National Library of Energy BETA

Sample records for accelerator mass spectrometry

  1. Accelerator mass spectrometry program at the University of Washington

    SciTech Connect (OSTI)

    Farwell, G.W.; Leach, D.D.; Grootes, P.M.; Schmidt, F.H.

    1984-04-10

    The University uses an FN-Tandem for /sup 14/C and /sup 10/Be measurements. Three main problems for accelerator-mass-spectrometry are normalization, stability, and sample preparation. The approach to these problems is discussed. (GHT)

  2. Small system for tritium accelerator mass spectrometry

    DOE Patents [OSTI]

    Roberts, M.L.; Davis, J.C.

    1993-02-23

    Apparatus for ionizing and accelerating a sample containing isotopes of hydrogen and detecting the ratios of hydrogen isotopes contained in the sample is disclosed. An ion source generates a substantially linear ion beam including ions of tritium from the sample. A radio-frequency quadrupole accelerator is directly coupled to and axially aligned with the source at an angle of substantially zero degrees. The accelerator accelerates species of the sample having different mass to different energy levels along the same axis as the ion beam. A spectrometer is used to detect the concentration of tritium ions in the sample. In one form of the invention, an energy loss spectrometer is used which includes a foil to block the passage of hydrogen, deuterium and [sup 3]He ions, and a surface barrier or scintillation detector to detect the concentration of tritium ions. In another form of the invention, a combined momentum/energy loss spectrometer is used which includes a magnet to separate the ion beams, with Faraday cups to measure the hydrogen and deuterium and a surface barrier or scintillation detector for the tritium ions.

  3. Accelerator Mass Spectrometry | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Accelerator Mass Spectrometry at ANL and ORNL Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science Applications...

  4. Transition of Iodine Analysis to Accelerator Mass Spectrometry

    SciTech Connect (OSTI)

    M. L. Adamic; J. E. Olson; D. D. Jenson; J. G. Eisenmenger; M. G. Watrous

    2012-09-01

    This NA 22 funded research project investigated the transition of iodine isotopic analyses from thermal ionization mass spectrometry (TIMS) to an accelerator mass spectrometry (AMS) system. Previous work (Fiscal Year 2010) had demonstrated comparable data from TIMS and AMS. With AMS providing comparable data with improved background levels and vastly superior sample throughput, improvement in the sample extraction from environmental sample matrices was needed to bring sample preparation throughput closer to the operation level of the instrument. Previous research used an extraction chemistry that was not optimized for yield or refined for reduced labor to prove the principle. This research was done to find an extraction with better yield using less labor per sample to produce a sample ready for the AMS instrument. An extraction method using tetramethyl ammonium hydroxide (TMAH) was developed for removal of iodine species from high volume air filters. The TMAH with gentle heating was superior to the following three extraction methods: ammonium hydroxide aided by sonication, acidic and basic extraction aided by microwave, and ethanol mixed with sodium hydroxide. Taking the iodine from the extraction solvent to being ready for AMS analysis was accomplished by a direct precipitation, as well as, using silver wool to harvest the iodine from the TMAH. Portions of the same filters processed in FY 2010 were processed again with the improved extraction scheme followed by successful analysis by AMS at the Swiss Federal Institute of Technology. The data favorably matched the data obtained in 2010. The time required for analysis has been reduced over the aqueous extraction/AMS approach developed in FY 2010. For a hypothetical batch of 30 samples, the AMS methodology is about 10 times faster than the traditional gas phase chemistry and TIMS analysis. As an additional benefit, background levels for the AMS method are about 1000 times lower than TIMS. This results from the fundamental mechanisms of ionization in the AMS system and which produces a beneficial cleanup of molecular interferences. Continued clean operation of the extraction process was demonstrated through blank analysis included with all sample sets analyzed. INL work showed improvement on the first year’s demonstration of AMS vs. TIMS. An improved extraction of high volume air filters followed by isotopic analysis by AMS, can be used successfully to make iodine measurements with results comparable to those obtained by filter combustion and TIMS analysis. More progress on the conversion from an extract solution to an AMS sample ready for analysis is still needed. Although the preparation scheme through AMS is already at a higher performing thoughput than TIMS, the chemical preparation cannot match the instrument capability for number of samples per day without further development.

  5. Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically

    E-Print Network [OSTI]

    Roth, John R.

    Human vitamin B12 absorption measurement by accelerator mass spectrometry using specifically to assimilate dietary vitamin B12. Assaying and understanding absorption and uptake of B12 is important because and showed plasma appearance and clearance curves consistent with the predicted behavior of the pure vitamin

  6. Technological advances in the University of Washington accelerator mass spectrometry system

    SciTech Connect (OSTI)

    Farwell, G.W.; Grootes, P.M.; Leach, D.D.; Schmidt, F.H.

    1983-01-01

    During the past year we have continued to work toward greater stability and flexibility in nearly all elements of our accelerator mass spectrometry (AMS) system, which is based upon an FN tandem Van de Graaff accelerator, and have carried out measurements of /sup 14/C//sup 12/C and /sup 10/Be//sup 9/Be isotopic abundance ratios in natural samples. The principal recent developments and improvements in the accelerator system and in our sample preparation techniques for carbon beryllium are discussed, and the results of a study of /sup 10/Be cross-contamination of beryllium samples in the sputter ion source are presented.

  7. Analytical Validation of Accelerator Mass Spectrometry for Pharmaceutical Development: the Measurement of Carbon-14 Isotope Ratio.

    SciTech Connect (OSTI)

    Keck, B D; Ognibene, T; Vogel, J S

    2010-02-05

    Accelerator mass spectrometry (AMS) is an isotope based measurement technology that utilizes carbon-14 labeled compounds in the pharmaceutical development process to measure compounds at very low concentrations, empowers microdosing as an investigational tool, and extends the utility of {sup 14}C labeled compounds to dramatically lower levels. It is a form of isotope ratio mass spectrometry that can provide either measurements of total compound equivalents or, when coupled to separation technology such as chromatography, quantitation of specific compounds. The properties of AMS as a measurement technique are investigated here, and the parameters of method validation are shown. AMS, independent of any separation technique to which it may be coupled, is shown to be accurate, linear, precise, and robust. As the sensitivity and universality of AMS is constantly being explored and expanded, this work underpins many areas of pharmaceutical development including drug metabolism as well as absorption, distribution and excretion of pharmaceutical compounds as a fundamental step in drug development. The validation parameters for pharmaceutical analyses were examined for the accelerator mass spectrometry measurement of {sup 14}C/C ratio, independent of chemical separation procedures. The isotope ratio measurement was specific (owing to the {sup 14}C label), stable across samples storage conditions for at least one year, linear over 4 orders of magnitude with an analytical range from one tenth Modern to at least 2000 Modern (instrument specific). Further, accuracy was excellent between 1 and 3 percent while precision expressed as coefficient of variation is between 1 and 6% determined primarily by radiocarbon content and the time spent analyzing a sample. Sensitivity, expressed as LOD and LLOQ was 1 and 10 attomoles of carbon-14 (which can be expressed as compound equivalents) and for a typical small molecule labeled at 10% incorporated with {sup 14}C corresponds to 30 fg equivalents. AMS provides an sensitive, accurate and precise method of measuring drug compounds in biological matrices.

  8. Measurement of Ultra-Low Potassium Contaminations with Accelerator Mass Spectrometry

    E-Print Network [OSTI]

    K. J. Dong

    2007-05-01

    Levels of trace radiopurity in active detector materials is a subject of major concern in low-background experiments. Among the radio-isotopes, $\\k40$ is one of the most abundant and yet whose signatures are difficult to reject. Procedures were devised to measure trace potassium concentrations in the inorganic salt CsI as well as in organic liquid scintillator (LS) with Accelerator Mass Spectrometry (AMS), giving, respectively, the $\\k40$-contamination levels of $\\sim 10^{-10}$ and $\\sim 10^{-13}$ g/g. Measurement flexibilities and sensitivities are improved over conventional methods. The projected limiting sensitivities if no excess of potassium signals had been observed over background are $8 \\times 10^{-13}$ g/g and $3 \\times 10^{-17}$ g/g for the CsI and LS, respectively. Studies of the LS samples indicate that the radioactive contaminations come mainly in the dye solutes, while the base solvents are orders of magnitude cleaner. The work demonstrate the possibilities of measuring naturally-occurring isotopes with the AMS techniques.

  9. Interface for the rapid analysis of liquid samples by accelerator mass spectrometry

    DOE Patents [OSTI]

    Turteltaub, Kenneth; Ognibene, Ted; Thomas, Avi; Daley, Paul F; Salazar Quintero, Gary A; Bench, Graham

    2014-02-04

    An interface for the analysis of liquid sample having carbon content by an accelerator mass spectrometer including a wire, defects on the wire, a system for moving the wire, a droplet maker for producing droplets of the liquid sample and placing the droplets of the liquid sample on the wire in the defects, a system that converts the carbon content of the droplets of the liquid sample to carbon dioxide gas in a helium stream, and a gas-accepting ion source connected to the accelerator mass spectrometer that receives the carbon dioxide gas of the sample in a helium stream and introduces the carbon dioxide gas of the sample into the accelerator mass spectrometer.

  10. Accelerator Mass Spectrometry | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thIWalter H.4Office ofViable2 LaboratoryAccelerator Mass

  11. Gas Chromatography -Mass Spectrometry

    E-Print Network [OSTI]

    Nizkorodov, Sergey

    GCMS - 1 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS OF ETHANOL AND BENZENE IN GASOLINE Last updated: June 17, 2014 #12;GCMS - 2 Gas Chromatography - Mass Spectrometry GC-MS ANALYSIS). The goal of this experiment is to separate the components in a sample of gasoline using Gas Chromatography

  12. Accelerator mass spectrometry facility at the University of Washington: current status, and an application to the /sup 14/C profile of a tree ring

    SciTech Connect (OSTI)

    Farwell, G.W.; Grootes, P.M.; Leach, D.D.; Schmidt, F.H.

    1984-01-01

    The University of Washington Model FN Tandem accelerator (1) is used for Accelerator Mass Spectrometry (AMS) of /sup 10/Be and /sup 14/C. This paper describes our basic system, our methods for rare-isotope normalization, final ion detection, and sample preparation, and the general problem of adapting an existing accelerator to meet the stringent stability requirements of precision AMS measurements while retaining human and technical compatibility with other users and uses of the accelerator. Recent preliminary data obtained on /sup 14/C in thin sequential sections of a single Sitka spruce tree ring (1963) are presented.

  13. Analytical mass spectrometry. Abstracts

    SciTech Connect (OSTI)

    Not Available

    1990-12-31

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  14. Analytical mass spectrometry

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This 43rd Annual Summer Symposium on Analytical Chemistry was held July 24--27, 1990 at Oak Ridge, TN and contained sessions on the following topics: Fundamentals of Analytical Mass Spectrometry (MS), MS in the National Laboratories, Lasers and Fourier Transform Methods, Future of MS, New Ionization and LC/MS Methods, and an extra session. (WET)

  15. Linear electric field mass spectrometry

    DOE Patents [OSTI]

    McComas, D.J.; Nordholt, J.E.

    1992-12-01

    A mass spectrometer and methods for mass spectrometry are described. The apparatus is compact and of low weight and has a low power requirement, making it suitable for use on a space satellite and as a portable detector for the presence of substances. High mass resolution measurements are made by timing ions moving through a gridless cylindrically symmetric linear electric field. 8 figs.

  16. Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Kelly, Ryan T.; Marginean, Ioan; Tang, Keqi

    2014-06-13

    Electrospray Ionization (ESI) is a process whereby gas phase ions are created from molecules in solution. As a solution exits a narrow tube in the presence of a strong electric field, an aerosol of charged droplets are is formed that produces gas phase ions as they it desolvates. ESI-MS comprises the creation of ions by ESI and the determination of their mass to charge ratio (m/z) by MS.

  17. Advances in Chromatography, Mass Spectrometry & Lab Automation

    E-Print Network [OSTI]

    Vertes, Akos

    #12;Advances in Chromatography, Mass Spectrometry & Lab Automation 2 Publisher's Note Kevin Davies&EN Media Group 4 Top Ten Chromatography, Mass Spectrometry, and Lab Automation Papers APPLICATION NOTES 10&EN Supplement of 2015: "Advances in Chromatography, Mass Spectrometry, and Lab Automation." This supplement

  18. Electrospray Mass Spectrometry | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    have come up with a technology that should speed DOE's remediation work while cutting costs. The technology is electrospray mass spectrometry (EMS), which creates gas phase...

  19. Quantification of absorption, retention and elimination of two different oral doses of vitamin A in Zambian boys using accelerator mass spectrometry

    SciTech Connect (OSTI)

    Aklamati, E K; Mulenga, M; Dueker, S R; Buchholz, B A; Peerson, J M; Kafwembe, E; Brown, K H; Haskell, M J

    2009-10-12

    A recent survey indicated that high-dose vitamin A supplements (HD-VAS) had no apparent effect on vitamin A (VA) status of Zambian children <5 y of age. To explore possible reasons for the lack of response to HD-VAS among Zambian children, we quantified the absorption, retention, and urinary elimination of either a single HDVAS (60 mg) or a smaller dose of stable isotope (SI)-labeled VA (5 mg), which was used to estimate VA pool size, in 3-4 y old Zambian boys (n = 4 for each VA dose). A 25 nCi tracer dose of [{sup 14}C{sub 2}]-labeled VA was co-administered with the HD-VAS or SI-labeled VA, and 24-hr stool and urine samples were collected for 3 and 7 consecutive days, respectively, and 24-hr urine samples at 4 later time points. Accelerator Mass Spectrometry (AMS) was used to measure the cumulative excretion of {sup 14}C in stool and urine 3d after dosing to estimate, respectively, absorption and retention of the VAS and SI-labeled VA. The urinary elimination rate (UER) was estimated by plotting {sup 14}C in urine vs. time, and fitting an exponential equation to the data. Estimates of mean absorption, retention and the UER were 83.8 {+-} 7.1%, 76.3 {+-} 6.7%, and 1.9 {+-} 0.6%/d, respectively, for the HD-VAS and 76.5 {+-} 9.5%, 71.1 {+-} 9.4%, and 1.8 {+-} 1.2%/d, respectively for the smaller dose of SI-labeled VA. Estimates of absorption, retention and the UER did not differ by size of the VA dose administered (P=0.26, 0.40, 0.88, respectively). Estimated absorption and retention were negatively associated with reported fever (P=0.011) and malaria (P =0.010). HD-VAS and SI-labeled VA were adequately absorbed, retained and utilized in apparently healthy Zambian preschool-age boys, although absorption and retention may be affected by recent infections.

  20. ²?²Cf-plasma desorption mass spectrometry of RNA nucleosides 

    E-Print Network [OSTI]

    Piper, Duane Gilbert

    1976-01-01

    . The average energy of the fragments from Cf are 79 MeV for the heavy particle and 104 MeV for the light particle, The plasma de- 22 sorption technique utilizes this energy to ionize the solid target samples. Penetration of the fission fragment... by Cf-plasma desorption mass spectrometry. Sample molecules are 252 volatilized and ionized by high-energy Cf fission particles. The mass of sample ions is determined by accelerating the volatil- ized tons into a flight tube where the ions separate...

  1. ACCOUNT AND PERSPECTIVE Macromolecule Mass Spectrometry

    E-Print Network [OSTI]

    Karypis, George

    ACCOUNT AND PERSPECTIVE Macromolecule Mass Spectrometry: Citation Mining of User Documents Ronald N. Kostoff and Clifford D. Bedford Office of Naval Research, Arlington, Virginia, USA J. Antonio del Ri impacted research, technology development, and applications. Citation Mining, an integration of citation

  2. Monolithic multinozzle emitters for nanoelectrospray mass spectrometry

    DOE Patents [OSTI]

    Wang, Daojing (Daly City, CA); Yang, Peidong (Kensington, CA); Kim, Woong (Seoul, KR); Fan, Rong (Pasadena, CA)

    2011-09-20

    Novel and significantly simplified procedures for fabrication of fully integrated nanoelectrospray emitters have been described. For nanofabricated monolithic multinozzle emitters (NM.sup.2 emitters), a bottom up approach using silicon nanowires on a silicon sliver is used. For microfabricated monolithic multinozzle emitters (M.sup.3 emitters), a top down approach using MEMS techniques on silicon wafers is used. The emitters have performance comparable to that of commercially-available silica capillary emitters for nanoelectrospray mass spectrometry.

  3. CAMS Center for Accelerator Mass Spectrometry

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory of rare Kaonforsupernovae modelsearch this siteSearchA Nanoscale Look

  4. In situ secondary ion mass spectrometry analysis

    SciTech Connect (OSTI)

    Groenewold, G.S.; Applehans, A.D.; Ingram, J.C.; Delmore, J.E.; Dahl, D.A.

    1993-01-01

    The direct detection of tributyl phosphate (TBP) on rocks using molecular beam surface analysis [MBSA or in situ secondary ion mass spectrometry (SIMS)] is demonstrated. Quantities as low as 250 ng were detected on basalt and sandstone with little or no sample preparation. Detection of TBP on soil has proven to be more problematic and requires further study. Ethylenediaminetetraacetic acid (EDTA) is more difficult to detect because it is very reactive with surfaces of interest. Nevertheless, it is possible to detect EDTA if the acidity of the surface is controlled. The detection of EDTA-metal complexes is currently an open question, but evidence is presented for the detection of ions arising from a EDTA-lead complex. Carboxylic acids (i.e., citric, ascorbic, malic, succinic, malonic, and oxalic) give characteristic SIM spectra, but their detection on sample surfaces awaits evaluation.

  5. Isolation and Puification of Uranium Isotopes for Measurement by Mass-Spectrometry (233, 234, 235, 236, 238U) and Alpha Spectrometry (232U)

    SciTech Connect (OSTI)

    Marinelli, R; Hamilton, T; Brown, T; Marchetti, A; Williams, R; Tumey, S

    2006-05-30

    This report describes a standardized methodology used by researchers from the Center for Accelerator Mass Spectrometry (CAMS) (Energy and Environment Directorate) and the Environmental Radiochemistry Group (Chemistry and Materials Science Directorate) at the Lawrence Livermore National Laboratory (LLNL) for the full isotopic analysis of uranium from solution. The methodology has largely been developed for use in characterizing the uranium composition of selected nuclear materials but may also be applicable to environmental studies and assessments of public, military or occupational exposures to uranium using in-vitro bioassay monitoring techniques. Uranium isotope concentrations and isotopic ratios are measured using a combination of Multi Collector Inductively Coupled Plasma Mass Spectrometry (MC ICP-MS), Accelerator Mass Spectrometry (AMS) and Alpha Spectrometry.

  6. Multiplexed mass spectrometry for real-time sensing in a spatially programmable chemical vapor deposition reactor

    E-Print Network [OSTI]

    Rubloff, Gary W.

    in understanding and controlling chemical processes used in semiconductor fabrication. Given the complexity at any desired process design point, or 2 intentional nonuniformity to accelerate process optimization. This forms the basis for using real-time mass spectrometry to drive process sensing, metrology, and control

  7. Single Cell Analysis Using Microfluidics Coupled to Ultrasensitive Mass Spectrometry

    E-Print Network [OSTI]

    Single Cell Analysis Using Microfluidics Coupled to Ultrasensitive Mass Spectrometry PI Ryan Kelly is to combine microfluidic sample preparation and separations with the ultrasensitive mass spectrometry (MS without the need for chemical labeling. We will combine our expertise in the fields of microfluidics

  8. A new detector for mass spectrometry: Direct detection of low...

    Office of Scientific and Technical Information (OSTI)

    A new detector for mass spectrometry: Direct detection of low energy ions using a multi-pixel photon counter Citation Details In-Document Search Title: A new detector for mass...

  9. Digital microfluidic sample preparation for biological mass spectrometry 

    E-Print Network [OSTI]

    Stokes, Adam A.

    2011-06-27

    The use of mass spectrometry in the biosciences has undergone huge growth in re- cent years due to sustained effort in the development of new ionisation techniques, more powerful mass analysers and better bioinformatic ...

  10. Molecular Beam Mass Spectrometry (MBMS) (Revised) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01

    This fact sheet provides information about Molecular Beam Mass Spectrometry (MBMS) capabilities and applications at NREL's National Bioenergy Center. NREL has six MBMS systems that researchers and industry partners can use to understand thermochemical biomass conversion and biomass composition recalcitrance.

  11. Subcellular analysis by laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Stolee, Jessica A; Shrestha, Bindesh

    2014-12-02

    In various embodiments, a method of laser ablation electrospray ionization mass spectrometry (LAESI-MS) may generally comprise micro-dissecting a cell comprising at least one of a cell wall and a cell membrane to expose at least one subcellular component therein, ablating the at least one subcellular component by an infrared laser pulse to form an ablation plume, intercepting the ablation plume by an electrospray plume to form ions, and detecting the ions by mass spectrometry.

  12. High-performance MEMS square electrode quadrupole mass filters for chip-scale mass spectrometry

    E-Print Network [OSTI]

    Cheung, Kerry

    We report exciting experimental data from a low-cost, high-performance square electrode quadrupole mass filter with integrated ion optics intended for chips-cale mass spectrometry. The device showed a mass range of 650 amu ...

  13. Laser desorption lamp ionization source for ion trap mass spectrometry

    E-Print Network [OSTI]

    Zare, Richard N.

    Laser desorption lamp ionization source for ion trap mass spectrometry Qinghao Wu and Richard N. Zare* A two-step laser desorption lamp ionization source coupled to an ion trap mass spectrometer (LDLI-ITMS) has been constructed and characterized. The pulsed infrared (IR) output of an Nd:YAG laser (1064 nm

  14. Microdroplet fusion mass spectrometry for fast reaction kinetics

    E-Print Network [OSTI]

    Zare, Richard N.

    Microdroplet fusion mass spectrometry for fast reaction kinetics Jae Kyoo Leea,b , Samuel Kima,b,1 investigated the fusion of high-speed liquid droplets as a way to record the kinetics of liquid-phase chemical between the mass spec- trometer inlet and the droplet fusion center. Fused droplet trajec- tories were

  15. Direct analysis of samples by mass spectrometry: From elements to bio-molecules using laser ablation inductively couple plasma mass spectrometry and laser desorption/ionization mass spectrometry

    SciTech Connect (OSTI)

    Perdian, David C.

    2009-08-19

    Mass spectrometric methods that are able to analyze solid samples or biological materials with little or no sample preparation are invaluable to science as well as society. Fundamental research that has discovered experimental and instrumental parameters that inhibit fractionation effects that occur during the quantification of elemental species in solid samples by laser ablation inductively coupled plasma mass spectrometry is described. Research that determines the effectiveness of novel laser desorption/ionization mass spectrometric methods for the molecular analysis of biological tissues at atmospheric pressure and at high spatial resolution is also described. A spatial resolution is achieved that is able to analyze samples at the single cell level.

  16. Mass Spectrometry DOI: 10.1002/anie.201004861

    E-Print Network [OSTI]

    Zare, Richard N.

    Chien, Nick K. Davis, and Richard N. Zare* The ability to detect reactive intermediates in solution using mass spectrometry (MS) has significantly advanced in the last decade owing to the development in real time.[8] Transfer hydrogenation using Ru organometallic catalysts in the presence of a hydrogen

  17. Coming to a hospital near you: mass spectrometry imaging

    ScienceCinema (OSTI)

    Bowen, Ben

    2014-06-24

    Berkeley Lab's Ben Bowen discusses "Coming to a hospital near you: mass spectrometry imaging" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas. Go here to watch the entire event with all 8 speakers.

  18. TECHNICAL BRIEF Mass spectrometry-based immuno-precipitation

    E-Print Network [OSTI]

    Lamond, Angus I.

    TECHNICAL BRIEF Mass spectrometry-based immuno-precipitation proteomics ­ The user's guide Sara ten Revised: December 7, 2010 Accepted: December 10, 2010 Immuno-precipitation (IP) experiments using MS but not described in the form of protocols. Keywords: Cell biology / Cumulative analysis / Immuno-precipitation

  19. Aerosol mass spectrometry systems and methods

    DOE Patents [OSTI]

    Fergenson, David P.; Gard, Eric E.

    2013-08-20

    A system according to one embodiment includes a particle accelerator that directs a succession of polydisperse aerosol particles along a predetermined particle path; multiple tracking lasers for generating beams of light across the particle path; an optical detector positioned adjacent the particle path for detecting impingement of the beams of light on individual particles; a desorption laser for generating a beam of desorbing light across the particle path about coaxial with a beam of light produced by one of the tracking lasers; and a controller, responsive to detection of a signal produced by the optical detector, that controls the desorption laser to generate the beam of desorbing light. Additional systems and methods are also disclosed.

  20. Laser Mass Spectrometry in Planetary Science

    SciTech Connect (OSTI)

    Wurz, P.; Whitby, J. A.; Managadze, G. G.

    2009-06-16

    Knowing the chemical, elemental, and isotopic composition of planetary objects allows the study of their origin and evolution within the context of our solar system. Exploration plans in planetary research of several space agencies consider landing spacecraft for future missions. Although there have been successful landers in the past, more landers are foreseen for Mars and its moons, Venus, the jovian moons, and asteroids. Furthermore, a mass spectrometer on a landed spacecraft can assist in the sample selection in a sample-return mission and provide mineralogical context, or identify possible toxic soils on Mars for manned Mars exploration. Given the resources available on landed spacecraft mass spectrometers, as well as any other instrument, have to be highly miniaturised.

  1. Characterization of the Molecular Composition of Secondary Organic Aerosols using High Resolution Mass Spectrometry

    E-Print Network [OSTI]

    Sellon, Rachel Elizabeth

    2012-01-01

    mass spectrometry, Analytical Chemistry, 82(19), 7979-7986.mass spectrometry, Analytical Chemistry, 79(21), Altieri, K.of organic compounds, Analytical Chemistry, 35(13), 2146-&.

  2. A study of the formation of cluster ions from metal acetates using plasma desorption mass spectrometry 

    E-Print Network [OSTI]

    Mendez Silvagnoli, Winston Reinaldo

    1995-01-01

    A novel application of desorption/ionization methods of mass spectrometry, e. g. plasma desorption mass spectrometry (PDMS), is the analysis of both the composition and structure of solid materials in one experiment. Cluster ions emitted from...

  3. Charge Prediction of Lipid Fragments in Mass Spectrometry

    SciTech Connect (OSTI)

    Schrom, Brian T.; Kangas, Lars J.; Ginovska, Bojana; Metz, Thomas O.; Miller, John H.

    2011-12-18

    An artificial neural network is developed for predicting which fragment is charged and which fragment is neutral for lipid fragment pairs produced from a liquid chromatography tandem mass spectrometry simulation process. This charge predictor is integrated into software developed at PNNL for in silico spectra generation and identification of metabolites known as Met ISIS. To test the effect of including charge prediction in Met ISIS, 46 lipids are used which show a reduction in false positive identifications when the charge predictor is utilized.

  4. Sheathless interface for coupling capillary electrophoresis with mass spectrometry

    SciTech Connect (OSTI)

    Wang, Chenchen; Tang, Keqi; Smith, Richard D.

    2014-06-17

    A sheathless interface for coupling capillary electrophoresis (CE) with mass spectrometry is disclosed. The sheathless interface includes a separation capillary for performing CE separation and an emitter capillary for electrospray ionization. A portion of the emitter capillary is porous or, alternatively, is coated to form an electrically conductive surface. A section of the emitter capillary is disposed within the separation capillary, forming a joint. A metal tube, containing a conductive liquid, encloses the joint.

  5. Future Directions of Structural Mass Spectrometry using Hydroxyl Radical Footprinting

    SciTech Connect (OSTI)

    J Kiselar; M Chance

    2011-12-31

    Hydroxyl radical protein footprinting coupled to mass spectrometry has been developed over the last decade and has matured to a powerful method for analyzing protein structure and dynamics. It has been successfully applied in the analysis of protein structure, protein folding, protein dynamics, and protein-protein and protein-DNA interactions. Using synchrotron radiolysis, exposure of proteins to a 'white' X-ray beam for milliseconds provides sufficient oxidative modification to surface amino acid side chains, which can be easily detected and quantified by mass spectrometry. Thus, conformational changes in proteins or protein complexes can be examined using a time-resolved approach, which would be a valuable method for the study of macromolecular dynamics. In this review, we describe a new application of hydroxyl radical protein footprinting to probe the time evolution of the calcium-dependent conformational changes of gelsolin on the millisecond timescale. The data suggest a cooperative transition as multiple sites in different molecular subdomains have similar rates of conformational change. These findings demonstrate that time-resolved protein footprinting is suitable for studies of protein dynamics that occur over periods ranging from milliseconds to seconds. In this review, we also show how the structural resolution and sensitivity of the technology can be improved as well. The hydroxyl radical varies in its reactivity to different side chains by over two orders of magnitude, thus oxidation of amino acid side chains of lower reactivity are more rarely observed in such experiments. Here we demonstrate that the selected reaction monitoring (SRM)-based method can be utilized for quantification of oxidized species, improving the signal-to-noise ratio. This expansion of the set of oxidized residues of lower reactivity will improve the overall structural resolution of the technique. This approach is also suggested as a basis for developing hypothesis-driven structural mass spectrometry experiments.

  6. RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2004; 18: 27062712

    E-Print Network [OSTI]

    Kim, Myung Soo

    a tryptophanyl residue Joo Yeon Oh, Jeong Hee Moon and Myung Soo Kim* National Creative Research Initiative mass spectrometry.7,8 The internal energy that ions acquire in the MALDI process or via colli- sional has been attempted also.11­13 Compared with CAD, PD may be considered a clean technique without

  7. A Mass Spectrometry Study of Isotope Separation in the Laser Plume

    E-Print Network [OSTI]

    Suen, Timothy Wu

    2012-01-01

    Uranium Particles”, Analytical Chemistry 71, 2616 (1999). [mass spectrometry”, Trends in Analytical Chemistry 24, 255 (spec- trometry”, Analytical Chemistry 60, 1472 (1988). [82

  8. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, In vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos (Reston, VA); Nemes, Peter (Silver Spring, MD)

    2011-11-29

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation (LA) with electrospray ionization (ESI).

  9. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2012-10-30

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  10. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  11. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Nemes, Peter

    2013-07-16

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  12. Laser ablation electrospray ionization (LAESI) for atmospheric pressure, in vivo, and imaging mass spectrometry

    SciTech Connect (OSTI)

    Vertes, Akos; Nemes, Peter

    2014-08-19

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  13. Three-dimensional molecular imaging by infrared laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos (Reston, VA); Nemes, Peter (Silver Spring, MD)

    2011-06-21

    The field of the invention is atmospheric pressure mass spectrometry (MS), and more specifically a process and apparatus which combine infrared laser ablation with electrospray ionization (ESI).

  14. Focus on Advancing High Performance Mass Spectrometry, Honoring Dr. Richard D. Smith, Recipient of the 2013 Award for a Distinguished Contribution in Mass Spectrometry

    SciTech Connect (OSTI)

    Baker, Erin Shammel; Muddiman, David C.; Loo, Joseph

    2014-12-01

    This special focus issue of the Journal of the American Society for Mass Spectrometry celebrates the accomplishments of Dr. Richard D. Smith, the recipient of the 2013ASMS Award for a Distinguished Contribution in Mass Spectrometry, and who serves as a Battelle Fellow, Chief Scientist in the Biological Sciences Division, and Director of Proteomics Research at Pacific Northwest National Laboratory (PNNL) in Richland, WA. The award is for his development of the electrodynamic ion funnel.

  15. Top-down mass spectrometry on low-resolution instruments: Characterization of phosphopantetheinylated carrier

    E-Print Network [OSTI]

    Nizet, Victor

    Top-down mass spectrometry on low-resolution instruments: Characterization October 2007 Available online 1 November 2007 Abstract--Mass spectrometry (MS) is an important tool using multi-stage tandem MS on a common ion trap instrument to obtain high-resolution mea- surements

  16. Lithium Mass Flow Control for High Power Lorentz Force Accelerators

    E-Print Network [OSTI]

    Lithium Mass Flow Control for High Power Lorentz Force Accelerators Andrea D. Kodys1 , Gregory Laboratory, Pasadena, CA 91109 (609).258.5220, choueiri@princeton.edu Abstract. A lithium feeding system has been developed to measure and control propellant flow for 30-200 kW Lithium Lorentz Force Accelerators

  17. IDENTIFICATION OF STAPHYLOCOCCAL SPECIES BASED ON VARIATIONS IN PROTEIN SEQUENCES (MASS SPECTROMETRY) AND DNA SEQUENCE (sodA MICROARRAY)

    SciTech Connect (OSTI)

    Kooken, Jennifer M.; Fox, Karen F.; Fox, Alvin; Altomare, Diego; Creek, Kim E.; Wunschel, David S.; Pajares-Merino, Sara; Martinez-Ballesteros, Ilargi; Garaizar, Javier; Oyarzabal, Omar A.; Samadpour, Mansour

    2014-02-03

    IDENTIFICATION OF STAPHYLOCOCCAL SPECIES BASED ON VARIATIONS IN PROTEIN SEQUENCES (MASS SPECTROMETRY) AND DNA SEQUENCE (sodA MICROARRAY)

  18. ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

    SciTech Connect (OSTI)

    Kooken, Jennifer M.; Fox, Karen F.; Fox, Alvin; Wunschel, David S.

    2014-02-02

    ASSESSMENT OF MARKER PROTEINS IDENTIFIED IN WHOLE CELL EXTRACTS FOR BACTERIAL SPECIATION USING LIQUID CHROMATOGRAPHY ELECTROSPRAY IONIZATION TANDEM MASS SPECTROMETRY

  19. Matrix Effects in Biological Mass Spectrometry Imaging: Identification and Compensation

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Stevens, Susan; Stenzel-Poore, Mary; Laskin, Julia

    2014-07-21

    Matrix effects in mass spectrometry imaging (MSI) may affect the observed molecular distribution in chemical and biological systems. In this study, we introduce an experimental approach that efficiently compensates for matrix effects in nanospray desorption electrospray ionization (nano-DESI) MSI without introducing any complexity into the experimental protocol. We demonstrate compensation for matrix effects in nano-DESI MSI of phosphatidylcholine (PC) in normal and ischemic mouse brain tissue by doping the nano-DESI solvent with PC standards. Specifically, we use mouse brain tissue of a middle cerebral artery occlusion (MCAO) stroke model with an ischemic region localized to one hemisphere of the brain. Due to similar suppression in ionization of endogenous PC molecules extracted from the tissue and PC standards added to the solvent, matrix effects are eliminated by normalizing the intensity of the sodium and potassium adducts of endogenous PC to the intensity of the corresponding adduct of the PC standard. This approach efficiently compensates for signal variations resulting from differences in the local concentrations of sodium and potassium in tissue sections and from the complexity of the extracted analyte mixture derived from local variations in molecular composition.

  20. Trace elements in coal by glow discharge mass spectrometry

    SciTech Connect (OSTI)

    Jacobs, M.L.; Wilson, C.R.; Pestovich, J. Jr.

    1995-08-01

    A need and a demand exist for determining trace elements in coal and coal related by-products, especially those elements which may potentially be a health hazard. The provisions of the 1990 clean air act require that the EPA evaluate the emissions of electric utilities for trace elements and other potentially hazardous organic compounds. The coal fired electric utility industry supplies roughly 60% of the total generating capacity of 2,882,525 million kilowatt hours (nearly 3 trillion kilowatt hours) generated in the U.S. This is accomplished by 414 power plants scattered across the country that burned 813,508,000 short tons of coal in 1993. The relative volatility of some inorganic constituents in coal makes them more prone to be emitted to the atmosphere following combustion. The production of analytical data for trace elements is known to be a difficult task in coal and by-products of coal combustion (fly ash, bottom ash, gas streams, etc.), in terms of both sample collection and analytical determinations. There are several common analytical methods available to the analyst to determine trace elements in coal and coal by-products. In general analytical germs, the material to be analyzed can be totally solubilized (or extracted), or the elements analytes can be determined in the material as a solid. A relatively new elemental technique, Glow Discharge Mass Spectrometry (GDMS) can be used with solids as well. This new analytical technique had never before been applied directly to coal. The radio frequency-glow discharge quadropole mass spectrometer was used to analyze coal directly for the first time ever by rf-GDMS. The rf-GDMS technique is described.

  1. Investigations into the impact of transported particles on air pollution and climate using aerosol time-of-flight mass spectrometry

    E-Print Network [OSTI]

    Ault, Andrew Phillip

    2010-01-01

    a portable ATOFMS, Analytical Chemistry, 69 (20), 4083-4091,Mass- Spectrometry, Analytical Chemistry, 66 (9), 1403-1407,Mass Spectrometer, Analytical Chemistry, 81 (5), 1792-1800,

  2. Exploring gas-phase protein conformations by ion mobility-mass spectrometry 

    E-Print Network [OSTI]

    Faull, Peter Allen

    2009-01-01

    Analysis and characterisation of biomolecules using mass spectrometry has advanced over the past decade due to improvements in instrument design and capability; relevant use of complementary techniques; and available ...

  3. Metalation and Demetalation of Human Metallothionein Studied by Ion Mobility Mass Spectrometry 

    E-Print Network [OSTI]

    Chen, Shu-Hua

    2015-04-28

    The mechanism of cadmium binding to intact human metallothionein-2A (MT) is investigated. We describe two complementary mass spectrometry (MS) strategies to study the metalation/demetalation mechanism: (i) chemical labeling ...

  4. The effect of solvent on matrix-assisted laser desorption ionization mass spectrometry 

    E-Print Network [OSTI]

    Campo, Karen Kay

    1996-01-01

    Since its introduction in 1988, matrix-assisted laser desorption/ionization mass spectrometry (MALDI) has developed into a useful analytical tool in the biological field. The work presented here focuses on the effect of solvent on MALDI ion yields...

  5. Probing protein-ligand interactions via solution phase hydrogen exchange mass spectrometry 

    E-Print Network [OSTI]

    Esswein, Stefan Theo

    2010-01-01

    Mass spectrometry is a versatile, sensitive and fast technique with which to probe biophysical properties in biological systems and one of the most important analytical tools in the multidisciplinary field of proteomics. ...

  6. Development of Advanced Optics and High Resolution Instrumentation for Mass Spectrometry Based Proteomics 

    E-Print Network [OSTI]

    Sherrod, Stacy D.

    2010-01-14

    Imaging mass spectrometry (MS) analysis allows scientists the ability to obtain spatial and chemical information of analytes on a wide variety of surfaces. The ability to image biological analytes is an important tool in ...

  7. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight (CXIDB ID 16)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Loh, N. Duane

    2012-06-20

    This deposition includes the aerosol diffraction images used for phasing, fractal morphology, and time-of-flight mass spectrometry. Files in this deposition are ordered in subdirectories that reflect the specifics.

  8. Thermal degradation of deoxybenzoin polymers studied by pyrolysis-gas chromatography/mass spectrometry

    E-Print Network [OSTI]

    Thermal degradation of deoxybenzoin polymers studied by pyrolysis-gas chromatography Available online 29 March 2008 Keywords: Flame-retardant polymers Thermal degradation Pyrolysis by pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). The polymers were synthesized

  9. Measurements of Volatile Organic Compounds Using Proton Transfer Reaction - Mass Spectrometry during the MILAGRO 2006 Campaign

    E-Print Network [OSTI]

    Fortner, E. C.

    Volatile organic compounds (VOCs) were measured by proton transfer reaction – mass spectrometry (PTR-MS) on a rooftop in the urban mixed residential and industrial area North Northeast of downtown Mexico City as part of ...

  10. Fractal morphology, imaging and mass spectrometry of single aerosol particles in flight (CXIDB ID 16)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Loh, N. Duane

    This deposition includes the aerosol diffraction images used for phasing, fractal morphology, and time-of-flight mass spectrometry. Files in this deposition are ordered in subdirectories that reflect the specifics.

  11. A postsource decay study of bradykinin by Matrix-assisted laser desorption ionization mass spectrometry 

    E-Print Network [OSTI]

    Wei, Xiaona

    1996-01-01

    Matrix-assisted laser desorption/ionization (MALDI) with time-of-flight (TOF) mass spectrometry is a very powerful technique for the analysis of peptides and proteins. Fragmentation reactions of the protonated analyte molecule, [M+H]+ ions...

  12. CNT-based gas ionizers with integrated MEMS gate for portable mass spectrometry applications

    E-Print Network [OSTI]

    Velasquez-Garcia, Luis Fernando

    We report the fabrication and experimental characterization of a novel low-cost carbon nanotube (CNT)-based electron impact ionizer (EII) with integrated gate for portable mass spectrometry applications. The device achieves ...

  13. CNT-based MEMS/NEMS gas ionizers for portable mass spectrometry applications

    E-Print Network [OSTI]

    Velasquez-Heller, Luis Fernand

    We report the fabrication and experimental characterization of a carbon nanotube (CNT)-based MEMS/NEMS electron impact gas ionizer with an integrated extractor gate for portable mass spectrometry. The ionizer achieves ...

  14. Development of and Application of Plasmonic Nanomaterials for Mass Spectrometry Based Biosensing 

    E-Print Network [OSTI]

    Gamez, Roberto

    2014-05-05

    exhibited by gold (Au) and silver (Ag) nanomaterials have made for versatile platforms in a wide range of applications including surface plasmon biosensing techniques and laser desorption/ionization mass spectrometry (LDI-MS). A primary driver for this work...

  15. RAPID DETERMINATION OF 237 NP AND PU ISOTOPES IN WATER BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY AND ALPHA SPECTROMETRY

    SciTech Connect (OSTI)

    Maxwell, S.; Jones, V.; Culligan, B.; Nichols, S.; Noyes, G.

