National Library of Energy BETA

Sample records for accelerator laboratory menlo

  1. EA-1975: LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California

    Broader source: Energy.gov [DOE]

    DOE prepared an EA on the potential environmental impacts of a proposal to upgrade the existing LINAC Coherent Light Source (LCLS) at the SLAC National Accelerator Laboratory. The proposed LCLS-II would extend the photon energy range, increase control over photon pulses, and enable two-color pump-probe experiments. The X-ray laser beams generated by LCLS-II would enable a new class of experiments: the simultaneous investigation of a material’s electronic and structural properties.

  2. THE LABORATORY Located in Menlo Park, California, SLAC National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    THE LABORATORY Located in Menlo Park, California, SLAC National Accelerator Laboratory is home to some of the world's most cutting-edge technologies, used by researchers worldwide to uncover scientifc mysteries on the smallest and the largest scales-from the workings of the atom to the mysteries of the cosmos. The result has been 50 years of discovery and innovation in both basic and applied science, with tangible benefts for our everyday lives. The following examples highlight some of the roles

  3. EA-1904: Linac Coherent Light Source II at Stanford Linear Accelerator Laboratory, San Mateo, California

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the proposed construction of the Linac Coherent Light Source at SLAC National Accelerator Laboratory, Menlo Park, California. None available at this time. For more information, contact: Mr. Dave Osugi DOE SLAC Site Office 2575 Sand Hill Road, MS8A Menlo Park, CA 94025 E-mail: dave.osugi@sso.science.doe.gov

  4. SLAC National Accelerator Laboratory Technology Marketing Summaries -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC National Accelerator Laboratory Technology Marketing Summaries Here you'll find marketing summaries for technologies available for licensing from the SLAC National Accelerator Laboratory (SLAC). The summaries provide descriptions of the technologies including their benefits, applications and industries, and development stage. SLAC National Accelerator Laboratory 2 Technology Marketing Summaries Category Title and Abstract Laboratories Date Industrial

  5. Accelerated Laboratory Tests Using Simultaneous UV, Temperature...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Laboratory Tests Using Simultaneous UV, Temperature, and Moisture for PV Encapsulants, Frontsheets, and Backsheets Accelerated Laboratory Tests Using Simultaneous UV, Temperature, ...

  6. West Menlo Park, California: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Menlo Park, California: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.4335499, -122.2030209 Show Map Loading map... "minzoom":false,"mappi...

  7. Hayashida, Masaaki; /Tokyo U., ICRR /KIPAC, Menlo Park; Stawarz...

    Office of Scientific and Technical Information (OSTI)

    GeV Emission tfrom the Circinus Galaxy with the Fermi-Lat Hayashida, Masaaki; Tokyo U., ICRR KIPAC, Menlo Park; Stawarz, Lukasz; JAXA, Tokyo Jagiellonian U., Astron. Observ.;...

  8. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM ...

  9. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema (OSTI)

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  10. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect (OSTI)

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  11. Numerical and laboratory simulations of auroral acceleration

    SciTech Connect (OSTI)

    Gunell, H.; De Keyser, J.; Mann, I.

    2013-10-15

    The existence of parallel electric fields is an essential ingredient of auroral physics, leading to the acceleration of particles that give rise to the auroral displays. An auroral flux tube is modelled using electrostatic Vlasov simulations, and the results are compared to simulations of a proposed laboratory device that is meant for studies of the plasma physical processes that occur on auroral field lines. The hot magnetospheric plasma is represented by a gas discharge plasma source in the laboratory device, and the cold plasma mimicking the ionospheric plasma is generated by a Q-machine source. In both systems, double layers form with plasma density gradients concentrated on their high potential sides. The systems differ regarding the properties of ion acoustic waves that are heavily damped in the magnetosphere, where the ion population is hot, but weakly damped in the laboratory, where the discharge ions are cold. Ion waves are excited by the ion beam that is created by acceleration in the double layer in both systems. The efficiency of this beam-plasma interaction depends on the acceleration voltage. For voltages where the interaction is less efficient, the laboratory experiment is more space-like.

  12. I Fermi National Accelerator Laboratory I I

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    b .?.? ... . . 1- \r I Fermi National Accelerator Laboratory I I FERMILAB-Cdnf-76 159 -EXP 2 020,000 2 02 2.000 I 1 (Submitted to the Neutrino I 9 76 Conference Aachen, Germany June 8r-13, -1976) * I 4 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the

  13. Los Alamos National Laboratory Accelerates Transuranic Waste Shipments:

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan | Department of Energy Los Alamos National Laboratory Accelerates Transuranic Waste Shipments: Spurred by a major wildfire in 2011, Los Alamos National Laboratory's TRU Waste Program accelerates shipments of transuranic waste stored aboveground to the Waste Isolation Pilot Plan Los Alamos National Laboratory

  14. NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Carbon-Capture Technologies | Department of Energy NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies April 2, 2014 - 9:31am Addthis NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating Carbon-Capture Technologies Check out NETL's latest video on CCSI. In 2011, the Office of Fossil Energy's National Energy Technology Laboratory (NETL)

  15. Secretary Chu Speaks at SLAC National Accelerator Laboratory

    Broader source: Energy.gov [DOE]

    On Friday, August 24, 2012, Secretary Chu gave a speech commemorating the 50th Anniversary of SLAC National Accelerator Laboratory. You can find the powerpoint presentation below.

  16. Accelerator Design and Development | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Design and Development Accelerator Design and Development Scientists around the world rely on particle accelerators to yield insights on the structure and function of materials at and below the atomic scale. These accelerators range in size from portable machines for producing medical isotopes to enormous miles-wide colliders for high-energy physics. In order to further develop our understanding of matter and the fabric of the cosmos, we must continue to expand the horizon of

  17. Laboratory announces selection of Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Laboratory announces selection of Venture Acceleration Fund recipients Simtable and Southwest Bio Fuels as recipients of $100,000 awards from the Los Alamos National Security, LLC Venture Acceleration Fund. March 8, 2010 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma

  18. Fermi National Accelerator Laboratory September 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    years, is an expected byproduct of accelerator operations at Fermilab. As part of our environmental monitoring program, we regularly sample the water discharged into the creeks...

  19. Fermi National Accelerator Laboratory November 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is an international collaboration between U.S. universities, Fermilab in Illinois, Brookhaven National Laboratory in New York, and nine international labs and universities. It is...

  20. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL

    Office of Scientific and Technical Information (OSTI)

    (Technical Report) | SciTech Connect Technical Report: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Citation Details In-Document Search Title: SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES PROPOSAL Authors: Merrill, Frank E. [1] ; Borozdin, Konstantin N. [1] ; Garnett, Robert W. [1] ; Mariam, Fesseha G. [1] ; Saunders, Alexander [1] ; Walstrom, Peter L. [1] ; Morris, Christopher [1] + Show Author Affiliations Los Alamos National

  1. Preliminary Notice of Violation, SLAC National Accelerator Laboratory -

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WEA-2009-01 | Department of Energy SLAC National Accelerator Laboratory - WEA-2009-01 Preliminary Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 April 3, 2009 This letter refers to the Department of Energy's (DOE) Office of Health, Safety and Security's Office of Enforcement investigation into the facts and circumstances associated with the September 13, 2007 On April 3, 2009, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of

  2. Fermi National Accelerator Laboratory June 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    intense beam of neutrinos, particles that may hold the key to understanding why the universe is made of matter. Using the cosmos as a laboratory, Fermilab scientists explore dark...

  3. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards SLAC National Accelerator Laboratory Print ...

  4. Fermi National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards Fermi National Accelerator Laboratory Print ...

  5. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    SLAC National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card ...

  6. Fermi National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Fermi National Accelerator Laboratory Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards Report Card ...

  7. U.S. Department of Energy Fermi National Accelerator Laboratory

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's (DOE's) Fermi National Accelerator Laboratory (Fermilab) has replaced old equipment and reduced energy consumption through a partnership with its electric utility, Commonwealth Edison. Fermilab upgraded the centralized cooling system and separated the system into two segments — a "comfort system" to cool the employee office space and a "process system" for the equipment and accelerators. Backup cooling capacity is provided and cooling can be shifted between the process and comfort systems when necessary. The new 4500-ton cooling system is expected to use 40% less energy and is free of ozone-depleting chlorofluorocarbons (CFCs).

  8. SLAC National Accelerator Laboratory Technologies Available for Licensing -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal SLAC Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories SLAC National Accelerator Laboratory Technologies

  9. Menlo Park, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Power Adura Systems Amprius Calisolar Inc Cleantech Circle LLC Cnano Technology Ltd El Dorado Ventures GGV Capital HID Laboratories Inc Hara Software Inc Imara Corp formerly Lion...

  10. Post-accelerator issues at the IsoSpin Laboratory

    SciTech Connect (OSTI)

    Chattopadhyay, S.; Nitschke, J.M. [eds.

    1994-05-01

    The workshop on ``Post-Accelerator Issues at the Isospin Laboratory`` was held at the Lawrence Berkeley Laboratory from October 27--29, 1993. It was sponsored by the Center for Beam Physics in the Accelerator and Fusion Research Division and the ISL Studies Group in the Nuclear Science Division. About forty scientists from around the world participated vigorously in this two and a half day workshop, (c.f. Agenda, Appendix D). Following various invited review talks from leading practitioners in the field on the first day, the workshop focussed around two working groups: (1) the Ion Source and Separators working group and (2) the Radio Frequency Quadrupoles and Linacs working group. The workshop closed with the two working groups summarizing and outlining the tasks for the future. This report documents the proceedings of the workshop and includes the invited review talks, the two summary talks from the working groups and individual contributions from the participants. It is a complete assemblage of state-of-the-art thinking on ion sources, low-{beta}, low(q/A) accelerating structures, e.g. linacs and RFQS, isobar separators, phase-space matching, cyclotrons, etc., as relevant to radioactive beam facilities and the IsoSpin Laboratory. We regret to say that while the fascinating topic of superconducting low-velocity accelerator structure was covered by Dr. K. Shepard during the workshop, we can only reproduce the copies of the transparencies of his talk in the Appendix, since no written manuscript was available at the time of publication of this report. The individual report have been catologed separately elsewhere.

  11. The cyclotron laboratory and the RFQ accelerator in Bern

    SciTech Connect (OSTI)

    Braccini, S.; Ereditato, A.; Kreslo, I.; Nirkko, M.; Weber, M.; Scampoli, P.; Bremen, K. von

    2013-07-18

    Two proton accelerators have been recently put in operation in Bern: an 18 MeV cyclotron and a 2 MeV RFQ linac. The commercial IBA 18/18 cyclotron, equipped with a specifically conceived 6 m long external beam line ending in a separate bunker, will provide beams for routine 18-F and other PET radioisotope production as well as for novel detector, radiation biophysics, radioprotection, radiochemistry and radiopharmacy developments. The accelerator is embedded into a complex building hosting two physics laboratories and four Good Manufacturing Practice (GMP) laboratories. This project is the result of a successful collaboration between the Inselspital, the University of Bern and private investors, aiming at the constitution of a combined medical and research centre able to provide the most cutting-edge technologies in medical imaging and cancer radiation therapy. The cyclotron is complemented by the RFQ with the primary goals of elemental analysis via Particle Induced Gamma Emission (PIGE), and the detection of potentially dangerous materials with high nitrogen content using the Gamma-Resonant Nuclear Absorption (GRNA) technique. In this context, beam instrumentation devices have been developed, in particular an innovative beam profile monitor based on doped silica fibres and a setup for emittance measurements using the pepper-pot technique. On this basis, the establishment of a proton therapy centre on the campus of the Inselspital is in the phase of advanced study.

  12. Environmental Survey preliminary report, Fermi National Accelerator Laboratory, Batavia, Illinois

    SciTech Connect (OSTI)

    Not Available

    1988-10-01

    This report presents the preliminary findings from the first phase of the Environmental Survey of the US Department of Energy (DOE) Fermi National Accelerator Laboratory (Fermilab), conducted September 14 through 25, 1987. The Survey is being conducted by an interdisciplinary team of environmental specialists led and managed by the Office of Environment, Safety and Health's Office of Environmental Audit. Individual participants for the Survey team are being supplied by a private contractor. The objective of the Survey is to identify environmental problems and areas of environmental risk associated with Fermilab. The Survey covers all environmental media and all areas of environmental regulation. It is being performed in accordance with the DOE Environmental Survey Manual. This phase of the Survey involves the review of existing site environmental data, observations of the operations performed at Fermilab, and interviews with site personnel. 110 refs., 26 figs., 41 tabs.

  13. Iltt: Fermi National Accelerator Laboratory FERMILAB-Pub-75/44-THY

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Iltt: Fermi National Accelerator Laboratory FERMILAB-Pub-75/44-THY June 1975 Weak Interaction Models with New Quarks and Right-Handed Currents" F.A. WILCZEK and A. ZEE t Fermi National Accelerator Laboratory,*Batavia, Illinois 60510 and Joseph Henry Laboratories Princeton University, Princeton, New Jersey 08540 and R. L. KINGSLEY and S. B. TREIMAN Joseph Henry Laboratories Princeton University, Princeton, New Jersey 08540 ABSTRACT We discuss various weak interaction issues for a general

  14. ASYMPTOTICALLY FREE GAUGE THEORIES - I* David J. Gross+ National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    national accelerator laboratory NAL-PUB-73/49-THY July, 1973 ASYMPTOTICALLY FREE GAUGE THEORIES - I* David J. Gross+ National Accelerator Laboratory and Joseph Henry Laboratories Princeton University Princeton, New Jersey 08540 and Frank Wilczek Joseph Henry Laboratories Princeton University Princeton, New Jersey 08540 * Research supported in part by the United States Air Force Office of Scientific Research under Contract F-44620-71-6-0180 t Alfred P. Sloan Foundation Research Fellow 2% Oaerated

  15. Fermi National Accelerator Laboratory FERMILAB-Conf-95/276-E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermi National Accelerator Laboratory FERMILAB-Conf-95/276-E CDF and D0 Observation of the Top Quark S.B. Kim Presented for the CDF and D0 Collaborations Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 Randall Laboratory University of Michigan Ann Arbor, Michigan 48109 August 1995 Published Proceedings from the 15th International Conference on Physics in Collision, Cracow, Poland, June 8-10, 1995 Operated by Universities Research Association Inc. under Contract No.

  16. Vacuum Systems Consensus Guideline for Department of Energy Accelerator Laboratories

    SciTech Connect (OSTI)

    Casey,R.; Haas, E.; Hseuh, H-C.; Kane, S.; Lessard, E.; Sharma, S.; Collins, J.; Toter, W. F.; Olis, D. R.; Pushka, D. R.; Ladd, P.; Jobe, R. K.

    2008-09-09

    Vacuum vessels, including evacuated chambers and insulated jacketed dewars, can pose a potential hazard to equipment and personnel from collapse, rupture due to back-fill pressurization, or implosion due to vacuum window failure. It is therefore important to design and operate vacuum systems in accordance with applicable and sound engineering principles. 10 CFR 851 defines requirements for pressure systems that also apply to vacuum vessels subject to back-fill pressurization. Such vacuum vessels are potentially subject to the requirements of the American Society of Mechanical Engineers (ASME) Pressure Vessel Code Section VIII (hereafter referred to as the 'Code'). However, the scope of the Code excludes vessels with internal or external operating pressure that do not exceed 15 pounds per square inch gauge (psig). Therefore, the requirements of the Code do not apply to vacuum systems provided that adequate pressure relief assures that the maximum internal pressure within the vacuum vessel is limited to less than 15 psig from all credible pressure sources, including failure scenarios. Vacuum vessels that cannot be protected from pressurization exceeding 15 psig are subject to the requirements of the Code. 10 CFR 851, Appendix A, Part 4, Pressure Safety, Section C addresses vacuum system requirements for such cases as follows: (c) When national consensus codes are not applicable (because of pressure range, vessel geometry, use of special materials, etc.), contractors must implement measures to provide equivalent protection and ensure a level of safety greater than or equal to the level of protection afforded by the ASME or applicable state or local code. Measures must include the following: (1) Design drawings, sketches, and calculations must be reviewed and approved by a qualified independent design professional (i.e., professional engineer). Documented organizational peer review is acceptable. (2) Qualified personnel must be used to perform examinations and inspections of materials, in-process fabrications, non-destructive tests, and acceptance test. (3) Documentation, traceability, and accountability must be maintained for each unique pressure vessel or system, including descriptions of design, pressure conditions, testing, inspection, operation, repair, and maintenance. The purpose of this guideline is to establish a set of expectations and recommendations which will satisfy the requirements for vacuum vessels in general and particularly when an equivalent level of safety as required by 10 CFR 851 must be provided. It should be noted that these guidelines are not binding on DOE Accelerator Laboratories and that other approaches may be equally acceptable in addressing the Part 851 requirements.

  17. The Scanning Electron Microscope As An Accelerator For The Undergraduate Advanced Physics Laboratory

    SciTech Connect (OSTI)

    Peterson, Randolph S.; Berggren, Karl K.; Mondol, Mark

    2011-06-01

    Few universities or colleges have an accelerator for use with advanced physics laboratories, but many of these institutions have a scanning electron microscope (SEM) on site, often in the biology department. As an accelerator for the undergraduate, advanced physics laboratory, the SEM is an excellent substitute for an ion accelerator. Although there are no nuclear physics experiments that can be performed with a typical 30 kV SEM, there is an opportunity for experimental work on accelerator physics, atomic physics, electron-solid interactions, and the basics of modern e-beam lithography.

  18. Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy SLAC National Accelerator Laboratory - WEA-2009-01 Notice of Violation, SLAC National Accelerator Laboratory - WEA-2009-01 September 3, 2009 Issued to Stanford University related to a PVC Pipe Explosion at the SLAC National Accelerator Laboratory On September 3, 2009, the U.S. Department of Energy (DOE) Office of Health, Safety and Security's Office of Enforcement issued a Final Notice of Violation (WEA-2009-01) to Stanford University for violations of 10 C.F.R. 851

  19. NETL-Led Laboratory-Industry-Academia Collaboration Is Accelerating...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the laboratory to the powerplant more quickly, at a lower cost, and with reduced risk than would be accomplished following more traditional research and development pathways. ...

  20. Accelerating Geothermal Research (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating Geothermal Research Supporting a Cleaner Environment NREL is a strategic partner of the U.S. Department of Energy (DOE) Geothermal Technologies Office (GTO). NREL teams are leading the research and deployment efforts through various projects. Summaries of a few key activities follow. Geothermal-Solar Hybrids: The objective is to examine the viability of using solar thermal heat combined with geother- mal energy to improve plant efficiency and reduce cost. This project, performed by

  1. Accelerator Radioisotopes Save Lives: Part II Seaborg Institute for Transactinium Science/Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quarter 2009/1st Quarter 2010 4th Quarter 2009/1st Quarter 2010 Accelerator Radioisotopes Save Lives: Part II Seaborg Institute for Transactinium Science/Los Alamos National Laboratory Accelerator Isotopes Save Lives: Part II Actinide Research Quarterly Actinide Research Quarterly LANL's Role in the DOE National Isotope Program 1 The Isotope Production Facility at TA-53 6 Radioisotopes for Medical Applications 11 Radionuclide Generators: Portable Sources of Medical Isotopes 15 Recovery and Uses

  2. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL's use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  3. Determination of effective acceleration for use in design at the Lawrence Livermore National Laboratory site

    SciTech Connect (OSTI)

    Coats, D.W. Jr.

    1991-09-01

    An rms-based effective acceleration study has been conducted for the Lawrence Livermore National Laboratory. The study used real time history records with epicentral distances, magnitudes and site conditions deemed appropriate for the LLNL Livermore site. Only those records having strong motion durations, T{sub D}{prime}, >3.0 seconds, and peak ground acceleration {ge} .4g were selected for determining the effective acceleration hazard curve used in design. These parameters are consistent with LLNL`s use of broad-band Newmark-Hall Spectra for design, and the high peak instrumental accelerations corresponding to the return intervals of interest. Study results were used to modify the acceleration hazard curve for facility design/evaluation at LLNL.

  4. Fermi National Accelerator Laboratory FERMILAB-Conf-96/099E

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    it Fermi National Accelerator Laboratory FERMILAB-Conf-96/099E CoK)C,. WoO3P73 -- 3 CDF CDF Top Physics G. F. Tartarelli For the CDF Collaboration Fermi National Accelerator Laboratory P.O. Box 500, Batavia, Illinois 60510 I.N.F.N., Sezione di Milano 1-20133 Milano (MI), Italy MASTER May 1996 Proceedings of XXXIst Recontres de Moriond, Electroweak Interactions and Unified Theories, Les Arcs, France, March 16-23, 1996. Operated by Universities Research Association Inc. under Contract No.

  5. Installation and commissioning of the new Fermi National Accelerator Laboratory H- Magnetron

    SciTech Connect (OSTI)

    Bollinger, D. S.

    2014-02-15

    The Fermi National Accelerator Laboratory (FNAL) 40 year old Cockcroft-Walton 750 keV injectors with slit aperture magnetron ion sources have been replaced with a circular aperture magnetron, Low Energy Beam Transport, Radio Frequency Quadrupole Accelerator, and Medium Energy Beam Transport, as part of the FNAL Proton Improvement Plan. The injector design is based on a similar system at Brookhaven National Laboratory. The installation, commissioning efforts, and source operations to date will be covered in this paper along with plans for additional changes to the original design to improve reliability by reducing extractor spark rates and arc current duty factor.

  6. ACCELERATION OF LOS ALAMOS NATIONAL LABORATORY TRANSURANIC WASTE DISPOSITION

    SciTech Connect (OSTI)

    O'LEARY, GERALD A.

    2007-01-04

    One of Los Alamos National Laboratory's (LANL's) most significant risks is the site's inventory of transuranic waste retrievably stored above and below-ground in Technical Area (TA) 54 Area G, particularly the dispersible high-activity waste stored above-ground in deteriorating facilities. The high activity waste represents approximately 50% (by activity) of the total 292,000 PE-Ci inventory remaining to be disposed. The transuramic waste inventory includes contact-handled and remote-handled waste packaged in drums, boxes, and oversized containers which are retrievably stored both above and below-ground. Although currently managed as transuranic waste, some of the inventory is low-level waste that can be disposed onsite or at approved offsite facilities. Dispositioning the transuranic waste inventory requires retrieval of the containers from above and below-ground storage, examination and repackaging or remediation as necessary, characterization, certification and loading for shipment to the Waste Isolation Pilot Plant in Carlsbad New Mexico, all in accordance with well-defined requirements and controls. Although operations are established to process and characterize the lower-activity contact-handled transuranic waste containers, LAN L does not currently have the capability to repack high activity contact-handled transuranic waste containers (> 56 PE-Ci) or to process oversized containers with activity levels over 0.52 PE-Ci. Operational issues and compliance requirements have resulted in less than optimal processing capabilities for lower activity contact-handled transuranic waste containers, limiting preparation and reducing dependability of shipments to the Waste Isolation Pilot Plant. Since becoming the Los Alamos National Laboratory contract in June 2006, Los Alamos National Security (LANS) L.L.C. has developed a comprehensive, integrated plan to effectively and efficiently disposition the transuranic waste inventory, working in concert with the Department of Energy Los Alamos Site Office, Carlsbad Field Office and the Department of Energy Headquaeters. Rather than simply processing containers as retrieved, the plan places priority on efficient curie disposition, a direct correlation to reducing risk. Key elements of the approch include balancing inventory and operational risks, tailoring methods to meet requirements, optimizing existing facilities, equipment and staff, and incorporating best practices from other Department of Energy sites. With sufficient funding this will enable LANL to ship the above-ground high activity contact-handled transuranic waste offsite by the end of Fiscal Year (FY) 2007 and to disposition the remaining above- and below-ground contact-handled and remote-handled transuranic waste inventory by December 2010. Nearly 70% of the contact-handled transuranic waste containers, including the high activity waste, require processing and repackaging before characterization and certification for shipment to the Waste Isolation Pilot Plant. LANL is employing a balanced risk approach that accomplishes significant long-term risk reduction by accepting short-term increased facility operations risk under well-developed and justified interim controls. Reviews of facility conditions and additional analyses show that the Waste Characterization, Reduction and Repackaging Facility and the Radioassay and Nondestructive Testing Facility are the most appropriate facilities to safetly remediate, repackage, and ship lower activity and the remaining high activity drums. Updated safety documentation supporting limited Hazard Category 2 operations in these facilities has been developed. Once approved, limited-term operations to process the high activity drums can begin in early 2007, building upon the experience base established performing Hazard Category 3 operations processing lower activity waste in these facilities. LANL is also implementing a series of actions to improve and sustain operations for processing contact-handled transuranic waste inventory. Building 412 Decontamination and Volume Facility and Dome 231 Permacon will be reconfigured to remediate and repackage oversized containers. Actions are underway to stage the inventory in a manner that facilitiates handling and processing, and builds a backlog at key process steps to improve efficienty and minimize the impact of operational slowdown elsewhere in the process. Several initiatives will improve safety and strengthen disciplined operations and compliance with established requirements. Retrieval is a critical element in dispositioning the below-ground contact-handled and remote-handled transuranic waste inventory and will be subcontracted to a firm(s) with the experience and specialized capability to retrieve the contact-handled and remote-handled inventories. Performance specifications consider likely container integrity issues and anticipated challenges recoveirng the waste from storage in pits, trenches, and lined shafts.

