National Library of Energy BETA

Sample records for accelerator laboratory thomas

  1. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards Thomas Jefferson National Accelerator ...

  2. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards ...

  3. Thomas Jefferson National Accelerator Facility Technology Marketing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summaries - Energy Innovation Portal Thomas Jefferson National Accelerator Facility Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the Thomas Jefferson National Accelerator Facility (TJNAF). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. Thomas Jefferson National Accelerator Facility 3 Technology Marketing Summaries Category Title and

  4. Independent Oversight Inspection, Thomas Jefferson National Accelerator Facility- August 2008

    Broader source: Energy.gov [DOE]

    Inspection of Environment, Safety and Health Programs at the Thomas Jefferson National Accelerator Facility

  5. Thomas Veselka | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas R. Cech, RNA, and Ribozymes Resources with Additional Information * Videos Thomas Cech Courtesy of Glenn Asakawa/ University of Colorado Thomas R. Cech conducted ground-breaking research that ‘established that RNA, like a protein, can act as a catalyst in living cells.'1 'Prior to Cech's research, most scientists believed that proteins were the only catalysts in living cells. In 1982, his research group showed that an RNA molecule from Tetrahymena, a single-celled pond organism, cut and

  6. Thomas Wallner | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory's Omnivorous Engine Argonne National Laboratory's Omnivorous Engine Browse by Topic Energy Energy efficiency Vehicles Alternative fuels Automotive engineering Biofuels Diesel Fuel economy Fuel injection Heavy-duty vehicles Hybrid & electric vehicles Hydrogen & fuel cells Internal combustion Powertrain research Vehicle testing Building design Manufacturing Energy sources Renewable energy Bioenergy Solar energy Wind energy Fossil fuels Oil Nuclear energy Nuclear

  7. Summary of contamination control practices at Thomas Jefferson National Accelerator Facility

    SciTech Connect (OSTI)

    R. May; S. Schwahn; K. Welch

    1997-01-01

    It is often the belief that electron accelerators are clean machines, producing little or no measurable removable contamination. However, at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), a 200 {micro}A continuous wave, 4 GeV electron accelerator, there are several types of contamination that may be found: external contamination of beamline components near high beam loss points, radionuclides produced from the spallation of oxygen in air, and internal contamination of water systems used to cool beamline components. The last two categories, however, are fairly well understood and are not discussed herein. The Jefferson Lab Radiation Control Group has developed a comprehensive set of contamination control practices to identify and control personnel exposure to these radionuclides.

  8. SLAC National Accelerator Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC National Accelerator Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the SLAC National Accelerator Laboratory (SLAC). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. SLAC National Accelerator Laboratory 2 Technology Marketing Summaries Category Title and Abstract Laboratories Date Industrial

  9. Accelerated Laboratory Tests Using Simultaneous UV, Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Accelerated Laboratory Tests Using Simultaneous UV, Temperature, ...

  10. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM ...

  11. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  12. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  13. Numerical and laboratory simulations of auroral acceleration

    SciTech Connect (OSTI)

    Gunell, H.; De Keyser, J.; Mann, I.

    2013-10-15

    The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.

  14. I Fermi National Accelerator Laboratory I I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    b .?.? ... . . 1- \r I Fermi National Accelerator Laboratory I I FERMILAB-Cdnf-76 159 -EXP 2 020,000 2 02 2.000 I 1 (Submitted to the Neutrino I 9 76 Conference Aachen, Germany June 8r-13, -1976) * I 4 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the

  15. Los Alamos National Laboratory Accelerates Transuranic Waste Shipments:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan | Department of Energy Los Alamos National Laboratory Accelerates Transuranic Waste Shipments: Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan Los Alamos National Laboratory

  16. NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon-Capture Technologies | Department of Energy NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies April 2, 2014 - 9:31am Addthis NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies Check out NETL's latest video on CCSI. In 2011, the Office of Fossil Energy's National Energy Technology Laboratory (NETL)

  17. Thomas selected as American Chemical Society Fellow

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas selected as ACS Fellow Thomas selected as American Chemical Society Fellow Kimberly Thomas has become the first Los Alamos researcher to be named a Fellow. August 16, 2011 Kimberly Thomas Kimberly Thomas Contact James Rickman Communications Office (505) 665-9203 Email Scientist is first from LANL to receive prestigious honor LOS ALAMOS, New Mexico, August 16, 2011-Kimberly Thomas, director of Los Alamos National Laboratory's Science and Technology Base Programs Office, has become the

  18. Thomas Davis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Davis Thomas Davis tdavis.jpg Thomas (Tom) A. Davis Environmental Systems, CSE TADavis@lbl.gov Phone: (510) 486-4524 Fax: (510) 486-4316 1 Cyclotron Road Mail Stop 943-256 Berkeley, CA 94720 Last edited: 2016-04-29 11:34:5

  19. Secretary Chu Speaks at SLAC National Accelerator Laboratory

    Broader source: Energy.gov [DOE]

    On Friday, August 24, 2012, Secretary Chu gave a speech commemorating the 50th Anniversary of SLAC National Accelerator Laboratory. You can find the powerpoint presentation below.

  20. Accelerator Design and Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Design and Development Accelerator Design and Development Scientists around the world rely on particle accelerators to yield insights on the structure and function of materials at and below the atomic scale. These accelerators range in size from portable machines for producing medical isotopes to enormous miles-wide colliders for high-energy physics. In order to further develop our understanding of matter and the fabric of the cosmos, we must continue to expand the horizon of

  1. FY 2012 SC Laboratory Performance Report Cards | U.S. DOE Office...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... Thomas Jefferson National Accelerator Facility Last modified: 12162015 12:00:52

  2. Laboratory announces selection of Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Laboratory announces selection of Venture Acceleration Fund recipients Simtable and Southwest Bio Fuels as recipients of $100,000 awards from the Los Alamos National Security, LLC Venture Acceleration Fund. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  3. Fermi National Accelerator Laboratory September 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    years, is an expected byproduct of accelerator operations at Fermilab. As part of our environmental monitoring program, we regularly sample the water discharged into the creeks...

  4. Rollin Thomas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rollin Thomas AAEAAQAAAAAAAAWkAAAAJDY0NjczODVjLTMyMGMtNDhiYy1iNTFhLWY3ZmFhY2E0MzdmMg Rollin Thomas Big Data Architect Data and Analytics Services rcthomas@lbl.gov Phone: ...

  5. Fermi National Accelerator Laboratory November 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an international collaboration between U.S. universities, Fermilab in Illinois, Brookhaven National Laboratory in New York, and nine international labs and universities. It is...

  6. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Authors: Merrill, Frank E. [1] ; Borozdin, Konstantin N. [1] ; Garnett, Robert W. [1] ; Mariam, Fesseha G. [1] ; Saunders, Alexander [1] ; Walstrom, Peter L. [1] ; Morris, Christopher [1] + Show Author Affiliations Los Alamos National

  7. Preliminary Notice of Violation, SLAC National Accelerator Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEA-2009-01 | Department of Energy SLAC National Accelerator Laboratory - WEA-2009-01 Preliminary Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 April 3, 2009 This letter refers to the Department of Energy's (DOE) Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances associated with the September 13, 2007 On April 3, 2009, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of

  8. Fermi National Accelerator Laboratory June 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intense beam of neutrinos, particles that may hold the key to understanding why the universe is made of matter. Using the cosmos as a laboratory, Fermilab scientists explore dark...

  9. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards SLAC National Accelerator Laboratory Print ...

  10. Fermi National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards Fermi National Accelerator Laboratory Print ...

  11. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card ...

  12. Fermi National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card ...

  13. U.S. Department of Energy Fermi National Accelerator Laboratory

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) has replaced old equipment and reduced energy consumption through a partnership with its electric utility, Commonwealth Edison. Fermilab upgraded the centralized cooling system and separated the system into two segments — a "comfort system" to cool the employee office space and a "process system" for the equipment and accelerators. Backup cooling capacity is provided and cooling can be shifted between the process and comfort systems when necessary. The new 4500-ton cooling system is expected to use 40% less energy and is free of ozone-depleting chlorofluorocarbons (CFCs).

  14. Thomas Willems | Center for Gas SeparationsRelevant to Clean...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Willems Previous Next List Thomas Willems Formerly: Undergraduate Researcher, Computational Research Division, Lawrence Berkeley National Laboratory Presently: Graduate student,...

  15. SLAC National Accelerator Laboratory Technologies Available for Licensing -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories SLAC National Accelerator Laboratory Technologies

  16. Post-accelerator issues at the IsoSpin Laboratory

    SciTech Connect (OSTI)

    Chattopadhyay, S.; Nitschke, J.M. [eds.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.

  17. The cyclotron laboratory and the RFQ accelerator in Bern

    SciTech Connect (OSTI)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  18. Anthony Thomas accepts position of Chief Scientist and Theory Group Leader

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Jefferson Lab | Jefferson Lab Anthony Thomas accepts position of Chief Scientist and Theory Group Leader at Jefferson Lab Dr. Anthony Thomas Dr. Anthony Thomas Anthony Thomas accepts position of Chief Scientist and Theory Group Leader at Jefferson Lab December 3, 2003 The Department of Energy's Thomas Jefferson National Accelerator Facility is pleased to announce that Dr. Anthony Thomas has accepted the position of Chief Scientist and Head of the Theory Group at Jefferson Lab. As Chief

  19. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    SciTech Connect (OSTI)

    Not Available

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs.

  20. Iltt: Fermi National Accelerator Laboratory FERMILAB-Pub-75/44-THY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iltt: Fermi National Accelerator Laboratory FERMILAB-Pub-75/44-THY June 1975 Weak Interaction Models with New Quarks and Right-Handed Currents" F.A. WILCZEK and A. ZEE t Fermi National Accelerator Laboratory,*Batavia, Illinois 60510 and Joseph Henry Laboratories Princeton University, Princeton, New Jersey 08540 and R. L. KINGSLEY and S. B. TREIMAN Joseph Henry Laboratories Princeton University, Princeton, New Jersey 08540 ABSTRACT We discuss various weak interaction issues for a general

  1. ASYMPTOTICALLY FREE GAUGE THEORIES - I* David J. Gross+ National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national accelerator laboratory NAL-PUB-73/49-THY July, 1973 ASYMPTOTICALLY FREE GAUGE THEORIES - I* David J. Gross+ National Accelerator Laboratory and Joseph Henry Laboratories Princeton University Princeton, New Jersey 08540 and Frank Wilczek Joseph Henry Laboratories Princeton University Princeton, New Jersey 08540 * Research supported in part by the United States Air Force Office of Scientific Research under Contract F-44620-71-6-0180 t Alfred P. Sloan Foundation Research Fellow 2% Oaerated

  2. Thomas Wallner | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wallner Section Leader - Fuels, Engine and Aftertreatment Research News Argonne works with marine industry on new fuel Argonne working with Ford and FCA US to study dual-fuel...

  3. Thomas Peterka | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data. His work has led to two best paper awards and publications in ACM SIGGRAPH, IEEE VR, IEEE TVCG, and ACMIEEE SC, among others. Peterka received his Ph.D. in computer...

  4. Fermi National Accelerator Laboratory FERMILAB-Conf-95/276-E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermi National Accelerator Laboratory FERMILAB-Conf-95/276-E CDF and D0 Observation of the Top Quark S.B. Kim Presented for the CDF and D0 Collaborations Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 Randall Laboratory University of Michigan Ann Arbor, Michigan 48109 August 1995 Published Proceedings from the 15th International Conference on Physics in Collision, Cracow, Poland, June 8-10, 1995 Operated by Universities Research Association Inc. under Contract No.

  5. Venkatraman Ramakrishnan, Thomas A. Steitz, Ada E. Yonath, and Ribosome

    Office of Scientific and Technical Information (OSTI)

    Venkatraman Ramakrishnan, Thomas A. Steitz, Ada E. Yonath, and Ribosome Resources with Additional Information V. Ramakrishnan Thomas A. Steitz Ada E. Yonath Venkatraman Ramakrishnan Thomas A. Steitz Ada E. Yonath Courtesy of Brookhaven National Laboratory Courtesy of Brookhaven National Laboratory Courtesy of UCLA Chemistry & Biochemistry Department/William Short Photography 'The ribosome is a complex particle that makes the thousands of proteins that are required for the structure and

  6. Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories

    SciTech Connect (OSTI)

    Casey,R.; Haas, E.; Hseuh, H-C.; Kane, S.; Lessard, E.; Sharma, S.; Collins, J.; Toter, W. F.; Olis, D. R.; Pushka, D. R.; Ladd, P.; Jobe, R. K.

    2008-09-09

    Vacuum vessels, including evacuated chambers and insulated jacketed dewars, can pose a potential hazard to equipment and personnel from collapse, rupture due to back-fill pressurization, or implosion due to vacuum window failure. It is therefore important to design and operate vacuum systems in accordance with applicable and sound engineering principles. 10 CFR 851 defines requirements for pressure systems that also apply to vacuum vessels subject to back-fill pressurization. Such vacuum vessels are potentially subject to the requirements of the American Society of Mechanical Engineers (ASME) Pressure Vessel Code Section VIII (hereafter referred to as the 'Code'). However, the scope of the Code excludes vessels with internal or external operating pressure that do not exceed 15 pounds per square inch gauge (psig). Therefore, the requirements of the Code do not apply to vacuum systems provided that adequate pressure relief assures that the maximum internal pressure within the vacuum vessel is limited to less than 15 psig from all credible pressure sources, including failure scenarios. Vacuum vessels that cannot be protected from pressurization exceeding 15 psig are subject to the requirements of the Code. 10 CFR 851, Appendix A, Part 4, Pressure Safety, Section C addresses vacuum system requirements for such cases as follows: (c) When national consensus codes are not applicable (because of pressure range, vessel geometry, use of special materials, etc.), contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local code. Measures must include the following: (1) Design drawings, sketches, and calculations must be reviewed and approved by a qualified independent design professional (i.e., professional engineer). Documented organizational peer review is acceptable. (2) Qualified personnel must be used to perform examinations and inspections of materials, in-process fabrications, non-destructive tests, and acceptance test. (3) Documentation, traceability, and accountability must be maintained for each unique pressure vessel or system, including descriptions of design, pressure conditions, testing, inspection, operation, repair, and maintenance. The purpose of this guideline is to establish a set of expectations and recommendations which will satisfy the requirements for vacuum vessels in general and particularly when an equivalent level of safety as required by 10 CFR 851 must be provided. It should be noted that these guidelines are not binding on DOE Accelerator Laboratories and that other approaches may be equally acceptable in addressing the Part 851 requirements.

  7. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    SciTech Connect (OSTI)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  8. Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SLAC National Accelerator Laboratory - WEA-2009-01 Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 September 3, 2009 Issued to Stanford University related to a PVC Pipe Explosion at the SLAC National Accelerator Laboratory On September 3, 2009, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement issued a Final Notice of Violation (WEA-2009-01) to Stanford University for violations of 10 C.F.R. 851

  9. NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the laboratory to the powerplant more quickly, at a lower cost, and with reduced risk than would be accomplished following more traditional research and development pathways. ...

  10. Thomas Johnson | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thomas Johnson About Us Thomas Johnson - Technical Writer for the Office of Fossil Energy Most Recent An Important Step Forward for CCUS November 20

  11. Accelerating Geothermal Research (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating Geothermal Research Supporting a Cleaner Environment NREL is a strategic partner of the U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO). NREL teams are leading the research and deployment efforts through various projects. Summaries of a few key activities follow. Geothermal-Solar Hybrids: The objective is to examine the viability of using solar thermal heat combined with geother- mal energy to improve plant efficiency and reduce cost. This project, performed by

  12. Iran Thomas Auditorium, 8600

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    May 3, 2012 4:00 pm Iran Thomas Auditorium, 8600 Understanding the Behavior of Nanoscale Magnetic Heterostructures: How Microscopy Can Help Amanda K. Petford-Long Center for...

  13. Thomas Wheeler | Department of Energy

    Energy Savers [EERE]

    Thomas Wheeler Thomas Wheeler Phone (202) 586-8481 Room 4F-033 E-mail thomas.wheeler@hq.doe.gov Description Departmental staffing budget; PMA scorecard; hiring metrics Last Name Wheeler First Name THomas Title Director, Workforce Analysis & Planning Division

  14. Accelerator Radioisotopes Save Lives: Part II Seaborg Institute for Transactinium Science/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quarter 2009/1st Quarter 2010 4th Quarter 2009/1st Quarter 2010 Accelerator Radioisotopes Save Lives: Part II Seaborg Institute for Transactinium Science/Los Alamos National Laboratory Accelerator Isotopes Save Lives: Part II Actinide Research Quarterly Actinide Research Quarterly LANL's Role in the DOE National Isotope Program 1 The Isotope Production Facility at TA-53 6 Radioisotopes for Medical Applications 11 Radionuclide Generators: Portable Sources of Medical Isotopes 15 Recovery and Uses

  15. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL's use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  16. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL`s use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  17. Fermi National Accelerator Laboratory FERMILAB-Conf-96/099E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it Fermi National Accelerator Laboratory FERMILAB-Conf-96/099E CoK)C,. WoO3P73 -- 3 CDF CDF Top Physics G. F. Tartarelli For the CDF Collaboration Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 I.N.F.N., Sezione di Milano 1-20133 Milano (MI), Italy MASTER May 1996 Proceedings of XXXIst Recontres de Moriond, Electroweak Interactions and Unified Theories, Les Arcs, France, March 16-23, 1996. Operated by Universities Research Association Inc. under Contract No.

  18. Installation and commissioning of the new Fermi National Accelerator Laboratory H- Magnetron

    SciTech Connect (OSTI)

    Bollinger, D. S.