    2010-06-23

    A new method that allows rapid preconcentration and separation of plutonium and neptunium in water samples was developed for the measurement of {sup 237}Np and Pu isotopes by inductively-coupled plasma mass spectrometry (ICP-MS) and alpha spectrometry; a hybrid approach. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via peak tailing. The method provide enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then moving Pu to DGA resin for additional removal of uranium. The decontamination factor for uranium from Pu is almost 100,000 and the decontamination factor for U from Np is greater than 10,000. This method uses stacked extraction chromatography cartridges and vacuum box technology to facilitate rapid separations. Preconcentration is performed using a streamlined calcium phosphate precipitation method. Purified solutions are split between ICP-MS and alpha spectrometry so that long and short-lived Pu isotopes can be measured successfully. The method allows for simultaneous extraction of 20 samples (including QC samples) in 4 to 6 hours, and can also be used for emergency response. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu, {sup 238}Pu, and {sup 239}Pu were measured by alpha spectrometry.

  16. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. I. STATISTICS AND CORONAL MASS EJECTION SOURCE REGION CHARACTERISTICS

    SciTech Connect (OSTI)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M.; Muhr, N.; Kienreich, I.; Utz, D.

    2011-09-10

    We use high time cadence images acquired by the STEREO EUVI and COR instruments to study the evolution of coronal mass ejections (CMEs) from their initiation through impulsive acceleration to the propagation phase. For a set of 95 CMEs we derived detailed height, velocity, and acceleration profiles and statistically analyzed characteristic CME parameters: peak acceleration, peak velocity, acceleration duration, initiation height, height at peak velocity, height at peak acceleration, and size of the CME source region. The CME peak accelerations we derived range from 20 to 6800 m s{sup -2} and are inversely correlated with the acceleration duration and the height at peak acceleration. Seventy-four percent of the events reach their peak acceleration at heights below 0.5 R{sub sun}. CMEs that originate from compact sources low in the corona are more impulsive and reach higher peak accelerations at smaller heights. These findings can be explained by the Lorentz force, which drives the CME accelerations and decreases with height and CME size.

  17. Algorithms for Identifying Protein Cross-links via Tandem Mass Spectrometry

    E-Print Network [OSTI]

    Church, George M.

    Algorithms for Identifying Protein Cross-links via Tandem Mass Spectrometry Ting Chen Jake Ja e y mass spectrum. We designed fast and space-e cient algorithms for these two steps, and implemented-protein interactions and solving protein structures. We focus on new algorithms for interpretation of complex

  18. Investigations into the impact of transported particles on air pollution and climate using aerosol time-of-flight mass spectrometry

    E-Print Network [OSTI]

    Ault, Andrew Phillip

    2010-01-01

    transport in INTEX-B, Atmospheric Chemistry Physics, 9 (19),mass spectrometry, Atmospheric Chemistry And Physics, 8 (prescribed fire plume, Atmospheric Chemistry And Physics,

  19. Apparatus and methods for continuous beam fourier transform mass spectrometry

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Goeringer, Douglas E. (Oak Ridge, TN)

    2002-01-01

    A continuous beam Fourier transform mass spectrometer in which a sample of ions to be analyzed is trapped in a trapping field, and the ions in the range of the mass-to-charge ratios to be analyzed are excited at their characteristic frequencies of motion by a continuous excitation signal. The excited ions in resonant motions generate real or image currents continuously which can be detected and processed to provide a mass spectrum.

  20. Algorithms for tandem mass spectrometry-based proteomics

    E-Print Network [OSTI]

    Frank, Ari Michael

    2008-01-01

    ed sequest algorithm. Analytical Chemistry 74, 5593– [138]of peptide ions. Analytical Chemistry 77, 4870–4882. [143]Tandem Mass Spectra. Analytical Chemistry, 77:4626-4639,

  1. Applications of Ionic Clusters in High Resolution Mass Spectrometry

    E-Print Network [OSTI]

    Leib, Ryan David

    2010-01-01

    16, 208-224. Belyayev, M. A. ; Cournoyer, J. J. ; Lin, C. ;Soc. 2003, 125, Li, X. J. ; Cournoyer, J. J. ; Lin, C. ;C. ; O'Connor, P. B. ; Cournoyer, J. J. J. Am. Soc. Mass

  2. Structural determination of intact proteins using mass spectrometry

    DOE Patents [OSTI]

    Kruppa, Gary (San Francisco, CA); Schoeniger, Joseph S. (Oakland, CA); Young, Malin M. (Livermore, CA)

    2008-05-06

    The present invention relates to novel methods of determining the sequence and structure of proteins. Specifically, the present invention allows for the analysis of intact proteins within a mass spectrometer. Therefore, preparatory separations need not be performed prior to introducing a protein sample into the mass spectrometer. Also disclosed herein are new instrumental developments for enhancing the signal from the desired modified proteins, methods for producing controlled protein fragments in the mass spectrometer, eliminating complex microseparations, and protein preparatory chemical steps necessary for cross-linking based protein structure determination.Additionally, the preferred method of the present invention involves the determination of protein structures utilizing a top-down analysis of protein structures to search for covalent modifications. In the preferred method, intact proteins are ionized and fragmented within the mass spectrometer.

  3. Laser photoionization time-of-flight mass spectrometry of nitrated polycyclic aromatic hydrocarbons and nitrated heterocyclic compounds. Master's thesis

    SciTech Connect (OSTI)

    Noyes, R.A.

    1993-01-01

    Partial Contents: Laser Desorption-Laser Photoionization Time-of-Flight Mass Spectrometry; Basic Principles of TOFMS; Factors Affecting Flight Time; Source of Broadening; Laser Desorption; Theory of Multiphoton Ionization: Application to Mass Spectrometry; Quantum Theory of MPI; Time-Dependent Perturbation Theory; Time-Dependent Coefficients; Probability of a Two-Photon Process; and Attributes of R2PI.

  4. OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging

    E-Print Network [OSTI]

    ), and the Low Dose Radiation Programs, which are supported by the Office of Science of the U.S. Department. Acknowledgements: This work was supported by and used resources of the National Energy Research Scientific Information ABSTRACT: Mass spectrometry imaging (MSI) enables research- ers to directly probe endogenous

  5. Apparatus and method for hydrogen and oxygen mass spectrometry of the terrestrial magnetosphere

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); Dors, Eric E. (Los Alamos, NM); Harper, Ronnie W. (Los Alamos, NM); Reisenfeld, Daniel B. (Stevensville, MT)

    2007-05-15

    A detector element for mass spectrometry of a flux of heavy and light ions, that includes: a first detector to detect light ions that transit through a foil operatively placed in front of the first detector, and a second detector that detects the flux of heavy and light ions.

  6. MASS SPECTROMETRY | Ionization Methods Overview DJ Harvey, University of Oxford, Oxford, UK

    E-Print Network [OSTI]

    FD Field desorption FI Field ionization GC/MS Gas chromatography/mass spectrometry HPLC High/ionization SEND Surface-enhanced neat desorption SEPAR Surface-enhanced photolabile attachment and release SIMS and involatile molecules, desorption techniques using high electric fields or bombardment with fission fragments

  7. Characterization of surface and layered films with cluster secondary ion mass spectrometry 

    E-Print Network [OSTI]

    Li, Zhen

    2009-05-15

    Cluster secondary ion mass spectrometry (SIMS) analyses of layer-by-layer thin films were performed to investigate the depth/volume of SI emission and accuracy of the SI signal. The thin-layered samples were assembled by alternate adsorption...

  8. "Weighing" Photon Energies with Mass Spectrometry: Effects of Water on Ion Fluorescence

    E-Print Network [OSTI]

    Neumark, Daniel M.

    "Weighing" Photon Energies with Mass Spectrometry: Effects of Water on Ion Fluorescence William A to internal energy can occur rapidly. The resulting energy is released by evaporating water molecules from results in a large number of water molecules lost from the reduced precursors.2 The energy deposited

  9. Apparatus for preparing a sample for mass spectrometry

    DOE Patents [OSTI]

    Villa-Aleman, E.

    1994-05-10

    An apparatus is described for preparing a sample for analysis by a mass spectrometer system. The apparatus has an entry chamber and an ionization chamber separated by a skimmer. A capacitor having two space-apart electrodes followed by one or more ion-imaging lenses is disposed in the ionization chamber. The chamber is evacuated and the capacitor is charged. A valve injects a sample gas in the form of sample pulses into the entry chamber. The pulse is collimated by the skimmer and enters the ionization chamber. When the sample pulse passes through the gap between the electrodes, it discharges the capacitor and is thereby ionized. The ions are focused by the imaging lenses and enter the mass analyzer, where their mass and charge are analyzed. 1 figures.

  10. Atmospheric pressure plasma analysis by modulated molecular beam mass spectrometry

    SciTech Connect (OSTI)

    Aranda Gonzalvo, Y.; Whitmore, T.D.; Rees, J.A.; Seymour, D.L.; Stoffels, E.

    2006-05-15

    Fractional number density measurements for a rf plasma 'needle' operating at atmospheric pressure have been obtained using a molecular beam mass spectrometer (MBMS) system designed for diagnostics of atmospheric plasmas. The MBMS system comprises three differentially pumped stages and a mass/energy analyzer and includes an automated beam-to-background measurement facility in the form of a software-controlled chopper mechanism. The automation of the beam modulation allows the neutral components in the plasma to be rapidly and accurately measured using the mass spectrometer by threshold ionization techniques. Data are reported for plasma generated by a needle plasma source operated using a helium/air mixture. In particular, data for the conversion of atmospheric oxygen and nitrogen into nitric oxide are discussed with reference to its significance for medical applications such as disinfecting wounds and dental cavities and for microsurgery.

  11. Site-specific analysis of glycosylated proteins using mass spectrometry

    E-Print Network [OSTI]

    Irungu, Janet W.

    2008-01-16

    in Telsa, m in kilograms, r in meters, q in Coulombs, and v in meters per second. 25, 28, 30 As shown from equation 2, the cyclotron frequency is inversely proportional to the mass-to-charge ratio (m/q or m/z). All ions of the same m/q rotate... in Telsa, m in kilograms, r in meters, q in Coulombs, and v in meters per second. 25, 28, 30 As shown from equation 2, the cyclotron frequency is inversely proportional to the mass-to-charge ratio (m/q or m/z). All ions of the same m/q rotate...

  12. Explorations of Functionalized Gold Nanoparticle Surface Chemistry for Laser Desorption Ionization Mass Spectrometry Applications 

    E-Print Network [OSTI]

    Gomez Hernandez, Mario 1980-

    2012-07-11

    -MS Matrix Assisted Laser Desorption Ionization Mass Spectrometry AuNPs Gold Nanoparticles UV-Vis Ultraviolet-Visible Spectroscopy TEM Transmission Electron Microscopy NMR Nuclear Magnetic Resonance Spectroscopy RIY Relative Ion... including enhanced Rayleigh scattering,2 biological reaction catalysis,3 aggregation assays,4 surface enhanced Raman spectroscopy,5 and other applications known as nanobiotechnology.6 Therefore, it is the combination of the proven performance of mass...

  13. OpenMSI: A High-Performance Web-Based Platform for Mass Spectrometry Imaging

    SciTech Connect (OSTI)

    Rubel, Oliver; Greiner, Annette; Cholia, Shreyas; Louie, Katherine; Bethel, E. Wes; Northen, Trent R.; Bowen, Benjamin P.

    2013-10-02

    Mass spectrometry imaging (MSI) enables researchers to directly probe endogenous molecules directly within the architecture of the biological matrix. Unfortunately, efficient access, management, and analysis of the data generated by MSI approaches remain major challenges to this rapidly developing field. Despite the availability of numerous dedicated file formats and software packages, it is a widely held viewpoint that the biggest challenge is simply opening, sharing, and analyzing a file without loss of information. Here we present OpenMSI, a software framework and platform that addresses these challenges via an advanced, high-performance, extensible file format and Web API for remote data access (http://openmsi.nersc.gov). The OpenMSI file format supports storage of raw MSI data, metadata, and derived analyses in a single, self-describing format based on HDF5 and is supported by a large range of analysis software (e.g., Matlab and R) and programming languages (e.g., C++, Fortran, and Python). Careful optimization of the storage layout of MSI data sets using chunking, compression, and data replication accelerates common, selective data access operations while minimizing data storage requirements and are critical enablers of rapid data I/O. The OpenMSI file format has shown to provide >2000-fold improvement for image access operations, enabling spectrum and image retrieval in less than 0.3 s across the Internet even for 50 GB MSI data sets. To make remote high-performance compute resources accessible for analysis and to facilitate data sharing and collaboration, we describe an easy-to-use yet powerful Web API, enabling fast and convenient access to MSI data, metadata, and derived analysis results stored remotely to facilitate high-performance data analysis and enable implementation of Web based data sharing, visualization, and analysis.

  14. Secondary ion mass spectrometry (SIMS)! Seminar 4 (UN)!

    E-Print Network [OSTI]

    ?umer, Slobodan

    .1 Primary particle source! 7! 3.2 Primary ion column! 7! 3.3 Mass analyser! 8! 3.4 Detectors! 9! 4 of primary ions, secondary particles are emitted. Few of them are charged ions (secondary ions), which sensitivity it gives us information complementary to other spectroscopic techniques. This seminar reviews

  15. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    SciTech Connect (OSTI)

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  16. Model-based Pre-processing in Protein Mass Spectrometry 

    E-Print Network [OSTI]

    Wagaman, John C.

    2011-02-22

    with varied mass accuracy. . . . . . . . . . 77 x TABLE Page 12. Average number (and standard error) of misclassified spectra af- ter applying PPC to our model-based peaks, using different nor- malization techniques. Results in this table use all 89 spectra... to identify peak cluster locations and split points. . . . . . . . . . . . . 82 13. Leave-one-out cross-validation of misclassified spectra after apply- ing PPC, LADA and AdaBoost to our model-based peaks, using different normalization techniques and only...

  17. Ion source for high-precision mass spectrometry

    DOE Patents [OSTI]

    Todd, P.J.; McKown, H.S.; Smith, D.H.

    1982-04-26

    The invention is directed to a method for increasing the precision of positive-ion relative abundance measurements conducted in a sector mass spectrometer having an ion source for directing a beam of positive ions onto a collimating slit. The method comprises incorporating in the source an electrostatic lens assembly for providing a positive-ion beam of circular cross section for collimation by the slit. 2 figures, 3 tables.

  18. Plume collimation for laser ablation electrospray ionization mass spectrometry

    DOE Patents [OSTI]

    Vertes, Akos; Stolee, Jessica A.

    2014-09-09

    In various embodiments, a device may generally comprise a capillary having a first end and a second end; a laser to emit energy at a sample in the capillary to ablate the sample and generate an ablation plume in the capillary; an electrospray apparatus to generate an electrospray plume to intercept the ablation plume to produce ions; and a mass spectrometer having an ion transfer inlet to capture the ions. The ablation plume may comprise a collimated ablation plume. The device may comprise a flow cytometer. Methods of making and using the same are also described.

  19. Monitoring Trace Radionuclides by ICP Mass Spectrometry with Femtosecond

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStress New Webpage We have a newJul 139Laser

  20. Method Development and Application of Mass Spectrometry Imaging for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on dark matter ByMentor-ProtegeFromGas Hydrates R&D

  1. New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry

    E-Print Network [OSTI]

    Girguis, Peter R.

    brine pool via in situ mass spectrometry Scott D. Wankel a , Samantha B. Joye b , Vladimir A. Samarkin b

  2. Sampling probe for microarray read out using electrospray mass spectrometry

    DOE Patents [OSTI]

    Van Berkel, Gary J.

    2004-10-12

    An automated electrospray based sampling system and method for analysis obtains samples from surface array spots having analytes. The system includes at least one probe, the probe including an inlet for flowing at least one eluting solvent to respective ones of a plurality of spots and an outlet for directing the analyte away from the spots. An automatic positioning system is provided for translating the probe relative to the spots to permit sampling of any spot. An electrospray ion source having an input fluidicly connected to the probe receives the analyte and generates ions from the analyte. The ion source provides the generated ions to a structure for analysis to identify the analyte, preferably being a mass spectrometer. The probe can be a surface contact probe, where the probe forms an enclosing seal along the periphery of the array spot surface.

  3. Mass Spectrometry Data from the Biological MS Data and Software Distribution Center

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anderson, Gordon

    The mass spectrometry capabilities at Pacific Northwest National Laboratory (PNNL) are primarily applied to biological research, with an emphasis on proteomics and metabolomics. Many of these cutting-edge mass spectrometry capabilities and bioinformatics methods are housed in the Department of Energy's Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility operated by PNNL. These capabilities have been developed and acquired through cooperation between the EMSL national scientific user program and PNNL programmatic research. At the website of the Biological MS Data and Software Distribution Center, the following resources are made available: PNNL-developed software tools and source code, PNNL-generated raw data and processed results, links to publications that used the data and results available on this site, and tutorials and user manuals. [taken from http://omics.pnl.gov/

  4. Measurement of positional isotope exchange rates in enzyme catalyzed reactions by fast atom bombardment mass spectrometry 

    E-Print Network [OSTI]

    Hilscher, Larry Wayne

    1985-01-01

    utility in analyzing a wide array of biological compounds. Our laboratory became interested in the potential use of FAB-MS to study PIX in nucleotide . Working with Dr. David H. Russell's group (Dept. of Chemistry, Texas A A M University) we were able...MEASUREMENT OF POSITIONAL ISOTOPE EXCHANGE RATES IN ENZYME CATALYZED REACTIONS BY FAST ATOM BOMBARDMENT MASS SPECTROMETRY A Thesis by LARRY NAYNE HILSCHER Submitted to the Gradu te College of Texas A&M University in partial fulfil" mert...

  5. Determination of atmospheric carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect (OSTI)

    Lewin, E.E.; Taggart, R.L.; Lalevic, M.; Bandy, A.R.

    1987-05-01

    A gas chromatography/mass spectrometry (GB/MS) method for determining atmospheric carbonyl sulfide (OCS) with a precision better than 2% is reported. High precision and insensitivity to sample loss and changes in detector response were achieved by using isotopically labeled OCS as an internal standard. Tenax, Molecular Sieve 5A, Carbosieve B, and Carbosieve S were evaluated for collecting atmospheric OCS. Molecular Sieve 5A provided the best trapping and recovery efficiencies.

  6. Method Development of Characterization of N-linked Glycoproteins in Mass Spectrometry

    E-Print Network [OSTI]

    Zhang, Ying

    2008-02-25

    single ion. 21 This process is called Coulomb fission. 2, 13, 15, 24 Another proposed mechanism for ion formation is ion evaporation, in which the charged droplets become smaller by releasing one charged ion at a time, until the whole droplet... ionization process; the ions are transferred from liquid phase to gas phase via two mechanisms: (A) Coulomb fission and (B) Ion evaporation. (Adapted from Chhabil Dass, Fundamentals of Contemporary Mass Spectrometry, Wiley-interscience, New York, 2007...

  7. Statistical Methods for the Analysis of Mass Spectrometry-based Proteomics Data 

    E-Print Network [OSTI]

    Wang, Xuan

    2012-07-16

    was sponsored by a subcontract from PNNL and by the NIH R25-CA-90301 training grant at TAMU. Additional support was provided by KAUST-IAMCS Innovation grant, by NIH grant DK070146 and by the National Institute of Allergy and Infectious Diseases (NIH...CMass spectrometry M/Z Mass over charge ratio NET Normalized elution time NMC Number of missed cleavage sites NTE Number of tryptic ends PEP Posterior error probability PM Potential matches PMF Probability mass function PNNL Paci c northwest national...

  8. Standard test method for uranium and plutonium concentrations and isotopic abundances by thermal ionization mass spectrometry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the determination of the concentration and isotopic composition of uranium and plutonium in solutions. The purified uranium or plutonium from samples ranging from nuclear materials to environmental or bioassay matrices is loaded onto a mass spectrometric filament. The isotopic ratio is determined by thermal ionization mass spectrometry, the concentration is determined by isotope dilution. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish safety and health practices and determine the applicability of regulatory limitations prior to use.

  9. Application of coincidence ion mass spectrometry for chemical and structural analysis at the sub-micron scale 

    E-Print Network [OSTI]

    Balderas, Sara

    2005-11-01

    the chemical composition of nano-domains. Previous studies using coincidence counting mass spectrometry (CCMS) indicated an enhancement of identifying correlations between SIs which share a common origin. This variant of SIMS requires an individual projectile...

  10. Airborne and ground based measurements of volatile organic compounds using proton transfer reaction mass spectrometry in Texas and Mexico City 

    E-Print Network [OSTI]

    Fortner, Edward Charles

    2009-05-15

    Measurements of ambient volatile organic compounds (VOCs) by proton transfer reaction mass spectrometry (PTR-MS) are reported from recent airborne and surface based field campaigns. The Southeast Texas Tetroon Study (SETTS) ...

  11. An On-Target Performic Acid Oxidation Method Suitable for Disulfide Bond Elucidation Using Capillary Electrophoresis - Mass Spectrometry 

    E-Print Network [OSTI]

    Williams, Brad J.

    2011-08-08

    advancements, the detection and proper assignment of disulfide bonds have remained experimentally difficult. Therefore, we have developed an alternative method for disulfide bond elucidation using capillary electrophoresis-mass spectrometry (CE-MS) combined...

  12. ORGANIC MASS SPECTROMETRY,VOL. 23,54-56 (1988) Thermochemical vs. Kinetic Control of Reactions in an Ion Trap Mass

    E-Print Network [OSTI]

    Wysocki, Vicki H.

    1988-01-01

    ORGANIC MASS SPECTROMETRY,VOL. 23,54-56 (1988) OMS Letter Dear Sir Thermochemical vs. Kinetic energies. 519 REACTlON COORDINATE Figure 1. Enthalpies associated with deamination and dehydratt o n

  13. An Analysis of Nuclear Fuel Burnup in the AGR 1 TRISO Fuel Experiment Using Gamma Spectrometry, Mass Spectrometry, and Computational Simulation Techniques

    SciTech Connect (OSTI)

    Jason M. Harp; Paul A. Demkowicz; Phillip L. Winston; James W. Sterbentz

    2014-10-01

    AGR 1 was the first in a series of experiments designed to test US TRISO fuel under high temperature gas-cooled reactor irradiation conditions. This experiment was irradiated in the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) and is currently undergoing post irradiation examination (PIE) at INL and Oak Ridge National Laboratory. One component of the AGR 1 PIE is the experimental evaluation of the burnup of the fuel by two separate techniques. Gamma spectrometry was used to non destructively evaluate the burnup of all 72 of the TRISO fuel compacts that comprised the AGR 1 experiment. Two methods for evaluating burnup by gamma spectrometry were developed, one based on the Cs 137 activity and the other based on the ratio of Cs 134 and Cs 137 activities. Burnup values determined from both methods compared well with the values predicted from simulations. The highest measured burnup was 20.1 %FIMA for the direct method and 20.0 %FIMA for the ratio method (compared to 19.56% FIMA from simulations). An advantage of the ratio method is that the burnup of the cylindrical fuel compacts can determined in small (2.5 mm) axial increments and an axial burnup profile can be produced. Destructive chemical analysis by inductively coupled mass spectrometry (ICP MS) was then performed on selected compacts that were representative of the expected range of fuel burnups in the experiment to compare with the burnup values determined by gamma spectrometry. The compacts analyzed by mass spectrometry had a burnup range of 19.3 % FIMA to 10.7 % FIMA. The mass spectrometry evaluation of burnup for the four compacts agreed well with the gamma spectrometry burnup evaluations and the expected burnup from simulation. For all four compacts analyzed by mass spectrometry, the maximum range in the three experimentally determined values and the predicted value was 6% or less. The results confirm the accuracy of the nondestructive burnup evaluation from gamma spectrometry for TRISO fuel compacts across a burnup range of approximately 10 to 20 % FIMA and also validate the approach used in the physics simulation of the AGR 1 experiment.

  14. Elemental and isotopic analysis of inorganic salts by laser desorption ionization mass spectrometry

    SciTech Connect (OSTI)

    Jayasekharan, T.; Sahoo, N. K.

    2013-02-05

    Laser desorption ionization mass spectrometry is applied for the analysis of elements as well as their isotopic composition in different inorganic salts. At very low laser energies the inorganic ions are desorbed and ionized from the thin layer of the sample surface. The naturally occurring isotopes of alkali and silver ions are resolved using time of flight mass spectrometer. Further increase in laser energy shows the appearance of Al, Cr, and Fe ions in the mass spectra. This indicates the penetration laser beam beyond the sample surface leading to the ablation of sample target at higher energies. The simultaneous appearance of atomic ions from the sample target at relatively higher laser energies hampers the unambiguous identification of amino acid residues from the biomolecular ions in MALDI-MS.

  15. Controlled-Resonant Surface Tapping-Mode Scanning Probe Electrospray Ionization Mass Spectrometry Imaging

    SciTech Connect (OSTI)

    Lorenz, Matthias; Ovchinnikova, Olga S; Kertesz, Vilmos; Van Berkel, Gary J

    2014-01-01

    This paper reports on the advancement of a controlled-resonance surface tapping-mode single capillary liquid junction extraction/ESI emitter for mass spectrometry imaging. The basic instrumental setup and the general operation of the system were discussed and optimized performance metrics were presented. The ability to spot sample, lane scan and chemically image in an automated and controlled fashion were demonstrated. Rapid, automated spot sampling was demonstrated for a variety of compound types including the cationic dye basic blue 7, the oligosaccharide cellopentaose, and the protein equine heart cytochrome c. The system was used for lane scanning and chemical imaging of the cationic dye crystal violet in inked lines on glass and for lipid distributions in mouse brain thin tissue sections. Imaging of the lipids in mouse brain tissue under optimized conditions provided a spatial resolution of approximately 35 m based on the ability to distinguish between features observed both in the optical and mass spectral chemical images. The sampling spatial resolution of this system was comparable to the best resolution that has been reported for other types of atmospheric pressure liquid extraction-based surface sampling/ionization techniques used for mass spectrometry imaging.

  16. Direct Surface Analysis of Time-Resolved Aerosol Impactor Samples with Ultrahigh-Resolution Mass Spectrometry

    E-Print Network [OSTI]

    Fuller, Stephen J.; Zhao, Yongjing; Cliff, Steven S.; Wexler, Anthony S.; Kalberer, Markus

    2012-10-18

    was assumed to be correct. Unfortunately due to the generally low peak intensities of the identified species MS-MS analysis for further structural identification was not possible. Only about 10-15% of the peaks contain a sulfur atom and are not further... 1 Direct surface analysis of time-resolved aerosol impactor samples with ultra-high resolution mass spectrometry Stephen J. Fuller 1, Yongjing Zhao2, Steven S. Cliff2, Anthony S. Wexler2, Markus Kalberer 1* 1 University of Cambridge, Department...

  17. 230Th-234U Age-Dating Uranium by Mass Spectrometry

    SciTech Connect (OSTI)

    Williams, R W; Gaffney, A M

    2012-04-18

    This is the standard operating procedure used by the Isotope Ratio Mass Spectrometry Group of the Chemical Sciences Division at LLNL for the preparation of a sample of uranium oxide or uranium metal for {sup 230}Th-{sup 234}U age-dating. The method described here includes the dissolution of a sample of uranium oxide or uranium metal, preparation of a secondary dilution, spiking of separate aliquots for uranium and thorium isotope dilution measurements, and purification of uranium and thorium aliquots for mass spectrometry. This SOP may be applied to uranium samples of unknown purity as in a nuclear forensic investigation, and also to well-characterized samples such as, for example, U{sub 3}O{sub 8} and U-metal certified reference materials. The sample of uranium is transferred to a quartz or PFA vial, concentrated nitric acid is added and the sample is heated on a hotplate at approximately 100 C for several hours until it dissolves. The sample solution is diluted with water to make the solution approximately 4 M HNO{sub 3} and hydrofluoric acid is added to make it 0.05 M HF. A secondary dilution of the primary uranium solution is prepared. Separate aliquots for uranium and thorium isotope dilution measurements are taken and spiked with {sup 233}U and {sup 229}Th, respectively. The spiked aliquot for uranium isotope dilution analysis is purified using EiChrom UTEVA resin. The spiked aliquot for thorium isotope dilution analysis is purified by, first, a 1.8 mL AG1x8 resin bed in 9 M HCl on which U adsorbs and Th passes through; second, adsorbing Th on a 1 mL AG1x8 resin bed in 8 M HNO{sub 3} and then eluting it with 9 M HCl followed by 0.1 M HCl + 0.005 M HF; and third, by passing the Th through a final 1.0 mL AG1x8 resin bed in 9 M HCl. The mass spectrometry is performed using the procedure 'Th and U Mass Spectrometry for {sup 230}Th-{sup 234}U Age Dating'.

  18. An Open Port Sampling Interface for Liquid Introduction Atmospheric Pressure Ionization Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Van Berkel, Gary J.; Kertesz, Vilmos

    2015-08-25

    RATIONALE: A simple method to introduce unprocessed samples into a solvent for rapid characterization by liquid introduction atmospheric pressure ionization mass spectrometry has been lacking. The continuous flow, self-cleaning open port sampling interface introduced here fills this void. METHODS: The open port sampling interface used a vertically aligned, co-axial tube arrangement enabling solvent delivery to the sampling end of the device through the tubing annulus and solvent aspiration down the center tube and into the mass spectrometer ionization source via the commercial APCI emitter probe. The solvent delivery rate to the interface was set to exceed the aspiration rate creatingmore »a continuous sampling interface along with a constant, self-cleaning spillover of solvent from the top of the probe. RESULTS: Using the open port sampling interface with positive ion mode APCI and a hybrid quadrupole time of flight mass spectrometer, rapid, direct sampling and analysis possibilities are exemplified with plastics, ballpoint and felt tip ink pens, skin, and vegetable oils. These results demonstrated that the open port sampling interface could be used as a simple, versatile and self-cleaning system to rapidly introduce multiple types of unprocessed, sometimes highly concentrated and complex, samples into a solvent flow stream for subsequent ionization and analysis by mass spectrometry. The basic setup presented here could be incorporated with any self-aspirating liquid introduction ionization source (e.g., ESI, APCI, APPI, ICP, etc.) or any type of atmospheric pressure sampling ready mass spectrometer system. CONCLUSIONS: The open port sampling interface provides a means to introduce and quickly analyze unprocessed solid or liquid samples with liquid introduction atmospheric pressure ionization source without fear of sampling interface or ionization source contamination.« less

  19. Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Paticulate Organic Nitrates

    SciTech Connect (OSTI)

    Bruns, Emily; Perraud, Veronique; Zelenyuk, Alla; Ezell, Michael J.; Johnson, Stanley N.; Yu, Yong; Imre, D.; Finlayson-Pitts, Barbara J.; Alexander, M. L.

    2010-02-01

    While multifunctional organic nitrates are formed during the atmospheric oxidation of volatile organic compounds, relatively little is known about their signatures in particle mass spectrometers. High resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was applied to NH4NO3, NaNO3 and isosorbide 5-mononitrate (IMN) particles, and to secondary organic aerosol (SOA) from NO3 radical reactions at 22 C and 1 atm in air with and pinene, 3-carene, limonene and isoprene. For comparison, single particle laser ablation mass spectra (SPLAT II) were also obtained for IMN and SOA from the pinene reaction. The mass spectra of all particles exhibit significant intensity at m/z 30, and for the SOA, weak peaks corresponding to various organic fragments containing nitrogen [CxHyNzOa]+ were identified using HR-ToF-AMS. The NO+/NO2+ ratios from HR-ToF-AMS were 10-15 for IMN and the SOA from the and pinene, 3-carene and limonene reactions, ~5 for the isoprene reaction, 2.4 for NH4NO3 and 80 for NaNO3. The N/H ratios from HR-ToF-AMS for the SOA were smaller by a factor of 2 to 4 than the -ONO2/C-H ratios measured using FTIR on particles impacted on ZnSe windows. While the NO+/NO2+ ratio may provide a generic indication of organic nitrates under some conditions, specific identification of particulate organic nitrates awaits further development of particle mass spectrometry techniques.

  20. Ultra-high-mass mass spectrometry with charge discrimination using cryogenic detectors

    DOE Patents [OSTI]

    Frank, Matthias (Berkeley, CA); Mears, Carl A. (Oakland, CA); Labov, Simon E. (Berkeley, CA); Benner, W. Henry (Danville, CA)

    1999-01-01

    An ultra-high-mass time-of-flight mass spectrometer using a cryogenic particle detector as an ion detector with charge discriminating capabilities. Cryogenic detectors have the potential for significantly improving the performance and sensitivity of time-of-flight mass spectrometers, and compared to ion multipliers they exhibit superior sensitivity for high-mass, slow-moving macromolecular ions and can be used as "stop" detectors in time-of-flight applications. In addition, their energy resolving capability can be used to measure the charge state of the ions. Charge discrimination is very valuable in all time-of-flight mass spectrometers. Using a cryogenically-cooled Nb-Al.sub.2 O.sub.3 -Nb superconductor-insulator-superconductor (SIS) tunnel junction (STJ) detector operating at 1.3 K as an ion detector in a time-of-flight mass spectrometer for large biomolecules it was found that the STJ detector has charge discrimination capabilities. Since the cryogenic STJ detector responds to ion energy and does not rely on secondary electron production, as in the conventionally used microchannel plate (MCP) detectors, the cryogenic detector therefore detects large molecular ions with a velocity-independent efficiency approaching 100%.

  1. Development of A Cryogenic Drift Cell Spectrometer and Methods for Improving the Analytical Figures of Merit for Ion Mobility-Mass Spectrometry Analysis 

    E-Print Network [OSTI]

    May, Jody C.

    2010-10-12

    A cryogenic (325-80 K) ion mobility-mass spectrometer was designed and constructed in order to improve the analytical figures-of-merit for the chemical analysis of small mass analytes using ion mobility-mass spectrometry. ...

  2. Multi-matrix, dual polarity, tandem mass spectrometry imaging strategy applied to a germinated maize seed. Toward mass spectrometry imaging of an untargeted metabolome

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Feenstra, Adam D.; Hansen, Rebecca L.; Lee, Young Jin

    2015-08-27

    Mass spectrometry imaging (MSI) provides high spatial resolution information that is unprecedented in traditional metabolomics analyses; however, the molecular coverage is often limited to a handful of compounds and is insufficient to understand overall metabolomic changes of a biological system. Here, we propose an MSI methodology to increase the diversity of chemical compounds that can be imaged and identified, in order to eventually perform untargeted metabolomic analysis using MSI. We use the desorption/ionization bias of various matrixes for different metabolite classes along with dual polarities and a tandem MSI strategy. The use of multiple matrixes and dual polarities allows usmore »to visualize various classes of compounds, while data-dependent MS/MS spectra acquired in the same MSI scans allow us to identify the compounds directly on the tissue. In a proof of concept application to a germinated corn seed, a total of 166 unique ions were determined to have high-quality MS/MS spectra, without counting structural isomers, of which 52 were identified as unique compounds. According to an estimation based on precursor MSI datasets, we expect over five hundred metabolites could be potentially identified and visualized once all experimental conditions are optimized and an MS/MS library is available. Finally, metabolites involved in the glycolysis pathway and tricarboxylic acid cycle were imaged to demonstrate the potential of this technology to better understand metabolic biology.« less

  3. The Ramsey method in high-precision mass spectrometry with Penning traps: Experimental results

    E-Print Network [OSTI]

    S. George; K. Blaum; F. Herfurth; A. Herlert; M. Kretzschmar; S. Nagy; S. Schwarz; L. Schweikhard; C. Yazidjian

    2007-01-22

    The highest precision in direct mass measurements is obtained with Penning trap mass spectrometry. Most experiments use the interconversion of the magnetron and cyclotron motional modes of the stored ion due to excitation by external radiofrequency-quadrupole fields. In this work a new excitation scheme, Ramsey's method of time-separated oscillatory fields, has been successfully tested. It has been shown to reduce significantly the uncertainty in the determination of the cyclotron frequency and thus of the ion mass of interest. The theoretical description of the ion motion excited with Ramsey's method in a Penning trap and subsequently the calculation of the resonance line shapes for different excitation times, pulse structures, and detunings of the quadrupole field has been carried out in a quantum mechanical framework and is discussed in detail in the preceding article in this journal by M. Kretzschmar. Here, the new excitation technique has been applied with the ISOLTRAP mass spectrometer at ISOLDE/CERN for mass measurements on stable as well as short-lived nuclides. The experimental resonances are in agreement with the theoretical predictions and a precision gain close to a factor of four was achieved compared to the use of the conventional excitation technique.

  4. Standard test method for isotopic abundance analysis of uranium hexa?uoride and uranyl nitrate solutions by multi-collector, inductively coupled plasma-mass spectrometry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2008-01-01

    Standard test method for isotopic abundance analysis of uranium hexa?uoride and uranyl nitrate solutions by multi-collector, inductively coupled plasma-mass spectrometry

  5. Cross-Linking and Mass Spectrometry Methodologies to Facilitate Structural Biology: Finding a Path through the Maze

    SciTech Connect (OSTI)

    Merkley, Eric D.; Cort, John R.; Adkins, Joshua N.

    2013-09-01

    Multiprotein complexes, rather than individual proteins, make up a large part of the biological macromolecular machinery of a cell. Understanding the structure and organization of these complexes is critical to understanding cellular function. Chemical cross-linking coupled with mass spectrometry is emerging as a complementary technique to traditional structural biology methods and can provide low-resolution structural information for a multitude of purposes, such as distance constraints in computational modeling of protein complexes. In this review, we discuss the experimental considerations for successful application of chemical cross-linking-mass spectrometry in biological studies and highlight three examples of such studies from the recent literature. These examples (as well as many others) illustrate the utility of a chemical cross-linking-mass spectrometry approach in facilitating structural analysis of large and challenging complexes.

  6. Synergy of decay spectroscopy and mass spectrometry for the study of exotic nuclides

    E-Print Network [OSTI]

    Stanja, Juliane

    With only two ingredients, atomic nuclei exhibit a rich structure depending on the ordering of the different proton- and neutron-occupied states. This ordering can give rise to excited states with exceptionally long half-lives, also known as isomers, especially near shell closures. On-line mass spectrometry can often be compromised by the existence of such states that may even be produced in higher proportion than the ground state. This thesis presents the first results obtained from a nuclear spectroscopy setup coupled with the high-resolution Penning-trap mass spectrometer ISOLTRAP, at CERN’s radioactive ion beam facility ISOLDE. The isomerism in the neutron-deficient thallium isotopes was investigated. The data on $^{184,190,193?195}$Tl allow an improvement of existing mass values as well as a mass-spin- state assignment in $^{ 190,193,194}$Tl. Due to the presence of the ground and isomeric state for $^{ 194}$Tl the excitation energy of the latter was determined for the first time experimentally. Syste...

  7. Detecting and Removing Data Artifacts in Hadamard Transform Ion Mobility-Mass Spectrometry Measurements

    SciTech Connect (OSTI)

    Prost, Spencer A.; Crowell, Kevin L.; Baker, Erin Shammel; Ibrahim, Yehia M.; Clowers, Brian H.; Monroe, Matthew E.; Anderson, Gordon A.; Smith, Richard D.; Payne, Samuel H.

    2014-12-01

    Applying Hadamard transform multiplexing to ion mobility separations (IMS) can significantly improve the signal-to-noise ratio and throughput for IMS coupled mass spectrometry (MS) measurements by increasing the ion utilization efficiency. However, it has been determined that both fluctuations in ion intensity as well as spatial shifts in the multiplexed data lower the signal-to-noise ratios and appear as noise in downstream processing of the data. To address this problem, we have developed a novel algorithm that discovers and eliminates data artifacts. The algorithm uses knowledge of the true signal peaks derived from the encoded data and allows for both artifacts and noise to be removed with high confidence, decreasing the likelihood of false identifications in subsequent data processing. The result is that IMS-MS can be applied to increase measurement sensitivity while avoiding artifacts that have previously limited its utility.

  8. A Hybrid Approach to Protein Differential Expression in Mass Spectrometry-Based Proteomics

    SciTech Connect (OSTI)

    Wang, Xuan; Anderson, Gordon A.; Smith, Richard D.; Dabney, Alan R.

    2012-04-19

    Motivation: Quantitative mass spectrometry-based proteomics involves statistical inference on protein abundance, based on the intensities of each protein's associated spectral peaks. However, typical MS-based proteomics data sets have substantial proportions of missing observations, due at least in part to censoring of low intensities. This complicates intensity-based differential expression analysis. Results: We outline a statistical method for protein differential expression, based on a simple Binomial likelihood. By modeling peak intensities as binary, in terms of 'presence/ absence,' we enable the selection of proteins not typically amendable to quantitative analysis; e.g., 'one-state' proteins that are present in one condition but absent in another. In addition, we present an analysis protocol that combines quantitative and presence/ absence analysis of a given data set in a principled way, resulting in a single list of selected proteins with a single associated FDR.

  9. Inductively Coupled Plasma: Fundamental Particle Investigations with Laser Ablation and Applications in Magnetic Sector Mass Spectrometry

    SciTech Connect (OSTI)

    Nathan Joe Saetveit

    2008-08-18

    Particle size effects and elemental fractionation in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) are investigated with nanosecond and femtosecond laser ablation, differential mobility analysis, and magnetic sector ICP-MS. Laser pulse width was found to have a significant influence on the LA particle size distribution and the elemental composition of the aerosol and thus fractionation. Emission from individual particles from solution nebulization, glass, and a pressed powder pellet are observed with high speed digital photography. The presence of intact particles in an ICP is shown to be a likely source of fractionation. A technique for the online detection of stimulated elemental release from neural tissue using magnetic sector ICP-MS is described. Detection limits of 1 {micro}g L{sup -1} or better were found for P, Mn, Fe, Cu, and Zn in a 60 {micro}L injection in a physiological saline matrix.

  10. Membrane-Based Emitter for Coupling Microfluidics with Ultrasensitive Nanoelectrospray Ionization-Mass Spectrometry

    SciTech Connect (OSTI)

    Sun, Xuefei; Kelly, Ryan T.; Tang, Keqi; Smith, Richard D.

