National Library of Energy BETA

Sample records for accelerator laboratory slac

  1. SLAC National Accelerator Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC National Accelerator Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the SLAC National Accelerator Laboratory (SLAC). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. SLAC National Accelerator Laboratory 2 Technology Marketing Summaries Category Title and Abstract Laboratories Date Industrial

  2. SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a Diamondoid Tip Adding a Layer of Tiny Diamonds Could Boost the Power of Electron Guns Used in Research and Industry Prev Next Headlines SLAC's Stanley Brodsky Shares...

  3. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM ...

  4. Secretary Chu Speaks at SLAC National Accelerator Laboratory

    Broader source: Energy.gov [DOE]

    On Friday, August 24, 2012, Secretary Chu gave a speech commemorating the 50th Anniversary of SLAC National Accelerator Laboratory. You can find the powerpoint presentation below.

  5. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Authors: Merrill, Frank E. [1] ; Borozdin, Konstantin N. [1] ; Garnett, Robert W. [1] ; Mariam, Fesseha G. [1] ; Saunders, Alexander [1] ; Walstrom, Peter L. [1] ; Morris, Christopher [1] + Show Author Affiliations Los Alamos National

  6. Preliminary Notice of Violation, SLAC National Accelerator Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEA-2009-01 | Department of Energy SLAC National Accelerator Laboratory - WEA-2009-01 Preliminary Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 April 3, 2009 This letter refers to the Department of Energy's (DOE) Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances associated with the September 13, 2007 On April 3, 2009, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of

  7. SLAC National Accelerator Laboratory Technologies Available for Licensing -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories SLAC National Accelerator Laboratory Technologies

  8. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards SLAC National Accelerator Laboratory Print ...

  9. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card ...

  10. Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SLAC National Accelerator Laboratory - WEA-2009-01 Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 September 3, 2009 Issued to Stanford University related to a PVC Pipe Explosion at the SLAC National Accelerator Laboratory On September 3, 2009, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement issued a Final Notice of Violation (WEA-2009-01) to Stanford University for violations of 10 C.F.R. 851

  11. EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California

    Broader source: Energy.gov [DOE]

    DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

  12. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect (OSTI)

    Weathersby, S. P.; Brown, G.; Centurion, M.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K.; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; Nguyen, M. N.; Reid, A. H.; Shen, X.; Sokolowski-Tinten, K.; Vecchione, T.; Vetter, S. L.; Wu, J.; Yang, J.; Dürr, H. A.; Wang, X. J.

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  13. Photo of the Week: Lego Rendition of SLAC National Laboratory...

    Energy Savers [EERE]

    See an actual photo of the SLAC linac. | Photo courtesy of Greg Stewart, SLAC National Accelerator Laboratory. Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of ...

  14. Labs at-a-Glance: SLAC National Accelerator Laboratory | U.S...

    Office of Science (SC) Website

    Particle Physics Accelerator Science and Technology Condensed Matter Physics and Materials Science Chemical and Molecular Science Large Scale User Facilities Advanced ...

  15. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Stanford Linear Accelerator Center A Mission Accomplishment (Quality and Productivity of R&D) B+ Construction and Operation of Research Facilities B- S&T ProjectProgram Management ...

  16. THE LABORATORY Located in Menlo Park, California, SLAC National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE LABORATORY Located in Menlo Park, California, SLAC National Accelerator Laboratory is home to some of the world's most cutting-edge technologies, used by researchers worldwide to uncover scientifc mysteries on the smallest and the largest scales-from the workings of the atom to the mysteries of the cosmos. The result has been 50 years of discovery and innovation in both basic and applied science, with tangible benefts for our everyday lives. The following examples highlight some of the roles

  17. SLAC Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sign In Launch the Developer Dashboard SLAC National Accelerator Laboratory DOE | Stanford | SLAC | SSRL | LCLS | AD | PPA | Photon Science | PULSE | SIMES LCLS : Linac...

  18. 2011 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)

    Broader source: Energy.gov [DOE]

    The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2011 and 2012 within the Stanford Linear Accelerator Center Site Office (SLAC SO) (See also Science).

  19. Photon Science : SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affairs | Org Chart Photon Science Faculty Arthur I. Bienenstock * John Galayda Chi-Chang Kao Srinivas Raghu Gordon E. Brown, Jr. Siegfried Glenzer Young Lee David A. Reis Axel...

  20. Kwok Ko SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T racking: Track3P - Multipacting & Dark Current EM P ar1cle---in---cell: Pic3P - RF Guns & Sources (e.g. Klystron) Mul1---physics: T EM3P - EM, Thermal & Structural Effects...

  1. Microsoft Word - poa_slac_ind2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL ACCELERATOR LABORATORY * 2575 SAND HILL ROAD * MENLO PARK * CALIFORNIA * 94025 * USA SLAC is operated by Stanford University for the U.S. Department of Energy STANFORD...

  2. NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process April 4, 2016 - 10:46am Addthis News release from the National Renewable Energy Laboratory and SLAC National Accelerator Laboratory, April 1. Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and SLAC National Accelerator Laboratory have been able to pinpoint for the first time what happens during a key

  3. Results From Plasma Wakefield Acceleration Experiments at FACET...

    Office of Scientific and Technical Information (OSTI)

    International Particle Accelerator Conference (IPAC-2011), San Sebastian, Spain, 4-9 Sep 2011 Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE ...

  4. HEP-Req_SLAC.ppt

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For Accelerator Modeling Finite Element Approach Lie-Quan Lee SLAC National Accelerator Laboratory Large Scale Computing and Storage Requirements for High Energy Physics NERSC/ASCR/HEP Workshop, Washington D.C., November 12-13, 2009 NERSC Project * Project name: Advanced Modeling for Particle Accelerators * Principle Investigator: Kwok Ko * Participating institutions: - SLAC, BNL, FNAL, ORNL, TJNAF - CW09 Users * ANL * CERN * Cornell University * Los Alamos Lab * Michigan State University * Paul

  5. Using The SLAC Two-Mile Accelerator for Powering an FEL

    SciTech Connect (OSTI)

    Barletta, W.A.; Sessler, A.M.; Yu, L.H.; /Brookhaven

    2012-06-29

    A parameter survey is made, employing the recently developed 2D formalism for an FEL, of the characteristics of an FEL using the SLAC accelerator. Attention is focused upon a wavelength of 40 {angstrom} (the water window) and 1 {angstrom} case is also presented. They consider employing the SLAC linac with its present operating parameters and with improved parameters such as would be supplied by a new photo-cathode injector. They find that improved parameters are necessary, but that the parameters presently achieved with present-day photo-cathode guns are adequate to reach the water window.

  6. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    SciTech Connect (OSTI)

    Rosenzweig, James; Travish, Gil; Hogan, Mark; Muggli, Patric; /Southern California U.

    2012-07-05

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are planning measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for efficient operation with pulse trains.

  7. High Frequency, High Gradient Dielectric Wakefield Acceleration Experiments at SLAC and BNL

    SciTech Connect (OSTI)

    Rosenzweig, J. B.; Andonian, G.; Niknejadi, P.; Travish, G.; Williams, O.; Xuan, K.; Muggli, P.; Yakimenko, V.

    2010-11-04

    Given the recent success of >GV/m dielectric wakefield accelerator (DWA) breakdown experiments at SLAC, and follow-on coherent Cerenkov radiation (CCR) production at the UCLA Neptune, a UCLA-USC-SLAC collaboration is now implementing a new set of experiments that explore various DWA scenarios. These experiments are motivated by the opportunities presented by the approval of the FACET facility at SLAC, as well as unique pulse-train wakefield drivers at BNL. The SLAC experiments permit further exploration of the multi-GeV/m envelope in DWAs, and will entail investigations of novel materials (e.g. CVD diamond) and geometries (Bragg cylindrical structures, slab-symmetric DWAs), and have an over-riding goal of demonstrating >GeV acceleration in {approx}33 cm DWA tubes. In the nearer term before FACET's commissioning, we are performing measurements at the BNL ATF, in which we drive {approx}50-200 MV/m fields with single pulses or pulse trains, and observe resonantly driven CCR as well as deflection modes. These experiments are of high relevance to enhancing linear collider DWA designs, as they will demonstrate potential for high efficiency operation with pulse trains, and explore transverse modes for the first time.

  8. Secretary Chu to Join Representatives Lofgren and Honda at the SLAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Accelerator Laboratory | Department of Energy Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory Secretary Chu to Join Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory August 13, 2010 - 12:00am Addthis Washington, D.C. - On Monday, U.S. Energy Secretary Steven Chu will visit the SLAC National Accelerator Laboratory in Menlo Park, California. Secretary Chu will join Representatives Zoe Lofgren and Mike Honda and Stanford

  9. EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 E-mail: dave.osugi@sso.science.doe.gov

  10. Latest Plasma Wakefield Acceleration Results from the FACET Project...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);National Science Foundation (NSF) Country of Publication: United States ...

  11. New Solutions with Accelerated Expansion in String Theory (Journal...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);National Science Foundation (NSF) Country of Publication: United States ...

  12. Plasma Wakefield Acceleration and FACET - Facilities for Accelerator Science and Experimental Test Beams at SLAC

    ScienceCinema (OSTI)

    Andrei Seryi

    2010-01-08

    Plasma wakefield acceleration is one of the most promising approaches to advancing accelerator technology. This approach offers a potential 1,000-fold or more increase in acceleration over a given distance, compared to existing accelerators.  FACET, enabled by the Recovery Act funds, will study plasma acceleration, using short, intense pulses of electrons and positrons. In this lecture, the physics of plasma acceleration and features of FACET will be presented.  

  13. Facility for Advanced Accelerator Experimental Tests at SLAC (FACET) Conceptual Design Report

    SciTech Connect (OSTI)

    Amann, J.; Bane, K.; /SLAC

    2009-10-30

    This Conceptual Design Report (CDR) describes the design of FACET. It will be updated to stay current with the developing design of the facility. This CDR begins as the baseline conceptual design and will evolve into an 'as-built' manual for the completed facility. The Executive Summary, Chapter 1, gives an introduction to the FACET project and describes the salient features of its design. Chapter 2 gives an overview of FACET. It describes the general parameters of the machine and the basic approaches to implementation. The FACET project does not include the implementation of specific scientific experiments either for plasma wake-field acceleration for other applications. Nonetheless, enough work has been done to define potential experiments to assure that the facility can meet the requirements of the experimental community. Chapter 3, Scientific Case, describes the planned plasma wakefield and other experiments. Chapter 4, Technical Description of FACET, describes the parameters and design of all technical systems of FACET. FACET uses the first two thirds of the existing SLAC linac to accelerate the beam to about 20GeV, and compress it with the aid of two chicanes, located in Sector 10 and Sector 20. The Sector 20 area will include a focusing system, the generic experimental area and the beam dump. Chapter 5, Management of Scientific Program, describes the management of the scientific program at FACET. Chapter 6, Environment, Safety and Health and Quality Assurance, describes the existing programs at SLAC and their application to the FACET project. It includes a preliminary analysis of safety hazards and the planned mitigation. Chapter 7, Work Breakdown Structure, describes the structure used for developing the cost estimates, which will also be used to manage the project. The chapter defines the scope of work of each element down to level 3.

  14. Preliminary Notice of Violation, SLAC National Accelerator Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Enforcement issued a Preliminary Notice of Violation (WEA-2009-01) to Stanford University for violations of 10 C.F.R. 851 associated with a polyvinyl chloride pipe ...

  15. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    Authors: Merrill, Frank E. 1 ; Borozdin, Konstantin N. 1 ; Garnett, Robert W. 1 ; Mariam, Fesseha G. 1 ; Saunders, Alexander 1 ; Walstrom, Peter L. 1 ; Morris, ...

  16. SLAC All Access: FACET

    ScienceCinema (OSTI)

    Hogan, Mark

    2014-09-15

    SLAC's Facility for Advanced Accelerator Experimental Tests, or FACET, is a test-bed where researchers are developing the technologies required for particle accelerators of the future. Scientists from all over the world come to explore ways of improving the power and efficiency of the particle accelerators used in basic research, medicine, industry and other areas important to society. In this video, Mark Hogan, head of SLAC's Advanced Accelerator Research Department, offers a glimpse into FACET, which uses part of SLAC's historic two-mile-long linear accelerator.

  17. New!LBNL'SLAC'FNAL!initiative:

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    !!! New!LBNL'SLAC'FNAL!initiative: ! x J.'L.!Vay,!T.!Drummond,!A.!Koniges,!B.!Loring,! ! C.!Mitchell,!J.!Qiang,!O.!Ruebel,!R.!Ryne,!H.!Vincenti ! ! Lawrence!Berkeley!National!Laboratory,!CA,!USA ! ! D.!P.!Grote ! ! Lawrence!Livermore!National!Laboratory,!CA,!USA ! ! Axel!Hübl! ! ! Helmholtz'Zentrum!Dresden!Rossendorf!,!Germany ! Advanced!Modeling!of!Particle!Accelerators ! NERSC!Exascale!Science!Application!Program!meeting ! 12/04/2014 ! Accelerators*are*essen,al*tools*of*science*and*tech. *

  18. NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Releases | NREL NREL, SLAC Scientists Pinpoint Solar Cell Manufacturing Process April 1, 2016 Scientists at the Energy Department's National Renewable Energy Laboratory (NREL) and SLAC National Accelerator Laboratory have been able to pinpoint for the first time what happens during a key manufacturing process of silicon solar cells. Their paper, "The formation mechanism for printed silver-contacts for silicon solar cells," appears in the journal Nature Communications. The paper was

  19. Accelerated Laboratory Tests Using Simultaneous UV, Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Accelerated Laboratory Tests Using Simultaneous UV, Temperature, ...

  20. Accelerator on a Chip | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerator on a Chip Accelerator on a Chip February 4, 2016 - 5:24pm Addthis Scientists at SLAC are attempting to build a particle accelerator the size of a shoe box. | Video courtesy of SLAC. Andrew Gordon SLAC National Accelerator Laboratory Could tiny chips no bigger than grains of rice do the job of a huge particle accelerator? At full potential, a series of these "accelerators on a chip" could boost electrons to the same high energies achieved in SLAC National Accelerator

  1. fwp100211-slac | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Chemical Control of Fluid Flow and Contaminant Release in Shale Microfractures Last Reviewed 12/8/2015 FWP 100211 Goal The project goal is to identify geochemical reactions induced in shales upon injection of hydraulic fracturing fluids and to assess the impact of these reactions on shale porosity and release of contaminants, such as uranium. Performers SLAC National Accelerator Laboratory, Menlo Park, CA Background Current hydraulic fracturing technologies recover less than 30% of

  2. Photo of the Week: What Does a Particle Accelerator Have in Common...

    Energy Savers [EERE]

    Learn more about how FACET works. | Photo courtesy of SLAC National Accelerator Laboratory. Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of Public Affairs Every ...

  3. SLAC Snapshot

    Broader source: Energy.gov [DOE]

    Biologists have long dreamed of making images of viruses, whole microbes and living cells without freezing slicing or otherwise disturbing them -- learn how researchers at SLAC are making that dream a reality with their help of the world's first hard X-ray free-electron laser.

  4. SLAC Accelerator Test Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FACET & TF Careers & Education Archived FACET User Facility Quick Launch About FACET & Test Facilities Expand About FACET & Test Facilities FACET & Test Facilities User Portal...

  5. Photo of the Week: Lego Rendition of SLAC National Laboratory's Linear

    Energy Savers [EERE]

    Energy How to Grow Superconducting Crystals Photo of the Week: How to Grow Superconducting Crystals September 13, 2013 - 11:29am Addthis Many of the materials that scientists work with at Brookhaven National Laboratory are too small and too precise for traditional tools. In cases like these, the labs grow materials instead of building them. Brookhaven physicist Genda Gu pioneered techniques that grow some of the largest single-crystal high-temperature superconductors in the world. The

  6. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  7. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  8. Numerical and laboratory simulations of auroral acceleration

    SciTech Connect (OSTI)

    Gunell, H.; De Keyser, J.; Mann, I.

    2013-10-15

    The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.

  9. SLAC All Access: Laser Labs

    ScienceCinema (OSTI)

    Minitti, Mike; Woods Mike

    2014-06-03

    From supermarket checkouts to video game consoles, lasers are ubiquitous in our lives. Here at SLAC, high-power lasers are critical to the cutting-edge research conducted at the laboratory. But, despite what you might imagine, SLAC's research lasers bear little resemblance to the blasters and phasers of science fiction. In this edition of All Access we put on our safety goggles for a peek at what goes on inside some of SLAC's many laser labs. LCLS staff scientist Mike Minitti and SLAC laser safety officer Mike Woods detail how these lasers are used to study the behavior of subatomic particles, broaden our understanding of cosmic rays and even unlock the mysteries of photosynthesis.

  10. Andrew Hutton Named Head of Jefferson Lab's Accelerator Division |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gordon About Us Andrew Gordon - SLAC National Accelerator Laboratory Andrew Gordon is the External Communications Manager at SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories. Most Recent Accelerator on a Chip February 4

    Gumbiner About Us Andrew Gumbiner - Contractor, Advanced Research Projects Agency-Energy. Andrew Gumbiner is a contractor with the Advanced Research Projects Agency-Energy. Most Recent PNNL Helps the Navy Stay Cool and Conserve

  11. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    of R&D) A Construction and Operation of Research Facilities B+ S&T ProjectProgram Management A Contractor LeadershipStewardship B+ Environment, Safety and Health B+...

  12. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    A- Mission Accomplishments (Quality and Productivity of R&D) A Construction and Operation of Research Facilities B+ S&T ProjectProgram Management A Contractor Leadership...

  13. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    of R&D) A Construction and Operation of Research Facilities A- S&T ProjectProgram Management A Contractor LeadershipStewardship A- Environment Safety and Health B+ ...

  14. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    of R&D) A- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management A- Contractor LeadershipStewardship B+ Environment Safety and Health B ...

  15. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    A- Mission Accomplishments (Quality and Productivity of R&D) A- Construction and Operation of Research Facilities A- S&T ProjectProgram Management B+ Contractor Leadership...

  16. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    of R&D) B- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management B- Contractor LeadershipStewardship C+ Environment Safety and Health B- ...

  17. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    of R&D) A- Construction and Operation of Research Facilities B+ S&T ProjectProgram Management A- Contractor LeadershipStewardship B Environment Safety and Health B- ...

  18. 2012 Annual Planning Summary for SLAC Site Office | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SLAC Site Office 2012 Annual Planning Summary for SLAC Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within SLAC Site Office. PDF icon APS-2012-SLAC.pdf File APS-2012-SLAC.xlsx More Documents & Publications 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC) EA-1904: Draft Environmental Assessment EA-1904: Final Environmental Assessment

  19. I Fermi National Accelerator Laboratory I I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    b .?.? ... . . 1- \r I Fermi National Accelerator Laboratory I I FERMILAB-Cdnf-76 159 -EXP 2 020,000 2 02 2.000 I 1 (Submitted to the Neutrino I 9 76 Conference Aachen, Germany June 8r-13, -1976) * I 4 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the

  20. SLAC All Access: Vacuum Microwave Device Department

    ScienceCinema (OSTI)

    Haase, Andy

    2014-06-13

    The Vacuum Microwave Device Department (VMDD) builds the devices that make SLAC's particle accelerators go. These devices, called klystrons, generate intense waves of microwave energy that rocket subatomic particles up to nearly the speed of light.

  1. Los Alamos National Laboratory Accelerates Transuranic Waste Shipments:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan | Department of Energy Los Alamos National Laboratory Accelerates Transuranic Waste Shipments: Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan Los Alamos National Laboratory

  2. NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon-Capture Technologies | Department of Energy NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies April 2, 2014 - 9:31am Addthis NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies Check out NETL's latest video on CCSI. In 2011, the Office of Fossil Energy's National Energy Technology Laboratory (NETL)

  3. Accelerator Design and Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Design and Development Accelerator Design and Development Scientists around the world rely on particle accelerators to yield insights on the structure and function of materials at and below the atomic scale. These accelerators range in size from portable machines for producing medical isotopes to enormous miles-wide colliders for high-energy physics. In order to further develop our understanding of matter and the fabric of the cosmos, we must continue to expand the horizon of

  4. Laboratory announces selection of Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Laboratory announces selection of Venture Acceleration Fund recipients Simtable and Southwest Bio Fuels as recipients of $100,000 awards from the Los Alamos National Security, LLC Venture Acceleration Fund. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  5. Fermi National Accelerator Laboratory September 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    years, is an expected byproduct of accelerator operations at Fermilab. As part of our environmental monitoring program, we regularly sample the water discharged into the creeks...

  6. Recent Upgrade of the Klystron Modulator at SLAC

    SciTech Connect (OSTI)

    Nguyen, M.N.; Burkhart, C.P.; Lam, B.K.; Morris, B.; /SLAC

    2011-11-04

    The SLAC National Accelerator Laboratory employs 244 klystron modulators on its two-mile-long linear accelerator that has been operational since the early days of the SLAC establishment in the sixties. Each of these original modulators was designed to provide 250 kV, 262 A and 3.5 {mu}S at up to 360 pps using an inductance-capacitance resonant charging system, a modified type-E pulse-forming network (PFN), and a pulse transformer. The modulator internal control comprised of large step-start resistor-contactors, vacuum-tube amplifiers, and 120 Vac relays for logical signals. A major, power-component-only upgrade, which began in 1983 to accommodate the required beam energy of the SLAC Linear Collider (SLC) project, raised the modulator peak output capacity to 360 kV, 420 A and 5.0 {mu}S at a reduced pulse repetition rate of 120 pps. In an effort to improve safety, performance, reliability and maintainability of the modulator, this recent upgrade focuses on the remaining three-phase AC power input and modulator controls. The upgrade includes the utilization of primary SCR phase control rectifiers, integrated fault protection and voltage regulation circuitries, and programmable logic controllers (PLC) -- with an emphasis on component physical layouts for safety and maintainability concerns. In this paper, we will describe the design and implementation of each upgraded component in the modulator control system. We will also report the testing and present status of the modified modulators.

