron beam with a natural uranium target. The electron beam has a uniform spatial distribution and electron energy in the range of 100 to 200 MeV. The main functions of the subcritical assembly are the production of medical isotopes and the support of the Ukraine nuclear power industry. Neutron physics experiments and material structure analyses are planned using this facility. With the 100 KW electron beam power, the total thermal power of the facility is {approx}375 kW including the fission power of {approx}260 kW. The burnup of the fissile materials and the buildup of fission products reduce continuously the reactivity during the operation, which reduces the neutron flux level and consequently the facility performance. To preserve the neutron flux level during the operation, fuel assemblies should be added after long operating periods to compensate for the lost reactivity. This process requires accurate prediction of the fuel burnup, the decay behavior of the fission produces, and the introduced reactivity from adding fresh fuel assemblies. The recent developments of the Monte Carlo computer codes, the high speed capability of the computer processors, and the parallel computation techniques made it possible to perform three-dimensional detailed burnup simulations. A full detailed three-dimensional geometrical model is used for the burnup simulations with continuous energy nuclear data libraries for the transport calculations and 63-multigroup or one group cross sections libraries for the depletion calculations. Monte Carlo Computer code MCNPX and MCB are utilized for this study. MCNPX transports the electrons and the produced neutrons and photons but the current version of MCNPX doesn't support depletion/burnup calculation of the subcritical system with the generated neutron source from the target. MCB can perform neutron transport and burnup calculation for subcritical system using external neutron source, however it cannot perform electron transport calculations. To solve this problem, a hybrid procedure is developed by coupling these two computer codes. The user tally subroutine of MCNPX is developed and utilized to record the information of the each generated neutron from the photonuclear reactions resulted from the electron beam interactions. MCB reads the recorded information of each generated neutron thorough the user source subroutine. In this way, the neutron source generated by electron reactions could be utilized in MCB calculations, without the need for MCB to transport the electrons. Using the source subroutines, MCB could get the external neutron source, which is prepared by MCNPX, and perform depletion calculation for the driven subcritical facility.

Gohar, Y.; Zhong, Z.; Talamo, A.; Nuclear Engineering Division

2009-06-09T23:59:59.000Z

316

K-Basin sludge treatment facility pump test report  

SciTech Connect (OSTI)

Tests of a disc pump and a dual diaphragm pump are stymied by pumping a metal laden fluid. Auxiliary systems added to a diaphragm pump might enable the transfer of such fluids, but the additional system complexity is not desirable for remotely operated and maintained systems.

SQUIER, D.M.

1999-06-02T23:59:59.000Z

317

Experience with operation of a large magnet system in the international fusion superconducting magnet test facility  

SciTech Connect (OSTI)

Superconducting toroidal field systems, including coils and ancillaries, are being developed through international collaboration in the Large Coil Task. Focal point is a test facility in Oak Ridge where six coils will be tested in a toroidal array. Shakedown of the facility and preliminary tests of the first three coils (from Japan, Switzerland, and the US) were accomplished in 1984. Useful data were obtained on performance of the helium refrigerator and distribution system, power supplies, control and data acquisition systems and voltages, currents, strains, and acoustic emission in the coils. Performance was generally gratifying except for the helium system, where improvements are being made.

Fietz, W.A.; Ellis, J.F.; Haubenreich, P.N.; Schwenterly, S.W.; Stamps, R.E.

1985-01-01T23:59:59.000Z

318

Computer control and data acquisition system for the R. F. Test Facility  

SciTech Connect (OSTI)

The Radio Frequency Test Facility (RFTF) at Oak Ridge National Laboratory, used to test and evaluate high-power ion cyclotron resonance heating (ICRH) systems and components, is monitored and controlled by a multicomponent computer system. This data acquisition and control system consists of three major hardware elements: (1) an Allen-Bradley PLC-3 programmable controller; (2) a VAX 11/780 computer; and (3) a CAMAC serial highway interface. Operating in LOCAL as well as REMOTE mode, the programmable logic controller (PLC) performs all the control functions of the test facility. The VAX computer acts as the operator's interface to the test facility by providing color mimic panel displays and allowing input via a trackball device. The VAX also provides archiving of trend data acquired by the PLC. Communications between the PLC and the VAX are via the CAMAC serial highway. Details of the hardware, software, and the operation of the system are presented in this paper.

Stewart, K.A.; Burris, R.D.; Mankin, J.B.; Thompson, D.H.

1986-01-01T23:59:59.000Z

319

Computer control and data-acquisition system for the rf test facility  

SciTech Connect (OSTI)

The radio frequency test facility (RFTF) at Oak Ridge National Laboratory, used to test and evaluate high-power ion cyclotron resonance heating (ICRH) systems and components, is monitored and controlled by a multicomponent computer system. This data-acquisition and control system consists of three major hardware elements: (1) an Allen-Bradley PLC-3 programmable controller, (2) a VAX 11/780 computer, and (3) a CAMAC serial highway interface. Operating in LOCAL as well as REMOTE mode, the programmable logic controller (PLC) performs all the control functions of the test facility. The VAX computer acts as the operator's interface to the test facility by providing color mimic panel displays and allowing input via a trackball device. The VAX also provides archiving of trend data acquired by the PLC. Communications between the PLC and the VAX are via the CAMAC serial highway. Details of the hardware, software, and the operation of the system are presented in this paper.

Stewart, K.A.; Burris, R.D.; Mankin, J.B.; Thompson, D.H.

1986-08-01T23:59:59.000Z

320

Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report  

SciTech Connect (OSTI)

This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

Not Available

1988-02-26T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

PERFORMANCE OF THE TESLA TEST FACILITY LINAC for the TESLA Collaboration  

E-Print Network [OSTI]

PERFORMANCE OF THE TESLA TEST FACILITY LINAC P. Castro for the TESLA Collaboration Abstract In order to test the performance of a superconducting linac, the TESLA Collaboration has built and operated for the TESLA design. Results of recent running periods will be summarized in this paper. 1 INTRODUCTION

322

Comparison of Accelerated Testing with Modeling to Predict Lifetime of CPV Solder Layers (Presentation)  

SciTech Connect (OSTI)

Concentrating photovoltaic (CPV) cell assemblies can fail due to thermomechanical fatigue in the die-attach layer. In this presentation, we show the latest results from our computational model of thermomechanical fatigue. The model is used to estimate the relative lifetime of cell assemblies exposed to various temperature histories consistent with service and with accelerated testing. We also present early results from thermal cycling experiments designed to help validate the computational model.

Silverman, T. J.; Bosco, N.; Kurtz, S.

2012-03-01T23:59:59.000Z

323

Recent Advances in Plasma Acceleration  

SciTech Connect (OSTI)

The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam in the Final Focus Test Beam (FFTB) Facility at SLAC. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx}52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. Prospects for a drive-witness bunch configuration and high-gradient positron acceleration experiments planned for the SABER facility will be discussed.

Hogan, Mark

2007-03-19T23:59:59.000Z

324

Preliminary design for hot dirty-gas control-valve test facility. Final report  

SciTech Connect (OSTI)

This report presents the results of a preliminary design and cost estimating effort for a facility for the testing of control valves in Hot Dirty Gas (HDGCV) service. This design was performed by Mittelhauser Corporation for the United States Department of Energy's Morgantown Energy Technology Center (METC). The objective of this effort was to provide METC with a feasible preliminary design for a test facility which could be used to evaluate valve designs under simulated service conditions and provide a technology data base for DOE and industry. In addition to the actual preliminary design of the test facility, final design/construction/operating schedules and a facility cost estimate were prepared to provide METC sufficient information with which to evaluate this design. The bases, assumptions, and limitations of this study effort are given. The tasks carried out were as follows: METC Facility Review, Environmental Control Study, Gas Generation Study, Metallurgy Review, Safety Review, Facility Process Design, Facility Conceptual Layout, Instrumentation Design, Cost Estimates, and Schedules. The report provides information regarding the methods of approach used in the various tasks involved in the completion of this study. Section 5.0 of this report presents the results of the study effort. The results obtained from the above-defined tasks are described briefly. The turnkey cost of the test facility is estimated to be $9,774,700 in fourth quarter 1979 dollars, and the annual operating cost is estimated to be $960,000 plus utilities costs which are not included because unit costs per utility were not available from METC.

Not Available

1980-01-01T23:59:59.000Z

325

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron  

E-Print Network [OSTI]

Accelerators | Photon Science | Particle Physics Deutsches Elektronen-Synchrotron A Research Centre and astroparticle physics as well as accelerator physics. The Photo Injector Test Facility PITZ in Zeuthen (near XFEL. As part of the accelerator R&D program of the Helmholtz Association the focus of the research

326

New Test Facilities Opening this Fall | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Year in3.pdfEnergy HealthCommentsAugustNationalMarketsMillion DOE Award | Department ofTest

327

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt Storage SystemAir Force Research Laboratory Testing

328

Sandia National Laboratories: National Solar Thermal Test Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErik Spoerke SSLSMolten-Salt Storage SystemAir Force Research LaboratoryTest

329

Comparison of test particle acceleration in torsional spine and fan reconnection regimes  

SciTech Connect (OSTI)

Magnetic reconnection is a common phenomenon taking place in astrophysical and space plasmas, especially in solar flares which are rich sources of highly energetic particles. Torsional spine and fan reconnections are important mechanisms proposed for steady-state three-dimensional null-point reconnection. By using the magnetic and electric fields for these regimes, we numerically investigate the features of test particle acceleration in both regimes with input parameters for the solar corona. By comparison, torsional spine reconnection is found to be more efficient than torsional fan reconnection in an acceleration of a proton to a high kinetic energy. A proton can gain as high as 100?MeV of relativistic kinetic energy within only a few milliseconds. Moreover, in torsional spine reconnection, an accelerated particle can escape either along the spine axis or on the fan plane depending on its injection position. However, in torsional fan reconnection, the particle is only allowed to accelerate along the spine axis. In addition, in both regimes, the particle's trajectory and final kinetic energy depend on the injection position but adopting either spatially uniform or non-uniform localized plasma resistivity does not much influence the features of trajectory.

Hosseinpour, M., E-mail: hosseinpour@tabrizu.ac.ir; Mehdizade, M.; Mohammadi, M. A. [Plasma Physics Department, University of Tabriz, Tabriz (Iran, Islamic Republic of)

2014-10-15T23:59:59.000Z

330

Nuclear Rocket Test Facility Decommissioning Including Controlled Explosive Demolition of a Neutron-Activated Shield Wall  

SciTech Connect (OSTI)

Located in Area 25 of the Nevada Test Site, the Test Cell A Facility was used in the 1960s for the testing of nuclear rocket engines, as part of the Nuclear Rocket Development Program. The facility was decontaminated and decommissioned (D&D) in 2005 using the Streamlined Approach For Environmental Restoration (SAFER) process, under the Federal Facilities Agreement and Consent Order (FFACO). Utilities and process piping were verified void of contents, hazardous materials were removed, concrete with removable contamination decontaminated, large sections mechanically demolished, and the remaining five-foot, five-inch thick radiologically-activated reinforced concrete shield wall demolished using open-air controlled explosive demolition (CED). CED of the shield wall was closely monitored and resulted in no radiological exposure or atmospheric release.

Michael Kruzic

2007-09-01T23:59:59.000Z

331

Accelerated Stress Testing, Qualification Testing, HAST, Field Experience - What Do They All Mean? (Presentation)  

SciTech Connect (OSTI)

This presentation discusses the need for a set of tests for modules that would predict their long term-field performance.

Wohlgemuth, J.

2013-05-01T23:59:59.000Z

332

Seismic-fragility tests of new and accelerated-aged Class 1E battery cells  

SciTech Connect (OSTI)

The seismic-fragility response of naturally-aged nuclear station safety-related batteries is of interest for two reasons: (1) to determine actual failure modes and thresholds and (2) to determine the validity of using the electrical capacity of individual cells as an indicator of the potential survivability of a battery given a seismic event. Prior reports in this series discussed the seismic-fragility tests and results for three specific naturally-aged cell types: 12-year old NCX-2250, 10-year old LCU-13, and 10-year old FHC-19. This report focuses on the complementary approach, namely, the seismic-fragility response of accelerated-aged batteries. Of particular interest is the degree to which such approaches accurately reproduce the actual failure modes and thresholds. In these tests the significant aging effects observed, in terms of seismic survivability, were: embrittlement of cell cases, positive bus material and positive plate grids; and excessive sulphation of positive plate active material causing hardening and expansion of positive plates. The IEEE Standard 535 accelerated aging method successfully reproduced seismically significant aging effects in new cells but accelerated grid embrittlement an estimated five years beyond the conditional age of other components.

Bonzon, L.L.; Janis, W.J.; Black, D.A.; Paulsen, G.A.

1987-01-01T23:59:59.000Z

333

Lead Coolant Test Facility Technical and Functional Requirements, Conceptual Design, Cost and Construction Schedule  

SciTech Connect (OSTI)

This report presents preliminary technical and functional requirements (T&FR), thermal hydraulic design and cost estimate for a lead coolant test facility. The purpose of this small scale facility is to simulate lead coolant fast reactor (LFR) coolant flow in an open lattice geometry core using seven electrical rods and liquid lead or lead-bismuth eutectic. Based on review of current world lead or lead-bismuth test facilities and research need listed in the Generation IV Roadmap, five broad areas of requirements of basis are identified: Develop and Demonstrate Prototype Lead/Lead-Bismuth Liquid Metal Flow Loop Develop and Demonstrate Feasibility of Submerged Heat Exchanger Develop and Demonstrate Open-lattice Flow in Electrically Heated Core Develop and Demonstrate Chemistry Control Demonstrate Safe Operation and Provision for Future Testing. These five broad areas are divided into twenty-one (21) specific requirements ranging from coolant temperature to design lifetime. An overview of project engineering requirements, design requirements, QA and environmental requirements are also presented. The purpose of this T&FRs is to focus the lead fast reactor community domestically on the requirements for the next unique state of the art test facility. The facility thermal hydraulic design is based on the maximum simulated core power using seven electrical heater rods of 420 kW; average linear heat generation rate of 300 W/cm. The core inlet temperature for liquid lead or Pb/Bi eutectic is 420oC. The design includes approximately seventy-five data measurements such as pressure, temperature, and flow rates. The preliminary estimated cost of construction of the facility is $3.7M. It is also estimated that the facility will require two years to be constructed and ready for operation.

Soli T. Khericha

2006-09-01T23:59:59.000Z

334

Environmental Assessment for US Department of Energy support of an Iowa State University Linear Accelerator Facility at Ames, Iowa  

SciTech Connect (OSTI)

The proposed Department of Energy (DOE) action is financial and technical support of construction and initial operation of an agricultural commodity irradiator (principally for meat), employing a dual mode electron beam generator capable of producing x-rays, at the Iowa State University Linear Accelerator located at Ames, Iowa. The planned pilot commercial-scale facility would be used for the following activities: conducting irradiation research on agricultural commodities, principally meats; in the future, after the pilot phase, as schedules permit, possibly conducting research on other, non-edible materials; evaluating effects of irradiation on nutritional and sensory quality of agricultural products; demonstrating the efficiency of the process to control or eliminate pathogens, and/or to prolong the commodities' post-harvest shelf-life via control or elimination of bacteria, fungi, and/or insects; providing information to the public on the benefits, safety and risks of irradiated agricultural commodities; determining consumer acceptability of the irradiated products; providing data for use by regulatory agencies in developing protocols for various treatments of Iowa agricultural commodities; and training operators, maintenance and quality control technicians, scientists, engineers, and staff of regulatory agencies in agricultural commodity irradiation technology. 14 refs., 5 figs.

Not Available

1990-05-01T23:59:59.000Z

335

Conceptual Design Report: Nevada Test Site Mixed Waste Disposal Facility Project  

SciTech Connect (OSTI)

Environmental cleanup of contaminated nuclear weapons manufacturing and test sites generates radioactive waste that must be disposed. Site cleanup activities throughout the U.S. Department of Energy (DOE) complex are projected to continue through 2050. Some of this waste is mixed waste (MW), containing both hazardous and radioactive components. In addition, there is a need for MW disposal from other mission activities. The Waste Management Programmatic Environmental Impact Statement Record of Decision designates the Nevada Test Site (NTS) as a regional MW disposal site. The NTS has a facility that is permitted to dispose of onsite- and offsite-generated MW until November 30, 2010. There is not a DOE waste management facility that is currently permitted to dispose of offsite-generated MW after 2010, jeopardizing the DOE environmental cleanup mission and other MW-generating mission-related activities. A mission needs document (CD-0) has been prepared for a newly permitted MW disposal facility at the NTS that would provide the needed capability to support DOE's environmental cleanup mission and other MW-generating mission-related activities. This report presents a conceptual engineering design for a MW facility that is fully compliant with Resource Conservation and Recovery Act (RCRA) and DOE O 435.1, 'Radioactive Waste Management'. The facility, which will be located within the Area 5 Radioactive Waste Management Site (RWMS) at the NTS, will provide an approximately 20,000-cubic yard waste disposal capacity. The facility will be licensed by the Nevada Division of Environmental Protection (NDEP).