    2011-06-09

    An integrated poly(dimethylsiloxane) (PDMS) membrane-based microfluidic emitter for high performance nanoelectrospray ionization-mass spectrometry (nanoESI-MS) has been fabricated and evaluated. The ~100-?m-thick emitter was created by cutting a PDMS membrane that protrudes beyond the bulk substrate. The reduced surface area at the emitter enhances the electric field and reduces wetting of the surface by the electrospray solvent. As such, the emitter provides highly stable electrospray at flow rates as low as 10 nL/min, and is compatible with electrospray solvents containing a large organic component (e.g., 90% methanol). This approach enables facile emitter construction, and provides excellent stability, reproducibility and sensitivity, as well as compatibility with multilayer soft lithography.

  11. Shotgun Approach for Quantitative Imaging of Phospholipids Using Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Thomas, Mathew; Laskin, Julia

    2014-02-04

    Mass spectrometry imaging (MSI) has been extensively used for determining spatial distributions of molecules in biological samples, and there is increasing interest in using MSI for quantification. Nanospray desorption electrospray ionization, or nano-DESI, is an ambient MSI technique where a solvent is used for localized extraction of molecules followed by nanoelectrospray ionization. Doping the nano-DESI solvent with carefully selected standards enables online quantification during MSI experiments. In this proof-of-principle study, we demonstrate this quantification approach can be extended to provide shotgun-like quantification of phospholipids in thin brain tissue sections. Specifically, two phosphatidylcholine (PC) standards were added to the nano-DESI solvent for simultaneous imaging and quantification of 22 PC species observed in nano-DESI MSI. Furthermore, by combining the quantitative data obtained in the individual pixels, we demonstrate quantification of these PC species in seven different regions of a rat brain tissue section.

  12. Detonation reaction steps frozen by free expansion and analyzed by mass spectrometry

    SciTech Connect (OSTI)

    Greiner, N.R.; Fry, H.A.; Blais, N.C.; Engelke, R.P.

    1993-05-01

    Detonation reactions in small pellets of explosive are frozen by free expansion into a large vacuum chamber and analyzed by time-of-flight mass spectrometry. Sensitive explosives like PETN, RDX, and HMX show rapidly evolving reaction zones and mostly simple products like H{sub 2}O, CO, N{sub 2}, and CO{sub 2}. Less sensitive explosives like TATB, HNS, and TNT show slower evolution of the reaction zone, and more complex products in addition to the simple ones seen in PETN. Isotopic substitution shows that the more complex products contain moderate amounts of NH{sub 3}, HCN, NO, HNCO, and NO{sub 2}. Other observations include polymerization of aromatic explosive molecules, adducts to the explosive molecules, and explosive molecules with functional groups missing. The more complex products are reservoirs of unreleased energy that may affect performance.

  13. Detonation reaction steps frozen by free expansion and analyzed by mass spectrometry

    SciTech Connect (OSTI)

    Greiner, N.R.; Fry, H.A.; Blais, N.C.; Engelke, R.P.

    1993-01-01

    Detonation reactions in small pellets of explosive are frozen by free expansion into a large vacuum chamber and analyzed by time-of-flight mass spectrometry. Sensitive explosives like PETN, RDX, and HMX show rapidly evolving reaction zones and mostly simple products like H[sub 2]O, CO, N[sub 2], and CO[sub 2]. Less sensitive explosives like TATB, HNS, and TNT show slower evolution of the reaction zone, and more complex products in addition to the simple ones seen in PETN. Isotopic substitution shows that the more complex products contain moderate amounts of NH[sub 3], HCN, NO, HNCO, and NO[sub 2]. Other observations include polymerization of aromatic explosive molecules, adducts to the explosive molecules, and explosive molecules with functional groups missing. The more complex products are reservoirs of unreleased energy that may affect performance.

  14. Synchrotron photoionization mass spectrometry study of intermediates in fuel-rich 1,2-dimethoxyethane flame

    SciTech Connect (OSTI)

    Lin, Z. K.; Han, D. L.; Li, S. F.; Li, Y. Y.; Yuan, T.

    2009-04-21

    Intermediates in a fuel-rich premixed laminar 1,2-dimethoxyethane (DME) flame are studied by molecular beam mass spectrometry combined with tunable synchrotron vacuum ultraviolet photoionization. About 30 intermediate species are identified in the present work, and their mole fraction profiles are evaluated. The experimental results show that the formations of intermediates, both hydrocarbons and oxygenated hydrocarbons, are closely linked to the structure of fuel, which is consistent with the previous reports. Species produced from H atom abstraction and beta scission of DME usually have much higher concentrations than others. The oxygen atoms in DME are considered to act as partitions of the primary intermediates; therefore farther reactions among these primary intermediates are difficult to occur, resulting in absence of most large intermediate species.

  15. Analysis of fission gas release kinetics by on-line mass spectrometry

    SciTech Connect (OSTI)

    Zerega, Y.; Reynard-Carette, C.; Parrat, D.; Carette, M.; Brkic, B.; Lyoussi, A.; Bignan, G.; Janulyte, A.; Andre, J.; Pontillon, Y.; Ducros, G.; Taylor, S.

    2011-07-01

    The release of fission gas (Xe and Kr) and helium out of nuclear fuel materials in normal operation of a nuclear power reactor can constitute a strong limitation of the fuel lifetime. Moreover, radioactive isotopes of Xe and Kr contribute significantly to the global radiological source term released in the primary coolant circuit in case of accidental situations accompanied by fuel rod loss of integrity. As a consequence, fission gas release investigation is of prime importance for the nuclear fuel cycle economy, and is the driven force of numerous R and D programs. In this domain, for solving current fuel behavior understanding issues, preparing the development of new fuels (e.g. for Gen IV power systems) and for improving the modeling prediction capability, there is a marked need for innovations in the instrumentation field, mainly for: . Quantification of very low fission gas concentrations, released from fuel sample and routed in sweeping lines. Monitoring of quick gas release variations by quantification of elementary release during a short period of time. Detection of a large range of atomic masses (e.g. H{sub 2}, HT, He, CO, CO{sub 2}, Ne, Ar, Kr, Xe), together with a performing separation of isotopes for Xe and Kr elements. Coupling measurement of stable and radioactive gas isotopes, by using in parallel mass spectrometry and gamma spectrometry techniques. To fulfill these challenging needs, a common strategy for analysis equipment implementation has been set up thanks to a recently launched collaboration between the CEA and the Univ. of Provence, with the technological support of the Liverpool Univ.. It aims at developing a chronological series of mass spectrometer devices based upon mass filter and 2D/3D ion traps with Fourier transform operating mode and having increasing levels of performances to match the previous challenges for out-of pile and in-pile experiments. The final objective is to install a high performance online mass spectrometer coupled to a gamma spectrometer in the fission product laboratory of the future Jules Horowitz Material Test Reactor. An intermediate step will consist of testing first equipment on an existing experimental facility in the LECA-STAR Hot Cell Laboratory of the CEA Cadarache. This paper presents the scientific and operational stakes linked to fission gas issues, resumes the current state of art for analyzing them in nuclear facilities, then presents the skills gathered through this collaboration to overcome technological bottlenecks. Finally it describes the implementation strategy in nuclear research facilities of the CEA Cadarache. (authors)

  16. Structural Analysis of a Highly Glycosylated and Unliganded gp120-Based Antigen Using Mass Spectrometry

    SciTech Connect (OSTI)

    L Wang; Y Qin; S Ilchenko; J Bohon; W Shi; M Cho; K Takamoto; M Chance

    2011-12-31

    Structural characterization of the HIV-1 envelope protein gp120 is very important for providing an understanding of the protein's immunogenicity and its binding to cell receptors. So far, the crystallographic structure of gp120 with an intact V3 loop (in the absence of a CD4 coreceptor or antibody) has not been determined. The third variable region (V3) of the gp120 is immunodominant and contains glycosylation signatures that are essential for coreceptor binding and entry of the virus into T-cells. In this study, we characterized the structure of the outer domain of gp120 with an intact V3 loop (gp120-OD8) purified from Drosophila S2 cells utilizing mass spectrometry-based approaches. We mapped the glycosylation sites and calculated the glycosylation occupancy of gp120-OD8; 11 sites from 15 glycosylation motifs were determined as having high-mannose or hybrid glycosylation structures. The specific glycan moieties of nine glycosylation sites from eight unique glycopeptides were determined by a combination of ECD and CID MS approaches. Hydroxyl radical-mediated protein footprinting coupled with mass spectrometry analysis was employed to provide detailed information about protein structure of gp120-OD8 by directly identifying accessible and hydroxyl radical-reactive side chain residues. Comparison of gp120-OD8 experimental footprinting data with a homology model derived from the ligated CD4-gp120-OD8 crystal structure revealed a flexible V3 loop structure in which the V3 tip may provide contacts with the rest of the protein while residues in the V3 base remain solvent accessible. In addition, the data illustrate interactions between specific sugar moieties and amino acid side chains potentially important to the gp120-OD8 structure.

  17. Laser desorption time-of-flight mass spectrometry of ultraviolet photo-processed ices

    SciTech Connect (OSTI)

    Paardekooper, D. M. Bossa, J.-B.; Isokoski, K.; Linnartz, H.

    2014-10-01

    A new ultra-high vacuum experiment is described that allows studying photo-induced chemical processes in interstellar ice analogues. MATRI²CES - a Mass Analytical Tool to study Reactions in Interstellar ICES applies a new concept by combining laser desorption and time-of-flight mass spectrometry with the ultimate goal to characterize in situ and in real time the solid state evolution of organic compounds upon UV photolysis for astronomically relevant ice mixtures and temperatures. The performance of the experimental setup is demonstrated by the kinetic analysis of the different photoproducts of pure methane (CH?) ice at 20 K. A quantitative approach provides formation yields of several new species with up to four carbon atoms. Convincing evidence is found for the formation of even larger species. Typical mass resolutions obtained range from M/?M ~320 to ~400 for CH? and argon, respectively. Additional tests show that the typical detection limit (in monolayers) is ?0.02 ML, substantially more sensitive than the regular techniques used to investigate chemical processes in interstellar ices.

  18. Laser Desorption Postionization Mass Spectrometry of Antibiotic-Treated Bacterial Biofilms using Tunable Vacuum Ultraviolet Radiation

    SciTech Connect (OSTI)

    Gasper, Gerald L.; Takahashi, Lynelle K.; Zhou, Jia; Ahmed, Musahid; Moore, Jerry F.; Hanley, Luke

    2010-08-04

    Laser desorption postionization mass spectrometry (LDPI-MS) with 8.0 ? 12.5 eV vacuum ultraviolet synchrotron radiation is used to single photon ionize antibiotics andextracellular neutrals that are laser desorbed both neat and from intact bacterial biofilms. Neat antibiotics are optimally detected using 10.5 eV LDPI-MS, but can be ionized using 8.0 eV radiation, in agreement with prior work using 7.87 eV LDPI-MS. Tunable vacuum ultraviolet radiation also postionizes laser desorbed neutrals of antibiotics and extracellular material from within intact bacterial biofilms. Different extracellular material is observed by LDPI-MS in response to rifampicin or trimethoprim antibiotic treatment. Once again, 10.5 eV LDPI-MS displays the optimum trade-off between improved sensitivity and minimum fragmentation. Higher energy photons at 12.5 eV produce significant parent ion signal, but fragment intensity and other low mass ions are also enhanced. No matrix is added to enhance desorption, which is performed at peak power densities insufficient to directly produce ions, thus allowing observation of true VUV postionization mass spectra of antibiotic treated biofilms.

  19. 3D proteomics : analysis of proteins and protein complexes by chemical cross-linking and mass spectrometry 

    E-Print Network [OSTI]

    Chen, Zhuo A.

    2011-11-24

    The concept of 3D proteomics is a technique that couples chemical cross-linking with mass spectrometry and has emerged as a tool to study protein conformations and protein-protein interactions. In this thesis I present my work on improving...

  20. International Journal of Mass Spectrometry 249250 (2006) 303310 Pyrolysis of 2-methoxy-2,3,3-trimethylbutane (MTMB) monitored by

    E-Print Network [OSTI]

    Morton, Thomas Hellman

    2006-01-01

    International Journal of Mass Spectrometry 249­250 (2006) 303­310 Pyrolysis of 2-methoxy-2 Available online 23 January 2006 In memoriam Chava Lifshitz Abstract Pyrolysis/supersonic jet expansion/118,3-bond is the weakest bond of MTMB. Pyrolysis of MTMB-d6 below 1000 K shows no production of CD3 radicals

  1. A gas chromatography/pyrolysis/isotope ratio mass spectrometry system for high-precision dD measurements

    E-Print Network [OSTI]

    Fischer, Hubertus

    A gas chromatography/pyrolysis/isotope ratio mass spectrometry system for high-precision d we present a highly automated, high-precision online gas chromatography/pyrolysis/isotope ratio from ice, preconcentration, gas chromatographic separation and pyrolysis of CH4 from roughly 500 g

  2. Spatially tracking 13C labeled substrate (bicarbonate) accumulation in microbial communities using laser ablation isotope ratio mass spectrometry

    SciTech Connect (OSTI)

    Moran, James J.; Doll, Charles G.; Bernstein, Hans C.; Renslow, Ryan S.; Cory, Alexandra B.; Hutchison, Janine R.; Lindemann, Stephen R.; Fredrickson, Jim K.

    2014-08-25

    This is a manuscript we would like to submit for publication in Environmental Microbiology Reports. This manuscript contains a description of a laser ablation isotope ratio mass spectrometry methodology developed at PNNL and applied to a microbial system at a PNNL project location – Hot Lake, Washington. I will submit a word document containing the entire manuscript with this Erica input request form.

  3. Indexing Permafrost Soil Organic Matter Degradation Using High-Resolution Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mann, Benjamin F.; Chen, Hongmei; Herndon, Elizabeth M.; Chu, Rosalie K.; Tolic, Nikola; Portier, Evan F.; Roy Chowdhury, Taniya; Robinson, Errol W.; Callister, Stephen J.; Wullschleger, Stan D.; et al

    2015-06-12

    Microbial degradation of soil organic matter (SOM) is a key process for terrestrial carbon cycling, although the molecular details of these transformations remain unclear. This study reports the application of ultrahigh resolution mass spectrometry to profile the molecular composition of SOM and its degradation during a simulated warming experiment. A soil sample, collected near Barrow, Alaska, USA, was subjected to a 40-day incubation under anoxic conditions and analyzed before and after the incubation to determine changes of SOM composition. A CHO index based on molecular C, H, and O data was utilized to codify SOM components according to their observedmore »degradation potentials. Compounds with a CHO index score between –1 and 0 in a water-soluble fraction (WSF) demonstrated high degradation potential, with a highest shift of CHO index occurred in the N-containing group of compounds, while similar stoichiometries in a base-soluble fraction (BSF) did not. Additionally, compared with the classical H:C vs O:C van Krevelen diagram, CHO index allowed for direct visualization of the distribution of heteroatoms such as N in the identified SOM compounds. We demonstrate that CHO index is useful not only in characterizing arctic SOM at the molecular level but also enabling quantitative description of SOM degradation, thereby facilitating incorporation of the high resolution MS datasets to future mechanistic models of SOM degradation and prediction of greenhouse gas emissions.« less

  4. Characterization of Interlayer Cs+ in Clay Samples Using Secondary Ion Mass Spectrometry with Laser Sample Modification

    SciTech Connect (OSTI)

    G. S. Groenewold; R. Avci; C. Karahan; K. Lefebre; R. V. Fox; M. M. Cortez; A. K. Gianotto; J. Sunner; W. L. Manner

    2004-04-01

    Ultraviolet laser irradiation was used to greatly enhance the secondary ion mass spectrometry (SIMS) detection of Cs+ adsorbed to soil consisting of clay and quartz. Imaging SIMS showed that the enhancement of the Cs+ signal was spatially heterogeneous: the intensity of the Cs+ peak was increased by factors up to 100 for some particles but not at all for others. Analysis of standard clay samples exposed to Cs+ showed a variable response to laser irradiation depending on the type of clay analyzed. The Cs+ abundance was significantly enhanced when Cs+-exposed montmorillonite was irradiated and then analyzed using SIMS, which contrasted with the behavior of Cs+-exposed kaolinite, which displayed no Cs+ enhancement. Exposed illitic clays displayed modest enhancement of Cs+ upon laser irradiation, intermediate between that of kaolinite and montmorillonite. The results for Cs+ were rationalized in terms of adsorption to interlayer sites within the montmorillonite, which is an expandable phyllosilicate. In these locations, Cs+ was not initially detectable using SIMS. Upon irradiation, Cs+ was thermally redistributed, which enabled detection using SIMS. Since neither the illite nor the kaolinite is an expandable clay, adsorption to inner-layer sites does not occur, and either modest or no laser enhancement of the Cs+ signal is observed. Laser irradiation also produced unexpected enhancement of Ti+ from illite and kaolinite clays that contained small quantities of Ti, which indicates the presence of microscopic titanium oxide phases in the clay materials.

  5. Femtosecond laser ablation-based mass spectrometry. An ideal tool for stoichiometric analysis of thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    LaHaye, Nicole L.; Kurian, Jose; Diwakar, Prasoon K.; Alff, Lambert; Harilal, Sivanandan S.

    2015-08-19

    An accurate and routinely available method for stoichiometric analysis of thin films is a desideratum of modern materials science where a material’s properties depend sensitively on elemental composition. We thoroughly investigated femtosecond laser ablation-inductively coupled plasma-mass spectrometry (fs-LA-ICP-MS) as an analytical technique for determination of the stoichiometry of thin films down to the nanometer scale. The use of femtosecond laser ablation allows for precise removal of material with high spatial and depth resolution that can be coupled to an ICP-MS to obtain elemental and isotopic information. We used molecular beam epitaxy-grown thin films of LaPd(x)Sb2 and T´-La2CuO4 to demonstrate themore »capacity of fs-LA-ICP-MS for stoichiometric analysis and the spatial and depth resolution of the technique. Here we demonstrate that the stoichiometric information of thin films with a thickness of ~10 nm or lower can be determined. Furthermore, our results indicate that fs-LA-ICP-MS provides precise information on the thin film-substrate interface and is able to detect the interdiffusion of cations.« less

  6. Imaging Nicotine in Rat Brain Tissue by Use of Nanospray Desorption Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Lanekoff, Ingela T.; Thomas, Mathew; Carson, James P.; Smith, Jordan N.; Timchalk, Charles; Laskin, Julia

    2013-01-15

    Imaging mass spectrometry offers simultaneous detection of drugs, drug metabolites and endogenous substances in a single experiment. This is important when evaluating effects of a drug on a complex organ system such as the brain, where there is a need to understand how regional drug distribution impacts function. Nicotine is an addictive drug and its action in the brain is of high interest. Here we use nanospray desorption electrospray ionization, nano-DESI, imaging to discover the localization of nicotine in rat brain tissue after in vivo administration of nicotine. Nano-DESI is a new ambient technique that enables spatially-resolved analysis of tissue samples without special sample pretreatment. We demonstrate high sensitivity of nano-DESI imaging that enables detection of only 0.7 fmole nicotine per pixel in the complex brain matrix. Furthermore, by adding deuterated nicotine to the solvent, we examined how matrix effects, ion suppression, and normalization affect the observed nicotine distribution. Finally, we provide preliminary results suggesting that nicotine localizes to the hippocampal substructure called dentate gyrus.

  7. In-gel Tryptic Digest for Protein ID by Mass Spectrometry David Miyamoto 2/12/2002

    E-Print Network [OSTI]

    Mitchison, Tim

    In-gel Tryptic Digest for Protein ID by Mass Spectrometry David Miyamoto 2/12/2002 This protocolL digestion buffer. Incubate 45 minutes in ice water bath. Digestion buffer consists of 12.5 ng/µL trypsin (Promega sequence-grade #12;modified porcine trypsin, Cat. #V511A) in 50 mM NH4HCO3. To make the digestion

  8. Analytical Performance of Accelerator Mass Spectrometry and Liquid Scintillation Counting for

    E-Print Network [OSTI]

    Hammock, Bruce D.

    . R.; Baker, D. B.; Richards, R. P.; Dixon, K. R.; Klaine, S. J.; La Point, T. W.; Kendall, R. J. D. In Handbook of Pesticide Toxicology; Hayes, W. J., Laws, E. R., Eds.; Academic Press: New York, E.; Cole, P. Am. J. Ind. Med. 1996, 29, 143-51. (8) Mayhew, D. A.; Taylor, G. D.; Smith, S. H

  9. Detection of aldehydes in lung cancer cell culture by gas chromatography/mass spectrometry and solid-phase microextraction with on-fiber derivatization 

    E-Print Network [OSTI]

    Shan, Guangqing

    2007-09-17

    Aldehydes in lung cancer cell culture have been investigated using gas chromatography/mass spectrometry and solid-phase microextraction with on-fiber derivatization. In this study, the poly(dimethylsiloxane/divinylbenzene ...

  10. Development of matrix assisted laser desorption ionization-ion mobility-orthogonal time-of-flight mass spectrometry as a tool for proteomics 

    E-Print Network [OSTI]

    Ruotolo, Brandon Thomas

    2005-08-29

    Separations coupled to mass spectrometry (MS) are widely used for large-scale protein identification in order to reduce the adverse effects of analyte ion suppression, increase the dynamic range, and as a deconvolution technique for complex datasets...

  11. Development of Ion Mobility-mass Spectrometry Instrumentation to Probe the Conformations and Capture the Solution to Gas Phase Transition of Electrosprayed Biomolecules 

    E-Print Network [OSTI]

    Silveira, Joshua A

    2013-11-22

    Recent progress has been made developing ion mobility-mass spectrometry (IM-MS) instruments for biophysical studies; however, experimental techniques that can probe the structure and/or dynamics of biomolecules at intermediate extents of hydration...

  12. DETERMINATION OF 237NP AND PU ISOTOPES IN LARGE SOIL SAMPLES BY INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

    SciTech Connect (OSTI)

    Maxwell, S.

    2010-07-26

    A new method for the determination of {sup 237}Np and Pu isotopes in large soil samples has been developed that provides enhanced uranium removal to facilitate assay by inductively coupled plasma mass spectrometry (ICP-MS). This method allows rapid preconcentration and separation of plutonium and neptunium in large soil samples for the measurement of {sup 237}Np and Pu isotopes by ICP-MS. {sup 238}U can interfere with {sup 239}Pu measurement by ICP-MS as {sup 238}UH{sup +} mass overlap and {sup 237}Np via {sup 238}U peak tailing. The method provides enhanced removal of uranium by separating Pu and Np initially on TEVA Resin, then transferring Pu to DGA resin for additional purification. The decontamination factor for removal of uranium from plutonium for this method is greater than 1 x 10{sup 6}. Alpha spectrometry can also be applied so that the shorter-lived {sup 238}Pu isotope can be measured successfully. {sup 239}Pu, {sup 242}Pu and {sup 237}Np were measured by ICP-MS, while {sup 236}Pu and {sup 238}Pu were measured by alpha spectrometry.

  13. Measuring test mass acceleration noise in space-based gravitational wave astronomy

    E-Print Network [OSTI]

    Giuseppe Congedo

    2014-09-29

    The basic constituent of interferometric gravitational wave detectors -- the test mass to test mass interferometric link -- behaves as a differential dynamometer measuring effective differential forces, comprising an integrated measure of gravity curvature, inertial effects, as well as non-gravitational spurious forces. This last contribution is going to be characterised by the LISA Pathfinder mission, a technology precursor of future space-borne detectors like eLISA. Changing the perspective from displacement to acceleration can benefit the data analysis of LISA Pathfinder and future detectors. The response in differential acceleration to gravitational waves is derived for a space-based detector's interferometric link. The acceleration formalism can also be integrated into time delay interferometry by building up the unequal-arm Michelson differential acceleration combination. The differential acceleration is nominally insensitive to the system free evolution dominating the slow displacement dynamics of low-frequency detectors. Working with acceleration also provides an effective way to subtract measured signals acting as systematics, including the actuation forces. Because of the strong similarity with the equations of motion, the optimal subtraction of systematic signals, known within some amplitude and time shift, with the focus on measuring the noise provides an effective way to solve the problem and marginalise over nuisance parameters. The $\\mathcal{F}$-statistic, in widespread use throughout the gravitation waves community, is included in the method and suitably generalised to marginalise over linear parameters and noise at the same time. The method is applied to LPF simulator data and, thanks to its generality, can also be applied to the data reduction and analysis of future gravitational wave detectors.

  14. International Journal of Mass Spectrometry 376 (2015) 3945 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    McCall, Benjamin J.

    2015-01-01

    spectrometry Ambient ionization Ball lightning a b s t r a c t Ball lightning is a naturally occurring (chemical, physical, or otherwise) as to why ball lightning behaves the way that it does. There has been considerable effort to try to both produce and measure the properties of ball lightning type discharges over

  15. Nano-Domain Analysis Via Massive Cluster Secondary Ion Mass Spectrometry in the Event-by-Event Mode 

    E-Print Network [OSTI]

    Pinnick, Veronica Tiffany

    2011-02-22

    ) Veronica Tiffany Pinnick, B.A., Minot State University Chair of Advisory Committee: Dr. Emile A. Schweikert Secondary ion mass spectrometry (SIMS) is a surface analysis technique which characterizes species sputtered by an energetic particle beam... Tab le 2 -1. Cur rents of A u nq+ be ams expe rimen tall y mea sure d a t the tar ge t with a f ara da y c up. Th ese va lues a re r ep rese ntative of a stable L MIS. 19 Figu re 2 -3. S che matic o f the LI MS , lens a ssembl y a nd W...

  16. OBSERVATION OF HEATING BY FLARE-ACCELERATED ELECTRONS IN A SOLAR CORONAL MASS EJECTION

    SciTech Connect (OSTI)

    Glesener, Lindsay; Bain, Hazel M.; Krucker, Säm; Lin, Robert P.

    2013-12-20

    We report a Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observation of flare-accelerated electrons in the core of a coronal mass ejection (CME) and examine their role in heating the CME. Previous CME observations have revealed remarkably high thermal energies that can far surpass the CME's kinetic energy. A joint observation by RHESSI and the Atmospheric Imaging Assembly of a partly occulted flare on 2010 November 3 allows us to test the hypothesis that this excess energy is collisionally deposited by flare-accelerated electrons. Extreme ultraviolet (EUV) images show an ejection forming the CME core and sheath, with isothermal multifilter analysis revealing temperatures of ?11 MK in the core. RHESSI images reveal a large (?100 × 50 arcsec{sup 2}) hard X-ray (HXR) source matching the location, shape, and evolution of the EUV plasma, indicating that the emerging CME is filled with flare-accelerated electrons. The time derivative of the EUV emission matches the HXR light curve (similar to the Neupert effect observed in soft and HXR time profiles), directly linking the CME temperature increase with the nonthermal electron energy loss, while HXR spectroscopy demonstrates that the nonthermal electrons contain enough energy to heat the CME. This is the most direct observation to date of flare-accelerated electrons heating a CME, emphasizing the close relationship of the two in solar eruptive events.

  17. IMPULSIVE ACCELERATION OF CORONAL MASS EJECTIONS. II. RELATION TO SOFT X-RAY FLARES AND FILAMENT ERUPTIONS

    SciTech Connect (OSTI)

    Bein, B. M.; Berkebile-Stoiser, S.; Veronig, A. M.; Temmer, M.; Vrsnak, B.

    2012-08-10

    Using high time cadence images from the STEREO EUVI, COR1, and COR2 instruments, we derived detailed kinematics of the main acceleration stage for a sample of 95 coronal mass ejections (CMEs) in comparison with associated flares and filament eruptions. We found that CMEs associated with flares reveal on average significantly higher peak accelerations and lower acceleration phase durations, initiation heights, and heights, at which they reach their peak velocities and peak accelerations. This means that CMEs that are associated with flares are characterized by higher and more impulsive accelerations and originate from lower in the corona where the magnetic field is stronger. For CMEs that are associated with filament eruptions we found only for the CME peak acceleration significantly lower values than for events that were not associated with filament eruptions. The flare rise time was found to be positively correlated with the CME acceleration duration and negatively correlated with the CME peak acceleration. For the majority of the events the CME acceleration starts before the flare onset (for 75% of the events) and the CME acceleration ends after the soft X-ray (SXR) peak time (for 77% of the events). In {approx}60% of the events, the time difference between the peak time of the flare SXR flux derivative and the peak time of the CME acceleration is smaller than {+-}5 minutes, which hints at a feedback relationship between the CME acceleration and the energy release in the associated flare due to magnetic reconnection.

  18. Chemical Characterization of Crude Petroleum Using Nanospray Desorption Electrospray Ionization Coupled with High-Resolution Mass Spectrometry

    SciTech Connect (OSTI)

    Eckert, Peter A.; Roach, Patrick J.; Laskin, Alexander; Laskin, Julia

    2012-02-07

    Nanospray desorption electrospray ionization (nano-DESI) combined with high-resolution mass spectrometry was used for the first time for the analysis of liquid petroleum crude oil samples. The analysis was performed in both positive and negative ionization modes using three solvents one of which (acetonitrile/toluene mixture) is commonly used in petroleomics studies while two other polar solvents (acetonitrile/water and methanol/water mixtures) are generally not compatible with petroleum characterization using mass spectrometry. The results demonstrate that nano-DESI analysis efficiently ionizes petroleum constituents soluble in a particular solvent. When acetonitrile/toluene is used as a solvent, nano-DESI generates electrospray-like spectra. In contrast, strikingly different spectra were obtained using acetonitrile/water and methanol/water. Comparison with the literature data indicates that these solvents selectively extract water-soluble constituents of the crude oil. Water-soluble compounds are predominantly observed as sodium adducts in nano-DESI spectra indicating that addition of sodium to the solvent may be a viable approach for efficient ionization of water-soluble crude oil constituents. Nano-DESI enables rapid screening of different classes of compounds in crude oil samples using solvents that are rarely used for petroleum characterization.

  19. Biological Mass Spectrometry and Shotgun Proteomics of Microbial Systems: Methods for studying microbial physiology from isolates to environmental communities

    SciTech Connect (OSTI)

    Dill, Brian; Young, Jacque C; Carey, Patricia A; Verberkmoes, Nathan C

    2010-01-01

    Microbial ecology is currently experiencing a renaissance spurred by the rapid development of molecular techniques and omics technologies in particular. As never before, these tools have allowed researchers in the field to produce a massive amount of information through in situ measurements and analysis of natural microbial communities, both vital approaches to the goal of unraveling the interactions of microbes with their environment and with one another. While genomics can provide information regarding the genetic potential of microbes, proteomics characterizes the primary end-stage product, proteins, thus conveying functional information concerning microbial activity. Advances in mass spectrometry instrumentation and methodologies, along with bioinformatic approaches, have brought this analytic chemistry technique to relevance in the biological realm due to its powerful applications in proteomics. Mass spectrometry-enabled proteomics, including bottom-up and top-down approaches, is capable of supplying a wealth of biologically-relevant information, from simple protein cataloging of the proteome of a microbial community to identifying post-translational modifications of individual proteins.

  20. Characterization of direct current He-N{sub 2} mixture plasma using optical emission spectroscopy and mass spectrometry

    SciTech Connect (OSTI)

    Flores, O.; Castillo, F.; Martinez, H.; Villa, M.; Reyes, P. G.; Villalobos, S.; Facultad de Ingeniería, Universidad Nacional Autónoma de México, México D.F.

    2014-05-15

    This study analyses the glow discharge of He and N{sub 2} mixture at the pressure of 2.0?Torr, power of 10?W, and flow rate of 16.5?l/min, by using optical emission spectroscopy and mass spectrometry. The emission bands were measured in the wavelength range of 200–1100?nm. The principal species observed were N{sub 2}{sup +} (B{sup 2}?{sup +}{sub u}?X{sup 2}?{sup +}{sub g}), N{sub 2} (C{sup 3}?{sub u}?B{sup 3}?{sub g}), and He, which are in good agreement with the results of mass spectrometry. Besides, the electron temperature and ion density were determined by using a double Langmuir probe. Results indicate that the electron temperature is in the range of 1.55–2.93?eV, and the electron concentration is of the order of 10{sup 10}?cm{sup ?3}. The experimental results of electron temperature and ion density for pure N{sub 2} and pure He are in good agreement with the values reported in the literature.

  1. Validating mass spectrometry measurements of nuclear materials via a non-contact volume analysis method of ion sputter craters

    SciTech Connect (OSTI)

    Willingham, David G.; Naes, Benjamin E.; Fahey, Albert J.

    2015-01-01

    A combination of secondary ion mass spectrometry, optical profilometry and a statistically-driven algorithm was used to develop a non-contact volume analysis method to validate the useful yields of nuclear materials. The volume analysis methodology was applied to ion sputter craters created in silicon and uranium substrates sputtered by 18.5 keV O- and 6.0 keV Ar+ ions. Sputter yield measurements were determined from the volume calculations and were shown to be comparable to Monte Carlo calculations and previously reported experimental observations. Additionally, the volume calculations were used to determine the useful yields of Si+, SiO+ and SiO2+ ions from the silicon substrate and U+, UO+ and UO2+ ions from the uranium substrate under 18.5 keV O- and 6.0 keV Ar+ ion bombardment. This work represents the first steps toward validating the interlaboratory and cross-platform performance of mass spectrometry for the analysis of nuclear materials.

  2. THE INFLUENCE OF THE MASS RATIO ON THE ACCELERATION OF PARTICLES BY FILAMENTATION INSTABILITIES

    SciTech Connect (OSTI)

    Burkart, Thomas; Elbracht, Oliver; Ganse, Urs; Spanier, Felix, E-mail: fspanier@astro.uni-wuerzburg.d [Lehrstuhl fuer Astronomie, Universitaet Wuerzburg, Am Hubland, D-97074 Wuerzburg (Germany)

    2010-09-10

    Almost all sources of high-energy particles and photons are associated with jet phenomena. Prominent sources of such highly relativistic outflows are pulsar winds, active galactic nuclei (AGNs), and gamma-ray bursts. The current understanding of these jets assumes diluted plasmas which are best described as kinetic phenomena. In this kinetic description, particle acceleration to ultrarelativistic speeds can occur in completely unmagnetized and neutral plasmas through insetting effects of instabilities. Even though the morphology and nature of particle spectra are understood to a certain extent, the composition of the jets is not known yet. While Poynting-flux-dominated jets (e.g., occurring in pulsar winds) are certainly composed of electron-positron plasmas, the understanding of the governing physics in AGN jets is mostly unclear. In this paper, we investigate how the constituting elements of an electron-positron-proton plasma behave differently under the variation of the fundamental mass ratio m{sub p} /m{sub e}. We initially studied unmagnetized counterstreaming plasmas using fully relativistic three-dimensional particle-in-cell simulations to investigate the influence of the mass ratio on particle acceleration and magnetic field generation in electron-positron-proton plasmas. We covered a range of mass ratios m{sub p}/m{sub e} between 1 and 100 with a particle number composition of n{sub p}{sup +}/ n{sub e}{sup +} of 1 in one stream, therefore called the pair-proton stream. Protons are injected in the other one, therefore from now on called the proton stream, whereas electrons are present in both to guarantee charge neutrality in the simulation box. We find that with increasing proton mass the instability takes longer to develop and for mass ratios >20 the particles seem to be accelerated in two phases which can be accounted for by the individual instabilities of the different species. This means that for high mass ratios the coupling between electrons/positrons and the heavier protons, which occurs in low mass ratios, disappears.

  3. Mass varying neutrinos, quintessence, and the accelerating expansion of the Universe

    SciTech Connect (OSTI)

    Chitov, Gennady Y.; August, Tyler [Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, ON, P3E 2C6 (Canada); Natarajan, Aravind [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, Pennsylvania 15213 (United States); Department of Physics, Laurentian University, Ramsey Lake Road, Sudbury, ON, P3E 2C6 (Canada); National Abastumani Astrophysical Observatory, Ilia Chavchavadze State University, 2A Kazbegi Ave, Tbilisi, GE-0160 (Georgia)

    2011-02-15

    We analyze the mass varying neutrino scenario. We consider a minimal model of massless Dirac fermions coupled to a scalar field, mainly in the framework of finite-temperature quantum field theory. We demonstrate that the mass equation we find has nontrivial solutions only for special classes of potentials, and only within certain temperature intervals. We give most of our results for the Ratra-Peebles dark energy (DE) potential. The thermal (temporal) evolution of the model is analyzed. Following the time arrow, the stable, metastable, and unstable phases are predicted. The model predicts that the present Universe is below its critical temperature and accelerates. At the critical point, the Universe undergoes a first-order phase transition from the (meta)stable oscillatory regime to the unstable rolling regime of the DE field. This conclusion agrees with the original idea of quintessence as a force making the Universe roll towards its true vacuum with a zero {Lambda} term. The present mass varying neutrino scenario is free from the coincidence problem, since both the DE density and the neutrino mass are determined by the scale M of the potential. Choosing M{approx}10{sup -3} eV to match the present DE density, we can obtain the present neutrino mass in the range m{approx}10{sup -2}-1 eV and consistent estimates for other parameters of the Universe.

  4. Comprehensive quantification of triacylglycerols in soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss scans

    SciTech Connect (OSTI)

    Li, Maoyin; Butka, Emily; Wang, Xuemin

    2014-10-10

    Soybean seeds are an important source of vegetable oil and biomaterials. The content of individual triacylglycerol species (TAG) in soybean seeds is difficult to quantify in an accurate and rapid way. The present study establishes an approach to quantify TAG species in soybean seeds utilizing an electrospray ionization tandem mass spectrometry with multiple neutral loss scans. Ten neutral loss scans were performed to detect the fatty acyl chains of TAG, including palmitic (P, 1650), linolenic (Ln, 1853), linoleic (L, 1852), oleic (O, 1851), stearic (S, 1850), eicosadienoic (2052), gadoleic (2051), arachidic (2050), erucic (2251), and behenic (2250). The abundance of ten fatty acyl chains at 46 TAG masses (mass-to-charge ratio, m/z) were determined after isotopic deconvolution and correction by adjustment factors at each TAG mass. The direct sample infusion and multiple internal standards correction allowed a rapid and accurate quantification of TAG species. Ninety-three TAG species were resolved and their levels were determined.The most abundant TAG species were LLL, OLL, LLLn, PLL, OLLn, OOL, POL, and SLL. Many new species were detected and quantified. As a result, this shotgun lipidomics approach should facilitate the study of TAG metabolism and genetic breeding of soybean seeds for desirable TAG content and composition.

  5. Comprehensive quantification of triacylglycerols in soybean seeds by electrospray ionization mass spectrometry with multiple neutral loss scans

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Maoyin; Butka, Emily; Wang, Xuemin

    2014-10-10

    Soybean seeds are an important source of vegetable oil and biomaterials. The content of individual triacylglycerol species (TAG) in soybean seeds is difficult to quantify in an accurate and rapid way. The present study establishes an approach to quantify TAG species in soybean seeds utilizing an electrospray ionization tandem mass spectrometry with multiple neutral loss scans. Ten neutral loss scans were performed to detect the fatty acyl chains of TAG, including palmitic (P, 1650), linolenic (Ln, 1853), linoleic (L, 1852), oleic (O, 1851), stearic (S, 1850), eicosadienoic (2052), gadoleic (2051), arachidic (2050), erucic (2251), and behenic (2250). The abundance ofmore »ten fatty acyl chains at 46 TAG masses (mass-to-charge ratio, m/z) were determined after isotopic deconvolution and correction by adjustment factors at each TAG mass. The direct sample infusion and multiple internal standards correction allowed a rapid and accurate quantification of TAG species. Ninety-three TAG species were resolved and their levels were determined.The most abundant TAG species were LLL, OLL, LLLn, PLL, OLLn, OOL, POL, and SLL. Many new species were detected and quantified. As a result, this shotgun lipidomics approach should facilitate the study of TAG metabolism and genetic breeding of soybean seeds for desirable TAG content and composition.« less

  6. THE APPLICATION OF SINGLE PARTICLE AEROSOL MASS SPECTROMETRY FOR THE DETECTION AND IDENTIFICATION OF HIGH EXPLOSIVES AND CHEMICAL WARFARE AGENTS

    SciTech Connect (OSTI)

    Martin, A

    2006-10-23

    Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle ({approx}1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.

  7. Probing Intra-versus Interchain Kinetic Preferences of L-Thr Acylation on Dimeric VibF with Mass Spectrometry

    E-Print Network [OSTI]

    Spectrometry Leslie M. Hicks,* Carl J. Balibar,y Christopher T. Walsh,y Neil L. Kelleher,* and Nathan J

  8. Qualitative and quantitative analysis of proteolytically digested glycoproteins by mass spectrometry

    E-Print Network [OSTI]

    Rebecchi, Kathryn

    2011-05-31

    of glycoproteins, and it is particularly useful in the detection of glycosylation present on proteins. Most glycoproteins are prepared for mass spectrometric analysis by performing a protease digestion, followed by either a separation by HPLC or some other...

  9. A study of the tropospheric oxidation of volatile organic compounds using chemical ionization mass spectrometry

    E-Print Network [OSTI]

    Broekhuizen, Keith Edward, 1974-

    2002-01-01

    The mechanisms and kinetics of reactions important to the troposphere have been investigated using a high pressure, turbulent, discharge-flow technique coupled to a chemical ionization mass spectrometer. The ability to ...

  10. Organic aerosol components observed in Northern Hemispheric datasets from Aerosol Mass Spectrometry

    E-Print Network [OSTI]

    Kroll, Jesse

    In this study we compile and present results from the factor analysis of 43 Aerosol Mass Spectrometer (AMS) datasets (27 of the datasets are reanalyzed in this work). The components from all sites, when taken together, ...

  11. Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations

    E-Print Network [OSTI]

    Salcedo, D.

    We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations ...