  7. India Solar Resource Data: Enhanced Data for Accelerated Deployment (Fact Sheet), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    India Solar Resource Data Enhanced Data for Accelerated Deployment Identifying potential locations for solar photovoltaic (PV) and concentrating solar power (CSP) projects requires detailed understanding of the solar resource available at various locations. Under a bilateral partnership between the United States and India- the U.S.-India Energy Dialogue-the National Renewable Energy Laboratory (NREL) has developed solar maps and data for India to provide 15 years of hourly information by

  8. SSRL Light Source Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    video SLAC National Accelerator Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Department of Energy Office of...

  9. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory

    SciTech Connect (OSTI)

    Weathersby, S. P.; Brown, G.; Centurion, M.; Chase, T. F.; Coffee, R.; Corbett, J.; Eichner, J. P.; Frisch, J. C.; Fry, A. R.; Gühr, M.; Hartmann, N.; Hast, C.; Hettel, R.; Jobe, R. K.; Jongewaard, E. N.; Lewandowski, J. R.; Li, R. K.; Lindenberg, A. M.; Makasyuk, I.; May, J. E.; McCormick, D.; Nguyen, M. N.; Reid, A. H.; Shen, X.; Sokolowski-Tinten, K.; Vecchione, T.; Vetter, S. L.; Wu, J.; Yang, J.; Dürr, H. A.; Wang, X. J.

    2015-07-01

    Ultrafast electron probes are powerful tools, complementary to x-ray free-electron lasers, used to study structural dynamics in material, chemical, and biological sciences. High brightness, relativistic electron beams with femtosecond pulse duration can resolve details of the dynamic processes on atomic time and length scales. SLAC National Accelerator Laboratory recently launched the Ultrafast Electron Diffraction (UED) and microscopy Initiative aiming at developing the next generation ultrafast electron scattering instruments. As the first stage of the Initiative, a mega-electron-volt (MeV) UED system has been constructed and commissioned to serve ultrafast science experiments and instrumentation development. The system operates at 120-Hz repetition rate with outstanding performance. In this paper, we report on the SLAC MeV UED system and its performance, including the reciprocal space resolution, temporal resolution, and machine stability.

  10. Plasma-Surface Interaction Research At The Cambridge Laboratory Of Accelerator Studies Of Surfaces

    SciTech Connect (OSTI)

    Wright, G. M.; Barnard, H. S.; Hartwig, Z. S.; Stahle, P. W.; Sullivan, R. M.; Woller, K. B.; Whyte, D. G.

    2011-06-01

    The material requirements for plasma-facing components in a nuclear fusion reactor are some of the strictest and most challenging facing us today. These materials are simultaneously exposed to extreme heat loads (20 MW/m{sup 2} steady-state, 1 GW/m{sup 2} in millisecond transients) and particle fluxes (>10{sup 24} m{sup -2} s{sup -1}) while also undergoing high neutron irradiation (10{sup 18} neutrons/m{sup 2} s). At the Cambridge Laboratory of Accelerator Studies of Surfaces (CLASS), many of the most important issues in plasma-surface interaction research, such as plasma-driven material erosion and deposition, material transport and irradiation and hydrogenic retention are investigated with the use of a 1.7 MV tandem ion accelerator. Ion-Beam Analysis (IBA) is used to investigate and quantify changes in materials due to plasma exposure and ion irradiation is used as a proxy for neutron irradiation to investigate plasma-surface interactions for irradiated materials. This report will outline the capabilities and current research activities at CLASS.

  11. NREL-Led Team Improves and Accelerates Battery Design (Fact Sheet), Innovation Impact: Transportation, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FS-6A42-60650 * November 2013 NREL prints on paper that contains recycled content. NREL-Led Team Improves and Accelerates Battery Design The National Renewable Energy Laboratory (NREL) is leading some of the best minds from U.S. auto manufacturers, battery developers, and automotive simulation tool developers in a $20 million project to accelerate the development of battery packs and thus the wider adoption of electric-drive vehicles. The Computer-Aided Engineer- ing for Electric Drive Vehicle

  12. Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory SLAC National Accelerator Laboratory, Menlo Park, CA Operated by Stanford University for the U.S. Department of Energy Office of Science Content Owner: Cathy...

  13. EA-0969: Low Energy Accelerator Laboratory Technical Area 53 Los Alamos National Laboratory, Los Alamos, New Mexico

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of the U.S. Department of Energy's Los Alamos National Laboratory in Los Alamos, New Mexico to construct and operate a small research and development...

  14. Fermi National Accelerator Laboratory August 2015 The NO?A Neutrino...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists determine the role that ghostly particles called neutrinos played in the evolution of the cosmos. The world's best neutrino beam Fermilab's accelerator complex...

  15. Labs at-a-Glance: SLAC National Accelerator Laboratory | U.S...

    Office of Science (SC) Website

    Particle Physics Accelerator Science and Technology Condensed Matter Physics and Materials Science Chemical and Molecular Science Large Scale User Facilities Advanced ...

  16. SLAC National Accelerator Laboratory | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Stanford Linear Accelerator Center A Mission Accomplishment (Quality and Productivity of R&D) B+ Construction and Operation of Research Facilities B- S&T ProjectProgram Management ...

  17. EA-1975: Final Environmental Assessment | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Environmental Assessment EA-1975: Final Environmental Assessment Linac Coherent Light Source-IL, SLAC National Accelerator Laboratory, Menlo Park, California DOE issued a ...

  18. Microsoft Word - poa_slac_ind2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL ACCELERATOR LABORATORY * 2575 SAND HILL ROAD * MENLO PARK * CALIFORNIA * 94025 * USA SLAC is operated by Stanford University for the U.S. Department of Energy STANFORD...

  19. XRMS: X-Ray Spectroscopy of Magnetic Solids

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    XRMS: X-Ray Spectroscopy of Magnetic Solids October 22-23, 2011 SLAC National Accelerator Laboratory, Menlo Park, CA More information...

  20. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... National Accelerator Laboratory (SLAC), Menlo Park, CA ... Microbiota and Host Nutrition across Plant and Animal ... studies, is critical when biological effect sizes are small. ...

  1. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    States) S. M. Stoller (United States) SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) STI Submitter (STIS), Anywhere (United States) Salt Repository...

  2. SLAC-PUB-15416 April

    Office of Scientific and Technical Information (OSTI)

    Accelerator Laboratory Stanford University Menlo Park, CA 94025, USA Frank Zimmermann CERN, Geneva, Switzerland Abstract A ring-based Higgs factory with a center-of-mass energy...

  3. EIS-0003: Proton-Proton Storage Accelerator Facility (Isabelle), Brookhaven National Laboratory, Upton, NY

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy developed this EIS to analyze the significant environmental effects associated with construction and operation of the ISABELLE research facility to be built at Brookhaven National Laboratory.

  4. accelerators | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    accelerators

  5. Accelerators, Electrodynamics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    icon-science.jpg Accelerators, Electrodynamics National security depends on science and technology. The United States relies on Los Alamos National Laboratory for the best of...

  6. Performance of the accelerator driver of Jefferson Laboratory's free-electron laser

    SciTech Connect (OSTI)

    Bohn, C.L.; Benson, S.; Biallas, G.

    1999-04-01

    The driver of Jefferson Lab's kW-level infrared free-electron laser (FEL) is a superconducting, recirculating accelerator that recovers about 75% of the electron-beam power and converts it to radiofrequency power. In achieving first lasing, the accelerator operated straight-ahead to deliver 38 MeV, 1.1 mA cw current through the wiggler for lasing at wavelengths in the vicinity of 5 {mu}m. Just prior to first lasing, measured rms beam properties at the wiggler were 7.5{+-}1.5 mm-mr normalized transverse emittance, 26{+-}7 keV-deg longitudinal emittance, and 0.4{+-}0.1 ps bunch length which yielded a peak current of 60{+-}15A. The waste beam was then sent directly to a dump, bypassing the recirculation loop. Stable operation at up to 311 W cw was achieved in this mode. Commissioning the recirculation loop then proceeded. As of this Conference, the machine has recirculated cw average current up to 4 mA, and has lased cw with energy recover up to 710 W.

  7. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories and Facilities Laboratories and Facilities Laboratories and Facilities National Energy Technology Laboratory - The National Energy Technology Laboratory (NETL) is the lead field center for the Office of Fossil Energy's research and development program. Scientists at its Pittsburgh, Pa., and Morgantown, W. Va., campuses conduct onsite research while contract administrators oversee nearly 700 federally-sponsored projects conducted by private sector research partners. The Houston,

  8. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    performance computer system installed at Los Alamos National Laboratory June 17, 2014 Unclassified 'Wolf' system to advance many fields of science LOS ALAMOS, N.M., June 17, 2014-Los Alamos National Laboratory recently installed a new high-performance computer system, called Wolf, which will be used for unclassified research. "This machine modernizes our mid-tier resources available to Laboratory scientists," said Bob Tomlinson, of the Laboratory's High Performance Computing group.

  9. Coupled Mechanical-Electrochemical-Thermal Modeling for Accelerated Design of EV Batteries; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Pesaran, Ahmad; Zhang, Chao; Kim, Gi-heon; Santhanagopalan, Shriram

    2015-06-10

    The physical and chemical phenomena occurring in a battery are many and complex and in many different scales. Without a better knowledge of the interplay among the multi-physics occurring across the varied scales, it is very challenging and time consuming to design long-lasting, high-performing, safe, affordable large battery systems, enabling electrification of the vehicles and modernization of the grid. The National Renewable Energy Laboratory, a U.S. Department of Energy laboratory, has been developing thermal and electrochemical models for cells and battery packs. Working with software producers, carmakers, and battery developers, computer-aided engineering tools have been developed that can accelerate the electrochemical and thermal design of batteries, reducing time to develop and optimize them and thus reducing the cost of the system. In the past couple of years, we initiated a project to model the mechanical response of batteries to stress, strain, fracture, deformation, puncture, and crush and then link them to electrochemical and thermal models to predict the response of a battery. This modeling is particularly important for understanding the physics and processes that happen in a battery during a crush-inducing vehicle crash. In this paper, we provide an overview of electrochemical-thermal-mechanical models for battery system understanding and designing.

  10. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forest fire near Los Alamos National Laboratory June 26, 2011 Los Alamos, New Mexico, June 26, 2011, 6:07pm-The Las Conchas fire burning in the Jemez Mountains approximately 12...

  11. SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a Diamondoid Tip Adding a Layer of Tiny Diamonds Could Boost the Power of Electron Guns Used in Research and Industry Prev Next Headlines SLAC's Stanley Brodsky Shares...

  12. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Arizona, Arkansas, Deleware, Florida, Georgia, Iowa, Kansas, Missouri, Nebraska, New Hampshire, North Carolina, Oklahoma, Rhode Island, South Carolina, Tennesse, Wyoming...

  13. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Carolina, Rhode Island, Tennessee, Vermont 1,000,001-5,000,000 Indiana, Maryland, New Hampshire, Washington Colorado, District of Columbia, Florida, Massachusetts,...

  14. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    South Dakota, Texas Arizona, Connecticut, Indiana, Kansas, Maine, Missouri, Nebraska, New Hampshire, South Carolina, Washington, Wisconsin More than 5 million California,...

  15. Fermi National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    North Dakota, Utah, Wyoming 100,001-500,000 Arizona, Arkansas, Iowa, Kansas, Nebraska, New Hampshire, North Carolina, Oklahoma, Rhode Island, South Carolina, Vermont 500,001-1...

  16. Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund April 20, 2009 LOS ALAMOS, New Mexico, April 20, 2009-Los Alamos National Laboratory is soliciting ideas for projects that facilitate the creation and growth of regional businesses based on Los Alamos National Laboratory (LANL) technology or expertise. The Los Alamos National Security, LLC (LANS) Venture Acceleration Fund will provide investments of up to $350,000 annually with awards of up to $100,000 per project to facilitate projects with regional entrepreneurs,

  17. Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mexican pueblo preserves cultural history through collaborative tours with Los Alamos National Laboratory August 24, 2015 Students gain new insights into their ancestry LOS ALAMOS, N.M., Aug. 24, 2015-San Ildefonso Pueblo's Summer Education Enhancement Program brought together academic and cultural learning in the form of a recent tour of Cave Kiva Trail in Mortandad Canyon."Opening up this archaeological site and sharing it with the descendants of its first inhabitants is a

  18. The APEX Project: Ion beam pulse-shaping experiments on Sandia Laboratories' Particle Beam Fusion Accelerator PBFA II

    SciTech Connect (OSTI)

    Crow, J.T.

    1987-01-01

    This paper discusses the development of ion beam pulse shaping, efficient extraction ion diodes, and efficient plasma channel transport for the particle beam fusion accelerator PBFA II. 10 refs. (LSP)

  19. Application Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Application Acceleration on Current and Future Cray Platforms Alice Koniges, Robert Preissl, Jihan Kim, Lawrence Berkeley National Laboratory David Eder, Aaron Fisher, Nathan Masters, Velimir Mlaker, Lawrence Livermore National Laboratory Stephane Ethier, Weixing Wang, Princeton Plasma Physics Laboratory Martin Head-Gordon, University of California, Berkeley and Nathan Wichmann, Cray Inc. ABSTRACT: Application codes in a variety of areas are being updated for performance on the latest

  20. Production and isolation of homologs of flerovium and element 115 at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Despotopulos, John D.; Kmak, Kelly N.; Gharibyan, Narek; Brown, Thomas A.; Grant, Patrick M.; Henderson, Roger A.; Moody, Kent J.; Tumey, Scott J.; Shaughnessy, Dawn A.; Sudowe, Ralf

    2015-10-01

    Here, new procedures have been developed to isolate no-carrier-added (NCA) radionuclides of the homologs and pseudo-homologs of flerovium (Hg, Sn) and element 115 (Sb), produced by 12–15 MeV proton irradiation of foil stacks with the tandem Van-de-Graaff accelerator at the Lawrence Livermore National Laboratory Center for Accelerator Mass Spectrometry (CAMS) facility. The separation of 113Sn from natIn foil was performed with anion-exchange chromatography from hydrochloric and nitric acid matrices. A cation-exchange chromatography method based on hydrochloric and mixed hydrochloric/hydroiodic acids was used to separate 124Sb from natSn foil. A procedure using Eichrom TEVA resin was developed to separate 197Hg frommore » Au foil. These results demonstrate the suitability of using the CAMS facility to produce NCA radioisotopes for studies of transactinide homologs.« less

  1. Sandia National Laboratories- West Flank

    Broader source: Energy.gov [DOE]

    The West Flank FORGE team proposes an R&D plan that aims to effectively reduce risks to industry and enable development of the enormous EGS resource potential. The team is working in partnership with the U.S. Department of Defense to reduce our Nation’s dependency on fossil fuels and to safeguard the military readiness for the United States. Drilling in and around the selected FORGE location has indicated remarkably low permeability and very attractive temperatures - key elements for an EGS test site. The West Flank FORGE team is led by Sandia National Laboratories and includes members from: Lawrence Berkeley National Laboratory, U.S. Navy & the U.S. Navy Geothermal Program Office, Coso Operating Company, U.S. Geological Survey (Menlo Park, California), University of Nevada, Reno (UNR), GeothermEx / Schlumberger, and Itasca Consulting Group, Inc.

  2. Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1 Los Alamos National Laboratory * Est. 1943 The Pulse-Newsletter of the Los Alamos Neutron Science Center and Accelerator Operations and Technology Division I N S I D E 2 From Alex's Desk 3 lujAn Center reseArCh FeAtureD on Cover oF Langmuir 4 FunCtionAl oxiDes unDer extreme ConDi- tions-quest For new mAteriAls 6 heADs uP! By Diana Del Mauro ADEPS Communications Inside the Lujan Neutron Scattering Center, Victor Fanelli is busy preparing a superconducting magnet. In a series of delicate steps,

  3. Accelerating Ocean Energy to the Marketplace – Environmental Research at the U.S. Department of Energy National Laboratories

    SciTech Connect (OSTI)

    Copping, Andrea E.; Cada, G. F.; Roberts, Jesse; Bevelhimer, Mark

    2010-10-06

    The U.S. Department of Energy (US DOE) has mobilized its National Laboratories to address the broad range of environmental effects of ocean and river energy development. The National Laboratories are using a risk-based approach to set priorities among environmental effects, and to direct research activities. Case studies will be constructed to determine the most significant environmental effects of ocean energy harvest for tidal systems in temperate estuaries, for wave energy installations in temperate coastal areas, wave installations in sub-tropical waters, and riverine energy installations in large rivers. In addition, the National Laboratories are investigating the effects of energy removal from waves, tides and river currents using numerical modeling studies. Laboratory and field research is also underway to understand the effects of electromagnetic fields (EMF), acoustic noise, toxicity from anti-biofouling coatings, effects on benthic habitats, and physical interactions with tidal and wave devices on marine and freshwater organisms and ecosystems. Outreach and interactions with stakeholders allow the National Laboratories to understand and mitigate for use conflicts and to provide useful information for marine spatial planning at the national and regional level.

  4. FermilabAcceleratorCapabilities.pdf

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Illinois Accelerator Research Center - IARC Dr. Bob Kephart Director, Illinois Accelerator Research Center Dr. Charlie Cooper General Manager, Illinois Accelerator Research Center Illinois Accelerator Research Center The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. IARC will provide a state-of-the-art facility for research, development and industrialization of particle accelerator technology. A major

  5. Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selection of Venture Acceleration Fund recipients March 8, 2010 LOS ALAMOS, New Mexico, March 8, 2010-Los Alamos National Laboratory (LANL) has selected Simtable and Southwest Bio Fuels as recipients of $100,000 awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund invests in creating and growing Northern New Mexico businesses that have an association with LANL technology or expertise. Venture Acceleration Fund investments help

  6. Laboratories | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratories Our laboratories are available to industry and other organizations for researching, developing, and evaluating energy technologies. We have experienced lab technicians, scientists and engineers ready to design and run tests for you. Some labs are available for conducting your own research. A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z A Accelerated Exposure Testing Laboratory Advanced Optical Materials Laboratory Advanced

  7. Contact Us | Stanford Synchrotron Radiation Lightsource

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Us Stanford Synchrotron Radiation Lightsource SLAC National Accelerator Laboratory 2575 Sand Hill Road, MS 69 Menlo Park, CA 94025 Tel: 650-926-4000 Fax: 650-926-4100 SSRL...

  8. DEPARTMENT OF I Office

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    DEPARTMENT OF I Office of ENERGY Science SLAC Site Office SLAC National Accelerator Laboratory 2575 Sand Hill Road, MS-8A Menlo Park, CA 94025 DATE: January 11, 2012 MEMORANDUM ...

  9. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 - Los Alamos National Laboratory has selected Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides investments of up to $100,000 to regional entrepreneurs, companies, investors, or strategic partners

  10. Accelerator Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Accelerator Science ReframAccelerator.jpg Particle accelerators are among the largest, most complex, and most important scientific instruments in the world....

  11. IARC - Illinois Accelerator Research Center | Pilot Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory present Accelerator Stewardship Test Facility Pilot Program Use accelerator technology development and testing facilities. Speak with experts in the field. photo...

  12. Laboratory Operations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Operations /newsroom/_assets/images/operations-icon.png Laboratory Operations Latest announcements from the Lab on its operations. Community, Events Laboratory Operations Environmental Stewardship Melissa Blueflower-Sanchez and Robert Sanchez, owners of R and M Construction, LLC, of Santa Clara Pueblo. Four regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help

  13. Leadership | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientific user facility in North America; and the Argonne Accelerator Institute. Harry Weerts Harry Weerts, Associate Laboratory Director, Physical Sciences and Engineering...

  14. National Laboratory Photovoltaics Research

    Broader source: Energy.gov [DOE]

    DOE supports photovoltaic (PV) research and development and facilities at its national laboratories to accelerate progress toward achieving the SunShot Initiative's technological and economic...

  15. SSRL28 Registration Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information? Contact: Cathy Knotts Manager, URA SSRL, MS 99 2575 Sand Hill Road Menlo Park, CA 94025 28th Annual Stanford Synchrotron Radiation Laboratory Users' Meeting Menlo...

  16. SSRL28 Abstract Submission

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    information? Contact: Cathy Knotts Manager, URA SSRL, MS 99 2575 Sand Hill Road Menlo Park, CA 94025 28th Annual Stanford Synchrotron Radiation Laboratory Users' Meeting Menlo...

  17. Results From Plasma Wakefield Acceleration Experiments at FACET...

    Office of Scientific and Technical Information (OSTI)

    International Particle Accelerator Conference (IPAC-2011), San Sebastian, Spain, 4-9 Sep 2011 Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE ...

  18. Breakthrough: Fermilab Accelerator Technology

    ScienceCinema (OSTI)

    None

    2014-08-12

    There are more than 30,000 particle accelerators in operation around the world. At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Experimenting with unique polishing materials, a Fermilab team has now developed an efficient and environmentally friendly way of creating cavities that can propel particles with more than 30 million volts per meter.

  19. LANS Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund announces "Call for Ideas" August 2, 2010 LOS ALAMOS, New Mexico, August 2, 2010-Through September 1, 2010, Northern New Mexico Connect (NNM Connect) is accepting idea statements for the Los Alamos National Security, LLC Venture Acceleration Fund (VAF). VAF invests in creating and growing Northern New Mexico businesses that have an association with Los Alamos National Laboratory technology or expertise. It invests up to $100,000 in businesses that use

  20. National Laboratory Research and Development Funding Opportunities

    Broader source: Energy.gov [DOE]

    Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving...

  1. Secretary Chu to Join Representatives Lofgren and Honda at the SLAC

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    National Accelerator Laboratory | Department of Energy Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory Secretary Chu to Join Representatives Lofgren and Honda at the SLAC National Accelerator Laboratory August 13, 2010 - 12:00am Addthis Washington, D.C. - On Monday, U.S. Energy Secretary Steven Chu will visit the SLAC National Accelerator Laboratory in Menlo Park, California. Secretary Chu will join Representatives Zoe Lofgren and Mike Honda and Stanford

  2. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... FY 2015 SC Laboratory Performance Report Cards Thomas Jefferson National Accelerator ...

  3. Thomas Jefferson National Accelerator Facility | U.S. DOE Office...

    Office of Science (SC) Website

    Thomas Jefferson National Accelerator Facility Laboratory Policy (LP) LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY 2013 Report Cards ...

  4. Accelerated Climate Modeling for Energy | Argonne Leadership...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Credit: Alan Scott and Mark Taylor, Sandia National Laboratories Accelerated Climate Modeling for Energy PI Name: Mark Taylor PI Email: mataylo@sandia.gov Institution: Sandia...

  5. Accelerator on a Chip | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerator on a Chip Accelerator on a Chip February 4, 2016 - 5:24pm Addthis Scientists at SLAC are attempting to build a particle accelerator the size of a shoe box. | Video courtesy of SLAC. Andrew Gordon SLAC National Accelerator Laboratory Could tiny chips no bigger than grains of rice do the job of a huge particle accelerator? At full potential, a series of these "accelerators on a chip" could boost electrons to the same high energies achieved in SLAC National Accelerator

  6. Market Acceleration

    SciTech Connect (OSTI)

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  7. Accelerator and electrodynamics capability review

    SciTech Connect (OSTI)

    Jones, Kevin W

    2010-01-01

    Los Alamos National Laboratory (LANL) uses capability reviews to assess the science, technology and engineering (STE) quality and institutional integration and to advise Laboratory Management on the current and future health of the STE. Capability reviews address the STE integration that LANL uses to meet mission requirements. The Capability Review Committees serve a dual role of providing assessment of the Laboratory's technical contributions and integration towards its missions and providing advice to Laboratory Management. The assessments and advice are documented in reports prepared by the Capability Review Committees that are delivered to the Director and to the Principal Associate Director for Science, Technology and Engineering (PADSTE). Laboratory Management will use this report for STE assessment and planning. LANL has defined fifteen STE capabilities. Electrodynamics and Accelerators is one of the seven STE capabilities that LANL Management (Director, PADSTE, technical Associate Directors) has identified for review in Fiscal Year (FY) 2010. Accelerators and electrodynamics at LANL comprise a blend of large-scale facilities and innovative small-scale research with a growing focus on national security applications. This review is organized into five topical areas: (1) Free Electron Lasers; (2) Linear Accelerator Science and Technology; (3) Advanced Electromagnetics; (4) Next Generation Accelerator Concepts; and (5) National Security Accelerator Applications. The focus is on innovative technology with an emphasis on applications relevant to Laboratory mission. The role of Laboratory Directed Research and Development (LDRD) in support of accelerators/electrodynamics will be discussed. The review provides an opportunity for interaction with early career staff. Program sponsors and customers will provide their input on the value of the accelerator and electrodynamics capability to the Laboratory mission.

  8. C. Benedetti BELLA Center, Lawrence Berkeley National Laboratory...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BELLA Center, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA Laser plasma accelerators (LPAs) can produce accelerating gradients on the order of...