NSTec Environmental Management

2009-01-31T23:59:59.000Z

336

Extensive remote handling and conservative plasma conditions to enable fusion nuclear science R&D using a component testing facility  

E-Print Network [OSTI]

nuclear science R&D using a component testing facility Y.K.M. Peng 1), T.W. Burgess 1), A.J. Carroll 1), C. This use aims to test components in an integrated fusion nuclear environment, for the first time@ornl.gov Abstract. The use of a fusion component testing facility to study and establish, during the ITER era

Princeton Plasma Physics Laboratory

337

Facility Closure Report for T-Tunnel (U12t), Area 12, Nevada Test Site, Nevada  

SciTech Connect (OSTI)

This Facility Closure Report (FCR) has been prepared to document the actions taken to permanently close the remaining accessible areas of U12t-Tunnel (T-Tunnel) in Area 12 of the Nevada Test Site (NTS). The closure of T-Tunnel was a prerequisite to transfer facility ownership from the Defense Threat Reduction Agency (DTRA) to the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO). Closure of the facility was accomplished with the cooperation and concurrence of both NNSA/NSO and the Nevada Division of Environmental Protection (NDEP). The purpose of this FCR is to document that the closure of T-Tunnel complied with the closure requirements specified in the Facility Closure Plan for N- and T-Tunnels Area 12, Nevada Test Site (Appendix D) and that the facility is ready for transfer to NNSA/NSO. The Facility Closure Plan (FCP) is provided in Appendix D. T-Tunnel is located approximately 42 miles north of Mercury in Area 12 of the NTS (Figure 1). Between 1970 and 1987, T-Tunnel was used for six Nuclear Weapons Effects Tests (NWETs). The tunnel was excavated horizontally into the volcanic tuffs of Rainier Mesa. The T-Tunnel complex consists of a main access drift with two NWET containment structures, a Gas Seal Plug (GSP), and a Gas Seal Door (GSD) (Figure 2). The T-Tunnel complex was mothballed in 1993 to preserve the tunnel for resumption of testing, should it happen in the future, to stop the discharge of tunnel effluent, and to prevent unauthorized access. This was accomplished by sealing the main drift GSD.

NSTec Environmental Restoration

2008-08-01T23:59:59.000Z

338

FAST FLUX TEST FACILITY (FFTF) A HISTORY OF SAFETY & OPERATIONAL EXCELLENCE  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF) is a 400-megawatt (thermal) sodium-cooled, high temperature, fast neutron flux, loop-type test reactor. The facility was constructed to support development and testing of fuels, materials and equipment for the Liquid Metal Fast Breeder Reactor program. FFTF began operation in 1980 and over the next 10 years demonstrated its versatility to perform experiments and missions far beyond the original intent of its designers. The reactor had several distinctive features including its size, flux, core design, extensive instrumentation, and test features that enabled it to simultaneously carry out a significant array of missions while demonstrating its features that contributed to a high level of plant safety and availability. FFTF is currently being deactivated for final closure.

NIELSEN, D L

2004-02-26T23:59:59.000Z

339

EIS-0364: Decommissioning of the Fast Flux Test Facility, Hanford Site, Richland, WA  

Broader source: Energy.gov [DOE]

The U.S. Department of Energy (DOE) announces its intent to prepare an Environmental Impact Statement (EIS), pursuant to the National Environmental Policy Act of 1969 (NEPA), on proposed decommissioning of the Fast Flux Test Facility (FFTF) at the Hanford Site, Richland, Washington.

340

NREL Vehicle Testing and Integration Facility (VTIF): Rotating Shadowband Radiometer (RSR); Golden, Colorado (Data)  

DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

This measurement station at NREL's Vehicle Testing and Integration Facility (VTIF) monitors global horizontal, direct normal, and diffuse horizontal irradiance to define the amount of solar energy that hits this particular location. The solar measurement instrumentation is also accompanied by meteorological monitoring equipment.

Lustbader, J.; Andreas, A.

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Hanford Mission Acceleration Initiative--Preliminary Testing Recommendations for Supplemental Treatment  

SciTech Connect (OSTI)

The U.S. Department of Energy (DOE) plans to accelerate tank waste treatment completion by 20 years. Achieving this goal will require a significant increase in processing rate over the Waste Treatment Plant capacity. One approach is to conduct supplemental processing external to the WTP. CHG will issue a Request for Proposals (RFP) that will enable them to select the most mature and feasible technologies that can be demonstrated to increase capacity for treatment of Hanford waste. This report provides preliminary testing recommendations to support evaluation, down selection, and demonstration of waste treatment processes for the Mission Acceleration Initiative. The testing recommendations will serve as a guide to potential vendors for designing their test program in response to the RFP the recommendations describe the data needed for DOE to evaluate the technologies and for the proposer to prepare a preconceptual design for treatment that will achieve the ultimate goal of Hanford tank waste treatment. This revision incorporates comments from a national peer review of the original issue.

Josephson, Gary B.; Bagaasen, Larry M.; Geeting, John GH; Gauglitz, Phillip A.; Lumetta, Gregg J.; Tixier, John S.

2003-03-28T23:59:59.000Z

342

Recent National Solar Thermal Test Facility activities, in partnership with industry  

SciTech Connect (OSTI)

The National Solar Thermal Test Facility (NSTTF) at Sandia National Laboratories in Albuquerque, New Mexico, USA conducts testing of solar thermal components and systems, funded primarily by the US Department of Energy. Activities are conducted in support of Central Receiver Technology, Distributed Receiver Technology and Design Assistance projects. All activities are performed in support of various cost-shared government/industry joint ventures and, on a design assistance basis, in support of a number of other industry partners.

Ghanbari, C.; Cameron, C.P.; Ralph, M.E.; Pacheco, J.E.; Rawlinson, K.S. [Sandia National Labs., Albuquerque, NM (United States); Evans, L.R. [Ewing Technical Design, Albuquerque, NM (United States)

1994-10-01T23:59:59.000Z

343

ACCELERATED TESTING OF NEUTRON-ABSORBING ALLOYS FOR NUCLEAR CRITICALITY CONTROL  

SciTech Connect (OSTI)

The US Department of Energy requires nuclear criticality control materials be used for storage of highly enriched spent nuclear fuel used in government programs and the storage of commercial spent nuclear fuel at the proposed High-Level Nuclear Waste Geological Repository located at Yucca Mountain, Nevada. Two different metallic alloys (Ni-Cr-Mo-Gd and borated stainless steel) have been chosen for this service. An accelerated corrosion test program to validate these materials for this application is described and a performance comparison is made.

Ronald E. Mizia

2011-10-01T23:59:59.000Z

344

Analysis of lead-acid battery deep-cycle accelerated testing data  

SciTech Connect (OSTI)

Battelle conducted a detailed analysis of the deep cycle, accelerated test data (at a nominal 70 C) obtained by Exide in the three-year, Phase I program to develop advanced lead-acid batteries for utility load leveling. Cycle life results for 60 lead-acid cells in three fractional factorial experiments were analyzed to develop quantitative relationships for real-time cycles to failure as a function of cell design variables. Important factors affecting cycle life were depth of discharge with respect to plate active material and acid within the plate stack, acid specific gravity, separator system design, and additives in the active material.

Clifford, J.E.; Thomas, R.E.

1984-06-01T23:59:59.000Z

345

E-Print Network 3.0 - accelerated weathering tests Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

investigation of the influence of molecular structure on natural and accelerated UV degradation Summary: to natural and accelerated weather conditions. The degree of UV...

346

Diagnostic development and support of MHD test facilities. Final progress report, March 1980--March 1994  

SciTech Connect (OSTI)

The Diagnostic Instrumentation and Analysis Laboratory (DIAL) at Mississippi State University (MSU), under U.S. Department of Energy (DOE) Contract No. DE-AC02-80ET-15601, Diagnostic Development and Support of MHD Test Facilities, developed diagnostic instruments for magnetohydrodynamic (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for Heat Recovery/Seed Recovery (HRSR) support, were refined, and new systems to measure temperatures and gas-seed-slag stream characteristics were developed. To further data acquisition and analysis capabilities, the diagnostic systems were interfaced with DIAL`s computers. Technical support was provided for the diagnostic needs of the national MHD research effort. DIAL personnel also cooperated with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs. The initial contract, Testing and Evaluation of Heat Recovery/Seed Recovery, established a data base on heat transfer, slagging effects on heat transfer surfaces, metal durability, secondary combustor performance, secondary combustor design requirements, and other information pertinent to the design of HR/SR components at the Coal-Fired Flow Facility (CFFF). To accomplish these objectives, a combustion test stand was constructed that simulated MHD environments, and mathematical models were developed and evaluated for the heat transfer in hot-wall test sections. Two transitions occurred during the span of this contract. In May 1983, the objectives and title of the contract changed from Testing and Evaluation of Heat Recovery/Seed Recovery to Diagnostic Development and Support of MHD Test Facilities. In July 1988, the research laboratory`s name changed from the MHD Energy Center to the Diagnostic Instrumentation and Analysis Laboratory.

Not Available

1995-02-01T23:59:59.000Z

347

The CAMS Accelerator Facility  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Burst BufferFluoriteSediments andThe TheThe

348

HANFORD CONTAINERIZED CAST STONE FACILITY TASK 1 PROCESS TESTING & DEVELOPMENT FINAL TEST REPORT  

SciTech Connect (OSTI)

Laboratory testing and technical evaluation activities on Containerized Cast Stone (CCS) were conducted under the Scope of Work (SOW) contained in CH2M HILL Hanford Group, Inc. (CHG) Contract No. 18548 (CHG 2003a). This report presents the results of testing and demonstration activities discussed in SOW Section 3.1, Task I--''Process Development Testing'', and described in greater detail in the ''Containerized Grout--Phase I Testing and Demonstration Plan'' (CHG, 2003b). CHG (2003b) divided the CCS testing and evaluation activities into six categories, as follows: (1) A short set of tests with simulant to select a preferred dry reagent formulation (DRF), determine allowable liquid addition levels, and confirm the Part 2 test matrix. (2) Waste form performance testing on cast stone made from the preferred DRF and a backup DRF, as selected in Part I, and using low activity waste (LAW) simulant. (3) Waste form performance testing on cast stone made from the preferred DRF using radioactive LAW. (4) Waste form validation testing on a selected nominal cast stone formulation using the preferred DRF and LAW simulant. (5) Engineering evaluations of explosive/toxic gas evolution, including hydrogen, from the cast stone product. (6) Technetium ''getter'' testing with cast stone made with LAW simulant and with radioactive LAW. In addition, nitrate leaching observations were drawn from nitrate leachability data obtained in the course of the Parts 2 and 3 waste form performance testing. The nitrate leachability index results are presented along with other data from the applicable activity categories.

LOCKREM, L L

2005-07-13T23:59:59.000Z

349

Dual-Axis Radiographic Hydrodynamic Test Facility At the Los Alamos National Laboratory (LANL), the Dual-Axis  

E-Print Network [OSTI]

's primary mission: to ensure the safety, security, and effectiveness of nuclear weapons in our na- tion of nuclear weapons. The DARHT Facility DARHT consists of two linear induction accelerators that are oriented for computer codes. These radio- graphic images are used to evaluate nuclear weapons though nonnuclear

350

Operational Philosophy for the Advanced Test Reactor National Scientific User Facility  

SciTech Connect (OSTI)

In 2007, the Department of Energy (DOE) designated the Advanced Test Reactor (ATR) as a National Scientific User Facility (NSUF). At its core, the ATR NSUF Program combines access to a portion of the available ATR radiation capability, the associated required examination and analysis facilities at the Idaho National Laboratory (INL), and INL staff expertise with novel ideas provided by external contributors (universities, laboratories, and industry). These collaborations define the cutting edge of nuclear technology research in high-temperature and radiation environments, contribute to improved industry performance of current and future light-water reactors (LWRs), and stimulate cooperative research between user groups conducting basic and applied research. To make possible the broadest access to key national capability, the ATR NSUF formed a partnership program that also makes available access to critical facilities outside of the INL. Finally, the ATR NSUF has established a sample library that allows access to pre-irradiated samples as needed by national research teams.

J. Benson; J. Cole; J. Jackson; F. Marshall; D. Ogden; J. Rempe; M. C. Thelen

2013-02-01T23:59:59.000Z

351

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) HISTORY & STATUS & FUTURE PLANS  

SciTech Connect (OSTI)

In 1993, the US Department of Energy (DOE) decided to shut down the Fast Flux Test Facility (FFTF) due to lack of national missions that justified the annual operating budget of approximately $88M/year. The initial vision was to ''deactive'' the facility to an industrially and radiologically safe condition to allow long-term, minimal surveillance storage until approximately 2045. This approach would minimize near term cash flow and allow the radioactive decay of activated components. The final decontamination and decommissioning (D and D) would then be performed using then-current methodology in a safe and efficient manner. the philosophy has now changed to close coupling the initial deactivation with final D and D. This paper presents the status of the facility and focuses on the future challenge of sodium removal.

FARABEE, O.A.

2006-02-24T23:59:59.000Z

352

Sandia National Laboratories/New Mexico existing environmental analyses bounding environmental test facilities.  

SciTech Connect (OSTI)

This report identifies current environmental operating parameters for the various test and support facilities at SNL/NM. The intent of this report is solely to provide the limits which bound the facilities' operations. Understanding environmental limits is important to maximizing the capabilities and working within the existing constraints of each facility, and supports the decision-making process in meeting customer requests, cost and schedule planning, modifications to processes, future commitments, and use of resources. Working within environmental limits ensures that mission objectives will be met in a manner that protects human health and the environment. It should be noted that, in addition to adhering to the established limits, other approvals and permits may be required for specific projects.

May, Rodney A.; Bailey-White, Brenda E. (Sandia Staffing Alliance, LLC, Albuquerque, NM); Cantwell, Amber (Sandia Staffing Alliance, LLC, Albuquerque, NM)

2009-06-01T23:59:59.000Z

353

Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head  

SciTech Connect (OSTI)

For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110-watt Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

Krause, David L. [National Aeronautics and Space Administration, Glenn Research Center, Cleveland, OH 44135 (United States); Kantzos, Pete T. [Ohio Aerospace Institute, NASA Glenn Research Center, Cleveland, OH 44135 (United States)

2006-01-20T23:59:59.000Z

354

Kenneth J. Turner and Qian Bing. Systematic Testing of Radiotherapy Accelerators. In Hartmut Ehrig, Berndt J. Kramer and Atilla Ertas, editors,  

E-Print Network [OSTI]

Kenneth J. Turner and Qian Bing. Systematic Testing of Radiotherapy Accelerators. In Hartmut Ehrig Society for Desing and Process Science Systematic Testing of Radiotherapy Accelerators Kenneth J. Turner@cs.stir.ac.uk, qb@cs.stir.ac.uk ABSTRACT: The nature of radiotherapy accelerators is briefly ex- plained

Turner, Ken

355

Exploratory test of utility of magnetic insulation for electrostatic accelerators L. R. Grisham, A. von Halle, A. F. Carpe, Guy Rossi, K. R. Gilton et al.  

E-Print Network [OSTI]

Exploratory test of utility of magnetic insulation for electrostatic accelerators L. R. Grisham, A;Exploratory test of utility of magnetic insulation for electrostatic accelerators L. R. Grisham,a) A. von of the electrodes in an electrostatic accelerator, along with their support structures, might suppress field

Gilson, Erik

356

CLOSURE OF THE FAST FLUX TEST FACILITY (FFTF) CURRENT STATUS & FUTURE PLANS  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF) was a 400 MWt sodium-cooled fast reactor situated on the U.S. Department of Energy's (DOE) Hanford Site in the southeastern portion of Washington State. DOE issued the final order to shut down the facility in 2001, when it was concluded that there was no longer a need for FFTF. Deactivation activities are in progress to remove or stabilize major hazards and deactivate systems to achieve end points documented in the project baseline. The reactor has been defueled, and approximately 97% of the fuel has been removed from the facility. Approximately 97% of the sodium has been drained from the plant's systems and placed into an on-site Sodium Storage Facility. The residual sodium will be kept frozen under a blanket of inert gas until it is removed later as part of the facility's decontamination and decommissioning (D&D). Plant systems have been shut down and placed in a low-risk state to minimize requirements for surveillance and maintenance. D&D work cannot begin until an Environmental Impact Statement has been prepared to evaluate various end state options and to provide a basis for selecting one of the options. The Environmental Impact Statement is expected to be issued in 2009.

LESPERANCE, C.P.

2007-05-23T23:59:59.000Z

357

Measurements of emittance growth through the achromatic bend at the BNL Accelerator Test Facility  

SciTech Connect (OSTI)

Measurements of emittance growth in a high peak current beam as it passes through an achromatic double bend are summarized. Experiments were performed using the ATF at Brookhaven National Laboratory by X.J. Wang and D. Kehne as a collaboration resulting from the proposal attached at the end of the document. The ATF consists off an RF gun (1 MeV), two sections of linac (40-75 MeV), a diagnostic section immediately following the linac, a 20{degree} bend magnet, a variable aperture slit at a high dispersion point, 5 quadrupoles, then another 20{degree} bend followed by another diagnostic section. The TRANSPORT deck describing the region from the end of the linac to the end of the diagnostic line following the achromatic bends is attached to the end of this document. Printouts of the control screens are also attached.

Wang, X.J.; Kehne, D.