  12. Stir bar sorptive extraction coupled to liquid chromatography-tandem mass spectrometry for the2 determination of pesticides in water samples: method validation and measurement uncertainty3

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    carry-over between consecutive extractions with the same stir21 bar. Pesticide quantification in water1 Title :1 Stir bar sorptive extraction coupled to liquid chromatography-tandem mass spectrometry for the2 determination of pesticides in water samples: method validation and measurement uncertainty3

  13. In-situ Sensing Using Mass Spectrometry and its Use for Run-To-Run Control on a W-CVD Cluster Tool

    E-Print Network [OSTI]

    Rubloff, Gary W.

    In-situ Sensing Using Mass Spectrometry and its Use for Run-To-Run Control on a W-CVD Cluster Tool , and E. Zafiriou2 1 Institute for Systems Research and Department of Materials and Nuclear Engineering 2 gases directly from the reactor of an ULVAC ERA-1000 cluster tool has been used for real time process

  14. Parallel Configuration For Fast Superconducting Strip Line Detectors With Very Large Area In Time Of Flight Mass Spectrometry

    SciTech Connect (OSTI)

    Casaburi, A.; Zen, N.; Suzuki, K.; Ohkubo, M.; Ejrnaes, M.; Cristiano, R.; Pagano, S.

    2009-12-16

    We realized a very fast and large Superconducting Strip Line Detector based on a parallel configuration of nanowires. The detector with size 200x200 {mu}m{sup 2} recorded a sub-nanosecond pulse width of 700 ps in FWHM (400 ps rise time and 530 ps relaxation time) for lysozyme monomers/multimers molecules accelerated at 175 keV in a Time of Flight Mass Spectrometer. This record is the best in the class of superconducting detectors and comparable with the fastest NbN superconducting single photon detector of 10x10 {mu}m{sup 2}. We succeeded in acquiring mass spectra as the first step for a scale-up to {approx}mm pixel size for high throughput MS analysis, while keeping a fast response.

  15. Aerosol Mass Spectrometry via Laser-Induced Incandescence Particle Vaporization Final Report

    SciTech Connect (OSTI)

    Timothy B. Onasch

    2011-10-20

    We have successfully developed and commercialized a soot particle aerosol mass spectrometer (SP-AMS) instrument to measure mass, size, and chemical information of soot particles in ambient environments. The SP-AMS instrument has been calibrated and extensively tested in the laboratory and during initial field studies. The first instrument paper describing the SP-AMS has been submitted for publication in a peer reviewed journal and there are several related papers covering initial field studies and laboratory studies that are in preparation. We have currently sold 5 SP-AMS instruments (either as complete systems or as SP modules to existing AMS instrument operators).

  16. Polysialylated N-Glycans Identified in Human Serum Through Combined Developments in Sample Preparation, Separations and Electrospray ionization-mass spectrometry

    SciTech Connect (OSTI)

    Kronewitter, Scott R.; Marginean, Ioan; Cox, Jonathan T.; Zhao, Rui; Hagler, Clay D.; Shukla, Anil K.; Carlson, Timothy S.; Adkins, Joshua N.; Camp, David G.; Moore, Ronald J.; Rodland, Karin D.; Smith, Richard D.

    2014-09-02

    The N-glycan diversity of human serum glycoproteins, i.e. the human blood serum N-glycome, is complex due to the range of glycan structures potentially synthesizable by human glycosylation enzymes. The reported glycome, however, is limited by methods of sample preparation, available analytical platforms, e.g., based upon electrospray ionization-mass spectrometry (ESI-MS), and software tools for data analysis. In this report, several improvements have been implemented in sample preparation and analysis to extend ESI-MS glycan characterization and to provide an improved view of glycan diversity. Sample preparation improvements include acidified, microwave-accelerated, PNGase F N-glycan release, and sodium borohydride reduction were optimized to improve quantitative yields and conserve the number of glycoforms detected. Two-stage desalting (during solid phase extraction and on the analytical column) increased the sensitivity by reducing analyte signal division between multiple reducing-end-forms or cation adducts. On-line separations were improved by using extended length graphitized carbon columns and adding TFA as an acid modifier to a formic acid/reversed phase gradient which provides additional resolving power and significantly improved desorption of both large and heavily sialylated glycans. To improve MS sensitivity and provide gentler ionization conditions at the source-MS interface, subambient pressure ionization with nanoelectrospray (SPIN) has been utilized. When method improvements are combined together with the Glycomics Quintavariate Informed Quantification (GlyQ-IQ) recently described1 these technologies demonstrate the ability to significantly extend glycan detection sensitivity and provide expanded glycan coverage. We demonstrate application of these advances in the context of the human serum glycome, and for which our initial observations include detection of a new class of heavily sialylated N-glycans, including polysialylated N-glycans.

  17. Toward Single-Cell Analysis by Plume Collimation in Laser Ablation Electrospray Ionization Mass Spectrometry

    E-Print Network [OSTI]

    Vertes, Akos

    is used to deliver laser energy to a sample in laser ablation electrospray ionization (LAESI) mass with the electrospray plume resulting in increased ionization efficiency, reduced limit of detection (by a factor of 13-cell level.4 New cell isolation methods, such as laser capture microdissection, are being developed

  18. Investigation on Gas-phase Structures of Biomolecules Using Ion Mobility-mass Spectrometry 

    E-Print Network [OSTI]

    Tao, Lei

    2011-08-08

    IM-MS is a 2-D technique which provides separations based on ion shape (ion-neutral collision cross-section, ?) and mass (m/z ratio). Ion structures can be deduced from the measured collision cross-section (?meas) by calculating the collision cross...

  19. Laser vaporization/ionization interface for coupling microscale separation techniques with mass spectrometry

    DOE Patents [OSTI]

    Yeung, E.S.; Chang, Y.C.

    1999-06-29

    The present invention provides a laser-induced vaporization and ionization interface for directly coupling microscale separation processes to a mass spectrometer. Vaporization and ionization of the separated analytes are facilitated by the addition of a light-absorbing component to the separation buffer or solvent. 8 figs.

  20. Principal ComponentAnalysisof Optical EmissionSpectroscopy and MassSpectrometry:Applicationto Reactive Ion Etch

    E-Print Network [OSTI]

    Shadmehr, Reza

    , Yorktown Heights, New York 10598 ABSTRACT We report on a simple technique that characterizes the effect of CHFJO2 plasma. This technique is sensitive to changes in chamber contamination levels (e.g., formation of each sensor. Projection of the mass spectrum on its principal components suggests a strong linear

  1. Real-time monitoring of volatile organic compounds using chemical ionization mass spectrometry

    DOE Patents [OSTI]

    Mowry, Curtis Dale (Albuquerque, NM); Thornberg, Steven Michael (Peralta, NM)

    1999-01-01

    A system for on-line quantitative monitoring of volatile organic compounds (VOCs) includes pressure reduction means for carrying a gaseous sample from a first location to a measuring input location maintained at a low pressure, the system utilizing active feedback to keep both the vapor flow and pressure to a chemical ionization mode mass spectrometer constant. A multiple input manifold for VOC and gas distribution permits a combination of calibration gases or samples to be applied to the spectrometer.

  2. Characterising an Extractive Electrospray Ionisation (EESI) source for the online mass spectrometry analysis of organic aerosols

    E-Print Network [OSTI]

    Gallimore, Peter J.; Kalberer, Markus

    2013-05-28

    is dependent only on the mass of 23   aerosol and is independent of particle size. This again points to a mechanism where particles are fully 24   dissolved in the spray regardless of size. Large particles leave no undissolved “core”. Presumably 25   11... aerosol samples collected 8   onto filters or impactors.13 The disadvantage of offline techniques is that after an extended sample 9   collection period (typically hours) where the aerosol chemical composition may change due to 10   evaporation...

  3. Mass spectrometry-based methods for detection and differentiation of botulinum neurotoxins

    DOE Patents [OSTI]

    Schmidt, Jurgen G. (Los Alamos, NM); Boyer, Anne E. (Atlanta, GA); Kalb, Suzanne R. (Atlanta, GA); Moura, Hercules (Tucker, GA); Barr, John R. (Suwannee, GA); Woolfitt, Adrian R. (Atlanta, GA)

    2009-11-03

    The present invention is directed to a method for detecting the presence of clostridial neurotoxins in a sample by mixing a sample with a peptide that can serve as a substrate for proteolytic activity of a clostridial neurotoxin; and measuring for proteolytic activity of a clostridial neurotoxin by a mass spectroscopy technique. In one embodiment, the peptide can have an affinity tag attached at two or more sites.

  4. Final LDRD report : development of sample preparation methods for ChIPMA-based imaging mass spectrometry of tissue samples.

    SciTech Connect (OSTI)

    Maharrey, Sean P.; Highley, Aaron M.; Behrens, Richard, Jr.; Wiese-Smith, Deneille

    2007-12-01

    The objective of this short-term LDRD project was to acquire the tools needed to use our chemical imaging precision mass analyzer (ChIPMA) instrument to analyze tissue samples. This effort was an outgrowth of discussions with oncologists on the need to find the cellular origin of signals in mass spectra of serum samples, which provide biomarkers for ovarian cancer. The ultimate goal would be to collect chemical images of biopsy samples allowing the chemical images of diseased and nondiseased sections of a sample to be compared. The equipment needed to prepare tissue samples have been acquired and built. This equipment includes an cyro-ultramicrotome for preparing thin sections of samples and a coating unit. The coating unit uses an electrospray system to deposit small droplets of a UV-photo absorbing compound on the surface of the tissue samples. Both units are operational. The tissue sample must be coated with the organic compound to enable matrix assisted laser desorption/ionization (MALDI) and matrix enhanced secondary ion mass spectrometry (ME-SIMS) measurements with the ChIPMA instrument Initial plans to test the sample preparation using human tissue samples required development of administrative procedures beyond the scope of this LDRD. Hence, it was decided to make two types of measurements: (1) Testing the spatial resolution of ME-SIMS by preparing a substrate coated with a mixture of an organic matrix and a bio standard and etching a defined pattern in the coating using a liquid metal ion beam, and (2) preparing and imaging C. elegans worms. Difficulties arose in sectioning the C. elegans for analysis and funds and time to overcome these difficulties were not available in this project. The facilities are now available for preparing biological samples for analysis with the ChIPMA instrument. Some further investment of time and resources in sample preparation should make this a useful tool for chemical imaging applications.

  5. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; Adkins, Joshua N.; Feldhaus, Jane M.; Wahl, Jon H.; Wunschel, David S.; Rodland, Karin D.

    2004-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsinmore »digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.« less

  6. Characterization of Plasma Membrane Proteins from Ovarian Cancer Cells Using Mass Spectrometry

    SciTech Connect (OSTI)

    Springer, David L.; Auberry, Deanna L.; Ahram, Mamoun; Adkins, Joshua N.; Feldhaus, Jane M.; Wahl, Jon H.; Wunsch, David M.; Rodland, Karin D.

    2003-01-01

    To determine how the repertoire of plasma membrane proteins change with disease state, specifically related to cancer, several methods for preparation of plasma membrane proteins were evaluated. Cultured cells derived from stage IV ovarian tumors were grown to 90% confluence and harvested in buffer containing CHAPS detergent. This preparation was centrifuged at low speed to remove insoluble cellular debris resulting in a crude homogenate. Glycosylated proteins in the crude homogenate were selectively enriched using lectin affinity chromatography. The crude homogenate and the lectin purified sample were prepared for mass spectrometric evaluation. The general procedure for protein identification began with trypsin digestion of protein fractions followed by separation by reversed phase liquid chromatography that was coupled directly to a conventional tandem mass spectrometer (i.e. LCQ ion trap). Mass and fragmentation data for the peptides were searched against a human proteome data base using the informatics program SEQUEST. Using this procedure 398 proteins were identified with high confidence, including receptors, membrane-associated ligands, proteases, phosphatases, as well as structural and adhesion proteins. Results indicate that lectin chromatography provides a select subset of proteins and that the number and quality of the identifications improve as does the confidence of the protein identifications for this subset. These results represent the first step in development of methods to separate and successfully identify plasma membrane proteins from advanced ovarian cancer cells. Further characterization of plasma membrane proteins will contribute to our understanding of the mechanisms underlying progression of this deadly disease and may lead to new targeted interventions as well as new biomarkers for diagnosis.

  7. Kinetics of laser-pulse vaporization of uranium carbide by mass spectrometry. [LMFBR

    SciTech Connect (OSTI)

    Tehranian, F.

    1983-06-01

    The kinetics of uranium carbide vaporization in the temperature range 3000 K to 5200 K was studied using a Nd-glass laser with peak power densities from 1.6 x 10/sup 5/ to 4.0 x 10/sup 5/ watts/cm/sup 2/. The vapor species U, UC/sub 2/, C/sub 1/ and C/sub 3/ were detected and analyzed by a quadrupole mass spectrometer. From the mass spectrometer signals number densities of the various species in the ionizer were obtained as functions of time. The surface of the irradiated uranium carbide was examined by scanning electron microscope and the depth profile of the crater was obtained. In order to aid analysis of the data, the heat conduction and species diffusion equations for the solid (or liquid) were solved numerically by a computer code to obtain the temperature and composition transients during laser heating. A sensitivity analysis was used to study the effect of uncertainties in the input parameters on the computed surface temperatures.

  8. Extending the Capabilities of Single Particle Mass Spectrometry: II. Measurements of Aerosol Particle Density without DMA

    SciTech Connect (OSTI)

    Vaden, Timothy D.; Imre, D.; Beranek, Josef; Zelenyuk, Alla

    2011-01-04

    Particle density is an important and useful property that is difficult to measure because it usually 5 requires separate instruments to measure two particle attributes. As density measurements are 6 often performed on size-classified particles, they are hampered by low particle numbers, and 7 hence poor temporal resolution. We present here a new method for measuring particle densities 8 using our single particle mass spectrometer, SPLAT. This method takes advantage of the fact 9 that the detection efficiency in our single particle mass spectrometer drops off very rapidly as the 10 particle size decreases below ~125 nm creating a distinct sharp feature on the small particle side 11 of the vacuum aerodynamic size distribution. Thus, the two quantities needed to determine 12 particle density, the particle diameter and vacuum aerodynamic diameter, are known. We first 13 test this method on particles of known composition and find that the densities it yields are 14 sufficiently accurate. We then apply the method to obtain the densities of particles that were 15 characterized during an airborne field campaign. In addition, we show that the distinctive 16 features of the vacuum aerodynamic size distribution can be used to characterize the instrument 17 detection efficiency as a function of particle size. In general, the method presented here reduces 18 complexity and yields information with high temporal resolution while the instrument is 19 collecting routine data on particle size and composition.

  9. Laser-ablation sampling for inductively coupled plasma distance-of-flight mass spectrometry

    SciTech Connect (OSTI)

    Gundlach-Graham, Alexander W.; Dennis, Elise; Ray, Steven J.; Enke, Christie G.; Barinaga, Charles J.; Koppenaal, David W.; Hieftje, Gary M.

    2015-01-01

    An inductively coupled plasma distance-of-flight mass spectrometer (ICP-DOFMS) has been coupled with laser-ablation (LA) sample introduction for the elemental analysis of solids. ICP-DOFMS is well suited for the analysis of laser-generated aerosols because it offers both high-speed mass analysis and simultaneous multi-elemental detection. Here, we evaluate the analytical performance of the LA-ICP-DOFMS instrument, equipped with a microchannel plate-based imaging detector, for the measurement of steady-state LA signals, as well as transient signals produced from single LA events. Steady-state detection limits are 1 mg g1, and absolute single-pulse LA detection limits are 200 fg for uranium; the system is shown capable of performing time-resolved single-pulse LA analysis. By leveraging the benefits of simultaneous multi-elemental detection, we also attain a good shot-to-shot reproducibility of 6% relative standard deviation (RSD) and isotope-ratio precision of 0.3% RSD with a 10 s integration time.

  10. Determination of total chlorine and bromine in solid wastes by sintering and inductively coupled plasma-sector field mass spectrometry

    SciTech Connect (OSTI)

    Osterlund, Helene Rodushkin, Ilia; Ylinenjaervi, Karin; Baxter, Douglas C.

    2009-04-15

    A sample preparation method based on sintering, followed by analysis by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) for the simultaneous determination of chloride and bromide in diverse and mixed solid wastes, has been evaluated. Samples and reference materials of known composition were mixed with a sintering agent containing Na{sub 2}CO{sub 3} and ZnO and placed in an oven at 560 deg. C for 1 h. After cooling, the residues were leached with water prior to a cation-exchange assisted clean-up. Alternatively, a simple microwave-assisted digestion using only nitric acid was applied for comparison. Thereafter the samples were prepared for quantitative analysis by ICP-SFMS. The sintering method was evaluated by analysis of certified reference materials (CRMs) and by comparison with US EPA Method 5050 and ion chromatography with good agreement. Median RSDs for the sintering method were determined to 10% for both chlorine and bromine, and median recovery to 96% and 97%, respectively. Limits of detection (LODs) were 200 mg/kg for chlorine and 20 mg/kg for bromine. It was concluded that the sintering method is suitable for chlorine and bromine determination in several matrices like sewage sludge, plastics, and edible waste, as well as for waste mixtures. The sintering method was also applied for determination of other elements present in anionic forms, such as sulfur, arsenic, selenium and iodine.

  11. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determinemore »137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.« less

  12. Quantifying Uranium Isotope Ratios Using Resonance Ionization Mass Spectrometry: The Influence of Laser Parameters on Relative Ionization Probability

    SciTech Connect (OSTI)

    Isselhardt, B H

    2011-09-06

    Resonance Ionization Mass Spectrometry (RIMS) has been developed as a method to measure relative uranium isotope abundances. In this approach, RIMS is used as an element-selective ionization process to provide a distinction between uranium atoms and potential isobars without the aid of chemical purification and separation. We explore the laser parameters critical to the ionization process and their effects on the measured isotope ratio. Specifically, the use of broad bandwidth lasers with automated feedback control of wavelength was applied to the measurement of {sup 235}U/{sup 238}U ratios to decrease laser-induced isotopic fractionation. By broadening the bandwidth of the first laser in a 3-color, 3-photon ionization process from a bandwidth of 1.8 GHz to about 10 GHz, the variation in sequential relative isotope abundance measurements decreased from >10% to less than 0.5%. This procedure was demonstrated for the direct interrogation of uranium oxide targets with essentially no sample preparation. A rate equation model for predicting the relative ionization probability has been developed to study the effect of variation in laser parameters on the measured isotope ratio. This work demonstrates that RIMS can be used for the robust measurement of uranium isotope ratios.

  13. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    J.J. Horkley; K.P E.M. Gantz; J.E. Davis; R.R. Lewis; J.P. Crow; C.A. Poole; T.S. Grimes; J.J. Giglio

    2015-03-01

    t Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure ‘‘spike’’ solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for ‘‘age’’ determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution,

  14. Production of highly-enriched 134Ba for a reference material for isotope dilution mass spectrometry measurements

    SciTech Connect (OSTI)

    Horkley, J. J.; Carney, K. P.; Gantz, E. M.; Davies, J. E.; Lewis, R. R.; Crow, J. P.; Poole, C. A.; Grimes, T. S.; Giglio, J. J.

    2015-03-17

    Isotope dilution mass spectrometry (IDMS) is an analytical technique capable of providing accurate and precise quantitation of trace isotope abundance and assay providing measurement uncertainties below 1 %. To achieve these low uncertainties, the IDMS method ideally utilizes chemically pure “spike” solutions that consist of a single highly enriched isotope that is well-characterized relating to the abundance of companion isotopes and concentration in solution. To address a current demand for accurate 137Cs/137Ba ratio measurements for “age” determination of radioactive 137Cs sources, Idaho National Laboratory (INL) is producing enriched 134Ba isotopes that are tobe used for IDMS spikes to accurately determine 137Ba accumulation from the decay of 137Cs. The final objective of this work it to provide a homogenous set of reference materials that the National Institute of Standards and Technology can certify as standard reference materials used for IDMS. The process that was developed at INL for the separation and isolation of Ba isotopes, chemical purification of the isotopes in solution, and the encapsulation of the materials will be described.

  15. Standard test method for determination of impurities in nuclear grade uranium compounds by inductively coupled plasma mass spectrometry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers the determination of 67 elements in uranium dioxide samples and nuclear grade uranium compounds and solutions without matrix separation by inductively coupled plasma mass spectrometry (ICP-MS). The elements are listed in Table 1. These elements can also be determined in uranyl nitrate hexahydrate (UNH), uranium hexafluoride (UF6), triuranium octoxide (U3O8) and uranium trioxide (UO3) if these compounds are treated and converted to the same uranium concentration solution. 1.2 The elements boron, sodium, silicon, phosphorus, potassium, calcium and iron can be determined using different techniques. The analyst's instrumentation will determine which procedure is chosen for the analysis. 1.3 The test method for technetium-99 is given in Annex A1. 1.4 The values stated in SI units are to be regarded as standard. 1.5 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish ...

  16. A Rational Approach for Discovering and Validating Cancer Markers in Very Small Samples Using Mass Spectrometry and ELISA Microarrays

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zangar, Richard C.; Varnum, Susan M.; Covington, Chandice Y.; Smith, Richard D.

    2004-01-01

    Identifying useful markers of cancer can be problematic due to limited amounts of sample. Some samples such as nipple aspirate fluid (NAF) or early-stage tumors are inherently small. Other samples such as serum are collected in larger volumes but archives of these samples are very valuable and only small amounts of each sample may be available for a single study. Also, given the diverse nature of cancer and the inherent variability in individual protein levels, it seems likely that the best approach to screen for cancer will be to determine the profile of a battery of proteins. As a result,more »a major challenge in identifying protein markers of disease is the ability to screen many proteins using very small amounts of sample. In this review, we outline some technological advances in proteomics that greatly advance this capability. Specifically, we propose a strategy for identifying markers of breast cancer in NAF that utilizes mass spectrometry (MS) to simultaneously screen hundreds or thousands of proteins in each sample. The best potential markers identified by the MS analysis can then be extensively characterized using an ELISA microarray assay. Because the microarray analysis is quantitative and large numbers of samples can be efficiently analyzed, this approach offers the ability to rapidly assess a battery of selected proteins in a manner that is directly relevant to traditional clinical assays.« less

  17. Recommendations for mass spectrometry data quality metrics for open access data(corollary to the Amsterdam principles)

    SciTech Connect (OSTI)

    Kingsinger, Christopher R.; Apffel, James; Baker, Mark S.; Bian, Xiaopeng; Borchers, Christoph H.; Bradshaw, Ralph A.; Brusniak, Mi-Youn; Chan, Daniel W.; Deutsch, Eric W.; Domon, Bruno; Gorman, Jeff; Grimm, Rudolf; Hancock, William S.; Hermjakob, Henning; Horn, David; Hunter, Christie; Kolar, Patrik; Kraus, Hans-Joachim; Langen, Hanno; Linding, Rune; Moritz, Robert L.; Omenn, Gilbert S.; Orlando, Ron; Pandey, Akhilesh; Ping, Peipei; Rahbar, Amir; Rivers, Robert; Seymour, Sean L.; Simpson, Richard J.; Slotta, Douglas; Smith, Richard D.; Stein, Stephen E.; Tabb, David L.; Tagle, Danilo; Yates, John R.; Rodriguez, Henry

    2011-12-01

    Policies supporting the rapid and open sharing of proteomic data are being implemented by the leading journals in the field. The proteomics community is taking steps to ensure that data are made publicly accessible and are of high quality, a challenging task that requires the development and deployment of methods for measuring and documenting data quality metrics. On September 18, 2010, the U.S. National Cancer Institute (NCI) convened the 'International Workshop on Proteomic Data Quality Metrics' in Sydney, Australia, to identify and address issues facing the development and use of such methods for open access proteomics data. The stakeholders at the workshop enumerated the key principles underlying a framework for data quality assessment in mass spectrometry data that will meet the needs of the search community, journals, funding agencies, and data repositories. Attendees discussed and agreed upon two primary needs for the wide use of quality metrics: (i)an evolving list of comprehensive quality metrics and (ii)standards accompanied by software analytics. Attendees stressed the importance of increased education and training programs to promote reliable protocols in proteomics. This workshop report explores the historic precedents, key discussions, and necessary next steps to enhance the quality of open access data. By agreement, this article is published simultaneously in Proteomics, Proteomics Clinical Applications, Journal of Proteome Research, and Molecular and Cellular Proteomics, as a public service to the research community.The peer review process was a coordinated effort conducted by a panel of referees selected by the journals.

  18. Detection of high molecular weight organic tracers in vegetation smoke samples by high-temperature gas chromatography-mass spectrometry

    SciTech Connect (OSTI)

    Elias, V.O.; Simoneit, B.R.T. ); Pereira, A.S.; Cardoso, J.N. ); Cabral, J.A. )

    1999-07-15

    High-temperature high-resolution gas chromatography (HTGC) is an established technique for the separation of complex mixtures of high molecular weight (HMW) compounds which do not elute when analyzed on conventional GC columns. The combination of this technique with mass spectrometry is not so common and application to aerosols is novel. The HTGC and HTGC-MS analyses of smoke samples taken by particle filtration from combustion of different species of plants provided the characterization of various classes of HMW compounds reported to occur for the first time in emissions from biomass burning. Among these components are a series of wax esters with up to 58 carbon numbers, aliphatic hydrocarbons, triglycerides, long chain methyl ketones, alkanols and a series of triterpenyl fatty acid esters which have been characterized as novel natural products. Long chain fatty acids with more than 32 carbon numbers are not present in the smoke samples analyzed. The HMW compounds in smoke samples from the burning of plants from Amazonia indicate the input of directly volatilized natural products in the original plants during their combustion. However, the major organic compounds extracted from smoke consist of a series of lower molecular weight polar components, which are not natural products but the result of the thermal breakdown of cellulose and lignin. In contrast, the HMW natural products may be suitable tracers for specific sources of vegetation combustion because they are emitted as particles without thermal alternation in the smoke and can thus be related directly to the original plant material.

  19. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ionmore »intensities at all ions to determine elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion fragments as markers to correct for molecular functionality-dependent systematic biases and reproduces known O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C (H : C) values is smaller for theoretical standard mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OS C values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OS C units). This indicates that OS C is a more robust metric of oxidation than O : C, likely since OS C is not affected by hydration or dehydration, either in the atmosphere or during analysis.« less

  20. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Hildebrandt Ruiz, L.; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2014-07-31

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), organic mass-to-organic carbon (OM : OC), and carbon oxidation state (OSC) for a vastly expanded laboratory dataset of multifunctional oxidized OA standards. For the expanded standard dataset, the "Aiken-Explicit" method (Aiken et al., 2008), which uses experimentally measured ion intensities at all ions to determine elementalmore »ratios, reproduces known molecular O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12% respectively. The more commonly used "Aiken-Ambient" method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions, reproduces O : C and H : C of multifunctional oxidized species within 28% and 14% of known values. These values are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and H2O+ produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method reduces the systematic biases and reproduces O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C and H : C values is smaller (12% and 4% respectively) for synthetic mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OSC values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OSC units). This indicates that OSC is a more robust metric of oxidation than O : C, likely since OSC is not affected by hydration or dehydration, either in the atmosphere or during analysis.« less

  1. Elemental ratio measurements of organic compounds using aerosol mass spectrometry: Characterization, improved calibration, and implications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.; Chen, Q.; Kessler, S. H.; Massoli, P.; Ruiz, L. Hildebrandt; Fortner, E.; Williams, L. R.; Wilson, K. R.; et al

    2015-01-12

    Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygen-to-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ionmore »intensities at all ions to determine elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20% (average absolute value of relative errors) and 12%, respectively. The more commonly used method, which uses empirically estimated H2O+ and CO+ ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14% of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H2O+, CO+, and CO2+ fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO+ and especially H2O+ produced from many oxidized species. Combined AMS–vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 °C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 °C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion fragments as markers to correct for molecular functionality-dependent systematic biases and reproduces known O : C (H : C) ratios of individual oxidized standards within 28% (13%) of the known molecular values. The error in Improved-Ambient O : C (H : C) values is smaller for theoretical standard mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient OA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27% (11%) larger than previously published Aiken-Ambient values; a corresponding increase of 9% is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OS C values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OS C units). This indicates that OS C is a more robust metric of oxidation than O : C, likely since OS C is not affected by hydration or dehydration, either in the atmosphere or during analysis.« less

  2. "MS-Patch-Clamp" or the Possibility of Mass Spectrometry Hybridization with Patch-Clamp Setups for Single Cell Metabolomics and Channelomics

    E-Print Network [OSTI]

    O. V. Gradov; M. A. Gradova

    2015-11-22

    In this projecting work we propose a mass spectrometric patch-clamp equipment with the capillary performing both a local potential registration at the cell membrane and the analyte suction simultaneously. This paper provides a current literature analysis comparing the possibilities of the novel approach proposed with the known methods, such as scanning patch-clamp, scanning ion conductance microscopy, patch clamp based on scanning probe microscopy technology, quantitative subcellular secondary ion mass spectrometry or "ion microscopy", live single-cell mass spectrometry, in situ cell-by-cell imaging, single-cell video-mass spectrometry, etc. We also consider the ways to improve the informativeness of these methods and particularly emphasize the trend at the increasing of the analysis complexity. We propose here the way to improve the efficiency of the cell trapping to the capillary during MS-path-clamp, as well as to provide laser surface ionization using laser trapping and tweezing of cells with the laser beam transmitted through the capillary as a waveguide. It is also possible to combine the above system with the microcolumn separation system or capillary electrophoresis as an optional direction of further development of the complex of analytical techniques emerging from the MS variation of patch-clamp.

  3. Beyond single particle mass spectrometry: multidimensional characterisation of individual aerosol particles

    SciTech Connect (OSTI)

    Zelenyuk, Alla; Imre, D.

    2009-09-10

    The behavior of small aerosol particles depends on a number of their physical and chemical properties, many of which are strongly coupled. The size, internal composition, density, shape, morphology, hygroscopicity, index of refraction, activity as cloud condensation nuclei and ice nuclei, and other attributes of individual particles - all play a role in determining particle properties and their impacts. The traditional particle characterization approaches rely on separate parallel measurements that average over an ensemble of particles of different sizes and/or compositions and later attempt to draw correlations between them. As a result such studies overlook critical differences between particles and bulk and miss the fact that individual particles often exhibit major differences. Here we review the recently developed methods to simultaneously measure in-situ and in real time several of the attributes for individual particles using single particle mass spectrometer, SPLAT or its second generation SPLAT II. We also discuss novel approaches developed for classification, visualization and mining of large datasets produced by the multidimensional single particle characterization.

  4. Detection of Chemical/Biological Agents and Stimulants using Quadrupole Ion Trap Mass Spectrometry

    SciTech Connect (OSTI)

    Harmon, S.H.; Hart, K.J.; Vass, A.A.; Wise, M.B.; Wolf, D.A.

    1999-06-14

    Detection of Chemical/Biological Agents and Simulants A new detector for chemical and biological agents is being developed for the U. S. Army under the Chemical and Biological Mass Spectrometer Block II program. The CBMS Block II is designed to optimize detection of both chemical and biological agents through the use of direct sampling inlets [I], a multi- ported sampling valve and a turbo- based vacuum system to support chemical ionization. Unit mass resolution using air as the buffer gas [2] has been obtained using this design. Software to control the instrument and to analyze the data generated from the instrument has also been newly developed. Detection of chemical agents can be accomplished. using the CBMS Block II design via one of two inlets - a l/ I 6'' stainless steel sample line -Chemical Warfare Air (CW Air) or a ground probe with enclosed capillary currently in use by the US Army - CW Ground. The Block II design is capable of both electron ionization and chemical ionization. Ethanol is being used as the Cl reagent based on a study indicating best performance for the Biological Warfare (BW) detection task (31). Data showing good signal to noise for 500 pg of methyl salicylate injected into the CW Air inlet, 50 ng of dimethylmethylphosphonate exposed to the CW Ground probe and 5 ng of methyl stearate analyzed using the pyrolyzer inlet were presented. Biological agents are sampled using a ''bio-concentrator'' unit that is designed to concentrate particles in the low micron range. Particles are collected in the bottom of a quartz pyrolyzer tube. An automated injector is being developed to deliver approximately 2 pL of a methylating reagent, tetramethylamonium- hydroxide to 'the collected particles. Pyrolysis occurs by rapid heating to ca. 55OOC. Biological agents are then characterized by their fatty acid methyl ester profiles and by other biomarkers. A library of ETOH- Cl/ pyrolysis MS data of microorganisms used for a recently published study [3] has been expanded with additional bacteria and fungi. These spectra were acquired on a Finnigan Magnum ion trap using helium buffer gas. A new database of Cl spectra of microorganisms is planned using the CBMS Block II instrument and air as the buffer gas. Using the current database, the fatty acid composition of the organisms was compared using the percentage of the ion current attributable to fatty acids. The data presented suggest promising rules for discrimination of these organisms. Strain, growth media and vegetative state do contribute to some of the distributions observed in the data. However, the data distributions observed in the current study only reflect our experience to date and do not fully represent the variability that might be expected in practice: Acquisition of MS/ MS spectra has begun (using He and air buffer gas) of the protonated molecular ion of a variety of fatty acids and for a number of ions nominally assigned as fatty acids from microorganisms. These spectra will be used to help verify fatty acid .

  5. Molecular beam mass spectrometry with tunable vacuum ultraviolet (VUV) synchrotron radiation

    SciTech Connect (OSTI)

    Golan, Amir; Ahmed, Musahid

    2012-01-01

    Tunable soft ionization coupled to mass spectroscopy is a powerful method to investigate isolated molecules, complexes and clusters and their spectroscopy and dynamics.[1-4] Fundamental studies of photoionization processes of biomolecules provide information about electronic structure of these systems. Furthermore determinations of ionization energies and other properties of biomolecules in the gas phase are not trivial, and these experiments provide a platform to generate these data. We have developed a thermal vaporization technique coupled with supersonic molecular beams that provides a gentle way to transport these species into the gas phase. Judicious combination of source gas and temperature allows for formation of dimers and higher clusters of the DNA bases. The focus of this particular work is on the effects of non-covalent interactions, i.e., hydrogen bonding, stacking, and electrostatic interactions, on the ionization energies and proton transfer of individual biomolecules, their complexes and upon micro-hydration by water.[1, 5-9] We have performed experimental and theoretical characterization of the photoionization dynamics of gas-phase uracil and 1,3-methyluracil dimers using molecular beams coupled with synchrotron radiation at the Chemical Dynamics Beamline[10] located at the Advanced Light Source and the experimental details are visualized here. This allowed us to observe the proton transfer in 1,3-dimethyluracil dimers, a system with pi stacking geometry and with no hydrogen bonds[1]. Molecular beams provide a very convenient and efficient way to isolate the sample of interest from environmental perturbations which in return allows accurate comparison with electronic structure calculations[11, 12]. By tuning the photon energy from the synchrotron, a photoionization efficiency (PIE) curve can be plotted which informs us about the cationic electronic states. These values can then be compared to theoretical models and calculations and in turn, explain in detail the electronic structure and dynamics of the investigated species [1, 3].

  6. Investigations into the origins of polyatomic ions in inductively coupled plasma-mass spectrometry

    SciTech Connect (OSTI)

    McIntyre, Sally M.

    2010-05-16

    An inductively coupled plasma-mass spectrometer (ICP-MS) is an elemental analytical instrument capable of determining nearly all elements in the periodic table at limits of detection in the parts per quadrillion and with a linear analytical range over 8-10 orders of magnitude. Three concentric quartz tubes make up the plasma torch. Argon gas is spiraled through the outer tube and generates the plasma powered by a looped load coil operating at 27.1 or 40.6 MHz. The argon flow of the middle channel is used to keep the plasma above the innermost tube through which solid or aqueous sample is carried in a third argon stream. A sample is progressively desolvated, atomized and ionized. The torch is operated at atmospheric pressure. To reach the reduced pressures of mass spectrometers, ions are extracted through a series of two, approximately one millimeter wide, circular apertures set in water cooled metal cones. The space between the cones is evacuated to approximately one torr. The space behind the second cone is pumped down to, or near to, the pressure needed for the mass spectrometer (MS). The first cone, called the sampler, is placed directly in the plasma plume and its position is adjusted to the point where atomic ions are most abundant. The hot plasma gas expands through the sampler orifice and in this expansion is placed the second cone, called the skimmer. After the skimmer traditional MS designs are employed, i.e. quadrupoles, magnetic sectors, time-of-flight. ICP-MS is the leading trace element analysis technique. One of its weaknesses are polyatomic ions. This dissertation has added to the fundamental understanding of some of these polyatomic ions, their origins and behavior. Although mainly continuing the work of others, certain novel approaches have been introduced here. Chapter 2 includes the first reported efforts to include high temperature corrections to the partition functions of the polyatomic ions in ICP-MS. This and other objections to preceeding papers in this area were addressed. Errors in the measured T{sub gas} values were found for given errors in the experimental and spectroscopic values. The ionization energy of the neutral polyatomic ion was included in calculations to prove the validity of ignoring more complicated equilibria. Work was begun on the question of agreement between kinetics of the plasma and interface and the increase and depletion seen in certain polyatomic ions. This dissertation was also the first to report day to day ranges for T{sub gas} values and to use a statistical test to compare different operating conditions. This will help guide comparisons of previous and future work. Chapter 4 was the first attempt to include the excited electronic state 2 in the partition function of ArO{sup +} as well as the first to address the different dissociation products of the ground and first electronic levels of ArO{sup +}. Chapter 5 reports an interesting source of memory in ICP-MS that could affect mathematical corrections for polyatomic ions. For future work on these topics I suggest the following experiments and investigations. Clearly not an extensive list, they are instead the first topics curiosity brings to mind. (1) Measurement of T{sub gas} values when using the flow injection technique of Appendix B. It was believed that there was a fundamental difference in the plasma when the auto-sampler was used versus a continuous injection. Is this reflected in T{sub gas} values? (2) The work of Chapter 3 can be expanded and supplemented with more trials, new cone materials (i.e. copper, stainless steel) and more cone geometries. Some of this equipment is already present in the laboratory, others could be purchased or made. (3) T{sub gas} values from Chapter 3 could be correlated with instrument pressures during the experiment. Pressures after the skimmer cone were recorded for many days but have yet to be collated with the measured T{sub gas} values. (4) The work in Chapter 5 could be expanded to include more metals. Does the curious correlation between measured T{sub gas} and element boili

  7. Vacuum effects of ultra-low mass particle account for Recent Acceleration of Universe

    E-Print Network [OSTI]

    Leonard Parker; Alpan Raval

    1999-08-04

    In recent work, we showed that non-perturbative vacuum effects of a very low mass particle could induce, at a redshift of order 1, a transition from a matter-dominated to an accelerating universe. In that work, we used the simplification of a sudden transition out of the matter-dominated stage and were able to fit the Type Ia supernovae (SNe-Ia) data points with a spatially-open universe. In the present work, we find a more accurate, smooth {\\it spatially-flat} analytic solution to the quantum-corrected Einstein equations. This solution gives a good fit to the SNe-Ia data with a particle mass parameter $m_h$ in the range $6.40 \\times 10^{-33}$ eV to $7.25 \\times 10^{-33}$ eV. It follows that the ratio of total matter density (including dark matter) to critical density, $\\O_0$, is in the range 0.58 to 0.15, and the age $t_0$ of the universe is in the range $8.10 h^{-1}$ Gyr to $12.2 h^{-1}$ Gyr, where $h$ is the present value of the Hubble constant, measured as a fraction of the value 100 km/(s Mpc). This spatially-flat model agrees with estimates of the position of the first acoustic peak in the small angular scale fluctuations of the cosmic background radiation, and with light-element abundances of standard big-bang nucleosynthesis. Our model has only a single free parameter, $m_h$, and does not require that we live at a special time in the evolution of the universe.

  8. Investigating the Synthesis of Ligated Metal Clusters in Solution Using a Flow Reactor and Electrospray Ionization Mass Spectrometry

    SciTech Connect (OSTI)

    Olivares, Astrid M.; Laskin, Julia; Johnson, Grant E.

    2014-09-18

    The scalable synthesis of subnanometer metal clusters containing an exact number of atoms is of interest due to the highly size-dependent catalytic, electronic and optical properties of these species. While significant research has been conducted on the batch preparation of clusters through reduction synthesis in solution, the processes of metal complex reduction as well as cluster nucleation, growth and post-reduction etching are still not well understood. Herein, we demonstrate a temperature-controlled flow reactor for studying cluster formation in solution at well-defined conditions. Employing this technique methanol solutions of a chloro(triphenylphosphine)gold precursor, 1,4-bis(diphenylphosphino)butane capping ligand and borane-tert-butylamine reducing agent were combined in a mixing tee and introduced into a heated capillary with an adjustable length. In this manner, the temperature dependence of the relative abundance of different ionic reactants, intermediates and products synthesized in real time was characterized using online mass spectrometry. A wide distribution of doubly and triply charged cationic gold clusters was observed as well as smaller singly charged metal-ligand complexes. The results demonstrate that temperature plays a crucial role in determining the relative population of cationic gold clusters and, in general, that higher temperature promotes the formation of doubly charged clusters and singly charged metal-ligand complexes while hindering the growth of triply charged clusters. Moreover, the distribution of clusters observed at elevated temperatures is found to be consistent with that obtained at longer reaction times at room temperature, thereby demonstrating that heating may be used to access cluster distributions characteristic of different stages of reduction synthesis in solution.

  9. Gas-phase and Solution-phase Peptide Conformations Studied by Ion Mobility-mass Spectrometry and Molecular Dynamics Simulations 

    E-Print Network [OSTI]

    Chen, Liuxi

    2012-10-19

    Ion mobility spectrometry (IMS) separates ions on the basis of ion-neutral collision cross-sections (CCS, [omega]), which are determined by the geometry or conformation of the ions. The size-based IM separation can be ...