  9. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at LENA| Reaction Rates| UNC Astrophysics| Laboratory for Experimental Nuclear Astrophysics (LENA) The LENA is among only a few accelerator facilities in the world dedicated entirely to nuclear astrophysics experiments. It has two low-energy electrostatic accelerators that are capable of delivering high-current charged-particle beams to a common target. One is an ECR source on a 200-kV platform and the other one is a 1-MV JN Van de Graaff accelerator. Both accelerators are fully

  10. LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Colgate, S.A.

    1958-05-27

    An improvement is presented in linear accelerators for charged particles with respect to the stable focusing of the particle beam. The improvement consists of providing a radial electric field transverse to the accelerating electric fields and angularly introducing the beam of particles in the field. The results of the foregoing is to achieve a beam which spirals about the axis of the acceleration path. The combination of the electric fields and angular motion of the particles cooperate to provide a stable and focused particle beam.

  11. Linear Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since 1972, providing the beam current required by all the experimental areas that support NNSA-DP and other DOE missions. The LINAC's capability to reliably deliver beam current is the key to the LANSCE's ability to do research-and thus the key to meeting NNSA and DOE mission deliverables. The LANSCE Accelerator The LANSCE

  12. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Parking Directions and Map The Duke University campus map shows the Duke Physics Building on Science Drive behind Duke Chapel. The former 4 MeV Van de Graaff accelerator laboratory in its basement is now the location of TUNL's Laboratory for Experimental Nuclear Astrophysics (LENA). Graduates since 1965 will recall the tandem accelerator laboratory is located behind the Physics Building, but those who graduated before 1990 may not recognize a newer larger building behind the tandem lab which

  13. Acceleration switch

    DOE Patents [OSTI]

    Abbin, J.P. Jr.; Middleton, J.N.; Schildknecht, H.E.

    1979-08-20

    An improved acceleration switch is described which is of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  14. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Middleton, John N.; Schildknecht, Harold E.

    1981-01-01

    The disclosure relates to an improved acceleration switch, of the type having a mass suspended within a chamber, having little fluid damping at low g levels and high fluid damping at high g levels.

  15. ACCELERATE ENERGY

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Obama, State of the Union, Feb. 13, 2013 The U.S. Department of Energy, Council on Competitiveness and Alliance to Save Energy have joined forces to undertake in Accelerate Energy...

  16. Acceleration switch

    DOE Patents [OSTI]

    Abbin, Jr., Joseph P.; Devaney, Howard F.; Hake, Lewis W.

    1982-08-17

    The disclosure relates to an improved integrating acceleration switch of the type having a mass suspended within a fluid filled chamber, with the motion of the mass initially opposed by a spring and subsequently not so opposed.

  17. ION ACCELERATOR

    DOE Patents [OSTI]

    Bell, J.S.

    1959-09-15

    An arrangement for the drift tubes in a linear accelerator is described whereby each drift tube acts to shield the particles from the influence of the accelerating field and focuses the particles passing through the tube. In one embodiment the drift tube is splii longitudinally into quadrants supported along the axis of the accelerator by webs from a yoke, the quadrants. webs, and yoke being of magnetic material. A magnetic focusing action is produced by energizing a winding on each web to set up a magnetic field between adjacent quadrants. In the other embodiment the quadrants are electrically insulated from each other and have opposite polarity voltages on adjacent quadrants to provide an electric focusing fleld for the particles, with the quadrants spaced sufficienily close enough to shield the particles within the tube from the accelerating electric field.

  18. Fermilab | Science | Particle Accelerators | Fermilab's Accelerator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Fermilab's Accelerator Complex photo Fermilab's accelerator complex comprises seven particle accelerators and storage rings. It produces the world's most powerful, high-energy...

  19. Accelerating Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Budget | Department of Energy Accelerating Clean Energy Technology Solutions through the President's Budget Accelerating Clean Energy Technology Solutions through the President's Budget February 12, 2016 - 1:00am Addthis World leaders launch Mission Innovation at the United Nations Climate Change Conference 2015 (COP21) in Paris-Le Bourget, France, November 30, 2015. World leaders launch Mission Innovation at the United Nations Climate Change Conference 2015 (COP21) in Paris-Le Bourget,

  20. Accelerator Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Systems Accelerator Systems MaRIE will provide a capability to address the control of performance and production of weapons materials at the mesoscale. MaRIE fills a critical gap in length scale between the integral scale addressed by studies conducted at DARHT, U1a, NIF, and Z. CONTACT Richard Sheffield (505) 667-1237 Email Revolutionizing Microstructural Physics to Empower Nuclear Energy Realizing MaRIE's full suite of capabilities requires developing and integrating a suite of

  1. Ground Broken for New Job-Creating Accelerator Research Facility at DOE's

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fermi National Accelerator Laboratory in Illinois | Department of Energy Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois Ground Broken for New Job-Creating Accelerator Research Facility at DOE's Fermi National Accelerator Laboratory in Illinois December 16, 2011 - 11:49am Addthis WASHINGTON, D.C. - Today, ground was broken for a new accelerator research facility being built at the Department of Energy's (DOE's) Fermi

  2. HEP Accelerator R&D Expertise | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    As needed, promising concepts are tested at national laboratory test facilities, such as the Advanced Wakefield Accelerator (AWA) at ANL, the Accelerator Test Facility (ATF) at ...

  3. Fermi National Accelerator Laboratory August 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5 In 2012 at the Large Hadron Collider, scientists discovered the long-sought Higgs boson. Now the question is: Are there more types of Higgs bosons? What is a Higgs boson? What is...

  4. Fermi National Accelerator Laboratory June 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    recorded two distinct top-quark production mechanisms Explored a new mass range for the Higgs boson and constrained its mass through top-quark and W-boson mass measurements...

  5. Graphic Standards Fermi National Accelerator Laboratory 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    onto your slide, click outside of the text areas on the slide, select Insert > Choose. Search for your file and click Insert. Drag the image to position it to fit on your slide...

  6. Fermi National Accelerator Laboratory April 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thus explore whether the universe is even more complex than we think. Probing hints at new physics ICARUS: high-tech from Italy MicroBooNE: testing an anomaly SBND: closest to...

  7. Fermi National Accelerator Laboratory January 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drexel University Pennsylvania State University University of Pennsylvania, Philadelphia University of Pittsburgh Puerto Rico University of Puerto Rico, Mayaguez Rhode...

  8. Fermi National Accelerator Laboratory August 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Drexel University Pennsylvania State University University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh Puerto Rico University of Puerto Rico,...

  9. Fermi National Accelerator Laboratory FY 2008

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University Carnegie Mellon University, Pittsburgh University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh Puerto Rico University of Puerto Rico,...

  10. Fermi National Accelerator Laboratory FY 2010

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bucknell University Carnegie Mellon University, Pittsburgh Temple University, Philadelphia University of Pennsylvania, Philadelphia University of Pittsburgh, Pittsburgh...

  11. Fermi National Accelerator Laboratory Technologies Available...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and...

  12. Photon Science : SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Affairs | Org Chart Photon Science Faculty Arthur I. Bienenstock * John Galayda Chi-Chang Kao Srinivas Raghu Gordon E. Brown, Jr. Siegfried Glenzer Young Lee David A. Reis Axel...

  13. Fermi National Accelerator Laboratory February 2015 Particle...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    known as synchrotron light sources to create the brightest light beams on Earth. These luminous sources provide tools for such applications as protein structure analysis,...

  14. Fermi National Accelerator Laboratory February 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2013 FY2014 K-12 teachers FY2013...

  15. Fermi National Accelerator Laboratory February 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2011 FY2012 K-12 teachers FY2011...

  16. Fermi National Accelerator Laboratory April 2012

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    technology. * With a strong focus on innovation and industrialization, IARC will attract high-tech companies and train Illinois citizens to develop advanced technology with...

  17. Fermi National Accelerator Laboratory March 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    630-840-5588 to register. Arts and Science Fermilab regularly hosts public events in Ramsey Auditorium, including lectures and arts performances. For a schedule, visit...

  18. Fermi National Accelerator Laboratory August 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one-eighth of the southern sky, recording information on 300 million galaxies, 100,000 galaxy clusters and 4,000 supernovae. The Dark Energy Survey is a collaborative effort...

  19. Kwok Ko SLAC National Accelerator Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    T racking: Track3P - Multipacting & Dark Current EM P ar1cle---in---cell: Pic3P - RF Guns & Sources (e.g. Klystron) Mul1---physics: T EM3P - EM, Thermal & Structural Effects...

  20. Driving the Future | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Driving the Future At Argonne National Laboratory's Center for Transportation Research, our goal is to accelerate the development and deployment of vehicle technologies that help...

  1. Plasma accelerator

    DOE Patents [OSTI]

    Wang, Zhehui; Barnes, Cris W.

    2002-01-01

    There has been invented an apparatus for acceleration of a plasma having coaxially positioned, constant diameter, cylindrical electrodes which are modified to converge (for a positive polarity inner electrode and a negatively charged outer electrode) at the plasma output end of the annulus between the electrodes to achieve improved particle flux per unit of power.

  2. ACCELERATION INTEGRATOR

    DOE Patents [OSTI]

    Pope, K.E.

    1958-01-01

    This patent relates to an improved acceleration integrator and more particularly to apparatus of this nature which is gyrostabilized. The device may be used to sense the attainment by an airborne vehicle of a predetermined velocitv or distance along a given vector path. In its broad aspects, the acceleration integrator utilizes a magnetized element rotatable driven by a synchronous motor and having a cylin drical flux gap and a restrained eddy- current drag cap deposed to move into the gap. The angular velocity imparted to the rotatable cap shaft is transmitted in a positive manner to the magnetized element through a servo feedback loop. The resultant angular velocity of tae cap is proportional to the acceleration of the housing in this manner and means may be used to measure the velocity and operate switches at a pre-set magnitude. To make the above-described dcvice sensitive to acceleration in only one direction the magnetized element forms the spinning inertia element of a free gyroscope, and the outer housing functions as a gimbal of a gyroscope.

  3. Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    record neutron beam at Los Alamos National Laboratory July 10, 2012 New method has potential to advance materials measurement LOS ALAMOS, New Mexico, July 10, 2012-Using a one-of-a-kind laser system at Los Alamos National Laboratory, scientists have created the largest neutron beam ever made by a short-pulse laser, breaking a world record. Neutron beams are usually made with particle accelerators or nuclear reactors and are commonly used in a wide variety of scientific research, particularly in

  4. Compact accelerator

    DOE Patents [OSTI]

    Caporaso, George J.; Sampayan, Stephen E.; Kirbie, Hugh C.

    2007-02-06

    A compact linear accelerator having at least one strip-shaped Blumlein module which guides a propagating wavefront between first and second ends and controls the output pulse at the second end. Each Blumlein module has first, second, and third planar conductor strips, with a first dielectric strip between the first and second conductor strips, and a second dielectric strip between the second and third conductor strips. Additionally, the compact linear accelerator includes a high voltage power supply connected to charge the second conductor strip to a high potential, and a switch for switching the high potential in the second conductor strip to at least one of the first and third conductor strips so as to initiate a propagating reverse polarity wavefront(s) in the corresponding dielectric strip(s).

  5. Accelerating Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy 2, 2015 - 2:00pm Addthis Accelerating Innovation: PowerAmerica Is Up and Running -Rob Ivester, Deputy Director, Advanced Manufacturing Office The excitement and drive to deliver was evident to me last week when I joined nearly 100 PowerAmerica members for their kick-off meeting at NC State University in Raleigh, North Carolina. PowerAmerica, also called the Next Generation Power Electronics Manufacturing Innovation Institute, will develop advanced manufacturing processes and work to

  6. Andrew Hutton Named Head of Jefferson Lab's Accelerator Division |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gordon About Us Andrew Gordon - SLAC National Accelerator Laboratory Andrew Gordon is the External Communications Manager at SLAC National Accelerator Laboratory, one of the Department of Energy's 17 National Laboratories. Most Recent Accelerator on a Chip February 4

    Gumbiner About Us Andrew Gumbiner - Contractor, Advanced Research Projects Agency-Energy. Andrew Gumbiner is a contractor with the Advanced Research Projects Agency-Energy. Most Recent PNNL Helps the Navy Stay Cool and Conserve

  7. Latest Plasma Wakefield Acceleration Results from the FACET Project...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);National Science Foundation (NSF) Country of Publication: United States ...

  8. New Solutions with Accelerated Expansion in String Theory (Journal...

    Office of Scientific and Technical Information (OSTI)

    Research Org: SLAC National Accelerator Laboratory (SLAC) Sponsoring Org: US DOE Office of Science (DOE SC);National Science Foundation (NSF) Country of Publication: United States ...

  9. Observation of Ion Acceleration and Heating during Collisionless...

    Office of Scientific and Technical Information (OSTI)

    5 PPPL- 4835 Observation of Ion Acceleration and Heating during Collisionless Magnetic Reconnection in a Laboratory Plasma December, 2012 Jongsoo Yoo, Masaaki Yamada, HantaoJi and ...

  10. EXAFS 2016 - SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Location The 7th Annual SSRL School on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application will he hosted by SLAC National Accelerator Laboratory, Research Office Building (ROB) (see 30-B below in yellow circle). SLAC is located at 2575 Sand Hill Rd, Menlo Park CA 94025, USA PDF version of map available

  11. LANL announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL announces Venture Acceleration Fund recipients LANL announces Venture Acceleration Fund recipients Ideum and OnQueue are the latest recipients of the awards from the Los Alamos National Security, LLC Venture Acceleration Fund. September 26, 2011 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  12. RDC receives award for Accelerate Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    RDC Receives Award for Accelerate Program Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit RDC receives award for Accelerate Program Accelerate is designed to help graduate more technical career students, place them in jobs, and better prepare them for career and educational advancement. November 1, 2012 dummy image Read our archives Contacts Editor Linda Anderman Email Community Programs Office

  13. BELLA: The Berkeley Lab Laser Accelerator

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BELLA: The Berkeley Lab Laser Accelerator Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab ⇒ Navigate Section Community Berkeley Global Campus Environmental Documents Tours Community Programs Friends of Berkeley Lab Project Description BELLA, the Berkeley Laboratory Laser Accelerator created an experimental facility for further advancing the development of laser-driven plasma acceleration. BELLA's unique attribute is the ability to use

  14. Fermilab | Illinois Accelerator Research Center | Accelerators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    opportunity to develop and share the known and still unexplored benefits of particle accelerators. Benefits to Society photo Each generation of particle accelerators and...

  15. PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING...

    Office of Scientific and Technical Information (OSTI)

    Channeling through Bent Crystals Mack, Stephanie; Ottawa U. SLAC 43 PARTICLE ACCELERATORS; ACCELERATORS; BEAM DUMPS; BENDING; CHANNELING; CRYSTAL LATTICES; DETECTION; FORTRAN;...

  16. VLHC accelerator physics

    SciTech Connect (OSTI)

    Michael Blaskiewicz et al.

    2001-11-01

    A six-month design study for a future high energy hadron collider was initiated by the Fermilab director in October 2000. The request was to study a staged approach where a large circumference tunnel is built that initially would house a low field ({approx}2 T) collider with center-of-mass energy greater than 30 TeV and a peak (initial) luminosity of 10{sup 34} cm{sup -2}s{sup -1}. The tunnel was to be scoped, however, to support a future upgrade to a center-of-mass energy greater than 150 TeV with a peak luminosity of 2 x 10{sup 34} cm{sup -2} sec{sup -1} using high field ({approx} 10 T) superconducting magnet technology. In a collaboration with Brookhaven National Laboratory and Lawrence Berkeley National Laboratory, a report of the Design Study was produced by Fermilab in June 2001. 1 The Design Study focused on a Stage 1, 20 x 20 TeV collider using a 2-in-1 transmission line magnet and leads to a Stage 2, 87.5 x 87.5 TeV collider using 10 T Nb{sub 3}Sn magnet technology. The article that follows is a compilation of accelerator physics designs and computational results which contributed to the Design Study. Many of the parameters found in this report evolved during the study, and thus slight differences between this text and the Design Study report can be found. The present text, however, presents the major accelerator physics issues of the Very Large Hadron Collider as examined by the Design Study collaboration and provides a basis for discussion and further studies of VLHC accelerator parameters and design philosophies.

  17. By Institution | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    About SLAC Site Office (SSO) SSO Home About Organization Chart .pdf file (155KB) Phone List Jobs Projects Contract Management NEPA Documents Contact Information SLAC Site Office U.S. Department of Energy Bldg 41, M/S 08A 2575 Sand Hill Road Menlo Park, CA 94025 P: (650) 926-2505 About Print Text Size: A A A FeedbackShare Page The SLAC Site Office (SSO) is located at the SLAC National Accelerator Laboratory in Menlo Park, California. The mission of the SSO is to manage the U.S. Department of

  18. FFAG ACCELERATOR PROTON DRIVER FOR NEUTRINO FACTORY.

    SciTech Connect (OSTI)

    RUGGIERO, A.

    2005-06-21

    This paper is the summary of a conceptual study of a Proton Driver for Neutrino Factory based on the use of a Fixed-Field Alternating-Gradient (FFAG) Accelerator. The required proton energy range for an optimum neutrino production is 5 to 12 GeV. This can be accomplished with a group of three concentric rings each with 807 m circumference [1]. FFAG Accelerators [2] have the capability to accelerate charged particles over a large momentum range ({+-}30-50%) and the feature of constant bending and focusing fields. Particles can be accelerated very fast at the rate given by the accelerating field of RF cavities placed in proper locations between magnets. The performance of FFAG accelerators is to be placed between that of Super-Conducting Linear Accelerators (SCL), with which they share the fast acceleration rate, and Rapid-Cycling Synchrotrons (RCS), as they allow the beam to re-circulate over fewer revolutions. Brookhaven National Laboratory is involved in the study of feasibility of FFAG Accelerators to accelerate intense beams of protons in the GeV energy range for a variety of applications the most important of which is the Upgrade of the Alternating Gradient Synchrotron (AGS) with a new FFAG injector [3] accelerating from 400 MeV to 1.5 GeV. The ring would be housed in the AGS tunnel and has henceforth a circumference of 807 m.

  19. White Paper on DOE-HEP Accelerator Modeling Science Activities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White Paper on DOE-HEP Accelerator Modeling Science Activities J.-L. Vay, C. G. R. Geddes, A. Koniges - Lawrence Berkeley National Laboratory A. Friedman, D. P. Grote - Lawrence Livermore National Laboratory D. L. Bruhwiler - RadiaSoft LLC J. P. Verboncoeur - Michigan State University Objective Toward the goal of maximizing the impact of computer modeling on the design of future particle accelerators and the development of new accelerator techniques & technologies, this white paper presents

  20. Sandia National Laboratories conducts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    conducts research and development (R&D) in solar power, including photovoltaics and concentrating solar power, to strengthen the U.S. solar industry and improve the manufacturability, reliability, and cost competitiveness of solar energy technologies and systems. Researchers at Sandia partner with the U.S. Department of Energy (DOE) and other government agencies, industry, academia, and other laboratories to accelerate development and acceptance of current and emerging solar power

  1. APT accelerator. Topical report

    SciTech Connect (OSTI)

    Lawrence, G.; Rusthoi, D.

    1995-03-01

    The Accelerator Production of Tritium (APT) project, sponsored by Department of Energy Defense Programs (DOE/DP), involves the preconceptual design of an accelerator system to produce tritium for the nation`s stockpile of nuclear weapons. Tritium is an isotope of hydrogen used in nuclear weapons, and must be replenished because of radioactive decay (its half-life is approximately 12 years). Because the annual production requirements for tritium has greatly decreased since the end of the Cold War, an alternative approach to reactors for tritium production, based on a linear accelerator, is now being seriously considered. The annual tritium requirement at the time this study was undertaken (1992-1993) was 3/8 that of the 1988 goal, usually stated as 3/8-Goal. Continued reduction in the number of weapons in the stockpile has led to a revised (lower) production requirement today (March, 1995). The production requirement needed to maintain the reduced stockpile, as stated in the recent Nuclear Posture Review (summer 1994) is approximately 3/16-Goal, half the previous level. The Nuclear Posture Review also requires that the production plant be designed to accomodate a production increase (surge) to 3/8-Goal capability within five years, to allow recovery from a possible extended outage of the tritium plant. A multi-laboratory team, collaborating with several industrial partners, has developed a preconceptual APT design for the 3/8-Goal, operating at 75% capacity. The team has presented APT as a promising alternative to the reactor concepts proposed for Complex-21. Given the requirements of a reduced weapons stockpile, APT offers both significant safety, environmental, and production-fexibility advantages in comparison with reactor systems, and the prospect of successful development in time to meet the US defense requirements of the 21st Century.

  2. Muon Collider Progress: Accelerators

    SciTech Connect (OSTI)

    Zisman, Michael S.

    2011-09-10

    A muon collider would be a powerful tool for exploring the energy-frontier with leptons, and would complement the studies now under way at the LHC. Such a device would offer several important benefits. Muons, like electrons, are point particles so the full center-of-mass energy is available for particle production. Moreover, on account of their higher mass, muons give rise to very little synchrotron radiation and produce very little beamstrahlung. The first feature permits the use of a circular collider that can make efficient use of the expensive rf system and whose footprint is compatible with an existing laboratory site. The second feature leads to a relatively narrow energy spread at the collision point. Designing an accelerator complex for a muon collider is a challenging task. Firstly, the muons are produced as a tertiary beam, so a high-power proton beam and a target that can withstand it are needed to provide the required luminosity of ~1 10{sup 34} cm{sup 2}s{sup 1}. Secondly, the beam is initially produced with a large 6D phase space, which necessitates a scheme for reducing the muon beam emittance (cooling). Finally, the muon has a short lifetime so all beam manipulations must be done very rapidly. The Muon Accelerator Program, led by Fermilab and including a number of U.S. national laboratories and universities, has undertaken design and R&D activities aimed toward the eventual construction of a muon collider. Design features of such a facility and the supporting R&D program are described.

  3. Lab Breakthrough: Fermilab Accelerator Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fermilab Accelerator Technology Lab Breakthrough: Fermilab Accelerator Technology May 14, 2012 - 10:51am Addthis At Fermilab, scientists are collaborating with other laboratories and industry to optimize the manufacturing processes for a new type of powerful accelerator that uses superconducting niobium cavities. Michael Hess Michael Hess Former Digital Communications Specialist, Office of Public Affairs Where are these 30,000 particle accelerators? Most of them in medicine and manufacturing

  4. Fermilab | Science | Particle Accelerators

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    research and development of future particle accelerators, contributing to the design and exploration of the next generation of machines. These accelerators, each with its own...

  5. Focusing in Linear Accelerators

    DOE R&D Accomplishments [OSTI]

    McMillan, E. M.

    1950-08-24

    Review of the theory of focusing in linear accelerators with comments on the incompatibility of phase stability and first-order focusing in a simple accelerator.

  6. /Harvard-Smithsonian Ctr. Astrophys.; Madejski, G.; /KIPAC, Menlo...

    Office of Scientific and Technical Information (OSTI)

    Rivers, E.; Caltech; Stern, D.; Caltech, JPL; Walton, D.J.; Caltech; Zhang, W.W.; NASA, Goddard Astrophysics,ASTRO Astrophysics,ASTRO Abstract Not Provided http:...

  7. LANL shatters records in first year of accelerated shipping effort

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LANL shatters records in first year of accelerated shipping effort LANL shatters records in first year of accelerated shipping effort LANL set a record for transuranic waste shipments from the Lab to permanent disposal facilities. October 3, 2012 Los Alamos National Laboratory set a record for transuranic waste shipments from the Laboratory to permanent disposal facilities, sending nearly 60 more shipments than originally planned. Los Alamos National Laboratory set a record for transuranic waste

  8. Photo of the Week: Lego Rendition of SLAC National Laboratory...

    Energy Savers [EERE]

    See an actual photo of the SLAC linac. | Photo courtesy of Greg Stewart, SLAC National Accelerator Laboratory. Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of ...

  9. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2005-06-14

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  10. Laser driven ion accelerator

    DOE Patents [OSTI]

    Tajima, Toshiki

    2006-04-18

    A system and method of accelerating ions in an accelerator to optimize the energy produced by a light source. Several parameters may be controlled in constructing a target used in the accelerator system to adjust performance of the accelerator system. These parameters include the material, thickness, geometry and surface of the target.

  11. Building a Tabletop Accelerator

    SciTech Connect (OSTI)

    Leemans, Wim

    2015-05-06

    Berkeley Lab physicist Wim Leemans discusses his research on developing a tabletop-size particle accelerator.

  12. Lab announces Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Lab announces Venture Acceleration Fund recipients Adaptive Radio Technologies, Los Alamos Visualization Associates, Mesa Tech International Inc., and ThermaSun Inc. selected as recipients of awards. August 11, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and

  13. Lab seeks ideas for venture acceleration fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture acceleration fund Lab seeks ideas for Venture Acceleration Fund The fund will provide investments of up to $100,000 to facilitate projects with regional entrepreneurs, companies, investors, or strategic partners. July 9, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los

  14. Accelerating the transfer in Technology Transfer

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating the transfer in Technology Transfer Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Accelerating the transfer in Technology Transfer Express Licensing fast tracks commercialization. May 1, 2013 Division Leader Dave Pesiri Division Leader Dave Pesiri. Contact Editor Linda Anderman Email Community Programs Office Kurt Steinhaus Email Express Licensing program To better serve its

  15. Superconducting Radiofrequency (SRF) Accelerator Cavities

    ScienceCinema (OSTI)

    Reece, Charlie

    2014-05-22

    Charlie Reece, an accelerator technology scientist, explains how superconducting radiofrequency accelerator cavities work.