1997-07-01T23:59:59.000Z

358

Facility for Advanced Accelerator Experimental Tests (FACET) | U.S. DOE  

Office of Science (SC) Website

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial CarbonArticlesHumanJuneDocumenting theScienceEnergyFES(SC)

359

Facility for fast neutron irradiation tests of electronics at the ISIS spallation neutron source  

SciTech Connect (OSTI)

The VESUVIO beam line at the ISIS spallation neutron source was set up for neutron irradiation tests in the neutron energy range above 10 MeV. The neutron flux and energy spectrum were shown, in benchmark activation measurements, to provide a neutron spectrum similar to the ambient one at sea level, but with an enhancement in intensity of a factor of 10{sup 7}. Such conditions are suitable for accelerated testing of electronic components, as was demonstrated here by measurements of soft error rates in recent technology field programable gate arrays.

Andreani, C.; Pietropaolo, A.; Salsano, A. [Centro NAST, Universita degli Studi di Roma Tor Vergata (Italy); Gorini, G.; Tardocchi, M. [Dipartimento di Fisica 'G. Occhialini', Universita degli Studi di Milano-Bicocca (Italy); Paccagnella, A.; Gerardin, S. [Dipartimento di Ingegneria dell'Informazione, Universita di Padova (Italy); Frost, C. D.; Ansell, S. [ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); Platt, S. P. [School of Computing, Engineering and Physical Sciences, University of Central Lancashire, Preston, Lancs. PR1 2HE (United Kingdom)

2008-03-17T23:59:59.000Z

360

The Advanced Test Reactor Irradiation Capabilities Available as a National Scientific User Facility  

SciTech Connect (OSTI)

The Advanced Test Reactor (ATR) is one of the world’s premiere test reactors for performing long term, high flux, and/or large volume irradiation test programs. The ATR is a very versatile facility with a wide variety of experimental test capabilities for providing the environment needed in an irradiation experiment. These capabilities include simple capsule experiments, instrumented and/or temperature-controlled experiments, and pressurized water loop experiment facilities. Monitoring systems have also been utilized to monitor different parameters such as fission gases for fuel experiments, to measure specimen performance during irradiation. ATR’s control system provides a stable axial flux profile throughout each reactor operating cycle, and allows the thermal and fast neutron fluxes to be controlled separately in different sections of the core. The ATR irradiation positions vary in diameter from 16 mm to 127 mm over an active core height of 1.2 m. This paper discusses the different irradiation capabilities with examples of different experiments and the cost/benefit issues related to each capability. The recent designation of ATR as a national scientific user facility will make the ATR much more accessible at very low to no cost for research by universities and possibly commercial entities.

S. Blaine Grover

2008-09-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Common Cryogenic Test Facility for the ATLAS Barrel and End-Cap Toroid Magnets  

SciTech Connect (OSTI)

The large ATLAS toroidal superconducting magnet made of the Barrel and two End-Caps needs extensive testing at the surface of the individual components prior to their final assembly into the underground cavern of LHC. A cryogenic test facility specifically designed for cooling sequentially the eight coils making the Barrel Toroid (BT) has been fully commissioned and is now ready for final acceptance of these magnets. This facility, originally designed for testing individually the 46 tons BT coils, will be upgraded to allow the acceptance tests of the two End-Caps, each of them having a 160 tons cold mass. The integrated system mainly comprises a 1.2 kW at 4.5 K refrigerator, a 10 kW liquid-nitrogen precooler, two cryostats housing liquid helium centrifugal pumps of respectively 80 g/s and 600 g/s nominal flow and specific instrumentation to measure the thermal performances of the magnets. This paper describes the overall facility with particular emphasis to the cryogenic features adopted to match the specific requirements of the magnets in the various operating scenarios.

Delruelle, N.; Haug, F.; Junker, S.; Passardi, G.; Pengo, R.; Pirotte, O. [CERN, AT division, 1211 Geneva 23 (Switzerland)

2004-06-23T23:59:59.000Z

362

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly report, April--June 1995  

SciTech Connect (OSTI)

This quarterly technical progress report summarizes the work completed during the first quarter, April 1 through June 30, 1995. The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasificafion and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel continued at a good pace during the quarter.

NONE

1995-08-01T23:59:59.000Z

363

Hot Gas Cleanup Test Facility for gasification and pressurized combustion. Quarterly report, October--December 1994  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. The major emphasis during this reporting period was continuing the detailed design of the facility and integrating the particulate control devices (PCDs) into structural and process designs. Substantial progress in underground construction activities was achieved during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. Delivery and construction of coal handling and process structural steel began during the quarter. MWK equipment at the grade level and the first tier are being set in the structure.

NONE

1995-02-01T23:59:59.000Z

364

Abbreviated sampling and analysis plan for planning decontamination and decommissioning at Test Reactor Area (TRA) facilities  

SciTech Connect (OSTI)

The objective is to sample and analyze for the presence of gamma emitting isotopes and hazardous constituents within certain areas of the Test Reactor Area (TRA), prior to D and D activities. The TRA is composed of three major reactor facilities and three smaller reactors built in support of programs studying the performance of reactor materials and components under high neutron flux conditions. The Materials Testing Reactor (MTR) and Engineering Test Reactor (ETR) facilities are currently pending D/D. Work consists of pre-D and D sampling of designated TRA (primarily ETR) process areas. This report addresses only a limited subset of the samples which will eventually be required to characterize MTR and ETR and plan their D and D. Sampling which is addressed in this document is intended to support planned D and D work which is funded at the present time. Biased samples, based on process knowledge and plant configuration, are to be performed. The multiple process areas which may be potentially sampled will be initially characterized by obtaining data for upstream source areas which, based on facility configuration, would affect downstream and as yet unsampled, process areas. Sampling and analysis will be conducted to determine the level of gamma emitting isotopes and hazardous constituents present in designated areas within buildings TRA-612, 642, 643, 644, 645, 647, 648, 663; and in the soils surrounding Facility TRA-611. These data will be used to plan the D and D and help determine disposition of material by D and D personnel. Both MTR and ETR facilities will eventually be decommissioned by total dismantlement so that the area can be restored to its original condition.

NONE

1994-10-01T23:59:59.000Z

365

Calendar year 2002 annual site environmental report for Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii.  

SciTech Connect (OSTI)

Tonopah Test Range (TTR) in Nevada and Kauai Test Facility (KTF) in Hawaii are government-owned, contractor-operated facilities operated by Sandia Corporation, a subsidiary of Lockheed Martin Corporation. The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), through the Sandia Site Office (SSO), in Albuquerque, NM, oversees TTR and KTF's operations. Sandia Corporation conducts operations at TTR in support of DOE/NNSA's Weapons Ordnance Program and has operated the site since 1957. Westinghouse Government Services subcontracts to Sandia Corporation in administering most of the environmental programs at TTR. Sandia Corporation operates KTF as a rocket preparation launching and tracking facility. This Annual Site Environmental Report (ASER) summarizes data and the compliance status of the environmental protection and monitoring program at TTR and KTF through Calendar Year (CY) 2002. The compliance status of environmental regulations applicable at these sites include state and federal regulations governing air emissions, wastewater effluent, waste management, terrestrial surveillance, and Environmental Restoration (ER) cleanup activities. Sandia Corporation is responsible only for those environmental program activities related to its operations. The DOE/NNSA, Nevada Site Office (NSO) retains responsibility for the cleanup and management of ER TTR sites. Currently, there are no ER Sites at KTF. Environmental monitoring and surveillance programs are required by DOE Order 5400.1, General Environmental Protection Program (DOE 1990) and DOE Order 231.1, Environment, Safety, and Health Reporting (DOE 1996).

Wagner, Katrina; Sanchez, Rebecca V.; Mayeux, Lucie; Koss, Susan I.; Salinas, Stephanie A.

2003-09-01T23:59:59.000Z

366

A reconnaissance assessment of probabilistic earthquake accelerations at the Nevada Test Site  

SciTech Connect (OSTI)

We have made two interim assessments of the probabilistic ground-motion hazard for the potential nuclear-waste disposal facility at the Nevada Test Site (NTS). The first assessment used historical seismicity and generalized source zones and source faults in the immediate vicinity of the facility. This model produced relatively high probabilistic ground motions, comparable to the higher of two earlier estimates, which was obtained by averaging seismicity in a 400-km-radius circle around the site. The high ground-motion values appear to be caused in part by nuclear-explosion aftershocks remaining in the catalog even after the explosions themselves have been removed. The second assessment used particularized source zones and source faults in a region substantially larger than NTS to provide a broad context of probabilistic ground motion estimates at other locations of the study region. Source faults are mapped or inferred faults having lengths of 5 km or more. Source zones are defined by boundaries separating fault groups on the basis of direction and density. For this assessment, earthquake recurrence has been estimated primarily from historic seismicity prior to nuclear testing. Long-term recurrence for large-magnitude events is constrained by geological estimates of recurrence in a regime in which the large-magnitude earthquakes would occur with predominately normal mechanisms. 4 refs., 10 figs.

Perkins, D.M.; Thenhaus, P.C.; Hanson, S.L.; Algermissen, S.T.

1986-01-01T23:59:59.000Z

367

Bus Research and Testing Program Heavy-duty Chassis Dynamometer and Emissions Testing Facility  

E-Print Network [OSTI]

, hydrocarbons and carbon dioxide from transit buses and heavy-duty vehicles when they are tested on simulated · CO2, CO, HC, NOx, and particulates · Fuels: Diesel, gasoline, CNG, propane, LNG, LPG, ethanol · 30-ton axle capacity · 80 mph speed · Simulated road load curve · Test cycle simulation with driver

Lee, Dongwon

368

Software architecture for the ORNL large-coil test facility data system  

SciTech Connect (OSTI)

The VAX-based data-acquisition system for the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL) is a second-generation system that evolved from a PDP-11/60-based system used during the initial phase of facility testing. The VAX-based software represents a layered implementation that provides integrated access to all of the data sources within the system, decoupling end-user data retrieval from various front-end data sources through a combination of software architecture and instrumentation data bases. Independent VAX processes manage the various front-end data sources, each being responsible for controlling, monitoring, acquiring, and disposing data and control parameters for access from the data retrieval software. This paper describes the software architecture and the functionality incorporated into the various layers of the data system.

Blair, E.T.; Baylor, L.R.

1986-08-01T23:59:59.000Z

369

Software architecture for the ORNL large coil test facility data system  

SciTech Connect (OSTI)

The VAX-based data acquisition system for the International Fusion Superconducting Magnet Test Facility (IFSMTF) at Oak Ridge National Laboratory (ORNL) is a second-generation system that evolved from a PDP-11/60-based system used during the initial phase of facility testing. The VAX-based software represents a layered implementation that provides integrated access to all of the data sources within the system, deoupling end-user data retrieval from various front-end data sources through a combination of software architecture and instrumentation data bases. Independent VAX processes manage the various front-end data sources, each being responsible for controlling, monitoring, acquiring and disposing data and control parameters for access from the data retrieval software. This paper describes the software architecture and the functionality incorporated into the various layers of the data system.

Blair, E.T.; Baylor, L.R.

1986-01-01T23:59:59.000Z

370

Fast Flux Test Facility interim examination and maintenance cell: Past, present, and future  

SciTech Connect (OSTI)

The Fast Flux Test Facility Interim Examination and Maintenance Cell was designed to perform interim examination and/or disassembly of experimental core components for final analysis elsewhere, as well as maintenance of sodium-wetted or neutron-activated internal reactor parts and plant support hardware. The Interim Examination and Maintenance Cell equipment developed and used for the first ten years of operation has been primarily devoted to the disassembly and examination of core component test assemblies. While no major reactor equipment has required remote repair or maintenance, the Interim Examina Examination and Maintenance Cell has served as the remote repair facility for its own in-cell equipment, and several innovative remote repairs have been accomplished. The Interim Examination and Maintenance Cell's demonstrated versatility has shown its capability to support a challenging future. 12 refs., 9 figs.

Vincent, J.R.

1990-09-01T23:59:59.000Z

371

Development of a propulsion system and component test facility for advanced radioisotope powered Mars Hopper platforms  

SciTech Connect (OSTI)

Verification and validation of design and modeling activities for radioisotope powered Mars Hopper platforms undertaken at the Center for Space Nuclear Research is essential for proof of concept. Previous research at the center has driven the selection of advanced material combinations; some of which require specialized handling capabilities. The development of a closed and contained test facility to forward this research is discussed within this paper.

Robert C. O'Brien; Nathan D. Jerred; Steven D. Howe

2011-02-01T23:59:59.000Z

372

Simulation of a small break loss of coolant accident conducted at the BETHSY Integral Test Facility  

E-Print Network [OSTI]

. The computer code RELAP5/MOD3 was used to model the BETHSY Integral Test Facility for a. small break loss of coolant accident. This transient simulates a 2 inch cold leg break without high pressure safety injection, following the conditions of International..., and general input to my gra, duate education. TABLE OF CONTENTS CHAPTER Page I INTRODUCTION I. 1 Need for Investigation I. 2 Computational Modeling . I. 3 Experimental Modeling I, 4 International Cooperation . 1 3 RELAP5 CODE DESCRIPTION II. 1...

Bott, Charles Patrick

1992-01-01T23:59:59.000Z

373

Environmental assessment for device assembly facility operations, Nevada Test Site, Nye County, Nevada. Final report  

SciTech Connect (OSTI)

The U.S. Department of Energy, Nevada Operations Office (DOE/NV), has prepared an environmental assessment (EA), (DOE/EA-0971), to evaluate the impacts of consolidating all nuclear explosive operations at the newly constructed Device Assembly Facility (DAF) in Area 6 of the Nevada Test Site. These operations generally include assembly, disassembly or modification, staging, transportation, testing, maintenance, repair, retrofit, and surveillance. Such operations have previously been conducted at the Nevada Test Site in older facilities located in Area 27. The DAF will provide enhanced capabilities in a state-of-the-art facility for the safe, secure, and efficient handling of high explosives in combination with special nuclear materials (plutonium and highly enriched uranium). Based on the information and analyses in the EA, DOE has determined that the proposed action would not constitute a major federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (42 U.S.C. 4321 et seq.). Therefore, an environmental impact statement is not required, and DOE is issuing this finding of no significant impact.

NONE

1995-05-01T23:59:59.000Z

374

Oxy-Combustion Burner and Integrated Pollutant Removal Research and Development Test Facility  

SciTech Connect (OSTI)

A high flame temperature oxy-combustion test facility consisting of a 5 MWe equivalent test boiler facility and 20 KWe equivalent IPR® was constructed at the Hammond, Indiana manufacturing site. The test facility was operated natural gas and coal fuels and parametric studies were performed to determine the optimal performance conditions and generated the necessary technical data required to demonstrate the technologies are viable for technical and economic scale-up. Flame temperatures between 4930-6120F were achieved with high flame temperature oxy-natural gas combustion depending on whether additional recirculated flue gases are added to balance the heat transfer. For high flame temperature oxy-coal combustion, flame temperatures in excess of 4500F were achieved and demonstrated to be consistent with computational fluid dynamic modeling of the burner system. The project demonstrated feasibility and effectiveness of the Jupiter Oxygen high flame temperature oxy-combustion process with Integrated Pollutant Removal process for CCS and CCUS. With these technologies total parasitic power requirements for both oxygen production and carbon capture currently are in the range of 20% of the gross power output. The Jupiter Oxygen high flame temperature oxy-combustion process has been demonstrated at a Technology Readiness Level of 6 and is ready for commencement of a demonstration project.

Mark Schoenfield; Manny Menendez; Thomas Ochs; Rigel Woodside; Danylo Oryshchyn

2012-09-30T23:59:59.000Z

375

Accelerated testing of metal foil tape joints and their effect of photovoltaic module reliability.  

SciTech Connect (OSTI)

A program is underway at Sandia National Laboratories to predict long-term reliability of photovoltaic (PV) systems. The vehicle for the reliability predictions is a Reliability Block Diagram (RBD), which models system behavior. Because this model is based mainly on field failure and repair times, it can be used to predict current reliability, but it cannot currently be used to accurately predict lifetime. In order to be truly predictive, physics-informed degradation processes and failure mechanisms need to be included in the model. This paper describes accelerated life testing of metal foil tapes used in thin-film PV modules, and how tape joint degradation, a possible failure mode, can be incorporated into the model.

Puskar, Joseph David; Quintana, Michael A.; Sorensen, Neil Robert; Lucero, Samuel J.

2009-07-01T23:59:59.000Z

376

Necessity and Requirements of a Collaborative Effort to Develop a Large Wind Turbine Blade Test Facility in North America  

SciTech Connect (OSTI)

The wind power industry in North America has an immediate need for larger blade test facilities to ensure the survival of the industry. Blade testing is necessary to meet certification and investor requirements and is critical to achieving the reliability and blade life needed for the wind turbine industry to succeed. The U.S. Department of Energy's (DOE's) Wind Program is exploring options for collaborating with government, private, or academic entities in a partnership to build larger blade test facilities in North America capable of testing blades up to at least 70 m in length. The National Renewable Energy Laboratory (NREL) prepared this report for DOE to describe the immediate need to pursue larger blade test facilities in North America, categorize the numerous prospective partners for a North American collaboration, and document the requirements for a North American test facility.