  10. Investigation of the effect of intra-molecular interactions on the gas-phase conformation of peptides as probed by ion mobility-mass spectrometry, gas-phase hydrogen/deuterium exchange, and molecular mechanics 

    E-Print Network [OSTI]

    Sawyer, Holly Ann

    2006-04-12

    Ion mobility-mass spectrometry (IM-MS), gas-phase hydrogen/deuterium (H/D) exchange ion molecule reactions and molecular modeling provide complimentary information and are used here for the characterization of peptide ion structure, including fine...

  11. Chemistry of ?-pinene and naphthalene oxidation products generated in a Potential Aerosol Mass (PAM) chamber as measured by acetate chemical ionization mass spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2014-07-01

    Recent developments in high resolution, time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made possible the direct detection of atmospheric organic compounds in real-time with high sensitivity and with little or no fragmentation, including low volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, for the first time, we examine gas-phase O3 and OH oxidation products of ?-pinene and naphthalene formed in the PAM flow reactor with an HR-ToF-CIMS using acetate reagent ion chemistry. Integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec cm?3 s, corresponding to approximately 1.0 to 7.5 daysmore »of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. We present a method that estimates vapor pressures of organic molecules using the measured O/C ratio, H/C ratio, and carbon number for each compound detected by the CIMS. The predicted condensed-phase SOA average acid yields and O/C and H/C ratios agree within uncertainties with previous AMS measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  12. BIOLOGICAL ANALYSIS Mass Spectrometry

    E-Print Network [OSTI]

    Painter, Kevin

    Transmission Suite Vertical Transmission Suite Materials Testing Lab Materials Research Lab Wet Lab Concrete and switching surges 800kV DC insulation and breakdown tests 300kV AC testing 300 kV Partial discharge detector, 4", 8" & 16" Photometer Ultra Pure water processor Deposition e-beam evaporator Nickel DC plating

  13. Characterization of human expired breath by solid phase microextraction and analysis using gas chromatography-mass spectrometry and differential mobility spectrometry

    E-Print Network [OSTI]

    Merrick, William (William F. W.)

    2005-01-01

    Breath analysis has potential to become a new medical diagnostic modality. In this thesis, a method for the analysis of human expired breath was developed using gas chromatography-mass spectroscopy. It was subsequently ...

  14. A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry

    E-Print Network [OSTI]

    2011-01-01

    the anaerobic oxidation of methane. Environ. Microbiol. 10(Field observations of methane concentra- tions and oxidationAnaerobic oxidation of methane above gas hydrates at Hydrate

  15. A method for measuring methane oxidation rates using low levels of 14C-labeled methane and accelerator mass spectrometry

    E-Print Network [OSTI]

    2011-01-01

    were tested using 14 C-free spar calcite ground to a finepowder. Aliquots of spar calcite (14.7-16.7 mg) were weighed

  16. Laser-Driven Shock Acceleration of Ion Beams from Spherical Mass-Limited Targets

    SciTech Connect (OSTI)

    Henig, A.; Kiefer, D.; Hoerlein, R.; Major, Zs.; Krausz, F.; Habs, D. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Geissler, M. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Department of Physics and Astronomy, Queen's University Belfast, Belfast BT7 1NN (United Kingdom); Rykovanov, S. G. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Moscow Physics Engineering Institute, Kashirskoe shosse 31, Moscow (Russian Federation); Ramis, R. [ETSI Aeronauticos, Universidad Politecnica de Madrid (Spain); Osterhoff, J.; Veisz, L.; Karsch, S. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Schreiber, J. [Max-Planck-Institut fuer Quantenoptik, Garching (Germany); Department fuer Physik, Ludwig-Maximilians-Universitaet Muenchen, Garching (Germany); Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom)

    2009-03-06

    We report on experimental studies of ion acceleration from spherical targets of diameter 15 {mu}m irradiated by ultraintense (1x10{sup 20} W/cm{sup 2}) pulses from a 20-TW Ti:sapphire laser system. A highly directed proton beam with plateau-shaped spectrum extending to energies up to 8 MeV is observed in the laser propagation direction. This beam arises from acceleration in a converging shock launched by the laser, which is confirmed by 3-dimensional particle-in-cell simulations. The temporal evolution of the shock-front curvature shows excellent agreement with a two-dimensional radiation pressure model.

  17. New approaches for the chemical and physical characterization of aerosols using a single particle mass spectrometry based technique

    E-Print Network [OSTI]

    Spencer, Matthew Todd

    2007-01-01

    1-2% of the oil mass, however the calcium ion peak at m/z 40and elemental carbon (EC) peaks. The HDDV oil mass spectraoil mass spectra were characterized by an intense Ca + ion peak and

  18. Self-interaction in the Bopp–Podolsky electrodynamics: Can the observable mass of a charged particle depend on its acceleration?

    SciTech Connect (OSTI)

    Zayats, Alexei E., E-mail: Alexei.Zayats@kpfu.ru

    2014-03-15

    In this paper we obtain the expression for the self-force in the model with the Lagrangian containing additional terms, quadratic in Maxwell tensor derivatives (so-called Bopp–Podolsky electrodynamics). Features of this force are analyzed for various limiting cases. When a charged particle moves along straight line with a uniform acceleration, an explicit formula is found. In the framework of the considered model, an observable renormalized particle mass is shown to depend on its acceleration. This dependence allows, in principle, to extract experimentally a value of the particle bare mass. -- Highlights: •An expression for the self-force in the Bopp–Podolsky electrodynamics is given. •For a uniformly accelerated charged particle an explicit formula for the self-force is obtained. •Dependence between the observable mass of a charged particle and its acceleration is found.

  19. Improvement in Thermal-Ionization Mass Spectrometry (TIMS) using Total Flash Evaporation (TFE) method for lanthanides isotope ratio measurements in transmutation targets

    SciTech Connect (OSTI)

    Mialle, S.; Gourgiotis, A.; Aubert, M.; Stadelmann, G.; Gautier, C.; Isnard, H.

    2011-07-01

    The experiments involved in the PHENIX french nuclear reactor to obtain precise and accurate data on the total capture cross sections of the heavy isotopes and fission products require isotopic ratios measurements with uncertainty of a few per mil. These accurate isotopic ratio measurements are performed with mass spectrometer equipped with multi-collector system. The major difficulty for the analyses of these actinides and fission products is the low quantity of the initial powder enclosed in steel container (3 to 5 mg) and the very low quantities of products formed (several {mu}g) after irradiation. Specific analytical developments are performed by Thermal Ionization Mass Spectrometry (TIMS) to be able to analyse several nanograms of elements with this technique. A specific method of acquisition named Total Flash Evaporation was adapted in this study in the case of lanthanide measurements for quantity deposited on the filament in the order of 2 ng and applied on irradiated fuel. To validate the analytical approach and discuss about the accuracy of the data, the isotopic ratios obtained by TIMS are compared with other mass spectrometric techniques such as Multiple-Collector Inductively Coupled Plasma Mass Spectrometer (MC-ICPMS). (authors)

  20. Laser ablation-inductively coupled plasma-mass spectrometry: Examinations of the origins of polyatomic ions and advances in the sampling of particulates

    SciTech Connect (OSTI)

    Witte, Travis

    2011-11-30

    This dissertation provides a general introduction to Inductively coupled plasma-mass spectrometry (ICP-MS) and laser ablation (LA) sampling, with an examination of analytical challenges in the employment of this technique. It discusses the origin of metal oxide ions (MO+) in LA-ICP-MS, as well as the effect of introducing helium and nitrogen to the aerosol gas flow on the formation of these polyatomic interferences. It extends the study of polyatomic ions in LA-ICP-MS to metal argide (MAr+) species, an additional source of possible significant interferences in the spectrum. It describes the application of fs-LA-ICP-MS to the determination of uranium isotope ratios in particulate samples.

  1. Determination of parts-per-billion concentrations of dioxane in water and soil by purge and trap gas chromatography/mass spectrometry or charcoal tube enrichment gas chromatography

    SciTech Connect (OSTI)

    Epstein, P.S.; Mauer, T.; Wagner, M.; Chase, S.; Giles, B.

    1987-08-01

    Two methods for the determination of 1,4-dioxane in water have been studied. The first method is a heated purge and trap gas chromatography/mass spectrometry system following salting out with sodium sulfate. The second method is an adsorption on coconut-shell charcoal and solvent desorption with carbon disulfide/methanol followed by analysis of the desorbate by gas chromatography with flame ionization detection. The first method is also successful for the determination of 1,4-dioxane in solids and sediments. The second method is shown to be successful for 2-butanone, 4-methyl-2-pentanone, and butoxyethanol in water. The two methods are compared by analyzing 15 samples by both methods and achieving similar results.

  2. Application of high-resolution time-of-flight chemical ionization mass spectrometry measurements to estimate volatility distributions of ?-pinene and naphthalene oxidation products

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chhabra, P. S.; Lambe, A. T.; Canagaratna, M. R.; Stark, H.; Jayne, J. T.; Onasch, T. B.; Davidovits, P.; Kimmel, J. R.; Worsnop, D. R.

    2015-01-05

    Recent developments in high-resolution time-of-flight chemical ionization mass spectrometry (HR-ToF-CIMS) have made it possible to directly detect atmospheric organic compounds in real time with high sensitivity and with little or no fragmentation, including low-volatility, highly oxygenated organic vapors that are precursors to secondary organic aerosol formation. Here, using ions identified by high-resolution spectra from an HR-ToF-CIMS with acetate reagent ion chemistry, we develop an algorithm to estimate the vapor pressures of measured organic acids. The algorithm uses identified ion formulas and calculated double bond equivalencies, information unavailable in quadrupole CIMS technology, as constraints for the number of possible oxygen-containing functionalmore »groups. The algorithm is tested with acetate chemical ionization mass spectrometry (acetate-CIMS) spectra of O3 and OH oxidation products of ?-pinene and naphthalene formed in a flow reactor with integrated OH exposures ranged from 1.2 × 1011 to 9.7 × 1011 molec s cm?3, corresponding to approximately 1.0 to 7.5 days of equivalent atmospheric oxidation. Measured gas-phase organic acids are similar to those previously observed in environmental chamber studies. For both precursors, we find that acetate-CIMS spectra capture both functionalization (oxygen addition) and fragmentation (carbon loss) as a function of OH exposure. The level of fragmentation is observed to increase with increased oxidation. The predicted condensed-phase secondary organic aerosol (SOA) average acid yields and O/C and H/C ratios agree within uncertainties with previous chamber and flow reactor measurements and ambient CIMS results. While acetate reagent ion chemistry is used to selectively measure organic acids, in principle this method can be applied to additional reagent ion chemistries depending on the application.« less

  3. Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/N{sub 2}

    SciTech Connect (OSTI)

    Schmidt, S.; Greczynski, G.; Jensen, J.; Hultman, L.; Czigany, Zs.

    2012-07-01

    Ion mass spectrometry was used to investigate discharges formed during high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS) of a graphite target in Ar and Ar/N{sub 2} ambient. Ion energy distribution functions (IEDFs) were recorded in time-averaged and time-resolved mode for Ar{sup +}, C{sup +}, N{sub 2}{sup +}, N{sup +}, and C{sub x}N{sub y}{sup +} ions. An increase of N{sub 2} in the sputter gas (keeping the deposition pressure, pulse width, pulse frequency, and pulse energy constant) results for the HiPIMS discharge in a significant increase in C{sup +}, N{sup +}, and CN{sup +} ion energies. Ar{sup +}, N{sub 2}{sup +}, and C{sub 2}N{sup +} ion energies, in turn, did not considerably vary with the changes in working gas composition. The HiPIMS process showed higher ion energies and fluxes, particularly for C{sup +} ions, compared to DCMS. The time evolution of the plasma species was analyzed for HiPIMS and revealed the sequential arrival of working gas ions, ions ejected from the target, and later during the pulse-on time molecular ions, in particular CN{sup +} and C{sub 2}N{sup +}. The formation of fullerene-like structured CN{sub x} thin films for both modes of magnetron sputtering is explained by ion mass-spectrometry results and demonstrated by transmission electron microscopy as well as diffraction.

  4. Enzymatic Digestion in Aqueous-Organic Solvents: A Mass Spectrometry-Based Approach in Monitoring Protein Conformation Changes 

    E-Print Network [OSTI]

    Tuvilla, Mavreen Rose

    2013-05-08

    -organic solvent systems. The technique involved trypsin digestion and generation of peptide mass maps. For cytochrome c, the experiments were done with ethanol, methanol and acetonitrile to gain insights on naturation and denaturation. An apparent solvent effect...

  5. Characterisation of individual airborne particles by using aerosol time-of-flight mass spectrometry (ATOFMS) at Mace Head, Ireland, 

    E-Print Network [OSTI]

    Dall'Osto, Manuel; Beddows, David C S; Kinnersley, Robert P; Harrison, Roy M; Donovan, Robert J; Heal, Mathew R

    2004-01-01

    An aerosol time-of-flight mass spectrometer was deployed at Mace Head (Ireland) during August 2002. The measurements provide qualitative chemical composition and size distribution (0.3–3 ?m) information for single ...

  6. Final Technical Report for DE-FG02-06ER15835: Chemical Imaging with 100nm Spatial Resolution: Combining High Resolution Flurosecence Microscopy and Ion Mobility Mass Spectrometry

    SciTech Connect (OSTI)

    Buratto, Steven K.

    2013-09-03

    We have combined, in a single instrument, high spatial resolution optical microscopy with the chemical specificity and conformational selectivity of ion mobility mass spectrometry. We discuss the design and construction of this apparatus as well as our efforts in applying this technique to thin films of molecular semiconductor materials.

  7. Laser ablation and ionisation by laser plasma radiation in the atmospheric-pressure mass spectrometry of organic compounds

    SciTech Connect (OSTI)

    Pento, A V; Nikiforov, S M; Simanovsky, Ya O; Grechnikov, A A; Alimpiev, S S

    2013-01-31

    A new method was developed for the mass spectrometric analysis of organic and bioorganic compounds, which involves laser ablation with the ionisation of its products by laser-plasma radiation and enables analysing gaseous, liquid, and solid substances at atmospheric pressure without sample preparation. The capabilities of this method were demonstrated by the examples of fast pharmaceutical composition screening, real-time atmosphere composition analysis, and construction of the mass spectrometric images of organic compound distributions in biological materials. (interaction of laser radiation with matter)

  8. Analysis on the Go: Quantitation of Drugs of Abuse in Dried Urine with Digital Microfluidics and Miniature Mass Spectrometry

    E-Print Network [OSTI]

    Zandstra, Peter W.

    Analysis on the Go: Quantitation of Drugs of Abuse in Dried Urine with Digital Microfluidics the development of a method coupling microfluidics and a miniature mass spectrometer, applied to quantitation of drugs of abuse in urine. A custom digital microfluidic system was designed to deliver droplets

  9. Molecular Characterization of Organosulfates in Organic Aerosols from Shanghai and Los Angeles Urban Areas by Nanospray-Desorption Electrospray Ionization High-Resolution Mass Spectrometry

    SciTech Connect (OSTI)

    Tao, Shikang; Lu, Xiaohui; Levac, Nicole A.; Bateman, Adam P.; Nguyen, Tran B.; Bones, David L.; Nizkorodov, Sergey; Laskin, Julia; Laskin, Alexander; Yang, Xin

    2014-08-21

    Aerosol samples collected in the urban areas of Shanghai and Los Angeles were analyzed by nanospray-desorption electrospray ionization mass spectrometry (nano-DESI MS) with high mass resolution (m/?m=100,000). Solvent mixtures of acetonitrile/water and acetonitrile/toluene were used to extract and ionize polar and non-polar compounds, respectively. A diverse mixture of oxygenated hydrocarbons, organosulfates, organonitrates, and organics with reduced nitrogen were detected in the Los Angeles sample. Majority of the organics in the Shanghai sample were detected as organosulfates. The dominant organosulfates in the two samples have distinctly different molecular characteristics. Specifically, organosulfates in the Los Angeles sample were dominated by isoprene- or monoterpene-derived products, while organosulfates of yet unknown origin in the Shanghai sample had distinctive characteristics of long aliphatic carbon chains and low degree of oxidation and unsaturation. The use of acetonitrile/toluene solvent facilitated identification of this type of organosulfates, suggesting they could be missed in previous studies relying on sample extraction using common polar solvents. The high molecular weight and low degree of unsaturation and oxidization of the organosulfates detected in the Shanghai sample suggest that they may act as surfactants, and plausibly affect the surface tension and hygroscopicity of the atmospheric particulate matter. We propose that direct esterification of carbonyl or hydroxyl compounds by sulfates or sulfuric acid in liquid phase could be the formation pathway of these special organosulfates. Long-chain alkanes from vehicle emissions might be their precursors.

  10. Applications of ICP magnetic sector multicollector mass spectrometry to basic energy research. Final report for period December 1st, 1993 - May 31st, 2000

    SciTech Connect (OSTI)

    Halliday, A.N.

    2002-05-01

    The primary aims of this research were threefold: to develop and utilize the new technique of multiple collector inductively coupled plasma mass spectrometry and apply it to problems in the earth, ocean, and environmental sciences; to develop new chronometers and improve existing chronometers to allow the accurate determination of the ages of geological features and processes; and to study natural fluid-mediated mass transfer processes and source of components in the crust and the oceans. This technique has now become the preferred method for the determination of the isotopic compositions of a variety of elements in the periodic table. The prototype instrument was used to explore a vast array of isotopic systems and demonstrate applicability to problems as different as the origin of the solar system and smelting methods in the Bronze Age. Highlights of the program are briefly summarized under the following topics: tungsten isotopes and the early solar system; trace siderophile and chalcophile element geochemistry; hafnium isotopes and the early development of the continents; evolution of lead isotopic compositions of the oceans; the isotopic composition and residence time of Hf in seawater; the isotopic compositions of Sr, Hf, Pb, and Nd in dust; U-Th disequilibrium dating of carbonates and soils; in situ U-Th disequilibrium dating of opal.

  11. Standard test method for isotopic analysis of hydrolyzed uranium hexafluoride and uranyl nitrate solutions by thermal ionization mass spectrometry

    E-Print Network [OSTI]

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This method applies to the determination of isotopic composition in hydrolyzed nuclear grade uranium hexafluoride. It covers isotopic abundance of 235U between 0.1 and 5.0 % mass fraction, abundance of 234U between 0.0055 and 0.05 % mass fraction, and abundance of 236U between 0.0003 and 0.5 % mass fraction. This test method may be applicable to other isotopic abundance providing that corresponding standards are available. 1.2 This test method can apply to uranyl nitrate solutions. This can be achieved either by transforming the uranyl nitrate solution to a uranyl fluoride solution prior to the deposition on the filaments or directly by depositing the uranyl nitrate solution on the filaments. In the latter case, a calibration with uranyl nitrate standards must be performed. 1.3 This test method can also apply to other nuclear grade matrices (for example, uranium oxides) by providing a chemical transformation to uranyl fluoride or uranyl nitrate solution. 1.4 This standard does not purport to address al...

  12. Orthogonal Injection Ion Funnel Interface Providing Enhanced Performance for Selected Reaction Monitoring-Triple Quadruple Mass Spectrometry

    SciTech Connect (OSTI)

    Chen, Tsung-Chi; Fillmore, Thomas L.; Prost, Spencer A.; Moore, Ronald J.; Ibrahim, Yehia M.; Smith, Richard D.

    2015-07-21

    The electrodynamic ion funnel facilitates efficient focusing and transfer of charged particles in the higher pressure regions (e.g. ion source interfaces) of mass spectrometers, and thus providing increased sensitivity. An “off-axis” ion funnel design has been developed to reduce the source contamination and interferences from, e.g. ESI droplet residue and other poorly focused neutral or charged particles with very high mass-to charge ratios. In this study a dual ion funnel interface consisting of an orthogonal higher pressure electrodynamic ion funnel (HPIF) and an ion funnel trap combined with a triple quadruple mass spectrometer was developed and characterized. An orthogonal ion injection inlet and a repeller plate electrode was used to direct ions to an ion funnel HPIF at 9-10 Torr pressure. Several critical factors for the HPIF were characterized, including the effects of RF amplitude, DC gradient and operating pressure. Compared to the triple quadrupole standard interface more than 4-fold improvement in the limit of detection for the direct quantitative MS analysis of low abundance peptides was observed. The sensitivity enhancement in liquid chromatography selected reaction monitoring (SRM) analyses of low abundance peptides spiked into a highly complex mixture was also compared with that obtained using a both commercial s-lens interface and a in-line dual ion funnel interface.

  13. Charge and frequency resolved isochronous mass spectrometry in storage rings: First direct mass measurement of the short-lived neutron-deficient $^{51}$Co nuclide

    E-Print Network [OSTI]

    P. Shuai; H. S. Xu; X. L. Tu; Y. H. Zhang; B. H. Sun; Yu. A. Litvinov; X. L. Yan; K. Blaum; M. Wang; X. H. Zhou; J. J. He; Y. Sun; K. Kaneko; Y. J. Yuan; J. W. Xia; J. C. Yang; G. Audi; X. C. Chen; G. B. Jia; Z. G. Hu; X. W. Ma; R. S. Mao; B. Mei; Z. Y. Sun; S. T. Wang; G. Q. Xiao; X. Xu; T. Yamaguchi; Y. Yamaguchi; Y. D. Zang; H. W. Zhao; T. C. Zhao; W. Zhang; W. L. Zhan

    2014-04-08

    Revolution frequency measurements of individual ions in storage rings require sophisticated timing detectors. One of common approaches for such detectors is the detection of secondary electrons released from a thin foil due to penetration of the stored ions. A new method based on the analysis of intensities of secondary electrons was developed which enables determination of the charge of each ion simultaneously with the measurement of its revolution frequency. Although the mass-over-charge ratios of $^{51}$Co$^{27+}$ and $^{34}$Ar$^{18+}$ ions are almost identical, and therefore, the ions can not be resolved in a storage ring, by applying the new method the mass excess of the short-lived $^{51}$Co is determined for the first time to be ME($^{51}$Co)=-27342(48) keV. Shell-model calculations in the $fp$-shell nuclei compared to the new data indicate the need to include isospin-nonconserving forces.

  14. Charge and frequency resolved isochronous mass spectrometry in storage rings: First direct mass measurement of the short-lived neutron-deficient $^{51}$Co nuclide

    E-Print Network [OSTI]

    Shuai, P; Tu, X L; Zhang, Y H; Sun, B H; Litvinov, Yu A; Yan, X L; Blaum, K; Wang, M; Zhou, X H; He, J J; Sun, Y; Kaneko, K; Yuan, Y J; Xia, J W; Yang, J C; Audi, G; Chen, X C; Jia, G B; Hu, Z G; Ma, X W; Mao, R S; Mei, B; Sun, Z Y; Wang, S T; Xiao, G Q; Xu, X; Yamaguchi, T; Yamaguchi, Y; Zang, Y D; Zhao, H W; Zhao, T C; Zhang, W; Zhan, W L

    2014-01-01

    Revolution frequency measurements of individual ions in storage rings require sophisticated timing detectors. One of common approaches for such detectors is the detection of secondary electrons released from a thin foil due to penetration of the stored ions. A new method based on the analysis of intensities of secondary electrons was developed which enables determination of the charge of each ion simultaneously with the measurement of its revolution frequency. Although the mass-over-charge ratios of $^{51}$Co$^{27+}$ and $^{34}$Ar$^{18+}$ ions are almost identical, and therefore, the ions can not be resolved in a storage ring, by applying the new method the mass excess of the short-lived $^{51}$Co is determined for the first time to be ME($^{51}$Co)=-27342(48) keV. Shell-model calculations in the $fp$-shell nuclei compared to the new data indicate the need to include isospin-nonconserving forces.

  15. Method for ultra-trace cesium isotope ratio measurements from environmental samples using thermal ionization mass spectrometry

    SciTech Connect (OSTI)

    Snow, Mathew S.; Snyder, Darin C.; Mann, Nick R.; White, Byron M.

    2015-05-01

    135Cs/137Cs isotope ratios can provide the age, origin and history of environmental Cs contamination. Relatively high precision 135Cs/137Cs isotope ratio measurements from samples containing femtogram quantities of 137Cs are needed to accurately track contamination resuspension and redistribution following environmental 137Cs releases; however, mass spectrometric analyses of environmental samples are limited by the large quantities of ionization inhibitors and isobaric interferences which are present at relatively high concentrations in the environment. We report a new approach for Cs purification from environmental samples. An initial ammonium molybdophosphate-polyacrylonitrile (AMP-PAN) column provides a robust method for extracting Cs under a wide variety of sample matrices and mass loads. Cation exchange separations using a second AMP-PAN column result in more than two orders of magnitude greater Cs/Rb separation factors than commercially available strong cation exchangers. Coupling an AMP-PAN cation exchanging step to a microcation column (AG50W resin) enables consistent 2-4% (2?) measurement errors for samples containing 3-6,000 fg 137Cs, representing the highest precision 135Cs/137Cs ratio measurements currently reported for soil samples at the femtogram level.

  16. Airborne measurements of sulfur dioxide, dimethyl sulfide, carbon disulfide, and carbonyl sulfide by isotope dilution gas chromatography/mass spectrometry

    SciTech Connect (OSTI)

    Bandy, A.R.; Thornton, D.C.; Driedger, A.R. III [Drexel Univ., Philadelphia, PA (United States)

    1993-12-01

    A gas chromatograph/mass spectrometer is described for determining atmospheric sulfur dioxide, carbon disulfide, dimethyl sulfide, and carbonyl sulfide from aircraft and ship platforms. Isotopically labelled variants of each analyte were used as internal standards to achieve high precision. The lower limit of detection for each species for an integration time of 3 min was 1 pptv for sulfur dioxide and dimethyl sulfide and 0.2 pptv for carbon disulfide and carbonyl sulfide. All four species were simultaneously determined with a sample frequency of one sample per 6 min or greater. When only one or two species were determined, a frequency of one sample per 4 min was achieved. Because a calibration is included in each sample, no separate calibration sequence was needed. Instrument warmup was only a few minutes. The instrument was very robust in field deployments, requiring little maintenance.

  17. Identification of volatile butyl rubber thermal-oxidative degradation products by cryofocusing gas chromatography/mass spectrometry (cryo-GC/MS).

    SciTech Connect (OSTI)

    Smith, Jonell Nicole; White, Michael Irvin; Bernstein, Robert; Hochrein, James Michael

    2013-02-01

    Chemical structure and physical properties of materials, such as polymers, can be altered as aging progresses, which may result in a material that is ineffective for its envisioned intent. Butyl rubber formulations, starting material, and additives were aged under thermal-oxidative conditions for up to 413 total days at up to 124 %C2%B0C. Samples included: two formulations developed at Kansas City Plant (KCP) (%236 and %2310), one commercially available formulation (%2321), Laxness bromobutyl 2030 starting material, and two additives (polyethylene AC-617 and Vanax MBM). The low-molecular weight volatile thermal-oxidative degradation products that collected in the headspace over the samples were preconcentrated, separated, and detected using cryofocusing gas chromatography mass spectrometry (cryo-GC/MS). The majority of identified degradation species were alkanes, alkenes, alcohols, ketones, and aldehydes. Observations for Butyl %2310 aged in an oxygen-18 enriched atmosphere (18O2) were used to verify when the source of oxygen in the applicable degradation products was from the gaseous environment rather than the polymeric mixture. For comparison purposes, Butyl %2310 was also aged under non-oxidative thermal conditions using an argon atmosphere.

  18. Investigation of the chemical interface in the soybean–aphid and rice–bacteria interactions using MALDI-mass spectrometry imaging

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Klein, Adam T.; Yagnik, Gargey B.; Hohenstein, Jessica D.; Ji, Zhiyuan; Zi, Jiachen; Reichert, Malinda D.; MacIntosh, Gustavo C.; Yang, Bing; Peters, Reuben J.; Vela, Javier; et al

    2015-04-27

    Mass spectrometry imaging (MSI) is an emerging technology for high-resolution plant biology. It has been utilized to study plant–pest interactions, but limited to the surface interfaces. Here we expand the technology to explore the chemical interactions occurring inside the plant tissues. Two sample preparation methods, imprinting and fracturing, were developed and applied, for the first time, to visualize internal metabolites of leaves in matrix-assisted laser desorption ionization (MALDI)-MSI. This is also the first time nanoparticle-based ionization was implemented to ionize diterpenoid phytochemicals that were difficult to analyze with traditional organic matrices. The interactions between rice–bacterium and soybean–aphid were investigated asmore »two model systems to demonstrate the capability of high-resolution MSI based on MALDI. Localized molecular information on various plant- or pest-derived chemicals provided valuable insight for the molecular processes occurring during the plant–pest interactions. Basically, salicylic acid and isoflavone based resistance was visualized in the soybean–aphid system and antibiotic diterpenoids in rice–bacterium interactions.« less

  19. Analysis of Nitro-Polycyclic Aromatic Hydrocarbons in Conventional Diesel and Fischer--Tropsch Diesel Fuel Emissions Using Electron Monochromator-Mass Spectrometry

    SciTech Connect (OSTI)

    Havey, C. D.; McCormick, R. L.; Hayes, R. R.; Dane, A. J.; Voorhees, K. J.

    2006-01-01

    The presence of nitro-polycyclic aromatic hydrocarbons (NPAHs) in diesel fuel emissions has been studied for a number of years predominantly because of their contribution to the overall health and environmental risks associated with these emissions. Electron monochromator-mass spectrometry (EM-MS) is a highly selective and sensitive method for detection of NPAHs in complex matrixes, such as diesel emissions. Here, EM-MS was used to compare the levels of NPAHs in fuel emissions from conventional (petroleum) diesel, ultra-low sulfur/low-aromatic content diesel, Fischer-Tropsch synthetic diesel, and conventional diesel/synthetic diesel blend. The largest quantities of NPAHs were detected in the conventional diesel fuel emissions, while the ultra-low sulfur diesel and synthetic diesel fuel demonstrated a more than 50% reduction of NPAH quantities when compared to the conventional diesel fuel emissions. The emissions from the blend of conventional diesel with 30% synthetic diesel fuel also demonstrated a more than 30% reduction of the NPAH content when compared to the conventional diesel fuel emissions. In addition, a correlation was made between the aromatic content of the different fuel types and NPAH quantities and between the nitrogen oxides emissions from the different fuel types and NPAH quantities. The EM-MS system demonstrated high selectivity and sensitivity for detection of the NPAHs in the emissions with minimal sample cleanup required.

  20. Effusive molecular beam-sampled Knudsen flow reactor coupled to vacuum ultraviolet single photon ionization mass spectrometry using an external free radical source

    SciTech Connect (OSTI)

    Leplat, N.; Rossi, M. J.

    2013-11-15

    A new apparatus using vacuum ultraviolet single photon ionization mass spectrometry (VUV SPIMS) of an effusive molecular beam emanating from a Knudsen flow reactor is described. It was designed to study free radical-molecule kinetics over a significant temperature range (300–630 K). Its salient features are: (1) external free radical source, (2) counterpropagating molecular beam and diffuse VUV photon beam meeting in a crossed-beam ion source of a quadrupole mass spectrometer with perpendicular ion extraction, (3) analog detection of the photocurrent of the free radical molecular cation, and (4) possibility of detecting both free radicals and closed shell species in the same apparatus and under identical reaction conditions owing to the presence of photoelectrons generated by the photoelectric effect of the used VUV-photons. The measured thermal molecular beam-to-background ratio was 6.35 ± 0.39 for Ar and 10.86 ± 1.59 for i-C{sub 4}H{sub 10} at 300 K, a factor of 2.52 and 1.50 smaller, respectively, than predicted from basic gas-dynamic considerations. Operating parameters as well as the performance of key elements of the instrument are presented and discussed. Coupled to an external free radical source a steady-state specific exit flow of 1.6 × 10{sup 11} and 5.0 × 10{sup 11} molecule s{sup ?1} cm{sup ?3} of C{sub 2}H{sub 5}{sup •} (ethyl) and t-C{sub 4}H{sub 9}{sup •} (t-butyl) free radicals have been detected using VUV SPIMS at their molecular ion m/z 29 and 57, respectively, at 300 K.

  1. Structure and Dynamics of NBD1 from CFTR Characterized Using Crystallography and Hydrogen/Deuterium Exchange Mass Spectrometry

    SciTech Connect (OSTI)

    Lewis, H.A.; Wang, C.; Zhao, X.; Hamuro, Y.; Conners, K.; Kearins, M.C.; Lu, F.; Sauder, J.M.; Molnar, K.S.; Coales, S.J.; Maloney, P.C.; Guggino, W.B.; Wetmore, D.R.; Weber, P.C.; Hunt, J.F. (SGX); (ExSAR); (Cystic); (JHU-MED); (Columbia)

    2012-04-30

    The {Delta}F508 mutation in nucleotide-binding domain 1 (NBD1) of the cystic fibrosis transmembrane conductance regulator (CFTR) is the predominant cause of cystic fibrosis. Previous biophysical studies on human F508 and {Delta}F508 domains showed only local structural changes restricted to residues 509-511 and only minor differences in folding rate and stability. These results were remarkable because {Delta}F508 was widely assumed to perturb domain folding based on the fact that it prevents trafficking of CFTR out of the endoplasmic reticulum. However, the previously reported crystal structures did not come from matched F508 and {Delta}F508 constructs, and the {Delta}F508 structure contained additional mutations that were required to obtain sufficient protein solubility. In this article, we present additional biophysical studies of NBD1 designed to address these ambiguities. Mass spectral measurements of backbone amide {sup 1}H/{sup 2}H exchange rates in matched F508 and {Delta}F508 constructs reveal that {Delta}F508 increases backbone dynamics at residues 509-511 and the adjacent protein segments but not elsewhere in NBD1. These measurements also confirm a high level of flexibility in the protein segments exhibiting variable conformations in the crystal structures. We additionally present crystal structures of a broader set of human NBD1 constructs, including one harboring the native F508 residue and others harboring the {Delta}F508 mutation in the presence of fewer and different solubilizing mutations. The only consistent conformational difference is observed at residues 509-511. The side chain of residue V510 in this loop is mostly buried in all non-{Delta}F508 structures but completely solvent exposed in all {Delta}F508 structures. These results reinforce the importance of the perturbation {Delta}F508 causes in the surface topography of NBD1 in a region likely to mediate contact with the transmembrane domains of CFTR. However, they also suggest that increased exposure of the 509-511 loop and increased dynamics in its vicinity could promote aggregation in vitro and aberrant intermolecular interactions that impede trafficking in vivo.

  2. Hydrothermal Liquefaction Oil and Hydrotreated Product from Pine Feedstock Characterized by Heteronuclear Two-Dimensional NMR Spectroscopy and FT-ICR Mass Spectrometry

    SciTech Connect (OSTI)

    Sudasinghe, Nilusha; Cort, John R.; Hallen, Richard T.; Olarte, Mariefel V.; Schmidt, Andrew J.; Schaub, Tanner

    2014-12-01

    Hydrothermal liquefaction (HTL) crude oil and hydrotreated product from pine tree farm waste (forest product residual, FPR) have been analyzed by direct infusion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS) in both positive- and negative-ionization modes and high-resolution twodimensional heteronuclear 1H-13C NMR spectroscopy. FT-ICR MS resolves thousands of compounds in complex oils and provides unparalleled compositional details for individual molecules for identification of compound class (heteroatom content), type (number of rings plus double bonds to carbon or double bond equivalents (DBE) and carbon number (degree of alkylation). Heteronuclear 1H-13C NMR spectroscopy provides one-bond and multiple-bond correlations between pairs of 1H and 13C chemical shifts that are characteristic of different organic functional groups. Taken together this information provides a picture of the chemical composition of these oils. Pyrolysis crude oil product from pine wood was characterized for comparison. Generally, pyrolysis oil is comprised of a more diverse distribution of heteroatom classes with higher oxygen number relative to HTL oil as shown by both positive- and negative-ion ESI FT-ICR MS. A total of 300 N1, 594 O1 and 267 O2 compounds were observed as products of hydrotreatment. The relative abundance of N1O1, N1O2, N1O3, N2, N2O1, N2O2 and O3 compounds are reduced to different degrees after hydrotreatment and other higher heteroatom containing species (O4-O10, N1O4, N1O5 and N2O3) are completely removed by hydrotreatment.

  3. Tile-Based Fisher-Ratio Software for Improved Feature Selection Analysis of Comprehensive Two-Dimensional Gas Chromatography Time-of-Flight Mass Spectrometry Data

    SciTech Connect (OSTI)

    Marney, Luke C.; Siegler, William C.; Parsons, Brendon A.; Hoggard, Jamin C.; Wright, Bob W.; Synovec, Robert E.

    2013-10-15

    Two-dimensional (2D) gas chromatography coupled with time-of-flight mass spectrometry (GC × GC – TOFMS) is a highly capable instrumental platform that produces complex and information-rich multi-dimensional chemical data. The complex data can be overwhelming, especially when many samples (of various sample classes) are analyzed with multiple injections for each sample. Thus, the data must be analyzed in such a way to extract the most meaningful information. The pixel-based and peak table-based algorithmic use of Fisher ratios has been used successfully in the past to reduce the multi-dimensional data down to those chemical compounds that are changing between classes relative to those that are not (i.e., chemical feature selection). We report on the initial development of a computationally fast novel tile-based Fisher-ratio software that addresses challenges due to 2D retention time misalignment without explicitly aligning the data, which is a problem for both pixel-based and peak table- based methods. Concurrently, the tile-based Fisher-ratio software maximizes the sensitivity contrast of true positives against a background of potential false positives and noise. To study this software, eight compounds, plus one internal standard, were spiked into diesel at various concentrations. The tile-based F-ratio software was able to discover all spiked analytes, within the complex diesel sample matrix with thousands of potential false positives, in each possible concentration comparison, even at the lowest absolute spiked analyte concentration ratio of 1.06.

  4. Rapid and sensitive gas chromatography ion-trap mass spectrometry method for the determination of tobacco specific N-nitrosamines in secondhand smoke

    SciTech Connect (OSTI)

    SLEIMAN, Mohamad; MADDALENA, Randy L.; GUNDEL, Lara A.; DESTAILLATS, Hugo

    2009-07-01

    Tobacco-specific nitrosamines (TSNAs) are some of the most potent carcinogens in tobacco and cigarette smoke. Accurate quantification of these chemicals is needed to help assess public health risks. We developed and validated a specific and sensitive method to measure four TSNAs in both the gas- and particle-phase of secondhand smoke (SHS) using gas chromatography and ion-trap tandem mass spectrometry,. A smoking machine in an 18-m3 room-sized chamber generated relevant concentrations of SHS that were actively sampled on Teflon coated fiber glass (TCFG) filters, and passively sampled on cellulose substrates. A simple solid-liquid extraction protocol using methanol as solvent was successfully applied to both filters with high recoveries ranging from 85 to 115percent. Tandem MS parameters were optimized to obtain the best sensitivity in terms of signal to-noise ratio (S/N) for the target compounds. For each TSNA, the major fragmentation pathways as well as ion structures were elucidated and compared with previously published data. The method showed excellent performances with a linear dynamic range between 2 and 1000 ng mL-1, low detection limits (S/N> 3) of 30-300 pg.ml-1 and precision with experimental errors below 10percent for all compounds. Moreover, no interfering peaks were observed indicating a high selectivity of MS/MS without the need for a sample clean up step. The sampling and analysis method provides a sensitive and accurate tool to detect and quantify traces of TSNA in SHS polluted indoor environments.

  5. Technical Basis Document: A Statistical Basis for Interpreting Urinary Excretion of Plutonium Based on Accelerator Mass Spectrometry (AMS) for Selected Atoll Populations in the Marshall Islands

    SciTech Connect (OSTI)

    Bogen, K; Hamilton, T F; Brown, T A; Martinelli, R E; Marchetti, A A; Kehl, S R; Langston, R G

    2007-05-01

    We have developed refined statistical and modeling techniques to assess low-level uptake and urinary excretion of plutonium from different population group in the northern Marshall Islands. Urinary excretion rates of plutonium from the resident population on Enewetak Atoll and from resettlement workers living on Rongelap Atoll range from <1 to 8 {micro}Bq per day and are well below action levels established under the latest Department regulation 10 CFR 835 in the United States for in vitro bioassay monitoring of {sup 239}Pu. However, our statistical analyses show that urinary excretion of plutonium-239 ({sup 239}Pu) from both cohort groups is significantly positively associated with volunteer age, especially for the resident population living on Enewetak Atoll. Urinary excretion of {sup 239}Pu from the Enewetak cohort was also found to be positively associated with estimates of cumulative exposure to worldwide fallout. Consequently, the age-related trends in urinary excretion of plutonium from Marshallese populations can be described by either a long-term component from residual systemic burdens acquired from previous exposures to worldwide fallout or a prompt (and eventual long-term) component acquired from low-level systemic intakes of plutonium associated with resettlement of the northern Marshall Islands, or some combination of both.

  6. Current /sup 14/C measurements with the University of Washington FN tandem accelerator

    SciTech Connect (OSTI)

    Farwell, G.W.; Grootes, P.M.; Leach, D.D.; Schmidt, F.H.; Stuiver, M.

    1983-01-01

    The accelerator mass spectrometry (AMS) system shows a one-to-one relationship between sample /sup 14/C concentrations determined by AMS - and by ..beta..-counting. Measurements of unknown samples against a standard indicate that /sup 14/C concentration measurements to better than 2% can be made. For a 30-second data collection interval in a typical run of 100 intervals, the variability of the beam injected into the accelerator is ca 2%, that of the machine transmission is ca 4%, and counting statistics give 4.7% standard deviation for a sample of 80% of modern carbon.

  7. Correlations in the chemical composition of rural background atmospheric aerosol in the UK determined in real time using time-of-flight mass spectrometry 

    E-Print Network [OSTI]

    Beddows, David C S; Donovan, Robert J; Harrison, Roy M; Heal, Mathew R; Kinnersley, Robert P; King, Martin; Nicholson, David; Thompson, Katherine

    2004-01-01

    polluted air mass that had passed over the British mainland before reaching Eskdalemuir, interposed between two cleaner air masses that had arrived directly from the sea. Such changes in the background aerosol could clearly be very important to studies...