  16. Lessons from the Bevatron Accelerator Demolition - 12191

    SciTech Connect (OSTI)

    Harkins, Joseph; Cronin, Robert

    2012-07-01

    The Bevatron accelerator at Lawrence Berkeley National Laboratory is the first DOE accelerator to be demolished. While there are many lessons learned from its demolition, this paper focuses on the following lessons learned that may be useful for other D and D projects: bounding project scope to ensure success, hazards mapping for focused characterization and remediation, establishing radiological evaluation criteria, and forecasting activation products. With D and D of many DOE accelerators likely to occur in the near future, these lessons learned should be considered in planning those projects. These lessons learned are likely to be applicable to other D and D projects as well. (authors)

  17. National Laboratory Research and Development Funding Opportunities |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy National Laboratory Research and Development Funding Opportunities National Laboratory Research and Development Funding Opportunities Through the National Laboratory Research and Development program, DOE supports research and development and core capabilities at its national laboratories to accelerate progress toward achieving SunShot Initiative's Systems Integration targets. These multi-year projects are funded based on a competitive proposal process and address the

  18. Geoscience Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    preparation and other relatively straight-forward laboratory manipulations. These include buffer preparations, solid sample grinding, solution concentration, filtration, and...

  19. Facts About XLDB-2011 (Conference) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Conference: Facts About XLDB-2011 Citation Details In-Document Search Title: Facts About XLDB-2011 This note provides details of the 5th Extremely Large Databases Conference and Invitational Workshop that were held in 2011 on 18-19 October and 20 October, respectively, at the SLAC National Accelerator Laboratory in Menlo Park, California. The main goals of the conference were: (1) Encourage and accelerate the exchange of ideas between users trying to build extremely large databases worldwide and

  20. User Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Advanced Photon Source Argonne Leadership Computing Facility Argonne Tandem Linear Accelerator System Center for Nanoscale Materials Transportation Research and Analysis Computing Center Science Work with Argonne About Safety News Careers Education Community Diversity Directory Argonne National Laboratory About Safety News Careers Education Community Diversity Directory Energy Environment Security User Facilities Science Work with Argonne User Facilities Advanced Photon Source Argonne

  1. Laboratory Fellows

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    selected as Los Alamos National Laboratory Fellows November 16, 2010 Scientific disciplines range from fundamental and applied physics to geology LOS ALAMOS, New Mexico, NOVEMBER 16, 2010-Five Los Alamos National Laboratory scientists from diverse fields of research have been named Laboratory Fellows. The five researchers are Brenda Dingus of the Neutron Science and Technology group; William (Bill) Louis of the Subatomic Physics group; John Sarrao, director of Los Alamos's Office of Science

  2. Laboratory Building.

    SciTech Connect (OSTI)

    Herrera, Joshua M.

    2015-03-01

    This report is an analysis of the means of egress and life safety requirements for the laboratory building. The building is located at Sandia National Laboratories (SNL) in Albuquerque, NM. The report includes a prescriptive-based analysis as well as a performance-based analysis. Following the analysis are appendices which contain maps of the laboratory building used throughout the analysis. The top of all the maps is assumed to be north.

  3. Accelerating Particles with Plasma

    SciTech Connect (OSTI)

    Litos, Michael; Hogan, Mark

    2014-11-05

    Researchers at SLAC explain how they use plasma wakefields to accelerate bunches of electrons to very high energies over only a short distance. Their experiments offer a possible path for the future of particle accelerators.

  4. High Throughput Materials Characterization John M. Gregoire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paper for Establishing a User Facility for Synchrotron-based High Throughput Materials Characterization John M. Gregoire 1 , Matthew J. Kramer 2 , Apurva Mehta 3 1 Joint Center for Artificial Photosynthesis, California Institute of Technology, Pasadena, CA, gregoire@caltech.edu 2 Critial Materials Institute, Ames Laboratory, Iowa State University, Ames IA, mjkramer@ameslab.gov 3 Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA,

  5. About the Stanford Synchrotron Radiation Lightsource | Stanford Synchrotron

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Radiation Lightsource About the Stanford Synchrotron Radiation Lightsource SSRL is a forefront lightsource providing bright X-rays and oustanding user support. The Stanford Synchrotron Radiation Lightsource (SSRL), a directorate of the SLAC National Accelerator Laboratory (SLAC), is an Office of Science User Facility operated for the U.S. Department of Energy (DOE) by Stanford University. Located in Menlo Park, California, SLAC is a multi-program national laboratory exploring frontier

  6. Accelerator Science | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator Science Jefferson Lab is recognized as a world leader in accelerator science. This expertise comes from the planning, building, maintaining and operating of the Continuous Electron Beam Accelerator Facility (CEBAF) - the lab's particle accelerator. CEBAF is based on superconducting radiofrequency (SRF) technology. It produces a stream of charged electrons that scientists use to probe the nucleus of the atom. CEBAF was the first large-scale application of SRF technology in the world,

  7. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Property (max) log (aging time) Property (failure) Property (time=0) Accelerated Aging Data Predicted Storage Aging Response log (predicted lifetime) Accelerated Aging Studies Factors such as temperature, pressure, or radiation

  8. Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    resumes transuranic waste shipments April 2, 2014 Shipments keep Lab on track to complete 3706 Campaign on schedule LOS ALAMOS, N.M., April 2, 2014-Los Alamos National Laboratory resumed shipments of transuranic waste yesterday from Technical Area 54 Area G. The shipments are part of an accelerated shipping campaign to remove 3,706 cubic meters of transuranic waste stored aboveground at Area G by June 30, 2014. Nearly 3,200 cubic meters of the waste have already been removed since the 3706

  9. Accelerators AND Beams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerators AND Beams TOOLS Of DiScOvery anD innOvaTiOn Published by the Division of Physics of Beams of the American Physical Society Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . Why.care.about.accelerators?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 . What.are.accelerators.for?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 .

  10. Biological assessments for the low energy demonstration accelerator, 1996

    SciTech Connect (OSTI)

    Cross, S.

    1997-03-01

    This report discusses the biological impact to the area around the Los Alamos National Laboratory of the Low Energy Demonstration Accelerator. In particular the impact to the soils, water quality, vegetation, and wildlife are discussed.

  11. How Accelerator Physicists Save Time | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Image courtesy of Lawrence Berkeley National Laboratory The basic elements of laser plasma wakefield acceleration. The laser pulse, shown in red, ionizes the gas to produce a ...

  12. Photo of the Week: What Does a Particle Accelerator Have in Common...

    Energy Savers [EERE]

    Learn more about how FACET works. | Photo courtesy of SLAC National Accelerator Laboratory. Sarah Gerrity Sarah Gerrity Former Multimedia Editor, Office of Public Affairs Every ...

  13. Vehicle Technologies Office Merit Review 2015: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  14. Vehicle Technologies Office Merit Review 2014: Accelerating Predictive Simulation of IC Engines with High Performance Computing

    Broader source: Energy.gov [DOE]

    Presentation given by Oak Ridge National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating...

  15. Better Buildings Challenge Accelerator Support - 2014 BTO Peer Review |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Accelerator Support - 2014 BTO Peer Review Better Buildings Challenge Accelerator Support - 2014 BTO Peer Review Presenter: Monisha Shah, National Renewable Energy Laboratory Through the Better Buildings Energy Data Accelerator, local governments are joining forces with their utilities so that commercial and multifamily building owners can more easily access whole-building energy usage data. This effort helps building owners-especially those with multiple tenants-break

  16. Lee Teng Undergraduate Fellowship in Accelerator Science and Engineering |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne National Laboratory For more additional information on the Lee Tang Internship, visit the Illinois Accelerator Institute. Lee Teng Partners Lee Teng Fellowship "Incredible opportunity! I have learned a lot, and met some incredible individuals." -Summer 2013 Intern Overview The Illinois Accelerator Institute established the Lee Teng Undergraduate Internship in Accelerator Science and Engineering in 2008 to provide junior level college students an opportunity to study with

  17. High brightness electron accelerator

    DOE Patents [OSTI]

    Sheffield, Richard L.; Carlsten, Bruce E.; Young, Lloyd M.

    1994-01-01

    A compact high brightness linear accelerator is provided for use, e.g., in a free electron laser. The accelerator has a first plurality of acclerating cavities having end walls with four coupling slots for accelerating electrons to high velocities in the absence of quadrupole fields. A second plurality of cavities receives the high velocity electrons for further acceleration, where each of the second cavities has end walls with two coupling slots for acceleration in the absence of dipole fields. The accelerator also includes a first cavity with an extended length to provide for phase matching the electron beam along the accelerating cavities. A solenoid is provided about the photocathode that emits the electons, where the solenoid is configured to provide a substantially uniform magnetic field over the photocathode surface to minimize emittance of the electons as the electrons enter the first cavity.

  18. Making the perfect recipe just got faster: NNSA research accelerates

    National Nuclear Security Administration (NNSA)

    materials science | National Nuclear Security Administration Making the perfect recipe just got faster: NNSA research accelerates materials science Thursday, May 19, 2016 - 11:01am The Trinity supercomputer at Los Alamos National Laboratory. In a recent paper published in Nature Communications, NNSA researchers at Los Alamos National Laboratory (LANL) recently demonstrated ways to accelerate materials science. Why is this innovation so noteworthy to NNSA's mission, as well as other

  19. Accelerator and Fusion Research Division 1989 summary of activities

    SciTech Connect (OSTI)

    Not Available

    1990-06-01

    This report discusses the research being conducted at Lawrence Berkeley Laboratory's Accelerator and Fusion Research Division. The main topics covered are: heavy-ion fusion accelerator research; magnetic fusion energy; advanced light source; center for x-ray optics; exploratory studies; high-energy physics technology; and bevalac operations.

  20. Federal laboratories for the 21st century

    SciTech Connect (OSTI)

    Gover, J.; Huray, P.G.

    1998-04-01

    Federal laboratories have successfully filled many roles for the public; however, as the 21st Century nears it is time to rethink and reevaluate how Federal laboratories can better support the public and identify new roles for this class of publicly-owned institutions. The productivity of the Federal laboratory system can be increased by making use of public outcome metrics, by benchmarking laboratories, by deploying innovative new governance models, by partnerships of Federal laboratories with universities and companies, and by accelerating the transition of federal laboratories and the agencies that own them into learning organizations. The authors must learn how government-owned laboratories in other countries serve their public. Taiwan`s government laboratory, Industrial Technology Research Institute, has been particularly successful in promoting economic growth. It is time to stop operating Federal laboratories as monopoly institutions; therefore, competition between Federal laboratories must be promoted. Additionally, Federal laboratories capable of addressing emerging 21st century public problems must be identified and given the challenge of serving the public in innovative new ways. Increased investment in case studies of particular programs at Federal laboratories and research on the public utility of a system of Federal laboratories could lead to increased productivity of laboratories. Elimination of risk-averse Federal laboratory and agency bureaucracies would also have dramatic impact on the productivity of the Federal laboratory system. Appropriately used, the US Federal laboratory system offers the US an innovative advantage over other nations.

  1. Laboratory Directors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Siegfried S. Hecker (1985-1997) Donald M. Kerr (1979-1985) Harold M. Agnew (1970-1979) Norris Bradbury (1945-1970) J. Robert Oppenheimer (1943-1945) Laboratory Directors Harold M. ...

  2. Compensation Techniques in Accelerator Physics

    SciTech Connect (OSTI)

    Hisham Kamal Sayed

    2011-05-31

    Accelerator physics is one of the most diverse multidisciplinary fields of physics, wherein the dynamics of particle beams is studied. It takes more than the understanding of basic electromagnetic interactions to be able to predict the beam dynamics, and to be able to develop new techniques to produce, maintain, and deliver high quality beams for different applications. In this work, some basic theory regarding particle beam dynamics in accelerators will be presented. This basic theory, along with applying state of the art techniques in beam dynamics will be used in this dissertation to study and solve accelerator physics problems. Two problems involving compensation are studied in the context of the MEIC (Medium Energy Electron Ion Collider) project at Jefferson Laboratory. Several chromaticity (the energy dependence of the particle tune) compensation methods are evaluated numerically and deployed in a figure eight ring designed for the electrons in the collider. Furthermore, transverse coupling optics have been developed to compensate the coupling introduced by the spin rotators in the MEIC electron ring design.

  3. Accelerated cleanup risk reduction

    SciTech Connect (OSTI)

    Knapp, R.B.; Aines, R.M.; Blake, R.G.; Copeland, A.B.; Newmark, R.L.; Tompson, A.F.B.

    1998-02-01

    There is no proven technology for remediating contaminant plume source regions in a heterogeneous subsurface. This project is an interdisciplinary effort to develop the requisite new technologies so that will be rapidly accepted by the remediation community. Our technology focus is hydrous pyrolysis/oxidation (HPO) which is a novel in situ thermal technique. We have expanded this core technology to leverage the action of steam injection and place an in situ microbial filter downstream to intercept and destroy the accelerated movement of contaminated groundwater. Most contaminant plume source regions, including the chlorinated solvent plume at LLNL, are in subsurface media characterized by a wide range in hydraulic conductivity. At LLNL, the main conduits for contaminant transport are buried stream channels composed of gravels and sands; these have a hydraulic conductivity in the range of 10{sup -1} to 10{sup -2} cm/s. Clay and silt units with a hydraulic conductivity of 10{sup -1} to 10{sup -6} cm/s bound these buried channels; these are barriers to groundwater movement and contain the highest contaminant concentrations in the source region. New remediation technologies are required because the current ones preferentially access the high conductivity units. HPO is an innovative process for the in situ destruction of contaminants in the entire subsurface. It operates by the injection of steam. We have demonstrated in laboratory experiments that many contaminants rapidly oxidize to harmless compounds at temperatures easily achieved by injecting steam, provided sufficient dissolved oxygen is present. One important challenge in a heterogeneous source region is getting heat, contaminants, and an oxidizing agent in the same place at the same time. We have used the NUFT computer program to simulate the cyclic injection of steam into a contaminated aquifer for design of a field demonstration. We used an 8 hour, steam/oxygen injection cycle followed by a 56 hour relaxation period in which the well was `capped`. Our results show the formation of an inclined gas phase during injection and a fast collapse of the steam zone within an hour of terminating steam injection. The majority of destruction occurs during the collapse phase, when contaminant laden water is drawn back towards the well. Little to no noncondensible gasses are created in this process, removing any possibility of sparging processes interfering with contaminant destruction. Our models suggest that the thermal region should be as hot and as large as possible. To have HPO accepted, we need to demonstrate the in situ destruction of contaminants. This requires the ability to inexpensively sample at depth and under high temperatures. We proved the ability to implies monitoring points at depths exceeding 150 feet in highly heterogeneous soils by use of cone penetrometry. In addition, an extractive system has been developed for sampling fluids and measuring their chemistry under the range of extreme conditions expected. We conducted a collaborative field test of HPO at a Superfund site in southern California where the contaminant is mainly creosote and pentachlorophenol. Field results confirm the destruction of contaminants by HPO, validate our field design from simulations, demonstrate that accurate field measurements of the critical fluid parameters can be obtained using existing monitoring wells (and minimal capital cost) and yield reliable cost estimates for future commercial application. We also tested the in situ microbial filter technology as a means to intercept and destroy the accelerated flow of contaminants caused by the injection of steam. A series of laboratory and field tests revealed that the selected bacterial species effectively degrades trichloroethene in LLNL Groundwater and under LLNL site conditions. In addition, it was demonstrated that the bacteria effectively attach to the LLNL subsurface media. An in-well treatability study indicated that the bacteria initially degrade greater than 99% of the contaminant, to concentrations less than regulatory limit

  4. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, J.S.; Sheffield, R.L.

    1985-05-20

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radiofrequency-powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  5. Optically pulsed electron accelerator

    DOE Patents [OSTI]

    Fraser, John S.; Sheffield, Richard L.

    1987-01-01

    An optically pulsed electron accelerator can be used as an injector for a free electron laser and comprises a pulsed light source, such as a laser, for providing discrete incident light pulses. A photoemissive electron source emits electron bursts having the same duration as the incident light pulses when impinged upon by same. The photoemissive electron source is located on an inside wall of a radio frequency powered accelerator cell which accelerates the electron burst emitted by the photoemissive electron source.

  6. Linear inductive accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Gerasimov, A.I.; Pavlovskiy, A.I.

    1983-11-01

    A proposed accelerator, differing from existing ones in that it is loaded through a capacitor on a solenoid which is uniformly distributed throughout the accelerating system and connected to an independent electrical current source, is discussed. The design of the system makes it possible to improve the uniformity of the electrical field and increase the longitudinal focusing magnetic field. This is especially important for high-current accelerators.

  7. Linear induction accelerator

    SciTech Connect (OSTI)

    Bosamykin, V.S.; Pavlovskiy, A.I.

    1984-03-01

    A linear induction accelerator of charged particles, containing inductors and an acceleration circuit, characterized by the fact that, for the purpose of increasing the power of the accelerator, each inductor is made in the form of a toroidal line with distributed parameters, from one end of which in the gap of the line a ring commutator is included, and from the other end of the ine a resistor is hooked up, is described.

  8. ACCELERATION RESPONSIVE SWITCH

    DOE Patents [OSTI]

    Chabrek, A.F.; Maxwell, R.L.

    1963-07-01

    An acceleration-responsive device with dual channel capabilities whereby a first circuit is actuated upon attainment of a predetermined maximum acceleration level and when the acceleration drops to a predetermined minimum acceleriltion level another circuit is actuated is described. A fluid-damped sensing mass slidably mounted in a relatively frictionless manner on a shaft through the intermediation of a ball bushing and biased by an adjustable compression spring provides inertially operated means for actuating the circuits. (AEC)

  9. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cells for wakefield suppression in both, superconducting RF and room-temperature high-energy accelerators of the ... acts as an extremely efficient higher order mode ...

  10. Accelerated Aging Studies

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerated Aging Studies LA-UR -15-27339 This document is approved for public release; further dissemination unlimited Property (max) log (aging time) Property (failure) Property ...

  11. Lab announces Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients August 11, 2009 Los Alamos, New Mexico, August 11, 2009 ... of Taos, will continue development of a solar thermal heating prototype that uses heat ...

  12. Market Acceleration (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its market acceleration subprogram.

  13. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, Robert B. (Shoreham, NY)

    1986-01-01

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams into the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  14. From Autos to Accelerators

    Broader source: Energy.gov [DOE]

    In a town haunted by the remains of fallen automobile plants, some companies are hiring workers to put their car-manufacturing skills toward building particle accelerators.

  15. National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Supercomputing Challenge draws more than 200 students to Los Alamos National Laboratory April 16, 2015 NOTE TO EDITORS: Media are welcome to attend the awards ceremony from 9 a.m. to noon a.m., April 21 at the Church of Christ, 2323 Diamond Drive, Los Alamos. Student teams from around New Mexico showcase year-long research projects April 20-21 LOS ALAMOS, N.M., April 16, 2015-More than 200 New Mexico students and their teachers are at Los Alamos National Laboratory April 20-21 for the 25th

  16. Laboratory directed research and development

    SciTech Connect (OSTI)

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  17. Nonlinear Fields and Dynamic Aperture near Low-Order Resonances...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: AC03-76SF00515 Resource Type: Technical Report Resource Relation: Other Information: PBD: 28 Oct 1998 Research Org: Stanford Linear Accelerator Center, Menlo ...

  18. Direct Measurement of the Neutral Weak Dipole Moments of the...

    Office of Scientific and Technical Information (OSTI)

    Research Org: Stanford Linear Accelerator Center, Menlo Park, CA (US) Sponsoring Org: USDOE Office of Energy Research (ER) (US) Country of Publication: United States Language: ...

  19. Phantom of the Hartle-Hawking instanton: Connecting inflation...

    Office of Scientific and Technical Information (OSTI)

    National Taiwan Univ., Taipei (Taiwan); SLAC National Accelerator Lab., Menlo Park, CA (United States) Central China Normal Univ., Wuhan (China) National Taiwan Univ., Taipei ...

  20. Stringy stability of charged dilaton black holes with flat event...

    Office of Scientific and Technical Information (OSTI)

    of High Energy Physics (Online); Journal Volume: 2015; Journal Issue: 1 Publisher: Springer Berlin Research Org: SLAC National Accelerator Lab., Menlo Park, CA (United States)...

  1. Nonlinear Fields and Dynamic Aperture near Low-Order Resonances...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Center, Menlo Park, CA (US) Sponsoring Org: USDOE Office of Energy Research (ER) (US) Country of Publication: United States Language: English Subject: 43 PARTICLE...

  2. Performance of the 2 MeV microwave gun for the SSRL 150 MeV linac...

    Office of Scientific and Technical Information (OSTI)

    Lab.) (Varian Associates, Inc., Palo Alto, CA (USA)) (Stanford Linear Accelerator Center, Menlo Park, CA (USA)) (AET Associates, Cupertino, CA (USA) Varian Associates, ...

  3. Accelerators (5/5)

    SciTech Connect (OSTI)

    2009-07-09

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  4. Accelerators (4/5)

    SciTech Connect (OSTI)

    2009-07-08

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  5. Accelerators (3/5)

    SciTech Connect (OSTI)

    2009-07-07

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  6. Accelerators (3/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  7. Accelerators (5/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  8. Microscale acceleration history discriminators

    DOE Patents [OSTI]

    Polosky, Marc A.; Plummer, David W.

    2002-01-01

    A new class of micromechanical acceleration history discriminators is claimed. These discriminators allow the precise differentiation of a wide range of acceleration-time histories, thereby allowing adaptive events to be triggered in response to the severity (or lack thereof) of an external environment. Such devices have applications in airbag activation, and other safety and surety applications.

  9. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2011-07-21

    The order defines accelerators and establishes accelerator specific safety requirements and approval authorities which, when supplemented by other applicable safety and health requirements, promote safe operations to ensure protection of workers, the public, and the environment. Supersedes DOE O 420.2B.

  10. Accelerators (4/5)

    ScienceCinema (OSTI)

    None

    2011-10-06

    1a) Introduction and motivation 1b) History and accelerator types 2) Transverse beam dynamics 3a) Longitudinal beam dynamics 3b) Figure of merit of a synchrotron/collider 3c) Beam control 4) Main limiting factors 5) Technical challenges Prerequisite knowledge: Previous knowledge of accelerators is not required.

  11. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2001-01-08

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2. Canceled by DOE O 420.2B.

  12. Safety of Accelerator Facilities

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2004-07-23

    To establish accelerator-specific safety requirements which, when supplemented by other applicable safety and health requirements, will serve to prevent injuries and illnesses associated with Department of Energy (DOE) or National Nuclear Security Administration (NNSA) accelerator operations. Cancels DOE O 420.2A. Certified 5-13-08. Canceled by DOE O 420.2C.

  13. Accelerators, Beams And Physical Review Special Topics - Accelerators And Beams

    SciTech Connect (OSTI)

    Siemann, R.H.; /SLAC

    2011-10-24

    Accelerator science and technology have evolved as accelerators became larger and important to a broad range of science. Physical Review Special Topics - Accelerators and Beams was established to serve the accelerator community as a timely, widely circulated, international journal covering the full breadth of accelerators and beams. The history of the journal and the innovations associated with it are reviewed.

  14. Triangle Universities Nuclear Laboratory : 2011

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    will celebrate 50 years of highly successful collaborative research. Everyone who has been a part of TUNL's program - former and present students, post-doctoral researchers, faculty, staff, research collaborators, and other friends of the laboratory - is invited. Come and join us! What are we celebrating? In November 1965 the US Atomic Energy Commission announced a $2.5M award for purchase of a new High Voltage Engineering Model FN tandem Van de Graaff accelerator. This began a thriving

  15. Los Alamos National Laboratory to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to begin DARHT 2 operations January 29, 2008 Hydrodynamic testing at the frontier of science LOS ALAMOS, New Mexico, January 29, 2008- The Dual Axis Radiographic Hydrodynamic Test (DARHT) facility has officially become "dual" with authorization to begin full power operations of Axis 2, adding both new capability and higher energy to the unique accelerator facility. Los Alamos National Laboratory has received authorization from the National Nuclear Security Administration to begin

  16. The principle of phase stability and the accelerator program at Berkeley, 1945--1954

    SciTech Connect (OSTI)

    Lofgren, E.J.

    1994-07-01

    The discovery of the Principle of Phase Stability by Vladimir Veksler and Edwin McMillian and the end of the war released a surge of accelerator activity at the Lawrence Berkeley Laboratory (then The University of California Radiation Laboratory). Six accelerators incorporating the Principle of Phase Stability were built in the period 1945--1954.

  17. Generation of femtosecond to sub-femtosecond x-ray pulses in free-electron

    Office of Scientific and Technical Information (OSTI)

    lasers (Journal Article) | SciTech Connect femtosecond to sub-femtosecond x-ray pulses in free-electron lasers Citation Details In-Document Search Title: Generation of femtosecond to sub-femtosecond x-ray pulses in free-electron lasers Abstract is not available Authors: Ding, Yuantao [1] + Show Author Affiliations SLAC National Accelerator Laboratory, Menlo Park, CA (United States) Publication Date: 2015-05-12 OSTI Identifier: 1194669 Resource Type: Journal Article Resource Relation: Journal

  18. fwp100211-slac | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources Chemical Control of Fluid Flow and Contaminant Release in Shale Microfractures Last Reviewed 12/8/2015 FWP 100211 Goal The project goal is to identify geochemical reactions induced in shales upon injection of hydraulic fracturing fluids and to assess the impact of these reactions on shale porosity and release of contaminants, such as uranium. Performers SLAC National Accelerator Laboratory, Menlo Park, CA Background Current hydraulic fracturing technologies recover less than 30% of

  19. Supplement Analysis

    Energy Savers [EERE]

    Supplement Analysis to the LCLS-ll Environmental Assessment, July. 2014 U.S. DEPARTMENT OF Office of *ENERGY 1 Science SLAG Site Office SLAC National Accelerator Laboratory 2575 Sand Hill Road, MS-8A Menlo Park, CA 94025 DATE: September 15, 2015 MEMORANDUM FOR: Paul Golan, Site Manager, SLAC Site Office THROUGH: James Elmore, ISC-OR NEPA Compliance Officer, Oak Ridge Office FROM: Mitzi Heard, NEPA Coornator, SLAC Site Office SUBJECT: Supplement Analysis to SLAC LCLS-I1 Environmental Assessment.