Cotrell, J.; Musial, W.; Hughes, S.

2006-05-01T23:59:59.000Z

377

Hot gas cleanup test facility for gasification and pressurized combustion. Quarterly technical progress report, January 1--March 31, 1992  

SciTech Connect (OSTI)

This quarterly technical progress report summarizes work completed during the Sixth Quarter of the First Budget Period, January 1 through March 31, 1992, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. The major emphasis during this reporting period was expanding the test facility to address system integration issues of hot particulate removal in advanced power generation systems. The conceptual design of the facility was extended to include additional modules for the expansion of the test facility, which is referred to as the Power Systems Development Facility (PSOF). A letter agreement was negotiated between Southern Company Services (SCS) and Foster Wheeler (FW) for the conceptual design of the Advanced Pressurized Fluid-Bed Combustion (APFBC)/Topping Combustor/Gas Turbine System to be added to the facility. The expanded conceptual design also included modifications to the existing conceptual design for the Hot Gas Cleanup Test Facility (HGCTF), facility layout and balance of plant design for the PSOF. Southern Research Institute (SRI) began investigating the sampling requirements for the expanded facility and assisted SCS in contacting Particulate Control Device (PCD) vendors for additional information. SCS also contacted the Electric Power Research Institute (EPRI) and two molten carbonate fuel cell vendors for input on the fuel cell module for the PSDF.

Not Available

1992-12-01T23:59:59.000Z

378

E-Print Network 3.0 - accelerator experimental tests Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Collection: Physics 6 Research in: Experimental Photonuclear Physics Summary: & Phenomenology Particle Astrophysics & Cosmology Accelerator Physics Health Physics...

379

A review of experiments and results from the transient reactor test (TREAT) facility.  

SciTech Connect (OSTI)

The TREAT Facility was designed and built in the late 1950s at Argonne National Laboratory to provide a transient reactor for safety experiments on samples of reactor fuels. It first operated in 1959. Throughout its history, experiments conducted in TREAT have been important in establishing the behavior of a wide variety of reactor fuel elements under conditions predicted to occur in reactor accidents ranging from mild off normal transients to hypothetical core disruptive accidents. For much of its history, TREAT was used primarily to test liquid-metal reactor fuel elements, initially for the Experimental Breeder Reactor-II (EBR-II), then for the Fast Flux Test Facility (FFTF), the Clinch River Breeder Reactor Plant (CRBRP), the British Prototype Fast Reactor (PFR), and finally, for the Integral Fast Reactor (IFR). Both oxide and metal elements were tested in dry capsules and in flowing sodium loops. The data obtained were instrumental in establishing the behavior of the fuel under off-normal and accident conditions, a necessary part of the safety analysis of the various reactors. In addition, TREAT was used to test light-water reactor (LWR) elements in a steam environment to obtain fission-product release data under meltdown conditions. Studies are now under way on applications of TREAT to testing of the behavior of high-burnup LWR elements under reactivity-initiated accident (RIA) conditions using a high-pressure water loop.

Deitrich, L. W.

1998-07-28T23:59:59.000Z

380

An Experimental Test Facility to Support Development of the Fluoride Salt Cooled High Temperature Reactor  

SciTech Connect (OSTI)

The need for high-temperature (greater than 600 C) energy exchange and delivery systems is significantly increasing as the world strives to improve energy efficiency and develop alternatives to petroleum-based fuels. Liquid fluoride salts are one of the few energy transport fluids that have the capability of operating at high temperatures in combination with low system pressures. The Fluoride Salt-Cooled High-Temperature Reactor design uses fluoride salt to remove core heat and interface with a power conversion system. Although a significant amount of experimentation has been performed with these salts, specific aspects of this reactor concept will require experimental confirmation during the development process. The experimental facility described here has been constructed to support the development of the Fluoride Salt Cooled High Temperature Reactor concept. The facility is capable of operating at up to 700 C and incorporates a centrifugal pump to circulate FLiNaK salt through a removable test section. A unique inductive heating technique is used to apply heat to the test section, allowing heat transfer testing to be performed. An air-cooled heat exchanger removes added heat. Supporting loop infrastructure includes a pressure control system; trace heating system; and a complement of instrumentation to measure salt flow, temperatures, and pressures around the loop. The initial experiment is aimed at measuring fluoride salt heat transfer inside a heated pebble bed similar to that used for the core of the pebble bed advanced high-temperature reactor. This document describes the details of the loop design, auxiliary systems used to support the facility, the inductive heating system, and facility capabilities.

Yoder Jr, Graydon L [ORNL] [ORNL; Aaron, Adam M [ORNL] [ORNL; Cunningham, Richard Burns [University of Tennessee, Knoxville (UTK)] [University of Tennessee, Knoxville (UTK); Fugate, David L [ORNL] [ORNL; Holcomb, David Eugene [ORNL] [ORNL; Kisner, Roger A [ORNL] [ORNL; Peretz, Fred J [ORNL] [ORNL; Robb, Kevin R [ORNL] [ORNL; Wilgen, John B [ORNL] [ORNL; Wilson, Dane F [ORNL] [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Surficial geology and performance assessment for a Radioactive Waste Management Facility at the Nevada Test Site  

SciTech Connect (OSTI)

At the Nevada Test Site, one potentially disruptive scenario being evaluated for the Greater Confinement Disposal (GCD) Facility Performance Assessment is deep post-closure erosion that would expose buried radioactive waste to the accessible environment. The GCD Facility located at the Area 5 Radioactive Waste Management Site (RWMS) lies at the juncture of three alluvial fan systems. Geomorphic surface mapping in northern Frenchman Flat indicates that reaches of these fans where the RWMS is now located have been constructional since at least the middle Quaternary. Mapping indicates a regular sequence of prograding fans with entrenchment of the older fan surfaces near the mountain fronts and construction of progressively younger inset fans farther from the mountain fronts. At the facility, the oldest fan surfaces are of late Pleistocene and Holocene age. More recent geomorphic activity has been limited to erosion and deposition along small channels. Trench and pit wall mapping found maximum incision in the vicinity of the RWMS to be less than 1.5 m. Based on collected data, natural geomorphic processes are unlikely to result in erosion to a depth of more than approximately 2 m at the facility within the 10,000-year regulatory period.

Snyder, K.E. [Lockheed Environmental Systems and Technologies, Co., Las Vegas, NV (United States); Gustafson, D.L.; Huckins-Gang, H.E.; Miller, J.J.; Rawlinson, S.E. [Raytheon Services Nevada, Las Vegas, NV (United States)

1995-02-01T23:59:59.000Z

382

Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade  

SciTech Connect (OSTI)

The regulatory requirement to develop an upgraded safety basis for a DOE nuclear facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830).1 Subpart B of 10 CFR 830, “Safety Basis Requirements,” requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements.1 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, “Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants”2 as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

Gregg L. Sharp; R. T. McCracken

2003-06-01T23:59:59.000Z

383

Reactor Accident Analysis Methodology for the Advanced Test Reactor Critical Facility Documented Safety Analysis Upgrade  

SciTech Connect (OSTI)

The regulatory requirement to develop an upgraded safety basis for a DOE Nuclear Facility was realized in January 2001 by issuance of a revision to Title 10 of the Code of Federal Regulations Section 830 (10 CFR 830). Subpart B of 10 CFR 830, ''Safety Basis Requirements,'' requires a contractor responsible for a DOE Hazard Category 1, 2, or 3 nuclear facility to either submit by April 9, 2001 the existing safety basis which already meets the requirements of Subpart B, or to submit by April 10, 2003 an upgraded facility safety basis that meets the revised requirements. 10 CFR 830 identifies Nuclear Regulatory Commission (NRC) Regulatory Guide 1.70, ''Standard Format and Content of Safety Analysis Reports for Nuclear Power Plants'' as a safe harbor methodology for preparation of a DOE reactor documented safety analysis (DSA). The regulation also allows for use of a graded approach. This report presents the methodology that was developed for preparing the reactor accident analysis portion of the Advanced Test Reactor Critical Facility (ATRC) upgraded DSA. The methodology was approved by DOE for developing the ATRC safety basis as an appropriate application of a graded approach to the requirements of 10 CFR 830.

Sharp, G.L.; McCracken, R.T.

2003-05-13T23:59:59.000Z

384

Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research  

SciTech Connect (OSTI)

The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials with Particles and Components Testing (IMPACT) facility and the Pacific Northwest Nuclear Laboratory (PNNL) Radiochemistry Processing Laboratory (RPL) and PIE facilities were added. The ATR NSUF annually hosts a weeklong event called User’s Week in which students and faculty from universities as well as other interested parties from regulatory agencies or industry convene in Idaho Falls, Idaho to see presentations from ATR NSUF staff as well as select researchers from the materials research field. User’s week provides an overview of current materials research topics of interest and an opportunity for young researchers to understand the process of performing work through ATR NSUF. Additionally, to increase the number of researchers engaged in LWR materials issues, a series of workshops are in progress to introduce research staff to stress corrosion cracking, zirconium alloy degradation, and uranium dioxide degradation during in-reactor use.

John Jackson; Todd Allen; Frances Marshall; Jim Cole

2013-03-01T23:59:59.000Z

385

Cold test plan for the Old Hydrofracture Facility tank contents removal project, Oak Ridge National Laboratory, Oak Ridge, Tennessee  

SciTech Connect (OSTI)

This Old Hydrofracture Facility (OHF) Tanks Contents Removal Project Cold Test Plan describes the activities to be conducted during the cold test of the OHF sluicing and pumping system at the Tank Technology Cold Test Facility (TTCTF). The TTCTF is located at the Robotics and Process Systems Complex at the Oak Ridge National Laboratory (ORNL). The cold test will demonstrate performance of the pumping and sluicing system, fine-tune operating instructions, and train the personnel in the actual work to be performed. After completion of the cold test a Technical Memorandum will be prepared documenting completion of the cold test, and the equipment will be relocated to the OHF site.

NONE

1997-11-01T23:59:59.000Z

386

Development of a national spill test facility data base. Topical report, February 1994--February 1995  

SciTech Connect (OSTI)

In the United States, the production of gas, liquid and solid fuels and the associated chemical use accounts for significant volumes of material with the potential of becoming hazardous. Accidental spills or releases of these hazardous materials do occur, and action must be taken to minimize damage to life, property, and the environment. Because of the hazards of testing with chemical spills, a national spill test facility (STF) and an associated testing program have been established to systematically develop new data on the effects and mitigation of hazardous chemical spills Western Research Institute (WRI), in conjunction with the DOE, is developing a comprehensive national spill test data base. I The data base will be easily accessible by industry and the public on the Spill Research Bulletin Board System and will allow users to download spill test data and test descriptions, as well as an extensive bibliography. The 1990 Clean Air Act and Amendments (CAAA) requires that at least two chemicals be field tested at the STF and at least 10 chemicals be studied each year. The chemicals to be studied are chosen with priority given to those that present the greatest risk to human health. The National Spill Test Facility Data Base will include a common chemical data base covering the overlap of federal chemical lists and significant information from other sources. Also, the (CAAA) directs the DOE and EPA to work together with the STF and industry to provide a scientific and engineering basis for writing regulations for implementation of the (CAAA). The data base will be a primary resource in this effort.

NONE

1995-02-01T23:59:59.000Z

387

CURRENT TESTING ACTIVITIES AT THE ACRELAB RENEWABLE ENERGY SYSTEMS TEST FACILITY , E S Spooner2  

E-Print Network [OSTI]

, AUSTRALIA 2 University of New South Wales, Kensington, NSW, AUSTRALIA 3 Australian CRC for Renewable Energy in a minimum of time. ACRELab was originally conceived as a laboratory for testing remote area power supply and RAPS system components such as inverters. With the growing interest in Grid-connected inverters

388

Building State-of-the-Art Wind Technology Testing Facilities (Fact Sheet)  

SciTech Connect (OSTI)

The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy Laboratory (NREL) partnered with the U.S. Department of Energy (DOE) Wind Program and the Massachusetts Clean Energy Center (MassCEC) to design, construct, and operate the Wind Technology Center (WTTC) in Boston, Massachusetts. The WTTC offers a full suite of certification tests for turbine blades up to 90 meters in length. NREL worked closely with MTS Systems Corporation to develop the novel large-scale test systems needed to conduct the static and fatigue tests required for certification. Static tests pull wind turbine blades horizontally and vertically to measure blade deflection and strains. Fatigue tests cycle the blades millions of times to simulate what a blade goes through in its lifetime on a wind turbine. For static testing, the WTTC is equipped with servo-hydraulic winches and cylinders that are connected to the blade through cables to apply up to an 84-mega Newton meter maximum static bending moment. For fatigue testing, MTS developed a commercial version of NREL's patented resonant excitation system with hydraulic cylinders that actuate linear moving masses on the blade at one or more locations. This system applies up to a 21-meter tip-to-tip fatigue test tip displacement to generate 20-plus years of cyclic field loads in a matter of months. NREL also developed and supplied the WTTC with an advanced data acquisition system capable of measuring and recording hundreds of data channels at very fast sampling rates while communicating with test control systems.

Not Available

2012-03-01T23:59:59.000Z

389

Search for underground openings for in situ test facilities in crystalline rock  

SciTech Connect (OSTI)

With a few exceptions, crystalline rocks in this study were limited to plutonic rocks and medium to high-grade metamorphic rocks. Nearly 1700 underground mines, possibly occurring in crystalline rock, were initially identified. Application of criteria resulted in the identification of 60 potential sites. Within this number, 26 mines and 4 civil works were identified as having potential in that they fulfilled the criteria. Thirty other mines may have similar potential. Most of the mines identified are near the contact between a pluton and older sedimentary, volcanic and metamorphic rocks. However, some mines and the civil works are well within plutonic or metamorphic rock masses. Civil works, notably underground galleries associated with pumped storage hydroelectric facilities, are generally located in tectonically stable regions, in relatively homogeneous crystalline rock bodies. A program is recommended which would identify one or more sites where a concordance exists between geologic setting, company amenability, accessibility and facilities to conduct in situ tests in crystalline rock.

Wollenberg, H.A.; Strisower, B.; Corrigan, D.J.; Graf, A.N.; O'Brien, M.T.; Pratt, H.; Board, M.; Hustrulid, W.

1980-01-01T23:59:59.000Z

390

Feasibility of establishing and operating a generic oil shale test facility  

SciTech Connect (OSTI)

The December 19, 1985, Conference Report on House Joint Resolution 465, Further continuing appropriations for Fiscal Year 1986, included instruction to DOE to conduct a feasibility study for a generic oil shale test facility. The study was completed, as directed, and its findings are documented in this report. To determine the feasibility of establishing and operating such a facility, the following approach was used: examine the nature of the resource, and establish and basic functions associated with recovery of the resource; review the history of oil shale development to help put the present discussion in perspective; describe a typical oil shale process; define the relationship between each oil shale system component (mining, retorting, upgrading, environmental) and its cost. Analyze how research could reduce costs; and determine the scope of potential research for each oil shale system component.

Not Available

1986-12-01T23:59:59.000Z

391

TREAT (Transient Reactor Test Facility) reactor control rod scram system simulations and testing  

SciTech Connect (OSTI)

Air cylinders moving heavy components (100 to 300 lbs) at high speeds (above 300 in/sec) present a formidable end-cushion-shock problem. With no speed control, the moving components can reach over 600 in/sec if the air cylinder has a 5 ft stroke. This paper presents an overview of a successful upgrade modification to an existing reactor control rod drive design using a computer model to simulate the modified system performance for system design analysis. This design uses a high speed air cylinder to rapidly insert control rods (278 lb moved 5 ft in less than 300 msec) to scram an air-cooled test reactor. Included is information about the computer models developed to simulate high-speed air cylinder operation and a unique new speed control and end cushion design. A patent application is pending with the US Patent Trade Mark Office for this system (DOE case number S-68,622). The evolution of the design, from computer simulations thru operational testing in a test stand (simulating in-reactor operating conditions) to installation and use in the reactor, is also described. 6 figs.

Solbrig, C.W.; Stevens, W.W.

1990-01-01T23:59:59.000Z

392

Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor  

SciTech Connect (OSTI)

This report describes the EG&G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

Ryskamp, J.M. [ed.; Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

1992-07-01T23:59:59.000Z

393

Safety requirements, facility user needs, and reactor concepts for a new Broad Application Test Reactor  

SciTech Connect (OSTI)

This report describes the EG G Laboratory Directed Research and Development Program (LDRD) Broad Application Test Reactor (BATR) Project that was conducted in fiscal year 1991. The scope of this project was divided into three phases: a project process definition phase, a requirements development phase, and a preconceptual reactor design and evaluation phase. Multidisciplinary teams of experts conducted each phase. This report presents the need for a new test reactor, the project process definition, a set of current and projected regulatory compliance and safety requirements, a set of facility user needs for a broad range of projected testing missions, and descriptions of reactor concepts capable of meeting these requirements. This information can be applied to strategic planning to provide the Department of Energy with management options.

Ryskamp, J.M. (ed.); Liebenthal, J.L.; Denison, A.B.; Fletcher, C.D.