  8. Use of Electrodeposition for Sample Preparation and Rejection Rate Prediction for Assay of Electroformed Ultra High Purity Copper for 232Th and 238U Prior to Inductively Coupled Plasma Mass Spectrometry (ICP/MS)

    SciTech Connect (OSTI)

    Hoppe, Eric W.; Aalseth, Craig E.; Brodzinski, Ronald L.; Day, Anthony R.; Farmer, Orville T.; Hossbach, Todd W.; McIntyre, Justin I.; Miley, Harry S.; Mintzer, Esther E.; Seifert, Allen; Smart, John E.; Warren, Glen A.

    2008-07-01

    The search for neutrinoless double beta decay in 76Ge has driven the need for ultra-low background Ge detectors shielded by electroformed copper of ultra-high radiopurity (<0.1µBq/kg). Although electrodeposition processes are almost sophisticated enough to produce copper of this purity, to date there are no methods sensitive enough to assay it. Inductively-coupled plasma mass spectrometry (ICP/MS) can detect thorium and uranium at femtogram levels, but in the past, this assay has been hindered by high copper concentrations in the sample. Electrodeposition of copper samples removes copper from the solution while selectively concentrating thorium and uranium contaminants to be assayed by ICP/MS. Spiking 232Th and 238U into the plating bath simulates low purity copper and allows for the calculation of the electrochemical rejection rate of thorium and uranium in the electroplating system. This rejection value will help to model plating bath chemistry.

  9. Correlation of rocket propulsion fuel properties with chemical composition using comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry followed by partial least squares regression analysis

    SciTech Connect (OSTI)

    Kehimkar, Benjamin; Hoggard, Jamin C.; Marney, Luke C.; Billingsley, Matthew; Fraga, Carlos G.; Bruno, Thomas J.; Synovec, Robert E.

    2014-01-31

    There is an increased need to more fully assess and control the composition of kerosene based rocket propulsion fuels, namely RP-1 and RP-2. In particular, it is crucial to be able to make better quantitative connections between the following three attributes: (a) fuel performance, (b) fuel properties (flash point, density, kinematic viscosity, net heat of combustion, hydrogen content, etc) and (c) the chemical composition of a given fuel (i.e., specific chemical compounds and compound classes present as a result of feedstock blending and processing). Indeed, recent efforts in predicting fuel performance through modeling put greater emphasis on detailed and accurate fuel properties and fuel compositional information. In this regard, advanced distillation curve (ADC) metrology provides improved data relative to classical boiling point and volatility curve techniques. Using ADC metrology, data obtained from RP-1 and RP-2 fuels provides compositional variation information that is directly relevant to predictive modeling of fuel performance. Often, in such studies, one-dimensional gas chromatography (GC) combined with mass spectrometry (MS) is typically employed to provide chemical composition information. Building on approaches using GC-MS, but to glean substantially more chemical composition information from these complex fuels, we have recently studied the use of comprehensive two dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC - TOFMS) to provide chemical composition data that is significantly richer than that provided by GC-MS methods. In this report, by applying multivariate data analysis techniques, referred to as chemometrics, we are able to readily model (correlate) the chemical compositional information from RP-1 and RP-2 fuels provided using GC × GC - TOFMS, to the fuel property information such as that provided by the ADC method and other specification properties. We anticipate that this new chemical analysis strategy will have broad implications for the development of high fidelity composition-property models, leading to an optimized approach to fuel formulation and specification for advanced engine cycles.

  10. Mexico City Aerosol Analysis During Milagro Using High Resolution Aerosol Mass Spectrometry at the Urban Supersite (T0) - Part 1: Fine Particle Composition and Organic Source Apportionment.

    E-Print Network [OSTI]

    Aiken, A. C.

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive ...

  11. Penning-trap mass spectrometry of highly charged, neutron-rich Rb and Sr isotopes in the vicinity of $A\\approx100$

    E-Print Network [OSTI]

    V. V. Simon; T. Brunner; U. Chowdhury; B. Eberhardt; S. Ettenauer; A. T. Gallant; E. Mané; M. C. Simon; P. Delheij; M. R. Pearson; G. Audi; G. Gwinner; D. Lunney; H. Schatz; J. Dilling

    2012-05-29

    The neutron-rich mass region around $A\\approx100$ presents challenges for modeling the astrophysical $r$-process because of rapid shape transitions. We report on mass measurements using the TITAN Penning trap at TRIUMF-ISAC to attain more reliable theoretical predictions of $r$-process nucleosynthesis paths in this region. A new approach using highly charged ($q=15+$) ions has been applied which considerably saves measurement time and preserves accuracy. New mass measurements of neutron-rich $^{94,97,98}$Rb and $^{94,97-99}$Sr have uncertainties of less than 4 keV and show deviations of up to 11$\\sigma$ to previous measurements. An analysis using a parameterized $r$-process model is performed and shows that mass uncertainties for the A=90 abundance region are eliminated.

  12. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M. (Albuquerque, NM); Shul, Randy J. (Albuquerque, NM); Polosky, Marc A. (Albuquerque, NM); Hoke, Darren A. (Albuquerque, NM); Vernon, George E. (Rio Rancho, NM)

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  13. Characterization of Ambient Aerosols in Mexico City during the MCMA-2003 Campaign with Aerosol Mass Spectrometry. Results from the CENICA Supersite

    SciTech Connect (OSTI)

    Salcedo, D.; Onasch, Timothy B.; Dzepina, K.; Canagaratna, M. R.; Zhang, Q.; Huffman, A. J.; DeCarlo, Peter; Jayne, J. T.; Mortimer, P.; Worsnop, Douglas R.; Kolb, C. E.; Johnson, Kirsten S.; Zuberi, Bilal M.; Marr, L.; Volkamer, Rainer M.; Molina, Luisa; Molina, Mario J.; Cardenas, B.; Bernabe, R.; Marquez, C.; Gaffney, Jeffrey S.; Marley, Nancy A.; Laskin, Alexander; Shutthanandan, V.; Xie, YuLong; Brune, W. H.; Lesher, R.; Shirley, T.; Jiminez, J. L.

    2006-03-24

    An Aerodyne Aerosol Mass Spectrometer (AMS) was deployed at the CENICA Supersite, while another was deployed in the Aerodyne Mobile Laboratory (AML) during the Mexico City Metropolitan Area field study (MCMA-2003) from March 29-May 4, 2003 to investigate particle concentrations, sources, and processes. This is the first of a series of papers reporting the AMS results from this campaign. The AMS provides real time information on mass concentration and composition of the non-refractory species in particulate matter less than 1 ?m (NR PM1) with high time and size resolution. For the first time, we report field results from a beam width probe, which was used to study the shape and mixing state of the particles and to quantify potential losses of irregular particles due to beam broadening inside the AMS. Data from this probe show that no significant amount of irregular particles was lost due to excessive beam broadening. A comparison of the CENICA and AML AMSs measurements is presented, being the first published intercomparison between two quadrupole AMSs. The speciation, and mass concentrations reported by the two AMSs compared well. In order to account for the refractory material in the aerosol, we also present measurements of Black Carbon (BC) using an aethalometer and an estimate of the aerosol soil component obtained from PIXE analysis of filters. Comparisons of (AMS + BC + soil) mass concentration with other collocated particle instruments (a LASAIR Optical Particle Counter, a Tapered Element Oscillating Microbalance (TEOM) and a DustTrack Aerosol Monitor) are also presented. The comparisons show that the (AMS + BC + soil) mass concentration during MCMC-2003 is a good approximation to the total PM??? mass concentration.

  14. Novel two-step laser ablation and ionization mass spectrometry (2S-LAIMS) of actor-spectator ice layers: Probing chemical composition of D{sub 2}O ice beneath a H{sub 2}O ice layer

    SciTech Connect (OSTI)

    Yang, Rui Gudipati, Murthy S.

    2014-03-14

    In this work, we report for the first time successful analysis of organic aromatic analytes imbedded in D{sub 2}O ices by novel infrared (IR) laser ablation of a layered non-absorbing D{sub 2}O ice (spectator) containing the analytes and an ablation-active IR-absorbing H{sub 2}O ice layer (actor) without the analyte. With these studies we have opened up a new method for the in situ analysis of solids containing analytes when covered with an IR laser-absorbing layer that can be resonantly ablated. This soft ejection method takes advantage of the tenability of two-step infrared laser ablation and ultraviolet laser ionization mass spectrometry, previously demonstrated in this lab to study chemical reactions of polycyclic aromatic hydrocarbons (PAHs) in cryogenic ices. The IR laser pulse tuned to resonantly excite only the upper H{sub 2}O ice layer (actor) generates a shockwave upon impact. This shockwave penetrates the lower analyte-containing D{sub 2}O ice layer (spectator, a non-absorbing ice that cannot be ablated directly with the wavelength of the IR laser employed) and is reflected back, ejecting the contents of the D{sub 2}O layer into the vacuum where they are intersected by a UV laser for ionization and detection by a time-of-flight mass spectrometer. Thus, energy is transmitted from the laser-absorbing actor layer into the non-absorbing spectator layer resulting its ablation. We found that isotope cross-contamination between layers was negligible. We also did not see any evidence for thermal or collisional chemistry of PAH molecules with H{sub 2}O molecules in the shockwave. We call this “shockwave mediated surface resonance enhanced subsurface ablation” technique as “two-step laser ablation and ionization mass spectrometry of actor-spectator ice layers.” This method has its roots in the well-established MALDI (matrix assisted laser desorption and ionization) method. Our method offers more flexibility to optimize both the processes—ablation and ionization. This new technique can thus be potentially employed to undertake in situ analysis of materials imbedded in diverse media, such as cryogenic ices, biological samples, tissues, minerals, etc., by covered with an IR-absorbing laser ablation medium and study the chemical composition and reaction pathways of the analyte in its natural surroundings.

  15. Characterization of submicron particles influenced by mixed biogenic and anthropogenic emissions using high-resolution aerosol mass spectrometry: results from CARES

    SciTech Connect (OSTI)

    Setyan, Ari; Zhang, Qi; Merkel, M.; Knighton, Walter B.; Sun, Y.; Song, Chen; Shilling, John E.; Onasch, Timothy B.; Herndon, Scott C.; Worsnop, Douglas R.; Fast, Jerome D.; Zaveri, Rahul A.; Berg, Larry K.; Wiedensohler, A.; Flowers, B. A.; Dubey, Manvendra K.; Subramanian, R.

    2012-09-11

    The Carbonaceous Aerosols and Radiative Effects Study (CARES) took place in the Sacramento Valley of California in summer 2010. We present results obtained at Cool, CA, the T1 site of the project ({approx}40 km downwind of urban emissions from Sacramento), where we deployed an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) in parallel with complementary instrumentation to characterize the sources and processes of submicron particles (PM1). Cool is located at the foothill of the Sierra Nevada Mountains, where intense biogenic emissions are periodically mixed with urban outflow transported by daytime southwesterly winds from the Sacramento metropolitan area. The particle mass loading was low (3.0 {micro}gm{sup -3} on average) and dominated by organics (80% of the PM1 mass) followed by sulfate (9.9 %). Organics and sulfate appeared to be externally mixed, as suggested by their different time series (r2 = 0.13) and size distributions. Sulfate showed a bimodal distribution with a droplet mode peaking at {approx}400nm in vacuum aerodynamic diameter (Dva), and a condensation mode at {approx}150 nm, while organics generally displayed a broad distribution in 60-600nm (Dva). New particle formation and growth events were observed almost every day, emphasizing the roles of organics and sulfate in new particle growth, especially that of organics. The organic aerosol (OA) had a nominal formula of C{sub 1}H{sub 1.38}N{sub 0.004}O{sub 0.44}, thus an average organic mass-to-carbon (OM/OC) ratio of 1.70. Two different oxygenated OA (OOA, 90% of total OA mass) and a hydrocarbon-like OA (HOA, 10 %) were identified by Positive matrix factorization (PMF) of the high resolution mass spectra. The more oxidized MO-OOA (O/C = 0.54) corresponded to secondary OA (SOA) primarily influenced by biogenic emissions, while the less oxidized LO-OOA (O/C = 0.42) corresponded to SOA associated with urban transport. The HOA factor corresponded to primary emissions mainly due to local traffic. Twenty three periods of urban plumes from T0 (Sacramento) to T1 (Cool) were identified using the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem). The average PM1 mass loading was much higher in urban plumes (3.9 {micro}gm{sup -3}) than in air masses dominated by biogenic SOA (1.8 {micro}gm{sup -3}). The change in OA mass relative to CO ({Delta}OA/{Delta}CO) varied in the range of 5-196 {micro}gm{sup -3} ppm{sup -1}, reflecting large variability in SOA production. The highest {Delta}OA/{Delta}CO were reached when urban plumes arrived at Cool in the presence of a high concentration of biogenic volatile organic compounds (BVOCs=isoprene+monoterpenes+2-methyl-3-buten-2- ol [MBO]+methyl chavicol). This ratio, which was 77 {micro}gm{sup -3} ppm{sup -1} on average when BVOCs > 2 ppb, is much higher than when urban plumes arrived in a low biogenic VOCs environment (28 {micro}gm{sup -3} ppm{sup -1} when BVOCs < 0.7 ppb) or during other periods dominated by biogenic SOA (40 {micro}gm{sup -3} ppm{sup -1}). The results from this study demon10 strate that SOA formation is enhanced when anthropogenic emissions interact with biogenic precursors.

  16. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, Michel G. (Los Alamos, NM)

    1997-01-01

    A mass spectrometer and methods for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector.

  17. Compact mass spectrometer for plasma discharge ion analysis

    DOE Patents [OSTI]

    Tuszewski, M.G.

    1997-07-22

    A mass spectrometer and methods are disclosed for mass spectrometry which are useful in characterizing a plasma. This mass spectrometer for determining type and quantity of ions present in a plasma is simple, compact, and inexpensive. It accomplishes mass analysis in a single step, rather than the usual two-step process comprised of ion extraction followed by mass filtering. Ions are captured by a measuring element placed in a plasma and accelerated by a known applied voltage. Captured ions are bent into near-circular orbits by a magnetic field such that they strike a collector, producing an electric current. Ion orbits vary with applied voltage and proton mass ratio of the ions, so that ion species may be identified. Current flow provides an indication of quantity of ions striking the collector. 7 figs.

  18. Impurity Profiling of a Chemical Weapon Precursor for Possible Forensic Signatures by Comprehensive Two-Dimensional Gas Chromatography/Mass Spectrometry and Chemometrics

    SciTech Connect (OSTI)

    Hoggard, Jamin C.; Wahl, Jon H.; Synovec, Robert E.; Mong, Gary M.; Fraga, Carlos G.

    2010-01-15

    In this work we present the feasibility of using analytical chemical and chemometric methodologies to reveal and exploit the organic impurity profiles from commercial dimethyl methylphosphonate (DMMP) samples to illustrate the type of forensic information that may be obtained from chemical-attack evidence. Using DMMP as a model compound for a toxicant that may be used in a chemical attack, we used comprehensive two-dimensional gas chromatography mass spectrometric detection (GC × GC-TOFMS) to detect and identify trace organic impurities in six samples of commercially acquired DMMP. The GC x GC-TOFMS data were analyzed to produce impurity profiles for all six DMMP samples using 29 analyte impurities. The use of PARAFAC for the mathematical resolution of overlap GC x GC peaks ensured clean spectra for the identification of many of the detected analytes by spectral library matching. The use of statistical pairwise comparison revealed that there were trace impurities that were quantitatively similar and different among five of the six DMMP samples. Two of the DMMP samples were revealed to have identical impurity profiles by this approach. The use of nonnegative matrix factorization proved that there were five distinct DMMP sample types as illustrated by the clustering of the multiple DMMP analyses into 5 distinct clusters in the scores plots. The two indistinguishable DMMP samples were confirmed by their chemical supplier to be from the same bulk source. Sample information from the other chemical suppliers supported that the other five DMMP samples were likely from different bulk sources. These results demonstrate that the matching of synthesized products from the same source is possible using impurity profiling. In addition, the identified impurities common to all six DMMP samples provide strong evidence that basic route information can be obtained from impurity profiles. In addition, impurities that may be unique to the sole bulk manufacturer of DMMP were found in some of the DMMP samples.

  19. Ion Mobility Spectrometer / Mass Spectrometer (IMS-MS).

    SciTech Connect (OSTI)

    Hunka, Deborah E; Austin, Daniel

    2005-10-01

    The use of Ion Mobility Spectrometry (IMS)in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection systems such as the Hound and Hound II (all 6400), micro-IMS sensors (1700), ordnance detection (2500), and Fourier Transform IMS technology (8700). The emphasis to date has been on explosives detection, but the detection of chemical agents has also been pursued (8100 and 6400).Combining Ion Mobility Spectrometry (IMS) with Mass Spectrometry (MS)The IMS-MS combination overcomes several limitations present in simple IMS systems. Ion mobility alone is insufficient to identify an unknown chemical agent. Collision cross section, upon which mobility is based, is not sufficiently unique or predictable a priori to be able to make a confident peak assignment unless the compounds present are already identified. Molecular mass, on the other hand, is much more readily interpreted and related to compounds. For a given compound, the molecular mass can be determined using a pocket calculator (or in one's head) while a reasonable value of the cross-section might require hours of computation time. Thus a mass spectrum provides chemical specificity and identity not accessible in the mobility spectrum alone. In addition, several advanced mass spectrometric methods, such as tandem MS, have been extensively developed for the purpose of molecular identification. With an appropriate mass spectrometer connected to an ion mobility spectrometer, these advanced identification methods become available, providing greater characterization capability.3 AcronymsIMSion mobility spectrometryMAAMaterial Access AreaMSmass spectrometryoaTOForthogonal acceleration time-of-flightTOFtime-of-flight4

  20. Improvements to Laser Ablation-Inductively Coupled Plasma-Mass...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry for Quantitative Analysis using Short Pulse UV Laser DESCRIPTION: Laser ablation inductively coupled plasma-mass...

  1. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  2. Universal collisional activation ion trap mass spectrometry

    DOE Patents [OSTI]

    McLuckey, Scott A. (Oak Ridge, TN); Goeringer, Douglas E. (Oak Ridge, TN); Glish, Gary L. (Oak Ridge, TN)

    1993-01-01

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  3. Signatures for Mass Spectrometry Data Quality

    SciTech Connect (OSTI)

    Amidan, Brett G.; Orton, Daniel J.; Lamarche, Brian L.; Monroe, Matthew E.; Moore, Ronald J.; Venzin, Alexander M.; Smith, Richard D.; Sego, Landon H.; Tardiff, Mark F.; Payne, Samuel H.

    2014-03-10

    Ensuring data quality and proper instrument functionality is a prerequisite for scientific investigation. Manual validation for quality assurance is time consuming, expensive and subjective. Metrics for describing various features of LC-MS data have been developed to assist operators in discriminating poor (out of control) and good (in control) datasets. However, the wide variety of instrument specifications and LC-MS configurations precludes applying a simple range of acceptable values or cutoffs for such metrics. We explored a variety of statistical modeling approaches to predict the quality of LC-MS data. Using 1164 manually classified quality control (QC) LC-MS datasets, we fit logistic regression classification models to the QC data to predict whether a dataset is in or out of control. Model parameters were optimized by minimizing a loss function that accounts for the tradeoff between false positive and false negative errors. The optimal logistic regression classifier models detected bad data sets with high sensitivity (i.e. low false negative rate) while maintaining high specificity (i.e. controlling the false positive rate). As an example, predictions for Velos-Orbitrap instrumentation data had a sensitivity of 93.7% in detecting out of control datasets with a false positive rate of 8.3%. In comparison, we investigated the performance of several single metrics in predicting dataset quality. While maintaining a sensitivity of 93.7%, the corresponding false positive rates for these single-metric models unacceptably ranged from 32% to 97.7%. Finally, we evaluated the performance of the

  4. Universal collisional activation ion trap mass spectrometry

    DOE Patents [OSTI]

    McLuckey, S.A.; Goeringer, D.E.; Glish, G.L.

    1993-04-27

    A universal collisional activation ion trap comprises an ion trapping means containing a bath gas and having connected thereto a noise signal generator. A method of operating a universal collisional activation ion trap comprises the steps of: providing an ion trapping means; introducing into the ion trapping means a bath gas; and, generating a noise signal within the ion trapping means; introducing into the ion trapping means a substance that, when acted upon by the noise signal, undergoes collisional activation to form product ions.

  5. Multinozzle Emitter Arrays for Nanoelectrospray Mass Spectrometry

    E-Print Network [OSTI]

    Mao, Pan

    2012-01-01

    polytetrafluoroethylene (PTFE) tubing whose outer diameter (directed through a connecting PTFE tubing (i.d. ~ 75 ?m,silica capillaries via the PTFE tubing. (c), (d) SEM images

  6. Mapping Molecular Space with Mass Spectrometry /

    E-Print Network [OSTI]

    Nguyen, Don Duy

    2013-01-01

    L & Oliveira AC (2009) Microalgae as a raw material forP (2010) Biofuels from microalgae—A review of technologiesThe tide turns towards microalgae. Current research aims to

  7. High performance ²?²Cf plasma desorption mass spectrometry 

    E-Print Network [OSTI]

    McIntire, Thomas Shane

    1991-01-01

    spectmmeter that was designed around the central idea of an increased acceptance angle for fission fragments emitted by the 'Cf source. Use of the oblique angle fission fragments increased the flux of primary ions through the sample. More importantly... detector eliminated the need for a separate conversion foil and made use of the conversion electrons created as fission fragments passed through the cover foil of the ~'Cf source. This essentially eliminated the effect of the velocity distribution...

  8. MASS SPECTROMETRY WITH A VERY SMALL CYCLOTRON

    E-Print Network [OSTI]

    Muller, R.A.

    2010-01-01

    1977). 3. J.A. Hippie, H. Sommer, and H.A. Thomas, Phys.resolution. "Omegatron" of Sommer, Thomas, and Hippie Smith

  9. Author's personal copy Ambient mass spectrometry

    E-Print Network [OSTI]

    Vertes, Akos

    vacuum- based and atmospheric pressure (AP) ion sources to the forefront of MS bioanalysis, and propelled translated sampling and ion generation from vacuum to AP while eliminating or Peter Nemes* Division of Chemistry and Materials Science, Office of Science and Engineering Laboratories, Food and Drug

  10. Nuclear Masses in Astrophysics

    E-Print Network [OSTI]

    Christine Weber; Klaus Blaum; Hendrik Schatz

    2008-12-09

    Among all nuclear ground-state properties, atomic masses are highly specific for each particular combination of N and Z and the data obtained apply to a variety of physics topics. One of the most crucial questions to be addressed in mass spectrometry of unstable radionuclides is the one of understanding the processes of element formation in the Universe. To this end, accurate atomic mass values of a large number of exotic nuclei participating in nucleosynthesis are among the key input data in large-scale reaction network calculations. In this paper, a review on the latest achievements in mass spectrometry for nuclear astrophysics is given.

  11. JOURNAL OF MASS SPECTROMETRY J. Mass Spectrom. 2008; 43: 10531062

    E-Print Network [OSTI]

    Hammock, Bruce D.

    of dioxin analogs contain- ing a rigid propenoic acid side chain were synthesized for coupling the hapten-(3,7,8-trichlorodibenzo-p- dioxin-2-yl)propenoate, giving a fragment of m/z 349. A literature search showed that this type

  12. Accelerators and the Accelerator Community

    E-Print Network [OSTI]

    Malamud, Ernest

    2009-01-01

    became the APS Division of the Physics of Beams. If oneorganizes accelerator physics sessions at APS meetings, and,creating the APS topical group on beam physics, which later

  13. Accelerator Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating theAccelerator

  14. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge KiosksAbout UsAbout NewAccelerator Systems Accelerator

  15. Heavy ion medical accelerator options

    SciTech Connect (OSTI)

    Gough, R.A.; Alonso, J.R.

    1985-01-01

    This paper briefly explores the accelerator technology available for heavy ion medical accelerators in the mass range of 1 to 40 (protons through argon). Machines that are designed to produce the required intensities of a particular design ion, such as silicon (mass 28), can satisfy the intensity requirements for all lighter ions, and can produce beams with higher mass, such as argon, at somewhat reduced, but still useful intensity levels. They can also provide beams of radioactive ions, such as carbon-11 and neon-19, which are useful in diagnostic imaging and for directly verifiable treatments. These accelerators are all based on proven technology, and can be built at predictable costs. It is the conclusion of several design studies that they can be operated reliably in a hospital-based environment. 8 refs., 22 figs.

  16. Compact accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Sampayan, Stephen E. (Manteca, CA); Kirbie, Hugh C. (Los Alamos, NM)

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  17. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  18. Review of ion accelerators

    SciTech Connect (OSTI)

    Alonso, J.

    1990-06-01

    The field of ion acceleration to higher energies has grown rapidly in the last years. Many new facilities as well as substantial upgrades of existing facilities have extended the mass and energy range of available beams. Perhaps more significant for the long-term development of the field has been the expansion in the applications of these beams, and the building of facilities dedicated to areas outside of nuclear physics. This review will cover many of these new developments. Emphasis will be placed on accelerators with final energies above 50 MeV/amu. Facilities such as superconducting cyclotrons and storage rings are adequately covered in other review papers, and so will not be covered here.

  19. Accelerators and the Accelerator Community

    SciTech Connect (OSTI)

    Malamud, Ernest; Sessler, Andrew

    2008-06-01

    In this paper, standing back--looking from afar--and adopting a historical perspective, the field of accelerator science is examined. How it grew, what are the forces that made it what it is, where it is now, and what it is likely to be in the future are the subjects explored. Clearly, a great deal of personal opinion is invoked in this process.

  20. Peculiar acceleration

    E-Print Network [OSTI]

    Luca Amendola; Claudia Quercellini; Amedeo Balbi

    2007-08-08

    It has been proposed recently to observe the change in cosmological redshift of distant galaxies or quasars with the next generation of large telescope and ultra-stable spectrographs (the so-called Sandage-Loeb test). Here we investigate the possibility of observing the change in peculiar velocity in nearby clusters and galaxies. This ``peculiar acceleration'' could help reconstructing the gravitational potential without assuming virialization. We show that the expected effect is of the same order of magnitude of the cosmological velocity shift. Finally, we discuss how to convert the theoretical predictions into quantities directly related to observations.

  1. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating the transfer

  2. Future HEP Accelerators: The US Perspective

    E-Print Network [OSTI]

    Bhat, Pushpalatha

    2015-01-01

    Accelerator technology has advanced tremendously since the introduction of accelerators in the 1930s, and particle accelerators have become indispensable instruments in high energy physics (HEP) research to probe Nature at smaller and smaller distances. At present, accelerator facilities can be classified into Energy Frontier colliders that enable direct discoveries and studies of high mass scale particles and Intensity Frontier accelerators for exploration of extremely rare processes, usually at relatively low energies. The near term strategies of the global energy frontier particle physics community are centered on fully exploiting the physics potential of the Large Hadron Collider (LHC) at CERN through its high-luminosity upgrade (HL-LHC), while the intensity frontier HEP research is focused on studies of neutrinos at the MW-scale beam power accelerator facilities, such as Fermilab Main Injector with the planned PIP-II SRF linac project. A number of next generation accelerator facilities have been proposed...

  3. Laser Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity, and Matrix Effects

    E-Print Network [OSTI]

    Zare, Richard N.

    Laser Desorption Single-Photon Ionization of Asphaltenes: Mass Range, Compound Sensitivity and flow assurance. Laser desorption single-photon ionization mass spectrometry (LDSPI-MS) has emerged, such as their molecular mass distribution and dominant molecular architecture.1,6-11 Laser mass spectrometry, including

  4. Chemical Accelerators The phrase "chemical accelerators"

    E-Print Network [OSTI]

    Meetings Chemical Accelerators The phrase "chemical accelerators" is scarcely older than for one or two dozen people grew to include nearly a hundred. Chemical accelerators is a name sug- gested by one of us for devices that produce beams of chemically interesting species at relative kinetic

  5. A 2 MV Van de Graaff accelerator as a tool for planetary and impact physics research

    SciTech Connect (OSTI)

    Mocker, Anna; Bugiel, Sebastian; Srama, Ralf [IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Auer, Siegfried [A and M Associates, PO Box 421, Basye, Virginia 22810 (United States); Baust, Guenter; Matt, Guenter; Otto, Katharina [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Colette, Andrew; Drake, Keith; Kempf, Sascha; Munsat, Tobin; Shu, Anthony; Sternovsky, Zoltan [LASP, University of Colorado, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Colorado Center for Lunar Dust and Atmospheric Studies, University of Colorado, Boulder, Colorado 80303 (United States); Fiege, Katherina; Postberg, Frank [Institut fuer Geowissenschaften, Universitaet Heidelberg, D-69120 Stuttgart (Germany); MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Gruen, Eberhard [MPI fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany); LASP, University of Colorado, 1234 Innovation Drive, Boulder, Colorado 80303 (United States); Heckmann, Frieder [Steinbeis-Innovationszentrum Raumfahrt, Gaeufelden (Germany); Helfert, Stefan [Helfert Informatik, Mannheim (Germany); Hillier, Jonathan [Institut fuer Geowissenschaften, Universitaet Heidelberg, D-69120 Stuttgart (Germany); Mellert, Tobias [IRS, Universitaet Stuttgart, Pfaffenwaldring 31, D-70569 Stuttgart (Germany); and others

    2011-09-15

    Investigating the dynamical and physical properties of cosmic dust can reveal a great deal of information about both the dust and its many sources. Over recent years, several spacecraft (e.g., Cassini, Stardust, Galileo, and Ulysses) have successfully characterised interstellar, interplanetary, and circumplanetary dust using a variety of techniques, including in situ analyses and sample return. Charge, mass, and velocity measurements of the dust are performed either directly (induced charge signals) or indirectly (mass and velocity from impact ionisation signals or crater morphology) and constrain the dynamical parameters of the dust grains. Dust compositional information may be obtained via either time-of-flight mass spectrometry of the impact plasma or direct sample return. The accurate and reliable interpretation of collected spacecraft data requires a comprehensive programme of terrestrial instrument calibration. This process involves accelerating suitable solar system analogue dust particles to hypervelocity speeds in the laboratory, an activity performed at the Max Planck Institut fuer Kernphysik in Heidelberg, Germany. Here, a 2 MV Van de Graaff accelerator electrostatically accelerates charged micron and submicron-sized dust particles to speeds up to 80 km s{sup -1}. Recent advances in dust production and processing have allowed solar system analogue dust particles (silicates and other minerals) to be coated with a thin conductive shell, enabling them to be charged and accelerated. Refinements and upgrades to the beam line instrumentation and electronics now allow for the reliable selection of particles at velocities of 1-80 km s{sup -1} and with diameters of between 0.05 {mu}m and 5 {mu}m. This ability to select particles for subsequent impact studies based on their charges, masses, or velocities is provided by a particle selection unit (PSU). The PSU contains a field programmable gate array, capable of monitoring in real time the particles' speeds and charges, and is controlled remotely by a custom, platform independent, software package. The new control instrumentation and electronics, together with the wide range of accelerable particle types, allow the controlled investigation of hypervelocity impact phenomena across a hitherto unobtainable range of impact parameters.

  6. X-ray spectrometry

    SciTech Connect (OSTI)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-04-01

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references.

  7. Naked singularities as particle accelerators

    E-Print Network [OSTI]

    Mandar Patil; Pankaj S. Joshi

    2010-11-25

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  8. Naked singularities as particle accelerators

    SciTech Connect (OSTI)

    Patil, Mandar; Joshi, Pankaj S.

    2010-11-15

    We investigate here the particle acceleration by naked singularities to arbitrarily high center of mass energies. Recently it has been suggested that black holes could be used as particle accelerators to probe the Planck scale physics. We show that the naked singularities serve the same purpose and probably would do better than their black hole counterparts. We focus on the scenario of a self-similar gravitational collapse starting from a regular initial data, leading to the formation of a globally naked singularity. It is seen that when particles moving along timelike geodesics interact and collide near the Cauchy horizon, the energy of collision in the center of mass frame will be arbitrarily high, thus offering a window to Planck scale physics.

  9. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  10. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  11. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  12. Decoherence in an accelerated universe

    E-Print Network [OSTI]

    S. Robles-Perez; A. Alonso-Serrano; P. F. Gonzalez-Diaz

    2011-11-14

    In this paper we study the decoherence processes of the semiclassical branches of an accelerated universe due to their interaction with a scalar field with given mass. We use a third quantization formalism to analyze the decoherence between two branches of a parent universe caused by their interaction with the vaccum fluctuations of the space-time, and with other parent unverses in a multiverse scenario.

  13. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  14. Mexico city aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 2: Analysis of the biomass burning contribution and the non-fossil carbon fraction

    SciTech Connect (OSTI)

    Aiken, A.C.; Wang, J.; de Foy, B.; Wiedinmyer, C.; DeCarlo, P. F.; Ulbrich, I. M.; Wehrli, M. N.; Szidat, S.; Prevot, A. S. H.; Noda, J.; Wacker, L.; Volkamer, R.; Fortner, E.; Laskin, A.; Shutthanandan, V.; Zheng, J.; Zhang, R.; Paredes-Miranda, G.; Arnott, W. P.; Molina, L. T.; Sosa, G.; Querol, X.; Jimenez, J. L.

    2010-06-16

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Aerosol Mass Spectrometer (AMS) and complementary instrumentation. Positive Matrix Factorization (PMF) of high resolution AMS spectra identified a biomass burning organic aerosol (BBOA) component, which includes several large plumes that appear to be from forest fires within the region. Here, we show that the AMS BBOA concentration at T0 correlates with fire counts in the vicinity of Mexico City and that most of the BBOA variability is captured when the FLEXPART model is used for the dispersion of fire emissions as estimated from satellite fire counts. The resulting FLEXPART fire impact factor (FIF) correlates well with the observed BBOA, acetonitrile (CH3CN), levoglucosan, and potassium, indicating that wildfires in the region surrounding Mexico City are the dominant source of BBOA at T0 during MILAGRO. The impact of distant BB sources such as the Yucatan is small during this period. All fire tracers are correlated, with BBOA and levoglucosan showing little background, acetonitrile having a well-known tropospheric background of {approx}100-150 pptv, and PM2.5 potassium having a background of {approx}160 ng m3 (two-thirds of its average concentration), which does not appear to be related to BB sources. We define two high fire periods based on satellite fire counts and FLEXPART-predicted FIFs. We then compare these periods with a low fire period when the impact of regional fires is about a factor of 5 smaller. Fire tracers are very elevated in the high fire periods whereas tracers of urban pollution do not change between these periods. Dust is also elevated during the high BB period but this appears to be coincidental due to the drier conditions and not driven by direct dust emission from the fires. The AMS oxygenated organic aerosol (OA) factor (OOA, mostly secondary OA or SOA) does not show an increase during the fire periods or a correlation with fire counts, FLEXPART-predicted FIFs or fire tracers, indicating that it is dominated by urban and/or regional sources and not by the fires near the MCMA. A new 14C aerosol dataset is presented. Both this new and a previously published dataset of 14C analysis suggest a similar BBOA contribution as the AMS and chemical mass balance (CMB), resulting in 13% higher non-fossil carbon during the high vs. low regional fire periods. The new dataset has {approx}15% more fossil carbon on average than the previously published one, and possible reasons for this discrepancy are discussed. During the low regional fire period, 38% of organic carbon (OC) and 28% total carbon (TC) are from non-fossil sources, suggesting the importance of urban and regional non-fossil carbon sources other than the fires, such as food cooking and regional biogenic SOA. The ambient BBOA/CH3CN ratio is much higher in the afternoon when the wildfires are most intense than during the rest of the day. Also, there are large differences in the contributions of the different OA components to the surface concentrations vs. the integrated column amounts. Both facts may explain some apparent disagreements between BB impacts estimated from afternoon aircraft flights vs. those from 24-h ground measurements. We show that by properly accounting for the non-BB sources of K, all of the BB PM estimates from MILAGRO can be reconciled. Overall, the fires from the region near the MCMA are estimated to contribute 15-23% of the OA and 7-9% of the fine PM at T0 during MILAGRO, and 2-3% of the fine PM as an annual average. The 2006 MCMA emissions inventory contains a substantially lower impact of the forest fire emissions, although a fraction of these emissions occur just outside of the MCMA inventory area.

  15. Accelerator Development @ Daresbury Laboratory

    E-Print Network [OSTI]

    -injectors ­ Superconducting RF acceleration ­ Cryogenic systems ­ Advanced diagnostics ­ Free Electron Lasers ­ Photon beam radioisotopes. 2 Treatment & Diagnostics #12;Basic Accelerator Configuration 3 Beam Source Low Energy Capture electron beam technology development. 4 Booster Compressor IR-FEL Photoinjector Laser Linac Acceleration

  16. High-energy accelerator for beams of heavy ions

    DOE Patents [OSTI]

    Martin, Ronald L. (La Grange, IL); Arnold, Richard C. (Chicago, IL)

    1978-01-01

    An apparatus for accelerating heavy ions to high energies and directing the accelerated ions at a target comprises a source of singly ionized heavy ions of an element or compound of greater than 100 atomic mass units, means for accelerating the heavy ions, a storage ring for accumulating the accelerated heavy ions and switching means for switching the heavy ions from the storage ring to strike a target substantially simultaneously from a plurality of directions. In a particular embodiment the heavy ion that is accelerated is singly ionized hydrogen iodide. After acceleration, if the beam is of molecular ions, the ions are dissociated to leave an accelerated singly ionized atomic ion in a beam. Extraction of the beam may be accomplished by stripping all the electrons from the atomic ion to switch the beam from the storage ring by bending it in magnetic field of the storage ring.

  17. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Shah, Kushal; Rom-Kedar, Vered; Turaev, Dmitry

    2015-01-01

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  18. Leaky Fermi accelerators

    E-Print Network [OSTI]

    Kushal Shah; Vassili Gelfreich; Vered Rom-Kedar; Dmitry Turaev

    2015-04-03

    A Fermi accelerator is a billiard with oscillating walls. A leaky accelerator interacts with an environment of an ideal gas at equilibrium by exchange of particles through a small hole on its boundary. Such interaction may heat the gas: we estimate the net energy flow through the hole under the assumption that the particles inside the billiard do not collide with each other and remain in the accelerator for sufficiently long time. The heat production is found to depend strongly on the type of the Fermi accelerator. An ergodic accelerator, i.e. one which has a single ergodic component, produces a weaker energy flow than a multi-component accelerator. Specifically, in the ergodic case the energy gain is independent of the hole size, whereas in the multi-component case the energy flow may be significantly increased by shrinking the hole size.

  19. Mass spectrometry on bio-renewable fuels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology, chemical processes involved in the production of bio-oils, and how analytical chemistry can help in developing sustainable technology. ii) They will study...

  20. Mass Spectrometry and Density Functional Theory Characterizations of DNA Modifications

    E-Print Network [OSTI]

    Williams, Renee Therese

    2012-01-01

    intrinsic reaction coordinate (IRC) methods. Energy maximafound, optimization QST IRC R P LST Figure 1.3 Illustrationreaction coordinate (IRC) methods, where R represents the

  1. Mass Spectrometry and Density Functional Theory Characterizations of DNA Modifications

    E-Print Network [OSTI]

    Williams, Renee Therese

    2012-01-01

    Containing 1,2-GpG, 1,2-ApG, and 1,3-GpXpG CisplatinODNs) containing a 1,2-GpG, 1,2-ApG, or 1,3-GpXpG cisplatinODNs containing a 1,2-GpG, 1,2-ApG or 1,3-GpXpG intrastrand

  2. MASS SPECTROMETRY-BASED METABOLOMICS Katja Dettmer,1

    E-Print Network [OSTI]

    Hammock, Bruce D.

    the bibliographic search containing the words metabolomics, metabonomics, and proteo- mics in Chemical Abstracts arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical

  3. Computational tools for analysis of mass spectrometry imaging data

    E-Print Network [OSTI]

    Bruand, Jocelyne

    2012-01-01

    Proteome Res. , vol. 10, pp. 4734– 4743, Oct 2011. [83] E.J Proteome Res 10(10):4734-43. Deblasio D, Bruand J, ZhangV. J Proteome Res 10(10): 4734-43. 2011. The dissertation

  4. Algorithms for tandem mass spectrometry-based proteomics

    E-Print Network [OSTI]

    Frank, Ari Michael

    2008-01-01

    4. MS-Clustering Algorithm . . . . . . . . . . C.De Novo Sequencing Algorithm . . . . . . C. Experimental2. The RankBoost Algorithm (Freund et al. , 2003) B.

  5. Deuterium exchange mass spectrometry studies of the phospholipase A? superfamily

    E-Print Network [OSTI]

    Burke, John Edmund

    2008-01-01

    Huang, M. R. Taheri, E. O'Leary, E. Li, M. A. Moskowitz, andHuang, M. R. Taheri, E. O'Leary, E. Li, M. A. Moskowitz, andHuang, M. R. Taheri, E. O'Leary, E. Li, M. A. Moskowitz, and

  6. Isoelectric Trapping and Mass Spectrometry: Tools for Proteomics 

    E-Print Network [OSTI]

    Cologna, Stephanie Marie

    2012-02-14

    Electrolyzer viii IPG Immobilized pH Gradient CID Collision Induced Dissociation ix TABLE OF CONTENTS Page ABSTRACT... ......................................................................................................................... 198 xi LIST OF FIGURES Page Figure 1. General schematic of a typical multicompartment electrolyzer...