  20. EXAFS 2016 - SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitor Information Visiting SLAC SLAC National Accelerator Laboratory 2575 Sand Hill Rd. Menlo Park, CA 94025 Visiting SLAC Climate Temperate climate - more Accomodations Stanford Guest House Local Accommodations Visa Information If you are not a U.S. Citizen or Legal Permanent Resident and have questions regarding the appropriate visa status for this visit, you may contact our International Services Office at iso@slac.stanford.edu. Please note that obtaining a B-1 or B-2 visa can be a lengthy

  1. XRS 2016 - 8th SSRL School on Synchrotron X-Ray Scattering Techniques

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Visitor Information Visiting SLAC SLAC National Accelerator Laboratory 2575 Sand Hill Rd. Menlo Park, CA 94025 Visiting SLAC Climate Temperate climate - more Accomodations Stanford Guest House Local Accommodations Visa Information If you are not a U.S. Citizen or Legal Permanent Resident and have questions regarding the appropriate visa status for this visit, you may contact our International Services Office at iso@slac.stanford.edu. Please note that obtaining a B-1 or B-2 visa can be a lengthy

  2. EA-1975: Supplement Analysis | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    5: Supplement Analysis EA-1975: Supplement Analysis LINAC Coherent Light Source-Il, SLAC National Accelerator Laboratory, Menlo Park, California This document provides an analysis of the potential impacts of the proposed reconfigured cryogenic plants, a new cooling tower, and other added components. It contains a description of the revised project layout, the larger second cryogenic plant and added cooling tower, and the added construction and operation requirements, as well as an analysis of

  3. Umbral Moonshine and K3 Surfaces (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Umbral Moonshine and K3 Surfaces Citation Details In-Document Search Title: Umbral Moonshine and K3 Surfaces Authors: Cheng, Miranda C. N. ; Harrison, Sarah Publication Date: 2015-06-25 OSTI Identifier: 1243080 DOE Contract Number: AC02-76SF00515 Resource Type: Journal Article Resource Relation: Journal Name: Communications in Mathematical Physics; Journal Volume: 339; Journal Issue: 1 Research Org: SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States) Sponsoring Org: USDOE

  4. BESAC 2016-2017 Membership| U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    BESAC 2016-2017 Membership Basic Energy Sciences Advisory Committee (BESAC) BESAC Home Meetings BESAC 2016-2017 Membership Charges/Reports Charter .pdf file (128KB) BES Committees of Visitors Federal Advisory Committees BES Home BESAC 2016-2017 Membership Print Text Size: A A A FeedbackShare Page Simon Bare SLAC National Accelerator Laboratory 2275 Sand Hill Road Menlo Park, CA 94025 Dawn A. Bonnell The University of Pennsylvania College Hall, Suite 118 Philadelphia, PA 19104 Gordon Brown

  5. Dynamometer Evaluation of Plasma-Catalyst for Diesel NOx Reduction |

    Broader source: Energy.gov (indexed) [DOE]

    NREL senior scientist, Robert Tenent, Ph.D., with equipment for low cost processing (deposition) of window coatings materials. NREL senior scientist, Robert Tenent, Ph.D., with equipment for low cost processing (deposition) of window coatings materials. Lead Performer: National Renewable Energy Laboratory - Golden, CO Partners: -- Sage Electrochromics - Faribault, MN -- e-Chromic Technologies, Inc. - Boulder, CO -- Colorado School of Mines - Golden, CO -- Stanford Linear Accelerator - Menlo

  6. Sandia National Laboratories: Electrostatic Discharge (ESD) Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electrostatic Discharge (ESD) Laboratory We have field and laboratory capabilities to measure electrostatic environment generation, storage, and charge transfer effects....

  7. The Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    existing programs in climate change science and infrastructure. The Laboratory has a 15- year history in climate change science. The Climate, Ocean and Sea Ice Modeling (COSIM) project develops and maintains advanced numerical models of the ocean, sea ice, and ice sheets for use in global climate change projections. COSIM models were used extensively in simulations underpinning the recent climate assessment by the Intergovernmental Panel on Climate Change (IPCC) that was awarded the 2007 Nobel

  8. Lab Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Plan Ames Laboratory

  9. Deuterium accelerator experiments for APT.

    SciTech Connect (OSTI)

    Causey, Rion A. (Sandia National Laboratories, Livermore, CA); Hertz, Kristin L. (Sandia National Laboratories, Livermore, CA); Cowgill, Donald F. (Sandia National Laboratories, Livermore, CA)

    2005-08-01

    Sandia National Laboratories in California initiated an experimental program to determine whether tritium retention in the tube walls and permeation through the tubes into the surrounding coolant water would be a problem for the Accelerator Production of Tritium (APT), and to find ways to mitigate the problem, if it existed. Significant holdup in the tube walls would limit the ability of APT to meet its production goals, and high levels of permeation would require a costly cleanup system for the cooling water. To simulate tritium implantation, a 200 keV accelerator was used to implant deuterium into Al 6061-T and SS3 16L samples at temperatures and particle fluxes appropriate for APT, for times varying between one week and five months. The implanted samples were characterized to determine the deuterium retention and Permeation. During the implantation, the D(d,p)T nuclear reaction was used to monitor the build-up of deuterium in the implant region of the samples. These experiments increased in sophistication, from mono-energetic deuteron implants to multi-energetic deuteron and proton implants, to more accurately reproduce the conditions expected in APT. Micron-thick copper, nickel, and anodized aluminum coatings were applied to the front surface of the samples (inside of the APT walls) in an attempt to lower retention and permeation. The reduction in both retention and permeation produced by the nickel coatings, and the ability to apply them to the inside of the APT tubes, indicate that both nickel-coated Al 6061-T6 and nickel-coated SS3 16L tubes would be effective for use in APT. The results of this work were submitted to the Accelerator Production of Tritium project in document number TPO-E29-Z-TNS-X-00050, APT-MP-01-17.

  10. HEAVY ION LINEAR ACCELERATOR

    DOE Patents [OSTI]

    Van Atta, C.M.; Beringer, R.; Smith, L.

    1959-01-01

    A linear accelerator of heavy ions is described. The basic contributions of the invention consist of a method and apparatus for obtaining high energy particles of an element with an increased charge-to-mass ratio. The method comprises the steps of ionizing the atoms of an element, accelerating the resultant ions to an energy substantially equal to one Mev per nucleon, stripping orbital electrons from the accelerated ions by passing the ions through a curtain of elemental vapor disposed transversely of the path of the ions to provide a second charge-to-mass ratio, and finally accelerating the resultant stripped ions to a final energy of at least ten Mev per nucleon.

  11. Accelerator on a Chip

    SciTech Connect (OSTI)

    England, Joel

    2014-06-30

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  12. Based Accelerators Gennady Shvets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Finally, I will discuss a new structure-based laser-driven surface wave accelerator based on silicon carbide (SiC) that employs a polaritonic material with a negative dielectric ...

  13. Accelerator on a Chip

    ScienceCinema (OSTI)

    England, Joel

    2014-07-16

    SLAC's Joel England explains how the same fabrication techniques used for silicon computer microchips allowed their team to create the new laser-driven particle accelerator chips. (SLAC Multimedia Communications)

  14. CLASHING BEAM PARTICLE ACCELERATOR

    DOE Patents [OSTI]

    Burleigh, R.J.

    1961-04-11

    A charged-particle accelerator of the proton synchrotron class having means for simultaneously accelerating two separate contra-rotating particle beams within a single annular magnet structure is reported. The magnet provides two concentric circular field regions of opposite magnetic polarity with one field region being of slightly less diameter than the other. The accelerator includes a deflector means straddling the two particle orbits and acting to collide the two particle beams after each has been accelerated to a desired energy. The deflector has the further property of returning particles which do not undergo collision to the regular orbits whereby the particles recirculate with the possibility of colliding upon subsequent passages through the deflector.

  15. Charged particle accelerator grating

    DOE Patents [OSTI]

    Palmer, R.B.

    1985-09-09

    A readily disposable and replaceable accelerator grating for a relativistic particle accelerator is described. The grating is formed for a plurality of liquid droplets that are directed in precisely positioned jet streams to periodically dispose rows of droplets along the borders of a predetermined particle beam path. A plurality of lasers are used to direct laser beams onto the droplets, at predetermined angles, thereby to excite the droplets to support electromagnetic accelerating resonances on their surfaces. Those resonances operate to accelerate and focus particles moving along the beam path. As the droplets are distorted or destroyed by the incoming radiation, they are replaced at a predetermined frequency by other droplets supplied through the jet streams.

  16. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, J.P.; Briner, C.F.; Martin, S.B.

    1993-12-21

    A rolamite acceleration sensor is described which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently. 6 figures.

  17. Rolamite acceleration sensor

    DOE Patents [OSTI]

    Abbin, Joseph P.; Briner, Clifton F.; Martin, Samuel B.

    1993-01-01

    A rolamite acceleration sensor which has a failsafe feature including a housing, a pair of rollers, a tension band wrapped in an S shaped fashion around the rollers, wherein the band has a force-generation cut out and a failsafe cut out or weak portion. The failsafe cut out or weak portion breaks when the sensor is subjected to an excessive acceleration so that the sensor fails in an open circuit (non-conducting) state permanently.

  18. Native American Venture Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Native American Venture Acceleration Fund provides boost to six regional businesses February 26, 2013 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, New Mexico, Feb. 26, 2013-Six Native American businesses received grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help

  19. Accelerating Scientific Discovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerating Scientific Discovery at the Spallation Neutron Source Stuart Campbell Neutron Data Analysis & Visualization Division 2 Developing and applying the world's best tools for neutron scattering High Flux Isotope Reactor: Intense steady-state neutron flux and a high-brightness cold neutron source Spallation Neutron Source: World's most powerful accelerator-based neutron source Biology and Soft Matter Chemical and Engineering Materials Neutron Data Analysis and Visualization Quantum

  20. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    regional businesses receive Native American Venture Acceleration Fund grants February 1, 2016 Investing in Northern New Mexico's economy through jobs, new revenue LOS ALAMOS, N.M., Feb. 1, 2016-Four Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients

  1. FY 2012 SC Laboratory Performance Report Cards | U.S. DOE Office...

    Office of Science (SC) Website

    LP Home About Laboratory Appraisal Process FY 2015 Report Cards FY 2014 Report Cards FY ... Thomas Jefferson National Accelerator Facility Last modified: 12162015 12:00:52

  2. U.S. Department of Energy Fermi National Accelerator Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... slightly better, and the system has been running 15% to ... pre-1984 chillers using Class I CFCs such as R-11. ... Change order mechanism: Because change orders can be costly ...

  3. Preliminary Notice of Violation, SLAC National Accelerator Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Office of Enforcement issued a Preliminary Notice of Violation (WEA-2009-01) to Stanford University for violations of 10 C.F.R. 851 associated with a polyvinyl chloride pipe ...

  4. Los Alamos National Laboratory Venture Acceleration Fund boosts...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is the overall benefit to Northern New Mexico," Pesiri noted. Treatment for Diabetes Patients Integrative Enzymatics' 70,000 award funds animal studies for a new...

  5. Fermi National Accelerator Laboratory October 2013 STEM Educational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to introduce youth to the world of science and trains college and university students in high-tech research and development. K-12 students FY2012 FY2013 K-12 teachers FY2012...

  6. Christopher T. [Fermi National Accelerator Laboratory, P.O. Box...

    Office of Scientific and Technical Information (OSTI)

    IL 60439-4815 (United States), E-mail: zachos@anl.gov 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; COMPACTIFICATION; DUALITY; FERMIONS; GAUGE INVARIANCE; HOLOGRAPHY;...

  7. U.S. Department of Energy Fermi National Accelerator Laboratory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The new 4500-ton cooling system is expected to use 40% less energy and is free of ozone-depleting chlorofluorocarbons (CFCs). The 3.5 million project (2.8 million before ...

  8. SLAC National Accelerator Laboratory FACET & TEST BEAM FACILITIES...

    Office of Scientific and Technical Information (OSTI)

    Authors: Merrill, Frank E. 1 ; Borozdin, Konstantin N. 1 ; Garnett, Robert W. 1 ; Mariam, Fesseha G. 1 ; Saunders, Alexander 1 ; Walstrom, Peter L. 1 ; Morris, ...

  9. Accelerated Laboratory Tests Using Simultaneous UV, Temperature, and

    Broader source: Energy.gov (indexed) [DOE]

    Moisture for PV Encapsulants, Frontsheets, and Backsheets | Department of Energy Presented at the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado PDF icon pvmrw13_ps5_nist_gu.pdf More Documents & Publications Weathering Performance of PV Backsheets QA TG5 UV, temperature and humidity Agenda for the PV Module Reliability Workshop, February 26 - 27 2013, Golden, Colorado

  10. Vehicle Technologies Office Merit Review 2014: Accelerating the Evaluation and Market Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerating the...

  11. Vehicle Technologies Office Merit Review 2015: Accelerate the Development and Introduction of Advanced Technologies Through Model Based System Engineering

    Broader source: Energy.gov [DOE]

    Presentation given by Argonne National Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about accelerate the...

  12. Savannah Harris | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Expansion of the Universe Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating Expansion of the Universe Resources with Additional Information * Awards Saul Perlmutter Photo Courtesy of Lawrence Berkeley National Laboratory 'Saul Perlmutter, an astrophysicist at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics "for the discovery of the

  13. Jefferson Laboratory Findings Excite Theoreticians, Experimentatlists |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Laboratory Findings Excite Theoreticians, Experimentatlists Jefferson Laboratory Findings Excite Theoreticians, Experimentatlists March 1999 Seemingly reasonable assumptions define the human view of the world. But ruled of thumb can mislead - or be altogether incorrect. Fortunately, in physics, most assumptions can be tested. Those that don't measure up are amended. An experiment at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) has

  14. Laboratory Activities

    SciTech Connect (OSTI)

    Brown, Christopher F.; Serne, R. Jeffrey

    2008-01-17

    This chapter summarizes the laboratory activities performed by PNNLs Vadose Zone Characterization Project in support of the Tank Farm Vadose Zone Program, led by CH2M HILL Hanford Group, Inc. The results of these studies are contained in numerous reports (Lindenmeier et al. 2002; Serne et al. 2002a, 2002b, 2002c, 2002d, 2002e; Lindenmeier et al. 2003; Serne et al. 2004a, 2004b; Brown et al. 2005, 2006a, 2007; Serne et al. 2007) and have generated much of the data reported in Chapter 22 (Geochemistry-Contaminant Movement), Appendix G (Geochemistry-Contaminant Movement), and Cantrell et al. (2007, SST WMA Geochemistry Data Package in preparation). Sediment samples and characterization results from PNNLs Vadose Zone Characterization Project are also shared with other science and technology (S&T) research projects, such as those summarized in Chapter 12 (Associated Science Activities).

  15. 2015 Key Water Power Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving to

  16. 2015 Key Water Power Program and National Laboratory Accomplishments

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Slideshow | Department of Energy 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow 2015 Key Water Power Program and National Laboratory Accomplishments Slideshow Addthis 2015 Key Water Power Program and National Laboratory Accomplishments Report 1 of 28 2015 Key Water Power Program and National Laboratory Accomplishments Report By accelerating the development of markets for hydropower and marine and hydrokinetic (MHK) projects, the Water Power Program is striving

  17. The CAMS Accelerator Facility

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the production of biomedical carbon-14 samples. In addition, CAMS operates separate sample preparation laboratories for geological cosmogenic isotopes and for heavy element ...

  18. Lab announces selection of Venture Acceleration Fund recipients

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients Lab announces selection of Venture Acceleration Fund recipients Retriever Technology, Elemetric Instruments, Star Cryoelectronics, and Veezyon are recipients of awards. January 7, 2009 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new materials. Los Alamos

  19. Lab announces selection of partner for venture acceleration initiative

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture acceleration initiative partner Lab announces selection of partner for Venture Acceleration initiative The initiative is a pilot program aimed at strategically spinning off technology-based companies from the Lab. September 2, 2008 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy sources, to plasma physics and new

  20. Accelerate program supports students as they establish careers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerate Program Supports Students Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Accelerate program supports students as they establish careers More than 60 students from six Northern New Mexico colleges meet business representatives to hone their professional readiness skills. February 1, 2013 dummy image Read our archives. Contacts Editor Linda Anderman Email Community Programs Office Kurt

  1. Accelerated Technique for Carbon Mesoporous Materials - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Advanced Materials Advanced Materials Find More Like This Return to Search Accelerated Technique for Carbon Mesoporous Materials Oak Ridge National Laboratory Contact ORNL About This Technology Technology Marketing SummaryORNL has developed improved production that is both more efficient and less costly for carbon mesoporous materials with pore diameters between 2 and 50 nm. This accelerated production method offers a more resilient product for commercial use in gas separation, water

  2. Six regional businesses receive Native American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grants Native American Venture Acceleration Fund grants Six regional businesses receive Native American Venture Acceleration Fund grants The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. February 4, 2014 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines from bioscience, sustainable energy

  3. Six regional businesses receive Native American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    grants Native American Venture Acceleration Fund grants Six regional businesses receive Native American Venture Acceleration Fund grants Grant recipients are Walatowa Timber, High Water Mark, Ohkay Owingeh Housing Authority, Tano Services Corporation, Professional Cleaning Solutions and Than Povi. March 3, 2015 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop to research and innovation covering multi-disciplines

  4. Accelerated Aging of Roofing Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Aging of Roofing Materials Accelerated Aging of Roofing Materials Addthis 1 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman prepares to insert clean and soiled roofing specimens into a weatherometer. The weatherometer simulates exposure to heat, moisture, and UV radiation. Image: Heat Island Group, Lawrence Berkeley National Laboratory 2 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman configures a weatherometer to simulate the effects of heat, moisture, and UV

  5. Federal Laboratory Multiplies Its Research Capacity | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Federal Laboratory Multiplies Its Research Capacity Federal Laboratory Multiplies Its Research Capacity September 21, 2000 Thanks to high-tech development work and some creative tuning and tweaking, the $650 million Thomas Jefferson National Accelerator Facility in Newport News, Va., can now accelerate beams of electrons to 6 billion electron volts - more energy by half than taxpayers originally paid for. With higher-energy electron beams, researchers using this U.S. Department of Energy

  6. Sandia National Laboratories beginnings focus of Los Alamos' 70th

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    anniversary lecture Alamos' 70th anniversary lecture Sandia National Laboratories beginnings focus of Los Alamos' 70th anniversary lecture Sandia National Laboratories historian Rebecca Ullrich discusses Sandia's transition from a Los Alamos division to an independent organization. March 6, 2013 The Hermes II flash X-ray accelerator was built in 1968 to support testing of materials and components. The Hermes II flash X-ray accelerator was built in 1968 to support testing of materials and

  7. Microelectromechanical acceleration-sensing apparatus

    DOE Patents [OSTI]

    Lee, Robb M.; Shul, Randy J.; Polosky, Marc A.; Hoke, Darren A.; Vernon, George E.

    2006-12-12

    An acceleration-sensing apparatus is disclosed which includes a moveable shuttle (i.e. a suspended mass) and a latch for capturing and holding the shuttle when an acceleration event is sensed above a predetermined threshold level. The acceleration-sensing apparatus provides a switch closure upon sensing the acceleration event and remains latched in place thereafter. Examples of the acceleration-sensing apparatus are provided which are responsive to an acceleration component in a single direction (i.e. a single-sided device) or to two oppositely-directed acceleration components (i.e. a dual-sided device). A two-stage acceleration-sensing apparatus is also disclosed which can sense two acceleration events separated in time. The acceleration-sensing apparatus of the present invention has applications, for example, in an automotive airbag deployment system.

  8. LCLS Sample Preparation Laboratory | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LCLS Sample Preparation Laboratory Kayla Zimmerman | (650) 926-6281 Lisa Hammon, LCLS Lab Coordinator Welcome to the LCLS Sample Preparation Laboratory. This small general use wet...

  9. Heat Transfer Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Heat Transfer Laboratory Materials in solids or fluid forms play an important role in a ... Argonne's Heat Transfer Laboratory enables researchers to: Synthesize and prepare heat ...

  10. National Laboratory Impact Initiative

    Broader source: Energy.gov [DOE]

    The National Laboratory Impact Initiative supports the relationship between the Office of Energy Efficiency & Renewable Energy and the national laboratory enterprise.  The national laboratories...

  11. SSRLUO EC Ballot Nominations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    28th Annual Stanford Synchrotron Radiation Laboratory Users' Meeting Menlo Park, California USA October 18-19, 2001 SSRLUO Executive Committee Ballot -- Nominations Due September...

  12. Report on accelerated corrosion studies.

    SciTech Connect (OSTI)

    Mowry, Curtis Dale; Glass, Sarah Jill; Sorensen, Neil Robert

    2011-03-01

    Sandia National Laboratories (SNL) conducted accelerated atmospheric corrosion testing for the U.S. Consumer Product Safety Commission (CPSC) to help further the understanding of the development of corrosion products on conductor materials in household electrical components exposed to environmental conditions representative of homes constructed with problem drywall. The conditions of the accelerated testing were chosen to produce corrosion product growth that would be consistent with long-term exposure to environments containing humidity and parts per billion (ppb) levels of hydrogen sulfide (H{sub 2}S) that are thought to have been the source of corrosion in electrical components from affected homes. This report documents the test set-up, monitoring of electrical performance of powered electrical components during the exposure, and the materials characterization conducted on wires, screws, and contact plates from selected electrical components. No degradation in electrical performance (measured via voltage drop) was measured during the course of the 8-week exposure, which was approximately equivalent to 40 years of exposure in a light industrial environment. Analyses show that corrosion products consisting of various phases of copper sulfide, copper sulfate, and copper oxide are found on exposed surfaces of the conductor materials including wires, screws, and contact plates. The morphology and the thickness of the corrosion products showed a range of character. In some of the copper wires that were observed, corrosion product had flaked or spalled off the surface, exposing fresh metal to the reaction with the contaminant gasses; however, there was no significant change in the wire cross-sectional area.

  13. Renewable Energy Laboratory

    Open Energy Info (EERE)

    Radiation Budget Measurement Networks, National Oceanic and Atmospheric Administration Air Resources Laboratory and Earth System Research Laboratory Global Monitoring Division *...

  14. SSRL/LCLS User Account Form

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    REVISED 08/13/12 CJK SSRL/LCLS User Account Form To open or renew an account, complete and submit this form along with an original Purchase Order (PO) from your institution. The PO should be made to SLAC National Accelerator Laboratory for the amount of estimated expenditures (the suggested minimum is $1,000). Send this form with the Purchase Order to: Jackie Kerlegan SLAC National Accelerator Laboratory User Research Administration, MS 99 2575 Sand Hill Rd. Menlo Park, CA 94025 FAX:

  15. Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating

    Office of Scientific and Technical Information (OSTI)

    Expansion of the Universe Saul Perlmutter, Distant Supernovae, Dark Energy, and the Accelerating Expansion of the Universe Resources with Additional Information * Awards Saul Perlmutter Photo Courtesy of Lawrence Berkeley National Laboratory 'Saul Perlmutter, an astrophysicist at the U.S. Department of Energy's Lawrence Berkeley National Laboratory and a professor of physics at the University of California at Berkeley, has won the 2011 Nobel Prize in Physics "for the discovery of the

  16. Accelerator research studies

    SciTech Connect (OSTI)

    Not Available

    1993-01-01

    The Accelerator Research Studies program at the University of Maryland, sponsored by the Department of Energy under grant number DE-FG05-91ER40642, is currently in the second year of a three-year funding cycle. The program consists of the following three tasks: TASK A, Study of Transport and Longitudinal Compression of Intense, High-Brightness Beams,'' (P.I., M. Reiser); TASK B, Study of Collective Ion Acceleration by Intense Electron Beams and Pseudospark Produced High Brightness Electron Beams,'' (Co-P.I.'s, W.W. Destler, M. Reiser, M.J. Rhee, and C.D. Striffler); TASK C, Study of a Gyroklystron High-Power Microwave Source for Linear Colliders,'' (Co-P.I.'s, V.L. Granatstein, W. Lawson, M. Reiser, and C.D. Striffler). In this report we document the progress that has been made during the past year for each of the three tasks.

  17. Adaptive control for accelerators

    DOE Patents [OSTI]

    Eaton, Lawrie E.; Jachim, Stephen P.; Natter, Eckard F.