  7. RF breakdown experiments at SLAC

    SciTech Connect (OSTI)

    Laurent, L. [University of California Davis, Davis, California 95616 (United States); Vlieks, A.; Pearson, C.; Caryotakis, G.; Luhmann, N.C. [Stanford Linear Accelerator Center, Menlo Park, California 94025 (United States)

    1999-05-01

    RF breakdown is a critical issue in the conditioning of klystrons, accelerator sections, and rf components for the next linear collider (NLC), as well as other high gradient accelerators and high power microwave sources. SLAC is conducting a series of experiments using an X-band traveling wave ring to characterize the processes and trigger mechanisms associated with rf breakdown. The goal of the research is to identify materials, processes, and manufacturing methods that will increase the breakdown threshold and minimize the time required for conditioning. {copyright} {ital 1999 American Institute of Physics.}

  8. Fermi National Accelerator Laboratory November 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an international collaboration between U.S. universities, Fermilab in Illinois, Brookhaven National Laboratory in New York, and nine international labs and universities. It is...

  9. Fermi National Accelerator Laboratory June 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intense beam of neutrinos, particles that may hold the key to understanding why the universe is made of matter. Using the cosmos as a laboratory, Fermilab scientists explore dark...

  10. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  11. SLAC-PUB-15416 April

    Office of Scientific and Technical Information (OSTI)

    Accelerator Laboratory Stanford University Menlo Park, CA 94025, USA Frank Zimmermann CERN, Geneva, Switzerland Abstract A ring-based Higgs factory with a center-of-mass energy...

  12. Fermi National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards Fermi National Accelerator Laboratory Print ...

  13. Fermi National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card ...

  14. U.S. Department of Energy Fermi National Accelerator Laboratory

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) has replaced old equipment and reduced energy consumption through a partnership with its electric utility, Commonwealth Edison. Fermilab upgraded the centralized cooling system and separated the system into two segments — a "comfort system" to cool the employee office space and a "process system" for the equipment and accelerators. Backup cooling capacity is provided and cooling can be shifted between the process and comfort systems when necessary. The new 4500-ton cooling system is expected to use 40% less energy and is free of ozone-depleting chlorofluorocarbons (CFCs).

  15. Accelerator on a Chip

    SciTech Connect (OSTI)

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  16. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  17. Post-accelerator issues at the IsoSpin Laboratory

    SciTech Connect (OSTI)

    Chattopadhyay, S.; Nitschke, J.M. [eds.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.

  18. Radiation Dose Measurement for High-Intensity Laser Interactions with Solid Targets at SLAC

    SciTech Connect (OSTI)

    Liang, Taiee

    2015-09-25

    A systematic study of photon and neutron radiation doses generated in high-intensity laser-solid interactions is underway at SLAC National Accelerator Laboratory. We found that these laser-solid experiments are being performed using a 25 TW (up to 1 J in 40 fs) femtosecond pulsed Ti:sapphire laser at the Linac Coherent Light Source’s (LCLS) Matter in Extreme Conditions (MEC) facility. Additionally, radiation measurements were performed with passive and active detectors deployed at various locations inside and outside the target chamber. Results from radiation dose measurements for laser-solid experiments at SLAC MEC in 2014 with peak intensity between 1018 to 7.1x1019 W/cm2 are presented.

  19. SLAC-PUB-15224 August

    Office of Scientific and Technical Information (OSTI)

    24 August 25, 2012 Theoretical Summary Lecture for Higgs Hunting 2012 Michael E. Peskin 1 SLAC, Stanford University, Menlo Park, California 94025 USA ABSTRACT In this lecture, I...

  20. A Look Inside SLAC's Battery Lab

    ScienceCinema (OSTI)

    Wei Seh, Zhi

    2014-07-21

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  1. A Look Inside SLAC's Battery Lab

    SciTech Connect (OSTI)

    Wei Seh, Zhi

    2014-07-17

    In this video, Stanford materials science and engineering graduate student Zhi Wei Seh shows how he prepares battery materials in SLAC's energy storage laboratory, assembles dime-sized prototype "coin cells" and then tests them to see how many charge-discharge cycles they can endure without losing their ability to hold a charge. Results to date have already set records: After 1,000 cycles, they retain 70 percent of their original charge.

  2. The cyclotron laboratory and the RFQ accelerator in Bern

    SciTech Connect (OSTI)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  3. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    SciTech Connect (OSTI)

    Not Available

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs.

  4. Iltt: Fermi National Accelerator Laboratory FERMILAB-Pub-75/44-THY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iltt: Fermi National Accelerator Laboratory FERMILAB-Pub-75/44-THY June 1975 Weak Interaction Models with New Quarks and Right-Handed Currents" F.A. WILCZEK and A. ZEE t Fermi National Accelerator Laboratory,*Batavia, Illinois 60510 and Joseph Henry Laboratories Princeton University, Princeton, New Jersey 08540 and R. L. KINGSLEY and S. B. TREIMAN Joseph Henry Laboratories Princeton University, Princeton, New Jersey 08540 ABSTRACT We discuss various weak interaction issues for a general

  5. ASYMPTOTICALLY FREE GAUGE THEORIES - I* David J. Gross+ National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national accelerator laboratory NAL-PUB-73/49-THY July, 1973 ASYMPTOTICALLY FREE GAUGE THEORIES - I* David J. Gross+ National Accelerator Laboratory and Joseph Henry Laboratories Princeton University Princeton, New Jersey 08540 and Frank Wilczek Joseph Henry Laboratories Princeton University Princeton, New Jersey 08540 * Research supported in part by the United States Air Force Office of Scientific Research under Contract F-44620-71-6-0180 t Alfred P. Sloan Foundation Research Fellow 2% Oaerated

  6. SLAC Partners with Palo Alto Firm to Make Klystrons Much More Efficient:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New 'GREEN-RF' technology recycles energy that would otherwise go to waste in accelerating particles for science, medicine, industry | Department of Energy SLAC Partners with Palo Alto Firm to Make Klystrons Much More Efficient: New 'GREEN-RF' technology recycles energy that would otherwise go to waste in accelerating particles for science, medicine, industry SLAC Partners with Palo Alto Firm to Make Klystrons Much More Efficient: New 'GREEN-RF' technology recycles energy that would

  7. Fermi National Accelerator Laboratory FERMILAB-Conf-95/276-E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermi National Accelerator Laboratory FERMILAB-Conf-95/276-E CDF and D0 Observation of the Top Quark S.B. Kim Presented for the CDF and D0 Collaborations Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 Randall Laboratory University of Michigan Ann Arbor, Michigan 48109 August 1995 Published Proceedings from the 15th International Conference on Physics in Collision, Cracow, Poland, June 8-10, 1995 Operated by Universities Research Association Inc. under Contract No.

  8. Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories

    SciTech Connect (OSTI)

    Casey,R.; Haas, E.; Hseuh, H-C.; Kane, S.; Lessard, E.; Sharma, S.; Collins, J.; Toter, W. F.; Olis, D. R.; Pushka, D. R.; Ladd, P.; Jobe, R. K.

    2008-09-09

    Vacuum vessels, including evacuated chambers and insulated jacketed dewars, can pose a potential hazard to equipment and personnel from collapse, rupture due to back-fill pressurization, or implosion due to vacuum window failure. It is therefore important to design and operate vacuum systems in accordance with applicable and sound engineering principles. 10 CFR 851 defines requirements for pressure systems that also apply to vacuum vessels subject to back-fill pressurization. Such vacuum vessels are potentially subject to the requirements of the American Society of Mechanical Engineers (ASME) Pressure Vessel Code Section VIII (hereafter referred to as the 'Code'). However, the scope of the Code excludes vessels with internal or external operating pressure that do not exceed 15 pounds per square inch gauge (psig). Therefore, the requirements of the Code do not apply to vacuum systems provided that adequate pressure relief assures that the maximum internal pressure within the vacuum vessel is limited to less than 15 psig from all credible pressure sources, including failure scenarios. Vacuum vessels that cannot be protected from pressurization exceeding 15 psig are subject to the requirements of the Code. 10 CFR 851, Appendix A, Part 4, Pressure Safety, Section C addresses vacuum system requirements for such cases as follows: (c) When national consensus codes are not applicable (because of pressure range, vessel geometry, use of special materials, etc.), contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local code. Measures must include the following: (1) Design drawings, sketches, and calculations must be reviewed and approved by a qualified independent design professional (i.e., professional engineer). Documented organizational peer review is acceptable. (2) Qualified personnel must be used to perform examinations and inspections of materials, in-process fabrications, non-destructive tests, and acceptance test. (3) Documentation, traceability, and accountability must be maintained for each unique pressure vessel or system, including descriptions of design, pressure conditions, testing, inspection, operation, repair, and maintenance. The purpose of this guideline is to establish a set of expectations and recommendations which will satisfy the requirements for vacuum vessels in general and particularly when an equivalent level of safety as required by 10 CFR 851 must be provided. It should be noted that these guidelines are not binding on DOE Accelerator Laboratories and that other approaches may be equally acceptable in addressing the Part 851 requirements.

  9. Wake fields in SLAC Linac Collimators

    SciTech Connect (OSTI)

    Novokhatski, Alexander; Decker, F. -J.; Smith, H.; Sullivan, M.

    2014-12-02

    When a beam travels near collimator jaws, it gets an energy loss and a transverse kick due to the backreaction of the beam field diffracted from the jaws. The effect becomes very important for an intense short bunch when a tight collimation of the background beam halo is required. In the Linac Coherent Light Source at SLAC a collimation system is used to protect the undulators from radiation due to particles in the beam halo. The halo is most likely formed from gun dark current or dark current in some of the accelerating sections. However, collimators are also responsible for the generation of wake fields. The wake field effect from the collimators not only brings an additional energy jitter and change in the trajectory of the beam, but it also rotates the beam on the phase plane, which consequently leads to a degradation of the performance of the Free Electron Laser at the Linac Coherent Light Source. In this paper, we describe a model of the wake field radiation in the SLAC linac collimators. We use the results of a numerical simulation to illustrate the model. Based on the model, we derive simple formulas for the bunch energy loss and the average kick. In addition, we also present results from experimental measurements that confirm our model.

  10. SLAC-Built Detector Prepares for Life at Jefferson Lab (SLAC News Center) |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab SLAC-Built Detector Prepares for Life at Jefferson Lab (SLAC News Center) External Link: https://news.slac.stanford.edu/image/slac-built-detector-prepares-life-jefferson... By jlab_admin on Tue, 2012-04-17

  11. SLAC-PUB-2446

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2446 December 1979 (T/E) THE TAU LEPTON" Martin L. Per1 Stanford Linear Accelerator Center Stanford University, Stanford, California 94305 U.S.A. Submitted to Annual Review of Nuclear and Particle Science * Work supported by the Department of Energy, contract DE-AC03-76SF00515. TAU LEPTON TABLE OF CONTENTS -2- -1. SI INTRODUCTION 1.1 The Definition of a Lepton 1.2 The Tau Lepton 2. THEORETICAL FRAMEWORK 2.1 2.2 2.3 2.4 Weak Interactions and Lepton Conservation Simple Models for New Charged

  12. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    SciTech Connect (OSTI)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  13. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  14. NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the laboratory to the powerplant more quickly, at a lower cost, and with reduced risk than would be accomplished following more traditional research and development pathways. ...

  15. Documenting the Physical Universe:Preserving the Record of SLAC from 1962 to 2005

    SciTech Connect (OSTI)

    Deken, Jean Marie; /SLAC

    2006-03-10

    Since 1905, Albert Einstein's ''miraculous year'', modern physics has advanced explosively. In 2005, the World Year of Physics, a session at the SAA Annual meeting discusses three institutional initiatives--Einstein's collected papers, an international geophysical program, and a research laboratory--to examine how physics and physicists are documented and how that documentation is being collected, preserved, and used. This paper provides a brief introduction to the research laboratory (SLAC), discusses the origins of the SLAC Archives and History Office, its present-day operations, and the present and future challenges it faces in attempting to preserve an accurate historical record of SLAC's activities.

  16. Accelerating Geothermal Research (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating Geothermal Research Supporting a Cleaner Environment NREL is a strategic partner of the U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO). NREL teams are leading the research and deployment efforts through various projects. Summaries of a few key activities follow. Geothermal-Solar Hybrids: The objective is to examine the viability of using solar thermal heat combined with geother- mal energy to improve plant efficiency and reduce cost. This project, performed by

  17. Review of trigger and on-line processors at SLAC

    SciTech Connect (OSTI)

    Lankford, A.J.

    1984-07-01

    The role of trigger and on-line processors in reducing data rates to manageable proportions in e/sup +/e/sup -/ physics experiments is defined not by high physics or background rates, but by the large event sizes of the general-purpose detectors employed. The rate of e/sup +/e/sup -/ annihilation is low, and backgrounds are not high; yet the number of physics processes which can be studied is vast and varied. This paper begins by briefly describing the role of trigger processors in the e/sup +/e/sup -/ context. The usual flow of the trigger decision process is illustrated with selected examples of SLAC trigger processing. The features are mentioned of triggering at the SLC and the trigger processing plans of the two SLC detectors: The Mark II and the SLD. The most common on-line processors at SLAC, the BADC, the SLAC Scanner Processor, the SLAC FASTBUS Controller, and the VAX CAMAC Channel, are discussed. Uses of the 168/E, 3081/E, and FASTBUS VAX processors are mentioned. The manner in which these processors are interfaced and the function they serve on line is described. Finally, the accelerator control system for the SLC is outlined. This paper is a survey in nature, and hence, relies heavily upon references to previous publications for detailed description of work mentioned here. 27 references, 9 figures, 1 table.

  18. SLAC Access Update | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC Access Update Effective October 2015, visit the SUSB VUE Center for badging and SLAC access. Before traveling to SLAC, please complete these procedures. 1. Register through the user portal to provide or update contact information; also confirm your proximity access/expiration through the user portal. 2. Alert us of all experimenters who will participate in scheduled experiments by listing everyone on proposals & beam time/support requests. Contact URA to add additional members to your

  19. SLAC Lightsource User Access Guidelines and Agreement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lightsource User Access Guidelines & Agreement August 3, 2011 SLAC-I-030-306-001-00-R002 1 SLAC Lightsource User Access Guidelines and Agreement LCLS / SSRL User Research Administration approval (signature/date): LCLS Safety Office approval (signature/date): SSRL Safety Office approval (signature/date): XFO Operations approval (signature/date): Revision Record Revision Date Revised Section(s) Affected Description of Change R001 October 4 th , 2010 User Form Updated SLAC Lightsource User

  20. SLAC Dosimeter / ID Request Form A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Feb 2009 (updated 13 May 2010) SLAC-I-760-0A07J-006-R010 1 of 2 SLAC Dosimeter / ID Request Form A (For applicants who have completed SLAC Environment, Safety, and Health Training) Sections 1-5 completed by applicant. Section 1: Contact Information Last name: First name: MI: Male Female Birth year (yyyy): Job title: Contact information/mailing address: City: State: Zip code: Country: Dept/Group: Phone number: Mail stop: Users or non-SLAC employees only: List employer, company, or university :

  1. SLAC Dosimeter / ID Request Form A

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a replacement dosimeter because my dosimeter: Is lost* Was damagedcompromised* Was forgotten Was turned in Expired Other (please explain) * Submit a SLAC LostDamaged Dosimeter...

  2. Accelerator Radioisotopes Save Lives: Part II Seaborg Institute for Transactinium Science/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quarter 2009/1st Quarter 2010 4th Quarter 2009/1st Quarter 2010 Accelerator Radioisotopes Save Lives: Part II Seaborg Institute for Transactinium Science/Los Alamos National Laboratory Accelerator Isotopes Save Lives: Part II Actinide Research Quarterly Actinide Research Quarterly LANL's Role in the DOE National Isotope Program 1 The Isotope Production Facility at TA-53 6 Radioisotopes for Medical Applications 11 Radionuclide Generators: Portable Sources of Medical Isotopes 15 Recovery and Uses

  3. SLAC Next-Generation High Availability Power Supply

    SciTech Connect (OSTI)

    Bellomo, P.; MacNair, D.; ,

    2010-06-11

    SLAC recently commissioned forty high availability (HA) magnet power supplies for Japan's ATF2 project. SLAC is now developing a next-generation N+1 modular power supply with even better availability and versatility. The goal is to have unipolar and bipolar output capability. It has novel topology and components to achieve very low output voltage to drive superconducting magnets. A redundant, embedded, digital controller in each module provides increased bandwidth for use in beam-based alignment, and orbit correction systems. The controllers have independent inputs for connection to two external control nodes. Under fault conditions, they sense failures and isolate the modules. Power supply speed mitigates the effects of fault transients and obviates subsequent magnet standardization. Hot swap capability promises higher availability and other exciting benefits for future, more complex, accelerators, and eventually the International Linear Collider project.

  4. SLAC E144 Plots, Simulation Results, and Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The 1997 E144 experiments at the Stanford Linear Accelerator Center (SLAC) utilitized extremely high laser intensities and collided huge groups of photons together so violently that positron-electron pairs were briefly created, actual particles of matter and antimatter. Instead of matter exploding into heat and light, light actually become matter. That accomplishment opened a new path into the exploration of the interactions of electrons and photons or quantum electrodynamics (QED). The E144 information at this website includes Feynmann Diagrams, simulation results, and data files. See also aseries of frames showing the E144 laser colliding with a beam electron and producing an electron-positron pair at http://www.slac.stanford.edu/exp/e144/focpic/focpic.html and lists of collaborators' papers, theses, and a page of press articles.

  5. An X-Band Gun Test Area at SLAC

    SciTech Connect (OSTI)

    Limborg-Deprey, C.; Adolphsen, C.; Chu, T.S.; Dunning, M.P.; Jobe, R.K.; Jongewaard, E.N.; Hast, C.; Vlieks, A.E.; Wang, F.; Walz, D.R.; Marsh, R.A.; Anderson, S.G.; Hartemann, F.V.; Houck, T.L.; /LLNL, Livermore

    2012-09-07

    The X-Band Test Area (XTA) is being assembled in the NLCTA tunnel at SLAC to serve as a test facility for new RF guns. The first gun to be tested will be an upgraded version of the 5.6 cell, 200 MV/m peak field X-band gun designed at SLAC in 2003 for the Compton Scattering experiment run in ASTA. This new version includes some features implemented in 2006 on the LCLS gun such as racetrack couplers, increased mode separation and elliptical irises. These upgrades were developed in collaboration with LLNL since the same gun will be used in an injector for a LLNL Gamma-ray Source. Our beamline includes an X-band acceleration section which takes the electron beam up to 100 MeV and an electron beam measurement station. Other X-Band guns such as the UCLA Hybrid gun will be characterized at our facility.

  6. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL's use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  7. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL`s use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  8. Fermi National Accelerator Laboratory FERMILAB-Conf-96/099E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it Fermi National Accelerator Laboratory FERMILAB-Conf-96/099E CoK)C,. WoO3P73 -- 3 CDF CDF Top Physics G. F. Tartarelli For the CDF Collaboration Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 I.N.F.N., Sezione di Milano 1-20133 Milano (MI), Italy MASTER May 1996 Proceedings of XXXIst Recontres de Moriond, Electroweak Interactions and Unified Theories, Les Arcs, France, March 16-23, 1996. Operated by Universities Research Association Inc. under Contract No.

  9. Installation and commissioning of the new Fermi National Accelerator Laboratory H- Magnetron

    SciTech Connect (OSTI)

    Bollinger, D. S.

    2014-02-15

    The Fermi National Accelerator Laboratory (FNAL) 40 year old Cockcroft-Walton 750 keV injectors with slit aperture magnetron ion sources have been replaced with a circular aperture magnetron, Low Energy Beam Transport, Radio Frequency Quadrupole Accelerator, and Medium Energy Beam Transport, as part of the FNAL Proton Improvement Plan. The injector design is based on a similar system at Brookhaven National Laboratory. The installation, commissioning efforts, and source operations to date will be covered in this paper along with plans for additional changes to the original design to improve reliability by reducing extractor spark rates and arc current duty factor.

  10. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A.

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dome 231 Permacon will be reconfigured to remediate and repackage oversized containers. Actions are underway to stage the inventory in a manner that facilitiates handling and processing, and builds a backlog at key process steps to improve efficienty and minimize the impact of operational slowdown elsewhere in the process. Several initiatives will improve safety and strengthen disciplined operations and compliance with established requirements. Retrieval is a critical element in dispositioning the below-ground contact-handled and remote-handled transuranic waste inventory and will be subcontracted to a firm(s) with the experience and specialized capability to retrieve the contact-handled and remote-handled inventories. Performance specifications consider likely container integrity issues and anticipated challenges recoveirng the waste from storage in pits, trenches, and lined shafts.