    2014-02-15

    The Fermi National Accelerator Laboratory (FNAL) 40 year old Cockcroft-Walton 750 keV injectors with slit aperture magnetron ion sources have been replaced with a circular aperture magnetron, Low Energy Beam Transport, Radio Frequency Quadrupole Accelerator, and Medium Energy Beam Transport, as part of the FNAL Proton Improvement Plan. The injector design is based on a similar system at Brookhaven National Laboratory. The installation, commissioning efforts, and source operations to date will be covered in this paper along with plans for additional changes to the original design to improve reliability by reducing extractor spark rates and arc current duty factor.

  19. ORISE: Faculty Research Experiences - Dr. Thomas Liu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Liu Professor and student team develops flexible, free alternative to proprietary data analytics software Dr. Thomas Liu and Monty Bains Dr. Thomas Liu and Monty Bains...

  20. Thomas R. Cech, RNA, and Ribozymes

    Office of Scientific and Technical Information (OSTI)

    Thomas R. Cech, RNA, and Ribozymes Resources with Additional Information Videos Thomas Cech Courtesy of Glenn Asakawa University of Colorado Thomas R. Cech conducted...

  1. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A.

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dome 231 Permacon will be reconfigured to remediate and repackage oversized containers. Actions are underway to stage the inventory in a manner that facilitiates handling and processing, and builds a backlog at key process steps to improve efficienty and minimize the impact of operational slowdown elsewhere in the process. Several initiatives will improve safety and strengthen disciplined operations and compliance with established requirements. Retrieval is a critical element in dispositioning the below-ground contact-handled and remote-handled transuranic waste inventory and will be subcontracted to a firm(s) with the experience and specialized capability to retrieve the contact-handled and remote-handled inventories. Performance specifications consider likely container integrity issues and anticipated challenges recoveirng the waste from storage in pits, trenches, and lined shafts.

  2. EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 E-mail: dave.osugi@sso.science.doe.gov

  3. Thomas Jaramillo - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thomas jaramillo Principal Investigator and Research Thrust Coordinator Email: jaramillo@stanford.edu Dr. Jaramillo's research interests center around: energy and catalysis, engineering surface and bulk materials chemistry in relation to energy conversion reactions-production, utilization, and storage. General themes include nano-scale effects in heterogeneous catalysis and electro-catalysis. Topics include water electrolysis, fuel cell electrocatalysis (oxygen reduction, fuel oxidation,

  4. Steven Thomas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steven Thomas About Us Dr. Steven Thomas - Feedstocks Technology Manager, Bioenergy Technologies Office Dr. Steven R. Thomas serves as the Feedstock Supply and Logistics Team Lead for the Bioenergy Technologies Office. Most Recent Improving the Way We Harvest & Deliver Biofuels Crops May 24 What in the World Are "Feedstock Logistics"? December 9

  5. Federal Laboratory Multiplies Its Research Capacity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Laboratory Multiplies Its Research Capacity Federal Laboratory Multiplies Its Research Capacity September 21, 2000 Thanks to high-tech development work and some creative tuning and tweaking, the $650 million Thomas Jefferson National Accelerator Facility in Newport News, Va., can now accelerate beams of electrons to 6 billion electron volts - more energy by half than taxpayers originally paid for. With higher-energy electron beams, researchers using this U.S. Department of Energy

  6. India Solar Resource Data: Enhanced Data for Accelerated Deployment (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires detailed understanding of the solar resource available at various locations. Under a bilateral partnership between the United States and India- the U.S.-India Energy Dialogue-the National Renewable Energy Laboratory (NREL) has developed solar maps and data for India to provide 15 years of hourly information by

  7. EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California

    Broader source: Energy.gov [DOE]

    DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

  8. Jefferson Laboratory Findings Excite Theoreticians, Experimentatlists |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Laboratory Findings Excite Theoreticians, Experimentatlists Jefferson Laboratory Findings Excite Theoreticians, Experimentatlists March 1999 Seemingly reasonable assumptions define the human view of the world. But ruled of thumb can mislead - or be altogether incorrect. Fortunately, in physics, most assumptions can be tested. Those that don't measure up are amended. An experiment at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) has

  9. Thomas Pauling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thomas Pauling About Us Thomas Pauling Director, Office of Business Operations Thomas Pauling became the Director of the LM Office of Business Operations (OBO) in March 2016. Mr. Pauling has also served LM as Director of Site Operations, Environment Team Leader, and staff-level Site Manager. Prior to 2004 he worked 11 years for DOE's Environmental Management program at the Weldon Spring Site in Missouri, managing projects and environmental compliance during the site's cleanup phase, while

  10. Profile for Thomas Charles Terwilliger

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Charles Terwilliger Profile Pages View homepages for scientists and researchers. Explore potential collaborations and project opportunities. Search the extensive range of capabilities by keyword to quickly find who and what you are looking for. submit Email Phone (505) 667-0072 Thomas Charles Terwilliger Thomas Terwilliger Expertise Follow Tom Terwilliger on: ResearchGate LinkedIn Twitter Macromolecular X-ray crystallography - Development of algorithms and software for determining crystal

  11. NERSC Rollin Thomas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Analytics at NERSC Rollin Thomas rcthomas@lbl.gov NERSC Data and Analytics Services March 21, 2016 NERSC User Group Meeting Introduction ● Data Analytics: The key to unlocking insight from massive and complex data sets. ● NERSC supports a variety of general-purpose analytics tools and services. ● This talk will cover: o Data analytics tools available on the Cray machines. o Other analytics services enabled through the web. o How to get help with data analytics at NERSC. o What's coming?

  12. NREL: Energy Analysis - Thomas Jenkin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Member - International Association of Energy Economics Member - American Physical Society ... Economics of Energy and Environmental Policy, 1(2), 47-6, March 2012. Thomas Jenkin, ...

  13. Simplified P N Equations Steven P. Hamilton, Thomas M. Evans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient Solution of the Simplified P N Equations Steven P. Hamilton, Thomas M. Evans Oak Ridge National Laboratory December 29, 2014 CASL-U-2014-0352-000 Efficient solution of the simplified P N equations $ Steven P. Hamilton a,1,∗ , Thomas M. Evans a,1 a Oak Ridge National Laboratory, 1 Bethel Valley Rd., Oak Ridge, TN 37831 U.S.A. Abstract In this paper we show new solver strategies for the multigroup SP N equa- tions for nuclear reactor analysis. By forming the complete matrix over space,

  14. tkales | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    tkales Ames Laboratory Profile Thomas Ales Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: tkales@iastate.edu

  15. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect (OSTI)

    Weathersby, S. P.; Brown, G.; Centurion, M.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K.; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; Nguyen, M. N.; Reid, A. H.; Shen, X.; Sokolowski-Tinten, K.; Vecchione, T.; Vetter, S. L.; Wu, J.; Yang, J.; Dürr, H. A.; Wang, X. J.

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  16. Thomas G. Hinton | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    human and ecological risk analyses; remediation of radioactively contaminated wetlands; contaminant transport models; the use of radioactive tracers as a tool for...

  17. Plasma-Surface Interaction Research At The Cambridge Laboratory Of Accelerator Studies Of Surfaces

    SciTech Connect (OSTI)

    Wright, G. M.; Barnard, H. S.; Hartwig, Z. S.; Stahle, P. W.; Sullivan, R. M.; Woller, K. B.; Whyte, D. G.

    2011-06-01

    The material requirements for plasma-facing components in a nuclear fusion reactor are some of the strictest and most challenging facing us today. These materials are simultaneously exposed to extreme heat loads (20 MW/m{sup 2} steady-state, 1 GW/m{sup 2} in millisecond transients) and particle fluxes (>10{sup 24} m{sup -2} s{sup -1}) while also undergoing high neutron irradiation (10{sup 18} neutrons/m{sup 2} s). At the Cambridge Laboratory of Accelerator Studies of Surfaces (CLASS), many of the most important issues in plasma-surface interaction research, such as plasma-driven material erosion and deposition, material transport and irradiation and hydrogenic retention are investigated with the use of a 1.7 MV tandem ion accelerator. Ion-Beam Analysis (IBA) is used to investigate and quantify changes in materials due to plasma exposure and ion irradiation is used as a proxy for neutron irradiation to investigate plasma-surface interactions for irradiated materials. This report will outline the capabilities and current research activities at CLASS.

  18. NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FS-6A42-60650 * November 2013 NREL prints on paper that contains recycled content. NREL-Led Team Improves and Accelerates Battery Design The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineer- ing for Electric Drive Vehicle

  19. QER- Comment of Thomas Matsuda

    Broader source: Energy.gov [DOE]

    I highly oppose the proposed natural gas pipeline. I oppose the tariff on our electric bill to help pay for Kinder?Morgan's profits. I oppose the disruption of conservation land. I oppose the safety risks to our residents. I oppose the environmental impact. I oppose Kinder?Morgan's record as a business. Respectfully, Thomas Matsuda

  20. Thomas Moore | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Moore Thomas Moore Thomas Moore Thomas Moore Scientific Advisory Committee Chair E-mail: tom.moore@asu.edu Phone: 480.965.3308 Fax: 480.965.2747 Website: Arizona State University Chair - Scientific Advisory Committee Dr. Moore's research interests are the design and assembly of bio-designed constructs for solar energy conversion, catalysis and signal transduction. His work includes the incorporation of artificial antennas and reaction centers into model biological membranes to make solar

  1. EA-0969: Low Energy Accelerator Laboratory Technical Area 53 Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico to construct and operate a small research and development...

  2. Fermi National Accelerator Laboratory August 2015 The NO?A Neutrino...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists determine the role that ghostly particles called neutrinos played in the evolution of the cosmos. The world's best neutrino beam Fermilab's accelerator complex...

  3. Labs at-a-Glance: SLAC National Accelerator Laboratory | U.S...

    Office of Science (SC) Website

    Particle Physics Accelerator Science and Technology Condensed Matter Physics and Materials Science Chemical and Molecular Science Large Scale User Facilities Advanced ...

  4. Thomas Francis Miller III - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THOMAS FRANCIS MILLER III Principal Investigator Email: tfm@caltech.edu Dr. Miller's research group develops theoretical and computational methods to understand a variety of molecular processes, including enzyme catalysis, solar-energy conversion, dendrite formation in lithium batteries, and the dynamics of soft matter and biological systems. An important aspect of this challenge is that many systems exhibit dynamics that couple vastly different timescales and lengthscales. A primary goal of

  5. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Stanford Linear Accelerator Center A Mission Accomplishment (Quality and Productivity of R&D) B+ Construction and Operation of Research Facilities B- S&T ProjectProgram Management ...

  6. Richard Vilim Argonne National Laboratory Kenneth Thomas Idaho National Laboratory

    Energy Savers [EERE]

    Richard King About Us Richard King - Director, Solar Decathlon RK Madrid3.jpg The Solar Decathlon is an award-winning competition that challenges teams to design, build, and demonstrate high-performance net zero energy homes. The two-year program culminates with a competition at a single site where the houses are on public display in a Solar Village. Mr. King created the inspiring collegiate competition in 2000 and has been its director for the past 15 years. Starting with the Solar Decathlon

  7. EIS-0003: Proton-Proton Storage Accelerator Facility (Isabelle), Brookhaven National Laboratory, Upton, NY

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to analyze the significant environmental effects associated with construction and operation of the ISABELLE research facility to be built at Brookhaven National Laboratory.

  8. accelerators | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    accelerators

  9. VEE-0032- In the Matter of Thomas Oil Company

    Broader source: Energy.gov [DOE]

    On September 13, 1996, Thomas Oil Company (Thomas Oil) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application, Thomas...

  10. Accelerators, Electrodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    icon-science.jpg Accelerators, Electrodynamics National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  11. Performance of the accelerator driver of Jefferson Laboratory's free-electron laser

    SciTech Connect (OSTI)

    Bohn, C.L.; Benson, S.; Biallas, G.

    1999-04-01

    The driver of Jefferson Lab's kW-level infrared free-electron laser (FEL) is a superconducting, recirculating accelerator that recovers about 75% of the electron-beam power and converts it to radiofrequency power. In achieving first lasing, the accelerator operated straight-ahead to deliver 38 MeV, 1.1 mA cw current through the wiggler for lasing at wavelengths in the vicinity of 5 {mu}m. Just prior to first lasing, measured rms beam properties at the wiggler were 7.5{+-}1.5 mm-mr normalized transverse emittance, 26{+-}7 keV-deg longitudinal emittance, and 0.4{+-}0.1 ps bunch length which yielded a peak current of 60{+-}15A. The waste beam was then sent directly to a dump, bypassing the recirculation loop. Stable operation at up to 311 W cw was achieved in this mode. Commissioning the recirculation loop then proceeded. As of this Conference, the machine has recirculated cw average current up to 4 mA, and has lased cw with energy recover up to 710 W.

  12. Thomas Jefferson High School takes regional Science Bowl competition...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Results: Thomas Jefferson High School for Science and Technology The Thomas Jefferson High School for Science and Technology Science Bowl 2005 team includes (front...

  13. Thomas Jefferson High School for Science & Technology National...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thomas Jefferson High School for Science & Technology National Science Bowl Champion Thomas Jefferson High School for Science & Technology National Science Bowl Champion May 2,...

  14. National Laboratory] Basic Biological Sciences(59) Biological...

    Office of Scientific and Technical Information (OSTI)

    Achievements of structural genomics Terwilliger, Thomas C. Los Alamos National Laboratory Basic Biological Sciences(59) Biological Science Biological Science Abstract Not...

  15. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  16. Thomas R. Cech, RNA, and Ribozymes

    Office of Scientific and Technical Information (OSTI)

    Videos: Interview with Thomas R. Cech, Nobelprize.org (video) Tom Cech (CU BoulderHHMI): Discovering Ribozymes (video) The Double Life of RNA (videos) Enzymes That Are Not ...

  17. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  18. Thomas Mallouk > Pennsylvania State University > Scientific Advisory Board

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    > The Energy Materials Center at Cornell Thomas Mallouk Pennsylvania State University

  19. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  20. Workplace Charging Challenge Partner: Thomas College | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Thomas College Workplace Charging Challenge Partner: Thomas College Workplace Charging Challenge Partner: Thomas College Joined the Challenge: June 2015 Headquarters: Waterville, ME Charging Location: Waterville, ME Domestic Employees: 150 Thomas College is committed to supporting employee and student sustainability efforts. The College encourages employees to take the initiative to purchase plug-in electric vehicles (PEVs) by offering designated parking for PEVs. Thomas College installed one

  1. Thomas Jefferson National Accelerator Facility Technologies Available for

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Petroleum & Other Liquids Glossary › FAQS › Overview Data Summary Prices Crude reserves and production Refining and processing Imports/exports & movements Stocks Consumption/sales All petroleum & other liquids data reports Analysis & Projections Major Topics Most popular Consumption & sales Crude reserves & production Imports/exports & movements Prices Projections Recurring Refining & processing Stocks All reports Browse by Tag Alphabetical Frequency Tag Cloud

  2. Labs at-a-Glance: Thomas Jefferson National Accelerator Facility...

    Office of Science (SC) Website

    DHS Department of Homeland Security EERE DOE Office of Energy Efficiency and Renewable Energy EM DOE Office of Environmental Management NE DOE Office of Nuclear Energy NNSA ...

  3. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    of R&D) A Construction and Operation of Research Facilities A S&T ProjectProgram Management A- Contractor LeadershipStewardship A- Environment Safety and Health A- ...

  4. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    A- Mission Accomplishments (Quality and Productivity of R&D) A- Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor Leadership...

  5. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    of R&D) A Construction and Operation of Research Facilities A S&T ProjectProgram Management A- Contractor LeadershipStewardship A- Environment Safety and Health B+ ...

  6. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    A- Mission Accomplishments (Quality and Productivity of R&D) A- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management B Contractor Leadership...

  7. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    of R&D) A- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management B+ Contractor LeadershipStewardship B+ Environment Safety and Health B+ ...

  8. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    of R&D) B+ Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor LeadershipStewardship A- Environment Safety and Health B+ ...

  9. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    A- Mission Accomplishments (Quality and Productivity of R&D) B+ Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor Leadership...

  10. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    A Mission Accomplishments (Quality and Productivity of R&D) B+ Construction and Operation of Research Facilities A- S&T ProjectProgram Management A- Contractor Leadership...

  11. Venture Acceleration Fund awards spur investment in Northern New Mexico

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venkatraman Ramakrishnan, Thomas A. Steitz, Ada E. Yonath, and Ribosome Resources with Additional Information V. Ramakrishnan Thomas A. Steitz Ada E. Yonath Venkatraman Ramakrishnan Thomas A. Steitz Ada E. Yonath Courtesy of Brookhaven National Laboratory Courtesy of Brookhaven National Laboratory Courtesy of UCLA Chemistry & Biochemistry Department/William Short Photography 'The ribosome is a complex particle that makes the thousands of proteins that are required for the structure and

  12. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  13. SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a Diamondoid Tip Adding a Layer of Tiny Diamonds Could Boost the Power of Electron Guns Used in Research and Industry Prev Next Headlines SLAC's Stanley Brodsky Shares...

  14. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona, Arkansas, Deleware, Florida, Georgia, Iowa, Kansas, Missouri, Nebraska, New Hampshire, North Carolina, Oklahoma, Rhode Island, South Carolina, Tennesse, Wyoming...

  15. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Carolina, Rhode Island, Tennessee, Vermont 1,000,001-5,000,000 Indiana, Maryland, New Hampshire, Washington Colorado, District of Columbia, Florida, Massachusetts,...

  16. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Dakota, Texas Arizona, Connecticut, Indiana, Kansas, Maine, Missouri, Nebraska, New Hampshire, South Carolina, Washington, Wisconsin More than 5 million California,...