  7. Department and Waters Corporation Host Symposium on Biological Mass Spectrometry

    E-Print Network [OSTI]

    Simons, Jack

    are grateful to the ongoing support of Ron and Eileen Ragsdale, as well as so many other friends as a flagship department at the University of Utah. Cynthia J. Burrows Distinguished Professor and Chair ThatcherPresidentialEndowedChairofBiologicalChemistry Dear Chemistry Friends and Families, Support

  8. Plasma desorption mass spectrometry of organics at low temperatures 

    E-Print Network [OSTI]

    Shirey, Eldon Lynn

    1993-01-01

    The desorption/ionization of volatile hydrocarbons by Plasma Desorption (PD) produces a series of molecular ions. Among these are deprotonated molecular ions, which are not usually observed in PD. The H-loss phenomenon was examined as a function...

  9. Investigation of Metalloproteins Utilizing High Resolution Mass Spectrometry 

    E-Print Network [OSTI]

    Wu, Zhaoxiang

    2011-08-08

    Copper ions (Cu?, Cu²?) play important roles in many biological processes (i.e., oxidation, dioxygen transport, and electron transfer); many of the functions in these processes result from copper ions interacting with proteins and peptides. Previous...

  10. Investigating Microbial Metabolites with Novel Mass Spectrometry Tools /

    E-Print Network [OSTI]

    Yang, Jane Youngmi

    2013-01-01

    process of a Bacillus probiotics. Abstracts of the GeneralBacillus has been used as probiotics, 10, 11 in agriculture,

  11. Evaluation of Hypervelocity Gold Nanoparticles for Nanovolume Surface Mass Spectrometry 

    E-Print Network [OSTI]

    DeBord, John 1986-

    2012-08-16

    Impacts of high kinetic energy massive gold clusters (~ 500 keV Au400+4) exhibit significantly enhanced secondary ion yields relative to traditional atomic or polyatomic primary ions (e.g. Au3 and C60). The one-of-a-kind instrument used to generate...

  12. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOE Patents [OSTI]

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms the gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.

  13. Automated Surface Sampling Probe for Mass Spectrometry - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsiclouddenDVA N C E D B L O O DBiomass andAtoms forPARAMETERPortal Advanced Materials

  14. SAMDI Mass Spectrometry for High Throughput Discovery of Enzyme Function |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput Analysis of Protein StructuresMaintenance /

  15. Giga-Dalton Mass Spectrometry - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-Dose Low LETUseful Links UsefulPhosphor fortokamaks

  16. Open MSI : a Mass Spectrometry Imaging Science Gateway

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHowScientificOmbuds OfficeOneFasterdataOpen MSI Open MSI

  17. Mass Spectrometry imaging of plant metabolites | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would

  18. Power Converters for Accelerators

    E-Print Network [OSTI]

    Visintini, R

    2015-01-01

    Particle accelerators use a great variety of power converters for energizing their sub-systems; while the total number of power converters usually depends on the size of the accelerator or combination of accelerators (including the experimental setup), the characteristics of power converters depend on their loads and on the particle physics requirements: this paper aims to provide an overview of the magnet power converters in use in several facilities worldwide.

  19. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  20. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S. (Los Alamos, NM); Sheffield, Richard L. (Los Alamos, NM)

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  1. From Autos to Accelerators

    Office of Energy Efficiency and Renewable Energy (EERE)

    In a town haunted by the remains of fallen automobile plants, some companies are hiring workers to put their car-manufacturing skills toward building particle accelerators.

  2. Accelerating Majorization Algorithms

    E-Print Network [OSTI]

    Jan de Leeuw

    2011-01-01

    incomplete data via the em algorithm. Journal of the RoyalACCELERATING MAJORIZATION ALGORITHMS JAN DE LEEUW Abstract.construc- tion of majorization algorithms and their rate of

  3. Accelerating Majorization Algorithms

    E-Print Network [OSTI]

    Leeuw, Jan de

    2008-01-01

    incomplete data via the em algorithm. Journal of the RoyalACCELERATING MAJORIZATION ALGORITHMS JAN DE LEEUW Abstract.construc- tion of majorization algorithms and their rate of

  4. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  5. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  6. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a 3D virtualization company, enabling the use of 3D virtualization in art and cultural preservation markets. LAVA Chief Operations Officer Steve Smith said the "acceleration"...

  7. Chemical oxidation of tryptic digests to improve sequence coverage in peptide mass fingerprint protein identification 

    E-Print Network [OSTI]

    Lucas, Jessica Elaine

    2004-09-30

    Peptide mass fingerprinting (PMF) of protein digests is a widely-accepted method for protein identification in MS-based proteomic studies. Matrix-assisted laser desorption/ionization mass spectrometry (MALDI) is the technique of choice in PMF...

  8. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  9. International Journal of Mass Spectrometry 226 (2003) 135 Matrix-assisted laser desorption/ionization mass spectrometry

    E-Print Network [OSTI]

    2003-01-01

    , electrospray ionization; FAB, fast atom bom- bardment; Frc, fructose; FT, Fourier transform; Fuc, fucose; FWHM-assisted laser desorption/ ionization; Man, mannose; PAGE, polyacrylamide gel electropho- resis; PD, plasma

  10. The History of Nuclidic Masses and of their Evaluation

    E-Print Network [OSTI]

    G. Audi

    2006-02-08

    This paper is centered on some historical aspects of nuclear masses, and their relations to major discoveries. Besides nuclear reactions and decays, the heart of mass measurements lies in mass spectrometry, the early history of which will be reviewed first. I shall then give a short history of the mass unit which has not always been defined as one twelfth of the carbon-12 mass. When combining inertial masses from mass spectrometry with energy differences obtained in reactions and decays, the conversion factor between the two is essential. The history of the evaluation of the nuclear masses (actually atomic masses) is only slightly younger than that of the mass measurements themselves. In their modern form, mass evaluations can be traced back to 1955. Prior to 1955, several tables were established, the oldest one in 1935.

  11. Accelerators (5/5)

    SciTech Connect (OSTI)

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  12. Accelerators (4/5)

    SciTech Connect (OSTI)

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  13. Accelerators (3/5)

    SciTech Connect (OSTI)

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Accelerators (3/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  15. Accelerators (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  16. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A. (Albuquerque, NM); Plummer, David W. (Albuquerque, NM)

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  17. Accelerators (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  18. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  19. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  20. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  1. Accelerated Quantum Dynamics

    E-Print Network [OSTI]

    Lynch, Morgan H

    2015-01-01

    In this paper we establish a formalism for the computation of observables due to acceleration-induced particle physics processes. General expressions for the transition rate, multiplicity, power, spectra, and displacement law of particles undergoing time-dependent acceleration and transitioning into a final state of arbitrary particle number are obtained. The transition rate, power, and spectra are characterised by unique polynomials of multiplicity and thermal distributions of both bosonic and fermionic statistics. The acceleration dependent multiplicity is computed in terms of the branching fractions of the associated inertial processes. The displacement law of the spectra predicts the energy of the emitted particles are directly proportional to the accelerated temperature. These results extend our understanding of particle physics into the high acceleration sector.

  2. Neutron spectrometry for UF6 enrichment verification in storage cylinders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principalmore »component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. The results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.« less

  3. Improving Alpha Spectrometry Energy Resolution by Ion Implantation with ICP-MS

    SciTech Connect (OSTI)

    Dion, Michael P.; Liezers, Martin; Farmer, Orville T.; Miller, Brian W.; Morley, Shannon M.; Barinaga, Charles J.; Eiden, Gregory C.

    2015-01-01

    We report results of a novel technique using an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) as a method of source preparation for alpha spectrometry. This method produced thin, contaminant free 241Am samples which yielded extraordinary energy resolution which appear to be at the lower limit of the detection technology used in this research.

  4. Lead Slowing-Down Spectrometry Analysis of Data from Measurements on Nuclear Fuel

    E-Print Network [OSTI]

    Danon, Yaron

    PR EPR IN T Lead Slowing-Down Spectrometry Analysis of Data from Measurements on Nuclear Fuel Glen://dx.doi.org/10.13182/NSE13-71 Abstract ­ Improved nondestructive assay of isotopic masses in used nuclear fuel, and reprocessing of used nuclear fuel. Our collaboration is examining the feasibility of using lead slowing

  5. The MESA accelerator

    SciTech Connect (OSTI)

    Aulenbacher, Kurt [Institut für Kernphysik, Johannnes-Gutenberg-Universität Mainz (Germany)

    2013-11-07

    The MESA accelerator will operate for particle and nuclear physics experiments in two different modes. A first option is conventional c.w. acceleration yielding 150-200MeV spin-polarized external beam. Second, MESA will be operated as a superconducting multi-turn energy recovery linac (ERL), opening the opportunity to perform experiments with a windowless target with beam current of up to 10 mA. The perspectives for innovative experiments with such a machine are discussed together with a sketch of the accelerator physics issues that have to be solved.

  6. Lead Slowing Down Spectrometry Analysis of Data from Measurements...

    Office of Scientific and Technical Information (OSTI)

    Lead Slowing Down Spectrometry Analysis of Data from Measurements on Nuclear Fuel Citation Details In-Document Search Title: Lead Slowing Down Spectrometry Analysis of Data from...

  7. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  8. About Accelerators | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laser, though powered by a smaller SRF accelerator, holds power records in the production of infrared, ultraviolet and terahertz beams. The FEL has been used in a variety of...

  9. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  10. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  11. LHCb GPU Acceleration Project

    E-Print Network [OSTI]

    Badalov, Alexey; Neufeld, Niko; Vilasis Cardona, Xavier

    2015-01-01

    The LHCb detector is due to be upgraded for processing high-luminosity collisions, which will increase the load on its computation infrastructure from 100 GB/s to 4 TB/s, encouraging us to look for new ways of accelerating the Online reconstruction. The Coprocessor Manager is our new framework for integrating LHCb’s existing computation pipelines with massively parallel algorithms running on GPUs and other accelerators. This paper describes the system and analyzes its performance.

  12. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  13. US/CERN LHC Accelerator Collaboration DESIGN REPORT

    E-Print Network [OSTI]

    Homes, Christopher C.

    RHIC-type cold mass in a cryostat. The D3 magnets will be built with two single aperture RHIC-type cold acceleration cavities for the two beams. The dipole magnets are designed with a common element: superconducting are designed with one RHIC-style cold mass in a cryostat and the D3 magnets are designed with two such cold

  14. Acceleration and Parallax Effects in Gravitational Microlensing

    E-Print Network [OSTI]

    M. C. Smith; S. Mao; B. Paczynski

    2003-01-27

    To generate the standard microlensing light curve one assumes that the relative motion of the source, the lens, and the observer is linear. In reality, the relative motion is likely to be more complicated due to accelerations of the observer, the lens and the source. The simplest approximation beyond the linear-motion assumption is to add a constant acceleration. Microlensing light curves due to accelerations can be symmetric or asymmetric depending on the angle between the acceleration and the velocity. We show that it is possible that some of the previously reported shorter marginal parallax events can be reproduced with constant-acceleration models, while the longer, multi-year parallax events are ill-fitted by such models. We find that there is a generic degeneracy inherent in constant-acceleration microlensing models. We also find that there is an equivalent degeneracy in parallax models, which manifests itself in short-duration events. The importance of this new parallax degeneracy is illustrated with an example, using one of these marginal parallax events. Our new analysis suggests that another of these previously suspected parallax candidate events may be exhibiting some weak binary-source signatures. If this turns out to be true, spectroscopic observations of the source could determine some parameters in the model and may also constrain or even determine the lens mass. We also point out that symmetric light curves with constant accelerations can mimic blended light curves, producing misleading Einstein-radius crossing time-scales when fitted by the standard `blended' microlensing model; this may have some effect on the estimation of optical depth.

  15. Radiation Damage: Accelerator Surprises

    E-Print Network [OSTI]

    McDonald, Kirk

    of this process. · Helium gas production adds, becoming increasingly important at high energies. · Graphite as material properties including its temperature. These dependencies ­ amplified by increased helium gas production for high-energy beams - are responsible for "surprises/unknowns" learned recently at accelerators

  16. Advanced Mass Spectrometric Methods for the Rapid and Quantitative Characterization of Proteomes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Smith, Richard D.

    2002-01-01

    Progress is reviewed towards the development of a global strategy that aims to extend the sensitivity, dynamic range, comprehensiveness and throughput of proteomic measurements based upon the use of high performance separations and mass spectrometry. The approach uses high accuracy mass measurements from Fourier transform ion cyclotron resonance mass spectrometry (FTICR) to validate peptide ‘accurate mass tags’ (AMTs) produced by global protein enzymatic digestions for a specific organism, tissue or cell type from ‘potential mass tags’ tentatively identified using conventional tandem mass spectrometry (MS/MS). This provides the basis for subsequent measurements without the need for MS/ MS. High resolutionmore »capillary liquid chromatography separations combined with high sensitivity, and high resolution accurate FTICR measurements are shown to be capable of characterizing peptide mixtures of more than 10 5 components. The strategy has been initially demonstrated using the microorganisms Saccharomyces cerevisiae and Deinococcus radiodurans. Advantages of the approach include the high confidence of protein identification, its broad proteome coverage, high sensitivity, and the capability for stableisotope labeling methods for precise relative protein abundance measurements. Abbreviations : LC, liquid chromatography; FTICR, Fourier transform ion cyclotron resonance; AMT, accurate mass tag; PMT, potential mass tag; MMA, mass measurement accuracy; MS, mass spectrometry; MS/MS, tandem mass spectrometry; ppm, parts per million. « less

  17. RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2005; 19: 287288

    E-Print Network [OSTI]

    strong acidic cation ligand exchanger: sulfonic Sartobind S acid (R-CH2-SO3 -) Minimum binding capacities

  18. Collective Acceleration in Solar Flares

    E-Print Network [OSTI]

    Barletta, W.

    2008-01-01

    Collective Acceleration in Solar Flares w. Barletta, S.S.COLLECTIVE ACCELERATION IN SOLAR FLARES* W. Barletta (1), S.Park, MD 20742 Abstract Solar flare data are examined with

  19. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  20. Theory Challenges of the Accelerating Universe

    E-Print Network [OSTI]

    Linder, Eric V.

    2009-01-01

    of the accelerating universe. Acknowledgments I thankof the Accelerating Universe Eric V. Linder Berkeley Lab,of the Accelerating Universe Eric V. Linder Berkeley Lab,

  1. Adaptive control for accelerators

    DOE Patents [OSTI]

    Eaton, Lawrie E. (Los Alamos, NM); Jachim, Stephen P. (Los Alamos, NM); Natter, Eckard F. (Santa Fe, NM)

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  2. Advanced medical accelerator design

    SciTech Connect (OSTI)

    Alonso, J.R.; Elioff, T.; Garren, A.

    1982-11-01

    This report describes the design of an advanced medical facility dedicated to charged particle radiotherapy and other biomedical applications of relativistic heavy ions. Project status is reviewed and some technical aspects discussed. Clinical standards of reliability are regarded as essential features of this facility. Particular emphasis is therefore placed on the control system and on the use of technology which will maximize operational efficiency. The accelerator will produce a variety of heavy ion beams from helium to argon with intensities sufficient to provide delivered dose rates of several hundred rad/minute over large, uniform fields. The technical components consist of a linac injector with multiple PIG ion sources, a synchrotron and a versatile beam delivery system. An overview is given of both design philosophy and selected accelerator subsystems. Finally, a plan of the facility is described.

  3. An accelerated closed universe

    E-Print Network [OSTI]

    Sergio del Campo; Mauricio Cataldo; Francisco Pena

    2004-08-03

    We study a model in which a closed universe with dust and quintessence matter components may look like an accelerated flat Friedmann-Robertson-Walker (FRW) universe at low redshifts. Several quantities relevant to the model are expressed in terms of observed density parameters, $\\Omega_M$ and $\\Omega_{\\Lambda}$, and of the associated density parameter $\\Omega_Q$ related to the quintessence scalar field $Q$.

  4. Accelerator simulation using computers

    SciTech Connect (OSTI)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a ``multi-track`` simulation and analysis code can be used for these applications.

  5. Accelerator simulation using computers

    SciTech Connect (OSTI)

    Lee, M.; Zambre, Y.; Corbett, W.

    1992-01-01

    Every accelerator or storage ring system consists of a charged particle beam propagating through a beam line. Although a number of computer programs exits that simulate the propagation of a beam in a given beam line, only a few provide the capabilities for designing, commissioning and operating the beam line. This paper shows how a multi-track'' simulation and analysis code can be used for these applications.

  6. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  7. Accelerating QDP++ using GPUs

    E-Print Network [OSTI]

    Frank Winter

    2011-05-11

    Graphic Processing Units (GPUs) are getting increasingly important as target architectures in scientific High Performance Computing (HPC). NVIDIA established CUDA as a parallel computing architecture controlling and making use of the compute power of GPUs. CUDA provides sufficient support for C++ language elements to enable the Expression Template (ET) technique in the device memory domain. QDP++ is a C++ vector class library suited for quantum field theory which provides vector data types and expressions and forms the basis of the lattice QCD software suite Chroma. In this work accelerating QDP++ expression evaluation to a GPU was successfully implemented leveraging the ET technique and using Just-In-Time (JIT) compilation. The Portable Expression Template Engine (PETE) and the C API for CUDA kernel arguments were used to build the bridge between host and device memory domains. This provides the possibility to accelerate Chroma routines to a GPU which are typically not subject to special optimisation. As an application example a smearing routine was accelerated to execute on a GPU. A significant speed-up compared to normal CPU execution could be measured.

  8. Human Plasma Proteome Analysis by Multidimensional Chromatography Prefractionation and Linear Ion Trap Mass

    E-Print Network [OSTI]

    Tian, Weidong

    to facilitate human plasma proteome research. Keywords: proteomics · human plasma · mass spectrometry · two the past decades of plasma proteome research works based on 2-DE:2,14-20 the highest quantity of identified

  9. A multi beam proton accelerator

    E-Print Network [OSTI]

    Dolya, S N

    2015-01-01

    The article considers a proton accelerator containing seven independent beams arranged on the accelerator radius. The current in each beam is one hundred milliamps. The initial part of the accelerator consists of shielded spiral waveguides assembled in the common screen. The frequency of the acceleration: three hundred megahertz, high-frequency power twenty-five megawatts, the length of the accelerator six meters. After reaching the proton energy of six megaelektronvolts the protons using lenses with the azimuthal magnetic field are collected in one beam. Further beam acceleration is performed in the array of superconducting cavities tuned to the frequency one and three tenths gigahertz. The acceleration rate is equal to twenty megavolt per meter, the high-frequency power consumption fifteen megawatts per meter.

  10. Materials Classification & Accelerated Property Predictions using...

    Office of Scientific and Technical Information (OSTI)

    Materials Classification & Accelerated Property Predictions using Machine Learning Citation Details In-Document Search Title: Materials Classification & Accelerated Property...

  11. Mass spectral characterization of oxygen-containing aromatics with methanol chemical ionization

    SciTech Connect (OSTI)

    Buchanan, M.V.

    1984-03-01

    Chemical ionization mass spectrometry with methanol and deuterated methanol as ionization reagents is used to differentiate oxygen-containing aromatics, including phenols, aromatic ethers, and aromatic substituted alcohols, as well as compounds containing more than one oxygen atom. The analogous sulfur-containing aromatics may be similarly differentiated. Methanol chemical ionization is used to characterize a neutral aromatic polar subfraction of a coal-derived liquid by combined gas chromatography/mass spectrometry. 16 references, 2 tables, 1 figure.

  12. APT accelerator. Topical report

    SciTech Connect (OSTI)

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  13. Naked singularities as particle accelerators. II

    SciTech Connect (OSTI)

    Patil, Mandar; Joshi, Pankaj S.; Malafarina, Daniele

    2011-03-15

    We generalize here our earlier results on particle acceleration by naked singularities. We showed recently [M. Patil and P. S. Joshi, Phys. Rev. D 82, 104049 (2010).] that the naked singularities that form due to the gravitational collapse of massive stars provide a suitable environment where particles could get accelerated and collide at arbitrarily high center-of-mass energies. However, we focused there only on the spherically symmetric gravitational collapse models, which were also assumed to be self-similar. In this paper, we broaden and generalize the result to all gravitational collapse models leading to the formation of a naked singularity as the final state of collapse, evolving from a regular initial data, without making any prior restrictive assumptions about the spacetime symmetries such as above. We show that, when the particles interact and collide near the Cauchy horizon, the energy of collision in the center-of-mass frame will be arbitrarily high, thus offering a window to the Planck scale physics. We also consider the issue of various possible physical mechanisms of generation of such very high-energy particles from the vicinity of naked singularity. We then construct a model of gravitational collapse to a timelike naked singularity to demonstrate the working of these ideas, where the pressure is allowed to be negative, but the energy conditions are respected. We show that a finite amount of mass-energy density has to be necessarily radiated away from the vicinity of the naked singularity as the collapse evolves. Therefore, the nature of naked singularities, both at the classical and quantum level, could play an important role in the process of particle acceleration, explaining the occurrence of highly energetic outgoing particles in the vicinity of the Cauchy horizon that participate in extreme high-energy collisions.

  14. Laser plasma accelerators

    SciTech Connect (OSTI)

    Malka, V. [Laboratoire d'Optique Appliquee, ENSTA-ParisTech, CNRS, Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2012-05-15

    This review article highlights the tremendous evolution of the research on laser plasma accelerators which has, in record time, led to the production of high quality electron beams at the GeV level, using compact laser systems. I will describe the path we followed to explore different injection schemes and I will present the most significant breakthrough which allowed us to generate stable, high peak current and high quality electron beams, with control of the charge, of the relative energy spread and of the electron energy.

  15. Reframing Accelerator Simulations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II) by Carbon-RichProtonAbout Us HanfordReferenceReframing Accelerator

  16. NREL: Wind Research - Market Acceleration and Deployment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine and HydrokineticMarket Acceleration

  17. Variational principle for optimal accelerated neutralized flow A. Fruchtman

    E-Print Network [OSTI]

    American Institute of Physics. DOI: 10.1063/1.1331567 I. INTRODUCTION Electric propulsion for space vehicles utilizes electric and magnetic fields to accelerate a propellant to a much higher velocity than chemical propulsion does, and, as a re- sult, the required propellant mass is reduced. Among electric

  18. Summary Report from the Accelerator Working Group M. Harrison

    E-Print Network [OSTI]

    Wurtele, Jonathan

    colliders, muon colliders, very high energy hadron colliders, and advanced acceleration techniques Group at Snowmass was organized into five working sub-groups (all energies refer to center-of-mass): 1 of the community with respect to technical issues and identification of possible paths to a 1.5 TeV collision

  19. Ultrasensitive search for long-lived superheavy nuclides in the mass range A=288 to A=300 in natural Pt, Pb, and Bi

    SciTech Connect (OSTI)

    Dellinger, F.; Forstner, O.; Golser, R.; Priller, A.; Steier, P.; Wallner, A.; Winkler, G.; Kutschera, W.

    2011-06-15

    Theoretical models of superheavy elements (SHEs) predict a region of increased stability around the proton and neutron shell closures of Z = 114 and N = 184. Therefore a sensitive search for nuclides in the mass range from A = 288 to A = 300 was performed in natural platinum, lead, and bismuth, covering long-lived isotopes of Eka-Pt (Ds, Z = 110), Eka-Pb (Z = 114), and Eka-Bi (Z = 115). Measurements with accelerator mass spectrometry (AMS) at the Vienna Environmental Research Accelerator (VERA) established upper limits for these SHE isotopes in Pt, Pb, and Bi with abundances of <2x10{sup -15}, <5x10{sup -14}, and <5x10{sup -13}, respectively. These results complement earlier searches for SHEs with AMS at VERA in natural thorium and gold, which now amounts to a total number of 37 SHE nuclides having been explored with AMS. In none of our measurements was evidence found for the existence of SHEs in nature at the reported sensitivity level. Even though a few events were observed in the window for {sup 293}Eka-Bi, a particularly strong pileup background did not allow a definite SHE isotope identification. The present result sets limits on nuclides around the center of the island of stability, essentially ruling out the existence of SHE nuclides with half-lives longer than {approx}150 million years.

  20. Triboelectric Nanogenerators as a Self-Powered 3D Acceleration Yao Kun Pang,

    E-Print Network [OSTI]

    Wang, Zhong L.

    generate an electric signal itself as a response to the acceleration.13 Recently, the triboelectric between the two aluminum electrodes is generated in proportion to the mass displacement, which can be used, airbags, and earthquake monitoring.1,2 According to the different physical principles, acceleration

  1. The Sustainable Building-Accelerator 

    E-Print Network [OSTI]

    Maassen, W.H.

    2011-01-01

    , that it is necessary to accelerate innovations in the built environment, to achieve the high ambitions on sustainability in time. The ideas for the ??Sustainable Building - Accelerator?? originated from the assumptions that the required acceleration... of innovations within the built environment is not yet achieved due to: ? the small amount of innovative solutions which are generated by design teams, because (i) the design process is characterized by mono- disciplinary sequential steps and (ii) the design...

  2. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  3. Acceleration of Greenland ice mass loss in spring 2004

    E-Print Network [OSTI]

    Chen, Zhongping

    of increased melting at the ice sheet surface and increased glacial discharge at the coasts. All these trends, suggest that both accumulation and melting have increased during the past decade, with melting increasing thinning in the 1990s at low elevations8 where increased melting is probably more important than increased

  4. Acceleration of Greenland ice mass loss in spring 2004

    E-Print Network [OSTI]

    Velicogna, I; Velicogna, I; Wahr, J

    2006-01-01

    10.1029/ 2005GL025550 (2006). Peltier, W. R. Global glacial2004). Tushingham, A. M. & Peltier, W. R. ICE-3G: A new

  5. Compact accelerator for medical therapy

    DOE Patents [OSTI]

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  6. Neutrino oscillations in accelerated states

    E-Print Network [OSTI]

    Ahluwalia, Dharam Vir; Torrieri, Giorgio

    2015-01-01

    We discuss the inverse $\\beta$-decay of accelerated protons in the context of neutrino oscillations. The process $p\\rightarrow n \\ell^+ \

  7. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A. (Ithaca, NY); Greenwald, Shlomo (Haifa, IL)

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  8. Nuclear Physics: Archived Talks - Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Free Electron Laser (FEL) Medical Imaging Physics Topics Campaigns Meetings Recent Talks Archived Talks Accelerator Hall A Hall B Hall C 12 GeV Upgrade Experimental Techniques...

  9. Challenges in Accelerator Beam Instrumentation

    SciTech Connect (OSTI)

    Wendt, M.

    2009-12-01

    The challenges in beam instrumentation and diagnostics for present and future particle accelerator projects are presented. A few examples for advanced hadron and lepton beam diagnostics are given.

  10. Lab Breakthrough: Fermilab Accelerator Technology

    Broader source: Energy.gov [DOE]

    Fermilab scientists developed techniques to retrofit some of the 30,000 particle accelerators in use around the world to make them more efficient and powerful.

  11. Accelerators for research and applications

    SciTech Connect (OSTI)

    Alonso, J.R.

    1990-06-01

    The newest particle accelerators are almost always built for extending the frontiers of research, at the cutting edge of science and technology. Once these machines are operating and these technologies mature, new applications are always found, many of which touch our lives in profound ways. The evolution of accelerator technologies will be discussed, with descriptions of accelerator types and characteristics. The wide range of applications of accelerators will be discussed, in fields such as nuclear science, medicine, astrophysics and space-sciences, power generation, airport security, materials processing and microcircuit fabrication. 13 figs.

  12. 2012 Advanced Accelerator Concepts Workshop

    SciTech Connect (OSTI)

    Downer, Michael C.

    2015-03-23

    We report on the organization and outcome of the 2012 Advanced Accelerator Concepts Workshop, held in Austin, Texas in June 2012.

  13. Extending Penning trap mass measurements with SHIPTRAP to the heaviest elements

    SciTech Connect (OSTI)

    Block, M.; Ackermann, D.; Herfurth, F.; Hofmann, S.; Blaum, K.; Droese, C.; Marx, G.; Schweikhard, L.; Duellmann, Ch. E.; Eibach, M.; Eliseev, S.; Haettner, E.; Plass, W. R.; Scheidenberger, C.; Hessberger, F. P.; Ramirez, E. Minaya; Nesterenko, D.; and others

    2013-03-19

    Penning-trap mass spectrometry of radionuclides provides accurate mass values and absolute binding energies. Such mass measurements are sensitive indicators of the nuclear structure evolution far away from stability. Recently, direct mass measurements have been extended to the heavy elements nobelium (Z=102) and lawrencium (Z=103) with the Penning-trap mass spectrometer SHIPTRAP. The results probe nuclear shell effects at N=152. New developments will pave the way to access even heavier nuclides.

  14. The Radiological Research Accelerator THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    The Radiological Research Accelerator Facility #12;84 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY Director: David J. Brenner, Ph.D., D.Sc., Manager: Stephen A. Marino, M.S. An NIH SupportedV/µm 4 He ions using the microbeam facility (Exp. 73) also continued. The transformation frequency

  15. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 71 The Radiological Research Accelerator Facility the irradiated cells. Both the microbeam and the track segment facilities continue to be utilized in various investigations of this phenomenon. The single- particle microbeam facility provides precise control of the number

  16. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY The Radiological Research Accelerator Facility

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY 1 The Radiological Research Accelerator Facility for Radiological Research (CRR). Using the mi- crobeam facility, 10% of the cells were irradiated through particle beam as well as the first fo- cused microbeam in the new microbeam facility. · Another significant

  17. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;115 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY An NIH-Supported Resource Center WWW.RARAF.ORG Director: David J. Brenner, Ph.D., D.Sc. Manager delighted that NIH funding for continued development of our single-particle microbeam facility was renewed

  18. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  19. Laser acceleration of ion beams

    E-Print Network [OSTI]

    I. A. Egorova; A. V. Filatov; A. V. Prozorkevich; S. A. Smolyansky; D. B. Blaschke; M. Chubaryan

    2007-02-01

    We consider methods of charged particle acceleration by means of high-intensity lasers. As an application we discuss a laser booster for heavy ion beams provided, e.g. by the Dubna nuclotron. Simple estimates show that a cascade of crossed laser beams would be necessary to provide additional acceleration to gold ions of the order of GeV/nucleon.

  20. I Investigation of Pellet Acceleration

    E-Print Network [OSTI]

    I Investigation of Pellet Acceleration by an Arc heated Gas Gun An Interim Report INVESTIGATION OP PELLET ACCELERATION BY AN ARC HEATED GAS GUN* An Interim Report on the Investigations carried, and K.-V. Weisberg Abstract. Deep penetration of pellets into the JET plasma may prove to be a useful

  1. General purpose programmable accelerator board

    DOE Patents [OSTI]

    Robertson, Perry J. (Albuquerque, NM); Witzke, Edward L. (Edgewood, NM)

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  2. An effective theory of metrics with maximal acceleration

    E-Print Network [OSTI]

    Ricardo Gallego Torromé

    2015-10-15

    A geometric theory for spacetimes whose world lines associated with physical particles have an upper bound for the proper acceleration is developed. After some fundamental remarks on the requirements that the classical dynamics for point particles should hold, the notion of generalized metric and a theory of maximal proper acceleration are introduced. A perturbative approach to metrics of maximal proper acceleration is discussed and we show how it provides a consistent theory where the associated Lorentzian metric corresponds to the limit when the maximal proper acceleration goes to infinity. Then several of the physical and kinematical properties of the maximal acceleration metric are investigated, including a discussion of the rudiments of the causal theory and the introduction of the notions of radar distance and celerity function. We discuss the corresponding modification of the Einstein mass-energy relation when the associated Lorentzian geometry is flat. In such context it is also proved that the physical dispersion relation is relativistic. Two possible physical scenarios where the modified mass-energy relation could be confronted against experiment are briefly discussed.

  3. Particle Acceleration in Astrophysical Sources

    E-Print Network [OSTI]

    Amato, Elena

    2015-01-01

    Astrophysical sources are extremely efficient accelerators. Some sources emit photons up to multi-TeV energies, a signature of the presence, within them, of particles with energies much higher than those achievable with the largest accelerators on Earth. Even more compelling evidence comes from the study of Cosmic Rays, charged relativistic particles that reach the Earth with incredibly high energies: at the highest energy end of their spectrum, these subatomic particles are carrying a macroscopic energy, up to a few Joules. Here I will address the best candidate sources and mechanisms as cosmic particle accelerators. I will mainly focus on Galactic sources such as Supernova Remnants and Pulsar Wind Nebulae, which being close and bright, are the best studied among astrophysical accelerators. These sources are held responsible for most of the energy that is put in relativistic particles in the Universe, but they are not thought to accelerate particles up to the highest individual energies, $\\approx 10^{20}$ eV...

  4. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  5. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  6. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L. (Brentwood, CA); Reginato, Louis L. (Orinda, CA)

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  7. Considerations for design parameters for a dedicated medical accelerator

    SciTech Connect (OSTI)

    Alonso, J.R.

    1980-10-01

    There are only a very few critical parameters which determine the size, performance and cost of a heavy ion accelerator. These are the mass of the heaviest ion desired, the maximum range of this heaviest ion in tissue, and the highest intensity desired. Other parameters, such as beam emittance, beam delivery flexibility, reliability and experimental facility configurations are important, but are not primary driving factors in the design effort. The various clinical applications for a heavy ion accelerator are evaluated, detailing the most desirable beams for each application.

  8. Development of a variable-temperature ion mobility/ time-of-flight mass spectrometer for separation of electronic isomers 

    E-Print Network [OSTI]

    Verbeck, Guido Fridolin

    2005-08-29

    The construction of a liquid nitrogen-cooled ion mobility spectrometer coupled with time-of-flight mass spectrometry was implemented to demonstrate the ability to discriminate between electronic isomers. Ion mobility allows for the separation...

  9. Testing Doppler type shift for an accelerated source and determination of the universal maximal acceleration

    E-Print Network [OSTI]

    Yaakov Friedman

    2010-06-10

    An experiment for testing Doppler type shift for an accelerated source and determination of the universal maximal acceleration is proposed.

  10. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  11. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, Victor W. (Albuquerque, NM)

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  12. Radiological Research Accelerator Facility Service Request Form

    E-Print Network [OSTI]

    Radiological Research Accelerator Facility Service Request Form National Institute of Biomedical Imaging and Bioengineering Radiological Research Accelerator Facility Service request form Estimate when(s) to control for this experiment (if more than one, please prioritize): Radiological Research Accelerator

  13. Terahertz-driven linear electron acceleration

    E-Print Network [OSTI]

    Nanni, Emilio Alessandro; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Miller, R J Dwayne; Kärtner, Franz X

    2014-01-01

    The cost, size and availability of electron accelerators is dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency (RF) accelerating structures operate with 30-50 MeV/m gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional RF structures. However, laser-driven electron accelerators require intense sources and suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here, we demonstrate the first linear acceleration of electrons with keV energy gain using optically-generated terahertz (THz) pulses. THz-driven accelerating structures enable high-gradient electron accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. Increasing the operational frequency of accelerators into the THz band allows for greatly increased accelerating ...

  14. The Pulse Line Ion Accelerator Concept

    E-Print Network [OSTI]

    Briggs, Richard J.

    2006-01-01

    field model of the pulse- line accelerator; relationship to3, 2006 LBNL-59492 The pulse line ion accelerator conceptCalifornia, 94507 The Pulse Line Ion Accelerator concept was

  15. SNEAP 80: symposium of Northeastern Accelerator personnel

    SciTech Connect (OSTI)

    Billen, J.H. (ed.) ed.

    1980-01-01

    Reports of operations are presented for twenty-seven facilities, along with reports on accelerators in progress, ion sources, insulating gases, charging systems, stripping foils, accelerating tubes, and upgraded accelerator systems. (GHT)

  16. Electromagnetic acceleration of permanent magnets

    E-Print Network [OSTI]

    Dolya, S N

    2015-01-01

    We consider the acceleration of the permanent magnets, consisting of neodymium iron boron by means of the running magnetic field gradient. It is shown that the specific magnetic moment per nucleon in neodymium iron boron is determined by the remained magnetization of the substance. The maximum accessable gradient of the magnetic field accelerating the permanent magnets is determined by the coercive force thirty kilogauss. For the neodymium iron boron magnets this gradient is equal to twenty kilogauss divided by one centimeter. The finite velocity of the magnets six kilometers per second, the length of acceleration is six hundred thirty-seven meters.

  17. Cosmic Particle Acceleration: Basic Issues

    E-Print Network [OSTI]

    T. W. Jones

    2000-12-22

    Cosmic-rays are ubiquitous, but their origins are surprisingly difficult to understand. A review is presented of some of the basic issues common to cosmic particle accelerators and arguments leading to the likely importance of diffusive shock acceleration as a general explanation. The basic theory of diffusive shock acceleration is outlined, followed by a discussion of some of the key issues that still prevent us from a full understanding of its outcomes. Some recent insights are mentioned at the end that may help direct ultimate resolution of our uncertainties.

  18. Cascaded target normal sheath acceleration

    SciTech Connect (OSTI)

    Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.

    2013-11-15

    A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

  19. Accelerating DSMC data extraction.

    SciTech Connect (OSTI)

    Gallis, Michail A.; Piekos, Edward Stanley

    2006-10-01

    In many direct simulation Monte Carlo (DSMC) simulations, the majority of computation time is consumed after the flowfield reaches a steady state. This situation occurs when the desired output quantities are small compared to the background fluctuations. For example, gas flows in many microelectromechanical systems (MEMS) have mean speeds more than two orders of magnitude smaller than the thermal speeds of the molecules themselves. The current solution to this problem is to collect sufficient samples to achieve the desired resolution. This can be an arduous process because the error is inversely proportional to the square root of the number of samples so we must, for example, quadruple the samples to cut the error in half. This work is intended to improve this situation by employing more advanced techniques, from fields other than solely statistics, for determining the output quantities. Our strategy centers on exploiting information neglected by current techniques, which collect moments in each cell without regard to one another, values in neighboring cells, nor their evolution in time. Unlike many previous acceleration techniques that modify the method itself, the techniques examined in this work strictly post-process so they may be applied to any DSMC code without affecting its fidelity or generality. Many potential methods are drawn from successful applications in a diverse range of areas, from ultrasound imaging to financial market analysis. The most promising methods exploit relationships between variables in space, which always exist in DSMC due to the absence of shocks. Disparate techniques were shown to produce similar error reductions, suggesting that the results shown in this report may be typical of what is possible using these methods. Sample count reduction factors of approximately three to five were found to be typical, although factors exceeding ten were shown on some variables under some techniques.

  20. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.

    SciTech Connect (OSTI)

    Shiltsev, V.; Piot, P.

    2013-09-01

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  1. How Particle Accelerators Work | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    cancer patients. The vast majority of these irradiations are now performed with microwave linear accelerators producing electron beams and x-rays. Accelerator technology,...

  2. Accelerating Investments in the Geothermal Sector, Indonesia...

    Open Energy Info (EERE)

    Accelerating Investments in the Geothermal Sector, Indonesia (Presentation) Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Accelerating...

  3. American Recovery and Reinvestment Act Accelerated Milestones

    Office of Environmental Management (EM)

    RECOVERY PROJECT OR ACTIVITY ACCELERATED MILESTONE TITLE MILESTONE DUE DATE EXPECTED ACCELERATED COMPLETION DATE WITH ARRA FUNDING STATUS INL - Cleanup of Surplus Nuclear...

  4. Accelerators for high energy physics research

    SciTech Connect (OSTI)

    Chao, A.

    1995-12-01

    A brief survey of particle accelerators as research tools for high energy physics is given. The survey includes existing accelerators, as well as those envisioned for the future.

  5. Application of Spatially Resolved High Resolution Crystal Spectrometry...

    Office of Scientific and Technical Information (OSTI)

    Crystal Spectrometry to ICF Plasmas Kenneth W. Hill, et. al. 70 PLASMA PHYSICS AND FUSION TECHNOLOGY High Temperature High Temperature High resolution (3; 10 000) 1D...

  6. Accelerated Aging of Roofing Surfaces

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated aging of roofing surfaces Hugo Destaillats, Ph.D. Lawrence Berkeley National Laboratory HDestaillats@LBL.gov (510) 486-5897 http:HeatIsland.LBL.gov April 4, 2013...

  7. Separation of accelerated electrons and positrons in the relativistic reconnection

    E-Print Network [OSTI]

    Marian Karlicky

    2007-09-05

    We study an acceleration of electrons and positrons in the relativistic magnetic field reconnection using a 2.5-D particle-in-cell electromagnetic relativistic code. We consider the model with two current sheets and periodic boundary conditions. The electrons and positrons are very effectively accelerated during the tearing and coalescence processes of the reconnection. We found that near the X-points of the reconnection the positions of electrons and positrons differ. This separation process is in agreement with those studied in the previous papers analytically or by test particle simulations. We expect that in dependence on the magnetic field connectivity this local separation can lead to global spatial separation of the accelerated electrons and positrons. A similar simulation in the electron-proton plasma with the proton-electron mass ratio m_i/m_e = 16 is made.

  8. Unruh effect for neutrinos interacting with accelerated matter

    E-Print Network [OSTI]

    Maxim Dvornikov

    2015-08-27

    We study the evolution of neutrinos in a background matter moving with a linear acceleration. The Dirac equation for a massive neutrino electroweakly interacting with background fermions is obtained in a comoving frame where matter is at rest. We solve this Dirac equation for ultrarelativistic neutrinos. The neutrino quantum states in matter moving with a linear acceleration are obtained. We demonstrate that the neutrino electroweak interaction with an accelerated matter leads to the vacuum instability which results in the neutrino-antineutrino pairs creation. We rederive the temperature of the Unruh radiation and find the correction to the Unruh effect due to the specific neutrino interaction with background fermions. As a possible application of the obtained results we discuss the neutrino pairs creation in a core collapsing supernova. The astrophysical upper limit on the neutrino masses is obtained.