  11. RF Gun Photocathode Research at SLAC

    SciTech Connect (OSTI)

    Jongewaard, E.; Akre, R.; Brachmann, A.; Corbett, J.; Gilevich, S.; Grouev, K.; Hering, P.; P.Krejcik,; Lewandowski, J.; Loos, H.; Montagne, T.; Sheppard, J.C.; Stefan, P.; Vlieks, A.; Weathersby, S.; Zhou, F.; /SLAC

    2012-05-16

    LCLS is presently operating with a third copper photocathode in the original rf gun, with a quantum efficiency (QE) of {approx}1 x 10{sup -4} and projected emittance {gamma}{var_epsilon}{sub x,y} = 0.45 {micro}m at 250 pC bunch charge. The spare LCLS gun is installed in the SLAC Accelerator Structure Test Area (ASTA), fully processed to high rf power. As part of a wider photocathode R and D program, a UV laser system and additional gun diagnostics are being installed at ASTA to measure QE, QE lifetime, and electron beam emittance under a variety of operating conditions. The near-term goals are to test and verify the spare photocathode production/installation sequence, including transfer from the final holding chamber to the rf gun. Mid- and longer-term goals include development of a rigorous understanding of plasma and laser-assisted surface conditioning and investigation of new, high-QE photocathode materials. In parallel, an x-ray photoemission spectroscopy station is nearing completion, to analyze Cu photocathode surface chemistry. In this paper we review the status and anticipated operating parameters of ASTA and the spectroscopy test chamber.

  12. Environmental Survey preliminary report, Stanford Linear Accelerator Center, Stanford, California

    SciTech Connect (OSTI)

    Not Available

    1988-07-01

    This report presents the preliminary findings from the first phase of the Survey of the US Department of Energy (DOE) Stanford Linear Accelerator Center (SLAC) at Stanford, California, conducted February 29 through March 4, 1988. The Survey is being conducted by an interdisciplinary team of environmental specialists, led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual team components are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with the SLAC. The Survey covers all environmental media and all areas of environmental regulation and is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations at the SLAC, and interviews with site personnel. The Survey team is developing a Sampling and Analysis Plan to assist in further assessing certain of the environmental problems identified during its on-site activities. The Sampling and Analysis Plan will be executed by a DOE National Laboratory or a support contractor. When completed, the results will be incorporated into the Environmental Survey Interim Report for the SLAC facility. The Interim Report will reflect the final determinations of the SLAC Survey. 95 refs., 25 figs., 25 tabs.

  13. Working at SLAC | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new Science and User Support Building (SUSB) in 2015. FOOD OPTIONS at SLAC include Starbucks or the EAT Club (pre-order lunch for delivery noon to the Arrillaga Recreation...

  14. X-BAND KLYSTRON DEVELOPMENT AT SLAC

    SciTech Connect (OSTI)

    Vlieks, Arnold E.; /SLAC

    2009-08-03

    The development of X-band klystrons at SLAC originated with the idea of building an X-band Linear Collider in the late 1980's. Since then much effort has been expended in developing a reliable X-band Power source capable of delivering >50 MW RF power in pulse widths >1.5 {micro}s. I will report on some of the technical issues and design strategies which have led to the current SLAC klystron designs.

  15. India Solar Resource Data: Enhanced Data for Accelerated Deployment (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires detailed understanding of the solar resource available at various locations. Under a bilateral partnership between the United States and India- the U.S.-India Energy Dialogue-the National Renewable Energy Laboratory (NREL) has developed solar maps and data for India to provide 15 years of hourly information by

  16. Big Machines and Big Science: 80 Years of Accelerators at Stanford

    SciTech Connect (OSTI)

    Loew, Gregory

    2008-12-16

    Longtime SLAC physicist Greg Loew will present a trip through SLAC's origins, highlighting its scientific achievements, and provide a glimpse of the lab's future in 'Big Machines and Big Science: 80 Years of Accelerators at Stanford.'

  17. ESTB: A New Beam Test Facility at SLAC

    SciTech Connect (OSTI)

    Pivi, M.; Fieguth, T.; Hast, C.; Iverson, R.; Jaros, J.; Jobe, K.; Keller, L.; Walz, D.; Weathersby, S.; Woods, M.; /SLAC

    2011-04-05

    End Station A Test Beam (ESTB) is a beam line at SLAC using a small fraction of the bunches of the 13.6 GeV electron beam from the Linac Coherent Light Source (LCLS), restoring test beam capabilities in the large End Station A (ESA) experimental hall. ESTB will provide one of a kind test beam essential for developing accelerator instrumentation and accelerator R&D, performing particle and particle astrophysics detector research, linear collider machine and detector interface (MDI) R&D studies, development of radiation-hard detectors, and material damage studies with several distinctive features. In the past, 18 institutions participated in the ESA program at SLAC. In stage I, 4 new kicker magnets will be added to divert 5 Hz of the LCLS beam to the A-line. A new beam dump will be installed and a new Personnel Protection System (PPS) is being built in ESA. In stage II, a secondary hadron target will be installed, able to produce pions up to about 12 GeV/c at 1 particle/pulse.

  18. Latest Plasma Wakefield Acceleration Results from the FACET Project...

    Office of Scientific and Technical Information (OSTI)

    Resource Relation: Conference: Invited paper at the North American Particle Accelerator Conference (PAC 2013), 29 Sep - 4 Oct 2013, Pasadena, CA, USA Research Org: SLAC National ...

  19. S-Band Loads for SLAC Linac

    SciTech Connect (OSTI)

    Krasnykh, A.; Decker, F.-J.; LeClair, R.; /INTA Technologies, Santa Clara

    2012-08-28

    The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.

  20. SLAC All Access: X-ray Microscope

    ScienceCinema (OSTI)

    Nelson, Johanna; Liu, Yijin

    2014-06-13

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  1. PEP-II Large Power Supplies Rebuild Program at SLAC

    SciTech Connect (OSTI)

    Bellomo, P.; Lipari, J.J.; de Lira, A.C.; Rafael, F.S.; /SLAC

    2005-05-17

    Seven large power supplies (LGPS) with output ratings from 72kW to 270kW power PEP-II quad magnets in the electron-positron collider region. These supplies have posed serious maintenance and reliability problems since they were installed in 1997, resulting in loss of accelerator availability. A redesign/rebuild program was undertaken by the SLAC Power Conversion Department. During the 2004 summer shutdown all the control circuits in these supplies were redesigned and replaced. A new PWM control board, programmable logic controller, and touch panel have been installed to improve LGPS reliability, and to make troubleshooting easier. In this paper we present the details of this rebuilding program and results.

  2. Plasma-Surface Interaction Research At The Cambridge Laboratory Of Accelerator Studies Of Surfaces

    SciTech Connect (OSTI)

    Wright, G. M.; Barnard, H. S.; Hartwig, Z. S.; Stahle, P. W.; Sullivan, R. M.; Woller, K. B.; Whyte, D. G.

    2011-06-01

    The material requirements for plasma-facing components in a nuclear fusion reactor are some of the strictest and most challenging facing us today. These materials are simultaneously exposed to extreme heat loads (20 MW/m{sup 2} steady-state, 1 GW/m{sup 2} in millisecond transients) and particle fluxes (>10{sup 24} m{sup -2} s{sup -1}) while also undergoing high neutron irradiation (10{sup 18} neutrons/m{sup 2} s). At the Cambridge Laboratory of Accelerator Studies of Surfaces (CLASS), many of the most important issues in plasma-surface interaction research, such as plasma-driven material erosion and deposition, material transport and irradiation and hydrogenic retention are investigated with the use of a 1.7 MV tandem ion accelerator. Ion-Beam Analysis (IBA) is used to investigate and quantify changes in materials due to plasma exposure and ion irradiation is used as a proxy for neutron irradiation to investigate plasma-surface interactions for irradiated materials. This report will outline the capabilities and current research activities at CLASS.

  3. NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FS-6A42-60650 * November 2013 NREL prints on paper that contains recycled content. NREL-Led Team Improves and Accelerates Battery Design The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineer- ing for Electric Drive Vehicle

  4. SSRL Science in SLAC Today | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science in SLAC Today Subscribe to SSRL Science in SLAC Today feed URL: https://www6.slac.stanford.edu/blog-tags/stanford-synchrotron-radiation-lightsource-ssrl Updated: 45 min 24 sec ago SLAC's Historic Linac Turns 50 and Gets a Makeover Wed, 2016/05/04 - 11:00am The lab's signature particle highway prepares to enter another era of transformative science as the home of the LCLS-II X-ray laser. Your One-stop Shop for Producing, Crystallizing Biomolecules Tue, 2016/04/26 - 11:46am The

  5. 2013 Annual Planning Summary for the SLAC Site Office

    Broader source: Energy.gov [DOE]

    ​The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2013 and 2014 within the SLAC Site Office.

  6. EA-0969: Low Energy Accelerator Laboratory Technical Area 53 Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico to construct and operate a small research and development...

  7. Fermi National Accelerator Laboratory August 2015 The NO?A Neutrino...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists determine the role that ghostly particles called neutrinos played in the evolution of the cosmos. The world's best neutrino beam Fermilab's accelerator complex...

  8. SSRL Light Source Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    video SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Department of Energy Office of...

  9. Mike Ross | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mike Ross About Us Mike Ross - Science Writer at SLAC National Accelerator Laboratory Mike Ross is a science writer at SLAC National Accelerator Laboratory. Most Recent Light ...

  10. Offices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Environmental Sciences Laboratory Sandia National Laboratories Savannah River Ecology Laboratory Savannah River National Laboratory SLAC National Accelerator Laboratory ...

  11. A Massively Parallel Solver for the Mechanical Harmonic Analysis of Accelerator Cavities

    SciTech Connect (OSTI)

    O. Kononenko

    2015-02-17

    ACE3P is a 3D massively parallel simulation suite that developed at SLAC National Accelerator Laboratory that can perform coupled electromagnetic, thermal and mechanical study. Effectively utilizing supercomputer resources, ACE3P has become a key simulation tool for particle accelerator R and D. A new frequency domain solver to perform mechanical harmonic response analysis of accelerator components is developed within the existing parallel framework. This solver is designed to determine the frequency response of the mechanical system to external harmonic excitations for time-efficient accurate analysis of the large-scale problems. Coupled with the ACE3P electromagnetic modules, this capability complements a set of multi-physics tools for a comprehensive study of microphonics in superconducting accelerating cavities in order to understand the RF response and feedback requirements for the operational reliability of a particle accelerator. (auth)

  12. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  13. The Role of Research Universities in Helping Solve our Energy Challenges: A Case Study at Stanford and SLAC (2011 EFRC Summit)

    ScienceCinema (OSTI)

    Hennessey, John (President, Stanford University)

    2012-03-14

    The first speaker in the 2011 EFRC Summit session titled "Leading Perspectives in Energy Research" was John Hennessey, President of Stanford University. He discussed the important role that the academic world plays as a partner in innovative energy research by presenting a case study involving Stanford and SLAC. The 2011 EFRC Summit and Forum brought together the EFRC community and science and policy leaders from universities, national laboratories, industry and government to discuss "Science for our Nation's Energy Future." In August 2009, the Office of Science established 46 Energy Frontier Research Centers. The EFRCs are collaborative research efforts intended to accelerate high-risk, high-reward fundamental research, the scientific basis for transformative energy technologies of the future. These Centers involve universities, national laboratories, nonprofit organizations, and for-profit firms, singly or in partnerships, selected by scientific peer review. They are funded at $2 to $5 million per year for a total planned DOE commitment of $777 million over the initial five-year award period, pending Congressional appropriations. These integrated, multi-investigator Centers are conducting fundamental research focusing on one or more of several ?grand challenges? and use-inspired ?basic research needs? recently identified in major strategic planning efforts by the scientific community. The purpose of the EFRCs is to integrate the talents and expertise of leading scientists in a setting designed to accelerate research that transforms the future of energy and the environment.

  14. Relativistic klystron research at SLAC and LLNL

    SciTech Connect (OSTI)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Higo, T.; Hoag, H.A.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Barletta, W.A.; Birx, D.L.; Boyd, J.K.; Houck, T.; Westenskow, G.A.; Yu, S.S.

    1988-06-01

    We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab.

  15. Emittance Studies of the BNL/SLAC/UCLA 1.6 Cell Photocathode RF Gun

    SciTech Connect (OSTI)

    Palmer, D.T.; Wang, X.J.; Miller, R.H.; Babzien, M.; Ben-Zvi, I.; Pellegrini, C.; Sheehan, J.; Skaritka, J.; Winick, H.; Woodle, M.; Yakimenko, V.; /Brookhaven

    2011-09-09

    The symmetrized 1.6 cell S-band photocathode gun developed by the BNL/SLAC/UCLA collaboration is in operation at the Brookhaven Accelerator Test Facility (ATF). A novel emittance compensation solenoid magnet has also been designed, built and is in operation at the ATF. These two subsystems form an emittance compensated photoinjector used for beam dynamics, advanced acceleration and free electron laser experiments at the ATF. The highest acceleration field achieved on the copper cathode is 150 MV/m, and the guns normal operating field is 130 MV/m. The maximum rf pulse length is 3 {mu}s. The transverse emittance of the photoelectron beam were measured for various injection parameters. The 1 nC emittance results are presented along with electron bunch length measurements that indicated that at above the 400 pC, space charge bunch lengthening is occurring. The thermal emittance, {epsilon}{sub o}, of the copper cathode has been measured.

  16. Brodsky, S.J.; /SLAC; Fleuret, F.; /Ecole Polytechnique; Hadjidakis...

    Office of Scientific and Technical Information (OSTI)

    Physics Opportunities of a Fixed-Target Experiment using the LHC Beams Brodsky, S.J.; SLAC; Fleuret, F.; Ecole Polytechnique; Hadjidakis, C.; Lansberg, J.P.; Orsay, IPN 08...

  17. EIS-0003: Proton-Proton Storage Accelerator Facility (Isabelle), Brookhaven National Laboratory, Upton, NY

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to analyze the significant environmental effects associated with construction and operation of the ISABELLE research facility to be built at Brookhaven National Laboratory.

  18. accelerators | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    accelerators

  19. TransForu Winter Vol 13.1 Online spreads version

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in JCESR include national laboratories Lawrence Berkeley National Laboratory, Pacific Northwest National Laboratory, Sandia National Laboratories and SLAC National Accelerator...

  20. Accelerators, Electrodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    icon-science.jpg Accelerators, Electrodynamics National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  1. Head Erosion with Emittance Growth in PWFA (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Conference: contributed to 15th Advanced Accelerator Concepts Workshop (AAC 2012), 10-15 Jun 2012: Austin, Texas Research Org: SLAC National Accelerator Laboratory (SLAC)...

  2. DYNAMIC APERTURE STUDIES FOR THE LHC HIGH LUMINOSITY LATTICE...

    Office of Scientific and Technical Information (OSTI)

    Particle Accelerator Conference (IPAC 2015), 3-8 May 2015. Richmond, Virginia, USA Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office...

  3. Performance of the accelerator driver of Jefferson Laboratory's free-electron laser

    SciTech Connect (OSTI)

    Bohn, C.L.; Benson, S.; Biallas, G.

    1999-04-01

    The driver of Jefferson Lab's kW-level infrared free-electron laser (FEL) is a superconducting, recirculating accelerator that recovers about 75% of the electron-beam power and converts it to radiofrequency power. In achieving first lasing, the accelerator operated straight-ahead to deliver 38 MeV, 1.1 mA cw current through the wiggler for lasing at wavelengths in the vicinity of 5 {mu}m. Just prior to first lasing, measured rms beam properties at the wiggler were 7.5{+-}1.5 mm-mr normalized transverse emittance, 26{+-}7 keV-deg longitudinal emittance, and 0.4{+-}0.1 ps bunch length which yielded a peak current of 60{+-}15A. The waste beam was then sent directly to a dump, bypassing the recirculation loop. Stable operation at up to 311 W cw was achieved in this mode. Commissioning the recirculation loop then proceeded. As of this Conference, the machine has recirculated cw average current up to 4 mA, and has lased cw with energy recover up to 710 W.

  4. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  5. Sample Preparation Laboratory Training - Course 204 | Sample...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mandatory for: SLAC employees and non-employees who need unescorted access to SSRL or LCLS Sample Preparation Laboratories Note: This course may be taken in lieu of Course 199,...

  6. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  7. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  8. Experimental Tests of the GDH and Other Sum Rules at SLAC (Conference...

    Office of Scientific and Technical Information (OSTI)

    Conference: Experimental Tests of the GDH and Other Sum Rules at SLAC Citation Details In-Document Search Title: Experimental Tests of the GDH and Other Sum Rules at SLAC You...

  9. Do you have the correct Visa stamp for getting a SLAC badge?...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from foreign countries should follow this advice to obtain the correct stamp on their passport in order to obtain a SLAC badge. For more detailed information on SLAC access and...

  10. SLAC Users Bulletin No. 102, November 1985-April 1986

    SciTech Connect (OSTI)

    Keller, L. P.; Edminster, D. [eds.] [eds.

    1986-01-01

    The status experimental activities at SLAC is reported, including the long-range schedule and a list of approved high-energy experiments. Work on PEP, SPEAR, and the SLC is included, as well as computing. Such operational data as operating hours and experimental hours are given. (LEW)

  11. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    ScienceCinema (OSTI)

    Drell, Persis [SLAC Director

    2011-06-08

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  12. The Turn-on of LCLS: the X-Ray Free Electron Laser at SLAC ( Keynote - 2011 JGI User Meeting)

    SciTech Connect (OSTI)

    Drell, Persis [SLAC Director] [SLAC Director

    2011-03-22

    The U.S. Department of Energy Joint Genome Institute (JGI) invited scientists interested in the application of genomics to bioenergy and environmental issues, as well as all current and prospective users and collaborators, to attend the annual DOE JGI Genomics of Energy & Environment Meeting held March 22-24, 2011 in Walnut Creek, Calif. The emphasis of this meeting was on the genomics of renewable energy strategies, carbon cycling, environmental gene discovery, and engineering of fuel-producing organisms. The meeting features presentations by leading scientists advancing these topics. SLAC National Laboratory Director Persis Drell gives a keynote talk on "The Turn-on of LCLS: the X-Ray Free-Electron Laser at SLAC" at the 6th Genomics of Energy & Environment Meeting on March 22, 2011

  13. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  14. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona, Arkansas, Deleware, Florida, Georgia, Iowa, Kansas, Missouri, Nebraska, New Hampshire, North Carolina, Oklahoma, Rhode Island, South Carolina, Tennesse, Wyoming...

  15. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Carolina, Rhode Island, Tennessee, Vermont 1,000,001-5,000,000 Indiana, Maryland, New Hampshire, Washington Colorado, District of Columbia, Florida, Massachusetts,...

  16. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Dakota, Texas Arizona, Connecticut, Indiana, Kansas, Maine, Missouri, Nebraska, New Hampshire, South Carolina, Washington, Wisconsin More than 5 million California,...

  17. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Dakota, Utah, Wyoming 100,001-500,000 Arizona, Arkansas, Iowa, Kansas, Nebraska, New Hampshire, North Carolina, Oklahoma, Rhode Island, South Carolina, Vermont 500,001-1...

  18. SLAC Science Focus Area | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLAC Science Focus Area SFA banner Rifle Research Ferrihydrite banner Nano biogenic uraninite Introduction: Uranium is a toxic and problematic redox-active contaminant at U.S. Department of Energy (DOE) legacy nuclear sites, present in more contaminant plumes than any other radionuclide except for tritium. Elevated concentrations of uranium in groundwater pose ongoing threats to human and ecosystem health, and challenges site cleanup and closure. The ability to predict subsurface fate and

  19. Before Arriving at SLAC | Linac Coherent Light Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Before Arriving at SLAC □ Contact the Stanford Guest House to make reservations □ Review Check-In Procedures & Advance Requirements for Foreign Nationals □ Review Safety of Scheduled Experiments & Complete Training □ Complete User Agreements □ Establish or Confirm User Financial Accounts □ Order Chemicals, Gases, Cryogenics □ Coordinate Equipiment Modifications □ Establish or Confirm Computer Accounts, Set up & Access Electronic Logbooks (eLogs) □ Coordinate

  20. INFN - LABORATORI NAZIONALI DI FRASCATI

    Office of Scientific and Technical Information (OSTI)

    1 - FERMILAB-CONF-13-037-APC IHEP-AC-2013-001 SLAC-PUB-15370 CERN-ATS-2013-032 arXiv:1302.3318 physics.acc-ph Report of the ICFA Beam Dynamics Workshop "Accelerators for a Higgs...

  1. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund April 20, 2009 LOS ALAMOS, New Mexico, April 20, 2009-Los Alamos National Laboratory is soliciting ideas for projects that facilitate the creation and growth of regional businesses based on Los Alamos National Laboratory (LANL) technology or expertise. The Los Alamos National Security, LLC (LANS) Venture Acceleration Fund will provide investments of up to $350,000 annually with awards of up to $100,000 per project to facilitate projects with regional entrepreneurs,

  2. PERSONNEL PROTECTION SYSTEM UPGRADE FOR THE LCLS ELECTRON BEAM...

    Office of Scientific and Technical Information (OSTI)

    Experimental Physics Control Systems (ICALEPCS 2015), 17-23 Oct, 2015, Melbourne, Australia Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE...

  3. Inverse Cascade of Non-helical Magnetic Turbulence in a Relativistic...

    Office of Scientific and Technical Information (OSTI)

    2 Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: National Science Foundation (NSF);US DOE Office of Science (DOE SC) Country of Publication: United ...