  17. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Dakota, Utah, Wyoming 100,001-500,000 Arizona, Arkansas, Iowa, Kansas, Nebraska, New Hampshire, North Carolina, Oklahoma, Rhode Island, South Carolina, Vermont 500,001-1...

  18. Thomas Moore creates joint invention with MIT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Moore creates joint invention with MIT 20 Nov 2009 For Arizona State University (ASU) Professor Thomas Moore, an invitation to guest lecture became a demonstration in a lab which led to a seafood lunch - which led to a joint invention with colleagues from the Massachusetts Institute of Technology (MIT) that contributed to a sustainable energy start-up company. Moore had been asked to speak at a summer course taught by well-known MIT Professor Daniel Nocera and, after the lecture, Moore

  19. Addressing Challenging Materials at Oak Ridge National Laboratory...

    Office of Scientific and Technical Information (OSTI)

    Title: Addressing Challenging Materials at Oak Ridge National Laboratory No abstract prepared. Authors: Jubin, Robert Thomas 1 ; Patton, Bradley D 1 ; Robinson, Sharon M 1 ; ...

  20. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund April 20, 2009 LOS ALAMOS, New Mexico, April 20, 2009-Los Alamos National Laboratory is soliciting ideas for projects that facilitate the creation and growth of regional businesses based on Los Alamos National Laboratory (LANL) technology or expertise. The Los Alamos National Security, LLC (LANS) Venture Acceleration Fund will provide investments of up to $350,000 annually with awards of up to $100,000 per project to facilitate projects with regional entrepreneurs,

  1. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Charles Thomas Homes, Anna Model, Omaha, NE DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE Case study of a DOE 2015 Housing Innovation Award ...

  2. Using Energy-Filtered TEM to Solve Practical Materials Problems With Inspirations from Gareth Thomas.

    Office of Scientific and Technical Information (OSTI)

    1070C Using Energy-Filtered TEM to Solve Practical Materials Problems With Inspirations from Gareth Thomas. Joshua D. Sugar1, Farid El Gabaly1, William Chueh2, Kyle Fenton3, Paul G. Kotula3, Velimir Radmilovic6, Norman C. Bartelt1, Joseph T. McKeown4, Andreas M. Glaeser5, and Ron Gronsky5. 1 Sandia National Laboratories, Livermore, CA, USA. 2. Materials Science and Engineering, Stanford University, Stanford, CA, USA. 3. Sandia National Laboratories, Albuquerque, NM, USA. 4 Lawrence Livermore

  3. Women @ Energy: Erin L. Thomas | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Erin L. Thomas Women @ Energy: Erin L. Thomas June 4, 2014 - 5:05pm Addthis Argonne’s first Gender Diversity Specialist, Erin L. Thomas, works to ensure that the unique experiences of minority women do not go overlooked in diversity and inclusion initiatives. Argonne's first Gender Diversity Specialist, Erin L. Thomas, works to ensure that the unique experiences of minority women do not go overlooked in diversity and inclusion initiatives. Check out other profiles in the Women @ Energy

  4. 2012 Annual Planning Summary for Thomas Jefferson Site Office

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Thomas Jefferson Site Office.

  5. 2013 Annual Planning Summary for the Thomas Jefferson Site Office |

    Energy Savers [EERE]

    Department of Energy Thomas Jefferson Site Office 2013 Annual Planning Summary for the Thomas Jefferson Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the Thomas Jefferson Site Office. The Thomas Jefferson Site Office's APS was consolidated within the Office of Science's APS available here. More Documents & Publications 2013 Annual Planning Summary for the Pacific Northwest Site Office 2013 Annual Planning

  6. Info-Exch 2012 - Thomas Johnson Presentation | Department of Energy

    Office of Environmental Management (EM)

    Thomas Johnson Presentation Info-Exch 2012 - Thomas Johnson Presentation EM Recovery Act Program Director Thomas Johnson gave a presentation on Recovery Act lessons learned at the 2012 Recovery Act Information Exchange. PDF icon EM ARRA Best Practices and Lessons Learned Workshop: Overview from Thomas Johnson, Jr., Recovery Act Program Director More Documents & Publications EM Recovery Act Lessons Learned (Johnson) Info-Exch 2012 - Shirley Olinger Presentation American Recovery and

  7. Field Mapping At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  8. Water Sampling At Mokapu Penninsula Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details...

  9. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  10. The APEX Project: Ion beam pulse-shaping experiments on Sandia Laboratories' Particle Beam Fusion Accelerator PBFA II

    SciTech Connect (OSTI)

    Crow, J.T.

    1987-01-01

    This paper discusses the development of ion beam pulse shaping, efficient extraction ion diodes, and efficient plasma channel transport for the particle beam fusion accelerator PBFA II. 10 refs. (LSP)

  11. Richard Vilim Argonne National Laboratory Kenneth Thomas Idaho...

    Office of Environmental Management (EM)

    evaluates aids for the operator of a nuclear power plant to facilitate a more timely ... with the ultimate goal of improving plant safety, production, and cost management. ...

  12. Application Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest

  13. Statement of Thomas P. D'Agostino

    National Nuclear Security Administration (NNSA)

    Statement of Thomas P. D'Agostino Undersecretary for Nuclear Security and Administrator National Nuclear Security Administration U.S. Department of Energy on the Fiscal Year 2013 President's Budget Request Before the House Appropriations Committee Subcommittee on Energy and Water Development March 6, 2012 INTRODUCTION Chairman Frelinghuysen, Ranking Member Visclosky, good morning and thank you for having me here to discuss the President's Fiscal Year 2013 budget request. Your ongoing support for

  14. First Director Named for Center for Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    First Director Named for Center for Accelerator Science First Director Named for Center for Accelerator Science From the Old Dominion University Release Newport News, Va., Nov. 10, 2009 - Jean R. Delayen, a principal scientist in the accelerator division at the Department of Energy's Thomas Jefferson National Accelerator Facility and professor of accelerator physics at Old Dominion University, has been named the first director of the Center for Accelerator Science, which was created in 2008 by

  15. FORCE RECONSTRUCTION USING THE SUM OF WEIGHTED ACCELERATIONS

    Office of Scientific and Technical Information (OSTI)

    TECHNIQUE - -FUkT PRtEOURE Thomas G. Came, Randy L. Mayas and Vesta I. Bateman ... a weightedsum of time domain g(t) E w i a i (t) w T a (t) (1) acceleration signals. ...

  16. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  17. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  18. Thomas Jefferson High Takes 2016 Virginia Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Jefferson High Takes 2016 Virginia Science Bowl Thomas Jefferson High School for Science & Technology Takes 2016 Virginia Science Bowl NEWPORT NEWS, Va., February 9, 2016 -- Eighteen teams arrived at Jefferson Lab bright and early and ready to compete in the Virginia Regional High School Science Bowl on Feb. 6. At the end of the day, Thomas Jefferson High School for Science and Technology (TJHSST), Alexandria, prevailed and will represent Virginia at the Department of Energy's

  19. Thomas Moore | Center for Bio-Inspired Solar Fuel Production

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Principal Investigators Postdoctoral Fellows Center researchers Graduate Students Undergraduate Students All Bisfuel Center Personnel Ana Moore Anne Jones Devens Gust Don Seo Giovanna Ghirlanda Hao Yan James Allen Kevin Redding Petra Fromme Thomas Moore Yan Liu Thomas Moore Principal Investigator Subtask 1 Leader Phone: 480-965-3308 Fax: 480-965-2747 E-mail: tmoore@asu.edu Regents' Professor Thomas Moore contributes to the EFRC as Subtask 1 Leader and the member of the EFRC Executive Committee.

  20. Thomas Jefferson High School takes regional Science Bowl competition at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JLab for 4th year running | Jefferson Lab takes regional Science Bowl competition at JLab for 4th year running Science Bowl Results: Thomas Jefferson High School for Science and Technology The Thomas Jefferson High School for Science and Technology Science Bowl 2005 team includes (front row, left to right): Coach Sharon Baker, Charlotte Seid, Sam Lederer and Lisa Marrone, and (back row, l. to r.): Matthew Isakowitz and Logan Kearsley. Photos by Steve Gagnon, JLab Science Education Thomas

  1. Mr. Thomas Mahl Granite City Steel Company

    Office of Legacy Management (LM)

    8&v/ Mr. Thomas Mahl Granite City Steel Company 20th and State Streets Granite City, IL 62040 Dear Mr. Mahl: This is to notify you that the U.S. Department of Energy (DOE) has designated your company's facility for remedial action as a part of the Formerly Utilized Sites Remedial Action Program. Remedial activities are managed by the DOE Oak Ridge Field Office, and Ms. Teresa Perry (615-576-8956) will be the site manager. As a result of the designation decision, Ms. Perry will be the

  2. Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location...

  3. Mercury Vapor At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  4. Mercury Vapor At Kawaihae Area (Thomas, 1986) | Open Energy Informatio...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location Kawaihae...

  5. Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Mercury Vapor At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity Details...

  6. MEMORANDUM FOR ELIZABETH MONTOYA TRANSITION TEAM FROM THOMAS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    g December 1, 200S MEMORANDUM FOR ELIZABETH MONTOYA TRANSITION TEAM FROM THOMAS N. PYKE, ... The desktop functions and applications, e.g. word processing, spreadsheets, internet ...

  7. Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lahaina-Kaanapali Area (Thomas, 1986) Exploration Activity Details...

  8. Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details...

  9. Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

  10. Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details...

  11. Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity...

  12. Gas Flux Sampling At Kawaihae Area (Thomas, 1986) | Open Energy...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Kawaihae Area (Thomas, 1986) Exploration Activity Details Location...

  13. Thomas County, Nebraska: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Number 5 Climate Zone Subtype A. Places in Thomas County, Nebraska Halsey, Nebraska Seneca, Nebraska Thedford, Nebraska Retrieved from "http:en.openei.orgw...

  14. Mr. Thomas Lingafeter Environmental Control Department Dow Chemical

    Office of Legacy Management (LM)

    Thomas Lingafeter Environmental Control Department Dow Chemical Post Office Box 1398 ... Dow Chemical was notified that they were being considered as one such site (W. E. Mott to ...

  15. Direct-Current Resistivity At Kawaihae Area (Thomas, 1986) |...

    Open Energy Info (EERE)

    to indicate the presence of a dense intrusive body associated with the Puu Loa cinder cone (Kauahikaua and Mattice, 1981). References Donald M. Thomas (1 January 1986)...

  16. Field Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986...

    Open Energy Info (EERE)

    Mapping At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity Details Location Olowalu-Ukumehame Canyon Area Exploration Technique Field Mapping Activity Date...

  17. Micro-Earthquake At Kilauea East Rift Geothermal Area (Thomas...

    Open Energy Info (EERE)

    At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity Details Location Kilauea East Rift Geothermal Area Exploration Technique Micro-Earthquake Activity...

  18. Ground Gravity Survey At Kilauea East Rift Geothermal Area (Thomas...

    Open Energy Info (EERE)

    Ground Gravity Survey At Kilauea East Rift Geothermal Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey...

  19. MEMORANDUM FOR THOMAS P. D'AGOSTINO ADMINISTRATOR NATIONAL NUCLEAR...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Site Manager; Fermi Site Office Gerald G. Boyd, Manager; Oak Ridge Office David A. ... Office Scott J. Mallette, Acting Manager; Thomas Jefferson Site Office Matthew S. ...

  20. Thomas Jefferson High School for Science & Technology Wins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School, Richmond, Takes Second NEWPORT NEWS, Va., Feb. 27, 2010 - The Thomas Jefferson High School for Science and Technology from Alexandria beat out St. Christopher's School...

  1. Thomas Jefferson High School for Science & Technology wins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Science Bowl. Winning the daylong academic competition was the Thomas Jefferson High School for Science and Technology, from Alexandria, Va. Following in second place was...

  2. Self Potential At Mokapu Penninsula Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    is probably very low. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Additional References Retrieved from "http:en.openei.orgw...

  3. Self Potential At Mauna Loa Southwest Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    field surveys. References Donald M. Thomas (1 January 1986) Geothermal Resources Assessment In Hawaii Additional References Retrieved from "http:en.openei.orgw...

  4. Heavy Quarks, QCD, and Effective Field Theory Thomas Mehen 72...

    Office of Scientific and Technical Information (OSTI)

    Heavy Quarks, QCD, and Effective Field Theory Thomas Mehen 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; 73 NUCLEAR PHYSICS AND RADIATION PHYSICS Heavy Quarks, Quarkonium,...

  5. Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Time-Domain Electromagnetics At Haleakala Volcano Area (Thomas, 1986) Exploration Activity...

  6. MEMORANDUM FROM: THOMAS E. BROWN, DIRECTOR OFFICE OF CONTRACT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ,2008 MEMORANDUM FROM: THOMAS E. BROWN, DIRECTOR OFFICE OF CONTRACT MANAGEMENT OFFICE OF PROCUREMENT AND ASSISTANCE MANAGEMENT SUBJECT: Contract Change Order Administration of...

  7. Field Mapping At Mokapu Penninsula Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Field Mapping At Mokapu Penninsula Area (Thomas, 1986) Exploration Activity Details Location Mokapu...

  8. VBH-0005- In the Matter of Thomas Dwyer

    Broader source: Energy.gov [DOE]

    This Decision involves a whistleblower complaint filed by Thomas Dwyer under the Department of Energy's (DOE) Contractor Employee Protection Program. From January 1996 to October 1997, Mr. Dwyer...

  9. Direct-Current Resistivity At Honokowai Area (Thomas, 1986) ...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At...

  10. Direct-Current Resistivity At Lualualei Valley Area (Thomas,...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At...

  11. Direct-Current Resistivity At Hualalai Northwest Rift Area (Thomas...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Hualalai Northwest Rift Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  12. Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Lualualei Valley Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current...

  13. Direct-Current Resistivity Survey At Honokowai Area (Thomas,...

    Open Energy Info (EERE)

    Direct-Current Resistivity Survey At Honokowai Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity...

  14. Direct-Current Resistivity At Lahaina-Kaanapali Area (Thomas...

    Open Energy Info (EERE)

    Direct-Current Resistivity At Lahaina-Kaanapali Area (Thomas, 1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Direct-Current Resistivity At...

  15. Water Sampling At Kilauea East Rift Geothermal Area (Thomas,...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kilauea East Rift Geothermal Area (Thomas, 1986) Exploration Activity...

  16. Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Hualalai Northwest Rift Area (Thomas, 1986) Exploration Activity Details...

  17. Water Sampling At Kauai Area (Thomas, 1986) | Open Energy Information

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Kauai Area (Thomas, 1986) Exploration Activity Details Location Kauai Area...

  18. Water Sampling At Lualualei Valley Area (Thomas, 1986) | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Water Sampling At Lualualei Valley Area (Thomas, 1986) Exploration Activity Details Location...

  19. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    SciTech Connect (OSTI)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  20. FermilabAcceleratorCapabilities.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois Accelerator Research Center - IARC Dr. Bob Kephart Director, Illinois Accelerator Research Center Dr. Charlie Cooper General Manager, Illinois Accelerator Research Center Illinois Accelerator Research Center The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. IARC will provide a state-of-the-art facility for research, development and industrialization of particle accelerator technology. A major

  1. Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selection of Venture Acceleration Fund recipients March 8, 2010 LOS ALAMOS, New Mexico, March 8, 2010-Los Alamos National Laboratory (LANL) has selected Simtable and Southwest Bio Fuels as recipients of $100,000 awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund invests in creating and growing Northern New Mexico businesses that have an association with LANL technology or expertise. Venture Acceleration Fund investments help

  2. DOE Tour of Zero Floorplans: Anna Model by Charles Thomas Homes |

    Energy Savers [EERE]

    Department of Energy Anna Model by Charles Thomas Homes DOE Tour of Zero Floorplans: Anna Model by Charles Thomas Homes DOE Tour of Zero Floorplans: Anna Model by Charles Thomas Homes

  3. DOE Tour of Zero: Anna Model by Charles Thomas Homes | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Anna Model by Charles Thomas Homes DOE Tour of Zero: Anna Model by Charles Thomas Homes 1 of 11 Charles Thomas Homes built this 4,353-square-foot custom home in Omaha, Nebraska, to ...

  4. Top 8 Things You Didn't Know About Thomas Alva Edison | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    8 Things You Didn't Know About Thomas Alva Edison Top 8 Things You Didn't Know About Thomas Alva Edison November 18, 2013 - 3:00pm Addthis Thomas A. Edison in his "Invention ...

  5. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  6. Thomas Edison's Legacy for Young Engineers | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Edison's Legacy: In the Eyes of an Edison Engineer Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Thomas Edison's Legacy: In the Eyes of an Edison Engineer Kimberly Hammer 2016.02.12 Yesterday would have been Thomas Edison's 169th Birthday. In honor of his birthday, February 11 is also known as National

  7. Thomas Jefferson High School for Science & Technology National Science

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bowl® Champion | Department of Energy Thomas Jefferson High School for Science & Technology National Science Bowl® Champion Thomas Jefferson High School for Science & Technology National Science Bowl® Champion May 2, 2005 - 12:40pm Addthis WASHINGTON, DC -- "The Incompleteness Theorem" was the answer to a question on mathematics that today clinched the 2005 National Science Bowl® championship for the Thomas Jefferson High School for Science & Technology team from

  8. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 - Los Alamos National Laboratory has selected Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides investments of up to $100,000 to regional entrepreneurs, companies, investors, or strategic partners

  9. Mr. Richard T. Thomas General Counsel for Petroleum Operations

    Office of Legacy Management (LM)

    Thomas: I am enclosing a copy of the radiological survey report for the Ashland Oil ... 1980), a preliminary survey of the Ashland Oil Company property northeast of the Seaway ...

  10. Implementation of DOE NPH Requirements at the Thomas Jefferson...

    Office of Environmental Management (EM)

    Facility (TJNAF), a Non-Nuclear DOE Lab David Luke, DOE, Thomas Jefferson Site Office Stephen McDuffie, DOE, Office of the Chief of Nuclear Safety PDF icon Implementation of DOE...