1992-07-01T23:59:59.000Z

394

Status of Proof-Of-Concept testing at the Coal-Fired-Flow Facility, 1993  

SciTech Connect (OSTI)

Proof-of-concept (POC) testing, and collection and evaluation of data continued at the Coal-Fired-Flow Facility during the past year. Following four preliminary tests firing Rosebud coal in 1991 to establish base conditions for the Rosebud coal POC tests, three POC tests were run in 1992, and a fourth test early in 1993. Major equipment additions or modifications included installation of a wet electrostatic precipitator (ESP), which replaced a badly deteriorated venturi. This component also provides improved capability to meet Tennessee pollution regulations while operating the dry ESP and/or baghouse off design, or if one of these two control devices does not function properly. Improvements were also made to the dry ESP prior to the 1993 test, which appear to have improved the performance of this equipment. This paper will present an overview of the major results obtained during the Rosebud coal POC tests, including the performance of the dry and wet electrostatic precipitators. Differences between the Rosebud and Illinois coals will be described, but it is emphasized that these observations are based on incomplete results for the Rosebud coal.

Attig, R.C.; Chapman, J.N.; Johanson, N.R.

1993-06-01T23:59:59.000Z

395

DEDICATED HEAVY ION MEDICAL ACCELERATORS  

E-Print Network [OSTI]

Lancaster, R.B. Yourd, Pre~,Accelerator A w·ideroe~,Basedcarbon beam medical accelerator facility. N "' . ,;j "' ::lEat the MARIA Workshop III: Accelerator Systems for Relat ic

Gough, R.A.

2013-01-01T23:59:59.000Z

396

EA-1035: Relocation of the Weapons Component Testing Facility Los Alamos National Laboratory, Los Alamos, New Mexico  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of the proposal to relocate the Weapons Component Testing Facility from Building 450 to Building 207, both within Technical Area 16, at the U.S....

397

LLNL heart valve condition classification project anechoic testing results at the TRANSDEC evaluation facility  

SciTech Connect (OSTI)

This report first briefly outlines the procedures and support/activation fixture developed at LLNL to perform the heart valve tests in an anechoic-like tank at the US Navy Transducer Evaluation Facility (TransDec) located in San Diego, CA. Next they discuss the basic experiments performed and the corresponding experimental plan employed to gather meaningful data systematically. The signal processing required to extract the desired information is briefly developed along with some of the data. Finally, they show the results of the individual runs for each valve, point out any of the meaningful features and summaries.

Candy, J V

1999-10-31T23:59:59.000Z

398

Power Hardware-in-the-Loop (PHIL) Testing Facility for Distributed Energy Storage (Poster)  

SciTech Connect (OSTI)

The growing deployment of distributed, variable generation and evolving end-user load profiles presents a unique set of challenges to grid operators responsible for providing reliable and high quality electrical service. Mass deployment of distributed energy storage systems (DESS) has the potential to solve many of the associated integration issues while offering reliability and energy security benefits other solutions cannot. However, tools to develop, optimize, and validate DESS control strategies and hardware are in short supply. To fill this gap, NREL has constructed a power hardware-in-the-loop (PHIL) test facility that connects DESS, grid simulator, and load bank hardware to a distribution feeder simulation.

Neubauer.J.; Lundstrom, B.; Simpson, M.; Pratt, A.

2014-06-01T23:59:59.000Z

399

AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility  

SciTech Connect (OSTI)

This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

Stephen Schey; Jim Francfort

2014-10-01T23:59:59.000Z

400

Photo of the Week: The Mirror Fusion Test Facility | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion | Department ofT ib l L d F SSalesOE0000652GrowE-mail onThe Mirror Fusion Test Facility Photo

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

The dual axis radiographic hydrodynamic test (DARHT) facility personnel safety system (PSS) control system  

SciTech Connect (OSTI)

The mission of the Dual Axis Radiograph Hydrodynamic Test (DARHT) Facility is to conduct experiments on dynamic events of extremely dense materials. The PSS control system is designed specifically to prevent personnel from becoming exposed to radiation and explosive hazards during machine operations and/or the firing site operation. This paper will outline the Radiation Safety System (RSS) and the High Explosive Safety System (HESS) which are computer-controlled sets of positive interlocks, warning devices, and other exclusion mechanisms that together form the PSS.

Jacquez, Edward B [Los Alamos National Laboratory

2008-01-01T23:59:59.000Z

402

E-Print Network 3.0 - accelerated life-time testing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: ,9 . Despite its impact on the performance and life- time of wind turbines, the published research on wind... for the drive average train acceleration...

403

Advanced Test Reactor Complex Facilities Radioactive Waste Management Basis and DOE Manual 435.1-1 Compliance Tables  

SciTech Connect (OSTI)

U.S. Department of Energy Order 435.1, 'Radioactive Waste Management,' along with its associated manual and guidance, requires development and maintenance of a radioactive waste management basis for each radioactive waste management facility, operation, and activity. This document presents a radioactive waste management basis for Idaho National Laboratory's Advanced Test Reactor Complex facilities that manage radioactive waste. The radioactive waste management basis for a facility comprises existing laboratory-wide and facility-specific documents. U.S. Department of Energy Manual 435.1-1, 'Radioactive Waste Management Manual,' facility compliance tables also are presented for the facilities. The tables serve as a tool to develop the radioactive waste management basis.

Lisa Harvego; Brion Bennett

2011-11-01T23:59:59.000Z

404

Small Hybrid Systems and Applications Testing at NREL's Outdoor Test Facility  

SciTech Connect (OSTI)

The PV International Program at the National Renewable Energy Laboratory recently installed a small hybrid solar and wind energy system that could produce enough electricity to power a cabin or provide electricity in a remote village, without being connected to a utility grid. The solar system can provide 1,400 watts of power, and the wind turbine is rated at 900 watts when the wind is blowing at 28 miles per hour. The 48-volt system has eight batteries for storage. When the batteries are fully charged, the control system slows down the wind turbine so as not to overcharge the batteries. The turbine is mounted on a tilt-down, guyless, 30-foot tower that allows one person to easily lower and raise the machine for maintenance. A data acquisition system is being designed to monitor the individual outputs from the solar system and the wind system. The small hybrid system is housed in an insulated shed, the PV International Program's Test Building (ITB). The ITB contains electrical loads found in the average home, including a refrigerator, lights, heaters, air coolers, computers, and a radio.

Roybal, L.

2005-01-01T23:59:59.000Z

405

Second performance assessment iteration of the Greater Confinement Disposal facility at the Nevada Test Site  

SciTech Connect (OSTI)

The Greater Confinement Disposal (GCD) facility was established in Area 5 at the Nevada Test Site for containment of waste inappropriate for shallow land burial. Some transuranic (TRU) waste has been disposed of at the GCD facility, and compliance of this disposal system with EPA regulation 40 CFR 191 must be evaluated. We have adopted an iterative approach in which performance assessment results guide site data collection, which in turn influences the parameters and models used in performance assessment. The first iteration was based upon readily available data, and indicated that the GCD facility would likely comply with 40 CFR 191 and that the downward flux of water through the vadose zone (recharge) had a major influence on the results. Very large recharge rates, such as might occur under a cooler, wetter climate, could result in noncompliance. A project was initiated to study recharge in Area 5 by use of three environmental tracers. The recharge rate is so small that the nearest groundwater aquifer will not be contaminated in less than 10,000 years. Thus upward liquid diffusion of radionuclides remained as the sole release pathway. This second assessment iteration refined the upward pathway models and updated the parameter distributions based upon new site information. A new plant uptake model was introduced to the upward diffusion pathway; adsorption and erosion were also incorporated into the model. Several modifications were also made to the gas phase radon transport model. Plutonium solubility and sorption coefficient distributions were changed based upon new information, and on-site measurements were used to update the moisture content distributions. The results of the assessment using these models indicate that the GCD facility is likely to comply with all sections of 40 CFR 191 under undisturbed conditions.

Baer, T.A.; Emery, J.N. [GRAM, Inc., Albuquerque, NM (United States); Price, L.L. [Science Applications International Corp., Albuquerque, NM (United States); Olague, N.E. [Sandia National Labs., Albuquerque, NM (United States)

1994-04-01T23:59:59.000Z

406

Hot gas cleanup test facility for gasification and pressurized combustion project. Quarterly report, October--December 1995  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: Carbonizer/pressurized circulating fluidized bed gas source; hot gas cleanup units to mate to all gas streams; combustion gas turbine; and fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during this reporting period was continuing the detailed design of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDs) into the structural and process designs. Substantial progress in construction activities was achieved during this quarter.

NONE

1996-02-01T23:59:59.000Z

407

Design and development of a high-temperature sodium compatibility testing facility  

SciTech Connect (OSTI)

The use of advanced alloys within sodium-cooled fast reactors (SFRs) has been identified as a means of increasing plant efficiency and reducing construction costs. In particular, alloys such as NF-616, NF-709 and HT-UPS are promising because they exhibit greater strength than traditional structural materials such as 316-SS. However, almost nothing is known about the sodium compatibility of these new alloys. Therefore, research taking place at the Univ. of Wisconsin-Madison is focused on studying the effects of sodium corrosion on these materials under prototypic SFR operating conditions (600 [ deg. C], V Na=10 [m/s], C 0{approx} 1 [wppm]). This paper focuses on the design and construction of the testing facility with an emphasis on moving magnet pumps (MMPs). Corrosion data from a preliminary 500 [hr] natural convection test will also be presented. (authors)

Hvasta, M. G.; Nolet, B. K.; Anderson, M. H. [Univ. of Wisconsin-Madison, 1500 Engineering Dr., Madison - ERB 841, WI 53705 (United States)

2012-07-01T23:59:59.000Z

408

Particulate Control Device (PCD) Testing at the Power Systems Development Facility, Wilsonville, Alabama  

SciTech Connect (OSTI)

One of the U.S. Department of Energy`s (DOE`s) objectives overseen by the Morgantown Energy Technology Center (METC) is to test systems and components for advanced coal-based power generation systems, including integrated gasification combined cycle (IGCC), pressurized fluidized-bed combustion (PFBC), and integrated gasification/fuel cell (IGFC) systems. Stringent particulate requirements for fuel gas for both combustion turbines and fuel cells that are integral to these systems. Particulates erode and chemically attack the blade surfaces in turbines, and cause blinding of the electrodes in fuel cells. Filtration of the hot, high-pressure, gasified coal is required to protect these units. Filtration can be accomplished by first cooling the gas, but the system efficiency is reduced. High-temperature, high-pressure, particulate control devices (PCDs) need to be developed to achieve high efficiency and to extend the lifetime of downstream components to acceptable levels. Demonstration of practical high-temperature PCDs is crucial to the evolution of advanced, high-efficiency, coal-based power generation systems. The intent at the Power Systems Development Facility (PSDF) is to establish a flexible test facility that can be used to (1) develop advanced power system components, such as high-temperature, high-pressure PCDs; (2) evaluate advanced power system configurations and (3) assess the integration and control issues of these advanced power systems.

Longanbach, J.R.

1995-12-01T23:59:59.000Z

409

EERC pilot-scale CFBC evaluation facility Project CFB test results  

SciTech Connect (OSTI)

Project CFB was initiated at the University of North Dakota Energy and Environmental Research Center (EERC) in May 1988. Specific goals of the project were to (1) construct a circulating fluidized-bed combustor (CFBC) facility representative of the major boiler vendors' designs with the capability of producing scalable data, (2) develop a database for use in making future evaluations of CFBC technology, and (3) provide a facility for evaluating fuels, free of vendor bias for use in the - energy industry. Five coals were test-burned in the 1-MWth unit: North Dakota and Asian lignites, a Wyoming subbituminous, and Colorado and Pennsylvania bituminous coats. A total of 54 steady-state test periods were conducted, with the key test parameters being the average combustor temperature, excess air, superficial gas velocity, calcium-to-sulfur molar ratio, and the primary air-to-secondary air split. The capture for a coal fired in a CFBC is primarily dependent upon the total alkali-to-sulfur ratio. The required alkali-to ratio for 90% sulfur retention ranged from 1.4 to 4.9, depending upon coal type. While an alkali-to-ratio of 4.9 was required to meet 90% sulfur retention for the Salt Creek coal versus 1.4 for the Asian lignite, the total amount of sorbent addition required is much less for the Salt Creek coal, 4.2 pound sorbent per million Btu coal input, versus 62 pound/million Btu for the Asian lignite. The bituminous coals tested show optimal capture at combustor temperatures of approximately 1550[degree]F, with low-rank coals having optimal sulfur capture approximately 100[degree]F lower.

Mann, M.D.; Hajicek, D.R.; Henderson, A.K.; Moe, T.A.

1992-09-01T23:59:59.000Z

410

DWPF (Defense Waste Processing Facility) canister impact testing and analyses for the Transportation Technology Center  

SciTech Connect (OSTI)

A legal weight truck cask design has been developed for the US Department of Energy by GA Technologies, Inc. The cask will be used to transport defense high-level waste canisters produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The development of the cask required the collection of impact data for the DWPF canisters. The Materials Characterization Center (MCC) performed this work under the guidance of the Transportation Technology Center (TTC) at Sandia National Laboratories. Two full-scale DWPF canisters filled with nonradioactive borosilicate glass were impacted under ''normal'' and ''hypothetical'' accident conditions. Two canisters, supplied by the DWPF, were tested. Each canister was vertically dropped on the bottom end from a height of either 0.3 m or 9.1 m (for normal or hypothetical accident conditions, respectively). The structural integrity of each canister was then examined using helium leak and dye penetrant testing. The canisters' diameters and heights, which had been previously measured, were then remeasured to determine how the canister dimensions had changed. Following structural integrity testing, the canisters were flaw leak tested. For transportation flaw leak testing, four holes were fabricated into the shell of canister A-27 (0.3 m drop height). The canister was then transported a total distance of 2069 miles. During transport, the waste form material that fell from each flaw was collected to determine the amount of size distribution of each flaw release. 2 refs., 8 figs., 12 tabs.

Farnsworth, R.K.; Mishima, J.

1988-12-01T23:59:59.000Z

411

Safety and licensing issues that are being addressed by the Power Burst Facility test programs. [PWR; BWR  

SciTech Connect (OSTI)

This paper presents an overview of the results of the experimental program being conducted in the Power Burst Facility and the relationship of these results to certain safety and licensing issues. The safety issues that were addressed by the Power-Cooling-Mismatch, Reactivity Initiated Accident, and Loss of Coolant Accident tests, which comprised the original test program in the Power Burst Facility, are discussed. The resolution of these safety issues based on the results of the thirty-six tests performed to date, is presented. The future resolution of safety issues identified in the new Power Burst Facility test program which consists of tests which simulate BWR and PWR operational transients, anticipated transients without scram, and severe fuel damage accidents, is described.

McCardell, R.K.; MacDonald, P.E.

1980-01-01T23:59:59.000Z

412

CENER/NREL Collaboration in Testing Facility and Code Development: Cooperative Research and Development Final Report, CRADA Number CRD-06-207  

SciTech Connect (OSTI)

Under the funds-in CRADA agreement, NREL and CENER will collaborate in the areas of blade and drivetrain testing facility development and code development. The project shall include NREL assisting in the review and instruction necessary to assist in commissioning the new CENER blade test and drivetrain test facilities. In addition, training will be provided by allowing CENER testing staff to observe testing and operating procedures at the NREL blade test and drivetrain test facilities. CENER and NREL will exchange blade and drivetrain facility and equipment design and performance information. The project shall also include exchanging expertise in code development and data to validate numerous computational codes.

Moriarty, P.

2014-11-01T23:59:59.000Z

413

Fission product behavior during the PBF (Power Burst Facility) Severe Fuel Damage Test 1-1  

SciTech Connect (OSTI)

In response to the accident at Three Mile Island Unit 2 (TMI-2), the United States Nuclear Regulatory Commission (USNRC) initiated a series of Severe Fuel Damage tests that were performed in the Power Burst Facility at the Idaho National Engineering Laboratory to obtain data necessary to understand (a) fission product release, transport, and deposition; (b) hydrogen generation; and (c) fuel/cladding material behavior during degraded core accidents. Data are presented about fission product behavior noted during the second experiment of this series, the Severe Fuel Damage Test 1-1, with an in-depth analysis of the fission product release, transport, and deposition phenomena that were observed. Real-time release and transport data of certain fission products were obtained from on-line gamma spectroscopy measurements. Liquid and gas effluent grab samples were collected at selected periods during the test transient. Additional information was obtained from steamline deposition analysis. From these and other data, fission product release rates and total release fractions are estimated and compared with predicted release behavior using current models. Fission product distributions and a mass balance are also summarized, and certain probable chemical forms are predicted for iodine, cesium, and tellurium. An in-depth evaluation of phenomena affecting the behavior of the high-volatility fission products - xenon, krypton, iodine, cesium, and tellurium - is presented. Analysis indicates that volatile release from fuel is strongly influenced by parameters other than fuel temperature. Fission product behavior during transport through the Power Burst Facility effluent line to the fission product monitoring system is assessed. Tellurium release behavior is also examined relatve to the extent of Zircaloy cladding oxidation. 81 fig., 53 tabs.