  4. Beam Loading by Distributed Injection of Electrons in a Plasma...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);National Science Foundation (NSF) Country of Publication: United States ...

  5. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    lightcone - local versus global features ILight Cone 2013), 20-24 May 2013. Skiathos, Greece","SLAC National Accelerator Laboratory (SLAC)","US DOE Office of Science (DOE...

  6. QCD on the Light-Front - A Systematic Approach to Hadron Physics...

    Office of Scientific and Technical Information (OSTI)

    lightcone - local versus global features ILight Cone 2013), 20-24 May 2013. Skiathos, Greece Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE...

  7. Analysis of Beam Dynamics in a Circular Higgs Factory (Conference...

    Office of Scientific and Technical Information (OSTI)

    Circular e+e- Colliders - Higgs Factory (HF2014) October 9-12, 2014. Beijing, China Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office ...

  8. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    to To be determined","SLAC National Accelerator Laboratory (SLAC)","USDOE","08 HYDROGEN; ASYMMETRY; BOSONS; GLUONS; HYDROGEN; LUMINOSITY; NEUTRONS; NUCLEAR MATTER; NUCLEI;...

  9. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    States) S. M. Stoller (United States) SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) STI Submitter (STIS), Anywhere (United States) Salt Repository...

  10. Radiation Dose Measurement for High-Intensity Laser Interactions...

    Office of Scientific and Technical Information (OSTI)

    Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: OPTICS, SAFETY...

  11. Measuring the Invisible Higgs Width at the 7 and 8 TeV LHC (Journal...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: DOE Country of Publication: United States Language: English Subject: Experiment-HEP, Phenomenology-HEP,HEPPH

  12. B \\to Mu Mu And B \\to Tau Nu Decays (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Experiment-HE...

  13. Chiral anomaly and the BaBar and belle measurements of the gamma...

    Office of Scientific and Technical Information (OSTI)

    Workshop on QCD - Theory and Experiment (QCD@Work 2012), 18-21 Jun 2012. Lecce, Italy Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE ...

  14. Exotic/charmonium Hadron Spectroscopy at Belle and BaBar (Conference...

    Office of Scientific and Technical Information (OSTI)

    Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Experiment-HE...

  15. Dispersion in the Presence of Strong Transverse Wakefields (Conference...

    Office of Scientific and Technical Information (OSTI)

    Science, Technology and Applications, 12-16 May 1997, Vancouver, British Columbia, Canada Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: USDOE ...

  16. Searches for Exotic Decays of the Upsilon(3S) at BaBar (Conference...

    Office of Scientific and Technical Information (OSTI)

    of Lake Louise Winter Institute: Fundamental Interactions (LLWI 2009), Lake Louise, Alberta, Canada, 16-21 Feb 2009 Research Org: SLAC National Accelerator Laboratory (SLAC)...

  17. Higgs + Multi-Jets in Gluon Fusion (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Corrections fpr the LHC and Future Colliders (RADCOR 2015), 15-19 Jun 2015. Los Angeles, CA Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE ...

  18. Radiative and Leptonic B-meson Decays from the B-factories (Conference...

    Office of Scientific and Technical Information (OSTI)

    Workshop on Theory, Phenomenology and Experiments in Heavy Flavor Physics, Capri, Italy, 16-18 Jun 2008 Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring ...

  19. Conceptual Design for CLIC Gun Pulser (Technical Report) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);WFO Country of Publication: United States Language: English Subject: ACCSYS...

  20. Analysis of Beam Dynamics in a Circular Higgs Factory (Conference...

    Office of Scientific and Technical Information (OSTI)

    Circular e+e- Colliders - Higgs Factory (HF2014) October 9-12, 2014. Beijing, China Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE...

  1. Phantom of the Hartle-Hawking instanton: Connecting inflation...

    Office of Scientific and Technical Information (OSTI)

    Additional Journal Information: Journal Volume: 76; Journal Issue: 2; Journal ID: ISSN 1434-6044 Publisher: Springer Research Org: SLAC National Accelerator Laboratory (SLAC), ...

  2. Non-Thermal Electron Energization from Magnetic Reconnection...

    Office of Scientific and Technical Information (OSTI)

    Publisher: American Physical Society (APS) Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);Fusion Energy Sciences ...

  3. Wnt Antagonists Bind through a Short Peptide to the First beta...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: BIO

  4. Syntaxin 1a Variants Lacking an N-peptide or Bearing the LE Mutation...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: BIO ...

  5. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  6. SuperB Progress Report for Accelerator

    SciTech Connect (OSTI)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

  7. Proposal Study Panels

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Wisconsin, Milwaukee Peter Johnson (chair), Brookhaven National Laboratory Apurva Mehta, SLAC National Accelerator Laboratory Hendrik Ohldag, Stanford Synchrotron Radiation...

  8. Design of the SLAC RCE Platform: A General Purpose ATCA Based Data

    Office of Scientific and Technical Information (OSTI)

    Acquisition System (Conference) | SciTech Connect Conference: Design of the SLAC RCE Platform: A General Purpose ATCA Based Data Acquisition System Citation Details In-Document Search Title: Design of the SLAC RCE Platform: A General Purpose ATCA Based Data Acquisition System The SLAC RCE platform is a general purpose clustered data acquisition system implemented on a custom ATCA compliant blade, called the Cluster On Board (COB). The core of the system is the Reconfigurable Cluster Element

  9. Do you have the correct Visa stamp for getting a SLAC badge? | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Synchrotron Radiation Lightsource Do you have the correct Visa stamp for getting a SLAC badge? Users from foreign countries should follow this advice to obtain the correct stamp on their passport in order to obtain a SLAC badge. For more detailed information on SLAC access and visa documentation requirements, please refer to the following link. Upon entering the US, travelers will present their passport to the Immigration Officer at the airport who may ask a few questions about the purpose

  10. SLAC Site Office EA / EIS | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SLAC Site Office EA EIS Safety and Security Policy (SSP) SSP Home About Frequently Used Resources NEPA Documents Categorical Exclusion Determinations Environmental Assessments...

  11. Data Needs for LCLS-II Amedeo Perazzo SLAC Joint Facilities User...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amedeo Perazzo SLAC Joint Facilities User Forum on Data Intensive Computing, June 16 th 2014 Joint Facilities User Forum on Data Intensive Computing - LCLS-II Data Needs ...

  12. The APEX Project: Ion beam pulse-shaping experiments on Sandia Laboratories' Particle Beam Fusion Accelerator PBFA II

    SciTech Connect (OSTI)

    Crow, J.T.

    1987-01-01

    This paper discusses the development of ion beam pulse shaping, efficient extraction ion diodes, and efficient plasma channel transport for the particle beam fusion accelerator PBFA II. 10 refs. (LSP)

  13. Application Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest

  14. Fermilab | Directorate | Fermilab Accelerator Advisory Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Advisory Committee Meeting of the Fermilab Accelerator Advisory Committee December 8-10, 2015 Charge Agenda (Access Key Required) Closeout Report Final Report October 14-16, 2014 Charge Agenda (Access Key Required) Closeout Report Final Report February 6-8, 2013 Charge Agenda (Access Key Required) Closeout Report Final Report John Galambos (ORNL), Chair Frederick Bordry (CERN) Wolfram Fischer (BNL) Mark Hogan (SLAC) Jens Knobloch (BESSY) Wim Leemans (LBNL) Roland Garoby (CERN)

  15. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  16. 17 GHz High Gradient Accelerator Research

    SciTech Connect (OSTI)

    Temkin, Richard J.; Shapiro, Michael A.

    2013-07-10

    This is a report on the MIT High Gradient Accelerator Research program which has included: Operation of the 17 GHz, 25 MeV MIT/Haimson Research Corp. electron accelerator at MIT, the highest frequency, stand-alone accelerator in the world; collaboration with members of the US High Gradient Collaboration, including the design and test of novel structures at SLAC at 11.4 GHz; the design, construction and testing of photonic bandgap structures, including metallic and dielectric structures; the investigation of the wakefields in novel structures; and the training of the next generation of graduate students and postdoctoral associates in accelerator physics.

  17. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  18. SLAC All Access: Atomic, Molecular and Optical Science Instrument

    ScienceCinema (OSTI)

    Bozek, John

    2014-06-03

    John Bozek, a staff scientist at SLAC's Linac Coherent Light Source (LCLS) X-ray laser who manages the LCLS Soft X-ray Department, takes us behind the scenes at the Atomic, Molecular and Optical Science (AMO) instrument, the first of six experimental stations now operating at LCLS. Samples used in AMO experiments include atoms, molecules, clusters, and nanoscale objects such as protein crystals or viruses. Science performed at AMO includes fundamental studies of light-matter interactions in the extreme X-ray intensity of the LCLS pules, time-resolved studies of increasingly charged states of atoms and molecules, X-ray diffraction imaging of nanocrystals, and single-shot imaging of a variety of objects.

  19. Two-klystron Binary Pulse Compression at SLAC

    SciTech Connect (OSTI)

    Farkas, Z.D.; Lavine, T.L.; Menegat, A.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.

    1993-04-01

    The Binary Pulse Compression system installed at SLAC was tested using two klystrons, one with 10 MW and the other with 34 MW output. By compressing 560 ns klystron pulses into 70 ns, the measured BPC output was 175 MW, limited by the available power from the two klystrons. This output was used to provide 100-MW input to a 30-cell X-band structure in which a 100-MV/m gradient was obtained. This system, using the higher klystron outputs expected in the future has the potential to deliver the 350 MW needed to obtain 100 MV/m gradients in the 1.8-m NLC prototype structure. This note describes the timing, triggering, and phase coding used in the two-klystron experiment, and the expected and measured net-work response to three- or two-stage modulation.

  20. Mesurement of the Decelerating Wake in a Plasma Wakefield Accelerator

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Mesurement of the Decelerating Wake in a Plasma Wakefield Accelerator Citation Details In-Document Search Title: Mesurement of the Decelerating Wake in a Plasma Wakefield Accelerator Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch lengths were

  1. Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling (Final Report)

    SciTech Connect (OSTI)

    William J. Schroeder

    2011-11-13

    This report contains the comprehensive summary of the work performed on the SBIR Phase II, Collaborative Visualization for Large-Scale Accelerator Electromagnetic Modeling at Kitware Inc. in collaboration with Stanford Linear Accelerator Center (SLAC). The goal of the work was to develop collaborative visualization tools for large-scale data as illustrated in the figure below. The solutions we proposed address the typical problems faced by geographicallyand organizationally-separated research and engineering teams, who produce large data (either through simulation or experimental measurement) and wish to work together to analyze and understand their data. Because the data is large, we expect that it cannot be easily transported to each team member's work site, and that the visualization server must reside near the data. Further, we also expect that each work site has heterogeneous resources: some with large computing clients, tiled (or large) displays and high bandwidth; others sites as simple as a team member on a laptop computer. Our solution is based on the open-source, widely used ParaView large-data visualization application. We extended this tool to support multiple collaborative clients who may locally visualize data, and then periodically rejoin and synchronize with the group to discuss their findings. Options for managing session control, adding annotation, and defining the visualization pipeline, among others, were incorporated. We also developed and deployed a Web visualization framework based on ParaView that enables the Web browser to act as a participating client in a collaborative session. The ParaView Web Visualization framework leverages various Web technologies including WebGL, JavaScript, Java and Flash to enable interactive 3D visualization over the web using ParaView as the visualization server. We steered the development of this technology by teaming with the SLAC National Accelerator Laboratory. SLAC has a computationally-intensive problem important to the nations scientific progress as described shortly. Further, SLAC researchers routinely generate massive amounts of data, and frequently collaborate with other researchers located around the world. Thus SLAC is an ideal teammate through which to develop, test and deploy this technology. The nature of the datasets generated by simulations performed at SLAC presented unique visualization challenges especially when dealing with higher-order elements that were addressed during this Phase II. During this Phase II, we have developed a strong platform for collaborative visualization based on ParaView. We have developed and deployed a ParaView Web Visualization framework that can be used for effective collaboration over the Web. Collaborating and visualizing over the Web presents the community with unique opportunities for sharing and accessing visualization and HPC resources that hitherto with either inaccessible or difficult to use. The technology we developed in here will alleviate both these issues as it becomes widely deployed and adopted.

  2. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    SciTech Connect (OSTI)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  3. ILC @ SLAC R&D Program for a Polarized RF Gun

    SciTech Connect (OSTI)

    Clendenin, J.E.; Brachman, A.; Dowell, D.H.; Garwin, E.L.; Ioakemidi, K.; Kirby, R.E.; Maruyama, T.; Miller, R.A.; Prescott, C.Y.; Wang, J.W.; Lewellen, J.W.; Prepost, R.; /Wisconsin U., Madison

    2006-01-25

    Photocathode rf guns produce high-energy low-emittance electron beams. DC guns utilizing GaAs photocathodes have proven successful for generating polarized electron beams for accelerators, but they require rf bunching systems that significantly increase the transverse emittance of the beam. With higher extraction field and beam energy, rf guns can support higher current densities at the cathode. The source laser system can then be used to generate the high peak current, relatively low duty-factor micropulses required by the ILC without the need for post-extraction rf bunching. The net result is that the injection system for a polarized rf gun can be identical to that for an unpolarized rf gun. However, there is some uncertainty as to the survivability of an activated GaAs cathode in the environment of an operating rf gun. Consequently, before attempting to design a polarized rf gun for the ILC, SLAC plans to develop an rf test gun to demonstrate the rf operating conditions suitable for an activated GaAs cathode.

  4. FermilabAcceleratorCapabilities.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois Accelerator Research Center - IARC Dr. Bob Kephart Director, Illinois Accelerator Research Center Dr. Charlie Cooper General Manager, Illinois Accelerator Research Center Illinois Accelerator Research Center The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. IARC will provide a state-of-the-art facility for research, development and industrialization of particle accelerator technology. A major

  5. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond slac Topic Congratulations to SLAC National Accelerator Laboratory on its Golden Anniversary by Kate Bannan 27 Aug, 2012 in Science Communications SLAC was established in1962 at Stanford University. The SLAC National Accelerator Laboratory is a Department of Energy Office of Science national laboratory and home to a two-mile linear accelerator-the longest in the world. Originally a particle physics research center, SLAC is now a

  6. Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selection of Venture Acceleration Fund recipients March 8, 2010 LOS ALAMOS, New Mexico, March 8, 2010-Los Alamos National Laboratory (LANL) has selected Simtable and Southwest Bio Fuels as recipients of $100,000 awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund invests in creating and growing Northern New Mexico businesses that have an association with LANL technology or expertise. Venture Acceleration Fund investments help

  7. Spin structure functions of the neutron g{sub 1}{sup n}: SLAC...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Spin structure functions of the neutron gsub 1sup n: SLAC E154 results Citation Details In-Document Search Title: Spin structure functions of the neutron gsub ...

  8. Microsoft Word - aac2012_Li_1_WG4-SLAC-PUB-15212.doc

    Office of Scientific and Technical Information (OSTI)

    et al., "Results from Plasma Wakefield Experiments at FACET", IPAC'11, San Sebastian, Spain, 2011, SLAC-PUB-14560. 5. E. Adli et al., to be published. 6. S.Z. Li and M.J. Hogan,...

  9. Support and utilization of the LSI-11 processor family at SLAC

    SciTech Connect (OSTI)

    Kieffer, J.; Logg, C.A.; Farwell, D.E.

    1981-01-01

    Microcomputer systems based on the DEC LSI-11 processor family have been in use at SLAC for five years. They are used for a wide variety of applications. The support of these systems is divided into three general areas: engineering, maintenance, and software. Engineering specifies the system to match user requirements. SLAC has been able to design one general purpose system which can be tailored to fit many specific requirements. Maintenance provides system and component diagnostic services and repair. Software support includes software consulting services, assistance in systems design, and the development and support of special purpose operating systems and programs. These support functions are handled as subtasks by three teams in the SLAC Electronics Instrumentation Group. Each of these teams utilizes several LSI-11 systems in the performance of its primary tasks. They work closely together to jointly provide overall support for the larger SLAC community.

  10. SLAC Site Office Homepage | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    The SLAC Site Office (SSO) is an organization within the U.S. Department of Energy's Office of Science with responsibility to oversee and manage the Management and Operating (M&O) ...

  11. Lattice Design for ERL Options at SLAC (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Lattice Design for ERL Options at SLAC You ... This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and ...

  12. Protein Puzzles and Scientific Solutions

    Broader source: Energy.gov [DOE]

    Learn how researchers at SLAC National Accelerator Laboratory solve complicated structures using X-ray savvy and serious computing power.

  13. Notice of Violation, Western Allied Mechanical, Inc.- WEA-2009-03

    Broader source: Energy.gov [DOE]

    Issued to Western Allied Mechnical, Inc. related to a PVC Pipe Explosion at the SLAC National Accelerator Laboratory

  14. Measurements, system response, and calibration of the SLAC T-510 experiment

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect SciTech Connect Search Results Conference: Measurements, system response, and calibration of the SLAC T-510 experiment Citation Details In-Document Search Title: Measurements, system response, and calibration of the SLAC T-510 experiment Authors: Wissel, Stephanie A. ; /UCLA ; Bechtol, K. ; /Chicago U. ; Belov, K. ; /Caltech, JPL /UCLA ; Borch, K. ; /UCLA ; Chen, P. ; /Taiwan, Natl Taiwan U. ; Clem, J. ; /Delaware U. ; Gorham, P.W. ; /Hawaii U. ; Hast, C. ;

  15. Measurements, system response, and calibration of the SLAC T-510 experiment

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Conference: Measurements, system response, and calibration of the SLAC T-510 experiment Citation Details In-Document Search Title: Measurements, system response, and calibration of the SLAC T-510 experiment × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information

  16. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  17. 2010 Annual Planning Summary for Stanford Linear Accelerator Center Site Office (SLAC)

    Broader source: Energy.gov [DOE]

    Annual Planning Summaries briefly describe the status of ongoing NEPA compliance activities, any EAs expected to be prepared in the next 12 months, any EISs expected to be prepared in the next 24...

  18. U.S. DOE and DOD Manufacturing Innovation Multi-Topic Workshop

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Ames Laboratory Henry Lomasney Sandia Solar Technology Apurva Mehta Stanford Linear Accelerator Center (SLAC) National Accelerator Laboratory Eric Miller DOE Fuel Cells ...

  19. High Gradient Accelerator Cavities Using Atomic Layer Deposition

    SciTech Connect (OSTI)

    Ives, Robert Lawrence; Parsons, Gregory; Williams, Philip; Oldham, Christopher; Mundy, Zach; Dolgashev, Valery

    2014-12-09

    In the Phase I program, Calabazas Creek Research, Inc. (CCR), in collaboration with North Carolina State University (NCSU), fabricated copper accelerator cavities and used Atomic Layer Deposition (ALD) to apply thin metal coatings of tungsten and platinum. It was hypothesized that a tungsten coating would provide a robust surface more resistant to arcing and arc damage. The platinum coating was predicted to reduce processing time by inhibiting oxides that form on copper surfaces soon after machining. Two sets of cavity parts were fabricated. One was coated with 35 nm of tungsten, and the other with approximately 10 nm of platinum. Only the platinum cavity parts could be high power tested during the Phase I program due to schedule and funding constraints. The platinum coated cavity exhibit poor performance when compared with pure copper cavities. Not only did arcing occur at lower power levels, but the processing time was actually longer. There were several issues that contributed to the poor performance. First, machining of the base copper cavity parts failed to achieve the quality and cleanliness standards specified to SLAC National Accelerator Center. Secondly, the ALD facilities were not configured to provide the high levels of cleanliness required. Finally, the nanometer coating applied was likely far too thin to provide the performance required. The coating was ablated or peeled from the surface in regions of high fields. It was concluded that the current ALD process could not provide improved performance over cavities produced at national laboratories using dedicated facilities.

  20. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 - Los Alamos National Laboratory has selected Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides investments of up to $100,000 to regional entrepreneurs, companies, investors, or strategic partners

  1. Accelerator Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

  2. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond SLAC National Accelerator Laboratory on its Golden Anniversary by Kate Bannan on Mon, Aug 27, 2012 SLAC was established in1962 at Stanford University. The SLAC National Accelerator Laboratory is a Department of Energy Office of Science national laboratory and home to a two-mile linear accelerator-the longest in the world. Originally a particle physics research center, SLAC is now a multipurpose laboratory for astrophysics, photon

  3. IARC - Illinois Accelerator Research Center | Pilot Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology development and testing facilities. Speak with experts in the field. photo...

  4. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations /newsroom/_assets/images/operations-icon.png Laboratory Operations Latest announcements from the Lab on its operations. Community, Events Laboratory Operations Environmental Stewardship Melissa Blueflower-Sanchez and Robert Sanchez, owners of R and M Construction, LLC, of Santa Clara Pueblo. Four regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help

  5. Beam Dynamics Studies for a Laser Acceleration Experiment (Conference) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Conference: Beam Dynamics Studies for a Laser Acceleration Experiment Citation Details In-Document Search Title: Beam Dynamics Studies for a Laser Acceleration Experiment The NLC Test Accelerator (NLCTA) at SLAC was built to address various beam dynamics issues for the Next Linear Collider. An S-Band RF gun is being installed together with a large-angle extraction line at 60 MeV followed by a matching section, buncher and final focus for the laser acceleration experiment,

  6. Initial Testing of the Mark-0 X-Band RF Gun at SLAC

    SciTech Connect (OSTI)

    Vlieks, Arnold; Adolphsen, C.; Dolgashev, V.; Lewandowski, J.; Limborg, Cecile; Weathersby, S.; /SLAC

    2012-06-06

    A new X-band RF gun (Mark-0) has been assembled, tuned and was tested in the ASTA facility at SLAC. This gun has been improved from an earlier gun used in Compton-scattering experiments at SLAC by the introduction of a racetrack dual-input coupler to reduce quadrupole fields. Waveguide-to-coupler irises were also redesigned to reduce surface magnetic fields and therefore peak pulse surface heating. Tests of this photocathode gun will allow us to gain early operational experience for beam tests of a new gun with further improvements (Mark-1) being prepared for SLAC's X-Band Test Area (XTA) program and the LLNL MEGa-ray program. Results of current testing up to {approx} 200 MV/m peak surface Electric fields are presented.