  11. Thomas Jefferson High School for Science & Technology Snaps Up...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Beach Schools Take 2nd, 3rd Place High School Science Bowl 1st Place The Thomas Jefferson High School for Science and Technology team from Alexandria poses with its first-place...

  12. Thomas Jefferson High School for Science & Technology wins...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Virginia Regional High School Science Bowl was the team from the Thomas Jefferson High School for Science and Technology from Alexandria, Va. Pictured from left to right is...

  13. VBA-0005- In the Matter of Thomas Dwyer

    Broader source: Energy.gov [DOE]

    This Decision considers an Appeal of an Initial Agency Decision (IAD) issued on May 2, 2000, involving a complaint filed by Thomas Dwyer (Dwyer or the complainant) under the Department of Energy ...

  14. Iran Thomas Auditorium, 8600 Fighting Cancer with Nanoparticle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    October 13, 2011 4:00 pm Iran Thomas Auditorium, 8600 Fighting Cancer with Nanoparticle Medicines Mark E. Davis Chemical Engineering California Institute of Technology CNMS D D I I...

  15. Ground Gravity Survey At Mokapu Penninsula Area (Thomas, 1986...

    Open Energy Info (EERE)

    it may be assumed that if a thermal resource is associated with the Koolau caldera, its temperature is probably very low. References Donald M. Thomas (1 January 1986) Geothermal...

  16. TBU-0082- In the Matter of Thomas L. Townsend

    Broader source: Energy.gov [DOE]

    Thomas L. Townsend (Townsend) appeals the dismissal of his complaint of retaliation and request for investigation filed under 10 C.F.R. Part 7081 by the Oak Ridge Operations Office (OR) of the...

  17. VWA-0018- In the Matter of Thomas T. Tiller

    Broader source: Energy.gov [DOE]

    This Decision concerns two whistleblower complaints filed by Thomas T. Tiller (Tiller) under the Department of Energy’s (DOE) Contractor Employee Protection Program, 10 C.F.R. Part 708. At all...

  18. Thermal Gradient Holes At Hualalai Northwest Rift Area (Thomas...

    Open Energy Info (EERE)

    water samples taken from these wells did not provide useful geothermal data due to contamination of the well water with drilling muds References Donald M. Thomas (1 January 1986)...

  19. Thomas J. Howe | Argonne Leadership Computing Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Howe Project Manager Argonne National Laboratory 9700 S. Cass Avenue Building 240 - Wkstn. 3D18 Argonne, IL 60439 630-252-1861 tjhowe

  20. Thomas Jefferson High School for Science & Technology Wins Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Science Bowl; St. Christopher's School, Richmond, Takes Second | Jefferson Lab Wins Virginia Regional Science Bowl; St. Christopher's School, Richmond, Takes Second Thomas Jefferson High School for Science & Technology Wins Virginia Regional Science Bowl; St. Christopher's School, Richmond, Takes Second NEWPORT NEWS, Va., Feb. 27, 2010 - The Thomas Jefferson High School for Science and Technology from Alexandria beat out St. Christopher's School from Richmond, 54-44, in the

  1. Thomas Jefferson High School for Science & Technology wins Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Science Bowl | Jefferson Lab wins Virginia Regional Science Bowl Thomas Jefferson High School for Science & Technology wins Virginia Regional Science Bowl February 8, 2003 Hundreds of the brightest young minds in the commonwealth came together at the Department of Energy's Jefferson Lab today to compete in the Virginia Regional Science Bowl. Winning the daylong academic competition was the Thomas Jefferson High School for Science and Technology, from Alexandria, Va. Following in

  2. Summer 2011 Intern Project- Thomas Neulinger | Center for Energy Efficient

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Thomas Neulinger EPITAXIAL GROWTH AND CHARACTERIZATION OF THIN-FILM HALF-HEUSLER NiTiSn Thomas Neulinger Physics UC Santa Barbara Mentor: Jason Kawaski Faculty Advisor: Chris Pamlstrom Department: Materials and Electrical and Computer Engineering The half-Heusler phase of NiTiSn has a number of interesting properties: it is semiconducting--though its constituents are metals, and it promises to be a good thermoelectric because of its narrow band gap and high Seebeck coefficient.

  3. Accelerator Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

  4. LOS ALAMOS, New Mexico, October 16, 2008- Thomas Leitner of Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Where do dogs come from? October 16, 2008 Canine origins the subject in first talk of a new LANL- sponsored lecture series LOS ALAMOS, New Mexico, October 16, 2008- Thomas Leitner of Los Alamos National Laboratory uses the DNA of many individual dogs to trace the origins of man's best friend. His talk will explore how it can be possible that a Great Dane and a Chihuahua are members of the same dog species and how could they have been bred in little more than ten thousand years from the same

  5. CO2 EMISSION CALCULATIONS AND TRENDS Thomas A. Boden and Gregg Marland

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CO2 EMISSION CALCULATIONS AND TRENDS Thomas A. Boden and Gregg Marland Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6335 Robert J. Andres Institute of Northern Engineering School of Engineering University of Alaska-Fairbanks Fairbanks, Alaska 99775-5900 ABSTRACT FEB 05 ZS3 OSTI The submitted manuscript has been authored by a contractor of the U.S. Government under contract No. DE- ACO5-840R21400. Accordingly, the U.S. Government retains a nonexclusive,

  6. Microsoft Word - 2014 Annual Fire Protection Program Summary...

    Energy Savers [EERE]

    ... Savannah River Site Stanford Linear Accelerator Laboratory Strategic Petroleum Reserves Thomas Jefferson National Accelerator Facility* Waste Isolation Pilot Plant West ...

  7. IARC - Illinois Accelerator Research Center | Pilot Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology development and testing facilities. Speak with experts in the field. photo...

  8. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations /newsroom/_assets/images/operations-icon.png Laboratory Operations Latest announcements from the Lab on its operations. Community, Events Laboratory Operations Environmental Stewardship Melissa Blueflower-Sanchez and Robert Sanchez, owners of R and M Construction, LLC, of Santa Clara Pueblo. Four regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help

  9. Iran Thomas Auditorium, 8600 Environmental Transmission Electron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Catalysis Research: The Example of Carbon Nanotubes Eric A. Stach Center for Functional Nanomaterials Brookhaven National Laboratory CNMS D D I I S S C C O O V V E E R...

  10. Museum security and the Thomas Crown Affair.

    SciTech Connect (OSTI)

    Michaud, E. C.

    2010-01-01

    Over the years, I've daydreamed about stealing a Vermeer, a Picasso, or Rembrandt. It tickles me, as much as watching the reboot of The Thomas Crown Affair. Why is it, do you suppose, so much fun to think about stealing a world renowned piece off the wall of a major metropolitan museum? Is it the romantic thoughts of getting away with it, walking past infrared detectors, and pressure sensors ala Indiana Jones with the sack of sand to remove the idol without triggering the security system? Is it the idea of snatching items with such fantastic prices, where the romance of possessing an item of such value is less intoxicating than selling it to a private collector for it to never be seen again? I suspect others share my daydreams as they watch theater or hear of a brazen daylight heist at museums around the world, or from private collections. Though when reality sets in, the mind of the security professional kicks in. How could one do it, why would one do it, what should you do once it's done? The main issue a thief confronts when acquiring unique goods is how to process or fence them. They become very difficult to sell because they are one-of-a-kind, easy to identify, and could lead to the people involved with the theft. The whole issue of museum security takes up an ironic twist when one considers the secretive British street artist 'Banksy'. Banksy has made a name for himself by brazenly putting up interesting pieces of art in broad daylight (though many critics don't consider his work to be art) on building walls, rooftops, or even museums. I bring him up for a interesting take on what may become a trend in museum security. In March of 2005, Banksy snuck a piece of his called 'Vandalized Oil Painting' into the Brooklyn Museum's Great Historical Painting Wing, plus 3 other pieces into major museums in New York. Within several days, 2 paintings had been torn down, but 2 stayed up much longer. In his home country of the UK, a unauthorized piece he created and placed in the British Museum known as 'Early Man Goes to Market' received different treatment when placed inside the walls. It was adopted into the permanent collection! I like his story because it's so counter-intuitive. Who would have thought that modern museum security might involve preventing people not just from stealing art, but from sneaking 'unauthorized' art into museums? What is next, tampering with the archive records in order to make it look like the piece in question has always been there? To learn more about museum security, I interviewed multiple experts in the field. It turns out that the glamorous lifestyle of Thomas Crown is not particularly relevant. In fact, usually nobody can point to a Mr. Big of the underworld coordinating thefts, though some organized crime families have been known to use stolen art as black market chips to trade. The common consensus among experts in the field of art theft is that, instead of most high-value pieces being stolen by outsiders with a blue print in hand and rappelling from a ceiling skylight, in reality, 80 percent of art thefts involve insiders or accomplices that execute the crime over a period of time while working or volunteering in the museum. Indeed, according to FBI statistics, between 70 and 80 percent of all solved art theft cases involve insider participation of some kind, yet according to Tom Cremers of the Musuem Security Network, 'Having been involved in risk assessments in over hundreds of museums over the past ten years, it is quite astonishing how rarely the risk of insider participation is discussed.' In regards to the insider threat, a museum is not much different from any corporation or other organization. There are directors, employees, interns, and cleaning staff (very often outsourced), security guards (again outsourced, typically with very high turnover rates). Unlike corporations, most museums also have volunteer staff, docents, and authorized visiting scholars. All these people can potentially take advantage of their position, or to be exploited by a clever attacker on the outside or insid

  11. Jefferson Lab accelerator upgrade completed: Initial operations set to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    begin while experimental equipment upgrades continue | Jefferson Lab accelerator upgrade completed: Initial operations set to begin while experimental equipment upgrades continue Jefferson Lab accelerator upgrade completed: Initial operations set to begin while experimental equipment upgrades continue areial Aerial of Jefferson Lab NEWPORT NEWS, VA, August 12, 2014 - The Department of Energy's Thomas Jefferson National Accelerator Facility ("Jefferson Lab") has just received formal

  12. Leadership | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific user facility in North America; and the Argonne Accelerator Institute. Harry Weerts Harry Weerts, Associate Laboratory Director, Physical Sciences and Engineering...

  13. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  14. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Utilizes ...

  15. 10 Questions for an Automotive Engineer: Thomas Wallner

    Broader source: Energy.gov [DOE]

    Meet Thomas Wallner – automotive engineer extraordinaire, who hails from Argonne National Laboratory’s Center for Transportation Research. He took some time to answer our 10 Questions and share his insight on advanced engine technologies from dual-fuel to biofuels.

  16. Thomas Jefferson High School for Science and Technology from Alexandria

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wins 2002 Virginia Regional Science Bowl | Jefferson Lab and Technology from Alexandria Wins 2002 Virginia Regional Science Bowl Thomas Jefferson High School for Science and Technology from Alexandria Wins 2002 Virginia Regional Science Bowl February 14, 2002 NEWPORT NEWS, VA - Some of the brightest young minds in the state came together at Jefferson Lab on Saturday, Feb. 9, to compete in the Virginia Regional Science Bowl. Twenty teams, representing high schools from across the Commonwealth

  17. Mr. Thomas A. Dickerson Supervisor of Environmental Affairs

    Office of Legacy Management (LM)

    3 932. . . - ,_ ' ,;. Department of Energy Washinglon.DC 20545 tie c"rT SEP 05 1990 pff, (>-.I Mr. Thomas A. Dickerson Supervisor of Environmental Affairs Carpenter Technology Corporation Engineering and Construction P. 0. Box 14662 Reading, Pennsylvania 19612-4662 Dear Mr. Dickerson: The Department of Energy (DOE) has completed its review of the preliminary radiological data from the surveys of your facility in Reading, Pennsylvania, completed in July and August 1988. We are pleased to

  18. Mr. Thomas M. Gerusky, Director Bureau of Radiation Protection

    Office of Legacy Management (LM)

    665 FEE 1,; 1':: Mr. Thomas M. Gerusky, Director Bureau of Radiation Protection Department of Environmental Resources P.O. Box 2063 Harrisburg, Pennsylvania 17120 Dear Mr. Gerusky: The Department of Energy (DOE), under its Formerly Utilized Sites Remedial Action Program (FUSPAP), has implemented a radiological survey program to determine the radiological conditions at sites that were used by the Department's predecessor agencies. The Department has recently completed radiological surveys for

  19. Generalized charge-screening in relativistic ThomasFermi model

    SciTech Connect (OSTI)

    Akbari-Moghanjoughi, M.

    2014-10-15

    In this paper, we study the charge shielding within the relativistic Thomas-Fermi model for a wide range of electron number-densities and the atomic-number of screened ions. A generalized energy-density relation is obtained using the force-balance equation and taking into account the Chandrasekhar's relativistic electron degeneracy pressure. By numerically solving a second-order nonlinear differential equation, the Thomas-Fermi screening length is investigated, and the results are compared for three distinct regimes of the solid-density, warm-dense-matter, and white-dwarfs (WDs). It is revealed that our nonlinear screening theory is compatible with the exponentially decaying Thomas-Fermi-type shielding predicted by the linear response theory. Moreover, the variation of relative Thomas-Fermi screening length shows that extremely dense quantum electron fluids are relatively poor charge shielders. Calculation of the total number of screening electrons around a nucleus shows that there is a position of maximum number of screening localized electrons around the screened nucleus, which moves closer to the point-like nucleus by increase in the plasma number density but is unaffected due to increase in the atomic-number value. It is discovered that the total number of screening electrons, (N{sub s}?r{sub TF}{sup 3}/r{sub d}{sup 3} where r{sub TF} and r{sub d} are the Thomas-Fermi and interparticle distance, respectively) has a distinct limit for extremely dense plasmas such as WD-cores and neutron star crusts, which is unique for all given values of the atomic-number. This is equal to saying that in an ultrarelativistic degeneracy limit of electron-ion plasma, the screening length couples with the system dimensionality and the plasma becomes spherically self-similar. Current analysis can provide useful information on the effects of relativistic correction to the charge screening for a wide range of plasma density, such as the inertial-confined plasmas and compact stellar objects.

  20. HANDBOOK OF ACCELERATOR PHYSICS AND ENGINEERING Editors: M. Tigner, Cornell

    Office of Scientific and Technical Information (OSTI)

    BNL 66455 April 19,1999 HANDBOOK OF ACCELERATOR PHYSICS AND ENGINEERING Editors: M. Tigner, Cornell A. Chao, SLAC Pubiisher: World Scientific Sections written by Thomas Roser, BNL: 2.7.1 - Thomas - BMT equation 2.2.2 - Spin or Algebra 2.7.3 - Spin Rotators and Siberian Snakes 2.7.4 - Ring with Spin Rotator and Siberian Snakes 2.7.5 - Depolarizing Resonances and Spin Flippers & 7.6.2 - Proton Beam Polarimeters introducing a large number of background beam- ion events. No indirect beam-beam

  1. Results From Plasma Wakefield Acceleration Experiments at FACET...

    Office of Scientific and Technical Information (OSTI)

    International Particle Accelerator Conference (IPAC-2011), San Sebastian, Spain, 4-9 Sep 2011 Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE ...

  2. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  3. LANS Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund announces "Call for Ideas" August 2, 2010 LOS ALAMOS, New Mexico, August 2, 2010-Through September 1, 2010, Northern New Mexico Connect (NNM Connect) is accepting idea statements for the Los Alamos National Security, LLC Venture Acceleration Fund (VAF). VAF invests in creating and growing Northern New Mexico businesses that have an association with Los Alamos National Laboratory technology or expertise. It invests up to $100,000 in businesses that use

  4. National Laboratory Research and Development Funding Opportunities

    Broader source: Energy.gov [DOE]

    Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving...

  5. 6 GeV Parity Violating Deep Inelastic Scattering at Jefferson Laboratory

    SciTech Connect (OSTI)

    Subedi, Ramesh R.; Deng Xiaoyan; Wang Diancheng; Zheng Xiaochao; Michaels, Robert; Pan Kai; Reimer, Paul E.

    2011-10-24

    The 6 GeV Parity Violating Deep Inelastic Scattering (PVDIS) experiment has measured a 10{sup -4} level asymmetry through polarized electron scattering off a liquid deuterium target with a beam energy of 6 GeV. This experiment has a goal of measuring a combination of the product of the weak neutral couplings of the electron and the quark with a factor of six improvement in precision over world data. Precise data for the couplings are essential to search for physics beyond the Standard Model. The experiment took place in Hall A at Thomas Jefferson National Accelerator Facility (Jefferson Laboratory) and data collection was completed in the end of 2009. A highly specialized counting data acquisition system with an inherent particle identification was developed and utilized. We have taken data at two Q{sup 2} points in order to possibly address the hadronic correction due to higher twist effects. An overview of the experiment will be presented.

  6. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Analysis | Department of Energy Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis Utilizes a development framework to assist the USVI in identifying and understanding concrete opportunities for wind power development in the territory. PDF icon Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Analysis More Documents & Publications U.S. Virgin Islands

  7. Thomas D. Foust, Ph.D, P.E. | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas D. Foust Thomas D. Foust, Ph.D, P.E. Center Director, National Bioenergy Center Thomas.Foust@nrel.gov | 303-384-7755 Research Interests Computational and mathematical modeling of catalytic fast pyrolysis Fuels optimization for high-efficiency engines Biomass sustainability and land use issues Affiliated Research Programs United Nations Bioenergy and Sustainability Assessment (bioenergy sustainability across its whole lifeline including energy, food, and environmental and climate security)

  8. Porter-Thomas distribution in unstable many-body systems

    SciTech Connect (OSTI)

    Volya, Alexander

    2011-04-15

    We use the continuum shell model approach to explore the resonance width distribution in unstable many-body systems. The single-particle nature of a decay, the few-body character of the interaction Hamiltonian, and the collectivity that emerges in nonstationary systems due to the coupling to the continuum of reaction states are discussed. Correlations between the structures of the parent and daughter nuclear systems in the common Fock space are found to result in deviations of decay width statistics from the Porter-Thomas distribution.