Hartwell, J K; Petti, D A; Hagrman, D L; Jensen, S M; Cronenberg, A W

1987-05-01T23:59:59.000Z

414

New High Power Test Facility for VHF Power Amplifiers at LANSCE  

SciTech Connect (OSTI)

A new test facility was designed and constructed at Los Alamos Neutron Science Center (LANSCE) for testing the Thales TH628 Diacrode{sup R} and TH781 tetrode power amplifiers. Anode power requirements for the TH628 are 28 kV DC, with peak currents of 190 Amperes in long pulses. A charging power supply was obtained by reconfiguring a 2 MW beam power supply remaining from another project. A traditional ignitron crowbar was designed to rapidly discharge the 88 kJ stored energy. The anode power supply was extensively tested using a pulsed tetrode switch and resistor load. A new Fast Protect and Monitor System (FPMS) was designed to take samples of RF reflected power, anode HV, and various tube currents, with outputs to quench the HV charging supply, remove RF drive and disable the conduction bias pulse to the grid of each tube during fault events. The entire test stand is controlled with a programmable logic controller (PLC), for normal startup sequencing and timing, protection against loss of cooling, and provision for operator GUI.

Lyles, John T. [Los Alamos National Laboratory; Archuletta, Steve [retired LANL; Baca, David M. [Los Alamos National Laboratory; Bratton, Ray E. [Los Alamos National Laboratory; Brennan, Nicholas W. [Los Alamos National Laboratory; Davis, Jerry L. [Los Alamos National Laboratory; Lopez, Luis J. [Los Alamos National Laboratory; Rees, Daniel E. [Los Alamos National Laboratory; Rodriguez, Manuelita B. [Los Alamos National Laboratory; Sandoval, Gilbert M. Jr. [Los Alamos National Laboratory; Steck, Andy I. [Los Alamos National Laboratory; Summers, Richard D. [Los Alamos National Laboratory; Vigil, Danny J. [Los Alamos National Laboratory

2011-01-01T23:59:59.000Z

415

SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W. Burgess, J. B. Chesser, V. B. Graves, and S.L. Schrock  

E-Print Network [OSTI]

SNS Target Test Facility: Prototype Hg Operations and Remote Handling Tests P. T. Spampinato, T. W remote handling techniques and tools for replacing target system components. During the past year and analytical data. These included a welded-tube heat exchanger, an electromagnetic flow meter, a hydraulically

McDonald, Kirk

416

Scaling Studies for High Temperature Test Facility and Modular High Temperature Gas-Cooled Reactor  

SciTech Connect (OSTI)

The Oregon State University (OSU) High Temperature Test Facility (HTTF) is an integral experimental facility that will be constructed on the OSU campus in Corvallis, Oregon. The HTTF project was initiated, by the U.S. Nuclear Regulatory Commission (NRC), on September 5, 2008 as Task 4 of the 5-year High Temperature Gas Reactor Cooperative Agreement via NRC Contract 04-08-138. Until August, 2010, when a DOE contract was initiated to fund additional capabilities for the HTTF project, all of the funding support for the HTTF was provided by the NRC via their cooperative agreement. The U.S. Department of Energy (DOE) began their involvement with the HTTF project in late 2009 via the Next Generation Nuclear Plant (NGNP) project. Because the NRC's interests in HTTF experiments were only centered on the depressurized conduction cooldown (DCC) scenario, NGNP involvement focused on expanding the experimental envelope of the HTTF to include steady-state operations and also the pressurized conduction cooldown (PCC).

Richard R. Schult; Paul D. Bayless; Richard W. Johnson; James R. Wolf; Brian Woods

2012-02-01T23:59:59.000Z

417

Activities to support the liquefied gaseous fuels spill test facility program. Final report  

SciTech Connect (OSTI)

Approximately a hundred years ago the petrochemical industry was in its infancy, while the chemical industry was already well established. Today, both of these industries, which are almost indistinguishable, are a substantial part of the makeup of the U.S. economy and the lifestyle we enjoy. It is difficult to identify a single segment of our daily lives that isn`t affected by these industries and the products or services they make available for our use. Their survival and continued function in a competitive world market are necessary to maintain our current standard of living. The occurrence of accidents in these industries has two obvious effects: (1) the loss of product during the accident and future productivity because of loss of a portion of a facility or transport medium, and (2) the potential loss of life or injury to individuals, whether workers, emergency responders, or members of the general public. A great deal of work has been conducted at the Liquefied Gaseous Fuels Spill test Facility (LGFSTF) on hazardous spills. WRI has conducted accident investigations as well as provided information on the research results via the internet and bibliographies.

Sheesley, D.; King, S.B.; Routh, T.

1997-03-01T23:59:59.000Z

418

PFBC HGCU Test Facility. Technical progress report: Third Quarter, CY 1993  

SciTech Connect (OSTI)

This is the sixteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC (pressurized fluidized-bed combustion) Hot Gas Clean Up Test Facility (HGCU). This report covers the period of work completed during the Third Quarter of CY 1993. During this quarter, the Advanced Particle Filter (APF) was operated for a total of 1295 hours. This represents 58% availability during July, August, September, and including June 30 of the previous quarter. The operating dates and times since initial operation are summarized. The APF operating temperatures and differential pressures are provided. Details of the APF runs during this quarter are included in this report.

Not Available

1993-10-01T23:59:59.000Z

419

Neutron measurements from beam-target reactions at the ELISE neutral beam test facility  

SciTech Connect (OSTI)

Measurements of 2.5 MeV neutron emission from beam-target reactions performed at the ELISE neutral beam test facility are presented in this paper. The measurements are used to study the penetration of a deuterium beam in a copper dump, based on the observation of the time evolution of the neutron counting rate from beam-target reactions with a liquid scintillation detector. A calculation based on a local mixing model of deuterium deposition in the target up to a concentration of 20% at saturation is used to evaluate the expected neutron yield for comparison with data. The results are of relevance to understand neutron emission associated to beam penetration in a solid target, with applications to diagnostic systems for the SPIDER and MITICA Neutral Beam Injection prototypes.

Xufei, X., E-mail: xiexufei@pku.edu.cn; Fan, T. [State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871 (China); Nocente, M.; Gorini, G. [Dipartimento di Fisica “G. Occhialini”, Universitŕ di Milano-Bicocca, Milano 20216 (Italy); Istituto di Fisica del Plasma “P. Caldirola”, Milano 20216 (Italy); Bonomo, F. [Consorzio RFX, Padova 35100 (Italy); Istituto Gas Ionizzati, CNR, Padova 35100 (Italy); Franzen, P.; Fröschle, M. [Max-Planck-Institut für Plasmaphysik, Garching 84518 (Germany); Grosso, G.; Tardocchi, M. [Istituto di Fisica del Plasma “P. Caldirola”, Milano 20216 (Italy); Grünauer, F. [Physics Consulting, Zorneding 85604 (Germany); Pasqualotto, R. [Consorzio RFX, Padova 35100 (Italy)

2014-11-15T23:59:59.000Z

420

PFBC HGCU Test Facility. Second quarterly technical progress report, CY 1993  

SciTech Connect (OSTI)

This is the fifteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd Pressurized Fluidized Bed Combustion (PFBC) Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Second Quarter of CY 1993.Work accomplished during the reporting period includes: the expansion joint heaters and control system were installed and tested. The system consists of 8 bellows heaters and 14 heaters on the adjacent piping. During initial testing, 11 of the 14 pipe and heaters failed due to overheating caused by control and installation problems; A pneumatically powered vibrator was installed in the APF manway nozzle to vibrate the hopper liner during back pulsing. This should eliminate any build-up on the pipes of the hopper; Two half capacity diesel driven back-up pulse air compressors were rented and installed; Installation of an emergency ash removal system was completed. The system enables ash to be removed via a line connected to the pipe between the outlet of the screw cooler and the inlet of the lockhopper system; Installation of the spoiling air line, valves, and metering orifice to the primary cyclone was completed; Numerous revisions were made to the Net 90 instrumentation and control system and the POPS data trending system to enhance system control and performance monitoring capability.

Not Available

1993-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Design of a Portable Test Facility for the ATLAS Tile Calorimeter Front-End Electronics Verification  

E-Print Network [OSTI]

An FPGA-based motherboard with an embedded hardware processor is used to implement a portable test- bench for the full certification of Tile Calorimeter front-end electronics in the ATLAS experiment at CERN. This upgrade will also allow testing future versions of the TileCal read-out electronics as well. Because of its lightness the new facility is highly portable, allowing on-detector validation using sophisticated algorithms. The new system comprises a front-end GUI running on an external portable computer which controls the motherboard. It also includes several dedicated daughter-boards that exercise the different specialized functionalities of the system. Apart from being used to evaluate different technologies for the future upgrades, it will be used to certify the consolidation of the electronics by identifying low frequency failures. The results of the tests presented here show that new system is well suited for the 2013 ATLAS Long Shutdown. We discuss all requirements necessary to give full confidence...

Kim, HY; The ATLAS collaboration; Carrio, F; Moreno, P; Masike, T; Reed, R; Sandrock, C; Schettino, V; Shalyugin, A; Solans, C; Souza, J; Suter, R; Usai, G; Valero, A

2013-01-01T23:59:59.000Z

422

Establishment of a facility for intrusive characterization of transuranic waste at the Nevada Test Site  

SciTech Connect (OSTI)

This paper describes design and construction, project management, and testing results associated with the Waste Examination Facility (WEF) recently constructed at the Nevada Test Site (NTS). The WEF and associated systems were designed, procured, and constructed on an extremely tight budget and within a fast track schedule. Part 1 of this paper focuses on design and construction activities, Part 2 discusses project management of WEF design and construction activities, and Part 3 describes the results of the transuranic (TRU) waste examination pilot project conducted at the WEF. In Part 1, the waste examination process is described within the context of Waste Isolation Pilot Plant (WIPP) characterization requirements. Design criteria are described from operational and radiological protection considerations. The WEF engineered systems are described. These systems include isolation barriers using a glove box and secondary containment structure, high efficiency particulate air (HEPA) filtration and ventilation systems, differential pressure monitoring systems, and fire protection systems. In Part 2, the project management techniques used for ensuring that stringent cost/schedule requirements were met are described. The critical attributes of these management systems are described with an emphasis on team work. In Part 3, the results of a pilot project directed at performing intrusive characterization (i.e., examination) of TRU waste at the WEF are described. Project activities included cold and hot operations. Cold operations included operator training, facility systems walk down, and operational procedures validation. Hot operations included working with plutonium contaminated TRU waste and consisted of waste container breaching, waste examination, waste segregation, data collection, and waste repackaging.

Foster, B.D.; Musick, R.G.; Pedalino, J.P.; Cowley, J.L. [Bechtel Nevada Corp., Las Vegas, NV (United States); Karney, C.C. [Dept. of Energy, Las Vegas, NV (United States); Kremer, J.L.

1998-01-01T23:59:59.000Z

423

Fusion Nuclear Schience Facility-AT: A Material And Component Testing Device  

SciTech Connect (OSTI)

A Fusion Nuclear Science Facility (FNSF) is a necessary complement to ITER, especially in the area of materials and components testing, needed for DEMO design development. FNSF-AT, which takes advantage of advanced tokamak (AT) physics should have neutron wall loading of 1-2 MW/m2, continuous operation for periods of up to two weeks, a duty factor goal of 0.3 per year and an accumulated fluence of 3-6 MW-yr/m2 (~30-60 dpa) in ten years to enable the qualification of structural, blanket and functional materials, components and corresponding ancillary equipment necessary for the design and licensing of a DEMO. Base blankets with a ferritic steel structure and selected tritium blanket materials will be tested and used for the demonstration of tritium sufficiency. Additional test ports at the outboard mid-plane will be reserved for test blankets with advanced designs or exotic materials, and electricity production for integrated high fluence testing in a DT fusion spectrum. FNSF-AT will be designed using conservative implementations of all elements of AT physics to produce 150-300 MW fusion power with modest energy gain (Q<7) in a modest sized normal conducting coil device. It will demonstrate and help to select the DEMO plasma facing, structural, tritium breeding, functional materials and ancillary equipment including diagnostics. It will also demonstrate the necessary tritium fuel cycle, design and cooling of the first wall chamber and divertor components. It will contribute to the knowledge on material qualification, licensing, operational safety and remote maintenance necessary for DEMO design

Wong, C. P.; Chan, V. S.; Garofalo, A. M.; Stambaugh, Ron; Sawan, M.; Kurtz, Richard J.; Merrill, Brad

2012-07-01T23:59:59.000Z

424

[Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion]. Quarterly technical progress report, October 1--December 31, 1993  

SciTech Connect (OSTI)

This quarterly technical progress report summarizes work completed during the Second Quarter of the Second Budget Period, October 1 through December 31, 1993, under the Department of Energy (DOE) Cooperative Agreement No. DE-FC21-90MC25140 entitled ``Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion.`` The objective of this project is to evaluate hot gas particle control technologies using coal-derived gas streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed include the integration of the particulate control devices into coal utilization systems, on-line cleaning techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scaleup of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the existing Transport Reactor gas source and Hot Gas Cleanup Units: (1) Carbonizer/pressurized circulating fluidized bed gas source; (2) hot gas cleanup units to mate to all gas streams; (3) combustion gas turbine; (4) fuel cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF).

Not Available

1993-12-31T23:59:59.000Z

425

Closure of the Fast Flux Test Facility: Current Status and Future Plans  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF) was a 400 MWt sodium cooled fast reactor designed and constructed in the 1970's. The original purpose of the facility was to develop and test advanced fuels and materials for the liquid metal fast breeder reactor program. The facility operated very successfully from 1982 through 1992, fulfilling its original mission as well as other identified missions. However, in 1993 the Department of Energy concluded that there was no longer a need for the FFTF and thus ordered that it be shut down. Following eight years of additional study of potential new missions, the final decision to shut down the facility was made in 2001. (During this eight year period the plant was maintained in a condition to allow safe and efficient shut down or restart). The complete closure of the FFTF consists of the following phases: - Deactivation - removal/stabilization of hazards to allow long-term storage (2001-2009); - Surveillance and maintenance - minimum cost compliant storage (2010-2015); - Decontamination and decommissioning (2016-2024). All of the FFTF fuel has been removed from the site except the sodium-bonded fuel that is destined for transportation to Idaho National Laboratory for final disposition. The sodium-bonded fuel had metallic sodium inside of the fuel pin to increase the heat transfer from the fuel pellet to the clad in order to reduce pellet centerline temperature. Three hundred and seventy-six (376) fuel assemblies have been washed (sodium removed) and transferred to storage at other Hanford locations. The majority of the spent fuel is stored in interim storage casks designed for a 50 year storage life, holding seven assemblies each. All sodium systems have been drained and the sodium stored under an inert gas blanket at ambient temperature in a Sodium Storage Facility at the FFTF site. This facility consists of four large tanks and associated piping. The main contaminants are sodium-22, cesium-137 and tritium. The sodium-potassium (NaK) that was used as an intermediate cooling fluid in several FFTF systems has been drained and removed or flushed to sodium systems where it became mixed with the sodium. The in-containment hot cell has minimal sodium contamination, is currently inerted with argon and is being used for loading of the T-3 transportation cask with the sodium-bonded fuel for transportation to Idaho National Laboratory. The majority of the fuel handling machines are still operational and being used for loading the sodium-bonded fuel into the T-3 casks. This equipment will be shut down immediately following completion of shipment of the sodium-bonded fuel. The majority of hotel systems are still operating. Four of the eight 400-ton chillers have been shut down and four of the cooling towers have been shut down. The argon system is operational and supplying gas for sodium systems cover gas, in-containment hot cell atmosphere and fuel handling systems. The nitrogen system remains in service supplying cover gas to the demineralized water system and fire suppression systems. Eleven of the facilities nineteen transformers containing polychlorinated biphenyls (PCBs) have been removed and significant re-routing of power has been performed to support the long term minimum cost surveillance mode. Future plans include the complete deactivation, the long-term surveillance and maintenance, the sodium disposition and the decontamination and decommissioning The most complex and costly activity during the decontamination and decommissioning phase will be the removal of the 'residual sodium' in the sodium systems. It was impractical to remove the residual sodium during the systems draining evolution. It is estimated that approximately 24,000 liters (6,400 gallons) remain within the systems. The complexity of design of the FFTF exceeds any sodium facility in the United States in which sodium removal has occurred. There are a total of 21 miles of sodium piping in the FFTF as well as three large vessels (the reactor vessel and two spent fuel pool vessels) that will require partial disassembly and drilli

Farabee, O.A. [US Department of Energy, PO Box 550, Richland, WA 99352 (United States); Witherspoon, W.V. [Fluor Hanford, PO Box 1000 N2-51, Richland, WA 99352 (United States)

2008-01-15T23:59:59.000Z

426

Hot Gas Cleanup Test Facility for Gasification and Pressurized Combustion Project. Quarterly report, April--June 1996  

SciTech Connect (OSTI)

The objective of this project is to evaluate hot gas particle control technologies using coal-derived as streams. This will entail the design, construction, installation, and use of a flexible test facility which can operate under realistic gasification and combustion conditions. The major particulate control device issues to be addressed Include the integration of the particulate control devices into coal utilization systems, on-line cleaning, techniques, chemical and thermal degradation of components, fatigue or structural failures, blinding, collection efficiency as a function of particle size, and scale-up of particulate control systems to commercial size. The conceptual design of the facility was extended to include a within scope, phased expansion of the existing, Hot Gas Cleanup Test Facility Cooperative Agreement to also address systems integration issues of hot particulate removal in advanced coal-based power generation systems. This expansion included the consideration of the following modules at the test facility in addition to the original Transport Reactor gas source and Hot Gas Cleanup Units: 1 . Carbonizer/Pressurized Circulating, Fluidized Bed Gas Source; 2. Hot Gas Cleanup Units to mate to all gas streams; 3. Combustion Gas Turbine; 4. Fuel Cell and associated gas treatment. This expansion to the Hot Gas Cleanup Test Facility is herein referred to as the Power Systems Development Facility (PSDF). The major emphasis during, this reporting period was continuing, the detailed design of the FW portion of the facility towards completion and integrating the balance-of-plant processes and particulate control devices (PCDS) into the structural and process designs. Substantial progress in construction activities was achieved during the quarter. Delivery and construction of the process structural steel is complete and the construction of steel for the coal preparation structure is complete.