  7. Preliminary Notice of Violation, Pacific Underground Construction, Inc.- WEA-2009-02

    Broader source: Energy.gov [DOE]

    Issued to Pacific Underground Construction, Inc. related to a polyvinyl chloride (PVC) pipe explosion that occurred in Sector 30 of the linear accelerator facility at the SLAC National Accelerator Laboratory (SLAC).

  8. Preliminary Notice of Violation,Western Allied Mechanical, Inc.- WEA-2009-03

    Broader source: Energy.gov [DOE]

    Issued to Western Allied Mechanical, Inc. related to a polyvinyl chloride (PVC) pipe explosion that occurred in Sector 30 of the linear accelerator facility at the SLAC National Accelerator Laboratory (SLAC).

  9. Spin structure functions of the neutron g{sub 1}{sup n}: SLAC E154 results

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: Spin structure functions of the neutron g{sub 1}{sup n}: SLAC E154 results Citation Details In-Document Search Title: Spin structure functions of the neutron g{sub 1}{sup n}: SLAC E154 results We report on a precision measurement of the neutron spin structure function g{sub 1}{sup n} using deep inelastic scattering of polarized electrons by polarized {sup 3}He. For the kinematic range 0.014<x<0.7 and 1(GeV/c){sup 2}<Q{sup

  10. Ion Acceleration by Laser Plasma Interaction from Cryogenic Micro Jets - Oral Presentation

    SciTech Connect (OSTI)

    Propp, Adrienne

    2015-08-25

    Processes that occur in extreme conditions, such as in the center of stars and large planets, can be simulated in the laboratory using facilities such as SLAC National Accelerator Laboratory and the Jupiter Laser Facility (JLF) at Lawrence Livermore National Laboratory (LLNL). These facilities allow scientists to investigate the properties of matter by observing their interactions with high power lasers. Ion acceleration from laser plasma interaction is gaining greater attention today due to its widespread potential applications, including proton beam cancer therapy and fast ignition for energy production. Typically, ion acceleration is achieved by focusing a high power laser on thin foil targets through a mechanism called Target Normal Sheath Acceleration. Based on research and recent experiments, we hypothesized that a pure liquid cryogenic jet would be an ideal target for this type of interaction, capable of producing the highest proton energies possible with today’s laser technologies. Furthermore, it would provide a continuous, pure target, unlike metal foils which are consumed in the interaction and easily contaminated. In an effort to test this hypothesis and investigate new, potentially more efficient mechanisms of ion acceleration, we used the 527 nm split beam, frequency-doubled TITAN laser at JLF. Data from the cryogenic jets was limited due to the flow of current up the jet into the nozzle during the interaction, heating the jet and damaging the orifice. However, we acheived a pure proton beam with an indiciation of a monoenergetic feature. Furthermore, data from gold and carbon wires showed surprising and interesting results. Preliminary analysis of data from two ion emission diagnostics, Thomson parabola spectrometers (TPs) and radio chromic films (RCFs), suggests that shockwave acceleration occurred rather than target normal sheath acceleration, the standard mechanism of ion acceleration. Upon completion of the experiment at TITAN, I researched the possibility of transforming our liquid cryogenic jets into droplet streams. This type of target should solve our problems with the jet as it will prevent the flow of exocurrent into the nozzle. It is also highly effective as it is even more mass-limited than standard cryogenic jets. Furthermore, jets break up spontaneously anyway. If we can control the breakup, we can synchronize the droplet emission with the laser pulses. In order to assist the team prepare for an experiment later this year, I familiarized myself with the physics and theory of droplet formation, calculated values for the required parameters, and ordered the required materials for modification of the jet. Future experiments will test these droplet streams and continue towards the goal of ion acceleration using cryogenic targets.

  11. Manuel Gnida | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Manuel Gnida About Us Manuel Gnida - SLAC National Accelerator Laboratory Manuel Gnida works in the communications department for SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories. He also writes for Symmetry Magazine, an online magazine about particle physics published jointly by SLAC and Fermilab. Most Recent Three Ways to Bust Ghostly Dark Matter March

  12. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Nobel Prize Topic Congratulations to SLAC National Accelerator Laboratory on its Golden Anniversary by Kate Bannan 27 Aug, 2012 in Science Communications SLAC was established in1962 at Stanford University. The SLAC National Accelerator Laboratory is a Department of Energy Office of Science national laboratory and home to a two-mile linear accelerator-the longest in the world. Originally a particle physics research center, SLAC is now

  13. OSTI, US Dept of Energy, Office of Scientific and Technical Information |

    Office of Scientific and Technical Information (OSTI)

    Speeding access to science information from DOE and Beyond Stanford Topic Congratulations to SLAC National Accelerator Laboratory on its Golden Anniversary by Kate Bannan 27 Aug, 2012 in Science Communications SLAC was established in1962 at Stanford University. The SLAC National Accelerator Laboratory is a Department of Energy Office of Science national laboratory and home to a two-mile linear accelerator-the longest in the world. Originally a particle physics research center, SLAC is now a

  14. Leadership | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific user facility in North America; and the Argonne Accelerator Institute. Harry Weerts Harry Weerts, Associate Laboratory Director, Physical Sciences and Engineering...

  15. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  16. Lattice design and optimization for the PEP-X ultra low emittance storage ring at SLAC

    SciTech Connect (OSTI)

    Wang, Min-Huey; Nosochkov, Yuri; Bane, Karl; Cai, Yunhai; Hettel, Robert; Huang, Xiaobiao; /SLAC

    2011-08-12

    SLAC is developing a long-range plan to transfer the evolving scientific programs at SSRL from the SPEAR3 light source to a much higher performing photon source. One of the possibilities is a new PEP-X 4.5 GeV storage ring that would be housed in the 2.2 km PEP-II tunnel. The PEP-X is designed to produce photon beams having brightness near 10{sup 22} (ph/s/mm{sup 2}/mrad{sup 2}/0.1% BW) at 10 keV with 3.5 m undulator at beam current of 1.5 A. This report presents an overview of the PEP-X baseline lattice design and describes the lattice optimization procedures in order to maximize the beam dynamic aperture. The complete report of PEP-X baseline design is published in SLAC report.

  17. SLAC E155 and E155x Numeric Data Results and Data Plots: Nucleon Spin Structure Functions

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The extension run, E155x, also makes data available. See the E155x home page at http://www.slac.stanford.edu/exp/e155/e155extension/e155x.html

  18. Channeling

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Stephanie Mack Office of Science, Science Undergraduate Laboratory Internship (SULI) University of Ottawa SLAC National Accelerator Laboratory...

  19. Andrew Gordon

    Broader source: Energy.gov [DOE]

    Andrew Gordon is the External Communications Manager at SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories

  20. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Department of Energy Office of Science Content Owner: Cathy...

  1. Commission to Review the Effectiveness of the National Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Jared Cohon 9:05 - 10:00 AM Laboratory Directors (Download Presentations) Chi-Chang Kao, SLAC National Accelerator Laboratory Paul Alivisatos, Lawrence Berkeley National ...

  2. Report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs

    Office of Scientific and Technical Information (OSTI)

    Factory: Linear Vs. Circular' (HF2012) (Conference) | SciTech Connect SciTech Connect Search Results Conference: Report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs Factory: Linear Vs. Circular' (HF2012) Citation Details In-Document Search Title: Report of the ICFA Beam Dynamics Workshop 'Accelerators for a Higgs Factory: Linear Vs. Circular' (HF2012) Authors: Blondel, Alain ; Chao, Alex ; /Geneva U., astr /SLAC ; Chou, Weiren ; /Fermilab ; Gao, Jie ; /Beijing, Inst. High

  3. Design and fabrication of a traveling-wave muffin-tin accelerating structure at 90 GHz

    SciTech Connect (OSTI)

    Chou, P.J.; Bowden, G.B.; Copeland, M.R.; Menegat, A.; Siemann, R.H.; Henke, H.

    1997-05-01

    A prototype of a muffin-tin accelerating structure operating at 32 times the SLAC frequency (2.856 GHz) was built for research in high gradient acceleration. A traveling-wave design with single input and output feeds was chosen for the prototype which was fabricated by wire electrodischarge machining. Features of the mechanical design for the prototype are described. Design improvements are presented including considerations of cooling and vacuum.

  4. 2003 SSRL Accelerator Physics Schedule

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SSRL Accelerator Physics Schedule Proposal Deadline Schedule Announcement Experimental Period Duration Mon, Dec 02, '02 17:00 Tue, Dec 03, '02 13:00 Mon, Dec 09, '02 18:00-Wed, Dec 11, '02 02:00 32 hrs Tue, Jan 07, 09:00 Tue, Jan 07, 13:00 Mon, Jan 13, 18:00-Wed, Jan 15, 02:00 32 hrs Mon, Feb 03, 17:00 Tue, Feb 04, 17:00 Mon, Feb 10, 18:00-Wed, Feb 12, 02:00 32 hrs Mon, Feb 24, 17:00 Tue, Feb 25, 13:00 Mon, Mar 03, 18:00-Wed, Mar 05, 02:00 32 hrs SLAC SSRL SSRL Last Updated: 25 February 2003

  5. Design of the SLAC RCE Platform: A General Purpose ATCA Based...

    Office of Scientific and Technical Information (OSTI)

    ... Country of Publication: United States Language: English Subject: 43 PARTICLE ACCELERATORS; STANFORD LINEAR ACCELERATOR CENTER; DATA ACQUISITION SYSTEMS; DESIGN; INTEGRATED ...

  6. Jefferson Lab - Laboratory Directed Research & Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    an LDRD Proposal or LOI View Submitted FY16 LDRD Proposals Proposals from Previous Years Create an LDRD Project Report Mid-year Report Template Mid-year Report Instructions Annual Report Template Annual Report Instructions LDRD Reports LDRD Publications The JLab LDRD program documentation has been modeled on the material developed by SLAC for its LDRD program Laboratory Directed Research & Development Formal LDRD Plans FT16 Plan FY15 Plan FY14 Plan

  7. Holographic Fractional Topological Insulators in 2+1 and 1+1...

    Office of Scientific and Technical Information (OSTI)

    Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Phys.Rev.D82:126003,2010 Research Org: SLAC National Accelerator Laboratory (SLAC)...

  8. DEPARTMENT OF I Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF I Office of ENERGY Science SLAC Site Office SLAC National Accelerator Laboratory 2575 Sand Hill Road, MS-8A Menlo Park, CA 94025 DATE: January 11, 2012 MEMORANDUM ...

  9. Secretary Chu to Join Representatives Lofgren and Honda at the...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WHEN: 2:15 PM PDT WHERE: SLAC National Accelerator Laboratory SLAC Green Follow the Department of Energy on Facebook, Twitter, Youtube and Flickr. Follow Secretary Chu on his ...

  10. Latest Plasma Wakefield Acceleration Results from the FACET Project

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Latest Plasma Wakefield Acceleration Results from the FACET Project Citation Details In-Document Search Title: Latest Plasma Wakefield Acceleration Results from the FACET Project Authors: Litos, M.D. ; Adli, E. ; /Oslo U. ; Clarke, C.I. ; Corde, S. ; Delahaye, J.P. ; England, R.J. ; Fisher, A.S. ; Frederico, J. ; Gessner, S. ; Hogan, M.J. ; Li, S. ; Walz, D. ; White, G. ; Wu, Z. ; Yakimenko, V. ; /SLAC ; An, W. ; Clayton, C.E. ; Joshi, C. more »; Lu, W. ;

  11. Results From Plasma Wakefield Acceleration Experiments at FACET

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Results From Plasma Wakefield Acceleration Experiments at FACET Citation Details In-Document Search Title: Results From Plasma Wakefield Acceleration Experiments at FACET Authors: Li, S.Z. ; Clarke, C.I. ; England, R.J. ; Frederico, J. ; Gessner, S.J. ; Hogan, M.J. ; Jobe, R.K. ; Litos, M.D. ; Walz, D.R. ; /SLAC ; Muggli, P. ; /Munich, Max Planck Inst. ; An, W. ; Clayton, C.E. ; Joshi, C. ; Lu, W. ; Marsh, K.A. ; Mori, W. ; Tochitsky, S. ; /UCLA more »; Adli,

  12. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  13. LANS Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund announces "Call for Ideas" August 2, 2010 LOS ALAMOS, New Mexico, August 2, 2010-Through September 1, 2010, Northern New Mexico Connect (NNM Connect) is accepting idea statements for the Los Alamos National Security, LLC Venture Acceleration Fund (VAF). VAF invests in creating and growing Northern New Mexico businesses that have an association with Los Alamos National Laboratory technology or expertise. It invests up to $100,000 in businesses that use

  14. Geek-Up[3.4.2011]: 3,000+ MW and 2,500 Year-Old Greek Pottery | Department

    Broader source: Energy.gov (indexed) [DOE]

    of Energy An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory An Attic black-figured amphora, currently in the British Museum, of the type that will be studied at SLAC. | Photo by Marie-Lan Nguyen, Courtesy of SLAC National Accelerator Laboratory Elizabeth Meckes Elizabeth Meckes Director of User Experience & Digital Technologies, Office of Public Affairs

  15. National Laboratory Research and Development Funding Opportunities

    Broader source: Energy.gov [DOE]

    Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving...

  16. User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2/20/13 User Financial Account Form Establish a user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities and to send samples, dewars, or other equipment between SLAC and your institution. To open or renew your SLAC user financial account, complete and submit this form along with a Purchase Order (PO) from your institution. The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated

  17. User Financial Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    10/21/15 User Financial Account Form Establish a user financial account at SLAC to procure gases, chemicals, supplies or services to support your experiment at SLAC's user facilities or to send samples, dewars, or other equipment between SLAC and your institution. To open or renew your SLAC user financial account, complete and submit this form along with a Purchase Order (PO) from your institution. The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated

  18. A 4 to 0.1 nm FEL Based on the SLAC Linac

    SciTech Connect (OSTI)

    Pellegrini, C.; /UCLA

    2012-06-05

    The author show that using existing electron gun technology and a high energy linac like the one at SLAC, it is possible to build a Free Electron Laser operating around the 4 nm water window. A modest improvement in the gun performance would further allow to extend the FEL to the 0.1 nm region. Such a system would produce radiation with a brightness many order of magnitude above that of any synchrotron radiation source, existing or under construction, with laser power in the multigawatt region and subpicosecond pulse length.

  19. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards Thomas Jefferson National Accelerator ...

  20. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards ...

  1. Accelerated Climate Modeling for Energy | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Credit: Alan Scott and Mark Taylor, Sandia National Laboratories Accelerated Climate Modeling for Energy PI Name: Mark Taylor PI Email: mataylo@sandia.gov Institution: Sandia...

  2. The Super-B Project Accelerator Status

    SciTech Connect (OSTI)

    Biagini, M.E.; Alesini, D.; Boni, R.; Boscolo, M.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Marcellini, F.; Mazzitelli, G.; Preger, M.; Raimondi, P.; Sanelli, C.; Serio, M.; Stecchi, A.; Stella, A.; Tomassini, S.; Zobov, M.; Bertsche, K.; Brachmann, A.; Cai, Y.; /SLAC /Novosibirsk, IYF /Annecy, LAPP /LPSC, Grenoble /Orsay, LAL /Saclay /Pisa U. /CERN

    2011-08-17

    The SuperB project is an international effort aiming at building in Italy a very high luminosity e{sup +}e{sup -} (10{sup 36} cm{sup -2} sec{sup -1}) asymmetric collider at the Y(4S) energy in the CM. The accelerator design has been extensively studied and changed during the past year. The present design, based on the new collision scheme, with large Piwinski angle and the use of 'crab waist' sextupoles already successfully tested at the DA{Phi}NE {Phi}-Factory at LNF Frascati, provides larger flexibility, better dynamic aperture and spin manipulation sections in the Low Energy Ring (LER) for longitudinal polarization of the electron beam at the Interaction Point (IP). The Interaction Region (IR) has been further optimized in terms of apertures and reduced backgrounds in the detector. The injector complex design has been also updated. A summary of the project status will be presented in this paper. The SuperB collider can reach a peak luminosity of 10{sup 36} cm{sup -2} sec{sup -1} with beam currents and bunch lengths similar to those of the past and present e{sup +}e{sup -} Factories, through the use of smaller emittances and new scheme of crossing angle collision. The beams are stored in two rings at 6.7 GeV (HER) and 4.2 GeV (LER). Unique features of the project are the polarization of the electron beam in the LER and the possibility to decrease the energies for running at the {tau}/charm threshold. The option to reuse the PEP-II B-Factory (SLAC) hardware will allow reducing costs. The SuperB facility will require a big complex of civil infrastructure. The main construction, which will house the final part of the LINAC, the injection lines, the damping rings, and the storage rings, will be mainly underground. Two sites have been considered: the campus of Tor Vergata University near Frascati, and the INFN Frascati Laboratory. No decision has been made yet. A footprint of the possible SuperB layout on the LNF area is shown in Fig. 1.

  3. Women @ Energy: Astrid Tomada | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Astrid Tomada Women @ Energy: Astrid Tomada March 11, 2013 - 2:23pm Addthis Astrid Tomada, Staff Engineer at SLAC National Accelerator Laboratory. Astrid Tomada, Staff Engineer at SLAC National Accelerator Laboratory. Astrid Tomada is a Staff Engineer at SLAC National Accelerator Laboratory, a position she has held since 2011. She is an expert in high-purity germanium and silicon detectors for dark matter particle and X-ray experiments, encompassing fabrication, inspection, and packaging of

  4. Women @ Energy: Gabriella Carini | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gabriella Carini Women @ Energy: Gabriella Carini March 12, 2013 - 1:12pm Addthis Gabriella Carini is a Staff Scientist at SLAC National Accelerator Laboratory’s Research and Engineering Division. Gabriella Carini is a Staff Scientist at SLAC National Accelerator Laboratory's Research and Engineering Division. Gabriella Carini has been a Staff Scientist at SLAC National Accelerator Laboratory's Research and Engineering Division since 2011, where she drives basic energy science detectors R

  5. EA-1975: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Assessment EA-1975: Final Environmental Assessment Linac Coherent Light Source-IL, SLAC National Accelerator Laboratory, Menlo Park, California DOE issued a ...

  6. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    National Accelerator Laboratory (SLAC)","US DOE Office of Science (DOE SC)","MATSCI, OPTICS, PHYS",,"Abstract Not Provided",,"United States","English",,"http:...

  7. XRMS: X-Ray Spectroscopy of Magnetic Solids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XRMS: X-Ray Spectroscopy of Magnetic Solids October 22-23, 2011 SLAC National Accelerator Laboratory, Menlo Park, CA More information...

  8. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... National Accelerator Laboratory (SLAC), Menlo Park, CA ... Microbiota and Host Nutrition across Plant and Animal ... studies, is critical when biological effect sizes are small. ...

  9. Low-Cost, Highly Transparent Flexible low-e Coating Film to Enable...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Research Institute (EPRI) Colorado School of Mines (CSM) Stanford Linear Accelerator (SLAC) Lawrence Berkeley National Laboratory (LBNL) Target MarketAudience: ...

  10. Researchers Create Transparent Lithium-Ion Battery - Joint Center...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Create Transparent Lithium-Ion Battery Stanford and SLAC National Accelerator Laboratory researchers have invented a transparent lithium-ion battery that is also highly ...

  11. The CP-Violating pMSSM at the Intensity Frontier (Conference...

    Office of Scientific and Technical Information (OSTI)

    National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Experiment-HEP, ...

  12. pMSSM Benchmark Models for Snowmass 2013 (Journal Article) |...

    Office of Scientific and Technical Information (OSTI)

    National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Experiment-HEP, ...

  13. Searches with Mono-Leptons (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Experiment-HEP, ...

  14. Chiral Anomaly Effects And the BaBar Measurements of the$\\gamma...

    Office of Scientific and Technical Information (OSTI)

    National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Experiment-HEP, ...

  15. Resummation of Relativistic Corrections to Exclusive Productions...

    Office of Scientific and Technical Information (OSTI)

    National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);KIAS Country of Publication: United States Language: English Subject: Experiment-HEP, ...

  16. Charmless B Decays at BaBar and Belle (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Experiment-HEP,HEPEX Word ...

  17. Inelastic Dark Matter at the LHC (Journal Article) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC) Country of Publication: United States Language: English Subject: Astrophysics, Experiment-HEP, ...

  18. Driving Innovation through Federal

    Broader source: Energy.gov (indexed) [DOE]

    Computational Modeling 6 Computer-simulated image shows the formation of two high density regions in the early universe at SLAC National Accelerator Laboratory Computational...

  19. Back to School! | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    classroom too...and this is a great place to start. Addthis Related Articles Cherrill Spencer is a Magnet Engineer at SLAC National Accelerator Laboratory. Women @ Energy:...