  9. A LIMITED LIABILITY PARTNERSHIP 1050 Thomas Jefferson Street, NW

    Energy Savers [EERE]

    A LIMITED LIABILITY PARTNERSHIP 1050 Thomas Jefferson Street, NW Seventh Floor Washington, DC 20007 (202) 298-1800 Phone (202) 338-2416 Fax MEMORANDUM TO: DOE Office of General Counsel FROM: Doug Smith DATE: August 29, 2013 RE: Record of Communication Concerning Ceiling Fan and Ceiling Fan Light Kit Framework Document-Docket No. EERE-2012-BT-STD-0045 This memo provides an overview of communications made to DOE staff on the subject of possible changes to standards and test procedures for ceiling

  10. ,The Honorable Thomas Henino City Hall Plaza I

    Office of Legacy Management (LM)

    Department of Energy Washington,. DC 20585 MAR 29 1995 ,The Honorable Thomas Henino City Hall Plaza I Boston, Massachusetts 02201 '. ! Dear Mayor Menino: Even though additional involvement by DOE is,not necessary at this site, we are prepared to respond to any concerns you may have. -' : __ if you have any questions,' please feel free to call me eat 301-427li721 or Dr. W. Alexander Willlams (301-427-1719)~of my staff. ' gyp , ,~.&.Qz J ~ J / d .!~a : T- " ames W. Wagoner I -. Secretary

  11. DEL 1 T' I991 Mr. Thomas Jorling Commissioner

    Office of Legacy Management (LM)

    ] $1 " :> q - -: /JJJ//&fid\jr\ Department of Energy Washington, DC 20585 DEL 1 T' I991 Mr. Thomas Jorling Commissioner State of New York Department of Environmental Conservation Albany, New York 12233-1010 Dear Mr. Jorling: I am responding to your November 25, 1991, letter to the Secretary of Energy in which you requested a clarification on the position of the United States Department of Energy (DOE) relative to the proposal by Niagara Landfill, Inc., a subsidiary of Browning-Ferris

  12. 6,"Edwin I Hatch","Nuclear","Georgia Power Co",1759 7,"Thomas...

    U.S. Energy Information Administration (EIA) Indexed Site

    Power Co",1793 6,"Edwin I Hatch","Nuclear","Georgia Power Co",1759 7,"Thomas A Smith Energy Facility","Natural gas","Oglethorpe Power Corporation",1290 ...

  13. Top 8 Things You Didn't Know About Thomas Alva Edison | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Thomas Alva Edison Top 8 Things You Didn't Know About Thomas Alva Edison November 18, 2013 - 3:00pm Addthis Thomas A. Edison in his "Invention Factory," 1901. | Photo courtesy of the Prints and Photographs Division, Library of Congress. Thomas A. Edison in his "Invention Factory," 1901. | Photo courtesy of the Prints and Photographs Division, Library of Congress. Erin R. Pierce Erin R. Pierce Former Digital Communications Specialist, Office of Public Affairs EDISON

  14. Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Olowalu-Ukumehame Canyon Area (Thomas, 1986) Exploration Activity...

  15. Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986...

    Open Energy Info (EERE)

    1986) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Gas Flux Sampling At Mauna Loa Northeast Rift Area (Thomas, 1986) Exploration Activity...

  16. Dr. Thomas Settersten | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Thomas Settersten Chemical Sciences, Geosciences, & Biosciences (CSGB) Division CSGB Home ... He has extensive experience in short-pulse laser-molecule interactions and chemical ...

  17. Lab Hosts 22 teams for Virginia Science Bowl, Feb. 7; Thomas...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at the Virginia Regional Science Bowl on Feb. 7 went to the team from Thomas Jefferson High School for Science and Technology, Alexandria, Virginia. Team members include (left...

  18. Microsoft PowerPoint - 9_David Thomas_WR Transparency at NMMSS...

    National Nuclear Security Administration (NNSA)

    HEU Downblending in Russia Under the 1993 U.S.-Russia HEU Purchase Agreement David Thomas NNSASAIC Russian HEU Down Blending Almost Complete The Agreement for the disposition...

  19. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Thomas W. Morris

    Broader source: Energy.gov [DOE]

    Commenter: Thomas W. Morris 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  20. 10 CFR 850, Request for Information- Docket Number: HS-RM-10-CBDPP- Thomas Peterson

    Broader source: Energy.gov [DOE]

    Commenter: Thomas Peterson 10 CFR 850 - Request for Information Docket Number: HS-RM-10-CBDPP Comment Close Date: 2/22/2011

  1. Jefferson Lab Contract to be Awarded to Jefferson Science Associates, LLC for Management and Operation of World-Class Office of Science Laboratory

    Broader source: Energy.gov [DOE]

    OAK RIDGE , TN - The U.S. Department of Energy has selected Jefferson Science Associates, LLC, as the contractor for management and operation of the Thomas Jefferson National Accelerator Facility....

  2. 2013 Annual Planning Summary for the New Brunswick Laboratory | Department

    Energy Savers [EERE]

    of Energy New Brunswick Laboratory 2013 Annual Planning Summary for the New Brunswick Laboratory The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the New Brunswick Laboratory. The New Brunswick Laboratory's APS was consolidated within the Office of Science's APS available here. More Documents & Publications 2013 Annual Planning Summary for the Pacific Northwest Site Office 2013 Annual Planning Summary for the Thomas

  3. Accelerated Climate Modeling for Energy | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Credit: Alan Scott and Mark Taylor, Sandia National Laboratories Accelerated Climate Modeling for Energy PI Name: Mark Taylor PI Email: mataylo@sandia.gov Institution: Sandia...

  4. A Tony Thomas-Inspired Guide to INSPIRE

    SciTech Connect (OSTI)

    O'Connell, Heath B.; /Fermilab

    2010-04-01

    The SPIRES database was created in the late 1960s to catalogue the high energy physics preprints received by the SLAC Library. In the early 1990s it became the first database on the web and the first website outside of Europe. Although indispensible to the HEP community, its aging software infrastructure is becoming a serious liability. In a joint project involving CERN, DESY, Fermilab and SLAC, a new database, INSPIRE, is being created to replace SPIRES using CERN's modern, open-source Invenio database software. INSPIRE will maintain the content and functionality of SPIRES plus many new features. I describe this evolution from the birth of SPIRES to the current day, noting that the career of Tony Thomas spans this timeline.

  5. Accelerator on a Chip | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerator on a Chip Accelerator on a Chip February 4, 2016 - 5:24pm Addthis Scientists at SLAC are attempting to build a particle accelerator the size of a shoe box. | Video courtesy of SLAC. Andrew Gordon SLAC National Accelerator Laboratory Could tiny chips no bigger than grains of rice do the job of a huge particle accelerator? At full potential, a series of these "accelerators on a chip" could boost electrons to the same high energies achieved in SLAC National Accelerator

  6. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  7. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  8. C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of...

  9. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at LENA| Reaction Rates| UNC Astrophysics| Laboratory for Experimental Nuclear Astrophysics (LENA) The LENA is among only a few accelerator facilities in the world dedicated entirely to nuclear astrophysics experiments. It has two low-energy electrostatic accelerators that are capable of delivering high-current charged-particle beams to a common target. One is an ECR source on a 200-kV platform and the other one is a 1-MV JN Van de Graaff accelerator. Both accelerators are fully

  10. LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  11. Linear Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since 1972, providing the beam current required by all the experimental areas that support NNSA-DP and other DOE missions. The LINAC's capability to reliably deliver beam current is the key to the LANSCE's ability to do research-and thus the key to meeting NNSA and DOE mission deliverables. The LANSCE Accelerator The LANSCE

  12. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parking Directions and Map The Duke University campus map shows the Duke Physics Building on Science Drive behind Duke Chapel. The former 4 MeV Van de Graaff accelerator laboratory in its basement is now the location of TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA). Graduates since 1965 will recall the tandem accelerator laboratory is located behind the Physics Building, but those who graduated before 1990 may not recognize a newer larger building behind the tandem lab which

  13. Implication of Tsallis entropy in the ThomasFermi model for self-gravitating fermions

    SciTech Connect (OSTI)

    Ourabah, Kamel; Tribeche, Mouloud

    2014-03-15

    The ThomasFermi approach for self-gravitating fermions is revisited within the theoretical framework of the q-statistics. Starting from the q-deformation of the FermiDirac distribution function, a generalized ThomasFermi equation is derived. It is shown that the Tsallis entropy preserves a scaling property of this equation. The q-statistical approach to Jeans instability in a system of self-gravitating fermions is also addressed. The dependence of the Jeans wavenumber (or the Jeans length) on the parameter q is traced. It is found that the q-statistics makes the Fermionic system unstable at scales shorter than the standard Jeans length. -- Highlights: ThomasFermi approach for self-gravitating fermions. A generalized ThomasFermi equation is derived. Nonextensivity preserves a scaling property of this equation. Nonextensive approach to Jeans instability of self-gravitating fermions. It is found that nonextensivity makes the Fermionic system unstable at shorter scales.

  14. Thomas Jefferson High School Wins Virginia Science Bowl for 7th...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEWPORT NEWS, Va., Feb. 20, 2008 - The Thomas Jefferson High School for Science and Technology team pummeled its competition at the Virginia Regional Science Bowl held Feb. 2 at...

  15. VWA-0018- Deputy Secretary Decision- In the Matter of Thomas T. Tiller

    Broader source: Energy.gov [DOE]

    This is a request for review by complainant Thomas T. Tiller of an Initial Agency Decision, issued by the Office of Hearings and Appeals (OHA), denying the two reprisal complaints that he filed...

  16. 2001 Snowmass Accelerator R & D report (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: 2001 Snowmass Accelerator R & D report Citation Details In-Document Search Title: 2001 Snowmass Accelerator R & D report Authors: Chao, Alexander ; Davidson, Ronald ; Dragt, Alexander ; Dugan, Gerald ; Holtkamp, Norbert ; Joshi, Chan ; Roser, Thomas ; Ruth, Ronald ; Seeman, John ; Strait, Jim Publication Date: 2001-09-01 OSTI Identifier: 1131204 Report Number(s): SNOWMASS-2001-MT1001 DOE Contract Number: AC02-07CH11359 Resource Type: Conference Resource Relation: Conference:

  17. Iran Thomas Auditorium, 8600 Materials For Energy: In Situ Synchrotron...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Energy: In Situ Synchrotron X-Ray Studies for Materials Design and Discovery Stephen K. Streiffer Deputy Associate Laboratory Director Physical Sciences and Engineering...

  18. Flow Boiling Carolyn Coyle, Jacopo Buongiorno, Thomas McKrell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... in MIT's Reactor Thermal Hydraulics Laboratory. ... and CRUD Actually Improve Safety Margins in LWRs?" ... CASL-U-2015-0068-000 23. CRC Handbook of Chemistry and ...

  19. Thomas Jefferson High School Wins Virginia Science Bowl for 7th Year

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Running | Jefferson Lab Wins Virginia Science Bowl for 7th Year Running NEWPORT NEWS, Va., Feb. 20, 2008 - The Thomas Jefferson High School for Science and Technology team pummeled its competition at the Virginia Regional Science Bowl held Feb. 2 at Jefferson Lab. The team finished the day winning all of its matches. This marked the seventh time since Jefferson Lab has been hosting this annual event that the Thomas Jefferson team, from Alexandria, took the regional title. Eighteen teams

  20. Thomas Jefferson High School for Science & Technology Snaps Up Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Championship; Virginia Beach Schools Take 2nd, 3rd Place | Jefferson Lab Snaps Up Virginia Science Bowl Championship; Virginia Beach Schools Take 2nd, 3rd Place Thomas Jefferson High School for Science & Technology Snaps Up Virginia Science Bowl Championship; Virginia Beach Schools Take 2nd, 3rd Place High School Science Bowl 1st Place The Thomas Jefferson High School for Science and Technology team from Alexandria poses with its first-place trophy after the competition.

  1. Thomas Jefferson High School for Science & Technology Takes 2015 Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl | Jefferson Lab Takes 2015 Virginia Science Bowl Thomas Jefferson High School for Science & Technology Takes 2015 Virginia Science Bowl 2014 Virginia High School Science Bowl The team from Thomas Jefferson High School for Science and Technology, Alexandria, swept through the Virginia Regional High School Science Bowl undefeated on Feb. 7. The team of (back row, left to right) Matthew Barbano, Tiger Zhang and Janice Ong, and (front, l. to r.) Franklyn Wang and Ross Dempsey

  2. Thomas Jefferson High School for Science & Technology Wins Feb. 5 Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl; Warwick High Wins Math and Science Challenges | Jefferson Lab Wins Feb. 5 Virginia Science Bowl; Warwick High Wins Math and Science Challenges Thomas Jefferson High School for Science & Technology Wins Feb. 5 Virginia Science Bowl; Warwick High Wins Math and Science Challenges fellowship The Thomas Jefferson High School for Science and Technology, Alexandria, won the Feb. 5 Virginia Regional High School Science Bowl. Pictured, left to right, are Coach Sharon Webb; Alexander

  3. Thomas Jefferson High School for Science & Technology wins the Virginia

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Science Bowl | Jefferson Lab #38; Technology wins the Virginia Regional Science Bowl Thomas Jefferson High School for Science & Technology wins the Virginia Regional Science Bowl February 15, 2006 TJHSST Finishing in first place at the Virginia Regional High School Science Bowl was the team from the Thomas Jefferson High School for Science and Technology from Alexandria, Va. Pictured from left to right is Coach Sharon Webb, Charlotte Seid, Daniel Schafer, Lisa Marrone, Neel

  4. Lab Hosts 22 teams for Virginia Science Bowl, Feb. 7; Thomas Jefferson High

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School wins 3rd year running | Jefferson Lab Hosts 22 teams for Virginia Science Bowl, Feb. 7; Thomas Jefferson High School wins 3rd year running First place at the Virginia Regional Science Bowl on Feb. 7 went to the team from Thomas Jefferson High School for Science and Technology, Alexandria, Virginia. Team members include (left to right) Kay Aull, Michael Zhang, Paul Yang, Samuel Lederer (behind), Team Coach Sharon Baker, and Lisa Marrone. Taking second place at the Virginia Regional

  5. Acceleration switch

    DOE Patents [OSTI]

    Abbin, J.P. Jr.; Middleton, J.N.; Schildknecht, H.E.

    1979-08-20

    An improved acceleration switch is described which is of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  6. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Middleton, John N.; Schildknecht, Harold E.

    1981-01-01

    The disclosure relates to an improved acceleration switch, of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  7. ACCELERATE ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Obama, State of the Union, Feb. 13, 2013 The U.S. Department of Energy, Council on Competitiveness and Alliance to Save Energy have joined forces to undertake in Accelerate Energy...

  8. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  9. ION ACCELERATOR

    DOE Patents [OSTI]

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  10. Fermilab | Science | Particle Accelerators | Fermilab's Accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab's Accelerator Complex photo Fermilab's accelerator complex comprises seven particle accelerators and storage rings. It produces the world's most powerful, high-energy...

  11. Accelerating Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget | Department of Energy Accelerating Clean Energy Technology Solutions through the President's Budget Accelerating Clean Energy Technology Solutions through the President's Budget February 12, 2016 - 1:00am Addthis World leaders launch Mission Innovation at the United Nations Climate Change Conference 2015 (COP21) in Paris-Le Bourget, France, November 30, 2015. World leaders launch Mission Innovation at the United Nations Climate Change Conference 2015 (COP21) in Paris-Le Bourget,

  12. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Systems Accelerator Systems MaRIE will provide a capability to address the control of performance and production of weapons materials at the mesoscale. MaRIE fills a critical gap in length scale between the integral scale addressed by studies conducted at DARHT, U1a, NIF, and Z. CONTACT Richard Sheffield (505) 667-1237 Email Revolutionizing Microstructural Physics to Empower Nuclear Energy Realizing MaRIE's full suite of capabilities requires developing and integrating a suite of

  13. Ground Broken for New Job-Creating Accelerator Research Facility at DOE's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fermi National Accelerator Laboratory in Illinois | Department of Energy Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois December 16, 2011 - 11:49am Addthis WASHINGTON, D.C. - Today, ground was broken for a new accelerator research facility being built at the Department of Energy's (DOE's) Fermi

  14. HEP Accelerator R&D Expertise | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    As needed, promising concepts are tested at national laboratory test facilities, such as the Advanced Wakefield Accelerator (AWA) at ANL, the Accelerator Test Facility (ATF) at ...

  15. Fermi National Accelerator Laboratory August 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 In 2012 at the Large Hadron Collider, scientists discovered the long-sought Higgs boson. Now the question is: Are there more types of Higgs bosons? What is a Higgs boson? What is...

  16. Fermi National Accelerator Laboratory June 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recorded two distinct top-quark production mechanisms Explored a new mass range for the Higgs boson and constrained its mass through top-quark and W-boson mass measurements...

  17. Graphic Standards Fermi National Accelerator Laboratory 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    onto your slide, click outside of the text areas on the slide, select Insert > Choose. Search for your file and click Insert. Drag the image to position it to fit on your slide...

  18. Fermi National Accelerator Laboratory April 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thus explore whether the universe is even more complex than we think. Probing hints at new physics ICARUS: high-tech from Italy MicroBooNE: testing an anomaly SBND: closest to...

  19. Fermi National Accelerator Laboratory January 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drexel University Pennsylvania State University University of Pennsylvania, Philadelphia University of Pittsburgh Puerto Rico University of Puerto Rico, Mayaguez Rhode...