NONE

1996-12-31T23:59:59.000Z

427

PFBC HGCU Test Facility. Fourth quarterly technical progress report, CY 1992  

SciTech Connect (OSTI)

This is the thirteenth Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the period of work completed during the Fourth Quarter of CY 1992. The following are highlights of the activities that occurred during this report period: Initial operation of the Advanced Particle Filter (APF) occurred during this quarter. The following table summarizes the operating dates and times. HGCU ash lockhopper valve plugged with ash. Primary cyclone ash pluggage. Problems with the coal water paste. Unit restarted warm 13 hours later. HGCU expansion joint No. 7 leak in internal ply of bellows. Problems encountered during these initial tests included hot spots on the APP, backup cyclone and instrumentation spools, two breakdowns of the backpulse air compressor, pluggage of the APF hopper and ash removal system, failure (breakage) of 21 filter candles, leakage of the inner ply of one (1) expansion joint bellows, and numerous other smaller problems. These operating problems are discussed in detail in a subsequent section of this report. Following shutdown and equipment inspection in December, design modifications were initiated to correct the problems noted above. The system is scheduled to resume operation in March, 1993.

Not Available

1993-01-01T23:59:59.000Z

428

Interim Control Strategy for the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond - Two-year Update  

SciTech Connect (OSTI)

The Idaho Cleanup Project has prepared this interim control strategy for the U.S. Department of Energy Idaho Operations Office pursuant to DOE Order 5400.5, Chapter 11.3e (1) to support continued discharges to the Test Area North/Technical Support Facility Sewage Treatment Facility Disposal Pond. In compliance with DOE Order 5400.5, a 2-year review of the Interim Control Strategy document has been completed. This submittal documents the required review of the April 2005 Interim Control Strategy. The Idaho Cleanup Project's recommendation is unchanged from the original recommendation. The Interim Control Strategy evaluates three alternatives: (1) re-route the discharge outlet to an uncontaminated area of the TSF-07; (2) construct a new discharge pond; or (3) no action based on justification for continued use. Evaluation of Alternatives 1 and 2 are based on the estimated cost and implementation timeframe weighed against either alternative's minimal increase in protection of workers, the public, and the environment. Evaluation of Alternative 3, continued use of the TSF-07 Disposal Pond under current effluent controls, is based on an analysis of four points: - Record of Decision controls will protect workers and the public - Risk of increased contamination is low - Discharge water will be eliminated in the foreseeable future - Risk of contamination spread is acceptable. The Idaho Cleanup Project recommends Alternative 3, no action other than continued implementation of existing controls and continued deactivation, decontamination, and dismantlement efforts at the Test Area North/Technical Support Facility.

L. V. Street

2007-04-01T23:59:59.000Z

429

Global nuclear energy partnership fuels transient testing at the Sandia National Laboratories nuclear facilities : planning and facility infrastructure options.  

SciTech Connect (OSTI)

The Global Nuclear Energy Partnership fuels development program is currently developing metallic, oxide, and nitride fuel forms as candidate fuels for an Advanced Burner Reactor. The Advance Burner Reactor is being designed to fission actinides efficiently, thereby reducing the long-term storage requirements for spent fuel repositories. Small fuel samples are being fabricated and evaluated with different transuranic loadings and with extensive burnup using the Advanced Test Reactor. During the next several years, numerous fuel samples will be fabricated, evaluated, and tested, with the eventual goal of developing a transmuter fuel database that supports the down selection to the most suitable fuel type. To provide a comparative database of safety margins for the range of potential transmuter fuels, this report describes a plan to conduct a set of early transient tests in the Annular Core Research Reactor at Sandia National Laboratories. The Annular Core Research Reactor is uniquely qualified to perform these types of tests because of its wide range of operating capabilities and large dry central cavity which extents through the center of the core. The goal of the fuels testing program is to demonstrate that the design and fabrication processes are of sufficient quality that the fuel will not fail at its design limit--up to a specified burnup, power density, and operating temperature. Transient testing is required to determine the fuel pin failure thresholds and to demonstrate that adequate fuel failure margins exist during the postulated design basis accidents.

Kelly, John E.; Wright, Steven Alan; Tikare, Veena; MacLean, Heather J. (Idaho National Laboratory, Idaho Falls, ID); Parma, Edward J., Jr.; Peters, Curtis D.; Vernon, Milton E.; Pickard, Paul S.

2007-10-01T23:59:59.000Z

430

Linking Accelerating Laboratory Test with Outdoor Performance Results for a Model Epoxy Coating System  

E-Print Network [OSTI]

and accelerate outdoor degradation by exposing materials for extended periods of time to high UV irradiance- based measurements on both exposure environments and degradation properties for epoxy specimens exposed), a device in which spectral ultraviolet (UV) wavelength, spectral intensity, temperature, and relative

431

Future Fixed Target Facilities  

SciTech Connect (OSTI)

We review plans for future fixed target lepton- and hadron-scattering facilities, including the 12 GeV upgraded CEBAF accelerator at Jefferson Lab, neutrino beam facilities at Fermilab, and the antiproton PANDA facility at FAIR. We also briefly review recent theoretical developments which will aid in the interpretation of the data expected from these facilities.

Melnitchouk, Wolodymyr

2009-01-01T23:59:59.000Z

432

Thermal hydraulic performance testing of printed circuit heat exchangers in a high-temperature helium test facility  

SciTech Connect (OSTI)

In high-temperature gas-cooled reactors, such as a very high temperature reactor (VHTR), an intermediate heat exchanger (IHX) is required to efficiently transfer the core thermal output to a secondary fluid for electricity generation with an indirect power cycle and/or process heat applications. Currently, there is no proven high-temperature (750–800 °C or higher) compact heat exchanger technology for high-temperature reactor design concepts. In this study, printed circuit heat exchanger (PCHE), a potential IHX concept for high-temperature applications, has been investigated for their heat transfer and pressure drop characteristics under high operating temperatures and pressures. Two PCHEs, each having 10 hot and 10 cold plates with 12 channels (semicircular cross-section) in each plate are fabricated using Alloy 617 plates and tested for their performance in a high-temperature helium test facility (HTHF). The PCHE inlet temperature and pressure were varied from 85 to 390 °C/1.0–2.7 MPa for the cold side and 208–790 °C/1.0–2.7 MPa for the hot side, respectively, while the mass flow rate of helium was varied from 15 to 49 kg/h. This range of mass flow rates corresponds to PCHE channel Reynolds numbers of 950 to 4100 for the cold side and 900 to 3900 for the hot side (corresponding to the laminar and laminar-to-turbulent transition flow regimes). The obtained experimental data have been analyzed for the pressure drop and heat transfer characteristics of the heat transfer surface of the PCHEs and compared with the available models and correlations in the literature. In addition, a numerical treatment of hydrodynamically developing and hydrodynamically fully-developed laminar flow through a semicircular duct is presented. Relations developed for determining the hydrodynamic entrance length in a semicircular duct and the friction factor (or pressure drop) in the hydrodynamic entry length region for laminar flow through a semicircular duct are given. Various hydrodynamic entrance region parameters, such as incremental pressure drop number, apparent Fanning friction factor, and hydrodynamic entrance length in a semicircular duct have been numerically estimated.

Sai K. Mylavarapu; Xiaodong Sun; Richard E. Glosup; Richard N. Christensen; Michael W. Patterson

2014-04-01T23:59:59.000Z

433

Dual axis radiographic hydrodynamic test facility. Final environmental impact statement, Volume 2: Public comments and responses  

SciTech Connect (OSTI)

On May 12, 1995, the U.S. Department of Energy (DOE) issued the draft Dual Axis Radiographic Hydrodynamic Test Facility Environmental Impact Statement (DARHT EIS) for review by the State of New Mexico, Indian Tribes, local governments, other Federal agencies, and the general public. DOE invited comments on the accuracy and adequacy of the draft EIS and any other matters pertaining to their environmental reviews. The formal comment period ran for 45 days, to June 26, 1995, although DOE indicated that late comments would be considered to the extent possible. As part of the public comment process, DOE held two public hearings in Los Alamos and Santa Fe, New Mexico, on May 31 and June 1, 1995. In addition, DOE made the draft classified supplement to the DARHT EIS available for review by appropriately cleared individuals with a need to know the classified information. Reviewers of the classified material included the State of New Mexico, the U.S. Environmental Protection Agency, the Department of Defense, and certain Indian Tribes. Volume 2 of the final DARHT EIS contains three chapters. Chapter 1 includes a collective summary of the comments received and DOE`s response. Chapter 2 contains the full text of the public comments on the draft DARHT EIS received by DOE. Chapter 3 contains DOE`s responses to the public comments and an indication as to how the comments were considered in the final EIS.

NONE

1995-08-01T23:59:59.000Z

434

PFBC HGCU Test Facility. Technical progress report No. 24, Third quarter, CY 1995  

SciTech Connect (OSTI)

This is the twenty-fourth and final Technical Progress Report submitted to the Department of Energy (DOE) in connection with the cooperative agreement between the DOE and Ohio Power Company for the Tidd PFBC Hot Gas Clean Up Test Facility. This report covers the work completed during the Third Quarter of CY 1995. All activity this quarter was directed toward the completion of the program final report. A draft copy of the final report was forwarded to DOE during this quarter, and DOE submitted their comments on the report to AEPSC. DOE requested that Westinghouse write an appendix to the report covering the performance of the fail-safe regenerator devices during Tad operation, and Westinghouse subsequently prepared the appendix. Additional DOE comments were incorporated into the report, and it will be issued in camera-ready form by the end of October, 1995, which is the program end date. Appendix 1 presents the results of filter candle posttest examination by Westinghouse performed on selected filter candles following final shutdown of the system.

NONE

1995-10-01T23:59:59.000Z

435

The B00 model coil in the ATLAS Magnet Test Facility  

E-Print Network [OSTI]

A 1-m size model coil has been developed to investigate the transport properties of the three aluminum-stabilized superconductors used in the ATLAS magnets. The coil, named B00, is also used for debugging the cryogenic, power and control systems of the ATLAS Magnet Test Facility. The coil comprises two double pancakes made of the barrel toroid and end-cap toroid conductors and a single pancake made of the central solenoid conductor. The pancakes are placed inside an aluminum coil casing. The coil construction and cooling conditions are quite similar to the final design of the ATLAS magnets. The B00 coil is well equipped with various sensors to measure thermal and electrodynamic properties of the conductor inside the coils. Special attention has been paid to the study of the current diffusion process and the normal zone propagation in the ATLAS conductors and windings. Special pick-up coils have been made to measure the diffusion at different currents and magnetic field values. (6 refs).

Dudarev, A; ten Kate, H H J; Anashkin, O P; Keilin, V E; Lysenko, V V

2001-01-01T23:59:59.000Z

436

Dual Axis Radiographic Hydrodynamic Test Facility mitigation action plan. Annual report for 1997  

SciTech Connect (OSTI)

This Mitigation Action Plan Annual Report (MAPAR) has been prepared by the US Department of Energy (DOE) as part of implementing the Dual Axis Radiographic Hydrodynamic Test Facility (DARHT) Mitigation Action Plan (MAP). This MAPAR provides a status on specific DARHT facility design- and construction-related mitigation actions that have been initiated in order to fulfill DOE`s commitments under the DARHT MAP. The functions of the DARHT MAP are to (1) document potentially adverse environmental impacts of the Phased Containment Option delineated in the Final EIS, (2) identify commitments made in the Final EIS and ROD to mitigate those potential impacts, and (3) establish Action Plans to carry out each commitment (DOE 1996). The DARHT MAP is divided into eight sections. Sections 1--5 provide background information regarding the NEPA review of the DARHT project and an introduction to the associated MAP. Section 6 references the Mitigation Action Summary Table which summaries the potential impacts and mitigation measures; indicates whether the mitigation is design-, construction-, or operational-related; the organization responsible for the mitigation measure; and the projected or actual completion data for each mitigation measure. Sections 7 and 8 discuss the Mitigation Action Plan Annual Report and Tracking System commitment and the Potential Impacts, Commitments, and Action Plans respectively. Under Section 8, potential impacts are categorized into five areas of concern: General Environment, including impacts to air and water; Soils, especially impacts affecting soil loss and contamination; Biotic Resources, especially impacts affecting threatened and endangered species; Cultural/Paleontological Resources, especially impacts affecting the archeological site known as Nake`muu; and Human Health and Safety, especially impacts pertaining to noise and radiation. Each potential impact includes a brief statement of the nature of the impact and its cause(s). The commitment made to mitigate the potential impact is identified and the Action Plan for each commitment is described in detail, with a description of actions to be taken, pertinent time frames for the actions, verification of mitigation activities, and identification of agencies/organizations responsible for satisfying the requirements of the commitment.

Haagenstad, H.T.

1998-01-15T23:59:59.000Z

437

Preliminary studies of tunnel interface response modeling using test data from underground storage facilities.  

SciTech Connect (OSTI)

In attempting to detect and map out underground facilities, whether they be large-scale hardened deeply-buried targets (HDBT's) or small-scale tunnels for clandestine border or perimeter crossing, seismic imaging using reflections from the tunnel interface has been seen as one of the better ways to both detect and delineate tunnels from the surface. The large seismic impedance contrast at the tunnel/rock boundary should provide a strong, distinguishable seismic response, but in practice, such strong indicators are often lacking. One explanation for the lack of a good seismic reflection at such a strong contrast boundary is that the damage caused by the tunneling itself creates a zone of altered seismic properties that significantly changes the nature of this boundary. This report examines existing geomechanical data that define the extent of an excavation damage zone around underground tunnels, and the potential impact on rock properties such as P-wave and S-wave velocities. The data presented from this report are associated with sites used for the development of underground repositories for the disposal of radioactive waste; these sites have been excavated in volcanic tuff (Yucca Mountain) and granite (HRL in Sweden, URL in Canada). Using the data from Yucca Mountain, a numerical simulation effort was undertaken to evaluate the effects of the damage zone on seismic responses. Calculations were performed using the parallelized version of the time-domain finitedifference seismic wave propagation code developed in the Geophysics Department at Sandia National Laboratories. From these numerical simulations, the damage zone does not have a significant effect upon the tunnel response, either for a purely elastic case or an anelastic case. However, what was discovered is that the largest responses are not true reflections, but rather reradiated Stoneley waves generated as the air/earth interface of the tunnel. Because of this, data processed in the usual way may not correctly image the tunnel. This report represents a preliminary step in the development of a methodology to convert numerical predictions of rock properties to an estimation of the extent of rock damage around an underground facility and its corresponding seismic velocity, and the corresponding application to design a testing methodology for tunnel detection.

Sobolik, Steven Ronald; Bartel, Lewis Clark

2010-11-01T23:59:59.000Z

438

Experimental investigation of a flow monitoring instrument in an upper plenum of an air-water reflood test facility. [PWR  

SciTech Connect (OSTI)

Instrumentation was developed for measuring fluid phenomena in the upper plenum of pressurized water reactor reflood facilities. In particular, the instrumentation measured two-phase flow velocity and void fraction. The principle of operation of the instrumentation scheme was based on the measurement of electrical impedance. The technique of analysis of random signals from two spatially separated impedance sensors was employed to measure two-phase flow velocity. A relative admittance technique was used to determine void fraction. The performance of the instrumentaton was studied in an air-water test facility.

Combs, S.K.; Hardy, J.E.

1980-01-01T23:59:59.000Z

439

COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR  

SciTech Connect (OSTI)

Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

Hirshfield, Jay L. [Omega-P, Inc.

2013-04-30T23:59:59.000Z

440

Gas delivery system and beamline studies for the test beam facility of the Collider Detector at Fermilab  

E-Print Network [OSTI]

of the MT beamline to meet the needs of CDF. Analysis of the preliminary performance data on MT beamline components and beam tunes at required particle energies is presented. Preliminary studies show that the MT beamline has the necessary flexibility... efforts to understand charged-particle beam transport and the workings of the Meson Test beamline. Their patience and good will made this project an enjoyable one. I also wish to acknowledge Fermi National Accelerator Laboratory for its support...