  20. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and fast-developing field called neutrino astronomy, says JoAnne Hewett, director of Elementary Particle Physics at SLAC National Accelerator Laboratory. "When I was a graduate...

  1. OSTIblog RSS Feed

    Office of Scientific and Technical Information (OSTI)

    known as spin current from a magnetic material (blue), to a nonmagnetic material (red). Image courtesy SLAC National Accelerator Laboratory" title"The flow of a magnetic...

  2. Energy Secretary Moniz Announces 2013 Ernest Orlando Lawrence...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    matter and materials; fusion and plasma sciences; high energy and nuclear ... SLAC National Accelerator Laboratory: for his work advancing fusion and plasma sciences. ...

  3. Unlocking Life's Mysteries (One Atom at a Time)

    Broader source: Energy.gov [DOE]

    The Linac Coherent Light Source (LSCLS) at SLAC National Accelerator Laboratory will allow us to make "molecular movies" and answer many questions surrounding atoms.

  4. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  5. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  6. C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of...

  7. Detecting Energy Modulation in a Dielectric Laser Accelerator

    SciTech Connect (OSTI)

    Lukaczyk, Louis

    2015-08-21

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the un-accelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  8. HANDBOOK OF ACCELERATOR PHYSICS AND ENGINEERING Editors: M. Tigner, Cornell

    Office of Scientific and Technical Information (OSTI)

    BNL 66455 April 19,1999 HANDBOOK OF ACCELERATOR PHYSICS AND ENGINEERING Editors: M. Tigner, Cornell A. Chao, SLAC Pubiisher: World Scientific Sections written by Thomas Roser, BNL: 2.7.1 - Thomas - BMT equation 2.2.2 - Spin or Algebra 2.7.3 - Spin Rotators and Siberian Snakes 2.7.4 - Ring with Spin Rotator and Siberian Snakes 2.7.5 - Depolarizing Resonances and Spin Flippers & 7.6.2 - Proton Beam Polarimeters introducing a large number of background beam- ion events. No indirect beam-beam

  9. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at LENA| Reaction Rates| UNC Astrophysics| Laboratory for Experimental Nuclear Astrophysics (LENA) The LENA is among only a few accelerator facilities in the world dedicated entirely to nuclear astrophysics experiments. It has two low-energy electrostatic accelerators that are capable of delivering high-current charged-particle beams to a common target. One is an ECR source on a 200-kV platform and the other one is a 1-MV JN Van de Graaff accelerator. Both accelerators are fully

  10. LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  11. Linear Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since 1972, providing the beam current required by all the experimental areas that support NNSA-DP and other DOE missions. The LINAC's capability to reliably deliver beam current is the key to the LANSCE's ability to do research-and thus the key to meeting NNSA and DOE mission deliverables. The LANSCE Accelerator The LANSCE

  12. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parking Directions and Map The Duke University campus map shows the Duke Physics Building on Science Drive behind Duke Chapel. The former 4 MeV Van de Graaff accelerator laboratory in its basement is now the location of TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA). Graduates since 1965 will recall the tandem accelerator laboratory is located behind the Physics Building, but those who graduated before 1990 may not recognize a newer larger building behind the tandem lab which

  13. Technical Challenges and Scientific Payoffs of Muon BeamAccelerators for Particle Physics

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2007-09-25

    Historically, progress in particle physics has largely beendetermined by development of more capable particle accelerators. Thistrend continues today with the recent advent of high-luminosityelectron-positron colliders at KEK and SLAC operating as "B factories,"the imminent commissioning of the Large Hadron Collider at CERN, and theworldwide development effort toward the International Linear Collider.Looking to the future, one of the most promising approaches is thedevelopment of muon-beam accelerators. Such machines have very highscientific potential, and would substantially advance thestate-of-the-art in accelerator design. A 20-50 GeV muon storage ringcould serve as a copious source of well-characterized electron neutrinosor antineutrinos (a Neutrino Factory), providing beams aimed at detectorslocated 3000-7500 km from the ring. Such long baseline experiments areexpected to be able to observe and characterize the phenomenon ofcharge-conjugation-parity (CP) violation in the lepton sector, and thusprovide an answer to one of the most fundamental questions in science,namely, why the matter-dominated universe in which we reside exists atall. By accelerating muons to even higher energies of several TeV, we canenvision a Muon Collider. In contrast with composite particles likeprotons, muons are point particles. This means that the full collisionenergy is available to create new particles. A Muon Collider has roughlyten times the energy reach of a proton collider at the same collisionenergy, and has a much smaller footprint. Indeed, an energy frontier MuonCollider could fit on the site of an existing laboratory, such asFermilab or BNL. The challenges of muon-beam accelerators are related tothe facts that i) muons are produced as a tertiary beam, with very large6D phase space, and ii) muons are unstable, with a lifetime at rest ofonly 2 microseconds. How these challenges are accommodated in theaccelerator design will be described. Both a Neutrino Factory and a MuonCollider require large numbers of challenging superconducting magnets,including large aperture solenoids, closely spaced solenoids withopposing fields, shielded solenoids, very high field (~;40-50 T)solenoids, and storage ring magnets with a room-temperature midplanesection. Uses for the various magnets will be outlined, along withR&D plans to develop these and other required components of suchmachines.

  14. Acceleration switch

    DOE Patents [OSTI]

    Abbin, J.P. Jr.; Middleton, J.N.; Schildknecht, H.E.

    1979-08-20

    An improved acceleration switch is described which is of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  15. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Middleton, John N.; Schildknecht, Harold E.

    1981-01-01

    The disclosure relates to an improved acceleration switch, of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  16. ACCELERATE ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Obama, State of the Union, Feb. 13, 2013 The U.S. Department of Energy, Council on Competitiveness and Alliance to Save Energy have joined forces to undertake in Accelerate Energy...

  17. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  18. ION ACCELERATOR

    DOE Patents [OSTI]

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  19. Fermilab | Science | Particle Accelerators | Fermilab's Accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab's Accelerator Complex photo Fermilab's accelerator complex comprises seven particle accelerators and storage rings. It produces the world's most powerful, high-energy...

  20. Manuel P. Soriaga - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Manuel Gnida About Us Manuel Gnida - SLAC National Accelerator Laboratory Manuel Gnida works in the communications department for SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories. He also writes for Symmetry Magazine, an online magazine about particle physics published jointly by SLAC and Fermilab. Most Recent Three Ways to Bust Ghostly Dark Matter March

    manuel p. soriaga Principal Investigator Email: msoriaga@caltech.edu Dr. Soriaga's research

  1. Accelerating Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget | Department of Energy Accelerating Clean Energy Technology Solutions through the President's Budget Accelerating Clean Energy Technology Solutions through the President's Budget February 12, 2016 - 1:00am Addthis World leaders launch Mission Innovation at the United Nations Climate Change Conference 2015 (COP21) in Paris-Le Bourget, France, November 30, 2015. World leaders launch Mission Innovation at the United Nations Climate Change Conference 2015 (COP21) in Paris-Le Bourget,

  2. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Systems Accelerator Systems MaRIE will provide a capability to address the control of performance and production of weapons materials at the mesoscale. MaRIE fills a critical gap in length scale between the integral scale addressed by studies conducted at DARHT, U1a, NIF, and Z. CONTACT Richard Sheffield (505) 667-1237 Email Revolutionizing Microstructural Physics to Empower Nuclear Energy Realizing MaRIE's full suite of capabilities requires developing and integrating a suite of

  3. Ground Broken for New Job-Creating Accelerator Research Facility at DOE's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fermi National Accelerator Laboratory in Illinois | Department of Energy Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois December 16, 2011 - 11:49am Addthis WASHINGTON, D.C. - Today, ground was broken for a new accelerator research facility being built at the Department of Energy's (DOE's) Fermi

  4. SLAC Partners with Palo Alto Firm to Make Klystrons Much More...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    that generate microwaves for accelerating particles - much more energy efficient. The new technology, called GREEN-RF, could dramatically cut the cost of operating both big ...

  5. A Proof-of-Principle Echo-enabled Harmonic Generation Free Electron Laser Experiment at SLAC

    SciTech Connect (OSTI)

    Pernet, Pierre-Louis; /Ecole Polytechnique, Lausanne /SLAC

    2012-01-06

    With the advent of X-ray Free Electron Lasers (FELs), new methods have been developed to extend capabilities at short wavelengths beyond Self-Amplified Spontaneous Emission (SASE). In particular, seeding of a FEL allows for temporal control of the radiation pulse and increases the peak brightness by orders of magnitude. Most recently, Gennady Stupakov and colleagues at SLAC proposed a new technique: Echo-Enabled Harmonic Generation (EEHG). Here a laser microbunches the beam in an undulator and the beam is sheared in a chicane. This process is repeated with a second laser, undulator and chicane. The interplay between these allows a seeding of the X-ray laser up to the 100th harmonic of the first laser. After introducing the physics of FELs and the EEHG seeding technique, we describe contributions to the experimental effort. We will present detailed studies of the experiment including the choice of parameters and their optimization, the emittance effect, spontaneous emission in the undulators, the second laser phase effect, and measurements of the jitter between RF stations. Finally, the status and preliminary results of the Echo-7 experiment will be outlined.

  6. HEP Accelerator R&D Expertise | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    As needed, promising concepts are tested at national laboratory test facilities, such as the Advanced Wakefield Accelerator (AWA) at ANL, the Accelerator Test Facility (ATF) at ...

  7. Fermi National Accelerator Laboratory August 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 In 2012 at the Large Hadron Collider, scientists discovered the long-sought Higgs boson. Now the question is: Are there more types of Higgs bosons? What is a Higgs boson? What is...

  8. Fermi National Accelerator Laboratory June 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recorded two distinct top-quark production mechanisms Explored a new mass range for the Higgs boson and constrained its mass through top-quark and W-boson mass measurements...

  9. Graphic Standards Fermi National Accelerator Laboratory 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    onto your slide, click outside of the text areas on the slide, select Insert > Choose. Search for your file and click Insert. Drag the image to position it to fit on your slide...

  10. Fermi National Accelerator Laboratory April 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thus explore whether the universe is even more complex than we think. Probing hints at new physics ICARUS: high-tech from Italy MicroBooNE: testing an anomaly SBND: closest to...

  11. Fermi National Accelerator Laboratory January 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drexel University Pennsylvania State University University of Pennsylvania, Philadelphia University of Pittsburgh Puerto Rico University of Puerto Rico, Mayaguez Rhode...

  12. Fermi National Accelerator Laboratory August 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drexel University Pennsylvania State University University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh Puerto Rico University of Puerto Rico,...

  13. Fermi National Accelerator Laboratory FY 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Carnegie Mellon University, Pittsburgh University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh Puerto Rico University of Puerto Rico,...

  14. Fermi National Accelerator Laboratory FY 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bucknell University Carnegie Mellon University, Pittsburgh Temple University, Philadelphia University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh...

  15. Fermi National Accelerator Laboratory Technologies Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and...

  16. Fermi National Accelerator Laboratory February 2015 Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    known as synchrotron light sources to create the brightest light beams on Earth. These luminous sources provide tools for such applications as protein structure analysis,...

  17. Fermi National Accelerator Laboratory February 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2013 FY2014 K-12 teachers FY2013...

  18. Fermi National Accelerator Laboratory February 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2011 FY2012 K-12 teachers FY2011...

  19. Fermi National Accelerator Laboratory April 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology. * With a strong focus on innovation and industrialization, IARC will attract high-tech companies and train Illinois citizens to develop advanced technology with...

  20. Fermi National Accelerator Laboratory March 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    630-840-5588 to register. Arts and Science Fermilab regularly hosts public events in Ramsey Auditorium, including lectures and arts performances. For a schedule, visit...

  1. Fermi National Accelerator Laboratory August 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one-eighth of the southern sky, recording information on 300 million galaxies, 100,000 galaxy clusters and 4,000 supernovae. The Dark Energy Survey is a collaborative effort...

  2. Driving the Future | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Driving the Future At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help...

  3. 10 Resources to Help You Save Energy Now | Department of Energy

    Energy Savers [EERE]

    Beamline Scientist: Apurva Mehta 10 Questions for a Beamline Scientist: Apurva Mehta November 4, 2011 - 1:02pm Addthis Apurva Mehta | Image courtesy of SLAC Apurva Mehta | Image courtesy of SLAC Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs "It was exhilarating when we found a novel solution and the instrument evolved." Apurva Mehta, Beamline Scientist Fifteen years ago, SLAC National Accelerator Laboratory (SLAC) scientist Apurva Mehta volunteered to

  4. Supplement Analysis

    Energy Savers [EERE]

    Supplement Analysis to the LCLS-ll Environmental Assessment, July. 2014 U.S. DEPARTMENT OF Office of *ENERGY 1 Science SLAG Site Office SLAC National Accelerator Laboratory 2575 Sand Hill Road, MS-8A Menlo Park, CA 94025 DATE: September 15, 2015 MEMORANDUM FOR: Paul Golan, Site Manager, SLAC Site Office THROUGH: James Elmore, ISC-OR NEPA Compliance Officer, Oak Ridge Office FROM: Mitzi Heard, NEPA Coornator, SLAC Site Office SUBJECT: Supplement Analysis to SLAC LCLS-I1 Environmental Assessment.

  5. EXAFS 2016 - SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitor Information Visiting SLAC SLAC National Accelerator Laboratory 2575 Sand Hill Rd. Menlo Park, CA 94025 Visiting SLAC Climate Temperate climate - more Accomodations Stanford Guest House Local Accommodations Visa Information If you are not a U.S. Citizen or Legal Permanent Resident and have questions regarding the appropriate visa status for this visit, you may contact our International Services Office at iso@slac.stanford.edu. Please note that obtaining a B-1 or B-2 visa can be a lengthy

  6. Bounding the Higgs Width Through Interferometry (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Bounding the Higgs Width Through Interferometry Citation Details In-Document Search Title: Bounding the Higgs Width Through Interferometry Authors: Dixon, Lance J. ; Li, Ye ; /SLAC Publication Date: 2013-05-24 OSTI Identifier: 1080221 Report Number(s): SLAC-PUB-15463 arXiv:1305.3854 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Submitted to Physical Review Letters Research Org: SLAC National Accelerator Laboratory (SLAC)

  7. XRS 2016 - 8th SSRL School on Synchrotron X-Ray Scattering Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitor Information Visiting SLAC SLAC National Accelerator Laboratory 2575 Sand Hill Rd. Menlo Park, CA 94025 Visiting SLAC Climate Temperate climate - more Accomodations Stanford Guest House Local Accommodations Visa Information If you are not a U.S. Citizen or Legal Permanent Resident and have questions regarding the appropriate visa status for this visit, you may contact our International Services Office at iso@slac.stanford.edu. Please note that obtaining a B-1 or B-2 visa can be a lengthy

  8. 10 Questions for a Chemical Theorist: Greg Schenter | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Apurva Mehta | Image courtesy of SLAC Apurva Mehta | Image courtesy of SLAC Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs "It was exhilarating when we found a novel solution and the instrument evolved." Apurva Mehta, Beamline Scientist Fifteen years ago, SLAC National Accelerator Laboratory (SLAC) scientist Apurva Mehta volunteered to help a friend build beamline parts at the Stanford Synchrotron Radiation Lightsource (SSRL). Today, he's "still

  9. 10 Questions for a Beamline Scientist: Apurva Mehta | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Beamline Scientist: Apurva Mehta 10 Questions for a Beamline Scientist: Apurva Mehta November 4, 2011 - 1:02pm Addthis Apurva Mehta | Image courtesy of SLAC Apurva Mehta | Image courtesy of SLAC Niketa Kumar Niketa Kumar Public Affairs Specialist, Office of Public Affairs "It was exhilarating when we found a novel solution and the instrument evolved." Apurva Mehta, Beamline Scientist Fifteen years ago, SLAC National Accelerator Laboratory (SLAC) scientist Apurva Mehta volunteered to

  10. Plasma accelerator

    DOE Patents [OSTI]

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  11. ACCELERATION INTEGRATOR

    DOE Patents [OSTI]

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  12. Finite element analyses of a linear-accelerator electron gun

    SciTech Connect (OSTI)

    Iqbal, M. E-mail: muniqbal@ihep.ac.cn; Wasy, A.; Islam, G. U.; Zhou, Z.

    2014-02-15

    Thermo-structural analyses of the Beijing Electron-Positron Collider (BEPCII) linear-accelerator, electron gun, were performed for the gun operating with the cathode at 1000 °C. The gun was modeled in computer aided three-dimensional interactive application for finite element analyses through ANSYS workbench. This was followed by simulations using the SLAC electron beam trajectory program EGUN for beam optics analyses. The simulations were compared with experimental results of the assembly to verify its beam parameters under the same boundary conditions. Simulation and test results were found to be in good agreement and hence confirmed the design parameters under the defined operating temperature. The gun is operating continuously since commissioning without any thermal induced failures for the BEPCII linear accelerator.

  13. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in

  14. Compact accelerator

    DOE Patents [OSTI]

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  15. Accelerating Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy 2, 2015 - 2:00pm Addthis Accelerating Innovation: PowerAmerica Is Up and Running -Rob Ivester, Deputy Director, Advanced Manufacturing Office The excitement and drive to deliver was evident to me last week when I joined nearly 100 PowerAmerica members for their kick-off meeting at NC State University in Raleigh, North Carolina. PowerAmerica, also called the Next Generation Power Electronics Manufacturing Innovation Institute, will develop advanced manufacturing processes and work to

  16. Observation of Ion Acceleration and Heating during Collisionless...

    Office of Scientific and Technical Information (OSTI)

    5 PPPL- 4835 Observation of Ion Acceleration and Heating during Collisionless Magnetic Reconnection in a Laboratory Plasma December, 2012 Jongsoo Yoo, Masaaki Yamada, HantaoJi and ...

  17. Numerical Verification of the Power Transfer and Wakefield Coupling in the Clic Two-Beam Accelerator

    SciTech Connect (OSTI)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.; /CERN

    2011-08-19

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its two-beam accelerator (TBA) concept envisions complex 3D structures, which must be modeled to high accuracy so that simulation results can be directly used to prepare CAD drawings for machining. The required simulations include not only the fundamental mode properties of the accelerating structures but also the Power Extraction and Transfer Structure (PETS), as well as the coupling between the two systems. Time-domain simulations will be performed to understand pulse formation, wakefield damping, fundamental power transfer and wakefield coupling in these structures. Applying SLAC's parallel finite element code suite, these large-scale problems will be solved on some of the largest supercomputers available. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel two-beam accelerator scheme.

  18. LANL announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL announces Venture Acceleration Fund recipients LANL announces Venture Acceleration Fund recipients Ideum and OnQueue are the latest recipients of the awards from the Los Alamos National Security, LLC Venture Acceleration Fund. September 26, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  19. RDC receives award for Accelerate Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RDC Receives Award for Accelerate Program Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit RDC receives award for Accelerate Program Accelerate is designed to help graduate more technical career students, place them in jobs, and better prepare them for career and educational advancement. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office

  20. BELLA: The Berkeley Lab Laser Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BELLA: The Berkeley Lab Laser Accelerator Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab Project Description BELLA, the Berkeley Laboratory Laser Accelerator created an experimental facility for further advancing the development of laser-driven plasma acceleration. BELLA's unique attribute is the ability to use

  1. Fermilab | Illinois Accelerator Research Center | Accelerators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opportunity to develop and share the known and still unexplored benefits of particle accelerators. Benefits to Society photo Each generation of particle accelerators and...

  2. SLAC Site Office CX Determinations | U.S. DOE Office of Science...

    Office of Science (SC) Website

    SS-SC-15-02 .pdf file (494KB) B1.23 07152015 Facility for Advanced Accelerator Experimental Tests II (FACET-II) SS-SC-15-03 .pdf file (674KB) B3.10 04072015 CX Determination...

  3. VLHC accelerator physics

    SciTech Connect (OSTI)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  4. Greg W Hammett | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greg Stewart About Us Greg Stewart - SLAC National Accelerator Laboratory Greg Stewart is a graphic designer for SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories. Most Recent Three Ways to Bust Ghostly Dark Matter March 30

    Greg W Hammett Principal Research Physicist, Plasma Physics Laboratory. Lecture Dr. Hammett is a principal research physicist at the Princeton Plasma Physics Laboratory (PPPL), and a lecturer in the Department of Astrophysical

  5. Correlation of Beam Parameters to Decelerating Gradient in the E-167 Plasma Wakefield Acceleration Experiment

    SciTech Connect (OSTI)

    Blumenfeld, I.; Berry, M.; Decker, F.-J.; Hogan, M.J.; Ischebeck, R.; Iverson, R.; Kirby, N.; Siemann, R.; Walz, D.; Clayton, C.E.; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; Katsouleas, T.C.; Muggli, P.; Oz, E.; /Southern California U.

    2007-06-27

    Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas [1,2]. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch length and beam waist location were varied systematically at constant charge. Here we investigate the correlation of peak beam current to the decelerating gradient. Limits on the transformer ratio will also be discussed. The results are compared to simulation.