  20. Fermi National Accelerator Laboratory August 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drexel University Pennsylvania State University University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh Puerto Rico University of Puerto Rico,...

  1. Fermi National Accelerator Laboratory FY 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Carnegie Mellon University, Pittsburgh University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh Puerto Rico University of Puerto Rico,...

  2. Fermi National Accelerator Laboratory FY 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bucknell University Carnegie Mellon University, Pittsburgh Temple University, Philadelphia University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh...

  3. Fermi National Accelerator Laboratory Technologies Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and...

  4. Photon Science : SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affairs | Org Chart Photon Science Faculty Arthur I. Bienenstock * John Galayda Chi-Chang Kao Srinivas Raghu Gordon E. Brown, Jr. Siegfried Glenzer Young Lee David A. Reis Axel...

  5. Fermi National Accelerator Laboratory February 2015 Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    known as synchrotron light sources to create the brightest light beams on Earth. These luminous sources provide tools for such applications as protein structure analysis,...

  6. Fermi National Accelerator Laboratory February 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2013 FY2014 K-12 teachers FY2013...

  7. Fermi National Accelerator Laboratory February 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2011 FY2012 K-12 teachers FY2011...

  8. Fermi National Accelerator Laboratory April 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology. * With a strong focus on innovation and industrialization, IARC will attract high-tech companies and train Illinois citizens to develop advanced technology with...

  9. Fermi National Accelerator Laboratory March 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    630-840-5588 to register. Arts and Science Fermilab regularly hosts public events in Ramsey Auditorium, including lectures and arts performances. For a schedule, visit...

  10. Fermi National Accelerator Laboratory August 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one-eighth of the southern sky, recording information on 300 million galaxies, 100,000 galaxy clusters and 4,000 supernovae. The Dark Energy Survey is a collaborative effort...

  11. Kwok Ko SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T racking: Track3P - Multipacting & Dark Current EM P ar1cle---in---cell: Pic3P - RF Guns & Sources (e.g. Klystron) Mul1---physics: T EM3P - EM, Thermal & Structural Effects...

  12. Iran Thomas Auditorium, 8600 Charged Domain Walls in Ferroelectrics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ceramics Laboratory, Swiss Federal Institute of Technology (EPFL) Lausanne 1015, Switzerland CNMS D D I I S S C C O O V V E E R R Y Y SEMINAR SERIES Abstract: A ferroelectric...

  13. Driving the Future | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Driving the Future At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help...

  14. Plasma accelerator

    DOE Patents [OSTI]

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  15. ACCELERATION INTEGRATOR

    DOE Patents [OSTI]

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  16. Addressing Challenging Materials at Oak Ridge National Laboratory

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Addressing Challenging Materials at Oak Ridge National Laboratory Citation Details In-Document Search Title: Addressing Challenging Materials at Oak Ridge National Laboratory No abstract prepared. Authors: Jubin, Robert Thomas [1] ; Patton, Bradley D [1] ; Robinson, Sharon M [1] ; Van Hoesen, Stephen Dirk [1] + Show Author Affiliations ORNL Publication Date: 2010-01-01 OSTI Identifier: 973839 DOE Contract Number: DE-AC05-00OR22725 Resource Type: Conference

  17. Tribal Energy Program - Technical Assistance - Sandia National Laboratories

    Energy Savers [EERE]

    Tribal Energy Program - Technical Assistance Sandra Begay-Campbell Sandia National Laboratories Tribal Energy Program skbegay@sandia.gov November 17, 2009 SANDIA NATIONAL LABORATORIES 2 | Tribal Energy Program eere.energy.gov/tribalenergy Sandra Begay-Campbell * Navajo engineer * Principal Member of the Technical Staff * Education advocate 3 | Tribal Energy Program eere.energy.gov/tribalenergy DOE-HQ DOE-GO SNL NREL DOE TEP Organization Thomas Sacco DOE Program Director Sandra Begay- Campbell

  18. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in

  19. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... spectroscopy, analysis, and manufacturing technologies. ... ARQ can be read online at: www.lanl.govarq If you have ... Norman Hilberry, Samuel Allison, Thomas Brill, Robert ...

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    artist. * MPA Materials Matter newsletter: Karen Kippen, Robb Kramer, and Thomas King, contributors. * An Award of Excellence went to Web page developer Tom King for a...

  1. Relativistic equation of state at subnuclear densities in the Thomas-Fermi approximation

    SciTech Connect (OSTI)

    Zhang, Z. W.; Shen, H., E-mail: shennankai@gmail.com [School of Physics, Nankai University, Tianjin 300071 (China)

    2014-06-20

    We study the non-uniform nuclear matter using the self-consistent Thomas-Fermi approximation with a relativistic mean-field model. The non-uniform matter is assumed to be composed of a lattice of heavy nuclei surrounded by dripped nucleons. At each temperature T, proton fraction Y{sub p} , and baryon mass density ? {sub B}, we determine the thermodynamically favored state by minimizing the free energy with respect to the radius of the Wigner-Seitz cell, while the nucleon distribution in the cell can be determined self-consistently in the Thomas-Fermi approximation. A detailed comparison is made between the present results and previous calculations in the Thomas-Fermi approximation with a parameterized nucleon distribution that has been adopted in the widely used Shen equation of state.

  2. Compact accelerator

    DOE Patents [OSTI]

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  3. Accelerating Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy 2, 2015 - 2:00pm Addthis Accelerating Innovation: PowerAmerica Is Up and Running -Rob Ivester, Deputy Director, Advanced Manufacturing Office The excitement and drive to deliver was evident to me last week when I joined nearly 100 PowerAmerica members for their kick-off meeting at NC State University in Raleigh, North Carolina. PowerAmerica, also called the Next Generation Power Electronics Manufacturing Innovation Institute, will develop advanced manufacturing processes and work to

  4. Andrew Hutton Named Head of Jefferson Lab's Accelerator Division |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gordon About Us Andrew Gordon - SLAC National Accelerator Laboratory Andrew Gordon is the External Communications Manager at SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories. Most Recent Accelerator on a Chip February 4

    Gumbiner About Us Andrew Gumbiner - Contractor, Advanced Research Projects Agency-Energy. Andrew Gumbiner is a contractor with the Advanced Research Projects Agency-Energy. Most Recent PNNL Helps the Navy Stay Cool and Conserve

  5. Thomas B. Cook,1971 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas B. Cook,1971 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1970's Thomas B. Cook,1971 Print Text Size: A A A FeedbackShare Page Weapons: For his significant

  6. Thomas E. Wainwright, 1973 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas E. Wainwright, 1973 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1970's Thomas E. Wainwright, 1973 Print Text Size: A A A FeedbackShare Page Weapons: For

  7. Thomas P. Guilderson, 2011 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas P. Guilderson, 2011 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 2010's Thomas P. Guilderson, 2011 Print Text Size: A A A FeedbackShare Page Biological and

  8. DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Omaha, NE | Department of Energy Charles Thomas Homes, Anna Model, Omaha, NE DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE Case study of a DOE 2015 Housing Innovation Award winning custom home in the cold climate that got a HERS 48 without PV, with 2x6 24" on center walls with R-23 blown fiberglass, ocsf at rim joists, basement with plus 2x4 stud walls with R-23 blown fiberglass, with R-20 around slab, R-38 under slab; a vented attic with R-100 blown

  9. S. Thomas Picraux, 1990 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    S. Thomas Picraux, 1990 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1990's S. Thomas Picraux, 1990 Print Text Size: A A A FeedbackShare Page Materials Research: For

  10. Gareth Thomas, 1977 | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gareth Thomas, 1977 The Ernest Orlando Lawrence Award Lawrence Award Home Nomination & Selection Guidelines Award Laureates 2010's 2000's 1990's 1980's 1970's 1960's Ceremony The Life of Ernest Orlando Lawrence Contact Information The Ernest Orlando Lawrence Award U.S. Department of Energy SC-2/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-2411 E: Email Us 1970's Gareth Thomas, 1977 Print Text Size: A A A FeedbackShare Page Chemistry & Metallurgy: For

  11. Latest Plasma Wakefield Acceleration Results from the FACET Project...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);National Science Foundation (NSF) Country of Publication: United States ...

  12. New Solutions with Accelerated Expansion in String Theory (Journal...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);National Science Foundation (NSF) Country of Publication: United States ...

  13. Observation of Ion Acceleration and Heating during Collisionless...

    Office of Scientific and Technical Information (OSTI)

    5 PPPL- 4835 Observation of Ion Acceleration and Heating during Collisionless Magnetic Reconnection in a Laboratory Plasma December, 2012 Jongsoo Yoo, Masaaki Yamada, HantaoJi and ...

  14. LANL announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL announces Venture Acceleration Fund recipients LANL announces Venture Acceleration Fund recipients Ideum and OnQueue are the latest recipients of the awards from the Los Alamos National Security, LLC Venture Acceleration Fund. September 26, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  15. RDC receives award for Accelerate Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RDC Receives Award for Accelerate Program Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit RDC receives award for Accelerate Program Accelerate is designed to help graduate more technical career students, place them in jobs, and better prepare them for career and educational advancement. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office

  16. BELLA: The Berkeley Lab Laser Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BELLA: The Berkeley Lab Laser Accelerator Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab Project Description BELLA, the Berkeley Laboratory Laser Accelerator created an experimental facility for further advancing the development of laser-driven plasma acceleration. BELLA's unique attribute is the ability to use

  17. Fermilab | Illinois Accelerator Research Center | Accelerators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opportunity to develop and share the known and still unexplored benefits of particle accelerators. Benefits to Society photo Each generation of particle accelerators and...

  18. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  19. FIA-12-0023- In the Matter of Thomas R. Thielen

    Broader source: Energy.gov [DOE]

    The Department of Energy’s (DOE) Office of Hearings and Appeals (OHA) Director granted in part and denied in all other respects a Privacy Act Appeal filed by Thomas R. Thielen. Mr. Thielen filed a request with the DOE’s Richland Operations Office for documents regarding a safety concern he raised to CH2M Hill Plateau Remediation Company (CHPRC).

  20. VLHC accelerator physics

    SciTech Connect (OSTI)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  1. FFAG ACCELERATOR PROTON DRIVER FOR NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2005-06-21

    This paper is the summary of a conceptual study of a Proton Driver for Neutrino Factory based on the use of a Fixed-Field Alternating-Gradient (FFAG) Accelerator. The required proton energy range for an optimum neutrino production is 5 to 12 GeV. This can be accomplished with a group of three concentric rings each with 807 m circumference [1]. FFAG Accelerators [2] have the capability to accelerate charged particles over a large momentum range ({+-}30-50%) and the feature of constant bending and focusing fields. Particles can be accelerated very fast at the rate given by the accelerating field of RF cavities placed in proper locations between magnets. The performance of FFAG accelerators is to be placed between that of Super-Conducting Linear Accelerators (SCL), with which they share the fast acceleration rate, and Rapid-Cycling Synchrotrons (RCS), as they allow the beam to re-circulate over fewer revolutions. Brookhaven National Laboratory is involved in the study of feasibility of FFAG Accelerators to accelerate intense beams of protons in the GeV energy range for a variety of applications the most important of which is the Upgrade of the Alternating Gradient Synchrotron (AGS) with a new FFAG injector [3] accelerating from 400 MeV to 1.5 GeV. The ring would be housed in the AGS tunnel and has henceforth a circumference of 807 m.

  2. LDRD Program Plan master

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory-Directed Research and Development Program FY2016 Program Plan Thomas Jefferson National Accelerator Facility Newport News, Virginia Thomas Jefferson National Accelerator Facility Laboratory-Directed Research and Development Program FY2016 Program Plan Introduction The Thomas Jefferson National Accelerator Facility (Jefferson Lab) Laboratory- Directed Research and Development (LDRD) program was planned through a formal management process consistent with DOE Order 413.2B, including

  3. White Paper on DOE-HEP Accelerator Modeling Science Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White Paper on DOE-HEP Accelerator Modeling Science Activities J.-L. Vay, C. G. R. Geddes, A. Koniges - Lawrence Berkeley National Laboratory A. Friedman, D. P. Grote - Lawrence Livermore National Laboratory D. L. Bruhwiler - RadiaSoft LLC J. P. Verboncoeur - Michigan State University Objective Toward the goal of maximizing the impact of computer modeling on the design of future particle accelerators and the development of new accelerator techniques & technologies, this white paper presents

  4. Sandia National Laboratories conducts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conducts research and development (R&D) in solar power, including photovoltaics and concentrating solar power, to strengthen the U.S. solar industry and improve the manufacturability, reliability, and cost competitiveness of solar energy technologies and systems. Researchers at Sandia partner with the U.S. Department of Energy (DOE) and other government agencies, industry, academia, and other laboratories to accelerate development and acceptance of current and emerging solar power

  5. Thomas M. Osborn Popp | Center for Gas SeparationsRelevant to Clean Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technologies | Blandine Jerome Thomas M. Osborn Popp Previous Next List Popp.photo PhD Student Department of Chemistry University of California, Berkeley Email: tosbornp [at] berkeley.edu Phone: 510-643-3073 BS in Chemistry, Arizona State University EFRC research: My research concerns the dynamics and behavior of adsorbates within metal-organic frameworks (MOFs). Specifically, I am interested in using nuclear magnetic resonance (NMR) to probe the dynamics of molecules via relaxation

  6. Thomas Jefferson Site Office CX Determinations | U.S. DOE Office of Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (SC) Thomas Jefferson Site Office CX Determinations Safety and Security Policy (SSP) SSP Home About Frequently Used Resources NEPA Documents Categorical Exclusion Determinations Environmental Assessments and Environmental Impact Statements Continuity of Operations (COOP) Implementation Plan Contact Information Safety and Security Policy U.S. Department of Energy SC-31/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-6800 F: (301) 903-7047 More Information »

  7. Thomas Jefferson Site Office EA / EIS | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Thomas Jefferson Site Office EA / EIS Safety and Security Policy (SSP) SSP Home About Frequently Used Resources NEPA Documents Categorical Exclusion Determinations Environmental Assessments and Environmental Impact Statements Continuity of Operations (COOP) Implementation Plan Contact Information Safety and Security Policy U.S. Department of Energy SC-31/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-6800 F: (301) 903-7047 More Information » Environmental

  8. Code MPACT within CASL VERA-CS Brendan Kochunas Thomas Downar Dan Jabaay

    Office of Scientific and Technical Information (OSTI)

    Validation and Application of the 3D Neutron Transport Code MPACT within CASL VERA-CS Brendan Kochunas Thomas Downar Dan Jabaay Department of Nuclear Engineering and Radiological Sciences University of Michigan Ann Arbor, MI 48109 Benjamin Collins Shane Stimpson Andrew Godfrey Kang Seog Kim Jess Gehin Nuclear Engineering Division Oak Ridge National Lab Oak Ridge, TN 37831 Scott Palmtag Core Physics Inc. Raleigh, N.C. Fausto Franceschini Westinghouse Electric Company LLC 1000 Westinghouse Drive

  9. In May 2015, Thomas Johnson, Jr. was appointed the Associate Deputy Manager of t

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In May 2015, Thomas Johnson, Jr. was appointed the Associate Deputy Manager of the U.S. Department of Energy Savannah River Operations Office (DOE-SR) at the Savannah River Site (SRS) in Aiken, South Carolina. As the DOE-SR Associate Deputy Manager, Mr. Johnson is responsible for all business-related functions at SRS, which include: human resources; organizational culture, safety and quality assurance; budget formulation and implementation; project planning, management, and integration; and

  10. Microsoft PowerPoint - 2_THOMAS_MORELLO_NMMSS_2014_Powerpoint_hour.ppt [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    Details on the SFAQ submission to the NRC, the SFAQ process and expected future actions involving the SFAQ submission Thomas Morello Exelon SFAQ  During the 2012 NMMSS meeting, several issues were presented by the licensees. They were: -Inspection/Inspector consistency -"All" versus "reportable quantity" 2 SFAQ  First Step... - Meeting held with Paul Peduzzi (NRC), Ron Albert (NRC), Andrew Mauer (NEI) and Tom Morello ( then CENG) in October of 2012. - The issues from

  11. APT accelerator. Topical report

    SciTech Connect (OSTI)

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  12. Muon Collider Progress: Accelerators

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 10{sup 34} cm{sup 2}s{sup 1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (cooling). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  13. Lab Breakthrough: Fermilab Accelerator Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fermilab Accelerator Technology Lab Breakthrough: Fermilab Accelerator Technology May 14, 2012 - 10:51am Addthis At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs Where are these 30,000 particle accelerators? Most of them in medicine and manufacturing

  14. Fermilab | Science | Particle Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research and development of future particle accelerators, contributing to the design and exploration of the next generation of machines. These accelerators, each with its own...

  15. Focusing in Linear Accelerators

    DOE R&D Accomplishments [OSTI]

    McMillan, E. M.

    1950-08-24

    Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

  16. LANL shatters records in first year of accelerated shipping effort

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL shatters records in first year of accelerated shipping effort LANL shatters records in first year of accelerated shipping effort LANL set a record for transuranic waste shipments from the Lab to permanent disposal facilities. October 3, 2012 Los Alamos National Laboratory set a record for transuranic waste shipments from the Laboratory to permanent disposal facilities, sending nearly 60 more shipments than originally planned. Los Alamos National Laboratory set a record for transuranic waste

  17. Photo of the Week: Lego Rendition of SLAC National Laboratory...

    Energy Savers [EERE]

    See an actual photo of the SLAC linac. | Photo courtesy of Greg Stewart, SLAC National Accelerator Laboratory. Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of ...

  18. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  19. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  20. Building a Tabletop Accelerator

    SciTech Connect (OSTI)

    Leemans, Wim

    2015-05-06

    Berkeley Lab physicist Wim Leemans discusses his research on developing a tabletop-size particle accelerator.