Franke, Henry Gerhart

1987-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "accelerator test facility" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

The 1993 baseline biological studies and proposed monitoring plan for the Device Assembly Facility at the Nevada Test Site  

SciTech Connect (OSTI)

This report contains baseline data and recommendations for future monitoring of plants and animals near the new Device Assembly Facility (DAF) on the Nevada Test Site (NTS). The facility is a large structure designed for safely assembling nuclear weapons. Baseline data was collected in 1993, prior to the scheduled beginning of DAF operations in early 1995. Studies were not performed prior to construction and part of the task of monitoring operational effects will be to distinguish those effects from the extensive disturbance effects resulting from construction. Baseline information on species abundances and distributions was collected on ephemeral and perennial plants, mammals, reptiles, and birds in the desert ecosystems within three kilometers (km) of the DAF. Particular attention was paid to effects of selected disturbances, such as the paved road, sewage pond, and the flood-control dike, associated with the facility. Radiological monitoring of areas surrounding the DAF is not included in this report.

Woodward, B.D.; Hunter, R.B.; Greger, P.D.; Saethre, M.B.

1995-02-01T23:59:59.000Z

442

Results of initial operation of the Jupiter Oxygen Corporation oxy-fuel 15 MWth burner test facility  

SciTech Connect (OSTI)

Jupiter Oxygen Corporation (JOC), in cooperation with the National Energy Technology Laboratory (NETL), constructed a 15 MWth oxy-fuel burner test facility with Integrated Pollutant Removal (IPRTM) to test high flame temperature oxy-fuel combustion and advanced carbon capture. Combustion protocols include baseline air firing with natural gas, oxygen and natural gas firing with and without flue gas recirculation, and oxygen and pulverized coal firing with flue gas recirculation. Testing focuses on characterizing burner performance, determining heat transfer characteristics, optimizing CO2 capture, and maximizing heat recovery, with an emphasis on data traceability to address retrofit of existing boilers by directly transforming burner systems to oxy-fuel firing.

Thomas Ochs, Danylo Oryshchyn, Rigel Woodside, Cathy Summers, Brian Patrick, Dietrich Gross, Mark Schoenfield, Thomas Weber and Dan O'Brien

2009-04-01T23:59:59.000Z

443

Interim reclamation report, Basalt Waste Isolation Project Near Surface Test Facility 1990  

SciTech Connect (OSTI)

This report describes the development of the reclamation project for the Hanford Site Near Surface Test Facility (NSTF), its implementation, and preliminary estimates of its success. The goal of the reclamation project is to return disturbed sites as nearly as practicable to their original conditions using native species. Gable Mountain is dominated by two plant communities: a big sagebrush (Artemisia tridentata) -- Sandberg's bluegrass (Poa sandbergii) community and a stiff sagebrush (Artemisia rigida) -- Sandberg's bluegrass community. Disassembly of the site installations began on March 15, 1988, and the site was returned to original contours by December 12, 1988. Two separate revegetation methods were employed at the NSTF to meet differing site constraints. Vegetative cover and density in the revegetation plots were assessed in April 1989 and again in June 1989 and 1990. It is extremely unlikely that the sand pit, borrow pit, box cuts, generator pad area, or ventilation fan area will reach the reclamation objectives set for these areas within the next 50 years without further intervention. These areas currently support few living plants. Vegetation on revegetated native soils appears to be growing as expected. Vegetation growth on the main waterline is well below the objective. To date, no shrubs have grown on the area, growth of native grasses is well below the objective, and much of the area has been covered with the pit run material, which may not support adequate growth. Without further treatments, the areas without the pit run material will likely revert to a nearly pure cheatgrass condition. 44 refs., 13 figs., 7 tabs.

Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.; Cadoret, N.A.

1991-01-01T23:59:59.000Z

444

Probabilistic risk analysis for Test Area North Hot Shop Storage Pool Facility  

SciTech Connect (OSTI)

A storage pool facility used for storing spent fuel and radioactive debris from the Three Mile Island (TMI) accident was evaluated to determine the risk associated with its normal operations. Several hazards were identified and examined to determine if any any credible accident scenarios existed. Expected annual occurrence frequencies were calculated for hazards for which accident scenarios were identified through use of fault trees modeling techniques. Fault tree models were developed for two hazards: (1) increased radiation field and (2) spread of contamination. The models incorporated facets of the operations within the facility as well as the facility itself. 6 refs.

Meale, B.M.; Satterwhite, D.G.

1990-01-01T23:59:59.000Z

445

E-Print Network 3.0 - accelerated fatigue testing Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

FATIGUE DESIGN METHODS Summary: , caused either by processing or by fatigue, and uses fracture mechanics analyses and tests to check... 2-Fatigue Design Methods 14 ANALYSIS AND...

446

Closure Report for Corrective Action Unit 116: Area 25 Test Cell C Facility, Nevada National Security Site, Nevada  

SciTech Connect (OSTI)

This Closure Report (CR) presents information supporting closure of Corrective Action Unit (CAU) 116, Area 25 Test Cell C Facility. This CR complies with the requirements of the Federal Facility Agreement and Consent Order (FFACO) that was agreed to by the State of Nevada; the U.S. Department of Energy (DOE), Environmental Management; the U.S. Department of Defense; and DOE, Legacy Management (FFACO, 1996 [as amended March 2010]). CAU 116 consists of the following two Corrective Action Sites (CASs), located in Area 25 of the Nevada National Security Site: (1) CAS 25-23-20, Nuclear Furnace Piping and (2) CAS 25-41-05, Test Cell C Facility. CAS 25-41-05 consisted of Building 3210 and the attached concrete shield wall. CAS 25-23-20 consisted of the nuclear furnace piping and tanks. Closure activities began in January 2007 and were completed in August 2011. Activities were conducted according to Revision 1 of the Streamlined Approach for Environmental Restoration Plan for CAU 116 (U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office [NNSA/NSO], 2008). This CR provides documentation supporting the completed corrective actions and provides data confirming that closure objectives for CAU 116 were met. Site characterization data and process knowledge indicated that surface areas were radiologically contaminated above release limits and that regulated and/or hazardous wastes were present in the facility.

NSTec Environmental Restoration

2011-09-29T23:59:59.000Z

447

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility  

E-Print Network [OSTI]

, Higashi-Hiroshima, Japan, 3 HudsonAlpha-JGI, HudsonAlpha Genome Sequencing Center, Huntsville, Alabama, United States of America, 4 Department of Energy Joint Genome Institute, Walnut Creek, California, United genomes are also used for phylogenetic analyses, which highlight the complexities in trying to resolve

448

E-Print Network 3.0 - accelerator electron radiotherapy Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Continuous Electron Beam Accelerator Facility, Newport News, Virginia (the Big... & Phenomenology Particle Astrophysics & Cosmology Accelerator Physics Health Physics...

449

REVIEW OF FAST FLUX TEST FACILITY (FFTF) FUEL EXPERIMENTS FOR STORAGE IN INTERIM STORAGE CASKS (ISC)  

SciTech Connect (OSTI)

Appendix H, Section H.3.3.10.11 of the Final Safety Analysis Report (FSAR), provides the limits to be observed for fueled components authorized for storage in the Fast Flux Test Facility (FFTF) spent fuel storage system. Currently, the authorization basis allows standard driver fuel assemblies (DFA), as described in the FSAR Chapter 17, Section 17.5.3.1, to be stored provided decay power per assembly is {le} 250 watts, post-irradiation time is four years minimum, average assembly burn-up is 150,000 MWD/MTHM maximum and the pre-irradiation enrichment is 29.3% maximum (per H.3.3.10.11). In addition, driver evaluation (DE), core characterizer assemblies (CCA), and run-to-cladding-breach (RTCB) assemblies are included based on their similarities to a standard DFA. Ident-69 pin containers with fuel pins from these DFAs can also be stored. Section H.3.3.10.11 states that fuel types outside the specification criteria above will be addressed on a case-by-case basis. There are many different types of fuel and blanket experiments that were irradiated in the FFTF which now require offload to the spent fuel storage system. Two reviews were completed for a portion of these special type fuel components to determine if placement into the Core Component Container (CCC)/Interim Storage Cask (ISC) would require any special considerations or changes to the authorization basis. Project mission priorities coupled with availability of resources and analysts prevented these evaluations from being completed as a single effort. Areas of review have included radiological accident release consequences, radiological shielding adequacy, criticality safety, thermal limits, confinement, and stress. The results of these reviews are available in WHC-SD-FF-RPT-005, Rev. 0 and 1, ''Review of FFTF Fuel Experiments for Storage at ISA'', (Reference I), which subsequently allowed a large portion of these components to be included in the authorization basis (Table H.3.3-21). The report also identified additional components and actions in Section 3.0 and Table 3 that require further evaluation. The purpose of this report is to evaluate another portion of the remaining inventory (i.e., delayed neutron signal fuel, blanket assemblies, highly enriched assemblies, newly loaded Ident-69 pin containers, and returned fuel) to ensure it can be safely off loaded to the FFTF spent fuel storage system.

CHASTAIN, S.A.

2005-10-24T23:59:59.000Z

450

2011_Accelerator_Detector_RD_PI_Meeting_files | U.S. DOE Office...  

Office of Science (SC) Website

Principal Investigators' Meetings 2011 Accelerator Detector RD PI Meeting files Scientific User Facilities (SUF) Division SUF Home About User Facilities Projects Accelerator &...

451

E-Print Network 3.0 - accelerator physics experiments Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

facilities for biology and material sciences. Beam physics--study of beams in accelerators... -ray facilities, and the injector linear accelerator where a pioneering...

452

E-Print Network 3.0 - accelerated beam experiments Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Summary: radiation facilities for biology and material sciences. Beam physics--study of beams in accelerators... -ray facilities, and the injector linear accelerator where a...

453

Cleaning residual NaK in the fast flux test facility fuel storage cooling system  

SciTech Connect (OSTI)

The Fast Flux Test Facility (FFTF), located on the U.S. Department of Energy's Hanford Reservation, is a liquid metal-cooled test reactor. The FFTF was constructed to support the U.S. Liquid Metal Fast Breeder Reactor Program. The bulk of the alkali metal (sodium and NaK) has been drained and will be stored onsite prior to final disposition. Residual NaK needed to be removed from the pipes, pumps, heat exchangers, tanks, and vessels in the Fuel Storage Facility (FSF) cooling system. The cooling system was drained in 2004 leaving residual NaK in the pipes and equipment. The estimated residual NaK volume was 76 liters in the storage tank, 1.9 liters in the expansion tank, and 19-39 liters in the heat transfer loop. The residual NaK volume in the remainder of the system was expected to be very small, consisting of films, droplets, and very small pools. The NaK in the FSF Cooling System was not radiologically contaminated. The portions of the cooling system to be cleaned were divided into four groups: 1. The storage tank, filter, pump, and associated piping; 2. The heat exchanger, expansion tank, and associated piping; 3. Argon supply piping; 4. In-vessel heat transfer loop. The cleaning was contracted to Creative Engineers, Inc. (CEI) and they used their superheated steam process to clean the cooling system. It has been concluded that during the modification activities (prior to CEI coming onsite) to prepare the NaK Cooling System for cleaning, tank T-914 was pressurized relative to the In-Vessel NaK Cooler and NaK was pushed from the tank back into the Cooler and that on November 6, 2005, when the gas purge through the In-Vessel NaK Cooler was increased from 141.6 slm to 283.2 slm, NaK was forced from the In-Vessel NaK Cooler and it contacted water in the vent line and/or scrubber. The gases from the reaction then traveled back through the vent line coating the internal surface of the vent line with NaK and NaK reaction products. The hot gases also exited the scrubber through the stack and due to the temperature of the gas, the hydrogen auto ignited when it mixed with the oxygen in the air. There was no damage to equipment, no injuries, and no significant release of hazardous material. Even though the FSF Cooling System is the only system at FFTF that contains residual NaK, there are lessons to be learned from this event that can be applied to future residual sodium removal activities. The lessons learned are: - Before cleaning equipment containing residual alkali metal the volume of alkali metal in the equipment should be minimized to the extent practical. As much as possible, reconfirm the amount and location of the alkali metal immediately prior to cleaning, especially if additional evolutions have been performed or significant time has passed. This is especially true for small diameter pipe (<20.3 centimeters diameter) that is being cleaned in place since gas flow is more likely to move the alkali metal. Potential confirmation methods could include visual inspection (difficult in all-metal systems), nondestructive examination (e.g., ultrasonic measurements) and repeating previous evolutions used to drain the system. Also, expect to find alkali metal in places it would not reasonably be expected to be. - Staff with an intimate knowledge of the plant equipment and the bulk alkali metal draining activities is critical to being able to confirm the amount and locations of the alkali metal residuals and to safely clean the residuals. - Minimize the potential for movement of alkali metal during cleaning or limit the distance and locations into which alkali metal can move. - Recognize that when working with alkali metal reactions, occasional pops and bangs are to be anticipated. - Pre-plan emergency responses to unplanned events to assure responses planned for an operating reactor are appropriate for the deactivation phase.

Burke, T.M.; Church, W.R. [Fluor Hanford, PO Box 1000, Richland, Washington, 99352 (United States); Hodgson, K.M. [Fluor Government Group, PO Box 1050, Richland, Washington, 99352 (United States)

2008-01-15T23:59:59.000Z

454

Accelerators and the Accelerator Community  

E-Print Network [OSTI]

of electrostatic accelerators, while Ernest O. Lawrence (CBP 820 LBNL TBA ACCELERATORS ANDTHE ACCELERATOR COMMUNITY 1 ANDREW SESSLER Lawrence Berkeley

Malamud, Ernest

2009-01-01T23:59:59.000Z

455

E-Print Network 3.0 - advanced components test facility Sample...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of components for the new de- signs being tested underground at the Nevada Test Site. Small- scale recycling... Alam- os. Finally there was a modest capability to design,...

456

RIS-R-1358(EN) Accelerated Fatigue Testing of LM 19.1  

E-Print Network [OSTI]

May 2003 #12;Abstract A series of 19.1 metre wind turbine blades manufactured by LM Glasfiber A with thermal imaging equipment to determine how an increase in fatigue load affects the blade material FOR STRAIN GAUGES 71 RISŘ-R-1358(EN)4 #12;1 Introduction Traditionally a wind turbine blade is tested as part

457

Architecture, implementation, and testing of a multiple-shell gas injection system for high current implosions on the Z accelerator  

SciTech Connect (OSTI)

Tests are ongoing to conduct {approx}20 MA z-pinch implosions on the Z accelerator at Sandia National Laboratory using Ar, Kr, and D{sub 2} gas puffs as the imploding loads. The relatively high cost of operations on a machine of this scale imposes stringent requirements on the functionality, reliability, and safety of gas puff hardware. Here we describe the development of a prototype gas puff system including the multiple-shell nozzles, electromagnetic drivers for each nozzle's valve, a UV pre-ionizer, and an inductive isolator to isolate the {approx}2.4 MV machine voltage pulse present at the gas load from the necessary electrical and fluid connections made to the puff system from outside the Z vacuum chamber. This paper shows how the assembly couples to the overall Z system and presents data taken to validate the functionality of the overall system.

Krishnan, Mahadevan; Elliott, Kristi Wilson; Madden, Robert E. [Alameda Applied Sciences Corporation, San Leandro, California 94577 (United States); Coleman, P. L. [Evergreen Hill Sciences, Philomath, Oregon 97370 (United States); Thompson, John R. [812 Temple Street, San Diego, California 92106 (United States); Bixler, Alex [Space Sciences Laboratory, University of California, Berkeley, Berkeley, California 94720 (United States); Lamppa, D. C.; McKenney, J. L.; Strizic, T.; Johnson, D.; Johns, O.; Vigil, M. P.; Jones, B.; Ampleford, D. J.; Savage, M. E.; Cuneo, M. E.; Jones, M. C. [Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

2013-06-15T23:59:59.000Z

458

THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY  

E-Print Network [OSTI]

: Stephen A. Marino, M.S. Chief Physicist: Gerhard Randers-Pehrson, Ph.D. Funding During this year, we were of the mutagenesis of human-hamster hybrid (AL) cells by charged particles (Exp. 43) resumed this year. Tom Hei) cells by an exact number of 4 He ion traversals (Exp. 76) continue to be investigated by Tom Hei

459

Radiological Training for Accelerator Facilities  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergy 0611__Joint_DOE_GoJ_AMS_Data_v3.pptx More Documents &DOE.F 1325.8CHANGE NOTICE NO.

460

PWR blowdown heat transfer separate-effects program - Thermal-Hydraulic Test Facility experimental data report for test 177. [Contains microfiche data  

SciTech Connect (OSTI)

Reduced instrument responses are presented for Thermal-Hydraulic Test Facility (THTF) test 177, which is part of the ORNL Pressurized-Water Reactor (PWR) Blowdown Heat Transfer Separate-Effects Program. Objective of the program is to investigate the thermal-hydraulic phenomenon governing the energy transfer and transport processes that occur during a loss-of-coolant accident in a PWR system. Test 177 was conducted at the request of Idaho National Engineering Laboratory ''for use in the independent assessment of RELAP4/MOD6.'' Primary purpose of this report is to make the reduced instrument responses during test 177 available. The responses are presented in graphical form in engineering units and have been analyzed only to the extent necessary to assure reasonableness and consistency. The data are presented in microfiche form.

Clemons, V.D.; Flanders, R.M.; Craddick, W.G.

1980-08-01T23:59:59.000Z