  6. FFAG ACCELERATOR PROTON DRIVER FOR NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2005-06-21

    This paper is the summary of a conceptual study of a Proton Driver for Neutrino Factory based on the use of a Fixed-Field Alternating-Gradient (FFAG) Accelerator. The required proton energy range for an optimum neutrino production is 5 to 12 GeV. This can be accomplished with a group of three concentric rings each with 807 m circumference [1]. FFAG Accelerators [2] have the capability to accelerate charged particles over a large momentum range ({+-}30-50%) and the feature of constant bending and focusing fields. Particles can be accelerated very fast at the rate given by the accelerating field of RF cavities placed in proper locations between magnets. The performance of FFAG accelerators is to be placed between that of Super-Conducting Linear Accelerators (SCL), with which they share the fast acceleration rate, and Rapid-Cycling Synchrotrons (RCS), as they allow the beam to re-circulate over fewer revolutions. Brookhaven National Laboratory is involved in the study of feasibility of FFAG Accelerators to accelerate intense beams of protons in the GeV energy range for a variety of applications the most important of which is the Upgrade of the Alternating Gradient Synchrotron (AGS) with a new FFAG injector [3] accelerating from 400 MeV to 1.5 GeV. The ring would be housed in the AGS tunnel and has henceforth a circumference of 807 m.

  7. White Paper on DOE-HEP Accelerator Modeling Science Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White Paper on DOE-HEP Accelerator Modeling Science Activities J.-L. Vay, C. G. R. Geddes, A. Koniges - Lawrence Berkeley National Laboratory A. Friedman, D. P. Grote - Lawrence Livermore National Laboratory D. L. Bruhwiler - RadiaSoft LLC J. P. Verboncoeur - Michigan State University Objective Toward the goal of maximizing the impact of computer modeling on the design of future particle accelerators and the development of new accelerator techniques & technologies, this white paper presents

  8. Sandia National Laboratories conducts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conducts research and development (R&D) in solar power, including photovoltaics and concentrating solar power, to strengthen the U.S. solar industry and improve the manufacturability, reliability, and cost competitiveness of solar energy technologies and systems. Researchers at Sandia partner with the U.S. Department of Energy (DOE) and other government agencies, industry, academia, and other laboratories to accelerate development and acceptance of current and emerging solar power

  9. APT accelerator. Topical report

    SciTech Connect (OSTI)

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  10. Detecting Partial Energy Modulation in a Dielectric Laser Accelerator - Oral Presentation

    SciTech Connect (OSTI)

    Lukaczyk, Louis

    2015-08-24

    The Dielectric Laser Acceleration group at SLAC uses micro-fabricated dielectric grating structures and conventional infrared lasers to accelerator electrons. These structures have been estimated to produce an accelerating gradient up to 2 orders of magnitude greater than that produced by conventional RF accelerators. The success of the experiment depends on both the laser damage threshold of the structure and the timing overlap of femtosecond duration laser pulses with the electron bunch. In recent dielectric laser acceleration experiments, the laser pulse was shorter both temporally and spatially than the electron bunch. As a result, the laser is theorized to have interacted with only a small portion of the electron bunch. The detection of this phenomenon, referred to as partial population modulation, required a new approach to the data analysis of the electron energy spectra. A fitting function was designed to separate the accelerated electron population from the unaccelerated electron population. The approach was unsuccessful in detecting acceleration in the partial population modulation data. However, the fitting functions provide an excellent figure of merit for previous data known to contain signatures of acceleration.

  11. A New Light on Disordered Ensembles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    M.J. Bogan (SLAC National Accelerator Laboratory); S. Marchesini (ALS); D.A. Shapiro (Brookhaven National Laboratory); and H.C. Poon and D.K. Saldin (University of...

  12. Greg Stewart

    Broader source: Energy.gov [DOE]

    Greg Stewart is a graphic designer for SLAC National Accelerator Laboratory, one of the Department of Energy’s 17 National Laboratories.

  13. Photon Speedway Puts Big Data In the Fast Lane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photon Speedway Puts Big Data In the Fast Lane Photon Speedway Puts Big Data In the Fast Lane Scientists from Berkeley Lab and SLAC are using NERSC and ESnet to achieve breakthroughs in photosynthesis research August 26, 2014 Contact: Kathy Kincade, +1 510 495 2124, kkincade@lbl.gov A series of experiments conducted by Lawrence Berkeley National Laboratory (Berkeley Lab) and SLAC National Accelerator Laboratory (SLAC) researchers and collaborators is shedding new light on the photosynthetic

  14. About the Stanford Synchrotron Radiation Lightsource | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource About the Stanford Synchrotron Radiation Lightsource SSRL is a forefront lightsource providing bright X-rays and oustanding user support. The Stanford Synchrotron Radiation Lightsource (SSRL), a directorate of the SLAC National Accelerator Laboratory (SLAC), is an Office of Science User Facility operated for the U.S. Department of Energy (DOE) by Stanford University. Located in Menlo Park, California, SLAC is a multi-program national laboratory exploring frontier

  15. Muon Collider Progress: Accelerators

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 10{sup 34} cm{sup 2}s{sup 1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (cooling). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  16. Lab Breakthrough: Fermilab Accelerator Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fermilab Accelerator Technology Lab Breakthrough: Fermilab Accelerator Technology May 14, 2012 - 10:51am Addthis At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs Where are these 30,000 particle accelerators? Most of them in medicine and manufacturing

  17. Fermilab | Science | Particle Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research and development of future particle accelerators, contributing to the design and exploration of the next generation of machines. These accelerators, each with its own...

  18. Focusing in Linear Accelerators

    DOE R&D Accomplishments [OSTI]

    McMillan, E. M.

    1950-08-24

    Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

  19. LANL shatters records in first year of accelerated shipping effort

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL shatters records in first year of accelerated shipping effort LANL shatters records in first year of accelerated shipping effort LANL set a record for transuranic waste shipments from the Lab to permanent disposal facilities. October 3, 2012 Los Alamos National Laboratory set a record for transuranic waste shipments from the Laboratory to permanent disposal facilities, sending nearly 60 more shipments than originally planned. Los Alamos National Laboratory set a record for transuranic waste

  20. Final Environmental Assessment for the construction and operation of an office building at the Stanford Linear Accelerator Center. Part 2

    SciTech Connect (OSTI)

    1995-08-01

    The Department of Energy (DOE) has prepared an Environmental Assessment (EA), DOE/EA-1107, analyzing the environmental effects relating to the construction and operation of an office building at the Stanford Linear Accelerator Center (SLAC). SLAC is a national facility operated by Stanford University, California, under contract with DOE. The center is dedicated to research in elementary particle physics and in those fields that make use of its synchrotron facilities. The objective for the construction and operation of an office building is to provide adequate office space for existing SLAC Waste Management (WM) personnel, so as to centralize WM personnel and to make WM operations more efficient and effective. Based on the analyses in the EA, the DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an Environmental Impact Statement is not required. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact (FONSI).

  1. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  2. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  3. Building a Tabletop Accelerator

    SciTech Connect (OSTI)

    Leemans, Wim

    2015-05-06

    Berkeley Lab physicist Wim Leemans discusses his research on developing a tabletop-size particle accelerator.

  4. Lab announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Lab announces Venture Acceleration Fund recipients Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. selected as recipients of awards. August 11, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  5. Lab seeks ideas for venture acceleration fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture acceleration fund Lab seeks ideas for Venture Acceleration Fund The fund will provide investments of up to $100,000 to facilitate projects with regional entrepreneurs, companies, investors, or strategic partners. July 9, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  6. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its

  7. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  8. Lessons from the Bevatron Accelerator Demolition - 12191

    SciTech Connect (OSTI)

    Harkins, Joseph; Cronin, Robert

    2012-07-01

    The Bevatron accelerator at Lawrence Berkeley National Laboratory is the first DOE accelerator to be demolished. While there are many lessons learned from its demolition, this paper focuses on the following lessons learned that may be useful for other D and D projects: bounding project scope to ensure success, hazards mapping for focused characterization and remediation, establishing radiological evaluation criteria, and forecasting activation products. With D and D of many DOE accelerators likely to occur in the near future, these lessons learned should be considered in planning those projects. These lessons learned are likely to be applicable to other D and D projects as well. (authors)

  9. National Laboratory Research and Development Funding Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Research and Development Funding Opportunities National Laboratory Research and Development Funding Opportunities Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving SunShot Initiative's Systems Integration targets. These multi-year projects are funded based on a competitive proposal process and address the

  10. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  11. Data Plots of Run I - III Results from SLAC E-158: A precision Measurement of the Weak Mixing Angle in Moller Scattering

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Three physics runs were made in 2002 and 2003 by E-158. As a result, the E-158 Collaboration announced that it had made "the first observation of Parity Violation in electron-electron (Moller) scattering). This precise Parity Violation measurement gives the best determination of the electron's weak charge at low energy (low momentum transfer between interacting particles). E158's measurement tests the predicted running (or evolution) of this weak charge with energy, and searches for new phenomena at TeV energy scales (one thousand times the proton-mass energy scale).[Copied from the experiment's public home page at http://www-project slac.stanford.edu/3158/Default.htm] See also the E158 page for collaborators at http://www.slac.stanford.edu/exp/e158/. Both websites provide data and detailed information.

  12. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and Analysis Computing Center Science Work with Argonne About Safety News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne User Facilities Advanced Photon Source Argonne

  13. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  14. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  15. Grid-Connected Renewable Energy Systems | Department of Energy

    Office of Environmental Management (EM)

    Greg Stewart About Us Greg Stewart - SLAC National Accelerator Laboratory Greg Stewart is a graphic designer for SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories. Most Recent Three Ways to Bust Ghostly Dark Matter March 30 Affairs, and International Relations of the Committee on Government Reform U.S. House of Representatives | Department of Energy

    Subcommittee on National Security, Veterans Affairs, and International Relations of the

  16. Bounding the Higgs Width Through Interferometry (Journal Article) | SciTech

    Office of Scientific and Technical Information (OSTI)

    Connect Journal Article: Bounding the Higgs Width Through Interferometry Citation Details In-Document Search Title: Bounding the Higgs Width Through Interferometry Authors: Dixon, Lance J. ; Li, Ye ; /SLAC Publication Date: 2013-05-24 OSTI Identifier: 1080221 Report Number(s): SLAC-PUB-15463 arXiv:1305.3854 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Submitted to Physical Review Letters Research Org: SLAC National Accelerator Laboratory

  17. Bowman_1961.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connect Journal Article: Bounding the Higgs Width Through Interferometry Citation Details In-Document Search Title: Bounding the Higgs Width Through Interferometry Authors: Dixon, Lance J. ; Li, Ye ; /SLAC Publication Date: 2013-05-24 OSTI Identifier: 1080221 Report Number(s): SLAC-PUB-15463 arXiv:1305.3854 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Submitted to Physical Review Letters Research Org: SLAC National Accelerator Laboratory

  18. Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Jefferson Lab is recognized as a world leader in accelerator science. This expertise comes from the planning, building, maintaining and operating of the Continuous Electron Beam Accelerator Facility (CEBAF) - the lab's particle accelerator. CEBAF is based on superconducting radiofrequency (SRF) technology. It produces a stream of charged electrons that scientists use to probe the nucleus of the atom. CEBAF was the first large-scale application of SRF technology in the world,

  19. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Accelerated Aging Studies Factors such as temperature, pressure, or radiation

  20. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resumes transuranic waste shipments April 2, 2014 Shipments keep Lab on track to complete 3706 Campaign on schedule LOS ALAMOS, N.M., April 2, 2014-Los Alamos National Laboratory resumed shipments of transuranic waste yesterday from Technical Area 54 Area G. The shipments are part of an accelerated shipping campaign to remove 3,706 cubic meters of transuranic waste stored aboveground at Area G by June 30, 2014. Nearly 3,200 cubic meters of the waste have already been removed since the 3706

  1. Accelerators AND Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators AND Beams TOOLS Of DiScOvery anD innOvaTiOn Published by the Division of Physics of Beams of the American Physical Society Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . Why.care.about.accelerators?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . What.are.accelerators.for?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 .

  2. Biological assessments for the low energy demonstration accelerator, 1996

    SciTech Connect (OSTI)

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  3. How Accelerator Physicists Save Time | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Image courtesy of Lawrence Berkeley National Laboratory The basic elements of laser plasma wakefield acceleration. The laser pulse, shown in red, ionizes the gas to produce a ...

  4. Vehicle Technologies Office Merit Review 2015: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  5. Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  6. Better Buildings Challenge Accelerator Support - 2014 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Accelerator Support - 2014 BTO Peer Review Better Buildings Challenge Accelerator Support - 2014 BTO Peer Review Presenter: Monisha Shah, National Renewable Energy Laboratory Through the Better Buildings Energy Data Accelerator, local governments are joining forces with their utilities so that commercial and multifamily building owners can more easily access whole-building energy usage data. This effort helps building owners-especially those with multiple tenants-break

  7. Lee Teng Undergraduate Fellowship in Accelerator Science and Engineering |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory For more additional information on the Lee Tang Internship, visit the Illinois Accelerator Institute. Lee Teng Partners Lee Teng Fellowship "Incredible opportunity! I have learned a lot, and met some incredible individuals." -Summer 2013 Intern Overview The Illinois Accelerator Institute established the Lee Teng Undergraduate Internship in Accelerator Science and Engineering in 2008 to provide junior level college students an opportunity to study with

  8. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extension Application for Macromolecular Crystallography Proposals Please submit via email attachment to Lisa Dunn (lisa@slac.stanford.edu) Proposal Number: Date of Extension Request: Spokesperson: 1. PROGRESS: Provide a progress report describing work accomplished at SSRL on this proposal to date (1-2 pages) 2. NEW ELEMENTS: Describe any new elements that may add interest to extending the proposal, if applicable (1-2 paragraphs) 3. FUTURE PLANS: Describe future plans or the next steps that you

  9. Stanford Synchrotron Radiation Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Stanford Synchrotron Radiation Lightsource Format for Proposal Extension Request Proposals are eligible for a one-time extension request. Submit extension requests by Email as a Word or PDF attachment to: Michelle Steger (steger@slac.stanford.edu) Proposal Number: Date of Extension Request: Spokesperson: 1. PROGRESS: Provide a progress report describing work accomplished at SSRL on this proposal to date (1-2 pages) 2. NEW ELEMENTS: Describe any new elements that may add interest to extending the

  10. High brightness electron accelerator

    DOE Patents [OSTI]

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  11. Making the perfect recipe just got faster: NNSA research accelerates

    National Nuclear Security Administration (NNSA)

    materials science | National Nuclear Security Administration Making the perfect recipe just got faster: NNSA research accelerates materials science Thursday, May 19, 2016 - 11:01am The Trinity supercomputer at Los Alamos National Laboratory. In a recent paper published in Nature Communications, NNSA researchers at Los Alamos National Laboratory (LANL) recently demonstrated ways to accelerate materials science. Why is this innovation so noteworthy to NNSA's mission, as well as other

  12. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  13. EXAFS 2016 - SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Location The 7th Annual SSRL School on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application will he hosted by SLAC National Accelerator Laboratory, Research Office Building (ROB) (see 30-B below in yellow circle). SLAC is located at 2575 Sand Hill Rd, Menlo Park CA 94025, USA PDF version of map available

  14. Federal laboratories for the 21st century

    SciTech Connect (OSTI)

    Gover, J.; Huray, P.G.

    1998-04-01

    Federal laboratories have successfully filled many roles for the public; however, as the 21st Century nears it is time to rethink and reevaluate how Federal laboratories can better support the public and identify new roles for this class of publicly-owned institutions. The productivity of the Federal laboratory system can be increased by making use of public outcome metrics, by benchmarking laboratories, by deploying innovative new governance models, by partnerships of Federal laboratories with universities and companies, and by accelerating the transition of federal laboratories and the agencies that own them into learning organizations. The authors must learn how government-owned laboratories in other countries serve their public. Taiwan`s government laboratory, Industrial Technology Research Institute, has been particularly successful in promoting economic growth. It is time to stop operating Federal laboratories as monopoly institutions; therefore, competition between Federal laboratories must be promoted. Additionally, Federal laboratories capable of addressing emerging 21st century public problems must be identified and given the challenge of serving the public in innovative new ways. Increased investment in case studies of particular programs at Federal laboratories and research on the public utility of a system of Federal laboratories could lead to increased productivity of laboratories. Elimination of risk-averse Federal laboratory and agency bureaucracies would also have dramatic impact on the productivity of the Federal laboratory system. Appropriately used, the US Federal laboratory system offers the US an innovative advantage over other nations.

  15. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. ...

  16. Hinterf.dvi

    Office of Scientific and Technical Information (OSTI)

    63 Bounding the Higgs Boson Width Through Interferometry Lance J. Dixon 1 and Ye Li 1 1 SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94309, USA We study...

  17. Next-Generation Thermionic Solar Energy Conversion (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Stanford University and the SLAC National Accelerator Laboratory are 2012 SunShot CSP R&D awardees for their advanced power cycles. This fact sheet explains the motivation, description, and impact of the project.

  18. All User Facilities | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    ... Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory The LCLS is the world's first hard x-ray free electron laser facility capable of producing x-rays that ...

  19. Preliminary Notice of Violation, Stanford University - November...

    Office of Environmental Management (EM)

    worker safety and health program requirements (10 C.F.R. 851) relating to a series of laser and energetic beam events that occurred at DOE's SLAC National Accelerator Laboratory. ...

  20. X-Ray Light Sources | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Linac Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory The LCLS is the world's first hard x-ray free electron laser facility capable of producing x-rays that ...

  1. The Linac Coherent Light Source (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    at the SLAC National Accelerator Laboratory was the first hard X-ray free-electron laser (FEL) to operate as a user facility. After five years of operation, LCLS is now a...

  2. Contact Us | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory 2575 Sand Hill Road, MS 69 Menlo Park, CA 94025 Tel: 650-926-4000 Fax: 650-926-4100 SSRL...

  3. Scientist Take First X-Ray Portraits of Living Cyanobacteria at the LCLS

    SciTech Connect (OSTI)

    2015-02-11

    Researchers from Uppsala University working at the Department of Energy's SLAC National Accelerator Laboratory have captured the first X-ray portraits of living bacteria, detecting signals from features as small as 4 nanometers, or 4 billionths of a meter.

  4. Physics Opportunities of a Fixed-Target Experiment using the...

    Office of Scientific and Technical Information (OSTI)

    Fixed-Target Experiment using the LHC Beams S.J. Brodsky 1 , F. Fleuret 2 , C. Hadjidakis 3 , J.P. Lansberg 3 1 SLAC National Accelerator Laboratory, Theoretical Physics, Stanford...

  5. Preliminary Notice of Violation, Stanford University - November...

    Broader source: Energy.gov (indexed) [DOE]

    worker safety and health program requirements (10 C.F.R. 851) relating to a series of laser and energetic beam events that occurred at DOE's SLAC National Accelerator Laboratory....

  6. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  7. ACE3P Computations of Wakefield Coupling in the CLIC Two-Beam Accelerator

    SciTech Connect (OSTI)

    Candel, Arno; Li, Z.; Ng, C.; Rawat, V.; Schussman, G.; Ko, K.; Syratchev, I.; Grudiev, A.; Wuensch, W.

    2010-10-27

    The Compact Linear Collider (CLIC) provides a path to a multi-TeV accelerator to explore the energy frontier of High Energy Physics. Its novel two-beam accelerator concept envisions rf power transfer to the accelerating structures from a separate high-current decelerator beam line consisting of power extraction and transfer structures (PETS). It is critical to numerically verify the fundamental and higher-order mode properties in and between the two beam lines with high accuracy and confidence. To solve these large-scale problems, SLAC's parallel finite element electromagnetic code suite ACE3P is employed. Using curvilinear conformal meshes and higher-order finite element vector basis functions, unprecedented accuracy and computational efficiency are achieved, enabling high-fidelity modeling of complex detuned structures such as the CLIC TD24 accelerating structure. In this paper, time-domain simulations of wakefield coupling effects in the combined system of PETS and the TD24 structures are presented. The results will help to identify potential issues and provide new insights on the design, leading to further improvements on the novel CLIC two-beam accelerator scheme.

  8. Accelerated cleanup risk reduction

    SciTech Connect (OSTI)

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation period in which the well was `capped`. Our results show the formation of an inclined gas phase during injection and a fast collapse of the steam zone within an hour of terminating steam injection. The majority of destruction occurs during the collapse phase, when contaminant laden water is drawn back towards the well. Little to no noncondensible gasses are created in this process, removing any possibility of sparging processes interfering with contaminant destruction. Our models suggest that the thermal region should be as hot and as large as possible. To have HPO accepted, we need to demonstrate the in situ destruction of contaminants. This requires the ability to inexpensively sample at depth and under high temperatures. We proved the ability to implies monitoring points at depths exceeding 150 feet in highly heterogeneous soils by use of cone penetrometry. In addition, an extractive system has been developed for sampling fluids and measuring their chemistry under the range of extreme conditions expected. We conducted a collaborative field test of HPO at a Superfund site in southern California where the contaminant is mainly creosote and pentachlorophenol. Field results confirm the destruction of contaminants by HPO, validate our field design from simulations, demonstrate that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells (and minimal capital cost) and yield reliable cost estimates for future commercial application. We also tested the in situ microbial filter technology as a means to intercept and destroy the accelerated flow of contaminants caused by the injection of steam. A series of laboratory and field tests revealed that the selected bacterial species effectively degrades trichloroethene in LLNL Groundwater and under LLNL site conditions. In addition, it was demonstrated that the bacteria effectively attach to the LLNL subsurface media. An in-well treatability study indicated that the bacteria initially degrade greater than 99% of the contaminant, to concentrations less than regulatory limit

  9. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  10. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  11. Linear inductive accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Gerasimov, A.I.; Pavlovskiy, A.I.