  1. Lab announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Lab announces Venture Acceleration Fund recipients Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. selected as recipients of awards. August 11, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  2. Lab seeks ideas for venture acceleration fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture acceleration fund Lab seeks ideas for Venture Acceleration Fund The fund will provide investments of up to $100,000 to facilitate projects with regional entrepreneurs, companies, investors, or strategic partners. July 9, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  3. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its

  4. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  5. Lessons from the Bevatron Accelerator Demolition - 12191

    SciTech Connect (OSTI)

    Harkins, Joseph; Cronin, Robert

    2012-07-01

    The Bevatron accelerator at Lawrence Berkeley National Laboratory is the first DOE accelerator to be demolished. While there are many lessons learned from its demolition, this paper focuses on the following lessons learned that may be useful for other D and D projects: bounding project scope to ensure success, hazards mapping for focused characterization and remediation, establishing radiological evaluation criteria, and forecasting activation products. With D and D of many DOE accelerators likely to occur in the near future, these lessons learned should be considered in planning those projects. These lessons learned are likely to be applicable to other D and D projects as well. (authors)

  6. National Laboratory Research and Development Funding Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Research and Development Funding Opportunities National Laboratory Research and Development Funding Opportunities Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving SunShot Initiative's Systems Integration targets. These multi-year projects are funded based on a competitive proposal process and address the

  7. Thomas Edison

    Broader source: Energy.gov [DOE]

    Known as "The Wizard of Menlo Park," Edison was an American inventor who developed the first commercially practical incandescent light bulb.

  8. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  9. LDRD Program Plan master

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 Program Plan Thomas Jefferson National Accelerator Facility Newport News, Virginia Thomas Jefferson National Accelerator Facility Laboratory-Directed Research and Development Program FY2015 Program Plan Introduction The Thomas Jefferson National Accelerator Facility (Jefferson Lab) Laboratory- Directed Research and Development (LDRD) program was planned through a formal management process consistent with DOE Order 413.2B, including Administrative Change 1 issued on January 31, 2011 and the

  10. LDRD Program Plan master

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Program Plan Thomas Jefferson National Accelerator Facility Newport News, Virginia Thomas Jefferson National Accelerator Facility Laboratory-Directed Research and Development Program FY2014 Program Plan Introduction The Thomas Jefferson National Accelerator Facility (Jefferson Lab) Laboratory- Directed Research and Development (LDRD) program was planned through a formal management process consistent with DOE Order 413.2B, including Administrative Change 1 issued on January 31, 2011 and the

  11. MEMORANDUM FOR ELIZABETH MONTOYA TRANSITION TEAM FROM THOMAS N. PYKE, J

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ^ g December 1, 200S MEMORANDUM FOR ELIZABETH MONTOYA TRANSITION TEAM FROM THOMAS N. PYKE, J CHIEF INFORMATION OFFICER SUBJECT: Follow-up to our meeting this morning Carl Staton and I appreciated the opportunity to brief you this morning on our office's activities, including the cyber security issue. We noted four follow-up actions: 1. The breakdown ofOCIO Federal and contracting FTE at all of our sites is: Federal Contractor a. Forrestal 51 144 b. Germantown 85 213 c. Albuquerque 1 39 d.

  12. HIA 2015 DOE Zero Energy Ready Home Case Study: Charles Thomas Homes, Anna Model, Omaha, NE

    Energy Savers [EERE]

    Thomas Homes Anna Model Omaha, NE DOE ZERO ENERGY READY HOME(tm) The U.S. Department of Energy invites home builders across the country to meet the extraordinary levels of excellence and quality specified in DOE's Zero Energy Ready Home program (formerly known as Challenge Home). Every DOE Zero Energy Ready Home starts with ENERGY STAR Certified Homes Version 3.0 for an energy-efficient home built on a solid foundation of building science research. Advanced technologies are designed in to give

  13. Microsoft PowerPoint - 11_THOMAS_MORELLO_NMMSS_2014_Update.ppt [Compatibility Mode]

    National Nuclear Security Administration (NNSA)

    Recent Submittal of Security Frequently Asked Questions (SFAQs) UPDATE Thomas Morello Exelon Recent Submittal of Security Frequently Asked Questions (SFAQs)  In late November of 2013, the Industry with extensive aid from NEI, submitted 2 MC&A related SFAQs to the NRC  The SFAQs were submitted under NEI 05-10  The issues involved have been discussed between NRC and Industry for some time, including a panel at the 2013 NMMSS meeting in St. Louis 2 Recent Submittal of Security

  14. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and Analysis Computing Center Science Work with Argonne About Safety News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne User Facilities Advanced Photon Source Argonne

  15. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  16. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  17. Wind Power Opportunities in St. Thomas, USVI: A Site-Specific Evaluation and Analysis

    SciTech Connect (OSTI)

    Lantz, E.; Warren, A.; Roberts, J. O.; Gevorgian, V.

    2012-09-01

    This NREL technical report utilizes a development framework originated by NREL and known by the acronym SROPTTC to assist the U.S. Virgin Islands in identifying and understanding concrete opportunities for wind power development in the territory. The report covers each of the seven components of the SROPTTC framework: Site, Resource, Off-take, Permitting, Technology, Team, and Capital as they apply to wind power in the USVI and specifically to a site in Bovoni, St. Thomas. The report concludes that Bovoni peninsula is a strong candidate for utility-scale wind generation in the territory. It represents a reasonable compromise in terms of wind resource, distance from residences, and developable terrain. Hurricane risk and variable terrain on the peninsula and on potential equipment transport routes add technical and logistical challenges but do not appear to represent insurmountable barriers. In addition, integration of wind power into the St. Thomas power system will present operational challenges, but based on experience in other islanded power systems, there are reasonable solutions for addressing these challenges.

  18. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  19. Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Jefferson Lab is recognized as a world leader in accelerator science. This expertise comes from the planning, building, maintaining and operating of the Continuous Electron Beam Accelerator Facility (CEBAF) - the lab's particle accelerator. CEBAF is based on superconducting radiofrequency (SRF) technology. It produces a stream of charged electrons that scientists use to probe the nucleus of the atom. CEBAF was the first large-scale application of SRF technology in the world,

  20. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Accelerated Aging Studies Factors such as temperature, pressure, or radiation

  1. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resumes transuranic waste shipments April 2, 2014 Shipments keep Lab on track to complete 3706 Campaign on schedule LOS ALAMOS, N.M., April 2, 2014-Los Alamos National Laboratory resumed shipments of transuranic waste yesterday from Technical Area 54 Area G. The shipments are part of an accelerated shipping campaign to remove 3,706 cubic meters of transuranic waste stored aboveground at Area G by June 30, 2014. Nearly 3,200 cubic meters of the waste have already been removed since the 3706

  2. Accelerators AND Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators AND Beams TOOLS Of DiScOvery anD innOvaTiOn Published by the Division of Physics of Beams of the American Physical Society Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . Why.care.about.accelerators?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . What.are.accelerators.for?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 .

  3. Biological assessments for the low energy demonstration accelerator, 1996

    SciTech Connect (OSTI)

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  4. How Accelerator Physicists Save Time | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Image courtesy of Lawrence Berkeley National Laboratory The basic elements of laser plasma wakefield acceleration. The laser pulse, shown in red, ionizes the gas to produce a ...

  5. Photo of the Week: What Does a Particle Accelerator Have in Common...

    Energy Savers [EERE]

    Learn more about how FACET works. | Photo courtesy of SLAC National Accelerator Laboratory. Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of Public Affairs Every ...

  6. Vehicle Technologies Office Merit Review 2015: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  7. Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  8. Better Buildings Challenge Accelerator Support - 2014 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Accelerator Support - 2014 BTO Peer Review Better Buildings Challenge Accelerator Support - 2014 BTO Peer Review Presenter: Monisha Shah, National Renewable Energy Laboratory Through the Better Buildings Energy Data Accelerator, local governments are joining forces with their utilities so that commercial and multifamily building owners can more easily access whole-building energy usage data. This effort helps building owners-especially those with multiple tenants-break

  9. Lee Teng Undergraduate Fellowship in Accelerator Science and Engineering |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory For more additional information on the Lee Tang Internship, visit the Illinois Accelerator Institute. Lee Teng Partners Lee Teng Fellowship "Incredible opportunity! I have learned a lot, and met some incredible individuals." -Summer 2013 Intern Overview The Illinois Accelerator Institute established the Lee Teng Undergraduate Internship in Accelerator Science and Engineering in 2008 to provide junior level college students an opportunity to study with

  10. High brightness electron accelerator

    DOE Patents [OSTI]

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  11. Making the perfect recipe just got faster: NNSA research accelerates

    National Nuclear Security Administration (NNSA)

    materials science | National Nuclear Security Administration Making the perfect recipe just got faster: NNSA research accelerates materials science Thursday, May 19, 2016 - 11:01am The Trinity supercomputer at Los Alamos National Laboratory. In a recent paper published in Nature Communications, NNSA researchers at Los Alamos National Laboratory (LANL) recently demonstrated ways to accelerate materials science. Why is this innovation so noteworthy to NNSA's mission, as well as other

  12. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  13. Federal laboratories for the 21st century

    SciTech Connect (OSTI)

    Gover, J.; Huray, P.G.

    1998-04-01

    Federal laboratories have successfully filled many roles for the public; however, as the 21st Century nears it is time to rethink and reevaluate how Federal laboratories can better support the public and identify new roles for this class of publicly-owned institutions. The productivity of the Federal laboratory system can be increased by making use of public outcome metrics, by benchmarking laboratories, by deploying innovative new governance models, by partnerships of Federal laboratories with universities and companies, and by accelerating the transition of federal laboratories and the agencies that own them into learning organizations. The authors must learn how government-owned laboratories in other countries serve their public. Taiwan`s government laboratory, Industrial Technology Research Institute, has been particularly successful in promoting economic growth. It is time to stop operating Federal laboratories as monopoly institutions; therefore, competition between Federal laboratories must be promoted. Additionally, Federal laboratories capable of addressing emerging 21st century public problems must be identified and given the challenge of serving the public in innovative new ways. Increased investment in case studies of particular programs at Federal laboratories and research on the public utility of a system of Federal laboratories could lead to increased productivity of laboratories. Elimination of risk-averse Federal laboratory and agency bureaucracies would also have dramatic impact on the productivity of the Federal laboratory system. Appropriately used, the US Federal laboratory system offers the US an innovative advantage over other nations.

  14. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. ...

  15. PULSED-FOCUSING RECIRCULATING LINACS FOR MUON ACCELERATION

    SciTech Connect (OSTI)

    Johnson, Rolland PAUL

    2014-12-31

    Since the muon has a short lifetime, fast acceleration is essential for high-energy applications such as muon colliders, Higgs factories, or neutrino factories. The best one can do is to make a linear accelerator with the highest possible accelerating gradient to make the accelerating time as short as possible. However, the cost of such a single linear accelerator is prohibitively large due to expensive power sources, cavities, tunnels, and related infrastructure. As was demonstrated in the Thomas Jefferson Accelerator Facility (Jefferson Lab) Continuous Electron Beam Accelerator Facility (CEBAF), an elegant solution to reduce cost is to use magnetic return arcs to recirculate the beam through the accelerating RF cavities many times, where they gain energy on each pass. In such a Recirculating Linear Accelerator (RLA), the magnetic focusing strength diminishes as the beam energy increases in a conventional linac that has constant strength quadrupoles. After some number of passes the focusing strength is insufficient to keep the beam from going unstable and being lost. In this project, the use of fast pulsed quadrupoles in the linac sections was considered for stronger focusing as a function of time to allow more successive passes of a muon beam in a recirculating linear accelerator. In one simulation, it was shown that the number of passes could be increased from 8 to 12 using pulsed magnet designs that have been developed and tested. This could reduce the cost of linac sections of a muon RLA by 8/12, where more improvement is still possible. The expense of a greater number of passes and corresponding number of return arcs was also addressed in this project by exploring the use of ramped or FFAG-style magnets in the return arcs. A better solution, invented in this project, is to use combined-function dipole-quadrupole magnets to simultaneously transport two beams of different energies through one magnet string to reduce costs of return arcs by almost a factor of two. A patent application was filed for this invention and a detailed report published in Physical Review Special Topics. A scaled model using an electron beam was developed and proposed to test the concept of a dog bone RLA with combined-function return arcs. The efforts supported by this grant were reported in a series of contributions to particle accelerator conferences that are reproduced in the appendices and summarized in the body of this report.

  16. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  17. Accelerated cleanup risk reduction

    SciTech Connect (OSTI)

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation period in which the well was `capped`. Our results show the formation of an inclined gas phase during injection and a fast collapse of the steam zone within an hour of terminating steam injection. The majority of destruction occurs during the collapse phase, when contaminant laden water is drawn back towards the well. Little to no noncondensible gasses are created in this process, removing any possibility of sparging processes interfering with contaminant destruction. Our models suggest that the thermal region should be as hot and as large as possible. To have HPO accepted, we need to demonstrate the in situ destruction of contaminants. This requires the ability to inexpensively sample at depth and under high temperatures. We proved the ability to implies monitoring points at depths exceeding 150 feet in highly heterogeneous soils by use of cone penetrometry. In addition, an extractive system has been developed for sampling fluids and measuring their chemistry under the range of extreme conditions expected. We conducted a collaborative field test of HPO at a Superfund site in southern California where the contaminant is mainly creosote and pentachlorophenol. Field results confirm the destruction of contaminants by HPO, validate our field design from simulations, demonstrate that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells (and minimal capital cost) and yield reliable cost estimates for future commercial application. We also tested the in situ microbial filter technology as a means to intercept and destroy the accelerated flow of contaminants caused by the injection of steam. A series of laboratory and field tests revealed that the selected bacterial species effectively degrades trichloroethene in LLNL Groundwater and under LLNL site conditions. In addition, it was demonstrated that the bacteria effectively attach to the LLNL subsurface media. An in-well treatability study indicated that the bacteria initially degrade greater than 99% of the contaminant, to concentrations less than regulatory limit

  18. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  19. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  20. Linear inductive accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Gerasimov, A.I.; Pavlovskiy, A.I.

    1983-11-01

    A proposed accelerator, differing from existing ones in that it is loaded through a capacitor on a solenoid which is uniformly distributed throughout the accelerating system and connected to an independent electrical current source, is discussed. The design of the system makes it possible to improve the uniformity of the electrical field and increase the longitudinal focusing magnetic field. This is especially important for high-current accelerators.

  1. Linear induction accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Pavlovskiy, A.I.

    1984-03-01

    A linear induction accelerator of charged particles, containing inductors and an acceleration circuit, characterized by the fact that, for the purpose of increasing the power of the accelerator, each inductor is made in the form of a toroidal line with distributed parameters, from one end of which in the gap of the line a ring commutator is included, and from the other end of the ine a resistor is hooked up, is described.

  2. ACCELERATION RESPONSIVE SWITCH

    DOE Patents [OSTI]

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  3. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells for wakefield suppression in both, superconducting RF and room-temperature high-energy accelerators of the ... acts as an extremely efficient higher order mode ...

  4. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property ...

  5. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 ... of Taos, will continue development of a solar thermal heating prototype that uses heat ...

  6. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  7. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  8. From Autos to Accelerators

    Broader source: Energy.gov [DOE]

    In a town haunted by the remains of fallen automobile plants, some companies are hiring workers to put their car-manufacturing skills toward building particle accelerators.

  9. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  10. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  11. Accelerators (5/5)

    SciTech Connect (OSTI)

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  12. Accelerators (4/5)

    SciTech Connect (OSTI)

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  13. Accelerators (3/5)

    SciTech Connect (OSTI)

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  14. Accelerators (3/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  15. Accelerators (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  16. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  17. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  18. Accelerators (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  19. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  20. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  1. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  2. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will celebrate 50 years of highly successful collaborative research. Everyone who has been a part of TUNL's program - former and present students, post-doctoral researchers, faculty, staff, research collaborators, and other friends of the laboratory - is invited. Come and join us! What are we celebrating? In November 1965 the US Atomic Energy Commission announced a $2.5M award for purchase of a new High Voltage Engineering Model FN tandem Van de Graaff accelerator. This began a thriving

  3. Los Alamos National Laboratory to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to begin DARHT 2 operations January 29, 2008 Hydrodynamic testing at the frontier of science LOS ALAMOS, New Mexico, January 29, 2008- The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility has officially become "dual" with authorization to begin full power operations of Axis 2, adding both new capability and higher energy to the unique accelerator facility. Los Alamos National Laboratory has received authorization from the National Nuclear Security Administration to begin

  4. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    SciTech Connect (OSTI)

    Lofgren, E.J.

    1994-07-01

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954.

  5. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects....

  6. The Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change projections. COSIM models were used extensively in simulations underpinning the recent climate assessment by the Intergovernmental Panel on Climate Change (IPCC) that was awarded the 2007 Nobel

  7. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  8. Deuterium accelerator experiments for APT.

    SciTech Connect (OSTI)

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  9. HEAVY ION LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  10. Accelerator on a Chip

    SciTech Connect (OSTI)

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  11. Based Accelerators Gennady Shvets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finally, I will discuss a new structure-based laser-driven surface wave accelerator based on silicon carbide (SiC) that employs a polaritonic material with a negative dielectric ...