  9. Unruh effect for neutrinos interacting with accelerated matter

    E-Print Network [OSTI]

    Dvornikov, Maxim

    2015-01-01

    We study the evolution of neutrinos in a background matter moving with a linear acceleration. The Dirac equation for a massive neutrino electroweakly interacting with background fermions is obtained in a comoving frame where matter is at rest. We solve this Dirac equation for ultrarelativistic neutrinos. The neutrino quantum states in matter moving with a linear acceleration are obtained. We demonstrate that the neutrino electroweak interaction with an accelerated matter leads to the vacuum instability which results in the neutrino-antineutrino pairs creation. We rederive the temperature of the Unruh radiation and find the correction to the Unruh effect due to the specific neutrino interaction with background fermions. As a possible application of the obtained results we discuss the neutrino pairs creation in a core collapsing supernova. The astrophysical upper limit on the neutrino masses is obtained.

  10. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J. (Livermore, CA); Nelson, Scott D. (Patterson, CA); Poole, Brian R. (Tracy, CA)

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  11. Accelerated Expansion: Theory and Observations

    E-Print Network [OSTI]

    David Polarski

    2001-09-20

    The present paradigm in cosmology is the usual Big-Bang Cosmology in which two stages of accelerated expansion are incorporated: the inflationary phase in the very early universe which produces the classical inhomogeneities observed in the universe, and a second stage of acceleration at the present time as the latest Supernovae observations seem to imply. Both stages could be produced by a scalar field and observations will strongly constrain the microscopic lagrangian of any proposed model.

  12. High-Intensity Proton Accelerator

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  13. Compact hydrogen/helium isotope mass spectrometer

    DOE Patents [OSTI]

    Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

    1996-01-01

    The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

  14. Microelectromechanical dual-mass resonator structure

    DOE Patents [OSTI]

    Dyck, Christopher W. (Cedar Crest, NM); Allen, James J. (Albuquerque, NM); Huber, Robert J. (Bountiful, UT)

    2002-01-01

    A dual-mass microelectromechanical (MEM) resonator structure is disclosed in which a first mass is suspended above a substrate and driven to move along a linear or curved path by a parallel-plate electrostatic actuator. A second mass, which is also suspended and coupled to the first mass by a plurality of springs is driven by motion of the first mass. Various modes of operation of the MEM structure are possible, including resonant and antiresonant modes, and a contacting mode. In each mode of operation, the motion induced in the second mass can be in the range of several microns up to more than 50 .mu.m while the first mass has a much smaller displacement on the order of one micron or less. The MEM structure has applications for forming microsensors that detect strain, acceleration, rotation or movement.

  15. Combined distance-of-flight and time-of-flight mass spectrometer

    DOE Patents [OSTI]

    Enke, Christie G; Ray, Steven J; Graham, Alexander W; Hieftje, Gary M; Barinaga, Charles J; Koppenaal, David W

    2014-02-11

    A combined distance-of-flight mass spectrometry (DOFMS) and time-of-flight mass spectrometry (TOFMS) instrument includes an ion source configured to produce ions having varying mass-to-charge ratios, a first detector configured to determine when each of the ions travels a predetermined distance, a second detector configured to determine how far each of the ions travels in a predetermined time, and a detector extraction region operable to direct portions of the ions either to the first detector or to the second detector.

  16. High-precision Penning trap mass measurements for tests of the Standard Model

    SciTech Connect (OSTI)

    Blaum, Klaus; Eliseev, Sergey; Nagy, Szilard

    2010-08-04

    With the nowadays achievable accuracy in Penning trap mass spectrometry on short-lived exotic nuclides as well as stable atoms, precision fundamental tests can be performed, among them a test of the Standard Model, in particular with regard to the weak interaction, the CPT symmetry conservation, and the unitarity of the Cabibbo-Kobayashi-Maskawa quark mixing matrix. In addition, accurate mass values of specific nuclides are important for neutrino physics. The presently best tests of the Standard Model with high-precision Penning trap mass spectrometry will be reviewed.

  17. SuperB Progress Report for Accelerator

    SciTech Connect (OSTI)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

  18. Nanometer scale elemental analysis in the helium ion microscope using time of flight spectrometry

    E-Print Network [OSTI]

    Klingner, Nico; Hlawacek, Gregor; von Borany, Johannes; Notte, John; Huang, Jason; Facsko, Stefan

    2015-01-01

    Time of flight Rutherford backscattering spectrometry (ToF-RBS) was successfully implemented in a helium ion microscope (HIM). Its integration introduces the ability to perform laterally resolved elemental analysis as well as elemental depth profiling on the nm scale. A lateral resolution of $\\leq$ 54 nm and an energy resolution of $\\Delta E \\leq$ 1.5 keV $(\\Delta E/E=5.4\\%)$ are achieved. By using the energy of the backscattered particles for contrast generation, we introduce a new imaging method to the HIM allowing direct elemental mapping as well as local spectrometry. In addition laterally resolved time of flight secondary ion mass spectrometry (ToF-SIMS) can be performed with the same setup. Time of flight is implemented by pulsing the primary ion beam. This is achieved in a cost effective and minimal invasive way that does not influence the high resolution capabilities of the microscope when operating in standard secondary electron (SE) imaging mode. This technique can thus be easily adapted to existing...

  19. Neutron spectrometry for ${\\rm UF}_6$ enrichment verification in storage cylinders

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mengesha, Wondwosen; Kiff, Scott D.

    2015-01-29

    Verification of declared UF6 enrichment and mass in storage cylinders is of great interest in nuclear material nonproliferation. Nondestructive assay (NDA) techniques are commonly used for safeguards inspections to ensure accountancy of declared nuclear materials. Common NDA techniques used include gamma-ray spectrometry and both passive and active neutron measurements. In the present study, neutron spectrometry was investigated for verification of UF6 enrichment in 30B storage cylinders based on an unattended and passive measurement approach. MCNP5 and Geant4 simulated neutron spectra, for selected UF6 enrichments and filling profiles, were used in the investigation. The simulated neutron spectra were analyzed using principalmore »component analysis (PCA). The PCA technique is a well-established technique and has a wide area of application including feature analysis, outlier detection, and gamma-ray spectral analysis. Results obtained demonstrate that neutron spectrometry supported by spectral feature analysis has potential for assaying UF6 enrichment in storage cylinders. The results from the present study also showed that difficulties associated with the UF6 filling profile and observed in other unattended passive neutron measurements can possibly be overcome using the approach presented.« less

  20. Micromechanical structures and microelectronics for acceleration sensing

    SciTech Connect (OSTI)

    Davies, B.R.; Montague, S.; Smith, J.H.; Lemkin, M. [Sandia National Labs., Albuquerque, NM (United States). Intelligent Micromachine Dept.

    1997-08-01

    MEMS is an enabling technology that may provide low-cost devices capable of sensing motion in a reliable and accurate manner. This paper describes work in MEMS accelerometer development at Sandia National Laboratories. This work leverages a process for integrating both the micromechanical structures and microelectronis circuitry of a MEMS accelerometer on the same chip. The design and test results of an integrated MEMS high-g accelerometer will be detailed. Additionally a design for a high-g fuse component (low-G or {approx} 25 G accelerometer) will be discussed in the paper (where 1 G {approx} 9.81 m/s). In particular, a design team at Sandia was assembled to develop a new micromachined silicon accelerometer which would be capable of surviving and measuring high-g shocks. Such a sensor is designed to be cheaper and more reliable than currently available sensors. A promising design for a suspended plate mass sensor was developed and the details of that design along with test data will be documented in the paper. Future development in this area at Sandia will focus on implementing accelerometers capable of measuring 200 kilo-g accelerations. Accelerometer development at Sandia will also focus on multi-axis acceleration measurement with integrated microelectronics.

  1. Probing Efficient Cosmic-Ray Acceleration in Young Supernovae

    E-Print Network [OSTI]

    Dwarkadas, Vikram V; Marcowith, A; Tatischeff, V

    2015-01-01

    The formation of a core collapse supernovae (SNe) results in a fast (but non- or mildly-relativistic) shock wave expanding outwards into the surrounding medium. The medium itself is likely modified due to the stellar mass-loss from the massive star progenitor, which may be Wolf-Rayet stars (for Type Ib/c SNe), red supergiant stars (for type IIP and perhaps IIb and IIL SNe), or some other stellar type. The wind mass-loss parameters determine the density structure of the surrounding medium. Combined with the velocity of the SN shock wave, this regulates the shock acceleration process. In this article we discuss the essential parameters that control the particle acceleration and gamma-ray emission in SNe, with particular reference to the Type IIb SN 1993J. The shock wave expanding into the high density medium leads to fast particle acceleration, giving rise to rapidly-growing plasma instabilities driven by the acceleration process itself. The instabilities grow over intraday timescales. This growth, combined wit...

  2. Laser mass spectrometric detection of extraterrestrial aromatic molecules: Mini-review and examination

    E-Print Network [OSTI]

    Zare, Richard N.

    Laser mass spectrometric detection of extraterrestrial aromatic molecules: MiniLafferty, Cornell University, Ithaca, NY, and approved May 20, 2008 (received for review February 28, 2008) Laser of organic compounds in extraterrestrial materials. Using microprobe two-step laser mass spectrometry ( L2MS

  3. Kerr Naked Singularities as Particle Accelerators

    E-Print Network [OSTI]

    Mandar Patil; Pankaj S. Joshi

    2011-11-16

    We investigate here the particle acceleration by Kerr naked singularities. We consider a collision between particles dropped in from infinity at rest, which follow geodesic motion in the equatorial plane, with their angular momenta in an appropriate finite range of values. When an event horizon is absent, an initially infalling particle turns back as an outgoing particle, when it has the angular momentum in an appropriate range of values, which then collides with infalling particles. When the collision takes place close to what would have been the event horizon in the extremal case, the center of mass energy of collision is arbitrarily large, depending on how close is the overspinning Kerr geometry to the extremal case. Thus the fast rotating Kerr configurations if they exist in nature could provide an excellent cosmic laboratory to probe ultra-high-energy physics.

  4. Accelerated expansion of the universe à la the Stueckelberg mechanism

    SciTech Connect (OSTI)

    Akarsu, Özgür; Ar?k, Metin; Kat?rc?, Nihan; Kavuk, Mehmet E-mail: metin.arik@boun.edu.tr E-mail: mehmet.kavuk@boun.edu.tr

    2014-07-01

    We investigate a cosmological model in which the Stueckelberg fields are non-minimally coupled to the scalar curvature in a gauge invariant manner. We present not only a solution that can be considered in the context of the late time acceleration of the universe but also a solution compatible with the inflationary cosmology. Distinct behaviors of the scalar and vector fields together with the real valued mass gained by the Stueckelberg mechanism lead the universe to go through the two different accelerated expansion phases with a decelerated expansion phase between them. On the other hand, in the solutions we present, if the mass is null then the universe is either static or exhibits a simple power law expansion due to the vector field potential.

  5. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  6. Interpretation of snow properties from imaging spectrometry Jeff Dozier a,

    E-Print Network [OSTI]

    Kurapov, Alexander

    Interpretation of snow properties from imaging spectrometry Jeff Dozier a, , Robert O. Green b in revised form 11 June 2007 Accepted 27 July 2007 Available online xxxx Keywords: Snow Remote sensing Imaging spectrometry Snow is among the most "colorful" materials in nature, but most of the variability

  7. Ultra-high vacuum photoelectron linear accelerator

    DOE Patents [OSTI]

    Yu, David U.L.; Luo, Yan

    2013-07-16

    An rf linear accelerator for producing an electron beam. The outer wall of the rf cavity of said linear accelerator being perforated to allow gas inside said rf cavity to flow to a pressure chamber surrounding said rf cavity and having means of ultra high vacuum pumping of the cathode of said rf linear accelerator. Said rf linear accelerator is used to accelerate polarized or unpolarized electrons produced by a photocathode, or to accelerate thermally heated electrons produced by a thermionic cathode, or to accelerate rf heated field emission electrons produced by a field emission cathode.

  8. Pathway confirmation and flux analysis of central metabolicpathways in Desulfovibrio vulgaris Hildenborough using gaschromatography-mass spectrometry and fourier transform-ion cyclotronresonance mass spectrometry

    SciTech Connect (OSTI)

    Tang, Yinjie; Pingitore, Francesco; Mukhopadhyay, Aindrila; Phan,Richard; Hazen, Terry C.; Keasling, Jay D.

    2006-07-11

    It has been proposed that during growth under anaerobic oroxygen-limited conditions Shewanella oneidensis MR-1 uses theserine-isocitrate lyase pathway common to many methylotrophic anaerobes,in which formaldehyde produced from pyruvate is condensed with glycine toform serine. The serine is then transformed through hydroxypyruvate andglycerate to enter central metabolism at phosphoglycerate. To examine itsuse of the serine-isocitrate lyase pathway under anaerobic conditions, wegrew S. oneidensis MR-1 on [1-13C]lactate as the sole carbon source witheither trimethylamine N-oxide (TMAO) or fumarate as an electron acceptor.Analysis of cellular metabolites indicates that a large percentage(>75 percent) of lactate was partially oxidized to either acetate orpyruvate. The 13C isotope distributions in amino acids and other keymetabolites indicate that, under anaerobic conditions, a complete serinepathway is not present, and lactate is oxidized via a highly reversibleserine degradation pathway. The labeling data also suggest significantactivity in the anaplerotic (malic enzyme and phosphoenolpyruvatecarboxylase) and glyoxylate shunt (isocitrate lyase and malate synthase)reactions. Although the tricarboxylic acid (TCA) cycle is often observedto be incomplete in many other anaerobes (absence of 2-oxoglutaratedehydrogenase activity), isotopic labeling supports the existence of acomplete TCA cycle in S. oneidensis MR-1 under TMAO reductioncondition.

  9. Pathway confirmation and flux analysis of central metabolic pathways in Desulfovibrio vulgaris Hildenborough using gas chromatography-mass spectrometry and fourier transform-ion cyclotron resonance mass spectrometry

    E-Print Network [OSTI]

    Tang, Yinjie

    2010-01-01

    the second flow into gluconeogenesis and the PP pathway; andBiomass (Phe, Tyr, Trp) Gluconeogenesis Biomass (Ser, Gly,

  10. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.

    1992-01-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  11. The Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect (OSTI)

    Batchelor, K.

    1992-09-01

    The Brookhaven National Laboratory Accelerator Test Facility comprises a 50 MeV traveling wave electron linear accelerator utilizing a high gradient, photo-excited, raidofrequency electron gun as an injector and an experimental area for study of new acceleration methods or advanced radiation sources using free electron lasers. Early operation of the linear accelerator system including calculated and measured beam parameters are presented together with the experimental program for accelerator physics and free electron laser studies.

  12. Quark Masses

    SciTech Connect (OSTI)

    Gasser, Juerg

    2005-10-26

    In my talk, I reviewed some basic aspects of quark masses: what do they mean, how can they be determined, what is our present knowledge on them. The talk was addressed to non specialists in the field, and so is this write up.

  13. Linear accelerator for radioisotope production

    SciTech Connect (OSTI)

    Hansborough, L.D.; Hamm, R.W.; Stovall, J.E.

    1982-02-01

    A 200- to 500-..mu..A source of 70- to 90-MeV protons would be a valuable asset to the nuclear medicine program. A linear accelerator (linac) can achieve this performance, and it can be extended to even higher energies and currents. Variable energy and current options are available. A 70-MeV linac is described, based on recent innovations in linear accelerator technology; it would be 27.3 m long and cost approx. $6 million. By operating the radio-frequency (rf) power system at a level necessary to produce a 500-..mu..A beam current, the cost of power deposited in the radioisotope-production target is comparable with existing cyclotrons. If the rf-power system is operated at full power, the same accelerator is capable of producing an 1140-..mu..A beam, and the cost per beam watt on the target is less than half that of comparable cyclotrons.

  14. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  15. Accelerated expansion without dark energy

    E-Print Network [OSTI]

    Dominik J. Schwarz

    2002-10-03

    The fact that the LambdaCDM model fits the observations does not necessarily imply the physical existence of `dark energy'. Dropping the assumption that cold dark matter (CDM) is a perfect fluid opens the possibility to fit the data without dark energy. For imperfect CDM, negative bulk pressure is favoured by thermodynamical arguments and might drive the cosmic acceleration. The coincidence between the onset of accelerated expansion and the epoch of structure formation at large scales might suggest that the two phenomena are linked. A specific example is considered in which effective (anti-frictional) forces, which may be due to dissipative processes during the formation of inhomogeneities, give rise to accelerated expansion of a CDM universe.

  16. Electron Cloud Effects in Accelerators

    SciTech Connect (OSTI)

    Furman, M.A.

    2012-11-30

    Abstract We present a brief summary of various aspects of the electron-cloud effect (ECE) in accelerators. For further details, the reader is encouraged to refer to the proceedings of many prior workshops, either dedicated to EC or with significant EC contents, including the entire ?ECLOUD? series [1?22]. In addition, the proceedings of the various flavors of Particle Accelerator Conferences [23] contain a large number of EC-related publications. The ICFA Beam Dynamics Newsletter series [24] contains one dedicated issue, and several occasional articles, on EC. An extensive reference database is the LHC website on EC [25].

  17. Weak-Chaos Ratchet Accelerator

    E-Print Network [OSTI]

    Itzhack Dana; Vladislav B. Roitberg

    2012-05-28

    Classical Hamiltonian systems with a mixed phase space and some asymmetry may exhibit chaotic ratchet effects. The most significant such effect is a directed momentum current or acceleration. In known model systems, this effect may arise only for sufficiently strong chaos. In this paper, a Hamiltonian ratchet accelerator is introduced, featuring a momentum current for arbitrarily weak chaos. The system is a realistic, generalized kicked rotor and is exactly solvable to some extent, leading to analytical expressions for the momentum current. While this current arises also for relatively strong chaos, the maximal current is shown to occur, at least in one case, precisely in a limit of arbitrarily weak chaos.

  18. Accelerator dynamics and beam aperture

    SciTech Connect (OSTI)

    Parsa, Z.

    1986-10-01

    We present an analytical method for analyzing accelerator dynamics, including higher order effects of multipoles on the beam. This formalism provides a faster alternative to particle tracking. Simplectic expressions for the emittance and phase describing the dynamical behavior of a particle in a circular accelerator are derived using second order perturbation theory (in the presence of nonlinear elements, e.g., sextupoles, octupoles). These expressions are successfully used to calculate the emittance growth, smear and linear aperture. Our findings compare well with results obtained from tracking programs. In addition perturbation to betatron tune; resonance strengths; stop bandwidth; fixed points; island width; and Chirikov criteria are calculated.

  19. Seismic response of linear accelerators

    E-Print Network [OSTI]

    Collette, C; Guinchard, M; Hauviller, C

    2010-01-01

    This paper is divided into two parts. The first part presents recent measurements of ground motion in the LHC tunnel at CERN. From these measurements, an update of the ground motion model currently used in accelerator simulations is presented. It contains new features like a model of the lateral motion and the technical noise. In the second part, it is shown how this model can be used to evaluate the seismic response of a linear accelerator in the frequency domain. Then, the approach is validated numerically on a regular lattice, taking the dynamic behavior of the machine alignment stage and the mechanical stabilization of the quadrupoles into account.

  20. Method and apparatuses for ion cyclotron spectrometry

    DOE Patents [OSTI]

    Dahl, David A. (Idaho Falls, ID); Scott, Jill R. (Idaho Falls, ID); McJunkin, Timothy R. (Idaho Falls, ID)

    2012-03-06

    An ion cyclotron spectrometer may include a vacuum chamber that extends at least along a z-axis and means for producing a magnetic field within the vacuum chamber so that a magnetic field vector is generally parallel to the z-axis. The ion cyclotron spectrometer may also include means for producing a trapping electric field within the vacuum chamber. The trapping electric field may comprise a field potential that, when taken in cross-section along the z-axis, includes at least one section that is concave down and at least one section that is concave up so that ions traversing the field potential experience a net magnetron effect on a cyclotron frequency of the ions that is substantially equal to zero. Other apparatuses and a method for performing ion cyclotron spectrometry are also disclosed herein.

  1. Photon Regions and Shadows of Accelerated Black Holes

    E-Print Network [OSTI]

    Arne Grenzebach; Volker Perlick; Claus Lämmerzahl

    2015-03-27

    In an earlier paper we have analytically determined the photon regions and the shadows of black holes of the Pleba\\'nski class of metrics which are also known as the Kerr--Newman--NUT--(anti-)deSitter metrics. These metrics are characterized by six parameters: mass, spin, electric and magnetic charge, gravitomagnetic NUT charge, and the cosmological constant. Here we extend this analysis to the Pleba\\'nski--Demia\\'nski class of metrics which contains, in addition to these six parameters, the so-called acceleration parameter. All these metrics are axially symmetric and stationary type D solutions to the Einstein--Maxwell equations with a cosmological constant. We derive analytical formulas for the photon regions (i.e., for the regions that contain spherical lightlike geodesics) and for the boundary curve of the shadow as it is seen by an observer at Boyer--Lindquist coordinates $(r_O, \\vartheta _O)$ in the domain of outer communication. Whereas all relevant formulas are derived for the whole Pleba\\'nski--Demia\\'nski class, we concentrate on the accelerated Kerr metric (i.e., only mass, spin and acceleration parameter are different from zero) when discussing the influence of the acceleration parameter on the photon region and on the shadow in terms of pictures. The accelerated Kerr metric is also known as the rotating $C$-metric. We discuss how our analytical formulas can be used for calculating the horizontal and vertical angular diameters of the shadow and we estimate these values for the black holes at the center of our Galaxy and at the center of M87.

  2. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema (OSTI)

    Andrei Seryi

    2010-01-08

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  3. ACCELERATION PHYSICS CODE WEB REPOSITORY.

    SciTech Connect (OSTI)

    WEI, J.

    2006-06-26

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  4. Accelerator Physics Code Web Repository

    SciTech Connect (OSTI)

    Zimmermann, F.; Basset, R.; Bellodi, G.; Benedetto, E.; Dorda, U.; Giovannozzi, M.; Papaphilippou, Y.; Pieloni, T.; Ruggiero, F.; Rumolo, G.; Schmidt, F.; Todesco, E.; Zotter, B.W.; Payet, J.; Bartolini, R.; Farvacque, L.; Sen, T.; Chin, Y.H.; Ohmi, K.; Oide, K.; Furman, M.; /LBL, Berkeley /Oak Ridge /Pohang Accelerator Lab. /SLAC /TRIUMF /Tech-X, Boulder /UC, San Diego /Darmstadt, GSI /Rutherford /Brookhaven

    2006-10-24

    In the framework of the CARE HHH European Network, we have developed a web-based dynamic accelerator-physics code repository. We describe the design, structure and contents of this repository, illustrate its usage, and discuss our future plans, with emphasis on code benchmarking.

  5. Petawatt pulsed-power accelerator

    DOE Patents [OSTI]

    Stygar, William A. (Albuquerque, NM); Cuneo, Michael E. (Albuquerque, NM); Headley, Daniel I. (Albuquerque, NM); Ives, Harry C. (Albuquerque, NM); Ives, legal representative; Berry Cottrell (Albuquerque, NM); Leeper, Ramon J. (Albuquerque, NM); Mazarakis, Michael G. (Albuquerque, NM); Olson, Craig L. (Albuquerque, NM); Porter, John L. (Sandia Park, NM); Wagoner; Tim C. (Albuquerque, NM)

    2010-03-16

    A petawatt pulsed-power accelerator can be driven by various types of electrical-pulse generators, including conventional Marx generators and linear-transformer drivers. The pulsed-power accelerator can be configured to drive an electrical load from one- or two-sides. Various types of loads can be driven; for example, the accelerator can be used to drive a high-current z-pinch load. When driven by slow-pulse generators (e.g., conventional Marx generators), the accelerator comprises an oil section comprising at least one pulse-generator level having a plurality of pulse generators; a water section comprising a pulse-forming circuit for each pulse generator and a level of monolithic triplate radial-transmission-line impedance transformers, that have variable impedance profiles, for each pulse-generator level; and a vacuum section comprising triplate magnetically insulated transmission lines that feed an electrical load. When driven by LTD generators or other fast-pulse generators, the need for the pulse-forming circuits in the water section can be eliminated.

  6. THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY

    E-Print Network [OSTI]

    175 THE RADIOLOGICAL RESEARCH ACCELERATOR FACILITY #12;176 #12;177 THE RADIOLOGICAL RESEARCH the microbeam and the track-segment facilities have been utilized in various investigations. Table 1 lists-segment facility. Samples are treated with graded doses of radical scavengers to observe changes in the cluster

  7. High Performance Outdoor Lighting Accelerator

    Broader source: Energy.gov [DOE]

    Hosted by the U.S. Department of Energy (DOE)’s Weatherization and Intergovernmental Programs Office (WIPO), this webinar covered the expansion of the Better Buildings platform to include the newest initiative for the public sector: the High Performance Outdoor Lighting Accelerator (HPOLA).

  8. Accelerators for Intensity Frontier Research

    SciTech Connect (OSTI)

    Derwent, Paul; /Fermilab

    2012-05-11

    In 2008, the Particle Physics Project Prioritization Panel identified three frontiers for research in high energy physics, the Energy Frontier, the Intensity Frontier, and the Cosmic Frontier. In this paper, I will describe how Fermilab is configuring and upgrading the accelerator complex, prior to the development of Project X, in support of the Intensity Frontier.

  9. Fresnel diffraction patterns as accelerating beams

    E-Print Network [OSTI]

    Zhang, Yiqi; Zheng, Huaibin; Wu, Zhenkun; Li, Yuanyuan; Lu, Keqing; Zhang, Yanpeng

    2013-01-01

    We demonstrate that beams originating from Fresnel diffraction patterns are self-accelerating in free space. In addition to accelerating and self-healing, they also exhibit parabolic deceleration property, which is in stark contrast to other accelerating beams. We find that the trajectory of Fresnel paraxial accelerating beams is similar to that of nonparaxial Weber beams. Decelerating and accelerating regions are separated by a critical propagation distance, at which no acceleration is present. During deceleration, the Fresnel diffraction beams undergo self-smoothing, in which oscillations of the diffracted waves gradually focus and smooth out at the critical distance.

  10. COMPASS, the COMmunity Petascale project for Accelerator Science and Simulation, a board computational accelerator physics initiative

    E-Print Network [OSTI]

    Cary, J.R.

    2008-01-01

    computational accelerator physics initiative † J R Carycomputational accelerator physics initiative J R Cary 1,9 ,colliders for particle physics and nuclear science and light

  11. Method of trivalent chromium concentration determination by atomic spectrometry

    DOE Patents [OSTI]

    Reheulishvili, Aleksandre N. (Tbilisi, 0183, GE); Tsibakhashvili, Neli Ya. (Tbilisi, 0101, GE)

    2006-12-12

    A method is disclosed for determining the concentration of trivalent chromium Cr(III) in a sample. The addition of perchloric acid has been found to increase the atomic chromium spectrometric signal due to Cr(III), while leaving the signal due to hexavalent chromium Cr(VI) unchanged. This enables determination of the Cr(III) concentration without pre-concentration or pre-separation from chromium of other valences. The Cr(III) concentration may be measured using atomic absorption spectrometry, atomic emission spectrometry or atomic fluorescence spectrometry.

  12. Effect of Electromagnetic Pulse Transverse Inhomogeneity on the Ion Acceleration by Radiation Pressure

    E-Print Network [OSTI]

    Lezhnin, K V; Beskin, V S; Kando, M; Esirkepov, T Zh; Bulanov, S V

    2014-01-01

    In the ion acceleration by radiation pressure a transverse inhomogeneity of the electromagnetic pulse results in the displacement of the irradiated target in the off-axis direction limiting achievable ion energy. This effect is described analytically within the framework of the thin foil target model and with the particle-in-cell simulations showing that the maximum energy of accelerated ions decreases while the displacement from the axis of the target initial position increases. The results obtained can be applied for optimization of the ion acceleration by the laser radiation pressure with the mass limited targets.

  13. Accelerator on a Chip: How It Works

    SciTech Connect (OSTI)

    2014-06-30

    In an advance that could dramatically shrink particle accelerators for science and medicine, researchers used a laser to accelerate electrons at a rate 10 times higher than conventional technology in a nanostructured glass chip smaller than a grain of rice.

  14. Symposium report on frontier applications of accelerators

    SciTech Connect (OSTI)

    Parsa, Z.

    1993-09-28

    This report contains viewgraph material on the following topics: Electron-Positron Linear Colliders; Unconventional Colliders; Prospects for UVFEL; Accelerator Based Intense Spallation; Neutron Sources; and B Physics at Hadron Accelerators with RHIC as an Example.

  15. Creation mechanism of quantum accelerator modes

    E-Print Network [OSTI]

    Summy, G. S.

    We investigate the creation mechanism of quantum accelerator modes which are attributed to the existence of the stability islands in an underlying pseudoclassical phase space of the quantum delta-kicked accelerator. Quantum ...

  16. Muon acceleration in cosmic-ray sources

    SciTech Connect (OSTI)

    Klein, Spencer R.; Mikkelsen, Rune E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Becker Tjus, Julia [Fakultät für Physik and Astronomie, Theoretische Physik I, Ruhr-Universität Bochum, D-44780 Bochum (Germany)

    2013-12-20

    Many models of ultra-high energy cosmic-ray production involve acceleration in linear accelerators located in gamma-ray bursts, magnetars, or other sources. These transient sources have short lifetimes, which necessitate very high accelerating gradients, up to 10{sup 13} keV cm{sup –1}. At gradients above 1.6 keV cm{sup –1}, muons produced by hadronic interactions undergo significant acceleration before they decay. This muon acceleration hardens the neutrino energy spectrum and greatly increases the high-energy neutrino flux. Using the IceCube high-energy diffuse neutrino flux limits, we set two-dimensional limits on the source opacity and matter density, as a function of accelerating gradient. These limits put strong constraints on different models of particle acceleration, particularly those based on plasma wake-field acceleration, and limit models for sources like gamma-ray bursts and magnetars.

  17. EM Structure Based and Vacuum Acceleration

    SciTech Connect (OSTI)

    Colby, E.R.; /SLAC

    2005-09-27

    The importance of particle acceleration may be judged from the number of applications which require some sort of accelerated beam. In addition to accelerator-based high energy physics research, non-academic applications include medical imaging and treatment, structural biology by x-ray diffraction, pulse radiography, cargo inspection, material processing, food and medical instrument sterilization, and so on. Many of these applications are already well served by existing technologies and will profit only marginally from developments in accelerator technology. Other applications are poorly served, such as structural biology, which is conducted at synchrotron radiation facilities, and medical treatment using proton accelerators, the machines for which are rare because they are complex and costly. Developments in very compact, high brightness and high gradient accelerators will change how accelerators are used for such applications, and potentially enable new ones. Physical and technical issues governing structure-based and vacuum acceleration of charged particles are reviewed, with emphasis on practical aspects.

  18. Elucidating mechanisms of accelerated neurological aging

    E-Print Network [OSTI]

    Greenhall, Jennifer Anne

    2008-01-01

    C. (2005). Mechanisms of aging in senescence- accelerated2.2 Strain-specific aging gene-expression profiles…………………..C. (2005). Mechanisms of aging in senescence-accelerated

  19. LASER-PLASMA-ACCELERATOR-BASED GAMMA GAMMA COLLIDERS

    E-Print Network [OSTI]

    Schroeder, C. B.

    2010-01-01

    LASER-PLASMA-ACCELERATOR-BASED ?? COLLIDERS ? C. B.linear col- lider based on laser-plasma-accelerators arediscussed, and a laser-plasma-accelerator-based gamma-

  20. Advanced Computing Tools and Models for Accelerator Physics

    E-Print Network [OSTI]

    Ryne, Robert D.

    2008-01-01

    MODELS FOR ACCELERATOR PHYSICS * Robert D. Ryne, Lawrencetools for accelerator physics. Following an introduction Icomputing in accelerator physics. INTRODUCTION To begin I

  1. The final technical report of the CRADA, Medical Accelerator Technology

    E-Print Network [OSTI]

    Chu, William T.; Rawls, John M.

    2000-01-01

    the marketplace. Final Technical Report: Medical AcceleratorPTCOG XXV, 1996. Final Technical Report: Medical AcceleratorFinal Technical Report: Medical Accelerator Technology (SC-

  2. Plasma Wakefield Acceleration: How it Works

    SciTech Connect (OSTI)

    2014-11-05

    This animation explains how electrons can be efficiently accelerated to high energy using wakes created in a plasma.

  3. Comments on backreaction and cosmic acceleration

    SciTech Connect (OSTI)

    Kolb, Edward W.; Matarrese, Sabinio; Riotto, Antonion; /CERN

    2005-11-01

    In this brief WEB note we comment on recent papers related to our paper ''On Acceleration Without Dark Energy''.

  4. Berkeley Lab Computing Sciences: Accelerating Scientific Discovery

    E-Print Network [OSTI]

    Hules, John A

    2009-01-01

    Chemistry Fusion Energy Materials Science Accelerating Scienti?c Discovery High Energy Physics Nuclear Physics Visualization & Analytics

  5. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, W.M.

    1992-12-29

    Improvement in voltage regulation in a linear induction accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core is disclosed. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance. 4 figs.

  6. Voltage regulation in linear induction accelerators

    DOE Patents [OSTI]

    Parsons, William M. (Santa Fe, NM)

    1992-01-01

    Improvement in voltage regulation in a Linear Induction Accelerator wherein a varistor, such as a metal oxide varistor, is placed in parallel with the beam accelerating cavity and the magnetic core. The non-linear properties of the varistor result in a more stable voltage across the beam accelerating cavity than with a conventional compensating resistance.

  7. 205:20130828.1126 Dust Accelerator Laboratory

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    205:20130828.1126 Dust Accelerator Laboratory Through the Dust Accelerator Laboratory, LASP, and laboratory experiments. Our goal is to address basic physical and applied exploration questions, including Laboratory is home to world-class facilities, including the largest dust accelerator in the world

  8. The US Muon Accelerator Program

    SciTech Connect (OSTI)

    Torun, Y.; Kirk, H.; Bross, A.; Geer, Steve; Shiltsev, Vladimir; Zisman, M.; /LBL, Berkeley

    2010-05-01

    An accelerator complex that can produce ultra-intense beams of muons presents many opportunities to explore new physics. A facility of this type is unique in that, in a relatively straightforward way, it can present a physics program that can be staged and thus move forward incrementally, addressing exciting new physics at each step. At the request of the US Department of Energy's Office of High Energy Physics, the Neutrino Factory and Muon Collider Collaboration (NFMCC) and the Fermilab Muon Collider Task Force (MCTF) have recently submitted a proposal to create a Muon Accelerator Program that will have, as a primary goal, to deliver a Design Feasibility Study for an energy-frontier Muon Collider by the end of a 7 year R&D program. This paper presents a description of a Muon Collider facility and gives an overview of the proposal.

  9. The Radiological Research Accelerator Facility

    SciTech Connect (OSTI)

    Hall, E.J.; Marino, S.A.

    1993-05-01

    The Radiological Research Accelerator Facility (RARAF) is based on a 4-MV Van de Graaff accelerator, which is used to generate a variety of well-characterized radiation beams for research in radiobiology, radiological physics, and radiation chemistry. It is part of the Center for Radiological Research (CRR) - formerly the Radiological Research Laboratory of Columbia University, and its operation is supported as a National Facility by the US Department of Energy (DOE). As such, RARAF is available to all potential users on an equal basis and scientists outside the CRR are encouraged to submit proposals for experiments at RARAF. The operation of the Van de Graaff is supported by the DOE, but the research projects themselves must be supported separately. This report provides a listing and brief description of experiments performed at RARAF during the May 1, 1992 through April 30, 1993.

  10. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 OutreachProductswsicloudwsicloudden Documentation DataStreamsTotalproposalsAboutAccelerating

  11. Centrifugal (centripetal) and Coriolis velocities and accelerations in spaces with affine connections and metrics as models of space-time

    E-Print Network [OSTI]

    Sawa Manoff

    2003-09-09

    The notions of centrifugal (centripetal) and Coriolis velocities and accelerations are introduced and considered in spaces with affine connections and metrics used as models of space or of space-time. It is shown that these types of velocities and accelerations are generated by the relative motions between mass elements in a continuous media or of particles. The velocities and accelerations are closely related to the kinematic characteristics of the relative velocity and of the relative acceleration. The relation between the centrifugal (centripetal) velocity and the Hubble law is found. The centrifugal (centripetal) acceleration could be interpreted as gravitational acceleration as it has been done in the Einstein theory of gravitation. This fact could be used as a basis for working out of new gravitational theories in spaces with affine connections and metrics.

  12. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  13. Analytical tools in accelerator physics

    SciTech Connect (OSTI)

    Litvinenko, V.N.

    2010-09-01

    This paper is a sub-set of my lectures presented in the Accelerator Physics course (USPAS, Santa Rosa, California, January 14-25, 2008). It is based on my notes I wrote during period from 1976 to 1979 in Novosibirsk. Only few copies (in Russian) were distributed to my colleagues in Novosibirsk Institute of Nuclear Physics. The goal of these notes is a complete description starting from the arbitrary reference orbit, explicit expressions for 4-potential and accelerator Hamiltonian and finishing with parameterization with action and angle variables. To a large degree follow logic developed in Theory of Cyclic Particle Accelerators by A.A.Kolmensky and A.N.Lebedev [Kolomensky], but going beyond the book in a number of directions. One of unusual feature is these notes use of matrix function and Sylvester formula for calculating matrices of arbitrary elements. Teaching the USPAS course motivated me to translate significant part of my notes into the English. I also included some introductory materials following Classical Theory of Fields by L.D. Landau and E.M. Liftsitz [Landau]. A large number of short notes covering various techniques are placed in the Appendices.

  14. Progress in nuclear data for accelerator applications in Europe

    E-Print Network [OSTI]

    Frank Goldenbaum

    2007-09-19

    This contribution essentially will be divided into two parts: First, a brief overview on topical accelerator applications in Europe, a selection of the European 6th framework accelerator and ADS programs will be given, second the emphasis will be put on selected nuclear data required for designing facilities planned or even under construction. In this second part the progress on nuclear data in the EU FP6 Integrated Project IP-EUROTRANS (specifically NUDATRA) is summarized. For proton-induced reactions in the energy range of 200-2500 MeV experimental data and model comparisons are shown on total and double differential production cross sections of H- and He-isotopes and intermediate mass fragments.

  15. Accelerated learning approaches for maintenance training

    SciTech Connect (OSTI)

    Erickson, E.J.

    1991-01-01

    As a training tool, Accelerated Learning techniques have been in use since 1956. Trainers from a variety of applications and disciplines have found success in using Accelerated Learning approaches, such as training aids, positive affirmations, memory aids, room arrangement, color patterns, and music. Some have thought that maintenance training and Accelerated Learning have nothing in common. Recent training applications by industry and education of Accelerated Learning are proving very successful by several standards. This paper cites available resource examples and challenges maintenance trainers to adopt new ideas and concepts to accelerate learning in all training setting. 7 refs.

  16. High-energy cosmic-ray acceleration

    E-Print Network [OSTI]

    Bustamante, M; de Paula, W; Duarte Chavez, J A; Gago, A M; Hakobyan, H; Jez, P; Monroy Montañez, J A; Ortiz Velasquez, A; Padilla Cabal, F; Pino Rozas, M; Rodriguez Patarroyo, D J; Romeo, G L; Saldaña-Salazar , U J; Velasquez, M; von Steinkirch, M

    2010-01-01

    We briefly review the basics of ultrahigh-energy cosmic-ray acceleration. The Hillas criterion is introduced as a geometrical criterion that must be fulfilled by potential acceleration sites, and energy losses are taken into account in order to obtain a more realistic scenario. The different available acceleration mechanisms are presented, with special emphasis on Fermi shock acceleration and its prediction of a power-law cosmic-ray energy spectrum. We conclude that first-order Fermi acceleration, though not entirely satisfactory, is the most promising mechanism for explaining the ultra-high-energy cosmic-ray flux.

  17. Accelerator Technology Division progress report, FY 1992

    SciTech Connect (OSTI)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  18. International Journal of Mass Spectrometry 267 (2007) 8997 One-photon mass-analyzed threshold ionization spectroscopy (MATI)

    E-Print Network [OSTI]

    Kim, Myung Soo

    2007-01-01

    ionization (MATI) spectrum of cis-C2H2Cl2 was obtained by using vacuum ultravio- let radiation generated in the spectrum was 9.6578 ± 0.0006 eV. Ten vibrational fundamentals for the cation were identified. Most are ionized by electric field pulse. ZEKE and MATI spectra are obtained by recording the electron and ion

  19. Expanding the toolbox of tandem mass spectrometry with algorithms to identify mass spectra from more than one peptide

    E-Print Network [OSTI]

    Wang, Jian

    statistical signi?cance of PSM, we propose to extend the MS-for a Peptide-spectrum-match (PSM) as the sum of scores ofPPSM is converted into a PSM by considering the ?rst peptide

  20. FFAG ACCELERATOR PROTON DRIVER FOR NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2005-06-21

    This paper is the summary of a conceptual study of a Proton Driver for Neutrino Factory based on the use of a Fixed-Field Alternating-Gradient (FFAG) Accelerator. The required proton energy range for an optimum neutrino production is 5 to 12 GeV. This can be accomplished with a group of three concentric rings each with 807 m circumference [1]. FFAG Accelerators [2] have the capability to accelerate charged particles over a large momentum range ({+-}30-50%) and the feature of constant bending and focusing fields. Particles can be accelerated very fast at the rate given by the accelerating field of RF cavities placed in proper locations between magnets. The performance of FFAG accelerators is to be placed between that of Super-Conducting Linear Accelerators (SCL), with which they share the fast acceleration rate, and Rapid-Cycling Synchrotrons (RCS), as they allow the beam to re-circulate over fewer revolutions. Brookhaven National Laboratory is involved in the study of feasibility of FFAG Accelerators to accelerate intense beams of protons in the GeV energy range for a variety of applications the most important of which is the Upgrade of the Alternating Gradient Synchrotron (AGS) with a new FFAG injector [3] accelerating from 400 MeV to 1.5 GeV. The ring would be housed in the AGS tunnel and has henceforth a circumference of 807 m.