    1991-01-01

    An adaptive feedforward control loop is provided to stabilize accelerator beam loading of the radio frequency field in an accelerator cavity during successive pulses of the beam into the cavity. A digital signal processor enables an adaptive algorithm to generate a feedforward error correcting signal functionally determined by the feedback error obtained by a beam pulse loading the cavity after the previous correcting signal was applied to the cavity. Each cavity feedforward correcting signal is successively stored in the digital processor and modified by the feedback error resulting from its application to generate the next feedforward error correcting signal. A feedforward error correcting signal is generated by the digital processor in advance of the beam pulse to enable a composite correcting signal and the beam pulse to arrive concurrently at the cavity.

  18. Commissioning the GTA accelerator

    SciTech Connect (OSTI)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V.; Connolly, R.; Weiss, R.; Saadatmand, K.

    1992-09-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth`s magnetic field and travel in straight lines unless they enter the earth`s atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  19. Commissioning the GTA accelerator

    SciTech Connect (OSTI)

    Sander, O.R.; Atkins, W.H.; Bolme, G.O.; Bowling, S.; Brown, S.; Cole, R.; Gilpatrick, J.D.; Garnett, R.; Guy, F.W.; Ingalls, W.B.; Johnson, K.F.; Kerstiens, D.; Little, C.; Lohsen, R.A.; Lloyd, S.; Lysenko, W.P.; Mottershead, C.T.; Neuschaefer, G.; Power, J.; Rusthoi, D.P.; Sandoval, D.P. Stevens, R.R. Jr.; Vaughn, G.; Wadlinger, E.A.; Yuan, V. ); Connolly, R.; Weiss, R. (Gr

    1992-01-01

    The Ground Test Accelerator (GTA) is supported by the Strategic Defense command as part of their Neutral Particle Beam (NPB) program. Neutral particles have the advantage that in space they are unaffected by the earth's magnetic field and travel in straight lines unless they enter the earth's atmosphere and become charged by stripping. Heavy particles are difficult to stop and can probe the interior of space vehicles; hence, NPB can function as a discriminator between warheads and decoys. We are using GTA to resolve the physics and engineering issues related to accelerating, focusing, and steering a high-brightness, high-current H{sup -} beam and then neutralizing it. Our immediate goal is to produce a 24-MeV, 50mA device with a 2% duty factor.

  20. Accelerators for Cancer Therapy

    DOE R&D Accomplishments [OSTI]

    Lennox, Arlene J.

    2000-05-30

    The vast majority of radiation treatments for cancerous tumors are given using electron linacs that provide both electrons and photons at several energies. Design and construction of these linacs are based on mature technology that is rapidly becoming more and more standardized and sophisticated. The use of hadrons such as neutrons, protons, alphas, or carbon, oxygen and neon ions is relatively new. Accelerators for hadron therapy are far from standardized, but the use of hadron therapy as an alternative to conventional radiation has led to significant improvements and refinements in conventional treatment techniques. This paper presents the rationale for radiation therapy, describes the accelerators used in conventional and hadron therapy, and outlines the issues that must still be resolved in the emerging field of hadron therapy.

  1. SSRL Accelerator Phycics Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at.gif (15297 bytes) BeamOptics.gif (29047 bytes) ICFA2000t.gif (31362 bytes) Home Page LCLS Accelerator Physics at SSRL The field tha t can be covered by the Accelerator Physics...

  2. Linear Accelerator | Advanced Photon Source

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Linear Accelerator Producing brilliant x-ray beams at the APS begins with electrons emitted from a cathode heated to 1100 C. The electrons are accelerated by high-voltage...

  3. LOS ALAMOS, New Mexico, January 7, 2009-Los Alamos National Laboratory (LANL)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Venture Acceleration Fund recipients January 7, 2009 LOS ALAMOS, New Mexico, January 7, 2009-Los Alamos National Laboratory (LANL) has selected Retriever Technology, Elemetric Instruments, Star Cryoelectronics, and Veezyon as recipients of awards from the Los Alamos National Security, LLC Venture Acceleration Fund. The Laboratory's Venture Acceleration Fund provides investments of up to $100,000 to regional entrepreneurs, companies, investors, or strategic partners that use LANL technology or

  4. Linear induction accelerator

    DOE Patents [OSTI]

    Buttram, M.T.; Ginn, J.W.

    1988-06-21

    A linear induction accelerator includes a plurality of adder cavities arranged in a series and provided in a structure which is evacuated so that a vacuum inductance is provided between each adder cavity and the structure. An energy storage system for the adder cavities includes a pulsed current source and a respective plurality of bipolar converting networks connected thereto. The bipolar high-voltage, high-repetition-rate square pulse train sets and resets the cavities. 4 figs.

  5. Venture Acceleration Fund wins

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    wins entrepreneurship award October 23, 2014 Fund supports economic development in Northern New Mexico LOS ALAMOS, N.M., Oct. 23, 2014-The Venture Acceleration Fund (VAF) created by Los Alamos National Security, LLC (LANS) and administered by the Regional Development Corporation received the 2014 entrepreneurship award from the International Economic Development Council (IEDC). The award was presented at IEDC's annual conference this week in Fort Worth, Texas. "Since the VAF was initiated

  6. WIPP Accelerating Cleanup

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ACCELERATING CLEANUP: PATHS TO CLOSURE CARLSBAD AREA OFFICE JUNE 1998 I. Operations/Field Overview CAO Mission The mission of the Carlsbad Area Office (CAO) is to protect human health and the environment by opening and operating the Waste Isolation Pilot Plant (WIPP) for safe disposal of transuranic (TRU) waste and by establishing an effective system for management of TRU waste from generation to disposal. It includes personnel assigned to CAO, WIPP site operations, transportation, and other

  7. Accelerating Advanced Material Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Materials Research in the Information Age Accelerating Advanced Material Development NERSC Science Gateway a 'Google of Material Properties' October 31, 2011 Linda Vu, lvu@lbl.gov, +1 510 495 2402 Kristin Persson is one of the founding scientists behind the Materials Project, a computational tool aimed at taking the guesswork out of new materials discoveries, especially those aimed at energy applications like batteries. (Roy Kaltschmidt, LBNL) New materials are crucial to building a clean energy

  8. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February 4, 2014 LANS, LANL fostering economic development in Northern New Mexico LOS ALAMOS, N.M., Feb. 4, 2014-Six Northern New Mexico Native American-owned and operated businesses received a total of $60,000 in grants through a new Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. - 2

  9. Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory

    National Nuclear Security Administration (NNSA)

    Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory Lawrence Livermore National Laboratory The Terascale Simulation Facility is a world-class supercomputing

  10. Acceleration during magnetic reconnection

    SciTech Connect (OSTI)

    Beresnyak, Andrey; Li, Hui

    2015-07-16

    The presentation begins with colorful depictions of solar x-ray flares and references to pulsar phenomena. Plasma reconnection is complex, could be x-point dominated or turbulent, field lines could break due to either resistivity or non-ideal effects, such as electron pressure anisotropy. Electron acceleration is sometimes observed, and sometimes not. One way to study this complex problem is to have many examples of the process (reconnection) and compare them; the other way is to simplify and come to something robust. Ideal MHD (E=0) turbulence driven by magnetic energy is assumed, and the first-order acceleration is sought. It is found that dissipation in big (length >100 ion skin depths) current sheets is universal and independent on microscopic resistivity and the mean imposed field; particles are regularly accelerated while experiencing curvature drift in flows driven by magnetic tension. One example of such flow is spontaneous reconnection. This explains hot electrons with a power-law tail in solar flares, as well as ultrashort time variability in some astrophysical sources.

  11. ACCELERATION INTEGRATING MEANS

    DOE Patents [OSTI]

    Wilkes, D.F.

    1961-08-29

    An acceleration responsive device is described. A housing has at one end normally open electrical contacts and contains a piston system with a first part of non-magnetic material having metering orifices in the side walls for forming an air bearing between it and the walls of the housing; this first piston part is normally held against the other end of the housing from the noted contacts by a second piston or reset part. The reset part is of partly magnetic material, is separable from the flrst piston part, and is positioned within the housing intermediate the contacts and the first piston part. A magnet carried by the housing imposes a retaining force upon the reset part, along with a helical compression spring that is between the reset part and the end with the contacts. When a predetermined acceleration level is attained, the reset part overcomes the bias or retaining force provided by the magnet and the spring'' snaps'' into a depression in the housing adjacent the contacts. The first piston part is then free to move toward the contacts with its movement responsive tc acceleration forces and the metering orifices. (AEC)

  12. History of Proton Linear Accelerators

    DOE R&D Accomplishments [OSTI]

    Alvarez, L. W.

    1987-01-01

    Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

  13. Ames Laboratory Logos | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Logos The Ames Laboratory Logo comes in several formats. EPS files are vector graphics created in Adobe Illustrator and saved with a tiff preview so they will...

  14. Sandia Energy - Conventional Water Power: Market Acceleration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Market Acceleration Home Stationary Power Energy Conversion Efficiency Water Power Conventional Water Power: Market Acceleration Conventional Water Power: Market AccelerationTara...

  15. Accelerator Stewardship Test Facility Program - Elliptical Twin...

    Office of Scientific and Technical Information (OSTI)

    Accelerator Stewardship Test Facility Program - Elliptical Twin Cavity for Accelerator Applications Citation Details In-Document Search Title: Accelerator Stewardship Test Facility ...

  16. Laboratory Graduate Research Appointment | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Graduate Research Program Perform your thesis research among the best and the brightest at Argonne National Laboratory. About the Program Laboratory Graduate Research (Lab Grad) appointments are available to qualified U.S. university graduate students who wish to carry out their thesis research at Argonne National Laboratory under co-sponsorship of an Argonne staff member and a faculty member. The university sets the academic standard and awards the degree. The participation of the

  17. Ames Laboratory Emergency Plan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Emergency Plan Version Number: 13.0 Document Number: Plan 46300.001 Effective Date: 11/2014

  18. Ames Laboratory Hot Canyon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Hot Canyon This historical film footage, originally produced in the early 1950s as part of a series by WOI-TV, shows atomic research at Ames Laboratory. The work was conducted in a special area of the Laboratory known as the "Hot Canyon."

  19. Preliminary description of the ground test accelerator cryogenic cooling system

    SciTech Connect (OSTI)

    Edeskuty, F.J.; Stewart, W.F.

    1988-01-01

    The Ground Test Accelerator (GTA) under construction at the Los Alamos National Laboratory is part of the Neutral Particle Beam Program supported by the Strategic Defense Initiative Office. The GTA is a full-sized test facility to evaluate the feasibility of using a negative ion accelerator to produce a neutral particle beam (NPB). The NPB would ultimately be used outside the earth's atmosphere as a target discriminator or as a directed energy weapon. The operation of the GTA at cryogenic temperature is advantageous for two reasons: first, the decrease of temperature caused a corresponding decrease in the rf heating of the copper in the various units of the accelerator, and second, at the lower temperature the decrease in the thermal expansion coefficient also provides greater thermal stability and consequently, better operating stability for the accelerator. This paper discusses the cryogenic cooling system needed to achieve these advantages. 5 figs., 3 tabs.

  20. American Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 3, 2015 Nearly $700,000 in new revenue generated last two years LOS ALAMOS, N.M., March 3, 2015-Six Northern New Mexico Native American- owned and operated businesses received a total of $60,000 in grants through a Native American Venture Acceleration Fund created by Los Alamos National Security, LLC (LANS) and the Regional Development Corporation. The grants are designed to help the recipients create jobs, increase their revenue base and help diversify the area economy. - 2 - "Our

  1. LOS ALAMOS, New Mexico, July 9, 2008- Los Alamos National Laboratory is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    venture acceleration fund July 9, 2008 LOS ALAMOS, New Mexico, July 9, 2008- Los Alamos National Laboratory is soliciting ideas for projects that facilitate the creation and growth of regional businesses based on Los Alamos National Laboratory (LANL) technology or expertise. The Laboratory's Venture Acceleration Fund (VAF) will provide investments of up to $100,000 to facilitate projects with regional entrepreneurs, companies, investors, or strategic partners. The deadline for submission is July

  2. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Hub led by the Ames Laboratory, recovers valuable rare-earth magnetic material from manufacturing waste and creates useful magnets out of it. Ames Laboratory...

  3. mark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Profile Mark Gordon Associate Chemical & Biological Sciences 201 Spedding ... Group Ames Laboratory Research Projects: Chemical Physics TheoreticalComputational Tools ...

  4. Facilities | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Research Facility Distributed Energy Research Center Engine Research Facility Heat Transfer Laboratory Tribology Laboratory Transportation Beamline at the Advanced Photon Source...

  5. National Renewable Energy Laboratory

    Office of Environmental Management (EM)

    Renewable Energy Laboratory Innovation for Our Energy Future Renewable Resource Options Geothermal Biomass Solar Hydro Wind National Renewable Energy Laboratory Innovation ...

  6. Sustainability | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sustainability Ames Laboratory is committed to environmental sustainability in all of its operations as outlined in the Laboratory's Site Sustainability Plan. Executive orders set ...

  7. Cytogenetic Biodosimetry Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cytogenetic Biodosimetry Laboratory Blood samples are shipped at room temperature to the laboratory. White blood cells, lymphocytes, are cultured under sterile conditions in an...

  8. Testing a combined vibration and acceleration environment.

    SciTech Connect (OSTI)

    Jepsen, Richard Alan; Romero, Edward F.

    2005-01-01

    Sandia National Laboratories has previously tested a capability to impose a 7.5 g-rms (30 g peak) radial vibration load up to 2 kHz on a 25 lb object with superimposed 50 g acceleration at its centrifuge facility. This was accomplished by attaching a 3,000 lb Unholtz-Dickie mechanical shaker at the end of the centrifuge arm to create a 'Vibrafuge'. However, the combination of non-radial vibration directions, and linear accelerations higher than 50g's are currently not possible because of the load capabilities of the shaker and the stresses on the internal shaker components due to the combined centrifuge acceleration. Therefore, a new technique using amplified piezo-electric actuators has been developed to surpass the limitations of the mechanical shaker system. They are lightweight, modular and would overcome several limitations presented by the current shaker. They are 'scalable', that is, adding more piezo-electric units in parallel or in series can support larger-weight test articles or displacement/frequency regimes. In addition, the units could be mounted on the centrifuge arm in various configurations to provide a variety of input directions. The design along with test results will be presented to demonstrate the capabilities and limitations of the new piezo-electric Vibrafuge.

  9. Siemens Technology Accelerator | Open Energy Information

    Open Energy Info (EERE)

    Technology Accelerator Jump to: navigation, search Name: Siemens Technology Accelerator Place: Germany Sector: Services Product: General Financial & Legal Services ( Subsidiary ...

  10. SETsquared Business Acceleration | Open Energy Information

    Open Energy Info (EERE)

    SETsquared Business Acceleration Jump to: navigation, search Name: SETsquared Business Acceleration Place: United Kingdom Sector: Services Product: General Financial & Legal...

  11. The Sample Preparation Laboratories | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cynthia Patty 1 Sam Webb 2 John Bargar 3 Arizona 4 Chemicals 5 Team Work 6 Bottles 7 Glass 8 Plan Ahead! See the tabs above for Laboratory Access and forms you'll need to complete. Equipment and Chemicals tabs detail resources already available on site. Avoid delays! Hazardous materials use may require a written Standard Operating Procedure (SOP) before you work. Check the Chemicals tab for more information. The Sample Preparation Laboratories The Sample Preparation Laboratories provide wet lab

  12. Status of Laboratory Goals | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Status of Laboratory Goals Status of Calendar Year 2016 objectives and targets. Item 1 Recommendation: The EMSSC recommends an Open House be held in the Ames Laboratory Storeroom and Warehouse by April 1, 2016. The Open House will provide Ames Laboratory employees the opportunity to discover what supplies are readily available through the storeroom and showcase the Equipment Pool website. This recommendation will increase awareness of the sustainable purchasing requirements by showcasing these

  13. Cast dielectric composite linear accelerator

    DOE Patents [OSTI]

    Sanders, David M. (Livermore, CA); Sampayan, Stephen (Manteca, CA); Slenes, Kirk (Albuquerque, NM); Stoller, H. M. (Albuquerque, NM)

    2009-11-10

    A linear accelerator having cast dielectric composite layers integrally formed with conductor electrodes in a solventless fabrication process, with the cast dielectric composite preferably having a nanoparticle filler in an organic polymer such as a thermosetting resin. By incorporating this cast dielectric composite the dielectric constant of critical insulating layers of the transmission lines of the accelerator are increased while simultaneously maintaining high dielectric strengths for the accelerator.

  14. Ideum awarded Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ideum awarded Venture Acceleration Funds Motion recognition software business receives Venture Acceleration Funds LANS Venture Acceleration Fund (VAF) award enabled Ideum to develop motion recognition software for international release. April 3, 2012 Jim Spadaccini, owner of Ideum a software development company in Corrales Jim Spadaccini (R) has tapped into the Lab's economic development programs: VAF, NMSBA, Market Intelligence. Ideum, his Corrales, New Mexico based business, creates

  15. HIGH ENERGY PARTICLE ACCELERATOR

    DOE Patents [OSTI]

    Courant, E.D.; Livingston, M.S.; Snyder, H.S.

    1959-04-14

    An improved apparatus is presented for focusing charged particles in an accelerator. In essence, the invention includes means for establishing a magnetic field in discrete sectors along the path of moving charged particles, the magnetic field varying in each sector in accordance with the relation. B = B/ sub 0/ STAln (r-r/sub 0/)/r/sub 0/!, where B/sub 0/ is the value of the magnetic field at the equilibrium orbit of radius r/sub 0/ of the path of the particles, B equals the magnetic field at the radius r of the chamber and n equals the magnetic field gradient index, the polarity of n being abruptly reversed a plurality of times as the particles travel along their arcuate path. With this arrangement, the particles are alternately converged towards the axis of their equillbrium orbit and diverged therefrom in successive sectors with a resultant focusing effect.

  16. Accelerating Spectrum Sharing Technologies

    SciTech Connect (OSTI)

    Juan D. Deaton; Lynda L. Brighton; Rangam Subramanian; Hussein Moradi; Jose Loera

    2013-09-01

    Spectrum sharing potentially holds the promise of solving the emerging spectrum crisis. However, technology innovators face the conundrum of developing spectrum sharing technologies without the ability to experiment and test with real incumbent systems. Interference with operational incumbents can prevent critical services, and the cost of deploying and operating an incumbent system can be prohibitive. Thus, the lack of incumbent systems and frequency authorization for technology incubation and demonstration has stymied spectrum sharing research. To this end, industry, academia, and regulators all require a test facility for validating hypotheses and demonstrating functionality without affecting operational incumbent systems. This article proposes a four-phase program supported by our spectrum accountability architecture. We propose that our comprehensive experimentation and testing approach for technology incubation and demonstration will accelerate the development of spectrum sharing technologies.

  17. Low energy demonstration accelerator technical area 53

    SciTech Connect (OSTI)

    1996-04-01

    As part of the Department of Energy`s (DOE) need to maintain the capability of producing tritium in support of its historic and near-term stewardship of the nation`s nuclear weapons stockpile, the agency has recently completed a Programmatic Environmental Impact Statement for Tritium Supply and Recycling. The resulting Record of Decision (ROD) determined that over the next three years the DOE would follow a dual-track acquisition strategy that assures tritium production for the nuclear weapon stockpile in a rapid, cost effective, and safe manner. Under this strategy the DOE will further investigate and compare two options for producing tritium: (1) purchase of an existing commercial light-water reactor or irradiation services with an option to purchase the reactor for conversion to a defense facility; and (2) design, build, and test critical components of a system for accelerator production of tritium (APT). The final decision to select the primary production option will be made by the Secretary of Energy in the October 1998 time frame. The alternative not chosen as the primary production method, if feasible, would be developed as a back-up tritium supply source. This Environmental Assessment (EA) analyzes the potential environmental effects that would be expected to occur if the DOE were to design, build, and test critical prototypical components of the accelerator system for tritium production, specifically the front-end low-energy section of the accelerator, at Los Alamos National Laboratory. The Low Energy Demonstration Accelerator (LEDA) would be incrementally developed and tested in five separate stages over the next seven years. The following issues were evaluated for the proposed action: utility demands, air, human health, environmental restoration, waste management, transportation, water, threatened and endangered species, wetlands, cultural resources, and environmental justice.

  18. Organizations | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Physics Research Facilities and Centers Center for Electrical Energy Storage Argonne Tandem Linac Accelerator System Argonne-Northwestern Solar Energy Research Center Center for...

  19. Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    could benefit consumers, industry Read More Scientific User Facilities Argonne Tandem Linac Accelerator System ATLAS studies the properties of atomic nuclei, the core of...

  20. Analytical Chemistry Laboratory | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemistry Laboratory provides a broad range of analytical chemistry support services to the scientific and engineering programs. AnalyticalChemistryLaboratoryfactsheet...

  1. Laboratory Equipment & Supplies | Sample Preparation Laboratories

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Most laboratories offer ice machines and cold rooms. Specialty storage areas for samples include a -80 freezer, argon and nitrogen glove boxes, radiation contamination areas, inert ...

  2. Tuberville Lab Personnel | Savannah River Ecology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tsung-Dao Lee, Weak Interactions, and Nonconservation of Parity Resources with Additional Information Tsung-Dao Lee Courtesy of Brookhaven National Laboratory T. D. Lee "has devoted his long career to the study of the theoretical aspects of particle and nuclear physics. In 1957, Lee and Chen Ning Yang won the Nobel Prize in physics for disproving a tenet of physics known as the conservation of parity. Their finding was based on research carried out at Brookhaven's particle accelerator, the

  3. Office of the Director | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources » Office of Science User facilities Office of Science User facilities The Office of Science national scientific user facilities provide researchers with the most advanced tools of modern science including accelerators, colliders, supercomputers, light sources and neutron sources, as well as facilities for studying the nanoworld, the environment, and the atmosphere. In Fiscal Year 2013 over 30,000 researchers from academia, industry, and government laboratories, spanning all fifty

  4. Education and Outreach | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education and Outreach Education and Outreach Argonne National Laboratory provides educational and outreach support to the U.S. Department of Energy in a variety of ways to help prepare the next generation of engineers and educate consumers and fleet managers about sustainable energy practices. Projects Advanced Vehicle Technology Competitions Training future engineers and automotive leaders and accelerating the development and demonstration of technologies of interest to the U.S. Department of

  5. Adam J. Schwartz The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    J. Schwartz The Ames Laboratory 311 TASF Ames, IA 50011-3020 ajschwartz@ameslab.gov www.ameslab.gov Research Interests Accelerating advanced material development and deployment Structure - property - processing - performance relationships High pressure and dynamic properties of materials Critical materials Rare earth elements, alloys, and compounds Actinide science Education Ph.D., Materials Science and Engineering, University of Pittsburgh, 1991. Dissertation: "Magnetization, Coercivity,

  6. Sandia National Laboratories - Fallon | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fallon Sandia National Laboratories - Fallon FALLON_Final.png The Fallon FORGE team seeks to establish and manage a well characterized and highly instrumented field test site dedicated to advancing EGS research, enabling the broader engineering and science community to accelerate the deployment of EGS. The team is working in partnership with the U.S. Department of Defense to reduce our Nation's dependency on fossil fuels and to safeguard the military readiness for the United States. Prior

  7. BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc.

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    6328 CRISP 71-57 BROOKHAVEN NATIONAL LABORATORY Associated Universities, Inc. Upton, New York ACCELERATOR DEPARTMENT Informal Report Mi m HIGH ENERGY ELECTROMAGNETIC AND WEAK INTERACTION PROCESSES T.D. Lee January 11, 1972 N O T I C E This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employeear,^\,nor any of their contractors, subcontractors, or their employees,

  8. Equipment | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Zeiss Axiovert 200 Optical Microscope Spark Cutter Fully Equipped Metallographic Laboratory Electropolisher Dimpler

  9. Accelerate Energy Productivity 2030 Launch

    Broader source: Energy.gov [DOE]

    Today, the Department of Energy kicked off Accelerate Energy Productivity 2030. This initiative supports President Obama’s goal to double our energy productivity by 2030.

  10. 2012 Advanced Accelerator Concepts Workshop

    SciTech Connect (OSTI)

    Downer, Michael C.

    2015-03-23

    We report on the organization and outcome of the 2012 Advanced Accelerator Concepts Workshop, held in Austin, Texas in June 2012.

  11. Compact accelerator for medical therapy

    DOE Patents [OSTI]

    Caporaso, George J.; Chen, Yu-Jiuan; Hawkins, Steven A.; Sampayan, Stephen E.; Paul, Arthur C.

    2010-05-04

    A compact accelerator system having an integrated particle generator-linear accelerator with a compact, small-scale construction capable of producing an energetic (.about.70-250 MeV) proton beam or other nuclei and transporting the beam direction to a medical therapy patient without the need for bending magnets or other hardware often required for remote beam transport. The integrated particle generator-accelerator is actuable as a unitary body on a support structure to enable scanning of a particle beam by direction actuation of the particle generator-accelerator.

  12. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, John A.; Greenwald, Shlomo

    1989-01-01

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle.

  13. High field gradient particle accelerator

    DOE Patents [OSTI]

    Nation, J.A.; Greenwald, S.