  12. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  13. CLASHING BEAM PARTICLE ACCELERATOR

    DOE Patents [OSTI]

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  14. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  15. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  16. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  17. Native American Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Native American Venture Acceleration Fund provides boost to six regional businesses February 26, 2013 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, New Mexico, Feb. 26, 2013-Six Native American businesses received grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help

  18. Accelerating Scientific Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating Scientific Discovery at the Spallation Neutron Source Stuart Campbell Neutron Data Analysis & Visualization Division 2 Developing and applying the world's best tools for neutron scattering High Flux Isotope Reactor: Intense steady-state neutron flux and a high-brightness cold neutron source Spallation Neutron Source: World's most powerful accelerator-based neutron source Biology and Soft Matter Chemical and Engineering Materials Neutron Data Analysis and Visualization Quantum

  19. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regional businesses receive Native American Venture Acceleration Fund grants February 1, 2016 Investing in Northern New Mexico's economy through jobs, new revenue LOS ALAMOS, N.M., Feb. 1, 2016-Four Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients

  20. U.S. Department of Energy Fermi National Accelerator Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... slightly better, and the system has been running 15% to ... pre-1984 chillers using Class I CFCs such as R-11. ... Change order mechanism: Because change orders can be costly ...

  1. Preliminary Notice of Violation, SLAC National Accelerator Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Enforcement issued a Preliminary Notice of Violation (WEA-2009-01) to Stanford University for violations of 10 C.F.R. 851 associated with a polyvinyl chloride pipe ...

  2. Los Alamos National Laboratory Venture Acceleration Fund boosts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is the overall benefit to Northern New Mexico," Pesiri noted. Treatment for Diabetes Patients Integrative Enzymatics' 70,000 award funds animal studies for a new...

  3. Fermi National Accelerator Laboratory October 2013 STEM Educational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2012 FY2013 K-12 teachers FY2012...

  4. Christopher T. [Fermi National Accelerator Laboratory, P.O. Box...

    Office of Scientific and Technical Information (OSTI)

    IL 60439-4815 (United States), E-mail: zachos@anl.gov 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COMPACTIFICATION; DUALITY; FERMIONS; GAUGE INVARIANCE; HOLOGRAPHY;...

  5. U.S. Department of Energy Fermi National Accelerator Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The new 4500-ton cooling system is expected to use 40% less energy and is free of ozone-depleting chlorofluorocarbons (CFCs). The 3.5 million project (2.8 million before ...

  6. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    Authors: Merrill, Frank E. 1 ; Borozdin, Konstantin N. 1 ; Garnett, Robert W. 1 ; Mariam, Fesseha G. 1 ; Saunders, Alexander 1 ; Walstrom, Peter L. 1 ; Morris, ...

  7. Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and

    Broader source: Energy.gov (indexed) [DOE]

    Moisture for PV Encapsulants, Frontsheets, and Backsheets | Department of Energy Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps5_nist_gu.pdf More Documents & Publications Weathering Performance of PV Backsheets QA TG5 UV, temperature and humidity Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado

  8. Vehicle Technologies Office Merit Review 2014: Accelerating the Evaluation and Market Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating the...

  9. Vehicle Technologies Office Merit Review 2015: Accelerate the Development and Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerate the...

  10. Savannah Harris | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expansion of the Universe Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating Expansion of the Universe Resources with Additional Information * Awards Saul Perlmutter Photo Courtesy of Lawrence Berkeley National Laboratory 'Saul Perlmutter, an astrophysicist at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics "for the discovery of the

  11. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  12. 2015 Key Water Power Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving to

  13. 2015 Key Water Power Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow Addthis 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving

  14. The CAMS Accelerator Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the production of biomedical carbon-14 samples. In addition, CAMS operates separate sample preparation laboratories for geological cosmogenic isotopes and for heavy element ...

  15. Lab announces selection of Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Lab announces selection of Venture Acceleration Fund recipients Retriever Technology, Elemetric Instruments, Star Cryoelectronics, and Veezyon are recipients of awards. January 7, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  16. Lab announces selection of partner for venture acceleration initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture acceleration initiative partner Lab announces selection of partner for Venture Acceleration initiative The initiative is a pilot program aimed at strategically spinning off technology-based companies from the Lab. September 2, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  17. Accelerate program supports students as they establish careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerate Program Supports Students Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Accelerate program supports students as they establish careers More than 60 students from six Northern New Mexico colleges meet business representatives to hone their professional readiness skills. February 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community Programs Office Kurt

  18. Accelerated Technique for Carbon Mesoporous Materials - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Advanced Materials Advanced Materials Find More Like This Return to Search Accelerated Technique for Carbon Mesoporous Materials Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL has developed improved production that is both more efficient and less costly for carbon mesoporous materials with pore diameters between 2 and 50 nm. This accelerated production method offers a more resilient product for commercial use in gas separation, water

  19. Six regional businesses receive Native American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grants Native American Venture Acceleration Fund grants Six regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. February 4, 2014 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  20. Six regional businesses receive Native American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grants Native American Venture Acceleration Fund grants Six regional businesses receive Native American Venture Acceleration Fund grants Grant recipients are Walatowa Timber, High Water Mark, Ohkay Owingeh Housing Authority, Tano Services Corporation, Professional Cleaning Solutions and Than Povi. March 3, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines

  1. Accelerated Aging of Roofing Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Aging of Roofing Materials Accelerated Aging of Roofing Materials Addthis 1 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman prepares to insert clean and soiled roofing specimens into a weatherometer. The weatherometer simulates exposure to heat, moisture, and UV radiation. Image: Heat Island Group, Lawrence Berkeley National Laboratory 2 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman configures a weatherometer to simulate the effects of heat, moisture, and UV

  2. Pulsed Power Technology at Sandia National Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Information please contact: Thomas Mattsson Manager High Energy Density Physics Theory trmatts@sandia.gov Laveryn Apodaca Logistics POC (505) 284-6727 lavapod@sandia.gov...

  3. Sandia National Laboratories beginnings focus of Los Alamos' 70th

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anniversary lecture Alamos' 70th anniversary lecture Sandia National Laboratories beginnings focus of Los Alamos' 70th anniversary lecture Sandia National Laboratories historian Rebecca Ullrich discusses Sandia's transition from a Los Alamos division to an independent organization. March 6, 2013 The Hermes II flash X-ray accelerator was built in 1968 to support testing of materials and components. The Hermes II flash X-ray accelerator was built in 1968 to support testing of materials and

  4. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  5. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet...

  6. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  7. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  8. Report on accelerated corrosion studies.

    SciTech Connect (OSTI)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  9. The Heavy Photon Search experiment at Jefferson Laboratory

    SciTech Connect (OSTI)

    De Napoli, Marzio

    2015-06-01

    Many beyond Standard Model theories predict a new massive gauge boson, a.k.a. 'dark' or 'heavy photon', directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS) experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab), in the mass range 20-1000 MeV/c2 and coupling to electric charge ϵ2 = α'/α in the range 10-5 to 10-10. HPS will look for the e+e- decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  10. The 12 GeV CEBAF Upgrade Project at Thomas Jefferson National Accelerator Facility, OAS-RA-L-11-13

    Energy Savers [EERE]

    Excellence | Department of Energy The "Academy Awards" of the Energy Department Recognize Employee Excellence The "Academy Awards" of the Energy Department Recognize Employee Excellence November 2, 2011 - 11:58am Addthis The Japan Earthquake and Tsunami Disaster Response Team with Secretary Steven Chu as they receive a Secretary of Energy Achievement Award. | Photo courtesy of the Energy Department The Japan Earthquake and Tsunami Disaster Response Team with Secretary

  11. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  12. Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating

    Office of Scientific and Technical Information (OSTI)

    Expansion of the Universe Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating Expansion of the Universe Resources with Additional Information * Awards Saul Perlmutter Photo Courtesy of Lawrence Berkeley National Laboratory 'Saul Perlmutter, an astrophysicist at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics "for the discovery of the

  13. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Directory: Division of Materials Science & Engineering Name Title Office Email Phone Number James Acton Grad Asst-RA 0215 Hach jacton@iastate.edu 515-294-4446 Mufit Akinc Associate 2220C Hoover makinc@iastate.edu 515-294-0738 Thomas Ales 150 Metals Development tkales@iastate.edu 515-294-4446 Nathan Alms Lab Assistant-X 322 Spedding nalms@iastate.edu 515-294-4446 Michael Ambrose Lab Assistant-X 258 Metals Development ambrose@iastate.edu 515-294-1602 James Anderegg Asst Scientist III 325

  14. Accelerator research studies

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  15. Adaptive control for accelerators

    DOE Patents [OSTI]

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  16. Commissioning the GTA accelerator

    SciTech Connect (OSTI)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-09-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth`s magnetic field and travel in straight lines unless they enter the earth`s atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  17. Commissioning the GTA accelerator

    SciTech Connect (OSTI)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V. ); Connolly, R.; Weiss, R. (Gr

    1992-01-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth's magnetic field and travel in straight lines unless they enter the earth's atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  18. Accelerators for Cancer Therapy

    DOE R&D Accomplishments [OSTI]

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  19. SSRL Accelerator Phycics Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at.gif (15297 bytes) BeamOptics.gif (29047 bytes) ICFA2000t.gif (31362 bytes) Home Page LCLS Accelerator Physics at SSRL The field tha t can be covered by the Accelerator Physics...

  20. Linear Accelerator | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator Producing brilliant x-ray beams at the APS begins with electrons emitted from a cathode heated to 1100 C. The electrons are accelerated by high-voltage...

  1. LOS ALAMOS, New Mexico, January 7, 2009-Los Alamos National Laboratory (LANL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients January 7, 2009 LOS ALAMOS, New Mexico, January 7, 2009-Los Alamos National Laboratory (LANL) has selected Retriever Technology, Elemetric Instruments, Star Cryoelectronics, and Veezyon as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides investments of up to $100,000 to regional entrepreneurs, companies, investors, or strategic partners that use LANL technology or

  2. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  3. Venture Acceleration Fund wins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins entrepreneurship award October 23, 2014 Fund supports economic development in Northern New Mexico LOS ALAMOS, N.M., Oct. 23, 2014-The Venture Acceleration Fund (VAF) created by Los Alamos National Security, LLC (LANS) and administered by the Regional Development Corporation received the 2014 entrepreneurship award from the International Economic Development Council (IEDC). The award was presented at IEDC's annual conference this week in Fort Worth, Texas. "Since the VAF was initiated

  4. WIPP Accelerating Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other

  5. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Kristin Persson is one of the founding scientists behind the Materials Project, a computational tool aimed at taking the guesswork out of new materials discoveries, especially those aimed at energy applications like batteries. (Roy Kaltschmidt, LBNL) New materials are crucial to building a clean energy

  6. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 4, 2014 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, N.M., Feb. 4, 2014-Six Northern New Mexico Native American-owned and operated businesses received a total of $60,000 in grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. - 2

  7. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  8. Acceleration during magnetic reconnection

    SciTech Connect (OSTI)

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  9. ACCELERATION INTEGRATING MEANS

    DOE Patents [OSTI]

    Wilkes, D.F.

    1961-08-29

    An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

  10. History of Proton Linear Accelerators

    DOE R&D Accomplishments [OSTI]

    Alvarez, L. W.

    1987-01-01

    Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

  11. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

  12. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  13. Accelerator Stewardship Test Facility Program - Elliptical Twin...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications Citation Details In-Document Search Title: Accelerator Stewardship Test Facility ...

  14. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  15. Ames Laboratory Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Emergency Plan Version Number: 13.0 Document Number: Plan 46300.001 Effective Date: 11/2014

  16. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Hot Canyon This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  17. Preliminary description of the ground test accelerator cryogenic cooling system

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Stewart, W.F.

    1988-01-01

    The Ground Test Accelerator (GTA) under construction at the Los Alamos National Laboratory is part of the Neutral Particle Beam Program supported by the Strategic Defense Initiative Office. The GTA is a full-sized test facility to evaluate the feasibility of using a negative ion accelerator to produce a neutral particle beam (NPB). The NPB would ultimately be used outside the earth's atmosphere as a target discriminator or as a directed energy weapon. The operation of the GTA at cryogenic temperature is advantageous for two reasons: first, the decrease of temperature caused a corresponding decrease in the rf heating of the copper in the various units of the accelerator, and second, at the lower temperature the decrease in the thermal expansion coefficient also provides greater thermal stability and consequently, better operating stability for the accelerator. This paper discusses the cryogenic cooling system needed to achieve these advantages. 5 figs., 3 tabs.

  18. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 3, 2015 Nearly $700,000 in new revenue generated last two years LOS ALAMOS, N.M., March 3, 2015-Six Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. - 2 - "Our

  19. LOS ALAMOS, New Mexico, July 9, 2008- Los Alamos National Laboratory is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    venture acceleration fund July 9, 2008 LOS ALAMOS, New Mexico, July 9, 2008- Los Alamos National Laboratory is soliciting ideas for projects that facilitate the creation and growth of regional businesses based on Los Alamos National Laboratory (LANL) technology or expertise. The Laboratory's Venture Acceleration Fund (VAF) will provide investments of up to $100,000 to facilitate projects with regional entrepreneurs, companies, investors, or strategic partners. The deadline for submission is July

  20. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and TUNL 11:30 - 1:00 PM Lunch (Included, Buffet Style) 12:45 PM Symposium Photo 1:00 PM History of TUNL Thomas B. Clegg, UNC-Chapel Hill and TUNL HIGS2 1:45 PM Research at HIGS2...

  1. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from manufacturing waste and creates useful magnets out of it. Ames Laboratory...

  2. mark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Mark Gordon Associate Chemical & Biological Sciences 201 Spedding ... Group Ames Laboratory Research Projects: Chemical Physics TheoreticalComputational Tools ...

  3. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  4. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    Renewable Energy Laboratory Innovation for Our Energy Future Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation ...

  5. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  6. Cytogenetic Biodosimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an...

  7. Testing a combined vibration and acceleration environment.

    SciTech Connect (OSTI)

    Jepsen, Richard Alan; Romero, Edward F.

    2005-01-01

    Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a 'Vibrafuge'. However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

  8. Siemens Technology Accelerator | Open Energy Information

    Open Energy Info (EERE)

    Technology Accelerator Jump to: navigation, search Name: Siemens Technology Accelerator Place: Germany Sector: Services Product: General Financial & Legal Services ( Subsidiary ...

  9. SETsquared Business Acceleration | Open Energy Information

    Open Energy Info (EERE)

    SETsquared Business Acceleration Jump to: navigation, search Name: SETsquared Business Acceleration Place: United Kingdom Sector: Services Product: General Financial & Legal...

  10. Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Thomas G. Thompson Cruise in the Pacific Ocean

    SciTech Connect (OSTI)

    Sabine, C.L.; Key, R.M.; Hall, M.; Kozyr, A.

    1999-08-01

    This data documentation discusses the procedures and methods used to measure total carbon dioxide (TCO2), total alkalinity (TALK), and radiocarbon (delta 14C), at hydrographic stations, as well as the underway partial pressure of CO2 (pCO2) during the R/V Thomas G. Thompson oceanographic cruise in the Pacific Ocean (Section P10). Conducted as part of the World Ocean Circulation Experiment (WOCE), the cruise began in Suva, Fiji, on October 5, 1993, and ended in Yokohama, Japan, on November 10, 1993. Measurements made along WOCE Section P10 included pressure, temperature, salinity [measured by conductivity temperature, and depth sensor (CTD)], bottle salinity, bottle oxygen, phosphate, nitrate, silicate, chlorofluorocarbons (CFC-11, CFC-12), TCO2, TALK, delta 14C, and underway pCO2.

  11. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  12. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Laboratory Goals Status of Calendar Year 2016 objectives and targets. Item 1 Recommendation: The EMSSC recommends an Open House be held in the Ames Laboratory Storeroom and Warehouse by April 1, 2016. The Open House will provide Ames Laboratory employees the opportunity to discover what supplies are readily available through the storeroom and showcase the Equipment Pool website. This recommendation will increase awareness of the sustainable purchasing requirements by showcasing these

  13. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  14. Ideum awarded Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ideum awarded Venture Acceleration Funds Motion recognition software business receives Venture Acceleration Funds LANS Venture Acceleration Fund (VAF) award enabled Ideum to develop motion recognition software for international release. April 3, 2012 Jim Spadaccini, owner of Ideum a software development company in Corrales Jim Spadaccini (R) has tapped into the Lab's economic development programs: VAF, NMSBA, Market Intelligence. Ideum, his Corrales, New Mexico based business, creates

  15. HIGH ENERGY PARTICLE ACCELERATOR

    DOE Patents [OSTI]

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  16. Accelerating Spectrum Sharing Technologies

    SciTech Connect (OSTI)

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  17. Low energy demonstration accelerator technical area 53

    SciTech Connect (OSTI)

    1996-04-01

    As part of the Department of Energy`s (DOE) need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation`s nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The resulting Record of Decision (ROD) determined that over the next three years the DOE would follow a dual-track acquisition strategy that assures tritium production for the nuclear weapon stockpile in a rapid, cost effective, and safe manner. Under this strategy the DOE will further investigate and compare two options for producing tritium: (1) purchase of an existing commercial light-water reactor or irradiation services with an option to purchase the reactor for conversion to a defense facility; and (2) design, build, and test critical components of a system for accelerator production of tritium (APT). The final decision to select the primary production option will be made by the Secretary of Energy in the October 1998 time frame. The alternative not chosen as the primary production method, if feasible, would be developed as a back-up tritium supply source. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if the DOE were to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at Los Alamos National Laboratory. The Low Energy Demonstration Accelerator (LEDA) would be incrementally developed and tested in five separate stages over the next seven years. The following issues were evaluated for the proposed action: utility demands, air, human health, environmental restoration, waste management, transportation, water, threatened and endangered species, wetlands, cultural resources, and environmental justice.

  18. Organizations | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Research Facilities and Centers Center for Electrical Energy Storage Argonne Tandem Linac Accelerator System Argonne-Northwestern Solar Energy Research Center Center for...

  19. Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    could benefit consumers, industry Read More Scientific User Facilities Argonne Tandem Linac Accelerator System ATLAS studies the properties of atomic nuclei, the core of...

  20. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...