    1983-11-01

    A proposed accelerator, differing from existing ones in that it is loaded through a capacitor on a solenoid which is uniformly distributed throughout the accelerating system and connected to an independent electrical current source, is discussed. The design of the system makes it possible to improve the uniformity of the electrical field and increase the longitudinal focusing magnetic field. This is especially important for high-current accelerators.

  12. Linear induction accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Pavlovskiy, A.I.

    1984-03-01

    A linear induction accelerator of charged particles, containing inductors and an acceleration circuit, characterized by the fact that, for the purpose of increasing the power of the accelerator, each inductor is made in the form of a toroidal line with distributed parameters, from one end of which in the gap of the line a ring commutator is included, and from the other end of the ine a resistor is hooked up, is described.

  13. ACCELERATION RESPONSIVE SWITCH

    DOE Patents [OSTI]

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  14. Design and Evaluation of a Clock Multiplexing Circuit for the SSRL Booster Accelerator Timing System - Final Paper

    SciTech Connect (OSTI)

    Araya, Million

    2015-08-21

    SPEAR3 is a 234 m circular storage ring at SLACs synchrotron radiation facility (SSRL) in which a 3 GeV electron beam is stored for user access. Typically the electron beam decays with a time constant of approximately 10hr due to electron lose. In order to replenish the lost electrons, a booster synchrotron is used to accelerate fresh electrons up to 3GeV for injection into SPEAR3. In order to maintain a constant electron beam current of 500mA, the injection process occurs at 5 minute intervals. At these times the booster synchrotron accelerates electrons for injection at a 10Hz rate. A 10Hz 'injection ready' clock pulse train is generated when the booster synchrotron is operating. Between injection intervals-where the booster is not running and hence the 10 Hz injection ready signal is not present-a 10Hz clock is derived from the power line supplied by Pacific Gas and Electric (PG&E) to keep track of the injection timing. For this project I constructed a multiplexing circuit to 'switch' between the booster synchrotron 'injection ready' clock signal and PG&E based clock signal. The circuit uses digital IC components and is capable of making glitch-free transitions between the two clocks. This report details construction of a prototype multiplexing circuit including test results and suggests improvement opportunities for the final design.

  15. Women @ Energy: Deborah Joanne Bard | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Deborah Joanne Bard Women @ Energy: Deborah Joanne Bard March 11, 2013 - 5:36pm Addthis Deborah Joanne Bard is a post-doc at SLAC National Accelerator Laboratory where she works on science preparation for the Large Synoptic Survey Telescope (LSST). Deborah Joanne Bard is a post-doc at SLAC National Accelerator Laboratory where she works on science preparation for the Large Synoptic Survey Telescope (LSST). Watch More Here: Learn more about Deborah's work in cosmology and her excitement about

  16. Women @ Energy: Ritimukta Sarangi | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ritimukta Sarangi Women @ Energy: Ritimukta Sarangi March 19, 2013 - 4:11pm Addthis Ritimukta Sarangi is a Staff Scientist for the Structural Molecular Biology Division at Stanford Synchrotron Radiation Lightsource of the SLAC National Accelerator Laboratory. Ritimukta Sarangi is a Staff Scientist for the Structural Molecular Biology Division at Stanford Synchrotron Radiation Lightsource of the SLAC National Accelerator Laboratory. Check out other profiles in the Women @ Energy series and share

  17. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells for wakefield suppression in both, superconducting RF and room-temperature high-energy accelerators of the ... acts as an extremely efficient higher order mode ...

  18. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property ...

  19. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 ... of Taos, will continue development of a solar thermal heating prototype that uses heat ...

  20. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  1. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  2. From Autos to Accelerators

    Broader source: Energy.gov [DOE]

    In a town haunted by the remains of fallen automobile plants, some companies are hiring workers to put their car-manufacturing skills toward building particle accelerators.

  3. SLAC Site Office Jobs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  4. SLAC-PUB-8640

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... of the time as a proton and part of the time as a neutron surrounded by a positive meson cloud." and also: "...it is to be expected that the magnetic field associated with the ...

  5. slac_nums

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

  6. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  7. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  8. Accelerators (5/5)

    SciTech Connect (OSTI)

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  9. Accelerators (4/5)

    SciTech Connect (OSTI)

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  10. Accelerators (3/5)

    SciTech Connect (OSTI)

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  11. Accelerators (3/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  12. Accelerators (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  13. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  14. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  15. Accelerators (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  16. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  17. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  18. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  19. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will celebrate 50 years of highly successful collaborative research. Everyone who has been a part of TUNL's program - former and present students, post-doctoral researchers, faculty, staff, research collaborators, and other friends of the laboratory - is invited. Come and join us! What are we celebrating? In November 1965 the US Atomic Energy Commission announced a $2.5M award for purchase of a new High Voltage Engineering Model FN tandem Van de Graaff accelerator. This began a thriving

  20. Los Alamos National Laboratory to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to begin DARHT 2 operations January 29, 2008 Hydrodynamic testing at the frontier of science LOS ALAMOS, New Mexico, January 29, 2008- The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility has officially become "dual" with authorization to begin full power operations of Axis 2, adding both new capability and higher energy to the unique accelerator facility. Los Alamos National Laboratory has received authorization from the National Nuclear Security Administration to begin

  1. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    SciTech Connect (OSTI)

    Lofgren, E.J.

    1994-07-01

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954.

  2. Single soft gluon emission at two loops (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Single soft gluon emission at two loops Citation Details In-Document Search Title: Single soft gluon emission at two loops Authors: Li, Ye ; Zhu, Hua Xing ; /SLAC ; , Publication Date: 2014-05-05 OSTI Identifier: 1131469 Report Number(s): SLAC-PUB-15732 arXiv:1309.4391 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: JHEPA,1311:080,2013 Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE

  3. Radiative Bottomonium Spectroscopy at the Y(2, 3S) Resonances at BaBar

    Office of Scientific and Technical Information (OSTI)

    (Thesis/Dissertation) | SciTech Connect Radiative Bottomonium Spectroscopy at the Y(2, 3S) Resonances at BaBar Citation Details In-Document Search Title: Radiative Bottomonium Spectroscopy at the Y(2, 3S) Resonances at BaBar Authors: Lewis, Peter M. ; /Stanford U., Phys. Dept. /SLAC Publication Date: 2013-08-26 OSTI Identifier: 1091526 Report Number(s): SLAC-R-1035 DOE Contract Number: AC02-76SF00515 Resource Type: Thesis/Dissertation Research Org: SLAC National Accelerator Laboratory (SLAC)

  4. Cascades with Adjoint Matter: Adjoint Transitions (Journal Article) |

    Office of Scientific and Technical Information (OSTI)

    SciTech Connect Cascades with Adjoint Matter: Adjoint Transitions Citation Details In-Document Search Title: Cascades with Adjoint Matter: Adjoint Transitions Authors: Simic, Dusan ; /Stanford U., Phys. Dept. /SLAC Publication Date: 2013-06-18 OSTI Identifier: 1084307 Report Number(s): SLAC-PUB-15602 arXiv:1009.0023 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: JHEP 1105:104,2011 Research Org: SLAC National Accelerator Laboratory (SLAC)

  5. By Institution | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    About SLAC Site Office (SSO) SSO Home About Organization Chart .pdf file (155KB) Phone List Jobs Projects Contract Management NEPA Documents Contact Information SLAC Site Office U.S. Department of Energy Bldg 41, M/S 08A 2575 Sand Hill Road Menlo Park, CA 94025 P: (650) 926-2505 About Print Text Size: A A A FeedbackShare Page The SLAC Site Office (SSO) is located at the SLAC National Accelerator Laboratory in Menlo Park, California. The mission of the SSO is to manage the U.S. Department of

  6. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects....

  7. The Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change projections. COSIM models were used extensively in simulations underpinning the recent climate assessment by the Intergovernmental Panel on Climate Change (IPCC) that was awarded the 2007 Nobel

  8. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  9. 15-CS-1035 ESnet EuropeUS Map_EEX_v4

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Office of Science National Labs Ames ANL BNL FNAL JLAB Ames Laboratory (Ames, IA) Argonne National Laboratory (Argonne, IL) Brookhaven National Laboratory (Upton, NY) Fermi National Accelerator Laboratory (Batavia, IL) Thomas Jefferson National Accelerator Facility (Newport News, VA) LBNL ORNL PNNL PPPL SLAC Lawrence Berkeley National Laboratory (Berkeley, CA) Oak Ridge National Laboratory (Oak Ridge, TN) Pacific Northwest National Laboratory (Richland, WA) Princeton Plasma Physics Laboratory

  10. Application of Plasma Waveguides to High Energy Accelerators

    SciTech Connect (OSTI)

    Milchberg, Howard M

    2013-03-30

    The eventual success of laser-plasma based acceleration schemes for high-energy particle physics will require the focusing and stable guiding of short intense laser pulses in reproducible plasma channels. For this goal to be realized, many scientific issues need to be addressed. These issues include an understanding of the basic physics of, and an exploration of various schemes for, plasma channel formation. In addition, the coupling of intense laser pulses to these channels and the stable propagation of pulses in the channels require study. Finally, new theoretical and computational tools need to be developed to aid in the design and analysis of experiments and future accelerators. Here we propose a 3-year renewal of our combined theoretical and experimental program on the applications of plasma waveguides to high-energy accelerators. During the past grant period we have made a number of significant advances in the science of laser-plasma based acceleration. We pioneered the development of clustered gases as a new highly efficient medium for plasma channel formation. Our contributions here include theoretical and experimental studies of the physics of cluster ionization, heating, explosion, and channel formation. We have demonstrated for the first time the generation of and guiding in a corrugated plasma waveguide. The fine structure demonstrated in these guides is only possible with cluster jet heating by lasers. The corrugated guide is a slow wave structure operable at arbitrarily high laser intensities, allowing direct laser acceleration, a process we have explored in detail with simulations. The development of these guides opens the possibility of direct laser acceleration, a true miniature analogue of the SLAC RF-based accelerator. Our theoretical studies during this period have also contributed to the further development of the simulation codes, Wake and QuickPIC, which can be used for both laser driven and beam driven plasma based acceleration schemes. We will continue our development of advanced simulation tools by modifying the QuickPIC algorithm to allow for the simulation of plasma particle pick-up by the wake fields. We have also performed extensive simulations of plasma slow wave structures for efficient THz generation by guided laser beams or accelerated electron beams. We will pursue experimental studies of direct laser acceleration, and THz generation by two methods, ponderomotive-induced THz polarization, and THz radiation by laser accelerated electron beams. We also plan to study both conventional and corrugated plasma channels using our new 30 TW in our new lab facilities. We will investigate production of very long hydrogen plasma waveguides (5 cm). We will study guiding at increasing power levels through the onset of laser-induced cavitation (bubble regime) to assess the role played by the preformed channel. Experiments in direct acceleration will be performed, using laser plasma wakefields as the electron injector. Finally, we will use 2-colour ionization of gases as a high frequency THz source (<60 THz) in order for femtosecond measurements of low plasma densities in waveguides and beams.

  11. Microsoft Word - A10RA007 Report Cover 3-3-11

    Energy Savers [EERE]

    Recovery Act Funded Projects at the SLAC National Accelerator Laboratory OAS-RA-L-11-05 March 2011 DOE F 1325.8 (08-93) United States Government Department of Energy Memorandum DATE: March 8, 2011 Audit Report Number: OAS-RA-L-11-05 REPLY TO ATTN OF: IG-32 (A10RA007) SUBJECT: Audit Report on "Recovery Act Funded Projects at the SLAC National Accelerator Laboratory" TO: Manager, SLAC Site Office, SC-SSO INTRODUCTION AND OBJECTIVE In February 2009, the President signed the American

  12. Deuterium accelerator experiments for APT.

    SciTech Connect (OSTI)

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  13. HEAVY ION LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  14. Based Accelerators Gennady Shvets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finally, I will discuss a new structure-based laser-driven surface wave accelerator based on silicon carbide (SiC) that employs a polaritonic material with a negative dielectric ...

  15. CLASHING BEAM PARTICLE ACCELERATOR

    DOE Patents [OSTI]

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  16. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  17. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  18. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  19. Native American Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Native American Venture Acceleration Fund provides boost to six regional businesses February 26, 2013 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, New Mexico, Feb. 26, 2013-Six Native American businesses received grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help

  20. Accelerating Scientific Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating Scientific Discovery at the Spallation Neutron Source Stuart Campbell Neutron Data Analysis & Visualization Division 2 Developing and applying the world's best tools for neutron scattering High Flux Isotope Reactor: Intense steady-state neutron flux and a high-brightness cold neutron source Spallation Neutron Source: World's most powerful accelerator-based neutron source Biology and Soft Matter Chemical and Engineering Materials Neutron Data Analysis and Visualization Quantum

  1. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regional businesses receive Native American Venture Acceleration Fund grants February 1, 2016 Investing in Northern New Mexico's economy through jobs, new revenue LOS ALAMOS, N.M., Feb. 1, 2016-Four Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients

  2. FY 2012 SC Laboratory Performance Report Cards | U.S. DOE Office...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... Thomas Jefferson National Accelerator Facility Last modified: 12162015 12:00:52

  3. U.S. Department of Energy Fermi National Accelerator Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... slightly better, and the system has been running 15% to ... pre-1984 chillers using Class I CFCs such as R-11. ... Change order mechanism: Because change orders can be costly ...

  4. Los Alamos National Laboratory Venture Acceleration Fund boosts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is the overall benefit to Northern New Mexico," Pesiri noted. Treatment for Diabetes Patients Integrative Enzymatics' 70,000 award funds animal studies for a new...

  5. Fermi National Accelerator Laboratory October 2013 STEM Educational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2012 FY2013 K-12 teachers FY2012...

  6. Christopher T. [Fermi National Accelerator Laboratory, P.O. Box...

    Office of Scientific and Technical Information (OSTI)

    IL 60439-4815 (United States), E-mail: zachos@anl.gov 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COMPACTIFICATION; DUALITY; FERMIONS; GAUGE INVARIANCE; HOLOGRAPHY;...

  7. U.S. Department of Energy Fermi National Accelerator Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The new 4500-ton cooling system is expected to use 40% less energy and is free of ozone-depleting chlorofluorocarbons (CFCs). The 3.5 million project (2.8 million before ...

  8. Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and

    Broader source: Energy.gov (indexed) [DOE]

    Moisture for PV Encapsulants, Frontsheets, and Backsheets | Department of Energy Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps5_nist_gu.pdf More Documents & Publications Weathering Performance of PV Backsheets QA TG5 UV, temperature and humidity Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado

  9. Vehicle Technologies Office Merit Review 2014: Accelerating the Evaluation and Market Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating the...

  10. Vehicle Technologies Office Merit Review 2015: Accelerate the Development and Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerate the...

  11. Savannah Harris | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expansion of the Universe Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating Expansion of the Universe Resources with Additional Information * Awards Saul Perlmutter Photo Courtesy of Lawrence Berkeley National Laboratory 'Saul Perlmutter, an astrophysicist at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics "for the discovery of the

  12. Jefferson Laboratory Findings Excite Theoreticians, Experimentatlists |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Laboratory Findings Excite Theoreticians, Experimentatlists Jefferson Laboratory Findings Excite Theoreticians, Experimentatlists March 1999 Seemingly reasonable assumptions define the human view of the world. But ruled of thumb can mislead - or be altogether incorrect. Fortunately, in physics, most assumptions can be tested. Those that don't measure up are amended. An experiment at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) has

  13. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  14. 2015 Key Water Power Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving to

  15. 2015 Key Water Power Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow Addthis 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving

  16. The CAMS Accelerator Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the production of biomedical carbon-14 samples. In addition, CAMS operates separate sample preparation laboratories for geological cosmogenic isotopes and for heavy element ...

  17. Lab announces selection of Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Lab announces selection of Venture Acceleration Fund recipients Retriever Technology, Elemetric Instruments, Star Cryoelectronics, and Veezyon are recipients of awards. January 7, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  18. Lab announces selection of partner for venture acceleration initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture acceleration initiative partner Lab announces selection of partner for Venture Acceleration initiative The initiative is a pilot program aimed at strategically spinning off technology-based companies from the Lab. September 2, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  19. Accelerate program supports students as they establish careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerate Program Supports Students Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Accelerate program supports students as they establish careers More than 60 students from six Northern New Mexico colleges meet business representatives to hone their professional readiness skills. February 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community Programs Office Kurt

  20. Accelerated Technique for Carbon Mesoporous Materials - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Advanced Materials Advanced Materials Find More Like This Return to Search Accelerated Technique for Carbon Mesoporous Materials Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL has developed improved production that is both more efficient and less costly for carbon mesoporous materials with pore diameters between 2 and 50 nm. This accelerated production method offers a more resilient product for commercial use in gas separation, water

  1. Six regional businesses receive Native American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grants Native American Venture Acceleration Fund grants Six regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. February 4, 2014 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  2. Six regional businesses receive Native American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grants Native American Venture Acceleration Fund grants Six regional businesses receive Native American Venture Acceleration Fund grants Grant recipients are Walatowa Timber, High Water Mark, Ohkay Owingeh Housing Authority, Tano Services Corporation, Professional Cleaning Solutions and Than Povi. March 3, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines

  3. Accelerated Aging of Roofing Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Aging of Roofing Materials Accelerated Aging of Roofing Materials Addthis 1 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman prepares to insert clean and soiled roofing specimens into a weatherometer. The weatherometer simulates exposure to heat, moisture, and UV radiation. Image: Heat Island Group, Lawrence Berkeley National Laboratory 2 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman configures a weatherometer to simulate the effects of heat, moisture, and UV

  4. Federal Laboratory Multiplies Its Research Capacity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Laboratory Multiplies Its Research Capacity Federal Laboratory Multiplies Its Research Capacity September 21, 2000 Thanks to high-tech development work and some creative tuning and tweaking, the $650 million Thomas Jefferson National Accelerator Facility in Newport News, Va., can now accelerate beams of electrons to 6 billion electron volts - more energy by half than taxpayers originally paid for. With higher-energy electron beams, researchers using this U.S. Department of Energy

  5. Sandia National Laboratories beginnings focus of Los Alamos' 70th

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anniversary lecture Alamos' 70th anniversary lecture Sandia National Laboratories beginnings focus of Los Alamos' 70th anniversary lecture Sandia National Laboratories historian Rebecca Ullrich discusses Sandia's transition from a Los Alamos division to an independent organization. March 6, 2013 The Hermes II flash X-ray accelerator was built in 1968 to support testing of materials and components. The Hermes II flash X-ray accelerator was built in 1968 to support testing of materials and

  6. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  7. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet...

  8. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  9. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  10. Report on accelerated corrosion studies.

    SciTech Connect (OSTI)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  11. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  12. SSRL HEADLINES October 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 October, 2008 __________________________________________________________________________ Contents of this Issue: Science Highlight - Role of Specific Protein Mutations in Causing Human Disease Revealed SSRL Exchanges "Laboratory" for "Lightsource" in Its Name From the SLAC Director: The Future of Photon Science at SLAC National Accelerator Laboratory LCLS/SSRL Users' Meeting Wrap-Up SSRL Users' Organization Executive Committee Update Scientific Needs for Future X-Ray

  13. EXAFS 2016 - SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Information SLAC National Accelerator Laboratory is conveniently located near three regional airports. Your transportation options to and from the laboratory include driving, alternative transportation, and airport shuttles, or taxis. San Francisco International Airport Car To SLAC Exit airport to US 101 North. Take exit (43B) I-380 West toward San Bruno/I-280. Merge onto I-380 West. Take exit 5B to merge onto I-280 South toward San Jose. Take exit 24 for East Sand Hill Road. Turn

  14. XRS 2016 - 8th SSRL School on Synchrotron X-Ray Scattering Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transportation Information SLAC National Accelerator Laboratory is conveniently located near three regional airports. Your transportation options to and from the laboratory include driving, alternative transportation, and airport shuttles, or taxis. San Francisco International Airport Car To SLAC Exit airport to US 101 North. Take exit (43B) I-380 West toward San Bruno/I-280. Merge onto I-380 West. Take exit 5B to merge onto I-280 South toward San Jose. Take exit 24 for East Sand Hill Road. Turn

  15. Mesurement of the Decelerating Wake in a Plasma Wakefield Accelerator...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2008-09-24 OSTI Identifier: 938638 Report Number(s): SLAC-PUB-13390 TRN: ... Concepts Workshop (AAC08), Santa Cruz, California, 27 Jul - 2 Aug 2008 Research ...

  16. Report of the ICFA Beam Dynamics Workshop 'Accelerators for a...

    Office of Scientific and Technical Information (OSTI)

    Publication Date: 2013-02-01 OSTI Identifier: 1127908 Report Number(s): SLAC-PUB-15370 ... MLA APA Chicago Bibtex Export Metadata Endnote Excel CSV XML Save to My Library Send to ...

  17. Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating

    Office of Scientific and Technical Information (OSTI)

    Expansion of the Universe Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating Expansion of the Universe Resources with Additional Information * Awards Saul Perlmutter Photo Courtesy of Lawrence Berkeley National Laboratory 'Saul Perlmutter, an astrophysicist at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics "for the discovery of the

  18. Accelerator research studies

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  19. Adaptive control for accelerators

    DOE Patents [OSTI]

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  20. Commissioning the GTA accelerator

    SciTech Connect (OSTI)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-09-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth`s magnetic field and travel in straight lines unless they enter the earth`s atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.