    1989-05-30

    A high electric field gradient electron accelerator utilizing short duration, microwave radiation, and capable of operating at high field gradients for high energy physics applications or at reduced electric field gradients for high average current intermediate energy accelerator applications is disclosed. Particles are accelerated in a smooth bore, periodic undulating waveguide, wherein the period is so selected that the particles slip an integral number of cycles of the r.f. wave every period of the structure. This phase step of the particles produces substantially continuous acceleration in a traveling wave without transverse magnetic or other guide means for the particle. 10 figs.

  14. Accelerator R&D

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accelerator R&D Accelerator R&D Investigating the field of high energy physics through experiments that strengthen our fundamental understanding of matter, energy, space, and time. Get Expertise Rajan Gupta (505) 667-7664 Email Bruce Carlsten (505) 667-5657 Email Accelerator R&D R&D model Figure 1: Conceptual drawing of a superconducting radio-frequency accelerator with a PBG coupler cell. The ultimate goal of this project is to experimentally demonstrate the applicability of

  15. Accounting Resources | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Accounting Resources Ames Laboratory Human Resources Forms Ames Laboratory Travel Forms Ames Laboratory Forms (Select Department) ISU Intramural PO Request

  16. University of Washington, Nuclear Physics Laboratory annual report, 1995

    SciTech Connect (OSTI)

    1995-04-01

    The Nuclear Physics Laboratory of the University of Washington supports a broad program of experimental physics research. The current program includes in-house research using the local tandem Van de Graff and superconducting linac accelerators and non-accelerator research in double beta decay and gravitation as well as user-mode research at large accelerator and reactor facilities around the world. This book is divided into the following areas: nuclear astrophysics; neutrino physics; nucleus-nucleus reactions; fundamental symmetries and weak interactions; accelerator mass spectrometry; atomic and molecular clusters; ultra-relativistic heavy ion collisions; external users; electronics, computing, and detector infrastructure; Van de Graff, superconducting booster and ion sources; nuclear physics laboratory personnel; degrees granted for 1994--1995; and list of publications from 1994--1995.

  17. National Laboratory's Weapons Program

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    About Us » Strategic Programs » National Laboratory Impact Initiative Team National Laboratory Impact Initiative Team The mission of the Office of Energy Efficiency and Renewable Energy's (EERE's) National Laboratory Impact Initiative is to significantly increase the industrial impact of the Energy Department's national laboratories on the U.S. clean energy sector. The goals of the Initiative are to: Increase and enhance laboratory-private sector relationships Increase and streamline access to

  18. EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Dollars | Department of Energy Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars EM Plan Accelerates Uranium-233 Disposal, Saves Taxpayers Half Billion Dollars August 1, 2012 - 12:00pm Addthis For more than 50 years, the uranium-233 (U-233) supply has been stored at the Oak Ridge National Laboratory’s (ORNL) Building 3019. The facility, located near the center of the ORNL campus, is owned by EM and one of the nation’s few repositories for U-233 and other

  19. Baseline review of the U.S. LHC Accelerator project

    SciTech Connect (OSTI)

    1998-02-01

    The Department of Energy (DOE) Review of the U.S. Large Hadron Collider (LHC) Accelerator project was conducted February 23--26, 1998, at the request of Dr. John R. O`Fallon, Director, Division of High Energy Physics, Office of Energy Research, U.S. DOE. This is the first review of the U.S. LHC Accelerator project. Overall, the Committee found that the U.S. LHC Accelerator project effort is off to a good start and that the proposed scope is very conservative for the funding available. The Committee recommends that the project be initially baselined at a total cost of $110 million, with a scheduled completion data of 2005. The U.S. LHC Accelerator project will supply high technology superconducting magnets for the interaction regions (IRs) and the radio frequency (rf) straight section of the LHC intersecting storage rings. In addition, the project provides the cryogenic support interface boxes to service the magnets and radiation absorbers to protect the IR dipoles and the inner triplet quadrupoles. US scientists will provide support in analyzing some of the detailed aspects of accelerator physics in the two rings. The three laboratories participating in this project are Brookhaven National Laboratory, Fermi National Accelerator Laboratory (Fermilab), and Lawrence Berkeley National Laboratory. The Committee was very impressed by the technical capabilities of the US LHC Accelerator project team. Cost estimates for each subsystem of the US LHC Accelerator project were presented to the Review Committee, with a total cost including contingency of $110 million (then year dollars). The cost estimates were deemed to be conservative. A re-examination of the funding profile, costs, and schedules on a centralized project basis should lead to an increased list of deliverables. The Committee concluded that the proposed scope of US deliverables to CERN can be readily accomplished with the $110 million total cost baseline for the project. The current deliverables should serve as the baseline scope with the firm expectation that additional scope will be restored to the baseline as the project moves forward. The Committee supports the FY 1998 work plan and scope of deliverables but strongly recommends the reevaluation of costs and schedules with the goal of producing a plan for restoring the US deliverables to CERN. This plan should provide precise dates when scope decisions must be made.

  20. Federal Laboratory Consortium | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Federal Laboratory Consortium

  1. Brookhaven National Laboratory | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    Brookhaven National Laboratory

  2. Mechanical features of the ATS RFQ linear accelerator

    SciTech Connect (OSTI)

    Wilson, N.G.; Hayward, T.D.; Lind, G.W.

    1983-01-01

    A radio-frequency quadrupole (RFQ) linear accelerator has been constructed and placed in operation on the Los Alamos National Laboratory accelerator test stand (ATS). This accelerator uses an evacuated rf manifold to distribute rf excitation from the 425-MHz rf power supply to the slot-coupled, RFQ vane-cavity, resonator assembly. The RFQ vanes are supported on commercially available copper-plated, linear, resilient C-seals to provide a high-conductivity rf contact that permits aligning and positioning the vanes during tuning, and demounting the vanes for evaluation and modification as necessary. All rf structures are fabricated from stress-relieved, bright-acid copper-plated carbon steel. Measurements made on the accelerator as assembled have demonstrated >8000 vane-cavity Q at the quadrupole's approx. 423.400-MHz accelerating-mode frequency. Operating manifold vacuum of 3 to 6 x 10/sup -8/ torr has been observed after rf conditioning; conditioning required 150 h for stable high-power rf operation. Experience to date has indicated the desirability of modifying the vane rf-contact seat configuration to improve assembly and alignment procedures, improving vane-machining processes to increase vane straightness, installing periodic vane-shorting rings to minimize the effect of dipole modes in the quadrupole accelerating structure,and modifying the waveguide-coupling slot in the manifold to improve forward rf power flow.

  3. SBA Growth Accelerator Fund Competition

    Broader source: Energy.gov [DOE]

    The U.S. Small Business Administration (SBA) is accepting applications for the Growth Accelerator Fund Competition to identify the nation's innovative accelerators and similar organizations and award them cash prizes they may use to fund their operations costs and allow them to bring startup competitions to scale and new ideas to life.

  4. General purpose programmable accelerator board

    DOE Patents [OSTI]

    Robertson, Perry J.; Witzke, Edward L.

    2001-01-01

    A general purpose accelerator board and acceleration method comprising use of: one or more programmable logic devices; a plurality of memory blocks; bus interface for communicating data between the memory blocks and devices external to the board; and dynamic programming capabilities for providing logic to the programmable logic device to be executed on data in the memory blocks.

  5. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, V.W.

    1990-07-03

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations. 3 figs.

  6. RFQ accelerator tuning system

    DOE Patents [OSTI]

    Bolie, Victor W.

    1990-01-01

    A cooling system is provided for maintaining a preselected operating temperature in a device, which may be an RFQ accelerator, having a variable heat removal requirement, by circulating a cooling fluid through a cooling system remote from the device. Internal sensors in the device enable an estimated error signal to be generated from parameters which are indicative of the heat removal requirement from the device. Sensors are provided at predetermined locations in the cooling system for outputting operational temperature signals. Analog and digital computers define a control signal functionally related to the temperature signals and the estimated error signal, where the control signal is defined effective to return the device to the preselected operating temperature in a stable manner. The cooling system includes a first heat sink responsive to a first portion of the control signal to remove heat from a major portion of the circulating fluid. A second heat sink is responsive to a second portion of the control signal to remove heat from a minor portion of the circulating fluid. The cooled major and minor portions of the circulating fluid are mixed in response to a mixing portion of the control signal, which is effective to proportion the major and minor portions of the circulating fluid to establish a mixed fluid temperature which is effective to define the preselected operating temperature for the remote device. In an RFQ environment the stable temperature control enables the resonant frequency of the device to be maintained at substantially a predetermined value during transient operations.

  7. SuperB Progress Report for Accelerator

    SciTech Connect (OSTI)

    Biagini, M.E.; Boni, R.; Boscolo, M.; Buonomo, B.; Demma, T.; Drago, A.; Esposito, M.; Guiducci, S.; Mazzitelli, G.; Pellegrino, L.; Preger, M.A.; Raimondi, P.; Ricci, R.; Rotundo, U.; Sanelli, C.; Serio, M.; Stella, A.; Tomassini, S.; Zobov, M.; Bertsche, K.; Brachman, A.; /SLAC /Novosibirsk, IYF /INFN, Pisa /Pisa U. /Orsay, LAL /Annecy, LAPP /LPSC, Grenoble /IRFU, SPP, Saclay /DESY /Cockroft Inst. Accel. Sci. Tech. /U. Liverpool /CERN

    2012-02-14

    This report details the progress made in by the SuperB Project in the area of the Collider since the publication of the SuperB Conceptual Design Report in 2007 and the Proceedings of SuperB Workshop VI in Valencia in 2008. With this document we propose a new electron positron colliding beam accelerator to be built in Italy to study flavor physics in the B-meson system at an energy of 10 GeV in the center-of-mass. This facility is called a high luminosity B-factory with a project name 'SuperB'. This project builds on a long history of successful e+e- colliders built around the world, as illustrated in Figure 1.1. The key advances in the design of this accelerator come from recent successes at the DAFNE collider at INFN in Frascati, Italy, at PEP-II at SLAC in California, USA, and at KEKB at KEK in Tsukuba Japan, and from new concepts in beam manipulation at the interaction region (IP) called 'crab waist'. This new collider comprises of two colliding beam rings, one at 4.2 GeV and one at 6.7 GeV, a common interaction region, a new injection system at full beam energies, and one of the two beams longitudinally polarized at the IP. Most of the new accelerator techniques needed for this collider have been achieved at other recently completed accelerators including the new PETRA-3 light source at DESY in Hamburg (Germany) and the upgraded DAFNE collider at the INFN laboratory at Frascati (Italy), or during design studies of CLIC or the International Linear Collider (ILC). The project is to be designed and constructed by a worldwide collaboration of accelerator and engineering staff along with ties to industry. To save significant construction costs, many components from the PEP-II collider at SLAC will be recycled and used in this new accelerator. The interaction region will be designed in collaboration with the particle physics detector to guarantee successful mutual use. The accelerator collaboration will consist of several groups at present universities and national laboratories. In Italy these may include INFN Frascati and the University of Pisa, in the United States SLAC, LBNL, BNL and several universities, in France IN2P3, LAPP, and Grenoble, in Russia BINP, in Poland Krakow University, and in the UK the Cockcroft Institute. The construction time for this collider is a total of about four years. The new tunnel can be bored in about a year. The new accelerator components can be built and installed in about 4 years. The shipping of components from PEP-II at SLAC to Italy will take about a year. A new linac and damping ring complex for the injector for the rings can be built in about three years. The commissioning of this new accelerator will take about a year including the new electron and positron sources, new linac, new damping ring, new beam transport lines, two new collider rings and the Interaction Region. The new particle physics detector can be commissioned simultaneously with the accelerator. Once beam collisions start for particle physics, the luminosity will increase with time, likely reaching full design specifications after about two to three years of operation. After construction, the operation of the collider will be the responsibility of the Italian INFN governmental agency. The intent is to run this accelerator about ten months each year with about one month for accelerator turn-on and nine months for colliding beams. The collider will need to operate for about 10 years to provide the required 50 ab{sup -1} requested by the detector collaboration. Both beams as anticipated in this collider will have properties that are excellent for use as sources for synchrotron radiation (SR). The expected photon properties are comparable to those of PETRA-3 or NSLS-II. The beam lines and user facilities needed to carry out this SR program are being investigated.

  8. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, D.L.; Reginato, L.L.

    1984-03-22

    An electron beam accelerator is described comprising an electron beam generator-injector to produce a focused beam of greater than or equal to .1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electron by about .1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .1-1 MeV maximum energy over a time duration of less than or equal to 1 ..mu..sec.

  9. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L.; Reginato, Louis L.

    1988-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially .gtoreq.0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  10. Electron beam accelerator with magnetic pulse compression and accelerator switching

    DOE Patents [OSTI]

    Birx, Daniel L.; Reginato, Louis L.

    1987-01-01

    An electron beam accelerator comprising an electron beam generator-injector to produce a focused beam of .gtoreq.0.1 MeV energy electrons; a plurality of substantially identical, aligned accelerator modules to sequentially receive and increase the kinetic energies of the beam electrons by about 0.1-1 MeV per module. Each accelerator module includes a pulse-forming network that delivers a voltage pulse to the module of substantially 0.1-1 MeV maximum energy over a time duration of .ltoreq.1 .mu.sec.

  11. Princeton Plasma Physics Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Plasma Physics Laboratory P.O. Box 451 Princeton, NJ 08543-0451 GPS: 100 Stellarator Road Princeton, NJ 08540 www.pppl.gov 2015 Princeton Plasma Physics Laboratory. A...

  12. DOE Laboratory Partnerships

    Broader source: Energy.gov [DOE]

    DOE national laboratories were created to support the various missions of the Department, including energy, national security, science and related environmental activities. The laboratories conduct innovative research and development in literally hundreds of technology areas, some available nowhere else.

  13. haberer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    haberer Ames Laboratory Profile Charles Haberer Facilities Services 158 Metals Development Phone Number: 515-294-3757 Email Address: haberer

  14. islowing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    islowing Ames Laboratory Profile Igor Slowing Assoc Scientist Chemical & Biological Sciences 2756 Gilman Phone Number: 515-294-1959 Email Address: islowing@iastate.edu Ames Laboratory Associate Ames Laboratory Research Projects: Homogeneous and Interfacial Catalysis in 3D Controlled Environment Nanorefinery Education: Ph.D., Iowa State University, 2003-2008 Licenciate in Chemistry, San Carlos University, Guatemala, 1988-1995 Professional Appointments: Staff Scientist, Ames Laboratory,

  15. levin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    levin Ames Laboratory Profile Evgenii Levin Scientist I Division of Materials Science & Engineering 107 Spedding Phone Number: 515-294-6093 Email Address: levin@iastate.edu Ames Laboratory Research Projects: Novel Materials Preparation & Processing Methodologies Professional Appointments: Scientist I & Adj. Associate Professor, Ames Laboratory U.S. DOE, and Department of Physics and Astronomy, Iowa State University, 2010- present Associate Scientist & Lecturer, Ames Laboratory

  16. FY 2005 Laboratory Table

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Congressional Budget Request Laboratory Tables Preliminary Department of Energy FY 2005 Congressional Budget Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Preliminary Department of Energy Department of Energy FY 2005 Congressional Budget FY 2005 Congressional Budget Request Request Office of Management, Budget and Evaluation/CFO February 2004 Laboratory Tables Laboratory Tables Printed with soy ink on recycled paper Preliminary Preliminary The numbers

  17. Management | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Chemical Sciences & Engineering Focus: Understanding & Control of Interfacial Processes Web Site Michael Thackeray Michael Thackeray (Deputy Director) Argonne National Laboratory...

  18. Alamos National Laboratory's 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    $2 million pledged during Los Alamos National Laboratory's 2014 employee giving campaign December 17, 2013 "I Give Because..." theme focuses on unique role Lab plays in local communities LOS ALAMOS, N.M., Dec. 17, 2013-Nearly $2 million has been pledged by Los Alamos National Laboratory employees to United Way and other eligible nonprofit programs during the Laboratory's 2014 Employee Giving Campaign. Los Alamos National Security, LLC, which manages and operates the Laboratory for the

  19. biswasr | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    University, 1976 Professional Appointments: Senior Scientist Ames Laboratory and Microelectronics Research Center, 2013- present Adjunct Professor, Dept. of Physics & Astronomy;...

  20. COAXIAL TWO-CHANNEL DIELECTRIC WAKE FIELD ACCELERATOR

    SciTech Connect (OSTI)

    Hirshfield, Jay L.

    2013-04-30

    Theory, computations, and experimental apparatus are presented that describe and are intended to confirm novel properties of a coaxial two-channel dielectric wake field accelerator. In this configuration, an annular drive beam in the outer coaxial channel excites multimode wakefields which, in the inner channel, can accelerate a test beam to an energy much higher than the energy of the drive beam. This high transformer ratio is the result of judicious choice of the dielectric structure parameters, and of the phase separation between drive bunches and test bunches. A structure with cm-scale wakefields has been build for tests at the Argonne Wakefield Accelerator Laboratory, and a structure with mm-scale wakefields has been built for tests at the SLAC FACET facility. Both tests await scheduling by the respective facilities.

  1. Sandia National Laboratories: Laboratories' Strategic Framework

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Strategic Framework Vision, Mission, and Values Strategic Framework Mission Areas Laboratories Foundation Strategic Objectives and Crosscuts About Strategic Framework strategic framework Sandia continues to be engaged in the significant demands of the nation's nuclear weapons modernization program while conducting a whole range of activities in broader national security. The Laboratories' strategic framework drives strategic decisions about the totality of our work and has positioned our

  2. INL Laboratory Scale Atomizer

    SciTech Connect (OSTI)

    C.R. Clark; G.C. Knighton; R.S. Fielding; N.P. Hallinan

    2010-01-01

    A laboratory scale atomizer has been built at the Idaho National Laboratory. This has proven useful for laboratory scale tests and has been used to fabricate fuel used in the RERTR miniplate experiments. This instrument evolved over time with various improvements being made ‘on the fly’ in a trial and error process.

  3. Cascaded target normal sheath acceleration

    SciTech Connect (OSTI)

    Wang, W. P.; Shen, B. F.; Zhang, X. M.; Wang, X. F.; Xu, J. C.; Zhao, X. Y.; Yu, Y. H.; Yi, L. Q.; Shi, Y.; Zhang, L. G.; Xu, T. J.; Xu, Z. Z.

    2013-11-15

    A cascaded target normal sheath acceleration (TNSA) scheme is proposed to simultaneously increase energy and improve energy spread of a laser-produced mono-energetic proton beam. An optimum condition that uses the maximum sheath field to accelerate the center of the proton beam is theoretically found and verified by two-dimensional particle-in-cell simulations. An initial 10 MeV proton beam is accelerated to 21 MeV with energy spread decreased from 5% to 2% under the optimum condition during the process of the cascaded TNSA. The scheme opens a way to scale proton energy lineally with laser energy.

  4. Argonne's Laboratory computing center - 2007 annual report.

    SciTech Connect (OSTI)

    Bair, R.; Pieper, G. W.

    2008-05-28

    Argonne National Laboratory founded the Laboratory Computing Resource Center (LCRC) in the spring of 2002 to help meet pressing program needs for computational modeling, simulation, and analysis. The guiding mission is to provide critical computing resources that accelerate the development of high-performance computing expertise, applications, and computations to meet the Laboratory's challenging science and engineering missions. In September 2002 the LCRC deployed a 350-node computing cluster from Linux NetworX to address Laboratory needs for mid-range supercomputing. This cluster, named 'Jazz', achieved over a teraflop of computing power (1012 floating-point calculations per second) on standard tests, making it the Laboratory's first terascale computing system and one of the 50 fastest computers in the world at the time. Jazz was made available to early users in November 2002 while the system was undergoing development and configuration. In April 2003, Jazz was officially made available for production operation. Since then, the Jazz user community has grown steadily. By the end of fiscal year 2007, there were over 60 active projects representing a wide cross-section of Laboratory expertise, including work in biosciences, chemistry, climate, computer science, engineering applications, environmental science, geoscience, information science, materials science, mathematics, nanoscience, nuclear engineering, and physics. Most important, many projects have achieved results that would have been unobtainable without such a computing resource. The LCRC continues to foster growth in the computational science and engineering capability and quality at the Laboratory. Specific goals include expansion of the use of Jazz to new disciplines and Laboratory initiatives, teaming with Laboratory infrastructure providers to offer more scientific data management capabilities, expanding Argonne staff use of national computing facilities, and improving the scientific reach and performance of Argonne's computational applications. Furthermore, recognizing that Jazz is fully subscribed, with considerable unmet demand, the LCRC has framed a 'path forward' for additional computing resources.

  5. Native American Venture Acceleration Fund applications due Nov. 13

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    VAF Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Native American Venture Acceleration Fund applications due Nov. 13 Individual awards worth up to $25,000 November 2, 2015 Walatowa Timber Industries of Jemez Pueblo, one of last year's Native American VAF recipients. Walatowa Timber Industries of Jemez Pueblo, one of last year's Native American VAF recipients. Contact Community Programs Director

  6. Accelerated Aging of Roofing Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Materials Accelerated Aging of Roofing Materials 1 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman prepares to insert clean and soiled roofing specimens into a weatherometer. The weatherometer simulates exposure to heat, moisture, and UV radiation. Image: Heat Island Group, Lawrence Berkeley National Laboratory 2 of 2 Berkeley Lab Heat Island Group chemist Mohamad Sleiman configures a weatherometer to simulate the effects of heat, moisture, and UV radiation on roofing materials.

  7. Accelerated Climate Modeling for Energy | Argonne Leadership Computing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facility An example of a Category 5 hurricane simulated by the CESM at 13 km resolution An example of a Category 5 hurricane simulated by the CESM at 13 km resolution. Precipitable water (gray scale) shows the detailed dynamical structure in the flow. Strong precipitation is overlaid in red. High resolution is necessary to simulate reasonable numbers of tropical cyclones including Category 4 and 5 storms. Alan Scott and Mark Taylor, Sandia National Laboratories Accelerated Climate Modeling

  8. Four New Mexico companies to receive Venture Acceleration Fund

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 VAF winners Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue:May 2016 all issues All Issues » submit Four New Mexico companies to receive Venture Acceleration Fund Winners are from Bernalillo, Los Alamos, Santa Fe June 1, 2015 High-end bead bracelets created by Etkie, one of this year's VAF recipients. High-end bead bracelets created by Etkie, one of this year's VAF recipients. Contact Community Programs Director (Acting) Carole

  9. Teachers Conduct Research at Prestigious Department of Energy Laboratory |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Conduct Research at Prestigious Department of Energy Laboratory Teachers Conduct Research at Prestigious Department of Energy Laboratory Twenty-nine high school and middle school physics, physical science, and engineering/technology teachers from four states are participating in the Continuous Electron Beam Accelerator Facility's Summer Institute for Teacher Enhancement (SITE). The four week Institute enables teachers to conduct practical and essential group research on a

  10. Accelerator driven assembly

    SciTech Connect (OSTI)

    Balderas, J.; Cappiello, M.; Cummings, C.E.; Davidson, R.

    1997-01-01

    This report addresses a Los Alamos National Laboratory (LANL) proposal to build a pulsed neutron source for simulating nuclear-weapons effects. A point design for the pulsed neutron facility was initiated early in FY94 after hosting a Defense Nuclear Agency (DNA) panel review and after subsequently visiting several potential clients and users. The technical and facility designs contained herein fulfill the Statement of Work (SOW) agreed upon by LANL and DNA. However, our point designs and parametric studies identify a unique, cost-effective, above-ground capability for neutron nuclear-weapons-effects studies at threat levels. This capability builds on existing capital installations and infrastructure at LANL. We believe that it is appropriate for us, together with the DNA, to return to the user community and ask for their comments and critiques. We also realize that the requirements of last year have changed significantly. Therefore, the present report is a `working document` that may be revised where feasible as we learn more about the most recent Department of Defense (DoD) and Department of Energy (DOE) needs.

  11. Oak Ridge National Laboratory REVIEW, Vol. 25, Nos. 3 and 4, 1992

    SciTech Connect (OSTI)

    Krause, C.

    1992-01-01

    The titles in the table of contents from this journal are: Wartime Laboratory; High-flux Years; Accelerating Projects; Olympian Feats; Balancing Act; Responding to Social Needs; Energy Technologies; Diversity and Sharing; Global Outreach; Epilogue

  12. Ideum awarded Venture Acceleration Funds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ideum accelerates international software launch as a result of VAF award and business coaching Jim Spadaccini was first drawn to New Mexico by the beauty of Chaco Canyon. "I was...

  13. Accelerator physics and modeling: Proceedings

    SciTech Connect (OSTI)

    Parsa, Z.

    1991-12-31

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  14. Accelerator physics and modeling: Proceedings

    SciTech Connect (OSTI)

    Parsa, Z.

    1991-01-01

    This report contains papers on the following topics: Physics of high brightness beams; radio frequency beam conditioner for fast-wave free-electron generators of coherent radiation; wake-field and space-charge effects on high brightness beams. Calculations and measured results for BNL-ATF; non-linear orbit theory and accelerator design; general problems of modeling for accelerators; development and application of dispersive soft ferrite models for time-domain simulation; and bunch lengthening in the SLC damping rings.

  15. Sequentially pulsed traveling wave accelerator

    DOE Patents [OSTI]

    Caporaso, George J.; Nelson, Scott D.; Poole, Brian R.

    2009-08-18

    A sequentially pulsed traveling wave compact accelerator having two or more pulse forming lines each with a switch for producing a short acceleration pulse along a short length of a beam tube, and a trigger mechanism for sequentially triggering the switches so that a traveling axial electric field is produced along the beam tube in synchronism with an axially traversing pulsed beam of charged particles to serially impart energy to the particle beam.

  16. How Particle Accelerators Work | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... How are particle accelerators used in medical applications? Tens of millions of patients receive accelerator-based diagnoses and therapy each year in hospitals and clinics around ...

  17. Berkeley Lab Particle Accelerator Sets World Record

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traditional particle accelerators, like the Large Hadron Collider at CERN, which is 17 miles ... Particle Accelerators NERSC Resources Used: Edison, Hopper DOE Program ...

  18. Accelerated Stress Testing, Qualification Testing, HAST, Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerated Stress Testing, Qualification Testing, HAST, Field Experience Accelerated Stress Testing, Qualification Testing, HAST, Field Experience This presentation, which was the ...

  19. Accelerating CHP Deployment, United States Energy Association...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 Accelerating CHP Deployment, United States Energy Association (USEA), August 2011 The United ...

  20. ASTA at Fermilab: Accelerator Physics and Accelerator Education Programs at the Modern Accelerator R&D Users Facility for HEP and Accelerator Applications.

    SciTech Connect (OSTI)

    Shiltsev, V.; Piot, P.

    2013-09-01

    We present the current and planned beam physics research program and accelerator education program at Advanced Superconducting Test Accelerator (ASTA) at Fermilab.

  1. COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC...

    Office of Scientific and Technical Information (OSTI)

    Title: COMBINED MODELING OF ACCELERATION, TRANSPORT, AND HYDRODYNAMIC RESPONSE IN SOLAR FLARES. I. THE NUMERICAL MODEL Acceleration and transport of high-energy particles and fluid ...

  2. High-Intensity Proton Accelerator

    SciTech Connect (OSTI)

    Jay L. Hirshfield

    2011-12-27

    Analysis is presented for an eight-cavity proton cyclotron accelerator that could have advantages as compared with other accelerators because of its potentially high acceleration gradient. The high gradient is possible since protons orbit in a sequence of TE111 rotating mode cavities of equally diminishing frequencies with path lengths during acceleration that greatly exceed the cavity lengths. As the cavities operate at sequential harmonics of a basic repetition frequency, phase synchronism can be maintained over a relatively wide injection phase window without undue beam emittance growth. It is shown that use of radial vanes can allow cavity designs with significantly smaller radii, as compared with simple cylindrical cavities. Preliminary beam transport studies show that acceptable extraction and focusing of a proton beam after cyclic motion in this accelerator should be possible. Progress is also reported on design and tests of a four-cavity electron counterpart accelerator for experiments to study effects on beam quality arising from variations injection phase window width. This device is powered by four 500-MW pulsed amplifiers at 1500, 1800, 2100, and 2400 MHz that provide phase synchronous outputs, since they are driven from a with harmonics derived from a phase-locked 300 MHz source.

  3. Sandia National Laboratories is a multi-program laboratory operated...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Sandia National Laboratories is a multi-program laboratory operated by Sandia Corporation, ... laboratory operated by Sandia Corporation, a wholly owned subsidiary of Lockheed ...

  4. LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    LABORATORY NEW HIRE NOTICE: LABORATORY DELAYED OPENING OR CLOSURE DUE TO INCLEAMENT WEATHER During the winter months, the Los Alamos National Laboratory (LANL) may at times...

  5. Innovation Saves Laboratory $1,000/Day in Cooling Costs | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Saves Laboratory $1,000/Day in Cooling Costs Innovation Saves Laboratory $1,000/Day in Cooling Costs September 6, 2006 Cryogenics Group Jefferson Lab's Deputy Cryogenics Group Leader Venkatarao (Rao) Ganni (left), and Cryo Group Leader Dana Arenius pause in the Central Helium Liquefier control room. The Cryogenics Group in the Accelerator Engineering Department of the Accelerator Division is tasked with providing refrigeration for a variety of Jefferson Lab research activities. Three

  6. Type B Accident Investigation Report of the Arc Flash at Brookhaven National Laboratory, April 14, 2006

    Energy Savers [EERE]

    Type B Accident Investigation Board Report Arc Flash at Brookhaven National Laboratory April 14, 2006 August 2006 Brookhaven Site Office U.S. Department of Energy Upton, New York Type B Accident Investigation of the Arc Flash at Brookhaven National Laboratory, April 14, 2006 ii Acronyms and Abbreviations AC Alternating Current AGS Alternating Gradient Synchrotron AHJ Authority Having Jurisdiction ASE Accelerator Safety Envelope ASSRC Accelerator System Safety Review Committee ATS Action Tracking

  7. LOS ALAMOS, New Mexico, June 9, 2008- Los Alamos National Laboratory is

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    venture acceleration initiative partners June 9, 2008 LOS ALAMOS, New Mexico, June 9, 2008- Los Alamos National Laboratory is soliciting proposals from those interested in partnering with the Lab and Lab operating contractor Los Alamos National Security to facilitate the identification, creation, and growth of spinoff companies based on Laboratory technology or know-how and is prepared to provide up to $1 million over three years to support the effort. The Los Alamos Venture Acceleration (LAVA)

  8. LOS ALAMOS, New Mexico, September 2, 2008-Los Alamos National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partner for venture acceleration initiative September 2, 2008 LOS ALAMOS, New Mexico, September 2, 2008-Los Alamos National Laboratory (LANL) and its operating contractor, Los Alamos National Security, LLC, plan to partner with ARCH Venture Partners and Verge Fund for the Los Alamos Venture Acceleration (LAVA) Initiative. The initiative is a pilot program aimed at strategically spinning off technology-based companies from the Laboratory with emphasis on establishing new businesses in Northern

  9. Laboratory program helps small businesses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab helps small businesses Laboratory program helps small businesses The free program, run jointly by Los Alamos and Sandia National Laboratories, leverages the laboratories'...

  10. Going green earns Laboratory gold

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Going green earns Laboratory gold Going green earns Laboratory gold The Laboratory's newest facility is its first to achieve both the Leadership in Energy and Environmental Design...

  11. Budget Office | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    that the Laboratory complies with all Department Of Energy cost controls Providing decision-making support to senior Laboratory management Providing support to the Laboratory...

  12. LAHET calculations for accelerator neutron production

    SciTech Connect (OSTI)

    Prael, R.E.

    1993-07-01

    LAHET is a Monte Carlo code for the transport and interaction of nucleons, pions, muons, fight ions, and antinucleons in complex geometry; it is the result of a major effort at Los Alamos National Laboratory to develop a code system based on the LANL version of the HETC Monte Carlo code for the transport of nucleons, pions, and muons, which was originally developed at Oak Ridge National Laboratory. The system of codes based on LAHET is designated as the LAHET Code System (LCS). LAHET, as all the variants of HETC, has been widely used over the years for design of neutron production targets, facility shielding, and experimental analysis. LAHET is now widely used for medical accelerator facility design and application. Particle tracking uses the general geometry model of the LANL MCNP code, and shares the geometry description and input of MCNP, except for lattices and/or repeated structures. HMCNP is a modification of MCNP which accepts an. external neutron/photon source created by LAHET. Neutron transport from 20 MeV to thermal and all photon/electron transport is done with HMCNP.

  13. Sandia National Laboratories: Locations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Locations Locations Sandia California CINT photo A national and international presence Sandia operates laboratories, testing facilities, and offices in multiple sites around the United States and participates in research collaborations around the world. Sandia's executive management offices and larger laboratory complex are located in Albuquerque, New Mexico. Our second principal laboratory is located in Livermore, California. Although most of our 9,840 employees work at these two locations,

  14. The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Timothy Hackett and Kathryn White are the SULI students for spring semester 2016. Ames Laboratory's fall Science Undergraduate Laboratory Internship (SULI) students began their program with the start of fall semester Aug. 24. The students are, left to right, Kathryn White, Shannon Goes, Kaiser Aguirre, and Adam Dziulko. Department of Energy Deputy Secretary Elizabeth Sherwood-Randall poses with SULI and CCI students who participated in a roundtable discussion during her visit to Ames Laboratory

  15. Savannah River National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Savannah River National Laboratory srnl.doe.gov SRNL is a DOE National Laboratory operated by Savannah River Nuclear Solutions. At a glance 'Tin whiskers' suppression method Researchers at the Savannah River National Laboratory (SRNL) have identified a treatment method that slows or prevents the formation of whiskers in lead-free solder. Tin whiskers spontaneously grow from thin films of tin, often found in microelectronic devices in the form of solders and platings. Background This problem was

  16. jwang | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jwang Ames Laboratory Profile Jigang Wang Associate Division of Materials Science & Engineering B15 Spedding Phone Number: 515-294-2964 Email Address: jgwang@iastate.edu Ames Laboratory Research Projects: Metamaterials Education: Ph.D. Electrical Engineering, Rice University, Houston, TX, 2005 M.S. Electrical Engineering, Rice University, Houston, TX, 2002 B.S. Physics, Jilin University, Changchun, P. R. China, 2000 Professional Appointments: Associate Scientist, Ames Laboratory, Iowa State

  17. Education | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Education Education The MFRC has established a network of Midwest crime laboratories and university-based forensic science programs. This network has two general goals: help universities become better casework, research, and development partners for crime laboratories; and to engage crime laboratories in university efforts. These efforts can better-prepare the next generation of forensic scientists, advance the state-of-the-art in forensic science research, and influence students whose

  18. National Energy Technology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Design Standards for the NETL Logo Feburary 2016 The Logo Display of the NETL logo is critical because this symbol represents who we are - it's our signature. Consistent application of the logo is crucial to the success of our identity. As the primary identifier of the National Energy Technology Laboratory, it is essential that the logo's appearance is consistent throughout all of the Laboratory's communications. Over time, consistent and repeated use of the logo will establish a

  19. rshouk | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rshouk Ames Laboratory Profile Robert Houk Prof Chemical & Biological Sciences B27 Spedding Phone Number: 515-294-9462 Email Address: rshouk@iastate.edu Ames Laboratory Associate and Professor, Iowa State University Ames Laboratory Research Projects: Chemical Analysis of Nanodomains Education: Postdoctoral Associate, Iowa State University, 1981 Ph.D. Iowa State University, 1980 B.S. Slippery Rock State College, 1974 Professional Appointments: Senior Chemist and Professor of Chemistry, Iowa

  20. Mentoring | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mentoring Why mentoring? As one of the largest laboratories in the nation for science and engineering research, Argonne National Laboratory is home to some of the most prolific and well-renowned scientists and engineers. To maintain an environment that fosters innovative research, we are committed to ensuring the success of our major players on the frontlines of our research-our Postdoctoral Scientists. The Argonne National Laboratory has a long-standing reputation as a place that offers

  1. kabryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kabryden Ames Laboratory Profile Kristy Bryden Associate Simulation, Modeling, & Decision Science 149 Music Phone Number: 515-294-3971 Email Address: kabryden...

  2. CASL - Idaho National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The laboratory has designed and operated 52 test reactors, including EBR-1, the world's first nuclear power plant Key Contributions System safety analysis Multiscale fuel ...

  3. angiemcg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    angiemcg Ames Laboratory Profile Angela Mcguigan Secretary II Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: angiemcg...

  4. antropov | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Ames Laboratory Research Projects: Exploratory Development of Theoretical Methods Education: Ph.D. Condensed Matter Physics, Institute of Physics of Metals, Yekaterinburg,...

  5. OAK RIDGE NATIONAL LABORATORY

    Office of Legacy Management (LM)

    Dr. Williams: Trip Report of ORNL Health Physics Support at the Uniroyal Chemical Company ... Laboratory (ORNL) provided health physics support for the Uniroyal Chemical Company. ...

  6. Purchasing | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in 44 states. Purchased Items and supplier base: Biological Materials Chemicals Computers, Monitors and Printers Furniture Laboratory Supplies Metals Office Supplies...

  7. carter | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carter Ames Laboratory Profile Steven Carter Engr IV Facilities Services 158 Metals Development Phone Number: 515-294-7889 Email Address: carter@ameslab.gov...

  8. cbertoni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbertoni Ames Laboratory Profile Colleen Bertoni Grad Asst-RA Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: cbertoni...

  9. pmberge | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    pmberge Ames Laboratory Profile Paul Berge Industrial Spec Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5972 Email Address:...

  10. abhranil | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    abhranil Ames Laboratory Profile Abhranil Biswas Student Associate Chemical & Biological Sciences 2236 Hach Phone Number: 515-294-7568 Email Address: abiswas

  11. aboesenb | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aboesenb Ames Laboratory Profile Adam Boesenberg Associate Division of Materials Science & Engineering 110 Metals Development Phone Number: 515-294-5903 Email Address: aboesenb

  12. achatman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    achatman Ames Laboratory Profile Andrew Chatman Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: achatman

  13. ackerman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ackerman Ames Laboratory Profile David Ackerman Associate Chemical & Biological Sciences 2025 Black Engineering Phone Number: 515-294-1638 Email Address: ackerman

  14. adabbott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adabbott Ames Laboratory Profile Adam Abbott Chemical & Biological Sciences Critical Materials Institute 122 Spedding Phone Number: 515-294-4500 Email Address: adabbott

  15. adaoud | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adaoud Ames Laboratory Profile Abdelwadood Daoud Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: adaoud

  16. adf | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adf Ames Laboratory Profile Alex Findlater Student Associate Chemical & Biological Sciences 231 Spedding Phone Number: 515-294-7568 Email Address: adf

  17. ahaupert | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ahaupert Ames Laboratory Profile Alysha Haupert Facilities Services 241C Metals Development Phone Number: 515-294-4360 Email Address: ahaupert

  18. aklekner | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    aklekner Ames Laboratory Profile Alon Klekner Engr Tech I Facilities Services 167C Metals Development Phone Number: 515-294-1589 Email Address: aklekner

  19. andresg | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    andresg Ames Laboratory Profile Andres Garcia Grad Asst-RA Chemical & Biological Sciences 307 Wilhelm Phone Number: 515-294-6027 Email Address: andresg

  20. arbenson | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    arbenson Ames Laboratory Profile Alex Benson Division of Materials Science & Engineering 258 Metals Development Phone Number: 515-294-4446 Email Address: arbenson

  1. ashheath | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ashheath Ames Laboratory Profile Ashley Heath Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: ashheath

  2. bastaw | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bastaw Ames Laboratory Profile Ashraf Bastawros Associate Chemical & Biological Sciences 2347 Howe Phone Number: 515-294-3039 Email Address: bastaw

  3. baugie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    baugie Ames Laboratory Profile Brent Augustine Student Associate Division of Materials Science & Engineering 206 Wilhelm Phone Number: 309-748-0439 Email Address: baugie

  4. bbergman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bbergman Ames Laboratory Profile Brian Bergman Facil Mechanic III Facilities Services Maintenance Shop Phone Number: 515-294-4346 Email Address: bbergman@ameslab.gov

  5. bboote | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bboote Ames Laboratory Profile Brett Boote Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: bboote@iastate.edu

  6. bcleland | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bcleland Ames Laboratory Profile Beth Cleland Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: bcleland

  7. bender | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bender Ames Laboratory Profile Lee Bendickson Lab Tech III Division of Materials Science & Engineering 3288 Molecular Biology Bldg Phone Number: 515-294-5682 Email Address: bender

  8. bkkuhn | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bkkuhn Ames Laboratory Profile Bridget Kuhn Human Resources Office 118 TASF Phone Number: 515-294-2680 Email Address: bkkuhn@iastate.edu

  9. boehmer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boehmer Ames Laboratory Profile Anna Boehmer Postdoc Res Associate Division of Materials Science & Engineering A15 Zaffarano Phone Number: 515-294-3246 Email Address: boehmer

  10. boersma | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    boersma Ames Laboratory Profile Stephanie Boersma Budget Analyst V Budget Office 231 TASF Phone Number: 515-294-8785 Email Address: boersma

  11. bondarenko | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bondarenko Ames Laboratory Profile Volodymyr Bondarenko Division of Materials Science & Engineering A117 Zaffarano Phone Number: 515-294-4072 Email Address: bondarenko

  12. bspire | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bspire Ames Laboratory Profile Bruce Spire Erd Machinist Sr Facilities Services 160 Metals Development Phone Number: 515-294-5428 Email Address: bspire

  13. burghera | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    burghera Ames Laboratory Profile Alexander Burgher Facil Mechanic III Facilities Services 158B Metals Development Phone Number: 515-294-3756 Email Address: burghera

  14. byrd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    byrd Ames Laboratory Profile David Byrd Asst Scientist I Division of Materials Science & Engineering 109 Metals Development Phone Number: 515-294-5747 Email Address: byrd

  15. carraher | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    carraher Ames Laboratory Profile Jack Carraher Postdoc Res Associate Chemical & Biological Sciences 2118 BRL Phone Number: 515-294-5826 Email Address: carraher@iastate.edu

  16. cbenetti | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cbenetti Ames Laboratory Profile Caleb Benetti Student Associate Division of Materials Science & Engineering A204 Zaffarano Phone Number: 515-294-4446 Email Address: cbenetti

  17. ccelania | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccelania Ames Laboratory Profile Christopher Celania Grad Asst-TA/RA Division of Materials Science & Engineering 325 Spedding Phone Number: 641-226-7542 Email Address: ccelania

  18. ccowan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ccowan Ames Laboratory Profile Carol Cowan Secretary III Human Resources Office 151 TASF Phone Number: 515-294-2680 Email Address: ccowan

  19. chenx | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    chenx Ames Laboratory Profile Xiang Chen Division of Materials Science & Engineering 249 Spedding Phone Number: 515-294-4446 Email Address: chenx

  20. cmarquardt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    cmarquardt Ames Laboratory Profile Cynthia Marquardt Secretary II Facilities Services 158 Metals Development Phone Number: 515-294-3756 Email Address: cmarquardt

  1. crossm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    crossm Ames Laboratory Profile Jeanine Crosman Secretary III Facilities Services 158H Metals Development Phone Number: 515-294-3496 Email Address: crossm

  2. dabrice | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dabrice Ames Laboratory Profile David Brice Division of Materials Science & Engineering 150 Metals Development Phone Number: 515-294-4446 Email Address: dabrice

  3. dbaldwin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dbaldwin Ames Laboratory Profile David Baldwin Director II Chemical & Biological Sciences 130 Spedding Phone Number: 515-294-2069 Email Address: dbaldwin

  4. dballal | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dballal Ames Laboratory Profile Deepti Ballal Division of Materials Science & Engineering 112 Wilhelm Phone Number: 515-294-9636 Email Address: dballal

  5. dboeke | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dboeke Ames Laboratory Profile David Boeke Research Tech Sr Division of Materials Science & Engineering 122 Metals Development Phone Number: 515-294-5816 Email Address: dboeke

  6. deshong | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    deshong Ames Laboratory Profile Rhonda Deshong Program Asst II Human Resources Office 151 TASF Phone Number: 515-294-0931 Email Address: deshong@ameslab.gov

  7. dfreppon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dfreppon Ames Laboratory Profile Daniel Freppon Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-8586 Email Address: dfreppon

  8. djbell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djbell Ames Laboratory Profile Daniel Bell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-3891 Email Address: djbell

  9. djchadde | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    djchadde Ames Laboratory Profile David Chadderdon Grad Asst-RA Division of Materials Science & Engineering 2140 BRL Phone Number: 515-294-4446 Email Address: djchadde

  10. dmeyer | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dmeyer Ames Laboratory Profile Dale Meyer Engr Tech II Facilities Services 158D Metals Development Phone Number: 515-294-3614 Email Address: dmeyer@ameslab.gov

  11. eckels | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eckels Ames Laboratory Profile David Eckels Associate Chemical & Biological Sciences 105 Spedding Phone Number: 515-294-7943 Email Address: eckels@ameslab.gov

  12. eguidez | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    eguidez Ames Laboratory Profile Emilie Guidez Associate Chemical & Biological Sciences 201 Spedding Phone Number: 515-294-7568 Email Address: eguidez@ameslab.gov

  13. finzell | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    finzell Ames Laboratory Profile Peter Finzell Grad Asst-RA Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-8060 Email Address: surgeftr

  14. flanders | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flanders Ames Laboratory Profile Duane Flanders Sheet Metal Mech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: flanders@ameslab.gov

  15. galvin | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    galvin Ames Laboratory Profile Glen Galvin Mgr Info Tech I Simulation, Modeling, & Decision Science 1620 Howe Phone Number: 515-294-6604 Email Address: galvin

  16. gbjorlnd | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gbjorlnd Ames Laboratory Profile Grace Bjorland Division of Materials Science & Engineering B36 Spedding Phone Number: 515-294-4446 Email Address: gbjorlnd

  17. gharper | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gharper Ames Laboratory Profile Gregory Harper Sys Control Tech Facilities Services Maintenance Shop Phone Number: 515-294-1746 Email Address: gharper

  18. gsbacon | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    gsbacon Ames Laboratory Profile Graham Bacon Division of Materials Science & Engineering 129 Wilhelm Phone Number: 515-294-4446 Email Address: gsbacon

  19. guan | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    guan Ames Laboratory Profile Yong Guan Associate Chemical & Biological Sciences 3219 Coover Phone Number: 515-294-8378 Email Address: guan

  20. hanrahanm | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hanrahanm Ames Laboratory Profile Michael Hanrahan Chemical & Biological Sciences 331 Spedding Phone Number: 515-294-7568 Email Address: mph

  1. hauptman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hauptman Ames Laboratory Profile John Hauptman Associate Facilities Services A411 Zaffarano Phone Number: 515-294-8572 Email Address: hauptman

  2. hcelliott | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hcelliott Ames Laboratory Profile Henrietta Elliott Custodian I Facilities Services 241C Metals Development Phone Number: 515-294-5446 Email Address: hcelliott

  3. herrman | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    herrman Ames Laboratory Profile Terrance Herrman Engr V Facilities Services 167 Metals Development Phone Number: 515-294-7896 Email Address: herrman

  4. hilstromj | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hilstromj Ames Laboratory Profile Jeremy Hilstrom Office Assistant-X Human Resources Office 118 TASF Phone Number: 515-294-2680 Email Address: hilst000

  5. himashir | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    himashir Ames Laboratory Profile Himashi Andaraarachchi Student Associate Chemical & Biological Sciences 209B Wilhelm Phone Number: 515-294-7568 Email Address: himashir

  6. jac | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jac Ames Laboratory Profile Justin Conrad Student Associate Chemical & Biological Sciences 305 TASF Phone Number: 515-294-4604 Email Address: jac

  7. jbobbitt | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jbobbitt Ames Laboratory Profile Jonathan Bobbitt Grad Asst-RA Chemical & Biological Sciences 0712 Gilman Phone Number: 515-294-4285 Email Address: jbobbitt

  8. jboschen | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jboschen Ames Laboratory Profile Jeffery Boschen Grad Asst-RA Chemical & Biological Sciences 124 Spedding Phone Number: 515-294-7568 Email Address: jboschen

  9. jiahao | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jiahao Ames Laboratory Profile Jiahao Chen Division of Materials Science & Engineering A300 Zaffarano Phone Number: 515-294-0689 Email Address: jiahao@iastate.edu

  10. jrblaum | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    jrblaum Ames Laboratory Profile Jacqueline Blaum Division of Materials Science & Engineering 37 Spedding Phone Number: 515-294-4446 Email Address: jrblaum

  11. kasuni | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kasuni Ames Laboratory Profile Walikadage Boteju Grad Asst-RA Chemical & Biological Sciences Critical Materials Institute 2306 Hach Phone Number: 515-294-6342 Email Address: kasuni

  12. kbratlie | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kbratlie Ames Laboratory Profile Kaitlin Bratlie Associate Division of Materials Science & Engineering 2220 Hoover Phone Number: 515-294-7304 Email Address: kbratlie

  13. klclark | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    klclark Ames Laboratory Profile Katie Clark Program Coord II Human Resources Office 151 TASF Phone Number: 515-294-8753 Email Address: klclark@ameslab.gov

  14. kmbryden | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    kmbryden Ames Laboratory Profile Kenneth Bryden Associate Simulation, Modeling, & Decision Science 2274 Howe Phone Number: 515-294-3891 Email Address: kmbryden

  15. liza | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    liza Ames Laboratory Profile Liza Alexander Grad Asst-RA Chemical & Biological Sciences 2242 Molecular Biology Bldg Phone Number: 515-294-6116 Email Address: liza

  16. long | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    long Ames Laboratory Profile Catherine Long Supv-Custodial Svc Facilities Services 158G Metals Development Phone Number: 515-294-4360 Email Address: long

  17. maheedhar | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    maheedhar Ames Laboratory Profile Maheedhar Gunasekharan Grad Asst-RA Chemical & Biological Sciences 327 Wilhelm Phone Number: 515-294-7568 Email Address: maheedhar

  18. ppezzini | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ppezzini Ames Laboratory Profile Paolo Pezzini Postdoc Res Associate Simulation, Modeling, & Decision Science Off Campus Phone Number: 515-294-3891 Email Address: ppezzini...

  19. dcheng | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    dcheng Ames Laboratory Profile Di Cheng Student Associate Division of Materials Science & Engineering A311 Zaffarano Phone Number: 515-294-5373 Email Address: dcheng@iastate.edu...

  20. bartine | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    bartine Ames Laboratory Profile Jeffrey Bartine Program Coord III Environmental, Safety, Health, and Assurance G40 TASF Phone Number: 515-294-4743 Email Address: bartine...